WO2017054316A1 - 放射治疗中在线剂量监测和验证的方法 - Google Patents

放射治疗中在线剂量监测和验证的方法 Download PDF

Info

Publication number
WO2017054316A1
WO2017054316A1 PCT/CN2015/096601 CN2015096601W WO2017054316A1 WO 2017054316 A1 WO2017054316 A1 WO 2017054316A1 CN 2015096601 W CN2015096601 W CN 2015096601W WO 2017054316 A1 WO2017054316 A1 WO 2017054316A1
Authority
WO
WIPO (PCT)
Prior art keywords
dose
distribution
accelerator
phantom
contribution
Prior art date
Application number
PCT/CN2015/096601
Other languages
English (en)
French (fr)
Inventor
陈立新
朱金汉
Original Assignee
广州瑞多思医疗科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州瑞多思医疗科技有限公司 filed Critical 广州瑞多思医疗科技有限公司
Publication of WO2017054316A1 publication Critical patent/WO2017054316A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/02Dosimeters

Definitions

  • the invention belongs to the technical field of therapeutic safety and quality assurance of radiation therapy equipment, and in particular relates to a method for dose verification and body dose monitoring in radiation therapy.
  • Radiation therapy is one of the three main methods of cancer treatment (surgery, radiation therapy and chemotherapy).
  • precision radiotherapy technology especially the intensity of invasive radiotherapy (IMRT)
  • IMRT intensity of invasive radiotherapy
  • the RCD Radiological Physics Center
  • the dose verification for the treatment plan was not met.
  • the monitoring of radiation therapy before and even during treatment is an important quality guarantee for the safety of radiation therapy. Otherwise, it will not guarantee the patient's therapeutic effect, but will bring serious radioactive damage to the patient.
  • the currently known methods of detecting doses for radiation therapy programs include the following three aspects:
  • US Pat. No. 6,636,622 discloses a method for reversing the exit flux of an accelerator in an iterative manner based on a transmission image, which is based on various parameters such as the beam distribution energy spectrum of the accelerator corresponding to the image at the time of the known measurement, and The transmission distribution image is predicted based on the patient/model geometry parameters, and the corrected image is obtained by comparing with the actual measurement. By iteratively, the corrected image tends to be stable or reaches the limit, thereby determining the exit flux.
  • U.S. Pat. No. 8,605,857 discloses a method of using a transmission image to reverse the exit flux of an accelerator without using an iterative manner.
  • the method is based on measurement data under a large number of different conditions, such as the size of the irradiation field, the thickness of the phantom, the spacing between the phantom and the measuring device, and based on the measurement data, the measured transmission image is subjected to multiple deconvolution to evaluate.
  • the exit flux of the accelerator is based on measurement data under a large number of different conditions, such as the size of the irradiation field, the thickness of the phantom, the spacing between the phantom and the measuring device.
  • a method for online dose monitoring and verification in radiation therapy comprising the steps of:
  • the step of collecting physical model data and accelerator data before measuring the transmission dose distribution, further comprising the step of collecting physical model data and accelerator data, wherein the collected physical model data includes mass attenuation coefficients of photons in water at different energies.
  • the energy distribution of the single-energy photon interacts with water; the accelerator data includes an accelerator emission spectrum and an output absolute dose scale.
  • the step (1) is specifically: acquiring a transmitted dose distribution through the phantom during the treatment by a two-dimensional planar measuring device fixed on the accelerator, and acquiring the two-dimensional planar measuring device The reading is P mea (x, y), which is converted into a transmitted dose distribution D mea (x, y) according to the output absolute dose scale.
  • the two-dimensional planar measuring device is an electronic field imaging system, a film, an ionization chamber matrix or a semiconductor matrix.
  • the transmitted dose distribution includes a primary dose contribution and a scattered line dose contribution of the human or the phantom, and the calculation formula is:
  • D mea (x, y) is the transmission dose distribution
  • D pri (x, y) is the original ray dose contribution
  • D sca (x, y) is the scattering line dose contribution of the human body or the phantom.
  • step (2) is specifically:
  • w(E) is the accelerator emission spectrum
  • the convolution kernel is an energy distribution after the single-energy photon interacts with water by Monte Carlo simulation; the phantom geometry is obtained according to a phantom CT image/CBCT image.
  • the scattered line dose contribution The calculation formula is:
  • a three-dimensional dose distribution is reconstructed by a tube convolution algorithm, and the three-dimensional dose distribution is calculated as:
  • Corresponding mass attenuation coefficient for Corresponding mass attenuation coefficient; for Corresponding mass attenuation coefficient; The effective track length of a single mesh passing through the ray from the accelerator source, For photons from the accelerator source through the phantom to Total effective track length; for Medium density, for Medium density As a convolution kernel, Output flux distribution for the final accelerator; versus Both are grids on CT images/CBCT images, where For the required target grid coordinates, Right A dose-contributed grid.
  • the step (4) is compared using a Gamma analysis method, wherein the known dose distribution is a dose distribution calculated by the treatment planning system, a dose distribution calculated by a third party according to the treatment plan, Or the result of the dose calculated from the actual execution of the flux measured by the accelerator measured without the human body/phantom before treatment, or the result of the measurement measured by the previous treatment before the last treatment.
  • the known dose distribution is a dose distribution calculated by the treatment planning system, a dose distribution calculated by a third party according to the treatment plan, Or the result of the dose calculated from the actual execution of the flux measured by the accelerator measured without the human body/phantom before treatment, or the result of the measurement measured by the previous treatment before the last treatment.
  • the method for online dose monitoring and verification in the radiation therapy of the present invention directly reverses the accelerator flux distribution from the transmitted dose distribution and the iterative method based on the patient/body geometry parameter.
  • the invention only needs to measure the measurement result under a simple fixed condition for the absolute dose calibration. According to the physical characteristics of the photoelectron transport, the exit flux of the accelerator can be obtained through several iterations, and the multiple deconvolution calculation is also avoided. Measurement error and amplification of noise.
  • the method for online dose monitoring and verification in the radiotherapy of the invention can effectively verify the dose in the radiotherapy and ensure the accuracy of the in vivo dose monitoring.
  • Figure 1 is a flow chart of a method for online dose monitoring and verification in radiation therapy
  • FIG. 2 is a schematic diagram of measurement of a measured transmission dose distribution using a two-dimensional planar measuring device
  • Figure 3 is a flow chart for inverse calculation of the accelerator exit flux distribution based on the transmitted dose distribution.
