WO2017056573A1 - 歯車加工機械及び方法 - Google Patents

歯車加工機械及び方法 Download PDF

Info

Publication number
WO2017056573A1
WO2017056573A1 PCT/JP2016/067724 JP2016067724W WO2017056573A1 WO 2017056573 A1 WO2017056573 A1 WO 2017056573A1 JP 2016067724 W JP2016067724 W JP 2016067724W WO 2017056573 A1 WO2017056573 A1 WO 2017056573A1
Authority
WO
WIPO (PCT)
Prior art keywords
cutter
gear
rotation axis
cutting
workpiece
Prior art date
Application number
PCT/JP2016/067724
Other languages
English (en)
French (fr)
Inventor
淳二 薄出
Original Assignee
三菱重工工作機械株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工工作機械株式会社 filed Critical 三菱重工工作機械株式会社
Priority to US15/570,454 priority Critical patent/US10272509B2/en
Priority to CN201680024349.6A priority patent/CN107530802B/zh
Priority to MX2017013913A priority patent/MX2017013913A/es
Publication of WO2017056573A1 publication Critical patent/WO2017056573A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23FMAKING GEARS OR TOOTHED RACKS
    • B23F5/00Making straight gear teeth involving moving a tool relatively to a workpiece with a rolling-off or an enveloping motion with respect to the gear teeth to be made
    • B23F5/12Making straight gear teeth involving moving a tool relatively to a workpiece with a rolling-off or an enveloping motion with respect to the gear teeth to be made by planing or slotting
    • B23F5/16Making straight gear teeth involving moving a tool relatively to a workpiece with a rolling-off or an enveloping motion with respect to the gear teeth to be made by planing or slotting the tool having a shape similar to that of a spur wheel or part thereof
    • B23F5/163Making straight gear teeth involving moving a tool relatively to a workpiece with a rolling-off or an enveloping motion with respect to the gear teeth to be made by planing or slotting the tool having a shape similar to that of a spur wheel or part thereof the tool and workpiece being in crossed axis arrangement, e.g. skiving, i.e. "Waelzschaelen"
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23FMAKING GEARS OR TOOTHED RACKS
    • B23F21/00Tools specially adapted for use in machines for manufacturing gear teeth
    • B23F21/04Planing or slotting tools
    • B23F21/10Gear-shaper cutters having a shape similar to a spur wheel or part thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23FMAKING GEARS OR TOOTHED RACKS
    • B23F23/00Accessories or equipment combined with or arranged in, or specially designed to form part of, gear-cutting machines
    • B23F23/12Other devices, e.g. tool holders; Checking devices for controlling workpieces in machines for manufacturing gear teeth
    • B23F23/1206Tool mountings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23FMAKING GEARS OR TOOTHED RACKS
    • B23F23/00Accessories or equipment combined with or arranged in, or specially designed to form part of, gear-cutting machines
    • B23F23/12Other devices, e.g. tool holders; Checking devices for controlling workpieces in machines for manufacturing gear teeth
    • B23F23/1225Arrangements of abrasive wheel dressing devices on gear-cutting machines
    • B23F23/1231Arrangements of abrasive wheel dressing devices on gear-cutting machines using a gear-shaped dressing tool
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23FMAKING GEARS OR TOOTHED RACKS
    • B23F5/00Making straight gear teeth involving moving a tool relatively to a workpiece with a rolling-off or an enveloping motion with respect to the gear teeth to be made
    • B23F5/12Making straight gear teeth involving moving a tool relatively to a workpiece with a rolling-off or an enveloping motion with respect to the gear teeth to be made by planing or slotting
    • B23F5/16Making straight gear teeth involving moving a tool relatively to a workpiece with a rolling-off or an enveloping motion with respect to the gear teeth to be made by planing or slotting the tool having a shape similar to that of a spur wheel or part thereof

