WO2017054255A1 - Dispositif d'imagerie microscopique pour champ d'écoulement à pression ajustable - Google Patents

Dispositif d'imagerie microscopique pour champ d'écoulement à pression ajustable Download PDF

Info

Publication number
WO2017054255A1
WO2017054255A1 PCT/CN2015/092285 CN2015092285W WO2017054255A1 WO 2017054255 A1 WO2017054255 A1 WO 2017054255A1 CN 2015092285 W CN2015092285 W CN 2015092285W WO 2017054255 A1 WO2017054255 A1 WO 2017054255A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
pressure
flow channel
sealed
flow path
Prior art date
Application number
PCT/CN2015/092285
Other languages
English (en)
Chinese (zh)
Inventor
吕鹏宇
相耀磊
段慧玲
Original Assignee
北京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京大学 filed Critical 北京大学
Publication of WO2017054255A1 publication Critical patent/WO2017054255A1/fr

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N13/00Investigating surface or boundary effects, e.g. wetting power; Investigating diffusion effects; Analysing materials by determining surface, boundary, or diffusion effects
    • G01N13/04Investigating osmotic effects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications

Definitions

  • the present invention relates to a microscopic imaging device. More specifically, the present invention relates to a microscopic imaging device for a pressure-adjustable flow field.
  • Figure 1 is a two-dimensional scan of a laser confocal microscope of a silicon wafer material. As shown in Figure 1, the micron-cylindrical holes are regularly arranged on the silicon wafer, and each circle in the figure represents a micron cylindrical hole.
  • the cylindrical bore has a diameter of 50 microns and a depth of 40 microns.
  • One aspect of the present invention provides a microscopic imaging apparatus for a pressure-adjustable flow field, comprising: a pressure measuring module, a pressure applying module, a sealed flow path module, a pipe, and a microscope, wherein: the pressure applying module passes through the pipe and the sealing The flow channel module is connected to provide a hydrostatic pressure to the sealed flow channel module when the sealed flow channel module is filled with fluid; the pressure measuring module comprises two parts, and the first portion is connected to the top of the pressure applying module to measure the air pressure applied on the top of the pressure applying module.
  • the second portion is connected to the vicinity of the sample in the flow path in the sealed flow path module to measure the flow static pressure; and the lower wall of the flow path is provided with the position where the sample is placed, and the lens of the microscope is set as a window facing the upper wall of the flow path.
  • the microscopic imaging device further comprises an adjustable speed power module connected between the pressure applying module and the sealed flow channel module.
  • Another aspect of the present invention provides an apparatus for use with a microscope, comprising: a pressure measuring module, a pressure applying module, a sealed flow path module, and a pipe, wherein: the pressure applying module is connected to the sealed flow path module through a pipe, The sealed flow channel module is filled with fluid to provide hydrostatic pressure to the sealed runner module; the pressure measuring module comprises two parts, the first part is connected to the top of the pressure module to measure the air pressure applied on the top of the pressure module, and the second part is connected to the seal
  • the vicinity of the sample in the flow path in the flow path module is used to measure the static pressure of the flow; and the lower wall of the flow path is provided with the position where the sample is placed, and the lens of the microscope is set as a window facing the upper wall of the flow path.
  • the apparatus further includes an adjustable speed power module coupled between the pressure applying module and the sealed flow path module.
  • the pressure applying module comprises a water storage tank and a pressure applying device, and the water storage tank is connected to the pipeline, and the pressure applying module comprises a high pressure air bottle or a vacuum pump, and the hydrostatic pressure is provided by applying pressure to the fluid in the water storage tank.
  • the flow channel in the sealed flow channel module has a rectangular cross section, and the inlet section of the flow channel includes an excessive section of a circular gradual shape into a rectangle, and an exit section of the flow path includes an excessive section of a rectangular gradual circle
  • the flow path along the flow to the lower portion of the intermediate portion includes a recess for arranging the sample to be tested, and the upper wall of the flow path directly above the sample includes a recess for setting the window.
  • two pressure tapping holes are respectively disposed perpendicular to the lower wall in front of and behind the sample in the flow direction.
  • the flow channel is composed of a combination of upper and lower parts and is made of plexiglass.
  • the upper and lower parts of the flow channel are sealed with a silicone pad.
  • the first portion of the load cell module includes a pressure sensor coupled to the top of the pressure module via an air conduit.
  • the second portion of the load cell module includes another pressure sensor that is connected to the flow channel by a capillary.
  • the adjustable speed power module includes an additional conduit for the peristaltic pump and the peristaltic pump.
  • Figure 1 is a two-dimensional scan of a laser confocal microscope of a silicon wafer material.
  • FIG. 2 is a microscopic imaging device for a pressure-adjustable flow field in accordance with an embodiment of the present invention.
  • FIG 3 is a schematic view of a sealed flow path of a microscopic imaging device in accordance with an embodiment of the present invention.
  • the present invention provides a microscopic imaging device for a pressure-adjustable flow field.
  • the apparatus includes a pressure measuring module 21, a pressure applying module 22, a sealed flow path module 23, an adjustable speed power module 24, a pipe 25, and a microscope 26.
