WO2017055057A1 - Verfahren zur herstellung eines elektrodenverbundes - Google Patents

Verfahren zur herstellung eines elektrodenverbundes Download PDF

Info

Publication number
WO2017055057A1
WO2017055057A1 PCT/EP2016/071295 EP2016071295W WO2017055057A1 WO 2017055057 A1 WO2017055057 A1 WO 2017055057A1 EP 2016071295 W EP2016071295 W EP 2016071295W WO 2017055057 A1 WO2017055057 A1 WO 2017055057A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
shaped
foil
battery cell
contact lug
Prior art date
Application number
PCT/EP2016/071295
Other languages
English (en)
French (fr)
Inventor
Thomas Kretschmar
Silvan Poller
Juergen Herold
Christoph Schlund
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to CN201680056260.8A priority Critical patent/CN108055875B/zh
Priority to US15/763,692 priority patent/US20180323416A1/en
Publication of WO2017055057A1 publication Critical patent/WO2017055057A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0404Machines for assembling batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0413Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0436Small-sized flat cells or batteries for portable equipment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/463Separators, membranes or diaphragms characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0094Composites in the form of layered products, e.g. coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for producing a composite electrode
  • a battery cell is an electrochemical energy storage device that, when discharged, converts the stored chemical energy into electrical energy through an electrochemical reaction. It is becoming apparent that in the future both in stationary applications, such as wind turbines, in
  • lithium-ion batteries are used in particular as energy stores for electrically powered motor vehicles.
  • a positive electrode and a negative electrode, as well as a separator are cut in a suitable format and then stacked on each other, wherein the electrodes are each separated by a separator. In this case, the electrodes and the separator are picked up and placed separately.
  • US 2014/0373343 is a method for producing a
  • An electrode composite comprising a first electrode, a first separator, a second electrode and a second separator, described, wherein the electrodes and separators are stacked alternately.
  • the electrode films are cut on two opposite sides.
  • WO2012 / 020480 is a method for producing a
  • the invention relates to a method for producing an electrode assembly of a battery cell, in particular a lithium-ion battery cell, comprising at least a first electrode with a, in particular band-shaped, first electrode foil, at least one second electrode and at least one
  • band-shaped is understood to mean that the respective film is present, for example, as a long, flat film, as can be bought, for example, from material suppliers.
  • the particular band-shaped, first electrode foil is on a first side, from which the first electrode foil in the finished battery cell
  • the advantage here is that the contact lug does not have to be generated first in a separate step and then glued or welded and thus no weld or no adhesive bead is formed.
  • the production of the contact lug is simplified and accelerated on the one hand. Furthermore, particles that arise, for example, during the welding process, avoided.
  • the proposed method is simple and fast and has high productivity, making it suitable for mass production. With such a system, electrode films can be stacked at stack speeds in excess of 10Hz.
  • the trimming of the particular band-shaped, first electrode foil takes place, in particular exclusively, on the first side, before a stacking of the first electrode, separator foils and second electrode.
  • the advantage here is that the first electrode film must be cut just before being stacked on one side, thereby saving time and work steps. The entire process is thus faster and more efficient. Furthermore, the fact that the first electrode foil is cut to size only on a first side results in fewer particles compared to cutting an electrode foil on several sides.
  • Electrode a particular band-shaped, first electrode foil, coated with a first active material and for producing a second electrode, in particular a band-shaped second electrode foil is coated with a second active material.
  • the advantage here is that lithium ions in the charging and discharging processes in the active materials and can outsource and thus an effective operation of the battery cell is guaranteed. Furthermore, it is advantageous if the coating with active material in one
  • Embodiment in particular with the exception of the area of the contact lug of the respective electrode foil happens because the tabs serve only for electrical connection and thus a secure electrical connection can be ensured without, for example, damage to the battery cell or a short circuit. Furthermore, it is particularly advantageous if the electrode films are coated on both sides with active material. In this way, there is no room in the
  • Battery cell gives away, and it is achieved a significantly higher energy density of the battery cell compared to a one-sided coating the
  • Electrode sheets In order to provide the same amount of active material in the battery cell, in the case of a one-sided coating, two electrode foils would then have to be accommodated in the battery cell.
  • the band-shaped, second electrode foil in particular is cut to size on all sides, so that the second electrode and its contact lug are exposed.
  • the electrode foil can be electrically contacted via the contact lug.
  • the second electrode is inserted between two, in particular band-shaped Separatorfolien and the two Separatorfolien are at least partially in areas which over the second electrode, in particular on all sides, connected to each other, so that a first stacking arrangement is formed.
  • the advantage here is that the second electrode, in particular the cathode, can not slip in this way and is thus accurately positioned. Due to the fact that the second electrode, in particular the cathode, can not slip and is therefore surrounded on all sides by the separator foils, the stack arrangement offers great safety, for example against slippage, which otherwise can result, for example, in capacity losses, damage or even a short circuit.
  • the connection of the two Separatorfolien together also represents a simple and cost-effective operation.
  • the two separator sheets are joined together by lamination, thermal contact welding, gluing or perforating.
  • thermal contact welding is that the processing time is very short and the heat welding technique is more favorable compared to other welding methods, since only a few precise tools are required. This makes this an easy-to-use and fast method.
  • a further embodiment provides that the, in particular band-shaped, first electrode foil and the first stack arrangement are superimposed in such a way that the first contact lug of the first electrode and the second
  • Electrodes cut to size This step can be done very quickly and is also very economical, since no material loss occurs here, for example in series production, when a finished electrode composite is separated after another.
  • the second electrode foil has previously been cut to size, in particular on all sides, so that it has smaller dimensions than the first electrode foil.
  • Electrode film the same dimensions as the first electrode film, so the electrode films would be after the step of trimming only by a Separator separated and could even touch with a slight shift of the separator, which in turn can lead to a short circuit.
  • the step of connecting the two separator foils, between which the second electrode foil is arranged would then also not be possible.
  • the bonding step of the separator foils is also for safety. In this way, it is not possible for the second electrode foil to slip, so that contact of the first electrode foil with the second electrode foil can not take place.
  • the trimming of the electrode films and / or the Separatorfolien done by means of a laser, a knife or a punching tool.
  • laser cutting precise cutting edges are obtained without dust formation.
  • laser cutting has only a small thermal influence on the material, so that no material distortion occurs.
  • Cutting a knife has the advantage that a knife is available inexpensively and the cutting process is quick and easy.
  • Punching, on the other hand, is a quick and energy-saving process. Frequent machine changeover times are eliminated and versatile shapes can be produced.
  • a battery cell in particular a pouch cell, with a stacked electrode composite is advantageous, wherein the first electrode is an anode, and the, in particular band-shaped, first electrode foil comprises in particular a copper foil, and wherein the second electrode is a cathode, and which in particular band-shaped second electrode foil, in particular a
  • Aluminum has the advantage that it is light and inexpensive and also available in large quantities. Copper, however, is advantageous in terms of its corrosion resistance, which, among other things, brings a long life with it. In addition, copper is easy to process and can be optimally deformed even at low temperatures.