Definitions

  • the present invention relates to a gear processing machine and method.
  • gear shaving using a pinion cutter and broaching using a helical broach are the mainstreams for gear cutting of stepped gears and internal gears where hobbing cannot be performed.
  • gear shaver processing has the problem that processing time is long and productivity is low, and broaching processing has high equipment cost, adjustment of processing accuracy is difficult, and the shape of gears that can be processed is limited There is.
  • Patent Document 1 discloses a method of performing cutting by rotating a pinion cutter instead of a reciprocating motion to realize high-precision and high-efficiency gear cutting.
  • a gear processing machine for solving the above-mentioned problems is as follows.
  • a gear processing machine for cutting a gear to be processed by the gear-shaped cutter, Turning means for giving an axis crossing angle of the cutter rotation axis with respect to the workpiece rotation axis;
  • Cutter cutting means for moving the gear-shaped cutter in a cutting direction in rough machining perpendicular to the workpiece rotation axis direction;
  • Cutter moving means for moving the gear-shaped cutter in a direction perpendicular to the cutting direction and the workpiece rotation axis direction;
  • Cutter feed means for moving the gear-shaped cutter in a feed axis direction parallel to the workpiece rotation axis direction;
  • the cutter rotation shaft is
  • the cutter rotation axis projected onto the plane in the plane including the feed axis direction and the cut direction after the movement is obtained by translating the workpiece rotation axis at a predetermined angle with respect to a plane orthogonal to the axis.
  • the gear processing machine for solving the above-described problem is By cutting and feeding the gear-shaped cutter while meshing and rotating a workpiece gear that can rotate around the workpiece rotation axis and a gear-shaped cutter that can rotate around the cutter rotation axis, A gear processing machine for cutting a gear to be processed by the gear-shaped cutter, Turning means for giving an axis crossing angle of the cutter rotation axis with respect to the workpiece rotation axis; Cutter cutting means for moving the gear-shaped cutter in a cutting direction in rough machining perpendicular to the workpiece rotation axis direction; Cutter moving means for moving the gear-shaped cutter in a direction perpendicular to the cutting direction and the workpiece rotation axis direction; Cutter feed means for moving the gear-shaped cutter in a feed axis direction parallel to the workpiece rotation axis direction; Roughing is performed by giving an axis crossing angle to the cutter rotating shaft, and the cutter rotating shaft is moved from the roughing position to a plane perpendicular to
  • the cutter rotation axis projected on the plane is inclined with respect to the workpiece rotation axis in a plane including the feed axis direction and the cut direction after the movement by translating the workpiece rotation axis at a predetermined angle.
  • a control means for controlling to perform a finishing process for controlling to perform a finishing process.
  • a gear machining machine for solving the above-mentioned problems is as follows.
  • the blade of the gear-shaped cutter is composed of a plurality of cutting blades provided in the tooth trace direction,
  • the control means sets the predetermined angle so as to change the cutting blade or the combination of the cutting blades involved in the machining between the roughing and the finishing.
  • a gear machining method for solving the above-described problems is as follows.
  • a gear machining method for cutting a gear to be machined by the gear-shaped cutter, A plane including the feed axis direction and the cut direction after the movement by moving the cutter rotation axis by a predetermined angle around the workpiece rotation axis after roughing by giving an axis crossing angle to the cutter rotation axis.
  • finishing is performed after the cutter rotating shaft is inclined with respect to the workpiece rotating shaft.
  • a gear machining method according to a fourth invention for solving the above-described problems is as follows.
  • the blade of the gear-shaped cutter is composed of a plurality of cutting blades provided in the tooth trace direction,
  • the predetermined angle is set so as to change the cutting blade or the combination of the cutting blades involved in the processing between the roughing and the finishing.
  • the tool life can be extended while machining the gear with high accuracy and high efficiency.
  • FIG. 1 is a perspective view of a gear processing machine according to an embodiment of the present invention. It is the perspective view which showed a mode that the workpiece
  • FIG. 3 is a cross-sectional view in the workpiece axis direction in FIG. 2. It is a typical perspective view explaining the cutter position at the time of roughing of the Example of this invention. It is a typical top view explaining the cutter position at the time of roughing of the example of the present invention. It is a typical perspective view explaining the cutter position at the time of finishing in the Example of this invention. It is a typical top view explaining the cutter position at the time of finishing in the example of the present invention.
  • a column (cutter cutting means) 12 is placed in a horizontal X-axis direction (cutting direction (however, here) In this embodiment, as will be described later, the cutting direction changes in the finishing process.)) Is movably supported.
  • a saddle (cutter feeding means) 13 is supported on the front surface of the column 12 so as to be movable up and down in a vertical Z-axis direction (feed axis direction) orthogonal to the X-axis direction.
  • a turning head (turning means, axis crossing angle setting means) 14 is supported so as to be turnable around a cutter turning axis A extending in the X-axis direction.
  • a slide head (cutter moving means) 15 is supported on the front surface of the swivel head 14 so as to be movable in the Y-axis direction which is the lateral direction of the gear processing machine 1. Further, a cutter head 16 is formed at the front portion of the slide head 15 so as to bulge out from the slide head 15 in a semicircular shape.
  • a main shaft 16a is supported so as to be rotatable about a cutter rotation axis B orthogonal to the X-axis and Y-axis directions.
  • a gear-shaped cutter 17 is attached to and detached from the tip of the main shaft 16a. It is installed as possible.
  • a rotary table (work rotating means) 18 is supported so as to be rotatable around a work rotation axis C extending in the Z-axis direction.
  • a cylindrical mounting jig 19 is attached to the upper surface of the rotary table 18, and a work (working internal gear) W is detachably attached to the inner peripheral surface of the upper end of the mounting jig 19.
  • the center of the workpiece W is coaxial with the workpiece rotation axis C of the rotary table 18.
  • the gear machining machine 1 can give the cutter 17 a cut in the X-axis direction and a feed in the Z-axis direction. Further, by driving the slide head 15, the cutter 17 can be moved laterally in the Y-axis direction. Then, by rotating the main shaft 16a of the cutter head 16, the cutter 17 can be rotated around the cutter rotation axis B, while the rotary table 18 is driven to rotate so that the workpiece W is rotated around the workpiece rotation axis C. Can be rotated.
  • the turning angle of the cutter rotation axis B which is the rotation center of the main shaft 16a and the cutter 17 can be changed.
  • the axis crossing angle is the crossing angle formed by the cutter rotation axis B and the work rotation axis C in the YZ plane including the Y axis and the Z axis.
  • the turning head 14 can be turned around the cutter turning axis A, only the cutter rotation axis B serving as the rotation center of the main shaft 16 a and the cutter 17 is accompanied by the turning operation of the turning head 14.
  • the moving direction of the slide head 15 supported by the turning head 14 also turns (tilts).
  • the gear machining machine 1 is provided with an NC control unit (control means) 20, and by the NC control unit 20, the above-described column 12, saddle 13, turning head 14, slide head 15, cutter head 16 (main shaft 16 a). ) And drive control of the rotary table 18 is performed.
  • FIG. 2 is a perspective view showing a state in which the workpiece W is cut by the cutter 17.
  • the cutter rotation axis B, the workpiece rotation axis C, and the cutter rotation axis B and the workpiece rotation are shown.
  • the axis crossing angle formed by the axis C is shown. 2 indicate the rotation directions of the cutter 17 and the workpiece W, respectively.
  • the cutter 17 has a multi-blade shape including a plurality of cutting blades 17 a having blades provided in the tooth trace direction.
  • FIG. 3 is a cross-sectional view in the workpiece axis direction of FIG.
  • the cutter 17 has a barrel shape whose diameter changes in the cutter width direction (cutter rotation axis direction).