  • a method for online dose monitoring and verification in radiation therapy comprises the following steps:
  • the collected physical model data is common to different situations, including: mass attenuation coefficient of photons in water under different energies, which is obtained by querying by the National Institute of Standards and Technology (NIST). It also includes the Monte Carlo method to simulate the energy distribution of a single-energy photon interacting with water.
  • the medical linear accelerator data includes an accelerator emission spectrum and an output absolute dose scale.
  • the accelerator emission spectrum can be obtained by comparing the centrifugal depth dose reconstructed by the dose algorithm with the ionization chamber in the tank scan measurement.
  • the accelerator outputs a fixed dose in several fields, and the central area reading and standard ionization chamber are measured by comparing the EPID.
  • the absolute dose scale is obtained by measuring the absolute dose.
  • the fixed dose is obtained by outputting a fixed dose at a length of 3 cm, 5 cm, 10 cm, 15 cm, 20 cm on the side of the field, and then measuring the absolute dose by comparing the EPID measurement center area reading with the standard ionization chamber.
  • the prescription dose and the treatment target area are given by the doctor, and then the physicist designs the treatment plan through the treatment planning system, and finally transmits the treatment plan to the medical linear accelerator.
  • the EPID is placed on the human body/phantom by an electronic portal imaging device (EPID) fixed on the accelerator, and the reading on the EPID is obtained in real time when the accelerator is out of the bundle. for And according to the output absolute dose scale, converted into a transmitted dose distribution D mea (x, y).
  • EPID electronic portal imaging device
  • the measurement matrix used in the method of online dose monitoring and verification in the radiotherapy of the present embodiment is an EPID matched with the linear accelerator.
  • the method of the present invention may also adopt a film, an ionization chamber matrix or a semiconductor matrix.
  • Various kinds of two-dimensional plane measuring equipment are possible.
  • the ray gradually decays as it passes through the body/phantom, and interacts with the phantom as it passes through the body/phantom, creating a secondary scatter line.
  • the rays emitted from the accelerator are defined as the original rays, and the secondary scattering lines are generated by the human body/molecule as the scattered rays.
  • D pri is the dose deposition produced on the measurement plane after the original ray is attenuated, that is, the original ray dose contribution
  • D sca is the dose deposition of the scattered ray generated by the original ray in the human body/phantom on the measurement plane, ie, the scattered dose contribution.
  • D pri , D sca , and D mea are all single-energy two-dimensional matrices of xy.
  • (x, y) is omitted below, but all calculations are for each (x, y) on the image.
  • SPR D sca / D pri .
  • Human/phantom geometry parameters are obtained from CT images or CBCT images of the phantom provided by other systems.
  • the geometric parameters of the phantom, and the accelerator emission spectrum collected in step (1) the scattering scale factor in the transmitted dose distribution image is calculated by an iterative method, and the accelerator flux distribution is obtained.
  • r is the effective track length from point (x, y) to source
  • w(E) is the accelerator exit spectrum
  • ⁇ (E,ijk) is the mass attenuation coefficient corresponding to the ijk grid; for Corresponding mass attenuation coefficient;
  • the present invention adopts a convolution algorithm such as a Collapsed Cone Convolution/Super-position algorithm or a Pencil Beam Convolution (PB), or a Monte Carlo. Luo simulation, etc.
  • a convolution algorithm such as a Collapsed Cone Convolution/Super-position algorithm or a Pencil Beam Convolution (PB), or a Monte Carlo. Luo simulation, etc.
  • Dose algorithm for 3D dose reconstruction is a convolution algorithm for 3D dose reconstruction.
  • This embodiment takes an example of convolution through a cylinder, and its calculation formula is:
  • Corresponding mass attenuation coefficient for Corresponding mass attenuation coefficient; for Corresponding mass attenuation coefficient; The effective track length of a single mesh passing through the ray from the accelerator source, For photons from the accelerator source through the phantom to Total effective track length; for Medium density, for Medium density As a convolution kernel, Output flux distribution for the final accelerator; versus Both are grids on CT images/CBCT images, where For the required target grid coordinates, Right A dose-contributed grid.
  • the tube string convolution algorithm can be divided into two parts.
  • the first part is the total energy release per unit mass (TERMA) of the original ray in the medium.
  • the second part is a convolution superposition based on the convolution kernel.
  • the first part reflects the amount of interaction between the initial incident photon and the medium.
  • the attenuation coefficient of the photon is related to the photon energy and the medium; for The density of the medium at the place.
  • the second part reflects the energy distribution of primary photons interacting with matter.
  • the energy distribution kernel is obtained during the data preparation phase by Monte Carlo simulation of single-energy photons.
  • the energy distribution kernel is "collapsed" into discrete directions.
  • ⁇ m , ⁇ n the Collapsed Cone convolution kernel k m,n (E,r), Where ⁇ m,n is the solid angle corresponding to the direction ( ⁇ m , ⁇ n ).
  • the dose of the grid is the sum of the dose contributions produced by all energies and all independent Collapsed Cones:
  • This example is calculated for the 6MV photon line, calculated with 0.5, 1, 2, 3, 4, 5, 6 MeV, 7 single energy and then weighted according to the energy spectrum.
  • TPS Treatment Planning System
  • the known dose distribution may also be a dose distribution calculated by a third party according to a treatment plan, or a dose calculated according to an actual execution of an exit flux measured by an accelerator when there is no human body, or before the treatment.
  • the results of the reconstruction of the results measured by the treatment may also be a dose distribution calculated by a third party according to a treatment plan, or a dose calculated according to an actual execution of an exit flux measured by an accelerator when there is no human body, or before the treatment.
  • This embodiment uses a Gamma analysis method for comparison.
  • the so-called Gamma analysis method is simply a reference dose for a certain point. a dose distribution within a certain range of the evaluated dose Perform a search and perform a point-to-point comparison to calculate the combined deviation of dose and distance Then for The gamma value is:
  • the dose deviation is defined as: Two-point spatial distance
  • ⁇ D is the evaluation standard of the dose deviation
  • ⁇ d is the evaluation standard of the distance.
  • the commonly used evaluation criteria apply a maximum dose value of 3% and a distance of 3 mm, respectively.
  • the Gamma pass rate is the percentage ratio of points where the statistical Gamma value is less than or equal to 1 to all statistical comparison points.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Radiation-Therapy Devices (AREA)

Abstract

一种放射治疗中在线剂量监测和验证的方法,该方法包括以下步骤:(1)通过二维平面测量设备测量得到放射治疗中模体的透射剂量分布;(2)根据所述透射剂量分布、模体几何参数和加速器数据,采用迭代法,反向计算加速器出射通量分布;(3)根据所述加速器出射通量分布,采用卷积算法/剂量算法重建三维剂量分布;(4)比较重建三维剂量分布和已知剂量分布,对放射治疗中的剂量进行验证,该方法可以有效地验证放射治疗中的剂量,保证在体剂量监测的准确性。