  • the separator film on the side on which the first contact lug of the first electrode and / or the second contact lug of the second electrode is located larger in size than the first electrode and as the second electrode.
  • the contact lugs of the first and / or the second electrode are on the
  • the first electrode has larger dimensions than the second electrode.
  • the advantage here is that a production as described above is possible.
  • the first electrode can thus be cut on two sides at the same time as the separator film, thus saving labor and cost.
  • the separator film comprises a polyethylene and / or a polypropylene.
  • Polyolefins in particular polyethylene and polypropylene, are at the same time robust and flexible, have high mechanical and chemical stability and can also be welded.
  • polyethylene has high toughness, low water absorption and water vapor permeability, high resistance to chemicals, and is also easy to process and inexpensive.
  • Polypropylene has a low water absorption, is chemically resistant, electrically insulating and easy to process and inexpensive.
  • a battery is advantageous which has a battery cell described above.
  • FIG. 2 shows a schematic representation of the step of cutting a first electrode foil on a first side according to the method of the invention shown in FIG. 1, FIG.
  • FIG. 3 shows a schematic representation of the step of trimming and assembling a second electrode film according to FIG.
  • FIG. 4 shows a schematic representation of the step of producing a first stack arrangement according to the inventive method illustrated in FIG. 1,
  • FIG. 5a a schematic representation of a top view of the step of FIG.
  • FIG. 5b shows a schematic representation of a lateral view of the step of stacking up the first electrode and the first stack arrangement and of steps for completing a stacked electrode assembly according to the method according to the invention
  • Figure 6 a schematic representation of the size dimensions of a first
  • Electrode, the Separatorfolien and a second electrode of a battery cell according to the invention are Electrode, the Separatorfolien and a second electrode of a battery cell according to the invention.
  • FIG. 1 shows a possible sequence of a method according to the invention in seven method steps.
  • Electrode film and the, in particular band-shaped, second electrode film for example, coated on both sides with a first active material or a second active material. Alternatively, the electrode films are only coated on one side with active material.
  • a first electrode is, for example, an anode and the, in particular band-shaped, first electrode foil comprises, for example, a copper foil which comprises a graphite, in particular a natural graphite or a synthetic graphite, a carbon, a silicon or a composite of these substances, for example in conjunction with a polymeric binder , coated.
  • a second electrode is, for example, a cathode
  • the, in particular band-shaped, second electrode film comprises, for example, an aluminum foil, which in particular comprises a lithium transition metal oxide, for example LiNixMn y Co z 02, or an overlithiated lithium transition metal oxide, for example LiNi x Mn y CozO 2 * Li 2 MnO 3, or another suitable lithium compound containing, for example, lithium ions, other metal ions and
  • Oxygen or a lithium transition metal phosphate such as
  • LiFeP0 4 coated.
  • a second step 20 which is shown in detail in FIG. 2, the, in particular band-shaped, first electrode foil la is cut to size on a first side, from which the first electrode 1 can be contacted in the finished battery cell.
  • at least one first contact lb is left lb, via which the first electrode 1 is electrically contacted.
  • the first electrode foil la is in a first region 100 of the first
  • the first electrode foil 1a is cut to size, for example, by means of a laser 3.
  • a third step 30, which is shown in detail in FIG. 3 the band-shaped second electrode foil 2a or the second electrode 2 is cut to size on all sides. Alternatively, the second electrode 2 is not trimmed on all sides but, for example, only on three sides.
  • the second electrode foil 2 a is coated in a first area 200 of the second electrode foil 2 a with a second active material 2 c and in a second area 202 of the second electrode foil 2 a free from the second active material 2 c. From the uncoated second area 202 of the second
  • Electrode foil 2a remain only the second after trimming
  • the second electrode foil 2a is cut to size, for example, by means of a laser 3.
  • a fourth step 40 which is shown in detail in FIG. 4, the second electrode 2 is inserted between two, in particular band-shaped, separator foils 5a, 5b, so that a separator foil 5a below The second
  • Electrode 2 and a separator 5b is disposed above the second electrode 2.
  • the Separatorfolien 5a, 5b are shown in Figure 4 almost transparent. Subsequently, the two separator foils 5a, 5b are joined together in areas which project beyond the second electrode 2 on all sides, so that a first stack arrangement 13 is created. Alternatively, the two separator foils 5a, 5b are at least partially connected to one another in regions which project beyond the second electrode 2.
  • the separator film 5a, 5b comprises, for example, a polyethylene and / or a
  • a fifth, a sixth and a seventh step are shown in detail in the figures 5a in a plan view and in Figure 5b in a side view. As shown in FIG. 5 a, in the fifth step 50, the, in particular band-shaped, first electrode 1 and the first stacking arrangement 13 become
  • first contact lug lb of the first electrode 1 and the second contact lug 2b of the second electrode 2 are arranged offset to one another.
  • Electrode 1 and the, in particular band-shaped, separator 5a, 5b of the electrode assembly 23 in areas adjacent to the second electrode 2 and / or each cut between two second electrodes 2, so that in each case individual units of electrode composites 23a arise.
  • Trim is done for example by means of a laser. Alternatively, the trimming is done by means of a knife or by means of a punching tool.
  • the individual units of the electrode assemblies 23a are assembled into a stacked electrode composite 230.
  • the individual electrode composites 23a are stacked on top of each other in the same orientation, so that a first electrode 1 is provided
  • FIG. 5b shows the steps described in FIG. 5a in a lateral view. It is shown how the first electrode 1, which has been cut to date only on a first side in the fifth step via a feeding aid 8, for example rollers, a device 9 for producing a
  • Electrode assembly 23 is supplied. At the same time, the first
  • the first electrode 1 is stacked on the first stacking arrangement 13.
  • the first stacking assembly 13 is stacked on the first electrode 1.
  • Electrode 1 and the, in particular band-shaped, separator 5a, 5b of the Electrode assembly 23 in areas adjacent to the second electrode 2 and / or each cut between two second electrodes 2, so that in each case individual units of electrode composites 23a arise.
  • Trimming is carried out, for example, by means of a laser 3. Alternatively, the trimming is carried out by means of a knife or by means of a punching tool.
  • the seventh step has already been described in the notes to FIG. 5a.
  • steps 10-70 may differ from the order shown here.
  • steps 10, 20 and 30 may be interchanged, for example, in any order.
  • steps 50 and 60 are performed in the order named.
  • steps 50 and 60 run
  • FIG. 6 shows a first electrode 1 with a first contact lb and a first stack arrangement 13 of a battery cell, which were produced by the method according to the invention according to FIGS. 1-5.
  • the first stack arrangement 13 comprises a second electrode 2, which is introduced between two separator foils 5a, 5b.
  • the second electrode 2 further comprises a second contact lug 2b.
  • the first electrode 1 is, for example, an anode, and the first electrode foil 1a, which is covered with a first active material 1c in FIG. 6 and thus is not visible, comprises, for example, a copper foil.
  • the first active material 1c comprises, for example, a graphite, in particular a natural graphite or a synthetic graphite, a carbon, a silicon or a composite of these substances.
  • the second electrode 2 is, for example, a cathode and the second
  • Electrode foil 2a which is covered in FIG. 6 with a second active material 2c and thus is not visible, comprises, for example, an aluminum foil, which in particular has a lithium transition metal oxide, for example with
  • LiNixMn y Co z 02 or an overlithiated lithium transition metal oxide, for example with LiNi x Mn y CozO 2 * Li 2 MnO 3, or another suitable lithium compound comprising, for example, lithium ions, other metal ions and oxygen, or a lithium transition metal phosphate such as
  • the first electrode 1 and the second electrode 2 are not coated with active material lc, 2c in the region of the first contact lb of the first electrode 1 and the second contact lug 2b of the second electrode 2.
  • the Separatorfolien 5a, 5b have on the side at which the first
  • the first electrode 1 and the first stack arrangement 13 are present as a stacked electrode composite 23a.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