  • the gear machining machine 1 performs the roughing of the previous stage and the finishing process of the subsequent stage of the gear cutting. At that time, the roles of the lower blade and the upper blade of the cutter 17 are shared by changing the inclination of the cutter 17 between the roughing pass and the finishing pass. Thereby, the lifetime of the cutter 17 can be extended.
  • FIG. 4 is a schematic perspective view for explaining the position of the cutter 17 at the time of roughing
  • FIG. 5 is a schematic top view for explaining the position of the cutter 17 at the time of roughing. (Equivalent to the view from the aa direction).
  • the axis crossing angle crossing angle between the cutter rotation axis B and the workpiece rotation axis C) at the time of rough machining is defined as ⁇ .
  • Shaded area cutting point during roughing Figure 5 white arrows represent the direction cut in roughing
  • O B is the center position of the cutter 17 through the cutter rotation axis B
  • O C is the workpiece rotation axis C
  • the center position of the passing workpiece W is shown.
  • the X, Y, and Z axes in FIGS. 4 and 5 correspond to the X, Y, and Z axes in FIG.
  • FIG. 6 is a schematic perspective view for explaining the position of the cutter 17 at the time of finishing
  • FIG. 7 is a schematic top view for explaining the position of the cutter 17 at the time of finishing
  • FIG. 6 is a diagram of FIG. 7
  • Shaded area cutting position during finishing of Figure 7 a white arrow denotes the direction cuts in the finish machining
  • O B is the center position of the cutter 17 through which a (rough machining time in) the cutter rotation axis B
  • O C Represents the center position of the workpiece W through which the workpiece rotation axis C passes.
  • the X, Y, and Z axes in FIGS. 6 and 7 correspond to the X, Y, and Z axes in FIG.
  • the center position O B of the cutter 17 during rough machining is moved by an angle ⁇ in the tangential direction of the workpiece W around the center position O C of the workpiece W to be set to the position of O B ′. (At this time, the cutter rotation axis B moves to the position B ′ as shown in FIG. 6), and finishing is performed.
  • the cutter rotation axis B is set to the workpiece rotation axis with respect to the XY plane (plane orthogonal to the workpiece rotation axis C). Finishing is performed after translation by an angle ⁇ around C. At this time, the axis crossing angle also changes.
  • the axis crossing angle at this time is ⁇ .
  • the upper surface of the cutter 17 is inclined to the right in FIG.
  • the angle ⁇ is a clockwise angle on the XY plane from the rough machining position. That is, the angle ⁇ is an angle in the direction in which the upper surface of the cutter 17 is inclined from the position during rough machining on the XY plane.
  • can be decomposed into angular components ⁇ and ⁇ . Therefore, when the axis crossing angle is changed from ⁇ to ⁇ , the inclination of the cutter 17 is naturally ⁇ (detailed in the description of FIG. 10 below). Changes in the cutting process due to this will be described below with reference to FIGS. As will be described later, in this embodiment, since the angle difference between ⁇ and ⁇ is a slight value (allowable error range), there is no problem in machining accuracy.
  • FIG. 9 is an enlarged cross-sectional view of the cutting portion during rough machining
  • FIG. 10 is an enlarged cross-sectional view of the cutting portion during finish machining.
  • the numbers surrounded by hexagons in FIGS. 9 and 10 indicate the order of the cutting edge 17a of the cutter 17 in the cutter width direction (or the tooth trace direction). For example, “1” in the figure is the first stage cutting edge 17a from the lower surface of the cutter 17, and “2” is the second stage cutting edge 17a.
  • R indicates the amount of radial cutting (cutting the workpiece W in the radial direction).
  • the cutter rotation axes B and B ′ and the workpiece rotation axis C are attached as one-dot chain lines.
  • the cutter rotation axes B and B ′ and the workpiece rotation axis C in FIGS. 9 and 10 are attached to make it easy to grasp the angles, and the positions are not accurate.
  • the cutter rotation axes B and B ′ are precisely lines projected on the plane (paper surface) of FIGS. 9 and 10 (that is, the cutter rotation axes B and B ′ are actually the paper surface). With respect to the vertical direction).
  • the position of the cutting edge 17a before the cutter 17 has the inclination ⁇ is indicated by a two-dot chain line.
  • the cutting edges 17a from the first stage to the fourth stage are involved in the machining, and the fifth stage cutting edge 17a. Is not involved in processing.
  • the cutting amount at this time is R
  • the cutting direction (radial direction) is the X-axis direction (see FIG. 5).
  • the cutter rotation axis B projected on the plane is parallel to the workpiece rotation axis C. .
  • the cutter rotation axis B of the cutter 17 by moving the cutter rotation axis B of the cutter 17 by an angle ⁇ in the tangential direction (FIG. 7), the axis crossing angle becomes ⁇ ⁇ ⁇ (FIGS. 6 and 8). Then, as shown in FIG. 10, the cutter rotation axis is changed from B ⁇ B ′, and is projected onto the plane including the Z axis and the radial direction (in fact, it is inclined in the direction perpendicular to the paper surface). ) The cutter rotation axis B ′ is inclined with respect to the workpiece rotation axis C. This inclination is ⁇ . Note that after the movement of the angle ⁇ , the cutting direction (radial direction) changes and does not coincide with the X-axis direction (see FIG. 7).
  • the difference in radial cutting amount between the cutting edge 17a of the fifth stage (the uppermost stage of the cutter 17) and the cutting edge 17a of the first stage (the lowermost stage of the cutter 17) from the lower surface of the cutter 17 is ⁇ .
  • the angle ⁇ is determined from the viewpoint of obtaining a desired ⁇ . To do.
  • should be around 0.3 mm. In this case, since the difference between ⁇ and ⁇ can be within an allowable error range as shown in the following calculation, there is no problem in machining accuracy.
  • 0.269 mm
  • the axis crossing angle ⁇ during rough machining is set.
  • the cutter 17 is rotated around the cutter rotation axis B, and the workpiece W is rotated around the workpiece rotation axis C, so that the cutter 17 is moved in the X-axis direction.
  • a notch and a feed in the Z-axis direction are given. That is, the cutter 17 and the workpiece W are meshed and rotated, and the cutter 17 is reciprocated in the Z-axis direction while being cut in the X-axis direction.
  • the workpiece W is roughly processed from the lower surface of the cutter 17 only by the first to fourth stage cutting edges 17a.
  • finish processing is performed on the workpiece W.
  • the cutter 17 is moved in the X and Y axis directions by the column 12 and the slide head 15 so as to realize the tangential movement angle ⁇ to obtain a desired ⁇ shown in FIG.
  • the cutter 17 is reciprocated in the Z-axis direction while being radially cut.
  • radial cutting is performed with R + ⁇ R as shown in FIG.
  • the radial cutting of the cutter 17 is realized by the operation of the column 12 and the slide head 15.
  • the workpiece W is finished with only the fourth and fifth stage cutting edges 17 a from the lower surface of the cutter 17.
  • the cutter 17 that reciprocates in the Z-axis direction cuts the workpiece W when moving downward, while being separated from the workpiece W in the X-axis direction when moving upward.
  • the work W is not touched.
  • the multi-blade cutter 17 is used, and the cutting edge 17a or the combination of the cutting edges 17a involved in machining is changed between roughing and finishing, thereby reducing wear. Is distributed to each blade, and the tool life can be extended.
  • the cutter 17 has been described as having a barrel shape. However, the present invention is not limited to this, and the cutter 17 may have a cylindrical shape, for example. Furthermore, although the present embodiment has been described as processing an internal gear, the present invention is not limited to this, and can also be applied to processing an external gear.
  • the cutter rotation axis is moved by the angle ⁇ in the tangential direction of the workpiece W after the rough machining, but this is because the angle ⁇ is realized by the movement in the x and y axis directions. Further, it is not necessary to provide a separate turning mechanism (in the tangential direction) for the cutter 17, and no extra cost is required. However, such a turning mechanism may be provided.
  • the present invention is suitable as a gear processing machine and method.
  • Gear processing machine 11 Bed 12 Column (Cutter cutting means) 13 Saddle (cutter feeding means) 14 Turning head (turning means, axis crossing angle setting means) 15 Slide head (cutter moving means) 16 Cutter head 16a Spindle 17 Cutter 17a Cutting blade 18 Rotary table (work rotating means) 19 Mounting jig 20 NC control part (control means) A Cutter rotation axis B Cutter rotation axis C Work rotation axis W Workpiece (working internal gear)