  • the pressure applying module 22 is connected to the sealed flow channel module 23 and the adjustable speed power module 24 through the pipe 25, and the sealed flow channel module 23 and the adjustable speed power module 24 are filled with fluid and supplied with hydrostatic pressure.
  • the pressure measuring module 21 is divided into two parts. The first part of the pressure measuring module _1 is connected to the top of the pressure applying module 22, and the pressure applied by the top of the pressure applying module can be measured. The second part of the pressure measuring module _2 is connected near the sample in the flow channel. The static pressure can be measured.
  • the pressure measuring module_1 that measures the air pressure of the pressure applying module 22 includes a pressure sensor that is connected to the pressure applying module 21 through an air guiding tube to measure the air pressure applied to the top of the pressure applying module.
  • the pressure measuring module 2 for measuring the hydrostatic pressure in the sealed flow path is connected to the sealed flow path by, for example, a capillary channel having an inner diameter of 2 mm, and the static pressure of the fluid in the sealed flow path is measured by another pressure sensor.
  • the adjustable speed power module 24 provides a stable, flow rate regulated flow throughout the system.
  • the adjustable speed power module 24 includes a peristaltic pump and its additional conduit. By adjusting the peristaltic pump, the flow rate can be precisely regulated.
  • FIG. 3 shows a schematic view of the sealed runner module 23.
  • the sealed flow path module 23 includes a rectangular cross section.
  • the flow passage 32 of the shape has a circular cross-section into a rectangular section 31 at the entrance section of the flow passage due to the circular cross section of the duct 25 connecting the flow passages, and a rectangular gradient shape at the exit section thereof.
  • the excess segment 35 makes the flow field more stable.
  • the flow path flows along the bottom of the intermediate portion, and the sample 34 to be measured is placed.
  • a window 33 to which a cover glass coated with an optical antireflection film is adhered.
  • the confocal microscope lens of the microscope 26 passes outside the flow field. Window 33 observes the sample to be tested.
  • the flow path 32 is provided with two pressure measuring holes (not shown) near the sample, through which the pressure measuring module 2 can measure the partial water flow static pressure.
  • the pressure applying module 22 may include a water storage tank and a pressure applying device.
  • the water storage tank is connected to the adjustable speed power module 24 and the sealed flow path module 23 through a pipe 25.
  • the pressure applying means includes, for example, a high pressure air bottle or a vacuum pump to provide a hydrostatic pressure by applying pressure to the fluid in the water storage tank.
  • the flow path 32 is composed of a combination of upper and lower portions and is made of organic glass.
  • the upper and lower portions are sealed with a silicone pad to form a flow path.
  • the two pressure tapping holes are respectively flowed in the lower wall of the flow channel 32 located in front of and behind the sample and perpendicular to the lower wall.
  • the position of the sample to be tested in the flow path recesses the sample thickness downward so that the upper surface of the sample is flush with the bottom surface of the flow path.
  • the top of the flow path is placed at the position of the anti-reflection film cover glass window, and the thickness of the anti-reflection cover glass cover is recessed upward, so that the lower surface of the cover glass and the top surface of the flow path Flush.
  • an antireflection film that is transparent to the observation laser is plated on both sides of the cover glass. For example, when the 561 nm laser is used for observation, in order to eliminate the reflection of the laser on the cover glass, an antireflection film of 561 nm laser light is plated on both sides of the cover glass.
  • the silicon wafer sample 34 is placed in the groove at the bottom of the flow channel 32, and the upper surface of the sample 34 is flush with the bottom surface of the flow channel.
  • the flow channel is installed and fixed in position relative to the microscope 26.
  • the flow channel 32 is filled with a fluid using the water tank of the pressure applying module 22, and the silicon wafer sample 34 is irradiated with a laser light of 561 nm through the window 33 by the confocal microscope 26, and since the silicon wafer 34 is reflective with the water surface, the laser confocal microscope is used. 26 collects the reflected signal and images it.
  • the experiment is to apply pressure on the micro-cylindrical holes and make the liquid flow, so the entire system needs to be sealed and the flow is stabilized.
  • the high pressure gas cylinder vacuum pump
  • the variable speed power module 24 is used to adjust the flow rate of the fluid.
  • the evolution of the surface structure of the sample to be tested 34 is observed through the window 33 using the laser confocal microscope 26. Since the microscope lens does not enter the flow field, the up and down movement of the microscope lens during shooting does not affect the flow field, which ensures the quality of the flow field.
  • the device does not impede the microscope lens, and does not affect its normal Z-axis. scanning. Due to the flow and pressurization (depressurization), the fluid gradually infiltrates (bleeds out) the cylindrical bore. By scanning the XZ direction of the micro-cylindrical hole, information on the change of the liquid level position can be obtained, so that under different pressures, The velocity of the liquid surface movement at different flow rates, and then the relationship between pressure, flow rate and liquid surface moving speed.
  • the present invention provides a microscopic imaging device capable of quantitatively varying pressure and flow velocity.
  • the microscopic imaging device can observe the morphology evolution of the microstructure gas-liquid interface in the flow field by using a confocal microscope without disturbing the flow field, and the obtained image quality is good and the measurement precision is high.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

