WO2017054364A1 - 视觉功能优化训控系统及训控方法 - Google Patents

视觉功能优化训控系统及训控方法 Download PDF

Info

Publication number
WO2017054364A1
WO2017054364A1 PCT/CN2016/000280 CN2016000280W WO2017054364A1 WO 2017054364 A1 WO2017054364 A1 WO 2017054364A1 CN 2016000280 W CN2016000280 W CN 2016000280W WO 2017054364 A1 WO2017054364 A1 WO 2017054364A1
Authority
WO
WIPO (PCT)
Prior art keywords
training
user
control system
microprocessor
visual function
Prior art date
Application number
PCT/CN2016/000280
Other languages
English (en)
French (fr)
Inventor
刘伟中
彭辉辉
Original Assignee
江苏乐友信息科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201510638673.4A external-priority patent/CN105158929A/zh
Priority claimed from CN201510638175.XA external-priority patent/CN105213158A/zh
Application filed by 江苏乐友信息科技有限公司 filed Critical 江苏乐友信息科技有限公司
Publication of WO2017054364A1 publication Critical patent/WO2017054364A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H5/00Exercisers for the eyes
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/06Lenses; Lens systems ; Methods of designing lenses bifocal; multifocal ; progressive
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/08Auxiliary lenses; Arrangements for varying focal length