Es wird ein Verfahren zur Herstellung eines Elektrodenverbundes (23) einer Batteriezelle, insbesondere einer Lithium-Ionen-Batteriezelle, umfassend zumindest eine erste Elektrode (1) mit einer, insbesondere bandförmigen, ersten Elektrodenfolie (1a), zumindest eine zweite Elektrode (2) und zumindest eine, insbesondere bandförmige, Separatorfolie (5a, 5b) beschrieben, wobei die, insbesondere bandförmige, erste Elektrodenfolie (1a), auf einer ersten Seite, von welcher aus die erste Elektrodenfolie (1a) in der fertigen Batteriezelle kontaktierbar ist, zurechtgeschnitten wird, sodass zumindest eine erste Kontaktfahne (1b) freiliegt.

Description

Beschreibung
Titel
Verfahren zur Herstellung eines Elektrodenverbundes Die vorliegende Erfindung bezieht sich auf ein Verfahren zur Herstellung eines
Elektrodenverbundes einer Batteriezelle sowie auf eine Batteriezelle und eine Batterie, hergestellt nach demselben, nach dem Oberbegriff der unabhängigen Ansprüche. Stand der Technik
Eine Batteriezelle ist ein elektrochemischer Energiespeicher, der bei seiner Entladung die gespeicherte chemische Energie durch eine elektrochemische Reaktion in elektrische Energie umwandelt. Es zeichnet sich ab, dass in der Zukunft sowohl bei stationären Anwendungen, wie Windkraftanlagen, in
Kraftfahrzeugen, die als Hybrid- oder Elektrokraftfahrzeuge ausgelegt sind, wie auch bei Elektronikgeräten neue Batteriesysteme zum Einsatz kommen werden, an die sehr hohe Anforderungen bzgl. Zuverlässigkeit, Sicherheit,
Leistungsfähigkeit und Lebensdauer gestellt werden. Aufgrund ihrer großen Energiedichte werden insbesondere Lithium-Ionen-Batterien als Energiespeicher für elektrisch angetriebene Kraftfahrzeuge verwendet.
Zur Herstellung von Elektrodenverbunden sind verschiedene Methoden bekannt. Bei einer ersten Methode werden eine positive Elektrode und eine negative Elektrode, sowie ein Separator in einem jeweils passenden Format zurecht geschnitten und anschließend aufeinander gestapelt, wobei die Elektroden jeweils durch einen Separator voneinander getrennt sind. Hierbei werden die Elektroden und der Separator separat voneinander aufgenommen und platziert. In der US 2014/0373343 ist eine Methode zur Herstellung eines
Elektrodenverbundes, umfassend eine erste Elektrode, einen ersten Separator, eine zweite Elektrode und einen zweiten Separator, beschrieben, wobei die Elektroden und Separatoren abwechselnd aufeinander gestapelt werden. Zuvor werden die Elektrodenfolien auf zwei sich gegenüberliegenden Seiten zurechtgeschnitten.
In der WO2012/020480 ist eine Methode zur Herstellung eines
Elektrodenverbundes beschrieben, wobei die positive Elektrode jeweils zwischen zwei Separatorfolien einlaminiert wird.
Offenbarung der Erfindung
Erfindungsgemäß wird ein Verfahren zur Herstellung eines Elektrodenverbundes einer Batteriezelle, insbesondere einer Lithium-Ionen-Batteriezelle, umfassend zumindest eine erste Elektrode mit einer, insbesondere bandförmigen, ersten Elektrodenfolie, zumindest eine zweite Elektrode und zumindest eine
Separatorfolie, mit den kennzeichnenden Merkmalen der unabhängigen
Ansprüche bereitgestellt, sowie eine Batteriezelle und eine Batterie, hergestellt nach demselben.
Unter dem Begriff bandförmig wird verstanden, dass die jeweilige Folie beispielsweise als lange, flächige Folie vorliegt, wie man sie beispielsweise bei Materialzulieferern kaufen kann.
Die insbesondere bandförmige, erste Elektrodenfolie wird auf einer ersten Seite, von welcher aus die erste Elektrodenfolie in der fertigen Batteriezelle
kontaktierbar ist, zurechtgeschnitten, sodass zumindest eine erste Kontaktfahne freiliegt. Vorteilhaft hierbei ist, dass die Kontaktfahne nicht erst in einem separaten Arbeitsschritt erzeugt und dann aufgeklebt oder angeschweißt werden muss und somit auch keine Schweißnaht bzw. keine Klebwulst entsteht. Mittels des vorgeschlagenen Vorgangs wird die Herstellung der Kontaktfahne zum einen vereinfacht und zum anderen beschleunigt. Desweiteren werden Partikel, die beispielsweise beim Schweißvorgang entstehen, vermieden. Das vorgeschlagene Verfahren ist einfach und schnell und weist eine hohe Produktivität auf, wodurch es sich für eine Produktion in Serie eignet. Mit einem derartigen System können Elektrodenfolien mit Stapelgeschwindigkeiten von über 10Hz gestapelt werden.
Weitere vorteilhafte Ausführungsformen der vorliegenden Batteriezelle ergeben sich aus den Unteransprüchen.
In einer besonders vorteilhaften Ausführungsform erfolgt das Zurechtschneiden der insbesondere bandförmigen, ersten Elektrodenfolie, insbesondere ausschließlich, auf der ersten Seite, vor einem Aufeinanderstapeln von erster Elektrode, Separatorfolien und zweiter Elektrode. Vorteilhaft hierbei ist, dass die erste Elektrodenfolie vor einem Aufeinanderstapeln nur auf einer Seite zurecht geschnitten werden muss, wodurch Zeit und Arbeitsschritte eingespart werden. Der gesamte Prozess verläuft somit schneller und effizienter. Desweiteren entstehen dadurch, dass die erste Elektrodenfolie nur auf einer ersten Seite zurechtgeschnitten wird, weniger Partikel im Vergleich zum Schneiden einer Elektrodenfolie auf mehreren Seiten.
In einer vorteilhaften Ausführungsform wird zur Herstellung einer ersten
Elektrode eine insbesondere bandförmige, ersten Elektrodenfolie, mit einem ersten Aktivmaterial beschichtet und zur Herstellung einer zweiten Elektrode eine insbesondere bandförmige, zweite Elektrodenfolie wird mit einem zweiten Aktivmaterial beschichtet. Vorteilhaft hierbei ist, dass sich Lithiumionen bei den Lade- und Entladevorgängen in den Aktivmaterialien ein- und auslagern können und somit ein effektiver Betrieb der Batteriezelle gewährleistet ist. Desweiteren ist es vorteilhaft, wenn die Beschichtung mit Aktivmaterial in einer
Ausführungsform insbesondere unter Aussparung des Bereichs der Kontaktfahne der jeweiligen Elektrodenfolie geschieht, da die Kontaktfahnen lediglich zur elektrischen Anbindung dienen und somit eine sichere elektrische Anbindung gewährleistet werden kann, ohne dass es beispielsweise zu einer Schädigung der Batteriezelle oder zu einem Kurzschluss kommt. Desweiteren ist es besonders vorteilhaft, wenn die Elektrodenfolien beidseitig mit Aktivmaterial beschichtet sind. Auf diese Weise wird kein Platz in der
Batteriezelle verschenkt, und es wird eine deutlich höhere Energiedichte der Batteriezelle erreicht im Vergleich zu einer einseitigen Beschichtung der
Elektrodenfolien. Um die gleiche Menge an Aktivmaterial in der Batteriezelle bereitzustellen müssten im Fall einer einseitigen Beschichtung dann zwei Elektrodenfolien in der Batteriezelle untergebracht werden.