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Gear Processing (AREA)

Abstract

ワーク回転軸まわりに回転可能なワーク(W)と、カッタ回転軸まわりに回転可能な歯車状カッタ(17)とを、噛み合わせて回転させながら、歯車状カッタ(17)に対して切り込み及び送りを与えることで、ワーク(W)を歯車状カッタ(17)によって歯切りする歯車加工機械であって、前記カッタ回転軸に軸交差角を与えて荒加工を行った後、前記ワーク回転軸を中心として前記カッタ回転軸を所定角度移動させることで、送り軸方向及び移動後の切り込み方向を含む平面において前記カッタ回転軸が前記ワーク回転軸に対し傾きを有するようにした上で、仕上げ加工を行う。

Description

歯車加工機械及び方法
 本発明は、歯車加工機械及び方法に関する。
 現在、ホブ加工が実施できない段付歯車や内歯車の歯切り加工では、ピニオンカッタを用いたギヤシェーバ加工や、ヘリカルブローチを用いたブローチ加工が主流となっている。
 しかしながら、ギヤシェーバ加工は、加工時間が長く生産性が低いという問題があり、ブローチ加工は、設備費用が高価であり、加工精度の調整が困難、さらには加工できる歯車形状が限られているという問題がある。
 そこで、例えば下記特許文献1では、ピニオンカッタを往復運動ではなく回転運動させて切削を行い、高精度及び高能率な歯切り加工を実現する方法が開示されている。
特開2015-58505号公報
 しかしながら、上記特許文献1に開示されるような歯切り加工では、同じ刃を繰り返し使用することから、工具寿命が短くなるという問題がある。
 そこで、本発明では、高精度及び高効率に歯車の加工を行いつつ、工具の長寿命化を図ることを可能とする、歯車加工機械及び方法を提供することを目的とする。
 上記課題を解決する第1の発明に係る歯車加工機械は、
 ワーク回転軸まわりに回転可能な被加工歯車と、カッタ回転軸まわりに回転可能な歯車状カッタとを、噛み合わせて回転させながら、前記歯車状カッタに対して切り込み及び送りを与えることで、前記被加工歯車を前記歯車状カッタによって歯切りする歯車加工機械であって、
 前記ワーク回転軸に対する前記カッタ回転軸の軸交差角を与える旋回手段と、
 前記歯車状カッタを、前記ワーク回転軸方向と直交する荒加工における切り込み方向に移動させるカッタ切り込み手段と、
 前記歯車状カッタを、前記切り込み方向及び前記ワーク回転軸方向と直交する方向に移動させるカッタ移動手段と、
 前記歯車状カッタを、前記ワーク回転軸方向と平行となる送り軸方向に移動させるカッタ送り手段と、
 前記カッタ回転軸に軸交差角を与えて荒加工が行われた前記被加工歯車に対し、前記カッタ切り込み手段及び前記カッタ移動手段により、荒加工の状態から、前記カッタ回転軸を、前記ワーク回転軸に直交する平面に対して、前記ワーク回転軸を中心として所定角度平行移動させることで、前記送り軸方向及び移動後の切り込み方向を含む平面において、該平面に投影された前記カッタ回転軸が前記ワーク回転軸に対し傾きを有するようにした上で、仕上げ加工を行うように制御する制御手段とを備える
 ことを特徴とする。
 換言すれば、上記課題を解決する第1の発明に係る歯車加工機械は、
 ワーク回転軸まわりに回転可能な被加工歯車と、カッタ回転軸まわりに回転可能な歯車状カッタとを、噛み合わせて回転させながら、前記歯車状カッタに対して切り込み及び送りを与えることで、前記被加工歯車を前記歯車状カッタによって歯切りする歯車加工機械であって、
 前記ワーク回転軸に対する前記カッタ回転軸の軸交差角を与える旋回手段と、
 前記歯車状カッタを、前記ワーク回転軸方向と直交する荒加工における切り込み方向に移動させるカッタ切り込み手段と、
 前記歯車状カッタを、前記切り込み方向及び前記ワーク回転軸方向と直交する方向に移動させるカッタ移動手段と、
 前記歯車状カッタを、前記ワーク回転軸方向と平行となる送り軸方向に移動させるカッタ送り手段と、
 前記カッタ回転軸に軸交差角を与えて荒加工を行い、前記カッタ切り込み手段及び前記カッタ移動手段により、前記カッタ回転軸を、荒加工の位置から、前記ワーク回転軸に直交する平面に対して、前記ワーク回転軸を中心として所定角度平行移動させることで、前記送り軸方向及び移動後の切り込み方向を含む平面において、該平面に投影された前記カッタ回転軸が前記ワーク回転軸に対し傾きを有するようにした上で、仕上げ加工を行うように制御する制御手段とを備える
 ことを特徴とする。
 上記課題を解決する第2の発明に係る歯車加工機械は、
 上記第1の発明に係る歯車加工機械において、
 前記歯車状カッタの刃は、歯すじ方向に設けられた複数の切刃からなり、
 前記制御手段は、前記荒加工と前記仕上げ加工とで、加工に関与する前記切刃又は前記切刃の組み合わせを変更するように、前記所定角度を設定する
 ことを特徴とする。
 上記課題を解決する第3の発明に係る歯車加工方法は、
 ワーク回転軸まわりに回転可能な被加工歯車と、カッタ回転軸まわりに回転可能な歯車状カッタとを、噛み合わせて回転させながら、前記歯車状カッタに対して切り込み及び送りを与えることで、前記被加工歯車を前記歯車状カッタによって歯切りする歯車加工方法であって、
 前記カッタ回転軸に軸交差角を与えて荒加工を行った後、前記ワーク回転軸を中心として前記カッタ回転軸を所定角度移動させることで、前記送り軸方向及び移動後の切り込み方向を含む平面において前記カッタ回転軸が前記ワーク回転軸に対し傾きを有するようにした上で、仕上げ加工を行う
 ことを特徴とする。
 上記課題を解決する第4の発明に係る歯車加工方法は、
 上記第3の発明に係る歯車加工方法において、
 前記歯車状カッタの刃は、歯すじ方向に設けられた複数の切刃からなり、
 前記荒加工と前記仕上げ加工とで、加工に関与する前記切刃又は前記切刃の組み合わせを変更するように、前記所定角度を設定する
 ことを特徴とする。
 本発明に係る歯車加工機械及び方法によれば、高精度及び高効率に歯車の加工を行いつつ、工具の長寿命化を図ることができる。
本発明の実施例に係る歯車加工機械の斜視図である。 本発明の実施例におけるカッタによりワークの切削加工を行う様子を示した斜視図である。 図2におけるワーク軸方向断面図である。 本発明の実施例の荒加工時におけるカッタ位置を説明する模式的斜視図である。 本発明の実施例の荒加工時におけるカッタ位置を説明する模式的上面図である。 本発明の実施例における仕上げ加工時のカッタ位置を説明する模式的斜視図である。 本発明の実施例における仕上げ加工時のカッタ位置を説明する模式的上面図である。 本発明の実施例におけるθ,η,γの関係を説明する概念図である。 本発明の実施例の荒加工時における切削部分の拡大断面図である。 本発明の実施例の仕上げ加工時における切削部分の拡大断面図である。
 以下、本発明に係る歯車加工機械及び方法を実施例にて図面を用いて説明する。
[実施例]