Description

放射治疗中在线剂量监测和验证的方法 技术领域
本发明属于放射治疗设备的治疗安全和质量保证技术领域,尤其涉及一种放射治疗中剂量验证以及在体剂量监测的方法。
背景技术
放射治疗是目前肿瘤治疗的三种主要手段(手术,放射治疗和化疗)之一。随着精确放射治疗技术的发展,尤其是调强放射治疗(Intensity-modulated radiotherapy,IMRT)这种复杂的治疗技术的推广,其给予的剂量跳数大,剂量变化梯度高,任何一个环节出现问题都可能引起放疗差错甚至事故。美国RPC(Radiological Physics Center)在曾经发布的体模治疗剂量验证结果表明:以绝对剂量误差不超过7%、相同剂量点之间的距离误差不超过4mm为标准,高达28%的患者调强放射治疗计划的剂量验证未达标。显然,对放射治疗进行治疗前乃至治疗中的监测是放射治疗安全的重要质量保证,否则不但不能保证患者的治疗效果,反而给患者带来了严重的放射性损害。
目前已知的对放射治疗计划执行剂量的检测方式包括以下三个方面:
1)通过电离室在固体的模体内进行治疗前的点剂量的验证;
2)通过剂量胶片、半导体或者电离室矩阵在模体中进行剂量验证;
3)通过半导体或者电离室矩阵在模体中进行测量,然后重建三维剂量到CT图像。
U.S Pat.NO.6,636,622公开了一种基于透射图像,通过迭代方式来反推加速器出射通量的方法,其根据已知测量时图像所对应的加速器的束流分布能谱等各项参数,并根据患者/模体几何参数正向预估透射分布图像,跟实际测量进行比对得到修正图像,通过迭代,最后修正图像趋于稳定或达到极限,从而确定出射通量。
U.S Pat.NO.8,605,857公开了一种不采用迭代方式,使用透射图像反推加速器出射通量的方法。该方法基于大量不同条件下,如照射野大小,模体厚度,模体与测量设备的间距等条件下的测量数据,基于所述测量数据对所测得透射图像进行多次反卷积来评估加速器的出射通量。
发明内容
本发明的目的在于提供一种放射治疗中在线剂量监测和验证的方法,该方法可以有效地验证放射治疗中的剂量,保证在体剂量监测的准确性。
为了实现上述发明目的,本发明所采用的技术方案如下:
一种放射治疗中在线剂量监测和验证的方法,包括以下步骤:
(1)通过二维平面测量设备测量得到放射治疗中人体或模体的透射剂量分布;
(2)根据所述透射剂量分布,采用迭代法,反向计算加速器出射通量分布;
(3)根据所述加速器出射通量分布,采用卷积算法/剂量算法重建三维剂量分布;
(4)比较重建三维剂量分布和已知剂量分布,对放射治疗中的剂量进行验证。
作为一种具体的实施例,在测量所述透射剂量分布之前,还包括有采集物理模型数据、加速器数据的步骤,所述采集的物理模型数据包括有不同能量下的光子在水中的质量衰减系数、单能光子跟水发生相互作用后的能量分布;所述加速器数据包括加速器出射能谱、输出绝对剂量刻度。
作为一种具体的实施例,所述步骤(1)具体为:通过固定于加速器上的二维平面测量设备,在治疗过程中获取经过模体的透射剂量分布,获取所述二维平面测量设备的读数为Pmea(x,y),根据所述输出绝对剂量刻度,转换成透射剂量分布Dmea(x,y)。
进一步地,所述二维平面测量设备为电子射野影像系统、胶片、电离室矩阵或半导体矩阵。
作为一种具体的实施例,所述透射剂量分布包括原射线剂量贡献和人体或模体的散射线剂量贡献,其计算公式为:
Dmea(x,y)=Dpri(x,y)+Dsca(x,y);
其中,Dmea(x,y)为透射剂量分布,Dpri(x,y)为原射线剂量贡献,Dsca(x,y)为人体或模体的散射线剂量贡献。
作为一种具体的实施例,所述步骤(2)具体为:
(21)首先假设散射线剂量贡献为0,则所述透射剂量分布为
Figure PCTCN2015096601-appb-000001
令n=0,则
Figure PCTCN2015096601-appb-000002
(22)根据原射线剂量贡献
Figure PCTCN2015096601-appb-000003
光子的指数衰减规律e-μ(E)r,反向计算加速器出射通量分布
Figure PCTCN2015096601-appb-000004
式中:w(E)为加速器出射能谱,r为点(x,y)到源的有效径迹长度,n=0,1,2,3···;
(23)根据卷积核、模体几何参数、步骤(22)中得到的加速器出射通量分布
Figure PCTCN2015096601-appb-000005
计算散射线剂量贡献
Figure PCTCN2015096601-appb-000006
根据所述散射线剂量贡献
Figure PCTCN2015096601-appb-000007
计算出散射比例因子
Figure PCTCN2015096601-appb-000008
n=0,1,2,3···;
(24)根据步骤(23)中得到的散射比例因子SPR(n),重新计算得到原射线剂量贡献
Figure PCTCN2015096601-appb-000009
(25)重复步骤(22)~(24),直到
Figure PCTCN2015096601-appb-000010
收敛于
Figure PCTCN2015096601-appb-000011
根据所述原射线剂量贡献
Figure PCTCN2015096601-appb-000012
计算得到最终加速器出射通量分布
Figure PCTCN2015096601-appb-000013
其中,n=0,1,2,3···。
作为一种具体的实施例,所述卷积核为通过蒙特卡罗法模拟单能光子跟水发生相互作用后的能量分布;所述模体几何参数根据模体CT图像/CBCT图像获得。
作为一种具体的实施例,所述散射线剂量贡献
Figure PCTCN2015096601-appb-000014
的计算公式为:
Figure PCTCN2015096601-appb-000015
式中:
Figure PCTCN2015096601-appb-000016
μ(E,ijk)为ijk网格所对应的质量衰减系数;
Figure PCTCN2015096601-appb-000017
Figure PCTCN2015096601-appb-000018
所对应的质量衰减系数;
Figure PCTCN2015096601-appb-000019
为从加速器源发出射线所经过单个网格的有效径迹长度,
Figure PCTCN2015096601-appb-000020
为光子从加速器源经过模体到ijk的总有效径迹长度;ρ(x,y)为xy处的介质密度,ρ(ijk)为对应ijk网格处的介质密度,h(E,ijk→xy)为卷积核,ijk为CT图像/CBCT图像的网格编号,xy为二维平面测量设备上的目标网格坐标(x,y),ijk为对xy有剂量贡献的网格,n=0,1,2,3···。
作为一种具体的实施例,采用筒串卷积算法重建三维剂量分布,所述三维剂量分布的计算公式为:
Figure PCTCN2015096601-appb-000021
其中,
Figure PCTCN2015096601-appb-000022
Figure PCTCN2015096601-appb-000023
Figure PCTCN2015096601-appb-000024
所对应的质量衰减系数;
Figure PCTCN2015096601-appb-000025
Figure PCTCN2015096601-appb-000026
所对应的质量衰减系数;
Figure PCTCN2015096601-appb-000027
为从加速器源发出射线所经过单个网格的有效径迹长度,
Figure PCTCN2015096601-appb-000028
为光子从加速器源经过模体到
Figure PCTCN2015096601-appb-000029
的总有效径迹长度;
Figure PCTCN2015096601-appb-000030