In einer vorteilhaften Ausführungsform wird die insbesondere bandförmige, zweite Elektrodenfolie insbesondere auf allen Seiten zurechtgeschnitten, sodass die zweite Elektrode und deren Kontaktfahne freiliegt. Über die Kontaktfahne ist die Elektrodenfolie elektrisch kontaktierbar. Durch das Zurechtschneiden weist die Elektrode die notwendigen Größenabmessungen für die Folgeschritte auf. Besonders vorteilhaft ist es, wenn das Zurechtschneiden der zweiten
Elektrodenfolie vor einem Aufeinanderstapeln der ersten Elektrode, der
Separatorfolie und der zweiten Elektrode erfolgt, da die zurechtgeschnittene Elektrodenfolie dann nur noch auf die jeweiligen anderen Komponenten des Elektrodenverbundes aufgelegt werden muss.
In einer besonders vorteilhaften Ausführungsform wird die zweite Elektrode zwischen zwei, insbesondere bandförmige Separatorfolien eingebracht und die beiden Separatorfolien werden zumindest teilweise in Bereichen, welche über die zweite Elektrode, insbesondere auf allen Seiten, hinausstehen, miteinander verbunden, sodass eine erste Stapelanordnung entsteht. Vorteilhaft hierbei ist, dass die zweite Elektrode, insbesondere die Kathode, auf diese Weise nicht verrutschen kann und somit exakt positioniert ist. Dadurch, dass die zweite Elektrode, insbesondere die Kathode, nicht verrutschen kann und somit allseitig von den Separatorfolien umgeben ist, bietet die Stapelanordnung eine große Sicherheit, beispielsweise vor einem Verrutschen, was sonst beispielsweise Kapazitätsverluste, Schädigungen oder sogar einen Kurzschluss zur Folge haben kann. Das Verbinden der beiden Separatorfolien miteinander stellt zudem einen einfachen und kostengünstigen Arbeitsschritt dar. In einer weiteren vorteilhaften Ausführungsform erfolgt die Verbindung der beiden Separatorfolien miteinander durch Laminieren, Wärmekontaktschweißen, Kleben oder Perforieren.
Vorteilhaft beim Laminieren ist, dass eine wasserdichte und sauerstoffgeschützte Verbindung mit hoher Festigkeit resultiert. Klebeverfahren hingegen sind einfach, zeitsparend und kostengünstig. Die zu klebenden Bauteile sind keinen hohen Temperaturen ausgesetzt, sodass diese Bauteile nicht geschädigt werden.
Vorteilhaft beim Wärmekontaktschweißen ist, dass die Verarbeitungszeit sehr kurz ist und die Wärmeschweißtechnik günstiger ist im Vergleich zu anderen Schweißverfahren, da nur wenige präzise Werkzeuge erforderlich sind. Dadurch stellt dieses ein einfach zu handhabendes und schnelles Verfahren dar.
Eine weitere Ausführungsform sieht vor, dass die, insbesondere bandförmige, erste Elektrodenfolie und die erste Stapelanordnung derart übereinandergelegt werden, dass die erste Kontaktfahne der ersten Elektrode und die zweite
Kontaktfahne der zweiten Elektrode räumlich versetzt zueinander liegen.
Dadurch ist eine Berührung der ersten Kontaktfahne mit der zweiten
Kontaktfahne ausgeschlossen, sodass beispielsweise Kurzschlüsse vermieden werden. Vorteilhaft hierbei ist zudem, dass eine solche Stapelung sehr schnell und einfach ist.
In einer weiteren vorteilhaften Ausführungsform werden die insbesondere bandförmige, erste Elektrodenfolie und die insbesondere bandförmigen
Separatorfolien des Elektrodenverbundes insbesondere nach dem aufeinander Stapeln der ersten Eletktrodenfolie und der ersten Stapelanordnung, in
Bereichen neben der zweiten Elektrode und/oder zwischen zwei zweiten
Elektroden zurechtgeschnitten. Dieser Verfahrensschritt kann sehr schnell erfolgen und ist zudem sehr wirtschaftlich, da hier kein Materialverlust auftritt, beispielsweise in der Serienfertigung, wenn ein fertiger Elektrodenverbund nach dem anderen abgetrennt wird.
Um diesen Schritt sicher ausführen zu können wurde die zweite Elektrodenfolie zuvor insbesondere auf allen Seiten zurechtgeschnitten, sodass sie kleinere Abmessungen aufweist als die erste Elektrodenfolie. Hätte die zweite
Elektrodenfolie dieselben Abmessungen wie die erste Elektrodenfolie, so wären die Elektrodenfolien nach dem Schritt des Zurechtschneidens nur durch eine Separatorfolie getrennt und könnten sich schon bei einer geringen Verschiebung der Separatorfolie berühren, was wiederum zu einem Kurzschluss führen kann. Zudem wäre dann auch der Schritt des Verbindens der beiden Separatorfolien, zwischen welchen die zweite Elektrodenfolie angeordnet ist, nicht möglich. Auch der Verbindungsschritt der Separatorfolien dient der Sicherheit. Auf diese Weise ist es der zweiten Elektrodenfolie nicht möglich zu verrutschen, sodass eine Berührung der ersten Elektrodenfolie mit der zweiten Elektrodenfolie nicht stattfinden kann.
In einer vorteilhaften Ausführungsform erfolgt das Zurechtschneiden der Elektrodenfolien und/oder der Separatorfolien mittels eines Lasers, eines Messers oder eines Stanzwerkzeugs.
Mittels Laserschneiden werden präzise Schnittkanten ohne Staubbildung erhalten. Laserschneiden hat zudem nur einen geringen thermischen Einfluss das Material, sodass es zu keinem Materialverzug kommt.
Ein Schneidevorgang mit einem Messer hat den Vorteil, dass ein Messer kostengünstig erhältlich ist und der Schneidevorgang schnell und einfach ist. Stanzen hingegen ist ein zügiges und energiesparendes Verfahren. Häufige Maschinenumrüstzeiten entfallen und es lassen sich vielseitige Formen herstellen.
Desweiteren ist eine Batteriezelle, insbesondere eine Pouch-Zelle, mit einem gestapelten Elektrodenverbund vorteilhaft, wobei die erste Elektrode eine Anode ist, und die, insbesondere bandförmige, erste Elektrodenfolie insbesondere eine Kupferfolie umfasst, und wobei die zweite Elektrode eine Kathode ist, und die, insbesondere bandförmige, zweite Elektrodenfolie insbesondere eine
Aluminiumfolie umfasst.
Aluminium bietet den Vorteil, dass es leicht und kostengünstig ist und zudem in großen Mengen verfügbar. Kupfer hingegen ist vorteilhaft bezüglich seiner Korrosionsbeständigkeit, was unter anderem eine hohe Lebensdauer mit sich bringt. Zudem ist Kupfer gut zu verarbeiten und kann auch bei niedrigen Temperaturen optimal verformt werden.
In einer weiteren vorteilhaften Ausführungsform weist die Separatorfolie auf der Seite, an welcher die erste Kontaktfahne der ersten Elektrode und/oder die zweite Kontaktfahne der zweiten Elektrode lokalisiert ist, größere Abmessungen auf als die erste Elektrode und als die zweite Elektrode. Die Kontaktfahnen der ersten und/oder der zweiten Elektrode stehen hierbei jedoch über die
Separatorfolie hinaus. Vorteilhaft hierbei ist, dass somit eine möglichst hohe Sicherheit gewährleistet ist, da sich die Elektroden auf diese Weise nicht berühren und somit Schädigungen oder gar Kurzschlüsse der Batteriezelle vermieden werden.