 図1に示すように、本実施例に係る歯車加工機械(歯車加工機械1)のベッド11上には、コラム(カッタ切り込み手段)12が、水平なX軸方向(切り込み方向(ただし、ここでの切り込み方向とは荒加工における切り込み方向を指す。本実施例では後述のごとく、仕上げ加工においては切り込み方向が変化する。))に移動可能に支持されている。また、コラム12の前面には、サドル(カッタ送り手段)13が、X軸方向と直交する鉛直なZ軸方向(送り軸方向)に昇降可能に支持されている。さらに、サドル13の前面には、旋回ヘッド(旋回手段、軸交差角設定手段)14が、X軸方向に延在するカッタ旋回軸Aまわりに旋回可能に支持されている。
 また、旋回ヘッド14の前面には、スライドヘッド(カッタ移動手段)15が、歯車加工機械1の横方向となるY軸方向に移動可能に支持されている。さらに、スライドヘッド15の前部には、カッタヘッド16が該スライドヘッド15から半円状に膨出するように形成されている。そして、カッタヘッド16内には、主軸16aが、X軸及びY軸方向と直交するカッタ回転軸Bまわりに回転可能に支持されており、この主軸16aの先端には、歯車状カッタ17が着脱可能に装着されている。
 一方、ベッド11上におけるコラム12の正面側には、回転テーブル(ワーク回転手段)18が、Z軸方向に延在するワーク回転軸Cまわりに回転可能に支持されている。そして、回転テーブル18の上面には、円筒状の取り付け治具19が取り付けられており、この取り付け治具19の上端内周面には、ワーク(被加工内歯車)Wが、着脱可能に装着されている。なお、ワークWを取り付け治具19に装着すると、該ワークWの中心は、回転テーブル18のワーク回転軸Cと同軸上となる。
 したがって、歯車加工機械1は、コラム12及びサドル13を駆動させることにより、カッタ17に対して、X軸方向への切り込み及びZ軸方向への送りを与えることができる。また、スライドヘッド15を駆動させることにより、カッタ17をY軸方向に横移動させることができる。そして、カッタヘッド16の主軸16aを回転運動させることにより、カッタ17をカッタ回転軸Bまわりに回転させることができる一方、回転テーブル18を回転駆動させることにより、ワークWをワーク回転軸Cまわりに回転させることができる。
 さらに、図1に示すように、旋回ヘッド14をカッタ旋回軸Aまわりに旋回させることにより、主軸16a及びカッタ17の回転中心となるカッタ回転軸Bの旋回角度を変更することができる。これにより、カッタ回転軸Bとワーク回転軸Cとの間の軸交差角を調整することが可能となっており、この軸交差角はワークWのねじれ角等に応じて調整されるようになっている。すなわち、軸交差角は、Y軸及びZ軸を含むYZ平面において、カッタ回転軸Bとワーク回転軸Cとによって形成される交差角度となっている。
 なお、上述したように、旋回ヘッド14をカッタ旋回軸Aまわりに旋回可能としているため、その旋回ヘッド14の旋回動作に伴って、主軸16a及びカッタ17の回転中心となるカッタ回転軸Bだけでなく、その旋回ヘッド14に支持されるスライドヘッド15の移動方向も旋回する(傾く)ことになる。
 また、歯車加工機械1は、NC制御部(制御手段)20を備えており、このNC制御部20によって、上述のコラム12、サドル13、旋回ヘッド14、スライドヘッド15、カッタヘッド16(主軸16a)、及び、回転テーブル18の駆動制御を行う。
 ここで、図2は、カッタ17によりワークWの切削加工を行う様子を示した斜視図であり、図中には、カッタ回転軸B、ワーク回転軸C、及び、カッタ回転軸Bとワーク回転軸Cとによって形成される軸交差角が示されている。なお、図2の2つの矢印は、カッタ17及びワークWの回転方向をそれぞれ示している。図2に示すように、カッタ17は、刃が歯すじ方向に設けられた複数の切刃17aからなる、多刃形である。
 図3は、図2のワーク軸方向断面図である。図3に示すように、カッタ17は、径の大きさがカッタ幅方向(カッタ回転軸方向)に変化した樽形となっている。
 本実施例では、歯車加工機械1により、歯切り加工のうち前段階の荒加工、及び、後段階の仕上げ加工を行う。その際、荒加工パスと仕上げ加工パスとでカッタ17の傾きを変更することにより、カッタ17の下側の刃と上側の刃の役割を分担する。これによって、カッタ17の長寿命化を図ることができる。
 図4は、荒加工時のカッタ17の位置を説明する模式的斜視図であり、図5は、荒加工時のカッタ17の位置を説明する模式的上面図である(図4は図5のa‐a方向から見た図に相当)。図4に示すように、荒加工時の軸交差角(カッタ回転軸Bとワーク回転軸Cとの交差角度)をθとする。図5の斜線部分は荒加工時の切削箇所、白抜き矢印は荒加工における切り込み方向を表しており、OBはカッタ回転軸Bの通るカッタ17の中心位置、OCはワーク回転軸Cの通るワークWの中心位置を表している。また、図4,5中のX,Y,Z軸は、図1のX,Y,Z軸に対応している。
 図6は、仕上げ加工時のカッタ17の位置を説明する模式的斜視図であり、図7は、仕上げ加工時のカッタ17の位置を説明する模式的上面図である(図6は図7のb‐b方向から見た図に相当)。図7の斜線部分は仕上げ加工時の切削箇所、白抜き矢印は仕上げ加工における切り込み方向を表しており、OBは(荒加工時における)カッタ回転軸Bの通るカッタ17の中心位置、OCはワーク回転軸Cの通るワークWの中心位置を表している。また、図6,7中のX,Y,Z軸は、図1のX,Y,Z軸に対応している。
 図7に示すように、荒加工時におけるカッタ17の中心位置OBを、ワークWの中心位置OCを中心としてワークWのタンジェンシャル方向に角度α移動し、OB´の位置にした上で(このとき、図6に示すようにカッタ回転軸BがB´の位置に移動することになる)、仕上げ加工を行う。
 換言すれば、(カッタ回転軸Bに軸交差角θを与えて)荒加工を行った後、カッタ回転軸Bを、XY平面(ワーク回転軸Cに直交する平面)に対して、ワーク回転軸Cを中心として角度α分平行移動した上で、仕上げ加工を行う。このとき軸交差角も変化する。この時の軸交差角をηとする。なお、図4からわかるように、図5において、カッタ17は上面が右側に傾いている。この場合、上記角度αは、図7に示すように、XY平面上において、荒加工時の位置から右回りの角度とする。すなわち、上記角度αは、XY平面上において、荒加工時の位置からカッタ17の上面が傾く方向へ向けた角度とする。
 ところで、図8の概念図に示すように、θは角度成分γ及びηに分解することができる。よって、軸交差角をθからηに変化させると、自ずとカッタ17の傾きがγ(以下の図10の説明で詳述)となる。これによる切削加工の変化について、図9,10を用いて以下で説明する。なお、後述のごとく、本実施例ではθとηの角度差を僅かな値(許容誤差範囲)とするため、加工精度に問題はない。
 図9は、荒加工時における切削部分の拡大断面図であり、図10は、仕上げ加工時における切削部分の拡大断面図である。図9,10中の六角形で囲われた数字は、カッタ17の切刃17aのカッタ幅方向(あるいは歯すじ方向)における順序を表している。例えば、図中の「1」はカッタ17の下面から第1段目の切刃17a、同じく「2」は第2段目の切刃17aである。