L'invention concerne un dispositif d'imagerie microscopique pour un champ d'écoulement à pression ajustable. Le dispositif d'imagerie microscopique comprend : un module de mesure de pression (21), un module de pressurisation (22), un module de canal d'écoulement scellé (23), une canalisation (25) et un microscope (26). Le module de pressurisation (22) est relié au module de canal d'écoulement scellé (23) par l'intermédiaire de la canalisation (25), et fournit une pression hydrostatique pour le module de canal d'écoulement scellé (23) dans le cas où le module de canal d'écoulement scellé (23) est rempli de fluide. Le module de mesure de pression (21) comprend deux parties, une première partie étant reliée à la partie supérieure du module de pressurisation (22) pour mesurer la pression d'air appliquée au niveau de la partie supérieure du module de pressurisation (22), et une seconde partie étant reliée à un emplacement près d'un échantillon (34) dans un canal d'écoulement (32) à l'intérieur du module de canal d'écoulement scellé (23) pour mesurer une pression statique d'écoulement. Une paroi inférieure du canal d'écoulement (32) comprend un emplacement auquel l'échantillon (34) peut être disposé, et une lentille du microscope (26) est fournie sous la forme d'une fenêtre de visualisation (33) faisant face à une paroi supérieure du canal d'écoulement (32).
PCT/CN2015/092285 2015-09-28 2015-10-20 Dispositif d'imagerie microscopique pour champ d'écoulement à pression ajustable WO2017054255A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510627619.X 2015-09-28
CN201510627619.XA CN105277559B (zh) 2015-09-28 2015-09-28 显微成像装置及与显微镜配合使用的装置

Publications (1)

Publication Number Publication Date
WO2017054255A1 true WO2017054255A1 (fr) 2017-04-06

Family

ID=55146942

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/092285 WO2017054255A1 (fr) 2015-09-28 2015-10-20 Dispositif d'imagerie microscopique pour champ d'écoulement à pression ajustable

Country Status (2)