Desweiteren ist es in einer Ausführungsform besonders vorteilhaft, wenn die erste Elektrode größere Abmessungen aufweist als die zweite Elektrode.
Vorteilhaft hierbei ist, dass eine Herstellung wie vorstehend beschrieben möglich ist. Die erste Elektrode kann auf diese Weise an zwei Seiten zum gleichen Zeitpunkt wie die Separatorfolie geschnitten werden, wodurch Arbeitszeit und Kosten eingespart werden.
In einer weiteren Ausführungsform ist vorgesehen, dass die Separatorfolie ein Polyethylen und/oder ein Polypropylen umfasst.
Polyolefine, insbesondere Polyethylen und Polypropylen, sind gleichzeitig robust und flexibel, weisen eine hohe mechanische und chemische Stabilität auf und sind zudem schweißbar. Polyethylen weist beispielsweise eine hohe Zähigkeit, eine geringe Wasseraufnahme und Wasserdampfdurchlässigkeit, sowie eine hohe Beständigkeit gegen Chemikalien auf und ist zudem gut zu verarbeiten und kostengünstig. Polypropylen weist eine geringe Wasseraufnahme auf, ist chemisch beständig, elektrisch isolierend sowie gut zu verarbeiten und kostengünstig.
Desweiteren ist eine Batterie vorteilhaft, welche eine vorstehend beschriebene Batteriezelle aufweist.
Kurze Beschreibung der Zeichnung
Ausführungsformen der vorliegenden Erfindung sind in der Zeichnung dargestellt und in der nachfolgenden Figurenbeschreibung näher erläutert. Es zeigt: Figur 1: eine schematische Darstellung eines erfindungsgemäßen Verfahrens zur Herstellung eines Elektrodenverbundes einer Batteriezelle, Figur 2: eine schematische Darstellung des Schrittes des Zurechtschneidens einer ersten Elektrodenfolie auf einer ersten Seite gemäß dem in Figur 1 dargestellten erfindungsgemäßen Verfahren,
Figur 3: eine schematische Darstellung des Schrittes des Zurechtschneidens und Konfektionierens einer zweiten Elektrodenfolie gemäß dem in Figur
1 dargestellten erfindungsgemäßen Verfahren,
Figur 4: eine schematische Darstellung des Schrittes der Herstellung einer ersten Stapelanordnung gemäß dem in Figur 1 dargestellten erfindungsgemäßen Verfahren,
Figur 5a: eine schematische Darstellung einer Aufsicht des Schrittes des
Aufeinanderstapelns der ersten Elektrode und der ersten
Stapelanordnung und von Schritten zur Fertigstellung eines gestapelten Elektrodenverbundes gemäß dem erfindungsgemäßen
Verfahren,
Figur 5b: eine schematische Darstellung einer seitlichen Ansicht des Schrittes des Aufeinanderstapelns der ersten Elektrode und der ersten Stapelanordnung und von Schritten zur Fertigstellung eines gestapelten Elektrodenverbundes gemäß dem erfindungsgemäßen Verfahren, und
Figur 6: eine schematische Darstellung der Größenabmessungen einer ersten
Elektrode, der Separatorfolien sowie einer zweiten Elektrode einer erfindungsgemäßen Batteriezelle. Ausführungsformen der Erfindung
In Figur 1 ist ein möglicher Ablauf eines erfindungsgemäßen Verfahrens in sieben Verfahrensschritten dargestellt.
In einem ersten Schritt 10 werden die, insbesondere bandförmige, erste
Elektrodenfolie und die, insbesondere bandförmige, zweite Elektrodenfolie beispielsweise beidseitig mit einem ersten Aktivmaterial bzw. einem zweiten Aktivmaterial beschichtet. Alternativ werden die Elektrodenfolien nur auf einer Seite mit Aktivmaterial beschichtet. Eine erste Elektrode ist beispielsweise eine Anode und die, insbesondere bandförmige, erste Elektrodenfolie umfasst beispielsweise eine Kupferfolie welche mit einem Graphit, insbesondere einem Naturgraphit oder einem synthetischem Graphit, einem Kohlenstoff, einem Silizium oder einem Komposit dieser Stoffe, beispielsweise in Verbindung mit einem polymeren Binder, beschichtet ist.
Eine zweite Elektrode ist beispielswiese eine Kathode und die, insbesondere bandförmige, zweite Elektrodenfolie umfasst beispielsweise eine Aluminiumfolie, welche insbesondere mit einem Lithium-Übergangsmetalloxid, beispielsweise mit LiNixMnyCoz02, oder einem überlithiierten Lithium-Übergangsmetalloxid, beispielsweise mit LiNixMnyCoz02*Li2Mn03, oder einer anderen geeigneten Lithiumverbindung, welche beispielsweise Lithiumionen, andere Metallionen und
Sauerstoff umfasst, oder einem Lithiumübergangsmetallphosphat wie
beispielsweise LiFeP04, beschichtet.
Bei der Beschichtung werden insbesondere Bereiche einer ersten Kontaktfahne der ersten Elektrodenfolie und einer zweiten Kontaktfahne der zweiten
Elektrodenfolie ausgespart.
In einem zweiten Schritt 20, welcher im Detail in Figur 2 dargestellt ist, wird die, insbesondere bandförmige, erste Elektrodenfolie la auf einer ersten Seite, von welcher aus die erste Elektrode 1 in der fertigen Batteriezelle kontaktierbar ist, zurechtgeschnitten. Hierbei wird zumindest eine erste Kontaktfahne lb stehen gelassen, über die die erste Elektrode 1 elektrisch kontaktierbar ist. In Figur 2 ist die erste Elektrodenfolie la in einem ersten Bereich 100 der ersten
Elektrodenfolie la mit einem ersten Aktivmaterial lc beschichtet und in einem zweiten Bereich 101 der ersten Elektrodenfolie la frei von Aktivmaterial lc. Von dem unbeschichteten zweiten Bereich 101 der ersten Elektrodenfolie la bleiben nach dem Zurechtschneiden nur die ersten Kontaktfahnen lb stehen. Das Zurechtschneiden der ersten Elektrodenfolie la erfolgt beispielsweise mittels eines Lasers 3. In einem dritten Schritt 30, welcher im Detail in Figur 3 dargestellt ist, wird die insbesondere bandförmige, zweite Elektrodenfolie 2a, bzw. die zweite Elektrode 2 auf allen Seiten zurechtgeschnitten. Alternativ wird die zweite Elektrode 2 nicht auf allen Seiten, sondern beispielsweise nur an drei Seiten, zurechtgeschnitten. Auf einer ersten Seite, von welcher aus die zweite Elektrode 2 in der fertigen Batteriezelle kontaktierbar ist, wird zumindest eine zweite Kontaktfahne 2b stehen gelassen, über welche die zweite Elektrode 2 elektrisch kontaktierbar ist. In Figur 3 ist die zweite Elektrodenfolie 2a in einem ersten Bereich 200 der zweiten Elektrodenfolie 2a mit einem zweiten Aktivmaterial 2c beschichtet und in einem zweiten Bereich 202 der zweiten Elektrodenfolie 2a frei von dem zweiten Aktivmaterial 2c. Von dem unbeschichteten zweiten Bereich 202 der zweiten
Elektrodenfolie 2a bleiben nach dem Zurechtschneiden nur die zweiten
Kontaktfahnen 2b stehen. Das Zurechtschneiden der zweiten Elektrodenfolie 2a erfolgt beispielsweise mittels eines Lasers 3. In einem vierten Schritt 40, welcher im Detail in Figur 4 dargestellt ist, wird die zweite Elektrode 2 zwischen zwei, insbesondere bandförmige, Separatorfolien 5a, 5b eingebracht, sodass eine Separatorfolie 5a unterhalb der zweiten