Definitions

  • the invention relates to a visual function optimization training control system and a training and control method thereof.
  • Vision problems such as myopia, hyperopia, astigmatism, amblyopia, and decreased visual function
  • vision problems are very common social health phenomena.
  • the visual function optimization training equipment (or products) on the market are mainly some relatively large-scale equipment (or products), which requires high cooperation of customers.
  • the customer is less comfortable in the process of correcting the optometry or exercising vision function, and it will occupy a lot of time. At the same time, it requires professional tracking and counseling, and the practicality is not strong.
  • the current visual function optimization training equipment on the market cannot realize the remote connection of customer vision correction and visual function training and the exchange of real-time data, so it is impossible to accurately collect the first-hand data in the process of optimizing the visual function of the customer visual function, nor can it
  • the training program is adjusted in time, the training effect is not ideal, and the lens used in the existing training equipment can be zoomed in a small amount, the zoom optical area (ie, the zoom visible area) is very narrow, and the user feels insufficient in comfort.
  • the human visual function is a sophisticated and complex function, which is completed by the eye lens, the foveal fovea and the brain visual cortex. There are also ways to use the instantaneous matching needs, which completely abandons the human visual function and ultimately It will lead to the gradual loss of the human visual function.
  • a first object of the present invention is to provide a visual function optimization training control system capable of collecting training process data and giving the user timely adjustment of feedback.
  • a technical solution for realizing the first object of the present invention is a visual function optimization training control system, including training equipment; and a microprocessor, a distance measuring device for testing a user's visual distance, a photographing device for collecting a user's eye surface or an iris size and pattern, and a mobile terminal; the microprocessor is bidirectionally connected to the training device; an output end of the training device is connected to an input end of the distance measuring device and an input end of the imaging device; and the distance measuring device and the imaging device are in two-way communication with the microprocessor
  • the microprocessor stores the data transmitted by the training device, the distance measuring device and the photographing device, and is connected to the mobile terminal in two-way communication; the mobile terminal stores an interactive application program.
  • the training device includes two sets of dynamic zoom lens groups; the dynamic zoom lens group includes two zoom lenses; each of the zoom lenses is provided with an optical region formed by a continuous diopter-changing optical center and a discontinuous diopter change a peripheral non-optical region; the diopter zoom range of the optical region is from -15D to 0D at one end to 0D to +5D at the other end; the optical region is 4 to 70 mm long and 2 to 50 mm wide; the optical region The astigmatism is ⁇ 2.50D; the optical centers of the optical region are ellipsoidal mirrors; one of the ellipsoidal mirrors is an ellipsoidal mirror that maintains the horizontal astigmatism axis, and the other ellipsoidal mirror is an ellipsoidal mirror that maintains the astigmatic axial position of the vertical direction.
  • the processing method of the zoom lens is to process a continuous orthospheric spherical mirror on a circular lens; or to maintain the same astigmatism from left to right on a circular lens, and the astigmatism axis position is horizontally axially processed continuously.
  • the training device further includes a lens moving mechanism and a moving driving mechanism; the two sets of dynamic zoom lens groups are disposed on the lens moving mechanism, and the moving optical mechanism drives the zoom optical lens to move; so that two sets of zoom of each group of dynamic zoom lens groups The lenses completely overlap or overlap.
  • each of the zoom lenses is a horizontal plane or a curved surface; the dynamic zoom lens group has a diopter zoom range of -30D to 0D or 0D to +10D.
  • the training device is wearable glasses.
  • a visual optimization training database is provided in the mobile terminal.
  • the visual function optimization training control system further comprises a cloud data server; the mobile terminal is in two-way communication connection with the cloud data server.
  • a visual optimization training database is provided in the cloud data server.
  • the microprocessor and the training device are connected by wired or wireless communication; the microprocessor is connected to the mobile terminal by wired or wireless communication; and the mobile terminal is wirelessly connected with the cloud data server.
  • the distance measuring device is a sonar ranging device or a laser ranging device or an infrared ranging device; the imaging device is a camera.
  • the mobile terminal can be an electronic communication device such as a tablet computer, a smart watch, or a smart phone.
  • a second object of the present invention is to provide a control method for a visual function optimization training control system.
  • the visual function optimization training control system there are two kinds of schemes mentioned above, and there are two corresponding control methods.
  • the first one is to compare and adjust the training schemes by the database provided by the microprocessor.
  • the use of this method does not need to rely on the network. Specifically, it includes the following steps:
  • Step 1 The user uses the training device
  • Step 2 The distance measuring device measures the user's eye distance, the photographing device collects the user's eye table or iris size and pattern, and the distance measuring device and the photographing device transmit the data to the microprocessor;
  • Step 3 The microprocessor records the normal eye data of the user, and the mobile terminal selects an adjustment training mode from the visual optimization training database, and feeds back to the training device through the microprocessor, thereby adjusting the diopter of the training device lens and The user uses the eye distance.
  • the user's eye crystal continues to exercise, continuously training the retinal macular fovea to analyze the blurred image, and continuously training the user's brain visual cortex to accept the blurred image.
  • the other is to remotely analyze and provide adjustment solutions by the cloud data server, and the network seeks more and more effective adjustment solutions, including the following steps:
  • Step 1 Enter the user basic parameter information into the cloud data server to create a user cloud database file.
  • Step 2 The user uses the training device; the cloud data server sets the personalized training data packet according to the user basic parameters and transmits the data to the mobile terminal through the network, and then transmits the data to the microprocessor, and the microprocessor transmits the corresponding training data to the zoom lens group. , to achieve dynamic zoom of the zoom lens group;
  • Step 3 During the user's use, the distance measuring device measures the user's eye distance, the photographing device collects the user's eye table or iris size and pattern, and the distance measuring device and the photographing device transmit the data to the microprocessor;
  • Step 4 The microprocessor records the normal eye data of the user, and transmits the data to the mobile terminal, and then transmits the data to the cloud data server through the network;
  • Step 5 The cloud data server determines whether the user's usage meets the requirements according to the received data, selects an adjustment training mode, and feeds back to the training device, thereby adjusting the diopter of the training device lens and the user's eye distance.
  • the dynamic zoom of the zoom lens group artificially creates a blurred image, so that the user's eye crystal continues to exercise, continuously training the retinal macular fovea to analyze the blurred image, and continuously train the user's brain visual cortex to accept the blurred image.
  • the user basic parameters include age, diopter, interpupillary distance and the like.
  • the user adjusts the operating condition of the zoom lens group through the mobile terminal during use.
  • the principle of the present invention is: face-sighted human vision is a work performed by the eye lens, the macula fovea and the brain visual cortex.
  • the image of the object that the user needs to see falls on the retinal macula.
  • Behind the front of the fovea a blurred image is formed, which stimulates the visual cortex of the brain to continuously give the eye crystals instructions to try to see the blurred image, so that the crystal of the eye continuously moves, thereby exercising the adjustment ability of the eye crystal, the retina macular
  • the ability of the fovea to analyze the blurred image and the ability of the cerebral cortex to accept the blurred image fully stimulates the potential of the visual function, which can make the user's focus state more perfect.
  • the present invention has the following positive effects: (1)
  • the visual optimization training system of the present invention satisfactorily solves the defect that the prior art is not very operative and requires professional guidance, and can be microprocessor-driven.