Figure PCTCN2015096601-appb-000031
处的介质密度,
Figure PCTCN2015096601-appb-000032
Figure PCTCN2015096601-appb-000033
处的介质密度;
Figure PCTCN2015096601-appb-000034
为卷积核,
Figure PCTCN2015096601-appb-000035
为最终加速器出射通量分布;
Figure PCTCN2015096601-appb-000036
Figure PCTCN2015096601-appb-000037
均为CT图像/CBCT图像上的网格,其中,
Figure PCTCN2015096601-appb-000038
为所需要求的目标网格坐标,
Figure PCTCN2015096601-appb-000039
为对
Figure PCTCN2015096601-appb-000040
有剂量贡献的网格。
作为一种具体的实施例,所述步骤(4)采用Gamma分析方法进行比较,其中所述已知剂量分布为通过治疗计划系统所计算的剂量分布、根据治疗计划通过第三方计算的剂量分布、或在治疗前根据在没有人体/模体时所测量的加速器实际执行出射通量所计算的剂量、或上一次治疗前某次治疗所测得结果所重建的结果。
本发明提供的技术方案具有如下有益效果:
本发明的放射治疗中在线剂量监测和验证的方法,只根据患者/体模几何参数,直接从透射剂量分布,通过迭代方法逆向反推加速器出射通量分布。
本发明仅需要测量一个简单固定条件下的测量结果进行绝对剂量刻度,根据光电子输运的物理特性,通过数次迭代即可获得加速器的出射通量,同时也避免多次反卷积计算所引起的测量误差和噪声的放大。本发明放射治疗中在线剂量监测和验证的方法可以有效地验证放射治疗中的剂量,保证在体剂量监测的准确性。
附图说明
图1是放射治疗中在线剂量监测和验证的方法流程图;
图2是使用二维平面测量设备测量透射剂量分布的测量示意图;
图3是根据透射剂量分布反向计算加速器出射通量分布的流程图。
具体实施方式
为了充分地了解本发明的目的、特征和效果,以下将结合附图1-3对本发明的构思、具体结构及产生的技术效果作进一步说明。
实施例1
如图1所示,本实施例,一种放射治疗中在线剂量监测和验证的方法,包括以下步骤:
(1)采集物理模型数据、医用直线加速器数据
所述采集的物理模型数据对不同情况均通用,包括有:不同能量下的光子在水中的质量衰减系数,其通过国家标准与技术研究院(National Institute of Standards and Technology,简称:NIST)查询获得;还包括通过蒙特卡罗方法模拟单能光子跟水发生相互作用后的能量分布。
所述医用直线加速器数据包括加速器出射能谱、输出绝对剂量刻度。
其中,加速器出射能谱可比对通过剂量算法重建的百分深度剂量与电离室在水箱扫描测量结果获得。
加速器在数个照射野下输出固定剂量,通过比对EPID测量中心区域读数与标准电离室 测量绝对剂量获得所述输出绝对剂量刻度。如在射野边长为3cm、5cm、10cm、15cm、20cm下输出固定剂量,再通过比对EPID测量中心区域读数与标准电离室测量绝对剂量获得所述输出绝对剂量刻度。
(2)通过二维平面测量设备测量得到放射治疗中模体的透射剂量分布
如图2所示,放射治疗在实施前,由医生给予处方剂量以及治疗靶区,再由物理师通过治疗计划系统设计治疗方案,最后把治疗方案传输到医用直线加速器上执行。
在治疗过程中,通过固定在加速器上的电子射野影像系统(electronic portal imaging device,以下简称EPID),所述EPID放置于人体/模体后,当加速器出束时,实时获取EPID上的读数为
Figure PCTCN2015096601-appb-000041
并根据所述输出绝对剂量刻度,转换成透射剂量分布Dmea(x,y)。
需要说明的是,本实施例的放射治疗中在线剂量监测和验证的方法使用的测量矩阵是与直线加速器所配套的EPID,优选地,本发明的方法还可以采用胶片,电离室矩阵或半导体矩阵等各种二维平面测量设备。
(3)根据所述透射剂量分布,反推医用直线加速器出射通量分布
计算原理:
射线在经过人体/模体后会逐渐衰减,且在经过人体/模体时,与模体发生相互作用,产生次级散射线。
首先,定义从加速器出束的射线为原射线,经过人体/模体产生次级散射线为散射线。
则到达EPID上的透射剂量分布Dmea(x,y)为原射线和散射线之和,其计算公式为:
Dmea(x,y)=Dpri(x,y)+Dsca(x,y);
其中,Dpri为原射线经过衰减后在测量平面产生的剂量沉积,即原射线剂量贡献;Dsca为原射线在人体/模体产生的散射线在测量平面产生的剂量沉积,即散射线剂量贡献。
需要说明的是,其中Dpri、Dsca以及Dmea均为xy的单能二维矩阵。为了公式书写方便,若无特别说明,下面省略(x,y),但所有计算针对图像上的每个(x,y)。
其次,定义散射比例因子:SPR=Dsca/Dpri。根据其他系统所提供的模体的CT图像或者CBCT图像获得人体/模体几何参数。
最后,根据透射剂量分布、模体几何参数、步骤(1)中采集到的加速器出射能谱,通过迭代的方法,计算得到透射剂量分布图像中散射比例因子,并获得加速器出射通量分布。
如图3所示,其计算步骤为:
(31)假设散射线剂量贡献为0,则透射剂量分布
Figure PCTCN2015096601-appb-000042
令n=0,则
Figure PCTCN2015096601-appb-000043
(32)根据光子的指数衰减规律e-μ(E)r,反向计算初步加速器出束通量分布,其计算公式为:
Figure PCTCN2015096601-appb-000044
其中r为点(x,y)到源(source)的有效径迹长度,w(E)为加速器出射能谱。
(33)将单能光子跟水发生相互作用后的能量分布作为卷积核,根据所述初步加速器出束通量分布
Figure PCTCN2015096601-appb-000045
所述卷积核、模体几何参数,计算光子在人体/模体发生相互作用后,产生散射线到达测量平面的剂量贡献,其计算公式为:
Figure PCTCN2015096601-appb-000046
其中,
Figure PCTCN2015096601-appb-000047
μ(E,ijk)为ijk网格所对应的质量衰减系数;
Figure PCTCN2015096601-appb-000048
Figure PCTCN2015096601-appb-000049
所对应的质量衰减系数;
Figure PCTCN2015096601-appb-000050
为从加速器源发出射线所经过单个网格的有效径迹长度,
Figure PCTCN2015096601-appb-000051
为光子从加速器源经过模体到ijk的总有效径迹长度,ρ(x,y)为xy处的介质密度,ρ(ijk)为对应ijk网格处的介质密度,h(E,ijk→xy)为卷积核,ijk为CT图像或者CBCT图像的网格编号;xy为二维平面测量设备上的目标网格坐标(x,y),ijk为对xy有剂量贡献的网格,n=0,1,2,3···。
根据所述散射线剂量贡献
Figure PCTCN2015096601-appb-000052
计算出散射比例因子SPR(n)
Figure PCTCN2015096601-appb-000053
(34)根据步骤(23)中得到的散射比例因子SPR(n),重新计算得到原射线剂量贡献:
Figure PCTCN2015096601-appb-000054
(35)重复步骤(32)~(34),直到
Figure PCTCN2015096601-appb-000055
收敛于
Figure PCTCN2015096601-appb-000056
即相邻两次迭代的结果相同或者差异小于设定阈值;根据所述原射线剂量贡献