 また、Rはラジアル切り込み(ワークWのラジアル方向への切り込み)量を指す。さらに、図9,10では、カッタ回転軸B,B´及びワーク回転軸Cを一点鎖線として付してある。ただし、図9,10中のカッタ回転軸B,B´及びワーク回転軸Cは、その角度を把握しやすくするために付したものであり、位置については正確でない。また、カッタ回転軸B,B´については、正確には、図9,10の平面(紙面)上に投影した線を示している(すなわち、カッタ回転軸B,B´は、実際には紙面に対して垂直方向に傾斜している)。なお、図10では、カッタ17が傾きγを有する前(荒加工時)の切刃17aの位置を二点鎖線で表している。
 図9に示すように、まず、カッタ17により軸交差角θで荒加工すると、第1段目から順に第4段目までの切刃17aが加工に関与し、第5段目の切刃17aは加工に関与しない。このときの切り込み量はRとし、切り込み方向(ラジアル方向)はX軸方向である(図5参照)。そしてこのとき、X軸及びZ軸を含むXZ平面において、該平面に投影された(実際にはY軸方向に傾斜している)カッタ回転軸Bは、ワーク回転軸Cに対して平行となる。
 ここで、カッタ17のカッタ回転軸Bをタンジェンシャル方向に角度α移動する(図7)ことで、軸交差角がθ→ηとなる(図6,8)。すると、図10に示すように、カッタ回転軸がB→B´となり、Z軸及びラジアル方向を含む平面において、該平面に投影された(実際には紙面に対して垂直方向に傾斜している)カッタ回転軸B´は、ワーク回転軸Cに対して傾くことになる。この傾きをγとする。なお、角度α移動後は、切り込み方向(ラジアル方向)が変化し、X軸方向と一致しなくなる(図7参照)。
 この状態から、さらにΔR追加(R+ΔR)でラジアル切り込みして仕上げ加工を行うと、図10に示すように、第1~3段目の切刃17aは加工に関与せず、第4,5段目の切刃17aが順に加工に関与することになる。
 本実施例では、カッタ17の下面から第5段目(カッタ17の最上段)の切刃17aと第1段目(カッタ17の最下段)の切刃17aとのラジアル切り込み量の差をδとし、カッタ17の上面側の切刃17aとカッタ17の下面側の切刃17aを、荒加工時と仕上げ加工時とで使い分けるために、所望のδを得るという観点より、上記角度αを決定する。
 上記δは0.3mm前後あればよい。この場合、ηとθとの差は下記の計算の如く許容誤差範囲に収めることができるため、加工精度に問題はない。
 なお、実際には、角度αの値を入力するのではなく、X軸方向の移動量x及びY軸方向の移動量yの値を入力することで、カッタ17に角度αの変化を与える。
 例えば、ワークWの直径が160mm、カッタ17の直径が80mm、カッタ幅(軸方向長さ)が30mm、θ=25°,α=1°とすると、
 η=atan(tan25°・cos1°)
  =24.997°
 γ=atan(tan25°・sin1°)
  =0.466°
 カッタ17の最上段の切刃17aと最下段の切刃17aとのラジアル切り込み量の差δは、カッタ幅30mmより、
 δ=(30mm/cos24.997°)・sin0.466°
  =0.269mm
 なお、このときのカッタ17の中心位置移動量(x,y)は、
 x=40mm・sin1°
  =0.698mm
 y=40mm・(1-cos1°)
  =0.006mm
 以上の計算より、δ=0.269mmを得るためには、α=1°(x=0.698mm,y=0.006mm)に設定すればよく、この場合、荒加工時の軸交差角θと仕上げ加工時の軸交差角ηとの差は僅か0.003°(=25°-24.997°)となる。
 なお、上述の荒加工時と仕上げ加工時にそれぞれ関与する切刃17aの組み合わせは、あくまで一例であり、δを変更することでこの組み合わせを変更することができる。
 以下では、歯車加工機械1の動作について説明する。なお、以下の動作はNC制御部20によって制御されているものとする。
 まず、ワークWに対して荒加工を行う。初めに、カッタ17を図1のカッタ旋回軸Aまわりに旋回させて、カッタ回転軸Bに軸交差角θを与える。ついで、カッタ17をX,Y,Z軸方向に移動させて、図2,3のようにワークWと噛み合わせる。
 そして、カッタ17とワークWとが噛み合った状態で、カッタ17をカッタ回転軸Bまわりに回転させるとともに、ワークWをワーク回転軸Cまわりに回転させ、カッタ17に対して、X軸方向への切り込みと、Z軸方向への送りとを与える。すなわち、カッタ17とワークWとを噛み合わせて回転させるとともに、カッタ17をX軸方向に切り込ませながら、Z軸方向に往復移動させる。
 これにより、図9に示すように、カッタ17の下面から第1~4段目の切刃17aのみによってワークWの荒加工を行う。
 次に、ワークWに対して仕上げ加工を行う。荒加工終了後、図10に示す所望のδを得るタンジェンシャル方向の移動角度αを実現するように、コラム12及びスライドヘッド15によりカッタ17をX,Y軸方向に移動した上で、ワークWと噛み合わせ、回転させるとともに、カッタ17をラジアル切り込みしながら、Z軸方向に往復移動させる。なお、仕上げ加工時は、図10に示すようにR+ΔRでラジアル切り込みする。なお、カッタ17のラジアル切り込みは、コラム12及びスライドヘッド15の動作によって実現される。
 これにより、図10に示すように、カッタ17の下面から第4,5段目の切刃17aのみによってワークWの仕上げ加工を行う。
 なお、荒加工及び仕上げ加工時において、Z軸方向に往復移動するカッタ17は、下方に移動するときにワークWを歯切りする一方、上方に移動するときにはワークWからX軸方向に離間してワークWに接触しないようにしている。
 このようにして、本実施例では、多刃形のカッタ17を用い、さらに、荒加工時と仕上げ加工とで加工に関与する切刃17a、又は、切刃17aの組み合わせを変えることで、摩耗が各刃に分散され、工具の長寿命化を図ることができる。
 なお、本実施例では、カッタ17が樽形であるものとして説明したが、本発明はこれに限定されるものではなく、カッタ17が例えば円筒形であってもよい。さらに、本実施例では、内歯車の加工として説明したが、本発明はこれに限定されるものではなく、外歯車の加工に対しても適用可能である。
 また、本実施例では、荒加工後にカッタ回転軸をワークWのタンジェンシャル方向に角度α移動させるものと説明したが、これはx、y軸方向の移動によって角度αを実現するものであるため、カッタ17の(タンジェンシャル方向の)旋回機構を別途新たに設ける必要がなく、余計なコストがかからない。ただし、このような旋回機構を設けても構わない。
 これにより、本実施例では、高精度及び高効率に歯車の加工を行いつつ、工具の長寿命化を図ることが可能となる。
 本発明は、歯車加工機械及び方法として好適である。
1 歯車加工機械
11 ベッド
12 コラム(カッタ切り込み手段)
13 サドル(カッタ送り手段)
14 旋回ヘッド(旋回手段、軸交差角設定手段)
15 スライドヘッド(カッタ移動手段)
16 カッタヘッド
16a 主軸
17 カッタ
17a 切刃
18 回転テーブル(ワーク回転手段)
19 取り付け治具
20 NC制御部(制御手段)
A カッタ旋回軸
B カッタ回転軸
C ワーク回転軸
W ワーク(被加工内歯車)