  • the training data is recorded from time to time, so even if the user uses the fragmented time to train, it can be recorded at the same time.
  • the distance measuring device, the shooting device and other devices can monitor the training situation that occurs during the user's use in real time, and the ocular surface capturing device
  • the data of the distance measuring device and other devices can be fed back to the mobile terminal in real time, and automatically made by the mobile terminal Judgment and analysis to adjust the operating rules of the zoom lens.
  • the user himself can also issue commands to the microprocessor through the mobile terminal to control the operation of the zoom lens group to achieve clear vision.
  • the mobile terminal transmits all the collected data to the cloud data server through the network connection and gives corresponding adjustment schemes and suggestions, which greatly improves the practicality and effectiveness of the visual optimization training.
  • the training device of the visual optimization training system of the present invention is composed of two sets of dynamic zoom lens groups, so that a large zoom range can be obtained, it is comfortable to use, and the application range is wider, and the training program can be responded at any time to make training. The effect is improved.
  • the dynamic zoom lens group of the present invention superimposes two lenses with two different astigmatism axes reserved, and then the astigmatism is superimposed and removed. Moreover, it is possible to obtain a wider zoom optical zone size, which is very advantageous for correcting and training vision.
  • the training requirement can be achieved without affecting the normal vision; in addition to being a key device for preventive control of myopia in adolescent children, it can be widely applied to non-pathology.
  • Sexual amblyopia, presbyopia, and various corrections and corrections of refractive errors through the regular zoom of the zoom lens, ultimately improve the corrected visual acuity, and ultimately improve the naked eye vision.
  • the visual optimization training system of the present invention is wearable glasses, it does not affect learning and entertainment during the training process, and achieves specialized vision training in the process of normal eye use, which can completely solve the problem of visual fatigue in daily life.
  • the goal of vision correction is achieved during work, study and entertainment; remote data exchange and data control can be realized in the first time to improve the effect of user training.
  • the visual optimization training system of the present invention may further comprise a cloud data server connected through a network, so that remote data exchange and control can be performed, all information is collected into the cloud data server, and finally information processing and big data analysis are performed to generate the most.
  • the new program suitable for the user free from geographical and time-limited, sent to the client, automatic zoom adjustment, remote data exchange and data control, improve user training.
  • the invention realizes the intelligent dynamic zoom visual mode, and optimizes the overall visual function with the brain visual function as the core, and is a remote device capable of improving visual fatigue, non-pathological low vision, presbyopia and refractive error. Data exchange and control system.
  • the control method of the present invention is simple and practical, and is highly practical.
  • Figure 1 is a block diagram of the system of the present invention.
  • FIG. 2 is a schematic view of a zoom lens of the present invention.
  • the visual function optimization training control system of the embodiment includes a training device 1, a microprocessor 2, a distance measuring device 3 for testing a user's visual distance, a photographing device 4 for collecting a user's eye table or an iris size and a pattern, and a moving device.
  • the microprocessor 2 is bidirectionally connected to the training device 1; the output of the training device 1 is connected to the input end of the distance measuring device 3 and the input end of the imaging device 4; the distance measuring device 3 and the imaging device 4 are bidirectionally connected to the microprocessor 2.
  • the microprocessor 2 stores data transmitted by the training device 1, the distance measuring device 3 and the photographing device 4, and is bidirectionally connected to the mobile terminal 5; the mobile terminal 5 is bidirectionally connected to the cloud data server 6, and the cloud data server 6 is provided therein.
  • Visual optimization training database The microprocessor 2 is connected to the training device 1 by wired or wireless communication; the microprocessor 2 is connected to the mobile terminal 5 by wired or wireless communication; and the mobile terminal 5 is wirelessly connected to the cloud data server 6.
  • the distance measuring device 3 is a sonar ranging device or a laser ranging device or an infrared ranging device; the imaging device 4 is an HD camera.
  • the input of the extended function device 7 is connected to the input of the training device 1.
  • the training device 1 comprises two sets of dynamic zoom lens groups; the dynamic zoom lens group comprises two zoom lenses 11; each of the zoom lenses 11 is provided with an optical region 111 formed by an optical center of continuous diopter change and a peripheral non-optical change of discontinuous diopter change
  • the diopter zoom range of the optical region 111 is from -15D to 0D at one end to 0D to +5D at the other end; the optical region 111 is 4 to 70 mm long and 2 to 50 mm wide; and the astigmatism of the optical region 111 is ⁇ 2.50 D;
  • the training device 1 further includes a lens moving mechanism and a moving driving mechanism; two sets of dynamic zoom lens groups are disposed on the lens moving mechanism, and the moving optical mechanism drives the zoom optical lens to move; so that the two zoom lenses 11 of each group of dynamic zoom lens groups are completely Overlap or overlap.
  • the bottom surface of each zoom lens 11 is a horizontal plane or a curved surface; the dynamic zoom lens group has a diopter zoom range of -30D to 0D or 0D to +10D.
  • the training device 1 is wearable glasses.
  • the distance measuring device 3 measures the user's eye distance
  • the photographing device 4 collects the user's eye table or iris ruler.
  • the inch and pattern, the distance measuring device 3 and the photographing device 4 transmit the data to the microprocessor 2; the microprocessor 2 records the normal eye data of the user, and transmits the data to the cloud data through the interactive application on the mobile terminal 5.
  • Server 6. The mobile terminal 5 can send an instruction to the microprocessor 2 to control the zoom lens group 11 to achieve simple operation adjustment.
  • the microprocessor 2 transmits the information to the cloud data server 6 through the mobile terminal 5, by a professional
  • the optometry consultant makes precise adjustments to the customer's training mode; the ocular or iris imaging device captures the user's ocular surface or iris pattern, and compares and processes the image with the professional doctor through image processing and analysis algorithms to control the customer's training progress in time. Real-time interaction with customers can also be achieved to achieve the best training results.
  • the zoom lens 11 is provided with an optical region 111 formed by a continuously changing optical center; the diopter zoom range of the optical region 111 is from -15D to 0D to 0D to +5D; the optical region 2 is 4 to 70 mm long and 2 to Width. 50 mm; the optical region 111 has an astigmatism ⁇ 250 degrees.
  • the plurality of optical centers of the optical region 111 may each be a spherical mirror.
  • the lens is theoretically free of astigmatism, but there is still a small amount of astigmatism in actual production, but it does not affect its use, and can be used alone.
  • the plurality of optical centers of the optical region 111 may also be elliptical spherical mirrors that maintain the horizontal astigmatism axis or elliptical spherical mirrors that maintain the astigmatic axial position in the vertical direction.
  • the bottom surface of the zoom lens 11 is a horizontal plane or a horizontal plane or a curved surface, and a curved surface of not more than 300 degrees is recommended for the curved surface.
  • the ellipsoidal mirror is a transverse ellipsoidal mirror.
  • the first choice is a circular lens with a diameter of 75mm.
  • the method of moving the elliptical ball from left to right, the same astigmatism and astigmatism axis are maintained on the lens to form a gradual spherical diopter.
  • the zoom lens of one mode adopts the astigmatism of the horizontal axis position, and the zoom lens of the other mode adopts the astigmatism of the vertical axis position to form an optical area of 4 to 70 mm in length and 2 to 50 mm in width, which can be directly used.
  • the zoom lens can also be cut into zoom lenses of any size and shape within the range of the optical area, such as a rectangular parallelepiped lens with a length of 60 mm and a width of 40 mm, which is convenient for use with the optometry training instrument, and the thickness of the zoom lens generally does not exceed 10mm.
  • a single zoom lens there is always a major direction of astigmatism from left to right except for the progressive gradual gradation of the spherical mirror.
  • the lenses reserved for these two different astigmatism axes are superimposed to form a dynamic zoom lens group, the astigmatism is superimposed and neutralized.
  • a wider zoom optical zone size can be obtained thereby.