Elektrode 2 und eine Separatorfolie 5b oberhalb der zweiten Elektrode 2 angeordnet ist. Die Separatorfolien 5a, 5b sind in Figur 4 nahezu transparent dargestellt. Nachfolgend werden die beiden Separatorfolien 5a, 5b in Bereichen, welche auf allen Seiten über die zweite Elektrode 2 hinausstehen, miteinander verbunden, sodass eine erste Stapelanordnung 13 entsteht. Alternativ werden die beiden Separatorfolien 5a, 5b zumindest teilweise miteinander verbunden in Bereichen, welche über die zweite Elektrode 2 hinausstehen.
Die Separatorfolie 5a, 5b umfasst beispielsweise ein Polyethylen und/oder ein
Polypropylen. Das Verbinden der Separatorfolien 5a, 5b erfolgt beispielsweise durch eine Laminierung 7 an den in Figur 4 beispielhaft mit Pfeilen
eingezeichneten Stellen. Die Laminierung 7 kann auch an weiteren, in Figur 4 nicht eingezeichneten Stellen erfolgen. Alternativ werden die Separatorfolien 5a, 5b mittels Wärmekontaktschweißen oder Kleben miteinander verbunden. Ein fünfter, ein sechster und ein siebter Schritt sind im Detail in den Figuren 5a in einer Aufsicht und in Figur 5b in einer seitlichen Ansicht dargestellt. Wie in Figur 5a dargestellt, werden in dem fünften Schritt 50 die, insbesondere bandförmige, erste Elektrode 1 und die erste Stapelanordnung 13
übereinandergelegt, sodass ein Elektrodenverbund 23 entsteht. Hierbei sind die erste Kontaktfahne lb der ersten Elektrode 1 und die zweite Kontaktfahne 2b der zweiten Elektrode 2 versetzt zueinander angeordnet.
In dem sechsten Schritt 60 werden die, insbesondere bandförmige, erste
Elektrode 1 und die, insbesondere bandförmigen, Separatorfolien 5a, 5b des Elektrodenverbundes 23 in Bereichen neben der zweiten Elektrode 2 und/oder jeweils zwischen zwei zweiten Elektroden 2 zurechtgeschnitten, sodass jeweils einzelne Einheiten von Elektrodenverbunden 23a entstehen. Das
Zurechtschneiden erfolgt beispielsweise mittels eines Lasers. Alternativ erfolgt das Zurechtschneiden mittels eines Messers oder mittels eines Stanzwerkzeugs. In dem siebten Schritt 70 erfolgt der Zusammenbau der einzelnen Einheiten der Elektrodenverbunde 23a zu einem gestapelten Elektrodenverbund 230. Die einzelnen Elektrodenverbunde 23a werden hierbei jeweils in der gleichen Orientierung aufeinander gestapelt, sodass an jede erste Elektrode 1 eine erste
Stapelanordnung 13 angrenzt.
Figur 5b zeigt die zu Figur 5a beschriebenen Schritte in einer seitlichen Ansicht. Es ist dargestellt, wie die erste Elektrode 1, welche bislang nur an einer ersten Seite zurechtgeschnitten wurde in dem fünften Schritt über eine Zuführhilfe 8, beispielsweise Rollen, einer Vorrichtung 9 zur Herstellung eines
Elektrodenverbundes 23 zugeführt wird. Gleichzeitig wird die erste
Stapelanordnung 13 über eine weitere Zuführhilfe 8, beispielsweise Rollen, ebenfalls der Vorrichtung 9 zur Herstellung eines Elektrodenverbundes 23 zugeführt. In dieser werden die erste Elektrode 1 und die erste Stapelanordnung
13 aufeinander gestapelt. In den Figuren 5a, 5b wird die erste Elektrode 1 auf die erste Stapelanordnung 13 gestapelt. Alternativ wird die erste Stapelanordnung 13 auf die erste Elektrode 1 gestapelt.
In dem sechsten Schritt 60 werden die, insbesondere bandförmige, erste
Elektrode 1 und die, insbesondere bandförmigen, Separatorfolien 5a, 5b des Elektrodenverbundes 23 in Bereichen neben der zweiten Elektrode 2 und/oder jeweils zwischen zwei zweiten Elektroden 2 zurechtgeschnitten, sodass jeweils einzelne Einheiten von Elektrodenverbunden 23a entstehen. Das
Zurechtschneiden erfolgt beispielsweise mittels eines Lasers 3. Alternativ erfolgt das Zurechtschneiden mittels eines Messers oder mittels eines Stanzwerkzeugs.
Der siebte Schritt wurde bereits in den Erläuterungen zu Figur 5a beschrieben.
Die Reihenfolge der Schritte 10-70 kann von der hier dargestellten Reihenfolge abweichen. Bevorzugt erfolgen die Schritte 10, 20 und 30 in genannter
Reihenfolge. Alternativ können die Schritte 10, 20 und 30 beispielsweise in beliebiger Reihenfolge vertauscht werden. Bevorzugt erfolgen die Schritte 50 und 60 in genannter Reihenfolge. Alternativ laufen die Schritte 50 und 60
beispielsweise in vertauschter Reihenfolge ab. In Figur 6 sind eine erste Elektrode 1 mit einer ersten Kontaktfahne lb und eine erste Stapelanordnung 13 einer Batteriezelle dargestellt, welche mit dem erfindungsgemäßen Verfahren gemäß der Figuren 1-5 hergestellt wurden. Die erste Stapelanordnung 13 umfasst eine zweite Elektrode 2, welche zwischen zwei Separatorfolien 5a, 5b eingebracht ist. Die zweite Elektrode 2 umfasst desweiteren eine zweite Kontaktfahne 2b.
Die erste Elektrode 1 ist beispielsweise eine Anode und die erste Elektrodenfolie la, welche in Figur 6 mit einem ersten Aktivmaterial lc bedeckt und somit nicht sichtbar ist, umfasst beispielsweise eine Kupferfolie. Das erste Aktivmaterial lc umfasst beispielsweise ein Graphit, insbesondere ein Naturgraphit oder ein synthetischem Graphit, einen Kohlenstoff, ein Silizium oder einen Kompositen dieser Stoffe.
Die zweite Elektrode 2 ist beispielswiese eine Kathode und die zweite
Elektrodenfolie 2a, welche in Figur 6 mit einem zweiten Aktivmaterial 2c bedeckt und somit nicht sichtbar ist, umfasst beispielsweise eine Aluminiumfolie, welche insbesondere mit einem Lithium-Übergangsmetalloxid, beispielsweise mit
LiNixMnyCoz02, oder einem überlithiierten Lithium-Übergangsmetalloxid, beispielsweise mit LiNixMnyCoz02*Li2Mn03, oder einer anderen geeigneten Lithiumverbindung, welche beispielsweise Lithiumionen, andere Metallionen und Sauerstoff umfasst, oder einem Lithiumübergangsmetallphosphat wie
beispielsweise LiFeP04 beschichtet. Die erste Elektrode 1 und die zweiten Elektrode 2 sind im Bereich der ersten Kontaktfahne lb der ersten Elektrode 1 und der zweite Kontaktfahne 2b der zweiten Elektrode 2 nicht mit Aktivmaterial lc, 2c beschichtet.
Die Separatorfolien 5a, 5b weisen auf der Seite, an welcher die erste
Kontaktfahne lb der ersten Elektrode 1 und die zweite Kontaktfahne 2b der zweiten Elektrode 2 liegen, größere Abmessungen auf als die erste Elektrode 1 und als die zweite Elektrode 2. Die erste Elektrode 1 weist auf allen Seiten größere Abmessungen auf im Vergleich zur zweiten Elektrode 2. In der fertigen Batteriezelle liegen die erste Elektrode 1 und die erste Stapelanordnung 13 als gestapelter Elektrodenverbund 23a vor. Eine entsprechende Batteriezelle, insbesondere eine entsprechende Pouchzelle, findet beispielsweise in
Kraftfahrzeugen, die als Hybrid- oder Elektrofahrzeuge ausgelegt sind, Anwendung.