Claims (4)

  1.  ワーク回転軸まわりに回転可能な被加工歯車と、カッタ回転軸まわりに回転可能な歯車状カッタとを、噛み合わせて回転させながら、前記歯車状カッタに対して切り込み及び送りを与えることで、前記被加工歯車を前記歯車状カッタによって歯切りする歯車加工機械であって、
     前記ワーク回転軸に対する前記カッタ回転軸の軸交差角を与える旋回手段と、
     前記歯車状カッタを、前記ワーク回転軸方向と直交する荒加工における切り込み方向に移動させるカッタ切り込み手段と、
     前記歯車状カッタを、前記切り込み方向及び前記ワーク回転軸方向と直交する方向に移動させるカッタ移動手段と、
     前記歯車状カッタを、前記ワーク回転軸方向と平行となる送り軸方向に移動させるカッタ送り手段と、
     前記カッタ回転軸に軸交差角を与えて荒加工を行い、前記カッタ切り込み手段及び前記カッタ移動手段により、前記カッタ回転軸を、荒加工の位置から、前記ワーク回転軸に直交する平面に対して、前記ワーク回転軸を中心として所定角度平行移動させることで、前記送り軸方向及び移動後の切り込み方向を含む平面において、該平面に投影された前記カッタ回転軸が前記ワーク回転軸に対し傾きを有するようにした上で、仕上げ加工を行うように制御する制御手段とを備える
     ことを特徴とする、歯車加工機械。
  2.  前記歯車状カッタの刃は、歯すじ方向に設けられた複数の切刃からなり、
     前記制御手段は、前記荒加工と前記仕上げ加工とで、加工に関与する前記切刃又は前記切刃の組み合わせを変更するように、前記所定角度を設定する
     ことを特徴とする、請求項1に記載の歯車加工機械。
  3.  ワーク回転軸まわりに回転可能な被加工歯車と、カッタ回転軸まわりに回転可能な歯車状カッタとを、噛み合わせて回転させながら、前記歯車状カッタに対して切り込み及び送りを与えることで、前記被加工歯車を前記歯車状カッタによって歯切りする歯車加工方法であって、
     前記カッタ回転軸に軸交差角を与えて荒加工を行った後、前記ワーク回転軸を中心として前記カッタ回転軸を所定角度移動させることで、前記送り軸方向及び移動後の切り込み方向を含む平面において前記カッタ回転軸が前記ワーク回転軸に対し傾きを有するようにした上で、仕上げ加工を行う
     ことを特徴とする、歯車加工方法。
  4.  前記歯車状カッタの刃は、歯すじ方向に設けられた複数の切刃からなり、
     前記荒加工と前記仕上げ加工とで、加工に関与する前記切刃又は前記切刃の組み合わせを変更するように、前記所定角度を設定する
     ことを特徴とする、請求項3に記載の歯車加工方法。
PCT/JP2016/067724 2015-09-28 2016-06-15 歯車加工機械及び方法 WO2017056573A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/570,454 US10272509B2 (en) 2015-09-28 2016-06-15 Gear cutting machine and method
CN201680024349.6A CN107530802B (zh) 2015-09-28 2016-06-15 齿轮加工机床和方法
MX2017013913A MX2017013913A (es) 2015-09-28 2016-06-15 Maquina y metodo de corte de engranaje.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015189221A JP6622044B2 (ja) 2015-09-28 2015-09-28 歯車加工機械及び方法
JP2015-189221 2015-09-28