Abstract

一种视觉功能优化训练控制系统及其控制方法,系统包括训练设备(1)、微处理器(2)、测距装置(3)、拍摄装置(4)和移动终端(5);测距装置(3)测试用户视觉距离,拍摄装置(4)采集用户眼表或虹膜的尺寸和图案;微处理器(2)与训练设备(1)双向通讯连接;训练设备(1)的输出端连接测距装置(3)的输入端和拍摄装置(4)的输入端;测距装置(3)和拍摄装置(4)与微处理器(2)双向通讯连接;微处理器(2)存储训练设备(1)、测距装置(3)和拍摄装置(4)传输的数据,并与移动终端(5)双向通讯连接,移动终端(5)内存放交互应用程序。该系统提高了视觉优化训练的实用性和有效性。

Description

视觉功能优化训控系统及训控方法 技术领域
本发明涉及视觉功能优化训控系统及其训控方法。
背景技术
视力问题,比如近视、远视、散光、弱视以及视觉功能下降等是非常普遍的社会健康现象,尤其随着手机、平板电脑等移动设备的大量使用,视力问题有更加严重的趋势。目前市场上的视觉功能优化训练设备(或产品)主要是一些比较大型化的设备(或产品),要求的是客户高配合度。客户在训练矫正视光不正或锻炼视功能的过程中舒适度比较差,而且会占据大量的时间,同时需要专业人士跟踪辅导,实用性不强。并且,目前市场上的视觉功能优化训练设备无法实现客户视光矫正、视功能训练的远程连接和实时数据的交换,因而无法准确采集客户视觉功能优化训练数据进程中的第一手资料,也无法对训练方案给予及时的调整,训练效果不够理想,而且现有的训练设备中采用的镜片可变焦量小、变焦光学区域(即变焦可视区)非常窄,使用者使用时舒适感不够。人体视功能是一项精密而复杂的功能,由眼睛晶体、视网膜黄斑中心凹和大脑视皮层共同完成,现有也有采用即时匹配需要的度数的方式,则是完全放弃了人体的视觉功能,最终会导致必须人体视觉功能的逐渐丧失。
发明内容
本发明的第一个目的是提供一种能够收集训练过程数据,且能给予用户及时调整反馈的视觉功能优化训控系统。
实现本发明第一个目的的技术方案是视觉功能优化训控系统,包括训练设备;还包括微处理器、测试用户视觉距离的测距装置、采集用户眼表或虹膜尺寸和图案的拍摄装置和移动终端;所述微处理器与训练设备双向通讯连接;所述训练设备的输出端连接测距装置的输入端和拍摄装置的输入端;所述测距装置和拍摄装置与微处理器双向通讯连接;所述微处理器存储训练设备、测距装置和拍摄装置传输的数据,并与移动终端双向通讯连接;所述移动终端内存放有交互应用程序。
所述训练设备包括两组动态变焦镜片组;所述动态变焦镜片组包括两片变焦镜片;每片变焦镜片上设置由连续屈光度变化的光学中心形成的光学区域和非连续屈光度变 化的周边非光学区域;所述光学区域的屈光度变焦范围为从一端的-15D~0D到另外一端的0D~+5D;所述光学区域长4~70mm,宽2~50mm;所述光学区域的散光度≤2.50D;所述光学区域的多个光学中心均为椭圆球面镜;其中一片椭圆球面镜为保持水平方向散光轴位的椭圆球面镜,另一片椭圆球面镜为保持垂直方向散光轴位的椭圆球面镜;所述变焦镜片的加工方法是在圆形的镜片上加工出连续的正圆球面镜;或者在圆形的镜片上自左向右,保持相同散光度,散光轴位为水平轴位加工出连续的椭圆球面镜;或者在圆形的镜片上自左向右,保持相同散光度,散光轴位为垂直轴位加工出连续的椭圆球面镜;然后将两片变焦镜片叠加使用,作为动态变焦镜片组来抵消散光度。
所述训练设备还包括镜片移动机构和移动驱动机构;所述两组动态变焦镜片组设置在镜片移动机构上,由移动驱动机构驱动变焦光学镜片移动;使得每组动态变焦镜片组的两片变焦镜片完全重叠或相交叠。
所述每片变焦镜片的底面为水平面或者弧面;所述动态变焦镜片组的屈光度变焦范围为-30D~0D或者0D~+10D。
所述训练设备为可穿戴眼镜。
所述移动终端内设有视觉优化训练数据库。
作为一种优选,视觉功能优化训控系统还包括云数据服务器;所述移动终端与云数据服务器双向通讯连接。
所述云数据服务器内设有视觉优化训练数据库。
所述微处理器与训练设备通过有线或者无线通讯连接;所述微处理器与移动终端通过有线或者无线通讯连接;所述移动终端与云数据服务器无线通讯连接。
所述测距装置为声纳测距装置或者激光测距装置或者红外测距装置;所述拍摄装置为摄像头。
移动终端可以是平板电脑、智能手表、智能手机等电子通讯设备。
本发明的第二个目的是提供视觉功能优化训控系统的控制方法。
根据视觉功能优化训练控制系统有前述两种方案,控制方法也对应有两种,第一种是由微处理器自带的数据库进行训练方案的比较和调整,这种方法的使用无需依靠网络,具体来说包括以下步骤:
步骤一:用户使用训练设备;
步骤二:测距装置测算用户的用眼距离,拍摄装置采集用户眼表或虹膜尺寸和图案,测距装置和拍摄装置将数据传输给微处理器;