Figure PCTCN2015096601-appb-000057
计算得到最终加速器出射通量分布:
Figure PCTCN2015096601-appb-000058
其中,n=0,1,2,3···
(4)根据所述医用直线加速器出射通量分布,重建三维剂量分布。
本发明在获得重构后的通量分布后,通过筒串卷积(Collapsed Cone Convolution/Super-position)算法、笔形束卷积(Pencil Beam,,简称:PB)等卷积算法,或者蒙特卡罗模拟等不同 剂量算法,进行三维剂量重建。
本实施例以通过筒串卷积为例,其计算公式为:
Figure PCTCN2015096601-appb-000059
其中,
Figure PCTCN2015096601-appb-000060
Figure PCTCN2015096601-appb-000061
Figure PCTCN2015096601-appb-000062
所对应的质量衰减系数;
Figure PCTCN2015096601-appb-000063
Figure PCTCN2015096601-appb-000064
所对应的质量衰减系数;
Figure PCTCN2015096601-appb-000065
为从加速器源发出射线所经过单个网格的有效径迹长度,
Figure PCTCN2015096601-appb-000066
为光子从加速器源经过模体到
Figure PCTCN2015096601-appb-000067
的总有效径迹长度;
Figure PCTCN2015096601-appb-000068
Figure PCTCN2015096601-appb-000069
处的介质密度,
Figure PCTCN2015096601-appb-000070
Figure PCTCN2015096601-appb-000071
处的介质密度;
Figure PCTCN2015096601-appb-000072
为卷积核,
Figure PCTCN2015096601-appb-000073
为最终加速器出射通量分布;
Figure PCTCN2015096601-appb-000074
Figure PCTCN2015096601-appb-000075
均为CT图像/CBCT图像上的网格,其中,
Figure PCTCN2015096601-appb-000076
为所需要求的目标网格坐标,
Figure PCTCN2015096601-appb-000077
为对
Figure PCTCN2015096601-appb-000078
有剂量贡献的网格。
其中,所述筒串卷积算法可分为两部分。
第一部分是原始入射线在介质中单位质量释放的总能量(total energy release per unit mass,简称:TERMA)。第二部分是根据卷积核进行卷积叠加。
其中,第一部分:反映初始入射光子与介质发生相互作用的量。
光子在介质中输运是按指数衰减,对于能量为E的单笔型束光子线,从源
Figure PCTCN2015096601-appb-000079
到计算点
Figure PCTCN2015096601-appb-000080
的TERMA为:
Figure PCTCN2015096601-appb-000081
其中,
Figure PCTCN2015096601-appb-000082
为光子的衰减系数(attenuation coefficient),与光子能量和介质有关;
Figure PCTCN2015096601-appb-000083
Figure PCTCN2015096601-appb-000084
处的介质密度。
第二部分:反映初级光子跟物质发生相互作用后的能量分布。
Figure PCTCN2015096601-appb-000085
其中,
Figure PCTCN2015096601-appb-000086
为所需要求的目标网格坐标,
Figure PCTCN2015096601-appb-000087
为对
Figure PCTCN2015096601-appb-000088
有剂量贡献的网格,
Figure PCTCN2015096601-appb-000089
为卷积核。
该能量分布核在数据准备阶段,通过蒙特卡罗对单能光子线模拟获得。
1989年Ahnesjo提出Collapsed Cone近似以代替全体积的点对点卷积。Collapsed Cone近似核心思想一个网格在一个立体角范围内所产生的能量的传输吸收以及沉积全都集中沿着该立体角的中心轴所经过的其他网格。
对于CCCS,能量分布核被“坍缩”到离散的数个方向。对于某个给定Collapsed Cone方向(θmn),我们有Collapsed Cone卷积核km,n(E,r),
Figure PCTCN2015096601-appb-000090
其中,Ωm,n是方向(θmn)所对应的立体角。
网格的剂量是所有能量和所有相互独立的Collapsed Cone所产生的剂量贡献的总和:
Figure PCTCN2015096601-appb-000091
本实例针对6MV光子线进行计算,用0.5,1,2,3,4,5,6MeV,7个单能进行计算再根据能谱加权叠加。
(5)比较重建三维剂量分布和已知剂量分布,得到两个剂量分布的相似程度、差异点和差异程度。
选取通过治疗计划系统(Treatment Planning System,TPS)所计算的剂量分布作为已知剂量分布,与基于测量重建的三维剂量进行比较分析。
所述已知剂量分布还可以是根据治疗计划通过第三方计算的剂量分布、或在治疗前根据在没有人体时所测量的加速器实际执行出射通量所计算的剂量,或在该次治疗前某次治疗所测得结果所重建的结果。
本实施例采用Gamma分析方法进行比较。
所谓Gamma分析方法,简单而言即对于某点参考剂量
Figure PCTCN2015096601-appb-000092
在评估剂量中一定范围内的剂量分布
Figure PCTCN2015096601-appb-000093
进行搜索并进行点对点比较,计算剂量和距离的综合偏差值
Figure PCTCN2015096601-appb-000094
则对于
Figure PCTCN2015096601-appb-000095
的Gamma值为:
Figure PCTCN2015096601-appb-000096
其中,剂量偏差定义为:
Figure PCTCN2015096601-appb-000097
两点空间距离
Figure PCTCN2015096601-appb-000098
则,可定义剂量和距离的综合偏差值:
Figure PCTCN2015096601-appb-000099
其中,△D是剂量偏差的评价标准,△d是距离的评价标准。一般常用的评价标准分别应用3%的最大剂量值和3mm的距离。
因此,在这种定义下,有:
Figure PCTCN2015096601-appb-000100
符合标准;通过,
Figure PCTCN2015096601-appb-000101
超过标准,失败。
Gamma通过率则是统计Gamma值小于等于1的点占所有统计比较点的百分比率。通过Gamma分析得到的通过率,即可得到两个剂量分布的相似程度,并且根据Gamma值得分布,判断该次的出现差异的地方以及差异程度。从而完成放射治疗中的剂量验证和在体剂量监测。
需要说明的是,本发明是在现有技术的基础上进行改进的技术方案,文中未特别说明之处,均为本技术领域的公知常识或现有技术,对此不再一一赘述。
以上所述,仅是本发明的较佳实施例而已,并非对本发明做任何形式上的限制,故凡未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所做的任何简单修改、等同变化与修饰,均仍属于本发明技术方案的范围内。