Publications (1)

Publication Number Publication Date
WO2017056573A1 true WO2017056573A1 (ja) 2017-04-06

Family

ID=58423338

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/067724 WO2017056573A1 (ja) 2015-09-28 2016-06-15 歯車加工機械及び方法

Country Status (5)

Country Link
US (1) US10272509B2 (ja)
JP (1) JP6622044B2 (ja)
CN (1) CN107530802B (ja)
MX (1) MX2017013913A (ja)
WO (1) WO2017056573A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019123030A (ja) * 2018-01-12 2019-07-25 株式会社ジェイテクト 歯車加工装置及び歯車加工方法
CN108453622A (zh) * 2018-03-27 2018-08-28 成都与俱科技有限公司 转动机构及其在机加工中的应用
CN109551060B (zh) * 2018-12-17 2024-05-17 江西福格新能源传动技术有限公司 渐开线斜齿轮轮齿表面磨削处理设备
JP7293659B2 (ja) * 2019-01-18 2023-06-20 株式会社ジェイテクト 歯車加工装置及び歯車加工方法
CN110720545A (zh) * 2019-11-18 2020-01-24 山东禹王生态食业有限公司 一种提高大豆分离蛋白提取收率的方法
JP7375524B2 (ja) * 2019-12-20 2023-11-08 マツダ株式会社 歯車のシェービング加工方法及びシェービング加工装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4886197A (ja) * 1972-02-18 1973-11-14
US3931754A (en) * 1974-11-12 1976-01-13 Kabushiki Kaisha Komatsu Seisakusho Skiving cutter device for use in cutting internal spur gear
WO2015040899A1 (ja) * 2013-09-19 2015-03-26 三菱重工業株式会社 内歯車加工機械及び内歯車加工方法
WO2015182264A1 (ja) * 2014-05-30 2015-12-03 三菱重工業株式会社 スカイビング加工用カッタ

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8939686B2 (en) * 2010-04-16 2015-01-27 Mitsubishi Heavy Industries, Ltd. Gear machining method
DE202011050054U1 (de) * 2011-05-06 2011-09-15 Klingelnberg Ag Wälzschälwerkzeug mit Messerstäben
JP6006302B2 (ja) * 2011-05-26 2016-10-12 クリンゲルンベルク・アクチェンゲゼルシャフトKlingelnberg AG 外歯用スカイビング加工方法およびスカイビングツールを有する装置
JP6212876B2 (ja) * 2013-02-15 2017-10-18 アイシン精機株式会社 歯車加工方法及び歯車加工用カッター
KR102198797B1 (ko) 2014-02-10 2021-01-05 삼성에스디아이 주식회사 이차전지 팩

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4886197A (ja) * 1972-02-18 1973-11-14
US3931754A (en) * 1974-11-12 1976-01-13 Kabushiki Kaisha Komatsu Seisakusho Skiving cutter device for use in cutting internal spur gear
WO2015040899A1 (ja) * 2013-09-19 2015-03-26 三菱重工業株式会社 内歯車加工機械及び内歯車加工方法
WO2015182264A1 (ja) * 2014-05-30 2015-12-03 三菱重工業株式会社 スカイビング加工用カッタ

Also Published As

Publication number Publication date
JP6622044B2 (ja) 2019-12-18
CN107530802A (zh) 2018-01-02
MX2017013913A (es) 2018-03-15
CN107530802B (zh) 2019-03-15
US10272509B2 (en) 2019-04-30
JP2017064800A (ja) 2017-04-06
US20180141142A1 (en) 2018-05-24

Similar Documents

Publication Publication Date Title
JP6622044B2 (ja) 歯車加工機械及び方法
KR101643562B1 (ko) 워크피스를 기계가공하기 위한 방법 및 그를 위해 설계된 공작기계
JP6140585B2 (ja) 内歯車加工機械及び内歯車加工方法
CN107530803B (zh) 齿精整的制齿方法及其组合刀具
US10245664B2 (en) Bevel gear cutting machine for chamfering bevel gear tooth edges and method for chamfering the tooth edges of bevel gears
CN105921823B (zh) 一种摆线齿轮的数控蜗杆砂轮磨削方法
CN108994552B (zh) 齿轮加工方法以及齿轮加工装置
US10994352B2 (en) Method for the gear manufacturing machining of a workpiece
TWI480113B (zh) 變齒厚蝸桿型刀具及其加工方法
KR20110104528A (ko) 공작기계 및 기어링 제조 방법
KR20100118940A (ko) 단부-절삭 공작물 휠의 톱니 에지를 기계가공하는 방법 및 장치
CN103180077B (zh) 一种用于产生非直齿轮齿的方法
KR20120033961A (ko) 연속 밀링공정에서 베벨기어 이빨시스템을 밀링하기 위한 방법
US20140255118A1 (en) Gear Cutting Machine with Double Machining Head
US9789553B2 (en) Tool, method and machine for producing a tooth profile on a workpiece by skiving
JP2020093350A (ja) 歯切り工具、歯車加工装置及び歯車加工方法
JP7440216B2 (ja) 歯車の仕上げ研削加工の方法
JP2021024012A (ja) スカイビング加工用カッタおよびスカイビング加工装置
JP6819099B2 (ja) 歯車加工方法
JP2019089153A (ja) 歯切り工具及び歯車加工装置
TWI584894B (zh) A worm - type tool with dual lead form and variable pressure angle and its operation method
JP7293659B2 (ja) 歯車加工装置及び歯車加工方法
JP6871675B2 (ja) 歯車加工装置及び歯車加工方法
JP2019104103A (ja) ワークピースの歯切り方法
JP2019119016A (ja) 歯車加工装置及び歯車加工方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16850750

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15570454

Country of ref document: US

Ref document number: MX/A/2017/013913

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16850750

Country of ref document: EP

Kind code of ref document: A1