步骤三:微处理器记录用户的常规用眼数据,移动终端从视觉优化训练数据库中选择调整训练模式,并通过微处理器反馈给训练设备,由此调整训练设备镜片的屈光度和 用户用眼距离。
在步骤三中,通过变焦镜片的动态变焦,人为制造模糊影像,使用户眼睛晶体持续锻炼,持续训练视网膜黄斑中心凹对模糊影像的解析能力,持续训练用户大脑视皮层对模糊影像的接受能力。
另一种是由云数据服务器远程分析和提供调整方案,借由网络寻求更多更有效的调整方案,具体包括以下步骤:
步骤一:将用户基础参数信息输入云数据服务器,建立用户云数据库档案;
步骤二:用户使用训练设备;云数据服务器根据用户基础参数设置好个性化训练数据包并通过网络传输给移动终端,进而传输给微处理器,微处理器将相应的训练数据传输至变焦镜片组,实现变焦镜片组的动态变焦;
步骤三:用户使用过程中,测距装置测算用户的用眼距离,拍摄装置采集用户眼表或虹膜尺寸和图案,测距装置和拍摄装置将数据传输给微处理器;
步骤四:微处理器记录用户的常规用眼数据,并将该数据传输给移动终端,进而通过网络传输给云数据服务器;
步骤五:由云数据服务器根据接收到的数据判断用户的使用情况是否符合要求,选择调整训练模式,并反馈给训练设备,由此调整训练设备镜片的屈光度和用户用眼距离。
用户使用过程中,通过变焦镜片组的动态变焦,人为制造模糊影像,使用户眼睛晶体持续锻炼,持续训练视网膜黄斑中心凹对模糊影像的解析能力,持续训练用户大脑视皮层对模糊影像的接受能力。
所述步骤一中,用户基础参数包括年龄、屈光度、瞳距等。
所述步骤三中,用户在使用过程中,通过移动终端调整变焦镜片组的运行状况。
本发明的原理为:正视人体视觉是一项由眼睛晶体、视网膜黄斑中心凹和大脑视皮层共同完成的工作,通过变焦镜片组持续的动态变焦,使得用户需要看的物体的影像落在视网膜黄斑中心凹的前面后者后面,形成模糊影像,激发大脑视皮层不断地给眼睛晶体发出要努力看清模糊影像的指令,使眼睛晶体不断地运动,由此锻炼了眼睛晶体的调节能力,视网膜黄斑中心凹对模糊影像的解析能力,以及大脑皮层对模糊影像的接受能力,充分激发视觉功能的潜力,从而能够使用户的聚焦态更完美。
采用了上述技术方案后,本发明具有以下的积极的效果:(1)本发明的视觉优化训练系统很好地解决了现有技术操作性不强,需要专业指导的缺陷,能够由微处理器时时记录训练数据,因此即使用户用碎片化的时间来进行训练,也可以全程记录,同时,通过测距装置、拍摄装置和其他装置能实时监测用户使用过程中出现的训练状况,眼表拍摄装置、测距装置和其他装置的数据都能够实时反馈到移动终端,由移动终端自动做出 判断和分析,从而调整变焦镜片的运行规则。在训练过程中,用户自身也可通过移动终端向微处理器发出指令从而调控变焦镜片组的运行以达到清晰视觉的目的。同时,移动终端将所有收集到的数据通过网络连接传输至云数据服务器并给出相应的调整方案和建议,大大提高了视觉优化训练的实用性和有效性。
(2)本发明的视觉优化训练系统的训练设备由两组动态变焦镜片组组成,因此可以得到很大的变焦范围,使用时很舒适,且适用范围更广,可以随时响应训练方案,使训练效果提升。
(3)本发明的动态变焦镜片组将两种两个不同散光轴位预留的镜片叠加使用,那么,散光度就被叠加去除了。而且,可以因此而获得更加宽广的变焦光学区域尺寸,对视力的矫正、训练都非常有利。
(4)本发明由于光学区域大,散光能很好控制,因此能够在不影响正常视觉的情况下达到训练要求;除了作为青少年儿童近视眼预防控制的关键设备外,还可广泛应用于非病理性弱视、老视和各种屈光不正的矫正、训练,通过变焦镜片的规律性变焦,最终达到改善矫正视力,最终提升裸眼视力。
(5)本发明的视觉优化训练系统为可穿戴的眼镜时,在训练过程中不影响学习和娱乐,在正常用眼的过程中达到专门化的视力训练,能够彻底解决视力疲劳问题,在日常的工作、学习、娱乐过程中达到视力矫正的目标;能够在第一时间实现远程数据交换和数据控制,提高用户训练的效果。
(6)本发明的视觉优化训练系统还可以包含通过网络连接的云数据服务器,这样可以进行远程数据交换和控制,所有信息会汇集到云数据服务器,最终经过信息处理以及大数据分析,生成最合适于使用者的新程序,不受地域、不受时间限制,发送到客户端,自动变焦调节,实现远程数据交换和数据控制,提高用户训练的效果。
(7)本发明个性化实现智能动态变焦视觉模式下,以大脑视觉功能为核心的整体视觉功能优化完善,是一种能改善视疲劳、非病理性视力低下、老花眼和屈光不正状况的远程数据交换及控制系统。
(8)本发明的控制方法简单易行,实操性很强。
附图说明
为了使本发明的内容更容易被清楚地理解,下面根据具体实施例并结合附图,对本发明作进一步详细的说明,其中
图1为本发明的系统框图。
图2为本发明的变焦镜片的一种示意图。
附图中标号为:
训练设备1、变焦镜片11、光学区域111、周边非光学区域112、微处理器2、测距装置3、拍摄装置4、移动终端5、云数据服务器6、拓展功能装置7。
具体实施方式
(实施例1)
见图1,本实施例的视觉功能优化训控系统,包括训练设备1、微处理器2、测试用户视觉距离的测距装置3、采集用户眼表或虹膜尺寸和图案的拍摄装置4、移动终端5、云数据服务器6、以及拓展功能装置7。微处理器2与训练设备1双向通讯连接;训练设备1的输出端连接测距装置3的输入端和拍摄装置4的输入端;测距装置3和拍摄装置4与微处理器2双向通讯连接;微处理器2存储训练设备1、测距装置3和拍摄装置4传输的数据,并与移动终端5双向通讯连接;移动终端5与云数据服务器6双向通讯连接,云数据服务器6内设有视觉优化训练数据库。微处理器2与训练设备1通过有线或者无线通讯连接;微处理器2与移动终端5通过有线或者无线通讯连接;移动终端5与云数据服务器6无线通讯连接。测距装置3为声纳测距装置或者激光测距装置或者红外测距装置;拍摄装置4为高清摄像头。拓展功能装置7的输入端连接训练设备1的输入端。
训练设备1包括两组动态变焦镜片组;动态变焦镜片组包括两片变焦镜片11;每片变焦镜片11上设置由连续屈光度变化的光学中心形成的光学区域111和非连续屈光度变化的周边非光学区域112;光学区域111的屈光度变焦范围为从一端的-15D~0D到另外一端的0D~+5D;光学区域111长4~70mm,宽2~50mm;光学区域111的散光度≤2.50D;光学区域111的多个光学中心均为椭圆球面镜;其中一片椭圆球面镜为保持水平方向散光轴位的椭圆球面镜,另一片椭圆球面镜为保持垂直方向散光轴位的椭圆球面镜;变焦镜片11的加工方法是在圆形的镜片上加工出连续的正圆球面镜;或者在圆形的镜片上自左向右,保持相同散光度,散光轴位为水平轴位加工出连续的椭圆球面镜;或者在圆形的镜片上自左向右,保持相同散光度,散光轴位为垂直轴位加工出连续的椭圆球面镜;然后将两片变焦镜片11叠加使用,作为动态变焦镜片组来抵消散光度。训练设备1还包括镜片移动机构和移动驱动机构;两组动态变焦镜片组设置在镜片移动机构上,由移动驱动机构驱动变焦光学镜片移动;使得每组动态变焦镜片组的两片变焦镜片11完全重叠或相交叠。每片变焦镜片11的底面为水平面或者弧面;动态变焦镜片组的屈光度变焦范围为-30D~0D或者0D~+10D。训练设备1为可穿戴眼镜。
本实施例通过测距装置3测算用户的用眼距离,拍摄装置4采集用户眼表或虹膜尺 寸和图案,测距装置3和拍摄装置4将数据传输至微处理器2;微处理器2记录用户的常规用眼数据,并将该数据通过移动终端5上的交互应用程序传输给云数据服务器6。可以通过移动终端5发送指令至微处理器2以控制变焦镜片组11实现简单的运行调整,如有疑难问题则由微处理器2将信息通过移动终端5传输至云数据服务器6,由专业的视光顾问对客户的训练模式做精确调整;眼表或虹膜拍摄装置拍摄用户眼表或虹膜图案,通过图像处理和分析算法和专业的医生进行比对分析和处理,及时掌控客户的训练进度。也可以和客户实现实时互动,达到最好的训练效果。
见图2,变焦镜片11上设置由连续变化的光学中心形成的光学区域111;光学区域111的屈光度变焦范围从-15D~0D至0D~+5D;光学区域2长4~70mm,宽2~50mm;光学区域111的散光度≤250度。光学区域111的多个光学中心可以均为正球面镜,这种镜片理论上是不存在散光的,但是实际制作中仍会有少量散光,但不影响其的使用,且可以单独使用。光学区域111的多个光学中心也可以均为保持水平方向散光轴位的椭圆球面镜或者均为保持垂直方向散光轴位的椭圆球面镜。变焦镜片11的底面为水平面或者为水平面或者弧面,弧面建议不大于300度的弧面。如图2所示,椭圆球面镜为横向椭圆球面镜。
制作时,首先选用直径为75mm的圆形镜片,采用移动的椭圆球的方法:自左向右,在镜片上保持基本相同散光度、散光轴位,形成渐变的球镜屈光度。其中一个模式的变焦镜片采取水平轴位的散光预留,另一个模式的变焦镜片采取垂直轴位的散光预留,从而形成长4~70mm,宽2~50mm的光学区域,可以直接使用这样的变焦镜片,也可以在光学区域的范围内裁剪为任意尺寸和形状的变焦镜片,比如裁剪为长60mm,宽40mm的长方体镜片,这样便于与视光学训练仪器配合使用,变焦镜片的厚度一般不超过10mm。这样,对于单一变焦镜片来说,自左向右除了球镜光度渐进渐变外,其总是会存在一个主要方向的散光度。但是,如果将这两个不同散光轴位预留的镜片叠加使用形成动态变焦镜片组,那么,散光度就被叠加中和了。而且,可以因此而获得更加宽广的变焦光学区域尺寸。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (17)