Claims

Ansprüche
1. Verfahren zur Herstellung eines Elektrodenverbundes (23) einer Batteriezelle, insbesondere einer Lithium-Ionen-Batteriezelle, umfassend zumindest eine erste Elektrode (1) mit einer, insbesondere bandförmigen, ersten Elektrodenfolie (la), zumindest eine zweite Elektrode (2) und zumindest eine, insbesondere bandförmige, Separatorfolie (5a, 5b), dadurch gekennzeichnet, dass die, insbesondere bandförmige, erste Elektrodenfolie (la) auf einer ersten Seite, von welcher aus die erste
Elektrodenfolie (la) in der fertigen Batteriezelle kontaktierbar ist, zurechtgeschnitten wird, sodass zumindest eine erste Kontaktfahne (lb) freiliegt.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das Zurechtschneiden der insbesondere bandförmigen, ersten Elektrodenfolie (la), insbesondere
ausschließlich, auf der ersten Seite, vor einem Aufeinanderstapeln der ersten
Elektrode (1), der, insbesondere bandförmigen, Sepratorfolien (5) und der zweiten Elektrode (2) erfolgt.
3. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zur Herstellung der ersten Elektrode (1) die, insbesondere bandförmige, erste Elektrodenfolie (la), insbesondere beidseitig, mit einem ersten Aktivmaterial (lc) beschichtet wird, insbesondere unter Aussparung des Bereichs der ersten
Kontaktfahne (lb) der ersten Elektrode (1), und dass zur Herstellung der zweiten Elektrode (2) eine, insbesondere bandförmige, zweite Elektrodenfolie (2a),
insbesondere beidseitig, mit einem zweiten Aktivmaterial (2c) beschichtet wird, insbesondere unter Aussparung des Bereichs einer zweiten Kontaktfahne (2b) der zweiten Elektrode (2).
4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die, insbesondere bandförmige, zweite Elektrodenfolie (2a), insbesondere auf allen Seiten zurechtgeschnitten wird, insbesondere vor einem Aufeinanderstapeln der ersten Elektrode (1), der Separatorfolie (5a, 5b) und der zweiten Elektrode (2), sodass die zweite Elektrode (2) mit deren zweiten Kontaktfahne (2b) freiliegt.
5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die zweite Elektrode (2) zwischen zwei, insbesondere bandförmige,
Separatorfolien (5a, 5b) eingebracht wird und die beiden Separatorfolien (5a, 5b) zumindest teilweise in Bereichen, welche über die zweite Elektrode (2), insbesondere auf allen Seiten, hinausstehen, miteinander verbunden werden, sodass eine erste Stapelanordnung (13) entsteht.
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass das Verbinden der Separatorfolien (5a, 5b) durch Laminieren, Wärmekontaktschweißen, Kleben oder Perforieren erfolgt.
7. Verfahren nach einem der Ansprüche 5 oder 6, dadurch gekennzeichnet, dass die, insbesondere bandförmige, erste Elektrodenfolie (la) und die erste Stapelanordnung (13) übereinandergelegt werden derart, dass die erste Kontaktfahne (lb) der ersten Elektrode (1) und die zweite Kontaktfahne (2b) der zweiten Elektrode (2) versetzt zueinander liegen, sodass ein Elektrodenverbund (23) entsteht.
8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass die insbesondere bandförmige, erste Elektrodenfolie (la) und die, insbesondere bandförmigen,
Separatorfolien (5a 5b) des Elektrodenverbundes (23) in Bereichen neben der zweiten Elektrode (2) und/oder jeweils zwischen zwei zweiten Elektroden (2)
zurechtgeschnitten werden.
9. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Zurechtschneiden der Elektrodenfolien (la, 2a) und/oder der Separatorfolien (5a, 5b) mittels eines Lasers (3), eines Messers oder eines Stanzwerkzeugs erfolgt.
10. Batteriezelle, insbesondere Pouch-Zelle, mit einem gestapelten Elektrodenverbund (23a), hergestellt nach einem Verfahren gemäß einem der Ansprüche 1-9 dadurch gekennzeichnet, dass die erste Elektrode (1) eine Anode ist, und die erste
Elektrodenfolie (la) insbesondere eine Kupferfolie umfasst, und dass die zweite Elektrode (2) eine Kathode ist, und die zweite Elektrodenfolie (2a) insbesondere eine Aluminiumfolie umfasst.
11. Batteriezelle nach Anspruch 10, dadurch gekennzeichnet, dass die Separatorfolien (5a, 5b) auf der Seite, an welcher die erste Kontaktfahne (lb) der ersten Elektrode (1) und/oder die zweite Kontaktfahne (2b) der zweiten Elektrode (2) liegt, größere
Abmessungen aufweisen als die erste Elektrode (1) und als die zweite Elektrode (2).
12. Batteriezelle nach einem der Ansprüche 10 oder 11, dadurch gekennzeichnet, dass die erste Elektrode (1) größere Abmessungen aufweist als die zweite Elektrode (2).
13. Batteriezelle nach einem der Ansprüche 10-12, dadurch gekennzeichnet, dass die Separatorfolie (5a, 5b) ein Polyethylen und/oder ein Polypropylen umfasst.
14. Batterie mit zumindest einer Batteriezelle gemäß einem der Ansprüche 10-13.
PCT/EP2016/071295 2015-09-28 2016-09-09 Verfahren zur herstellung eines elektrodenverbundes WO2017055057A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680056260.8A CN108055875B (zh) 2015-09-28 2016-09-09 用于制造电极复合体的方法
US15/763,692 US20180323416A1 (en) 2015-09-28 2016-09-09 Method for producing an electrode composite

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015218533.8A DE102015218533A1 (de) 2015-09-28 2015-09-28 Verfahren zur Herstellung eines Elektrodenverbundes
DE102015218533.8 2015-09-28

Publications (1)

Publication Number Publication Date
WO2017055057A1 true WO2017055057A1 (de) 2017-04-06

Family

ID=56889088

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2016/071295 WO2017055057A1 (de) 2015-09-28 2016-09-09 Verfahren zur herstellung eines elektrodenverbundes

Country Status (4)

Country Link
US (1) US20180323416A1 (de)
CN (1) CN108055875B (de)
DE (1) DE102015218533A1 (de)
WO (1) WO2017055057A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3300141A1 (de) * 2016-09-27 2018-03-28 Robert Bosch GmbH Verfahren zur herstellung eines elektrodenstapels für eine batteriezelle und batteriezelle
DE102017213297A1 (de) 2017-08-01 2019-02-07 Robert Bosch Gmbh Batteriezelle mit speziell angebundenem Ableiterelement sowie Verfahren zum Fertigen einer Batteriezelle
DE102022113630A1 (de) 2022-05-31 2023-11-30 Volkswagen Aktiengesellschaft Galvanische Monozelle sowie Verfahren zur Herstellung einer solchen
WO2024038240A1 (fr) * 2022-08-18 2024-02-22 Verkor Système et procédé de fabrication d'une cellule de batterie

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017216101A1 (de) * 2017-09-12 2019-03-14 Robert Bosch Gmbh Verfahren zur Herstellung einer Elektrodenanordnung, Elektrodenanordnung und Batteriezelle umfassend mindestens eine Elektrodenanordnung
DE102017216188A1 (de) * 2017-09-13 2019-03-14 Robert Bosch Gmbh Verfahren zur Herstellung eines Elektrodenstapels für eine Batteriezelle und Batteriezelle
DE102017216193A1 (de) * 2017-09-13 2019-03-14 Robert Bosch Gmbh Verfahren zur Herstellung von Elektroden
DE102018203033A1 (de) * 2018-03-01 2019-09-05 Robert Bosch Gmbh Verfahren und Vorrichtung zum Fließfertigen von Elektroden für eine Batterie
DE102018105926B3 (de) 2018-03-14 2019-07-11 Webasto SE Verfahren zum Verbinden von Metallteilen, sowie Batterie
DE102018219000A1 (de) 2018-11-07 2020-05-07 Volkswagen Aktiengesellschaft Verfahren zur Herstellung einer Kathodenvorrichtung, Verfahren zur Herstellung eines Elektrodenverbundes und Batterie
DE102018220238A1 (de) 2018-11-26 2020-05-28 Volkswagen Aktiengesellschaft Verfahren zur Herstellung eines Elektrodenverbunds für eine Batteriezelle, Elektrodenverbund, Batteriezelle, Fahrzeug
DE102019206124A1 (de) 2019-04-29 2020-10-29 Volkswagen Aktiengesellschaft Verfahren und Vorrichtung zur Herstellung von Elektroden für eine Lithium-Ionen-Batterie
CN111014976A (zh) * 2019-12-17 2020-04-17 广州市易鸿智能装备有限公司 激光模切装置
DE102020124039A1 (de) 2020-09-15 2022-03-17 Volkswagen Aktiengesellschaft Verfahren und Vorrichtung zur Herstellung eines Zellstapels für Batteriezellen
DE102020124038A1 (de) * 2020-09-15 2022-03-17 Volkswagen Aktiengesellschaft Verfahren und Vorrichtung zur Herstellung eines Zellstapels für Batteriezellen
DE102020124040A1 (de) 2020-09-15 2022-03-17 Volkswagen Aktiengesellschaft Verfahren und Vorrichtung zur Herstellung eines Zellstapels für Batteriezellen
KR20220168363A (ko) * 2021-06-16 2022-12-23 삼성에스디아이 주식회사 이차 전지
DE102022105870A1 (de) * 2022-03-14 2023-09-14 Körber Technologies Gmbh Vorrichtung zur Herstellung von einzelnen Elektrodenblättern für eine Energiezelle aus einer Elektrodenbahn und Verfahren
DE102022107183A1 (de) 2022-03-25 2023-09-28 Volkswagen Aktiengesellschaft Verfahren zur Herstellung eines Elektrode-Separatoren-Verbunds für eine Batterie

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2124285A1 (de) * 2007-03-12 2009-11-25 Kabushiki Kaisha Toshiba Gewickelte elektrodenbatterie und herstellungsverfahren dafür
JP2011171079A (ja) * 2010-02-17 2011-09-01 Toshiba Corp 電池
WO2012020480A1 (ja) 2010-08-11 2012-02-16 日本自働精機株式会社 正負極板の積層方法及びその装置
DE102011075063A1 (de) * 2011-05-02 2012-11-08 Volkswagen Varta Microbattery Forschungsgesellschaft Mbh & Co. Kg Verfahren und Vorrichtung zur Herstellung von Elektrodenwickeln
US20140373343A1 (en) 2013-05-23 2014-12-25 Lg Chem, Ltd. Method of manufacturing electrode assembly