Claims (10)

  1. 一种放射治疗中在线剂量监测和验证的方法,其特征在于,包括以下步骤:
    (1)通过二维平面测量设备测量得到放射治疗中人体或模体的透射剂量分布;
    (2)根据所述透射剂量分布,采用迭代法,反向计算加速器出射通量分布;
    (3)根据所述加速器出射通量分布,采用卷积算法/剂量算法重建三维剂量分布;
    (4)比较重建三维剂量分布和已知剂量分布,对放射治疗中的剂量进行验证。
  2. 根据权利要求1所述的放射治疗中在线剂量监测和验证的方法,其特征在于:在测量所述透射剂量分布之前,还包括有采集物理模型数据、加速器数据的步骤,
    所述采集的物理模型数据包括有不同能量下的光子在水中的质量衰减系数、单能光子跟水发生相互作用后的能量分布;
    所述加速器数据包括加速器出射能谱、输出绝对剂量刻度。
  3. 根据权利要求2所述的放射治疗中在线剂量监测和验证的方法,其特征在于:所述步骤(1)具体为:通过固定于加速器上的二维平面测量设备,在治疗过程中获取经过模体的透射剂量分布,获取所述二维平面测量设备的读数为Pmea(x,y),根据所述输出绝对剂量刻度,转换成透射剂量分布Dmea(x,y)。
  4. 根据权利要求3所述的放射治疗中在线剂量监测和验证的方法,其特征在于,所述二维平面测量设备为电子射野影像系统、胶片、电离室矩阵或半导体矩阵。
  5. 根据权利要求4所述的放射治疗中在线剂量监测和验证的方法,其特征在于,所述透射剂量分布包括原射线剂量贡献和人体或模体的散射线剂量贡献,其计算公式为:
    Dmea(x,y)=Dpri(x,y)+Dsca(x,y);
    其中,Dmea(x,y)为透射剂量分布,Dpri(x,y)为原射线剂量贡献,Dsca(x,y)为人体或模体的散射线剂量贡献。
  6. 根据权利要求5所述的放射治疗中在线剂量监测和验证的方法,其特征在于,所述步骤(2)包括以下步骤:
    (21)首先假设散射线剂量贡献为0,则所述透射剂量分布为
    Figure PCTCN2015096601-appb-100001
    令n=0,则
    Figure PCTCN2015096601-appb-100002
    (22)根据原射线剂量贡献
    Figure PCTCN2015096601-appb-100003
    光子的指数衰减规律e-μ(E)r,反向计算加速器出 射通量分布
    Figure PCTCN2015096601-appb-100004
    式中:w(E)为加速器出射能谱,r为点(x,y)到源的有效径迹长度,n=0,1,2,3···;
    (23)根据卷积核、模体几何参数、步骤(22)中得到的加速器出射通量分布
    Figure PCTCN2015096601-appb-100005
    计算散射线剂量贡献
    Figure PCTCN2015096601-appb-100006
    根据所述散射线剂量贡献
    Figure PCTCN2015096601-appb-100007
    计算出散射比例因子
    Figure PCTCN2015096601-appb-100008
    n=0,1,2,3···;
    (24)根据步骤(23)中得到的散射比例因子SPR(n),重新计算得到原射线剂量贡献
    Figure PCTCN2015096601-appb-100009
    n=0,1,2,3···;
    (25)重复步骤(22)~(24),直到
    Figure PCTCN2015096601-appb-100010
    收敛于
    Figure PCTCN2015096601-appb-100011
    根据所述原射线剂量贡献
    Figure PCTCN2015096601-appb-100012
    计算得到最终加速器出射通量分布
    Figure PCTCN2015096601-appb-100013
    其中,n=0,1,2,3···。
  7. 根据权利要求6所述的放射治疗中在线剂量监测和验证的方法,其特征在于,所述卷积核为通过蒙特卡罗法模拟单能光子跟水发生相互作用后的能量分布;所述模体几何参数根据模体CT图像/CBCT图像获得。
  8. 根据权利要求7所述的放射治疗中在线剂量监测和验证的方法,其特征在于,所述散射线剂量贡献
    Figure PCTCN2015096601-appb-100014
    的计算公式为:
    Figure PCTCN2015096601-appb-100015
    式中:
    Figure PCTCN2015096601-appb-100016
    μ(E,ijk)为ijk网格所对应的质量衰减系数;
    Figure PCTCN2015096601-appb-100017
    Figure PCTCN2015096601-appb-100018
    所对应的质量衰减系数;
    Figure PCTCN2015096601-appb-100019
    为从加速器源发出射线所经过单个网格的有效径迹长度,
    Figure PCTCN2015096601-appb-100020
    为光子从加速器源经过模体到ijk的总有效径迹长度;ρ(x,y)为xy处的介质密度,ρ(ijk)为对应ijk网格处的介质密度,h(E,ijk→xy)为卷积核,ijk为CT图像/CBCT图像的网格编号,xy为二维平面测量设备上的目标网格坐标(x,y),ijk为对xy有剂量贡献的网格,n=0,1,2,3···。
  9. 根据权利要求1所述的放射治疗中在线剂量监测和验证的方法,其特征在于:采用筒串卷积算法重建三维剂量分布,所述三维剂量分布的计算公式为:
    Figure PCTCN2015096601-appb-100021
    其中,
    Figure PCTCN2015096601-appb-100022
    Figure PCTCN2015096601-appb-100023
    Figure PCTCN2015096601-appb-100024
    所对应的质量衰减系数;
    Figure PCTCN2015096601-appb-100026
    所对应的质量衰减系数;
    Figure PCTCN2015096601-appb-100027
    为从加速器源发出射线所经过单个网格的有效径迹长度,
    Figure PCTCN2015096601-appb-100028
    为光子从加速器源经过模体到
    Figure PCTCN2015096601-appb-100029
    的总有效径迹长度;
    Figure PCTCN2015096601-appb-100030
    Figure PCTCN2015096601-appb-100031
    处的介质密度,
    Figure PCTCN2015096601-appb-100032
    Figure PCTCN2015096601-appb-100033
    处的介质密度;
    Figure PCTCN2015096601-appb-100034
    为卷积核,
    Figure PCTCN2015096601-appb-100035
    为最终加速器出射通量分布;
    Figure PCTCN2015096601-appb-100036
    Figure PCTCN2015096601-appb-100037
    均为CT图像/CBCT图像上的网格,其中,
    Figure PCTCN2015096601-appb-100038
    为所需要求的目标网格坐标,
    Figure PCTCN2015096601-appb-100039
    为对
    Figure PCTCN2015096601-appb-100040
    有剂量贡献的网格。
  10. 根据权利要求1所述的放射治疗中在线剂量监测和验证的方法,其特征在于:所述步骤(4)采用Gamma分析方法进行比较,其中所述已知剂量分布为通过治疗计划系统所计算的剂量分布、根据治疗计划通过第三方计算的剂量分布、或在治疗前根据在没有人体/模体时所测量的加速器实际执行出射通量所计算的剂量、或上一次治疗前某次治疗所测得结果所重建的结果。
PCT/CN2015/096601 2015-09-29 2015-12-07 放射治疗中在线剂量监测和验证的方法 WO2017054316A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510641956.4 2015-09-29
CN201510641956.4A CN105204056B (zh) 2015-09-29 2015-09-29 放射治疗中在线剂量监测和验证的方法