  1. 视觉功能优化训控系统,包括训练设备(1);其特征在于:还包括微处理器(2)、测试用户视觉距离的测距装置(3)、采集用户眼表或虹膜尺寸和图案的拍摄装置(4)和移动终端(5);所述微处理器(2)与训练设备(1)双向通讯连接;所述训练设备(1)的输出端连接测距装置(3)的输入端和拍摄装置(4)的输入端;所述测距装置(3)和拍摄装置(4)与微处理器(2)双向通讯连接;所述微处理器(2)存储训练设备(1)、测距装置(3)和拍摄装置(4)传输的数据,并与移动终端(5)双向通讯连接;所述移动终端(5)内存放有交互应用程序。
  2. 根据权利要求1所述的视觉功能优化训控系统,其特征在于:所述训练设备(1)包括两组动态变焦镜片组;所述动态变焦镜片组包括两片变焦镜片(11);每片变焦镜片(11)上设置由连续屈光度变化的光学中心形成的光学区域(111)和非连续屈光度变化的周边非光学区域(112);所述光学区域(111)的屈光度变焦范围为从一端的-15D~0D到另外一端的0D~+5D;所述光学区域(111)长4~70mm,宽2~50mm;所述光学区域(111)的散光度≤2.50D;所述光学区域(111)的多个光学中心均为椭圆球面镜;其中一片椭圆球面镜为保持水平方向散光轴位的椭圆球面镜,另一片椭圆球面镜为保持垂直方向散光轴位的椭圆球面镜;所述变焦镜片(11)的加工方法是在圆形的镜片上加工出连续的正圆球面镜;或者在圆形的镜片上自左向右,保持相同散光度,散光轴位为水平轴位加工出连续的椭圆球面镜;或者在圆形的镜片上自左向右,保持相同散光度,散光轴位为垂直轴位加工出连续的椭圆球面镜;然后将两片变焦镜片(11)叠加使用,作为动态变焦镜片组来抵消散光度。
  3. 根据权利要求2所述的视觉功能优化训控系统,其特征在于:所述训练设备(1)还包括镜片移动机构和移动驱动机构;所述两组动态变焦镜片组设置在镜片移动机构上,由移动驱动机构驱动变焦光学镜片移动;使得每组动态变焦镜片组的两片变焦镜片(11)完全重叠或相交叠。
  4. 根据权利要求1或2或3所述的视觉功能优化训控系统,其特征在于:所述每片变焦镜片(11)的底面为水平面或者弧面;所述动态变焦镜片组的屈光度变焦范围为-30D~0D或者0D~+10D。
  5. 根据权利要求4所述的视觉功能优化训控系统,其特征在于:所述训练设备(1)为可穿戴眼镜。
  6. 根据权利要求5所述的视觉功能优化训控系统,其特征在于:所述移动终端(5)内设有视觉优化训练数据库。
  7. 根据权利要求5所述的视觉功能优化训控系统,其特征在于:还包括云数据服务器(6);所述移动终端(5)与云数据服务器(6)双向通讯连接。
  8. 根据权利要求7所述的视觉功能优化训控系统,其特征在于:所述云数据服务器(6)内设有视觉优化训练数据库。
  9. 根据权利要求8所述的视觉功能优化训控系统,其特征在于:所述微处理器(2)与训练设备(1)通过有线或者无线通讯连接;所述微处理器(2)与移动终端(5)通过有线或者无线通讯连接;所述移动终端(5)与云数据服务器(6)无线通讯连接。
  10. 根据权利要求9所述的视觉功能优化训控系统,其特征在于:所述测距装置(3)为声纳测距装置或者激光测距装置或者红外测距装置;所述拍摄装置(4)为摄像头。
  11. 根据权利要求9所述的视觉功能优化训控系统,其特征在于:还包括微处理器(2)双向通讯的拓展功能装置(7);所述拓展功能装置(7)的输入端连接训练设备(1)的输入端。
  12. 视觉功能优化训控系统的训控方法,其特征在于:采用如权利要求6所述的视觉功能优化训控系统,训控方法包括以下步骤:
    步骤一:用户使用训练设备(1);
    步骤二:测距装置(3)测算用户的用眼距离,拍摄装置(4)采集用户眼表或虹膜尺寸和图案,测距装置(3)和拍摄装置(4)将数据传输给微处理器(2);
    步骤三:微处理器(2)记录用户的常规用眼数据,移动终端(5)从视觉优化训练数据库中选择调整训练模式,并通过微处理器(2)反馈给训练设备(1),由此调整训练设备(1)镜片的屈光度和用户用眼距离。
  13. 根据权利要求12所述的视觉功能优化训控系统的训控方法,其特征在于:在步骤三中,通过变焦镜片组(11)的动态变焦,人为制造模糊影像,使用户眼睛晶体持续锻炼,持续训练视网膜黄斑中心凹对模糊影像的解析能力,持续训练用户大脑视皮层对模糊影像的接受能力。
  14. 视觉功能优化训控系统的训控方法,其特征在于:采用如权利要求10或11所述的视觉功能优化训控系统,训控方法包括以下步骤:
    步骤一:将用户基础参数信息输入云数据服务器(6),建立用户云数据库档案;
    步骤二:用户使用训练设备(1);云数据服务器(6)根据用户基础参数设置好个性化训练数据包并通过网络传输给移动终端(5),进而传输给微处理器(2),微处理器(2)将相应的训练数据传输至变焦镜片组(11),实现变焦镜片组(11)的动态变焦;
    步骤三:用户使用过程中,测距装置(3)测算用户的用眼距离,拍摄装置(4)采集用户眼表或虹膜尺寸和图案,测距装置(3)和拍摄装置(4)将数据传输给微处理器 (2);
    步骤四:微处理器(2)记录用户的常规用眼数据,并将该数据传输给移动终端(5),进而通过网络传输给云数据服务器(6);
    步骤五:由云数据服务器(6)根据接收到的数据判断用户的使用情况是否符合要求,选择调整训练模式,并反馈给训练设备(1),由此调整训练设备(1)镜片的屈光度和用户用眼距离。
  15. 根据权利要求14所述的视觉功能优化训控系统的训控方法,其特征在于:用户使用过程中,通过变焦镜片组(11)的动态变焦,人为制造模糊影像,使用户眼睛晶体持续锻炼,持续训练视网膜黄斑中心凹对模糊影像的解析能力,持续训练用户大脑视皮层对模糊影像的接受能力。
  16. 根据权利要求15所述的视觉功能优化训控系统的训控方法,其特征在于:所述步骤一中,用户基础参数包括年龄、屈光度、瞳距。
  17. 根据权利要求16所述的视觉功能优化训控系统的训控方法,其特征在于:所述步骤三中,用户在使用过程中,通过移动终端(5)调整变焦镜片组(11)的运行状况。
PCT/CN2016/000280 2015-09-30 2016-05-26 视觉功能优化训控系统及训控方法 WO2017054364A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201510638673.4A CN105158929A (zh) 2015-09-30 2015-09-30 变焦镜片及制作方法、动态变焦镜片组及使用方法
CN201510638175.X 2015-09-30
CN201510638175.XA CN105213158A (zh) 2015-09-30 2015-09-30 一种视觉功能优化训练控制系统及其控制方法
CN201510638673.4 2015-09-30