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10214616A (ja) * 1997-01-30 1998-08-11 Denso Corp 積層型電池用電極の製造方法
JP2000285908A (ja) * 1999-03-30 2000-10-13 Mitsubishi Chemicals Corp 二次電池要素および二次電池の製造方法
KR100497147B1 (ko) 2000-02-08 2005-06-29 주식회사 엘지화학 다중 중첩 전기화학 셀 및 그의 제조방법
AUPR194400A0 (en) * 2000-12-06 2001-01-04 Energy Storage Systems Pty Ltd An energy storage device
CN1309105C (zh) * 2003-12-24 2007-04-04 松下电器产业株式会社 卷式电化学元件用极板组和电池
KR100614390B1 (ko) * 2004-09-06 2006-08-21 삼성에스디아이 주식회사 권취형 전극 조립체와 이를 구비하는 리튬 이온 이차 전지및 이의 제조 방법
DE102007025766A1 (de) * 2007-05-23 2008-11-27 Varta Microbattery Gmbh Galvanisches Element mit Sicherungsfunktion
CN101355180A (zh) * 2008-09-09 2009-01-28 吉安市优特利科技有限公司 一种锂离子动力电池的电芯构造
JP2010080392A (ja) * 2008-09-29 2010-04-08 Toshiba Corp 電池用電極及びその製造方法
JP2011076838A (ja) * 2009-09-30 2011-04-14 Sanyo Electric Co Ltd 積層式電池
JP5461267B2 (ja) * 2010-03-26 2014-04-02 三菱重工業株式会社 電極板製造装置、及び電極板製造方法
JP5541514B2 (ja) * 2010-09-16 2014-07-09 Necエナジーデバイス株式会社 積層型二次電池
WO2012056846A1 (ja) * 2010-10-27 2012-05-03 東レフィルム加工株式会社 二次電池およびその製造方法ならびに二次電池用熱接着性絶縁フィルム
CN102642089B (zh) * 2011-02-18 2014-12-31 深圳市吉阳自动化科技有限公司 一种极片激光切割机
PL2772978T3 (pl) * 2012-05-23 2019-06-28 Lg Chem, Ltd. Zespół elektrodowy i zawierające go urządzenie elektromechaniczne
TWI484686B (zh) * 2012-06-28 2015-05-11 Lg Chemical Ltd 電極組及包含其之電化學電池
DE102012112186A1 (de) 2012-12-12 2014-06-26 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Materialverbund, Verfahren zu dessen Herstellung, daraus hergestelltes System und Anwendung desselben
CN103094618A (zh) * 2012-12-19 2013-05-08 天津市捷威动力工业有限公司 一种制袋式锂离子电池及其制备方法
DE102013203810A1 (de) * 2013-03-06 2014-09-11 Thyssenkrupp System Engineering Gmbh Verfahren und Vorrichtung zum Schneiden eines Elektrodenbands
EP2866293B1 (de) * 2013-06-28 2018-01-10 LG Chem, Ltd. Verfahren zur herstellung einer elektrodenanordnung mit einem separatorschneideverfahren
DE102014200011A1 (de) * 2014-01-03 2015-07-09 Robert Bosch Gmbh Elektroden für Batteriezellen

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2124285A1 (de) * 2007-03-12 2009-11-25 Kabushiki Kaisha Toshiba Gewickelte elektrodenbatterie und herstellungsverfahren dafür
JP2011171079A (ja) * 2010-02-17 2011-09-01 Toshiba Corp 電池
WO2012020480A1 (ja) 2010-08-11 2012-02-16 日本自働精機株式会社 正負極板の積層方法及びその装置
DE102011075063A1 (de) * 2011-05-02 2012-11-08 Volkswagen Varta Microbattery Forschungsgesellschaft Mbh & Co. Kg Verfahren und Vorrichtung zur Herstellung von Elektrodenwickeln
US20140373343A1 (en) 2013-05-23 2014-12-25 Lg Chem, Ltd. Method of manufacturing electrode assembly

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3300141A1 (de) * 2016-09-27 2018-03-28 Robert Bosch GmbH Verfahren zur herstellung eines elektrodenstapels für eine batteriezelle und batteriezelle
DE102017213297A1 (de) 2017-08-01 2019-02-07 Robert Bosch Gmbh Batteriezelle mit speziell angebundenem Ableiterelement sowie Verfahren zum Fertigen einer Batteriezelle
DE102022113630A1 (de) 2022-05-31 2023-11-30 Volkswagen Aktiengesellschaft Galvanische Monozelle sowie Verfahren zur Herstellung einer solchen
WO2024038240A1 (fr) * 2022-08-18 2024-02-22 Verkor Système et procédé de fabrication d'une cellule de batterie

Also Published As

Publication number Publication date
DE102015218533A1 (de) 2017-03-30
CN108055875B (zh) 2021-07-20
US20180323416A1 (en) 2018-11-08
CN108055875A (zh) 2018-05-18

Similar Documents

Publication Publication Date Title
WO2017055057A1 (de) Verfahren zur herstellung eines elektrodenverbundes
EP3520163B1 (de) Verfahren zur herstellung einer elektrodeneinheit für eine batteriezelle und elektrodeneinheit
DE102017126424A1 (de) Separatorintegrierte Elektrodenplatte, Elektrodenplattenpaar, gestapeltes Stromspeicherelement, und Verfahren zum Herstellen einer separatorintegrierten Elektrodenplatte
EP1369939A2 (de) Galvanisches Element
DE112017005247B4 (de) Energiespeichervorrichtung und Herstellungsverfahren einer Energiespeichervorrichtung
WO2012072235A1 (de) Verfahren und system zum schneiden von blatt- oder plattenförmigen objekten
EP1359633A1 (de) Galvanisches Element mit dünnen Elektroden
DE102016218495A1 (de) Verfahren zur Herstellung eines Elektrodenstapels für eine Batteriezelle und Batteriezelle
EP3520157A1 (de) Verfahren zur herstellung eines folienstapels für eine batteriezelle
EP3300141B1 (de) Verfahren zur herstellung eines elektrodenstapels für eine batteriezelle und batteriezelle
DE102012215661B4 (de) Laserverschweißte Verbindung und elektrochemische Vorrichtung
DE102016214239A1 (de) Folienstapel für eine Batteriezelle und Verfahren zur Herstellung
WO2011012204A1 (de) Elektrodenanordnung für eine batterieeinzelzelle
EP2764561A1 (de) Verfahren und system zum schneiden von blatt- oder plattenförmigen objekten
DE102017206962A1 (de) Energiespeichereinrichtung
EP3447819B1 (de) Sekundäre miniaturbatterie mit metallischem gehäuse und verfahren zu ihrer herstellung
DE102016217397A1 (de) Elektrodenstapel mit Randbeschichtung
DE102016217369A1 (de) Elektrode mit erhöhtem Aktivmaterialanteil
DE102017216143A1 (de) Verfahren zur Herstellung eines Elektrodenstapels für eine Batteriezelle und Batteriezelle
DE102021124490A1 (de) Sekundärbatterie
DE102016225221A1 (de) Verfahren zur Herstellung eines Elektrodenstapels für eine Batteriezelle und Batteriezelle
DE102015116095A1 (de) Batteriezelle
DE102012213111B4 (de) Verfahren und Anordnung zur effizienten Herstellung von Folienstapeln zur Bildung einer Lithium-Ionen-Batteriezelle
WO2019052819A1 (de) Verfahren zur herstellung einer elektrodenanordnung, elektrodenanordnung und batteriezelle umfassend mindestens eine elektrodenanordnung
DE102017207766A1 (de) Verfahren zur Herstellung eines Elektrodenstapels für eine Batteriezelle und Batteriezelle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16763052

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15763692

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16763052

Country of ref document: EP

Kind code of ref document: A1