Publications (1)

Publication Number Publication Date
WO2017054316A1 true WO2017054316A1 (zh) 2017-04-06

Family

ID=54951832

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/096601 WO2017054316A1 (zh) 2015-09-29 2015-12-07 放射治疗中在线剂量监测和验证的方法

Country Status (2)

Country Link
CN (1) CN105204056B (zh)
WO (1) WO2017054316A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108175954A (zh) * 2017-12-29 2018-06-19 苏州雷泰医疗科技有限公司 一种平板能量探测装置、探测方法及加速器治疗装置
CN112086172A (zh) * 2020-09-14 2020-12-15 广州瑞多思医疗科技有限公司 一种三维剂量计算方法、计算机设备以及可读介质
CN114129912A (zh) * 2021-11-25 2022-03-04 北京理工大学 一种放疗剂量验证的方法
CN116525064A (zh) * 2023-07-03 2023-08-01 福建自贸试验区厦门片区Manteia数据科技有限公司 放疗计划的检测装置、电子设备及计算机可读存储介质
US12121753B2 (en) 2022-08-30 2024-10-22 Shanghai United Imaging Healthcare Co., Ltd. Systems and methods for determining a radiation dose

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105866821B (zh) * 2016-03-25 2018-11-30 上海联影医疗科技有限公司 一种获取射束能谱的方法、装置及剂量分布计算方法
CN106291650A (zh) * 2016-08-31 2017-01-04 广州市岱尼欣贸易有限公司 基于蒙特卡罗的剂量测量方法
CN106932810B (zh) * 2017-04-01 2018-02-23 西安一体医疗科技有限公司 一种伽玛射线剂量的卷积计算方法
CN107765283B (zh) * 2017-08-30 2020-05-01 温州医科大学附属第一医院 超长靶区多中心容积调强弧形放疗剂量验证模体及方法
DE102017009040A1 (de) 2017-09-27 2019-03-28 Städtisches Klinikum Dessau Verfahren zur EPID-basierten Überprüfung, Korrektur und Minimierung des Isozentrums eines Strahlentherapiegeräts
CN108415058A (zh) * 2018-01-23 2018-08-17 深圳市旭东数字医学影像技术有限公司 放射线的剂量计算方法及系统
CN108310682B (zh) * 2018-03-16 2022-10-18 深圳市医诺智能科技发展有限公司 一种放射治疗剂量的误差验证方法
CN110302475B (zh) * 2018-03-20 2021-02-19 北京连心医疗科技有限公司 一种云蒙特卡罗剂量验证分析方法、设备和存储介质
CN110876839B (zh) * 2018-09-06 2021-02-19 北京连心医疗科技有限公司 不均匀网格分布模拟直线加速器治疗计划的剂量计算方法
CN109999373B (zh) * 2019-04-12 2021-11-23 上海联影医疗科技股份有限公司 医用加速器及其能量监控、调节装置、放射治疗设备
CN112114349B (zh) * 2019-06-21 2023-07-04 清华大学 辐射分析方法、装置和计算机可读存储介质
CN110237445B (zh) * 2019-07-05 2020-08-18 北京理工大学 基于epid的在体三维剂量监测及验证方法
CN110841205B (zh) * 2019-10-21 2021-06-22 温州医科大学附属第一医院 一种肿瘤患者精准剂量验证装置
CN111001097B (zh) * 2019-12-28 2022-09-16 上海联影医疗科技股份有限公司 一种放疗剂量评估系统、装置及存储介质
CN112035778B (zh) * 2020-09-01 2023-10-20 苏州雷泰医疗科技有限公司 一种多叶光栅侧面穿射半影计算方法及装置
CN112382371B (zh) * 2020-10-16 2024-03-22 北京全域医疗技术集团有限公司 一种放疗剂量分析方法、装置、存储介质及计算机设备
CN114344735B (zh) * 2021-03-25 2024-08-23 中科超精(南京)科技有限公司 一种基于散射线特征的辐射剂量监测和验证方法
CN113209496B (zh) * 2021-04-02 2022-12-09 宁夏回族自治区人民医院(宁夏眼科医院、西北民族大学第一附属医院) 基于电离室矩阵MatriXX检验直线加速器光射野一致性的方法
CN113230549B (zh) * 2021-06-10 2021-12-31 哈尔滨医科大学 医用直线加速器光子源模型函数的构建方法
CN113570705B (zh) * 2021-07-28 2024-04-30 广州瑞多思医疗科技有限公司 一种三维剂量重建方法、装置、计算机设备及存储介质
CN113658149B (zh) * 2021-08-23 2024-05-17 上海联影医疗科技股份有限公司 计算机可读存储介质以及计算设备
CN113786563B (zh) * 2021-09-14 2024-04-12 苏州雷泰医疗科技有限公司 一种术前剂量验证方法、装置及放射治疗设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020080912A1 (en) * 1997-10-15 2002-06-27 Mackie Thomas R. Method and apparatus for calibration of radiation therapy equipment and verification of radiation treatment
CN1919374A (zh) * 2005-08-25 2007-02-28 惠小兵 放射治疗辐射装置
CN101011617A (zh) * 2006-12-29 2007-08-08 成都川大奇林科技有限责任公司 在适形放疗中精确确定辐射野输出剂量的方法
CN104066479A (zh) * 2011-09-29 2014-09-24 约翰霍普金斯大学 使用异质性补偿迭加进行用于放射疗法的剂量计算
CN104407374A (zh) * 2014-12-10 2015-03-11 上海联影医疗科技有限公司 剂量分布的确定方法及装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8605857B1 (en) * 2010-12-23 2013-12-10 Math Resolutions, LLC Method and system to reconstruct treatment dose to a patient from integrated exit-transit images of radiation fields taken during treatment
DE102012213494A1 (de) * 2012-07-31 2014-02-06 Siemens Aktiengesellschaft Detektion von Röntgenstrahlung und Röntgendetektorsystem
CN204649974U (zh) * 2015-04-30 2015-09-16 陈立新 一种用于检测医用电子直线加速器射线的剂量仪