Publications (1)

Publication Number Publication Date
WO2017054364A1 true WO2017054364A1 (zh) 2017-04-06

Family

ID=58422652

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/000280 WO2017054364A1 (zh) 2015-09-30 2016-05-26 视觉功能优化训控系统及训控方法

Country Status (1)

Country Link
WO (1) WO2017054364A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115308928A (zh) * 2022-08-01 2022-11-08 江苏科技大学 一种左右眼异步动态变焦的多功能眼镜及使用方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7533987B2 (en) * 2007-05-31 2009-05-19 Hong-Bing Tsai Method for exercising eye muscle
CN204595363U (zh) * 2015-04-22 2015-08-26 江苏健视加视觉科技有限公司 一种可任意变焦镜片组
CN204636924U (zh) * 2015-04-30 2015-09-16 江苏健视加视觉科技有限公司 一种用于视觉功能优化服务的远程数据交换及控制系统
CN105158929A (zh) * 2015-09-30 2015-12-16 江苏乐友信息科技有限公司 变焦镜片及制作方法、动态变焦镜片组及使用方法
CN105213158A (zh) * 2015-09-30 2016-01-06 江苏乐友信息科技有限公司 一种视觉功能优化训练控制系统及其控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7533987B2 (en) * 2007-05-31 2009-05-19 Hong-Bing Tsai Method for exercising eye muscle
CN204595363U (zh) * 2015-04-22 2015-08-26 江苏健视加视觉科技有限公司 一种可任意变焦镜片组
CN204636924U (zh) * 2015-04-30 2015-09-16 江苏健视加视觉科技有限公司 一种用于视觉功能优化服务的远程数据交换及控制系统
CN105158929A (zh) * 2015-09-30 2015-12-16 江苏乐友信息科技有限公司 变焦镜片及制作方法、动态变焦镜片组及使用方法
CN105213158A (zh) * 2015-09-30 2016-01-06 江苏乐友信息科技有限公司 一种视觉功能优化训练控制系统及其控制方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115308928A (zh) * 2022-08-01 2022-11-08 江苏科技大学 一种左右眼异步动态变焦的多功能眼镜及使用方法
CN115308928B (zh) * 2022-08-01 2023-12-19 江苏科技大学 一种左右眼异步动态变焦的多功能眼镜及使用方法

Similar Documents

Publication Publication Date Title
US20180263488A1 (en) Variable Lens System for Refractive Measurement
JP2023022142A (ja) スクリーニング装置及び方法
CN104850138B (zh) 智能控制变焦训练设备
CN103239347B (zh) 一种采用调控眼优势治疗视觉功能障碍的系统
JP2020509790A5 (zh)
JP2018512900A (ja) 眼球運動を測定するためのシステム及び方法
US9521951B2 (en) Device and method for determining at least one objective eye refraction parameter of a subject depending on a plurality of gaze directions
CN105473056A (zh) 确定眼处方的装置和方法
CN105213158A (zh) 一种视觉功能优化训练控制系统及其控制方法
CN110141470B (zh) 一种基于hmd设备的视觉调节装置
CN110141469B (zh) 一种应用于hmd设备的视觉调节装置
US10376439B2 (en) Audio-feedback computerized system and method for operator-controlled eye exercise
US11793403B2 (en) Apparatus, systems, and methods for vision assessment and treatment
CN109875863A (zh) 基于双目视觉与脑力影像训练的头戴式vr视力提升系统
CN105455774A (zh) 基于两眼间对比度调控下物像不等的心理物理学测量方法
KR101632156B1 (ko) 초근거리를 볼 수 있는 교정렌즈
CN107307981B (zh) 头戴显示设备的控制方法
CN105943327A (zh) 具有防眩晕设备的视力锻炼保健系统
CN107260506A (zh) 基于眼动的3d视觉训练系统、智能终端及头戴设备
JP2019527846A (ja) 眼鏡用に人間の眼の屈折矯正を判定するための方法及びシステム
CN107065198A (zh) 头戴显示设备的视觉优化方法
WO2017054364A1 (zh) 视觉功能优化训控系统及训控方法
CN107137211A (zh) 基于眼动的3d视觉训练方法
CN105769116B (zh) 确定人眼眼镜验光的方法和设备
CN204636924U (zh) 一种用于视觉功能优化服务的远程数据交换及控制系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16849999

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16849999

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16849999

Country of ref document: EP

Kind code of ref document: A1