Country Link
CN (1) CN105277559B (fr)
WO (1) WO2017054255A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108922341A (zh) * 2018-07-05 2018-11-30 西安建筑科技大学 一种静水压强实验教学装置及测定方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105842151B (zh) * 2016-03-18 2018-07-20 清华大学深圳研究生院 一种微流控芯片的pdms薄膜液容测量装置及方法
CN110186900B (zh) * 2019-06-11 2022-05-27 中国石油大学(华东) 一种耦合拉曼光谱测试金属腐蚀的测试池及其设计方法
CN111257596B (zh) * 2020-02-25 2021-09-14 西南交通大学 一种扫描探针显微镜狭小实验腔环境气氛精确控制装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU461337A1 (ru) * 1973-07-17 1975-02-25 Всесоюзный Научно-Исследовательский Институт Маслодельной И Сыродельной Промышленности Прибор дл измерени осмотического давлени
EP0451752A2 (fr) * 1990-04-12 1991-10-16 Afros S.P.A. Méthode et appareil pour analyser le gaz contenu dans un liquide
US20100223981A1 (en) * 2007-08-20 2010-09-09 Lifecare As Apparatus and method for measuring augmented osmotic pressure in a reference cavity
WO2014043635A1 (fr) * 2012-09-14 2014-03-20 President And Fellows Of Harvard College Criblage de cellules avec assistance microfluidique
CN104111212A (zh) * 2014-07-01 2014-10-22 清华大学 基于粒子示踪法测量微管中液体启动压力的装置及方法
CN104458509A (zh) * 2014-12-17 2015-03-25 北京大学 一种定量施压下的显微成像装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2861546Y (zh) * 2005-12-01 2007-01-24 泰山集团泰安市普瑞特机械制造有限公司 蠕动泵
CN203053857U (zh) * 2012-12-17 2013-07-10 陆建平 自动进样分光光度仪
CN103440894A (zh) * 2013-08-12 2013-12-11 清华大学 一种膜吸收法处理高氨放射性废水的工艺
CN103691018A (zh) * 2014-01-09 2014-04-02 上海理工大学 一种医用灌注式冲洗器
CN204455070U (zh) * 2014-11-24 2015-07-08 李美华 一种细胞流体力学实验装置
CN104865205B (zh) * 2015-04-23 2017-10-13 南京大学 一种低温等离子体结合全光谱技术检测水体中有机物浓度的装置
CN205209967U (zh) * 2015-09-28 2016-05-04 北京大学 针对压强可调流场的显微成像装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU461337A1 (ru) * 1973-07-17 1975-02-25 Всесоюзный Научно-Исследовательский Институт Маслодельной И Сыродельной Промышленности Прибор дл измерени осмотического давлени
EP0451752A2 (fr) * 1990-04-12 1991-10-16 Afros S.P.A. Méthode et appareil pour analyser le gaz contenu dans un liquide
US20100223981A1 (en) * 2007-08-20 2010-09-09 Lifecare As Apparatus and method for measuring augmented osmotic pressure in a reference cavity
WO2014043635A1 (fr) * 2012-09-14 2014-03-20 President And Fellows Of Harvard College Criblage de cellules avec assistance microfluidique
CN104111212A (zh) * 2014-07-01 2014-10-22 清华大学 基于粒子示踪法测量微管中液体启动压力的装置及方法
CN104458509A (zh) * 2014-12-17 2015-03-25 北京大学 一种定量施压下的显微成像装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108922341A (zh) * 2018-07-05 2018-11-30 西安建筑科技大学 一种静水压强实验教学装置及测定方法
CN108922341B (zh) * 2018-07-05 2024-05-14 西安建筑科技大学 一种静水压强实验教学装置及测定方法

Also Published As

Publication number Publication date
CN105277559A (zh) 2016-01-27
CN105277559B (zh) 2019-05-31

Similar Documents

Publication Publication Date Title
WO2017054255A1 (fr) Dispositif d'imagerie microscopique pour champ d'écoulement à pression ajustable
US10162162B2 (en) Microfluidic systems and methods for hydrodynamic microvortical cell rotation in live-cell computed tomography
CN103134942B (zh) 一种含沙浓度和浑水流速垂线分布的同步实时测量装置
Huang et al. The applications of pressure-sensitive paint in microfluidic systems
Kim et al. Full 3D-3C velocity measurement inside a liquid immersion droplet
US11781104B2 (en) Ultra-microinjection detection and control device based on lensless imaging and method thereof
Matsuda et al. Pressure-sensitive channel chip for visualization measurement of micro gas flows
ES2494116T3 (es) Método para determinar la constante de resorte de un dispositivo de viga en voladizo
CN103154699A (zh) 流变测量设备
Bohne et al. 3D printed nozzles on a silicon fluidic chip
US10656070B2 (en) Aligning a non-spherical biological entity in a sample flow using ambient viscoelastic fluid flows
JP4120576B2 (ja) 液量測定装置
US20120270257A1 (en) Observation Cell Arrangement
JP5486896B2 (ja) 透気性中詰め材の透気性確認試験方法及び透気性確認試験装置
CN106442278B (zh) 单粒子束散射光强分布的测量装置及测量方法
CN108614072B (zh) 一种连续液面光固化成型阻聚区特性试验装置
CN205209967U (zh) 针对压强可调流场的显微成像装置
CN107084918A (zh) 一种基于光纤操控单个微球的浓度传感器
Kahler et al. High resolution velocity profile measurements in turbulent boundary layers
CN109826243A (zh) 一种三水耦合效应下的岩体试验测试系统及方法
CN204255804U (zh) 一种定量施压下的显微成像装置
JP3281277B2 (ja) 表面エネルギー分布測定装置及び測定方法
CN208398893U (zh) 一种水管倾斜仪整机检测装置
CN104458509A (zh) 一种定量施压下的显微成像装置
Zimmermann et al. Pressure-Sensitive Paint Measurements in Narrow Clearances: A Feasibility Study

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15905167

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 19.07.2018)

122 Ep: pct application non-entry in european phase

Ref document number: 15905167

Country of ref document: EP

Kind code of ref document: A1