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020080912A1 (en) * 1997-10-15 2002-06-27 Mackie Thomas R. Method and apparatus for calibration of radiation therapy equipment and verification of radiation treatment
CN1919374A (zh) * 2005-08-25 2007-02-28 惠小兵 放射治疗辐射装置
CN101011617A (zh) * 2006-12-29 2007-08-08 成都川大奇林科技有限责任公司 在适形放疗中精确确定辐射野输出剂量的方法
CN104066479A (zh) * 2011-09-29 2014-09-24 约翰霍普金斯大学 使用异质性补偿迭加进行用于放射疗法的剂量计算
CN104407374A (zh) * 2014-12-10 2015-03-11 上海联影医疗科技有限公司 剂量分布的确定方法及装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108175954A (zh) * 2017-12-29 2018-06-19 苏州雷泰医疗科技有限公司 一种平板能量探测装置、探测方法及加速器治疗装置
CN112086172A (zh) * 2020-09-14 2020-12-15 广州瑞多思医疗科技有限公司 一种三维剂量计算方法、计算机设备以及可读介质
CN114129912A (zh) * 2021-11-25 2022-03-04 北京理工大学 一种放疗剂量验证的方法
US12121753B2 (en) 2022-08-30 2024-10-22 Shanghai United Imaging Healthcare Co., Ltd. Systems and methods for determining a radiation dose
CN116525064A (zh) * 2023-07-03 2023-08-01 福建自贸试验区厦门片区Manteia数据科技有限公司 放疗计划的检测装置、电子设备及计算机可读存储介质
CN116525064B (zh) * 2023-07-03 2023-11-10 福建自贸试验区厦门片区Manteia数据科技有限公司 放疗计划的检测装置、电子设备及计算机可读存储介质

Also Published As

Publication number Publication date
CN105204056A (zh) 2015-12-30
CN105204056B (zh) 2017-11-21

Similar Documents

Publication Publication Date Title
WO2017054316A1 (zh) 放射治疗中在线剂量监测和验证的方法
US8515011B2 (en) System and method for dose verification radiotherapy
Mazzucconi et al. Mixed particle beam for simultaneous treatment and online range verification in carbon ion therapy: Proof‐of‐concept study
Redler et al. Compton scatter imaging: A promising modality for image guidance in lung stereotactic body radiation therapy
Piersimoni et al. The effect of beam purity and scanner complexity on proton CT accuracy
Jones et al. Characterization of Compton-scatter imaging with an analytical simulation method
Penfold Image reconstruction and Monte Carlo simulations in the development of proton computed tomography for applications in proton radiation therapy
Cassetta et al. Accuracy of low‐dose proton CT image registration for pretreatment alignment verification in reference to planning proton CT
Anvari et al. Online dose delivery verification in small animal image‐guided radiotherapy
US11992351B2 (en) Method, apparatus, and system for energy-resolved scatter imaging during radiation therapy
CN102426377A (zh) 一种三维剂量反演方法
Sheykholeslami et al. Dual application of Polyvinyl Alcohol Glutaraldehyde Methylthymol Blue Fricke hydrogel in clinical practice: Surface dosimeter and bolus
Jung et al. Fast transit portal dosimetry using density‐scaled layer modeling of aSi‐based electronic portal imaging device and Monte Carlo method
Parodi et al. 4D in‐beam positron emission tomography for verification of motion‐compensated ion beam therapy
Simard et al. Integrated-mode proton radiography with 2D lateral projections
Ljungberg Monte Carlo simulations for therapy imaging
Sasaki et al. Simplification of head and neck volumetric modulated arc therapy patient-specific quality assurance, using a Delta4 PT
US20230033009A1 (en) Method to determine a patient dose distribution and corresponding radiation dosimetry apparatus
Soh et al. AFOMP Best Paper
Li et al. A Method for Direct Inversion of 3D Dose Based on EPID
Cao et al. Effect of metal implants and metal artifacts on back‐projected two‐dimensional entrance fluence determined by EPID dosimetry
Guo Developing a tri-hybrid algorithm to predict patient x-ray scatter into planar imaging detectors for therapeutic photon beams
Oliver et al. Skin dose investigations on a 0.5 T parallel rotating biplanar linac‐MR using Monte Carlo simulations and measurements
Lee et al. Monitoring of Dose Distribution in Photon Therapy With Multiple-Scattering Compton Camera: A Monte Carlo Simulation Study
Reis Investigating the impact of beam and target parameters in particle imaging

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15905227

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 06.06.2018)

122 Ep: pct application non-entry in european phase

Ref document number: 15905227

Country of ref document: EP

Kind code of ref document: A1