WO2017052244A1 - Refractive index distribution measuring system and refractive index distribution measuring method using same - Google Patents

Refractive index distribution measuring system and refractive index distribution measuring method using same Download PDF

Info

Publication number
WO2017052244A1
WO2017052244A1 PCT/KR2016/010607 KR2016010607W WO2017052244A1 WO 2017052244 A1 WO2017052244 A1 WO 2017052244A1 KR 2016010607 W KR2016010607 W KR 2016010607W WO 2017052244 A1 WO2017052244 A1 WO 2017052244A1
Authority
WO
WIPO (PCT)
Prior art keywords
refractive index
light
hologram image
measurement object
optical member
Prior art date
Application number
PCT/KR2016/010607
Other languages
French (fr)
Korean (ko)
Inventor
서광범
Original Assignee
주식회사 힉스컴퍼니
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 힉스컴퍼니 filed Critical 주식회사 힉스컴퍼니
Publication of WO2017052244A1 publication Critical patent/WO2017052244A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • G01N21/45Refractivity; Phase-affecting properties, e.g. optical path length using interferometric methods; using Schlieren methods

Definitions

  • the present invention relates to a refractive index distribution measurement system and a refractive index distribution measurement method using the same, and more particularly, to a refractive index distribution measurement system which can precisely measure a refractive index distribution of a measurement object using a deformed shear interferometer. And a method of measuring a refractive index distribution.
  • digital holography microscopy is a technique for quantitatively measuring thickness information of a measurement object using hologram phase information formed by interference of highly coherent light sources.
  • a digital holography microscope forms a hologram pattern using an optical interferometer.
  • Michelson interferometer and Mach-Zender interferometer which are widely used in digital holography microscopes among optical interferometers. These interferometers convert light emitted from a light source into an object light source and a reference light source using a light separator. And the two light sources are overlapped to form an interference pattern.
  • DC bias and virtual image information are included in addition to real-world information to be measured, and there is a problem that the interferometer has a complicated structure and is vulnerable to vibration.
  • the refractive index distribution error of the optical element by using a lateral shearing interferometer, which has a simple configuration and two optical paths that cause interference, and which generates less errors due to vibration.
  • a lateral shearing interferometer which has a simple configuration and two optical paths that cause interference, and which generates less errors due to vibration.
  • the front end interferometer since an interference pattern is obtained by using two object light sources passing through the object to be measured, there is a problem that the interference pattern includes information about the object in duplicate.
  • the present invention is a refractive index distribution measuring system capable of precisely measuring the refractive index distribution error by obtaining an interference pattern without duplicate images, comparing the refractive index distribution of the object to be measured with the designed refractive index distribution, and And a method of measuring a refractive index distribution.
  • a light source device comprising: a light source that emits light; a support member that is disposed on a path of light emitted from the light source and supports the measurement target object such that the measurement target object is disposed on only one side of the optical axis, An optical member which is disposed on a path of light transmitted through the support member and reflects the light on the front surface and the rear surface respectively and has a predetermined thickness; And a signal processing unit for deriving a refractive index distribution of the measurement object from the interference pattern acquired by the light receiving unit.
  • a light source device comprising a light source, a support member for supporting the measurement target object so that the measurement object is disposed only on one side of the optical axis, an optical member for reflecting light from the front and rear surfaces,
  • a method of measuring a refractive index distribution using an interferometer including a light receiving unit for receiving light, comprising the steps of: obtaining a hologram image from an interference pattern acquired by the light receiving unit; removing noise from the hologram image; Extracting phase information of the measurement object, and measuring a refractive index distribution of the measurement object using the phase information.
  • a refractive index distribution measuring system capable of obtaining an interference pattern without duplicate images and accurately measuring the refractive index distribution error of the object to be measured, and A refractive index distribution measuring method can be provided.
  • FIG. 1 is a schematic view showing a refractive index distribution measuring system according to an embodiment of the present invention.
  • FIG. 2 is a conceptual diagram showing a region B in Fig.
  • FIG. 3 is a graph showing the distance of light reflected from the front and back surfaces of the optical member according to the incident angle of light incident on the optical member included in FIG. 1;
  • FIG. 4 is a block diagram showing the detailed configuration of the signal processing unit of FIG.
  • 5 is a graph showing the refractive index distribution error according to the width of the measurement object.
  • a light source device comprising: a light source that emits light; a support member that is disposed on a path of light emitted from the light source and supports the measurement target object such that the measurement target object is disposed on only one side of the optical axis, An optical member which is disposed on a path of light transmitted through the support member and reflects the light on the front surface and the rear surface respectively and has a predetermined thickness; And a signal processing unit for deriving a refractive index distribution of the measurement object from the interference pattern acquired by the light receiving unit.
  • An objective lens disposed between the support member and the optical member for magnifying light transmitted through the measurement object, and an adjustment lens for converting the light expanded by the objective lens into parallel light.
  • a first polarizer disposed between the light source and the support member, and a second polarizer disposed between the optical member and the light receiving unit, wherein a polarization axis direction of the first polarizer and a polarization axis direction of the second polarizer are mutually identical can do.
  • the predetermined thickness of the optical member may be 5 mm to 15 mm.
  • the light reflected by the front surface of the optical member includes a first object region transmitted through the measurement object and a first reference region that is a region other than the first object region, And a second reference area that is a region other than the second object area, the interference pattern being formed by overlapping the first object area and the second reference area, 1 reference area and the second object area, and the first object area and the second object area may not overlap with each other.
  • a refractive index matching oil disposed on the support member, wherein the measurement object can be disposed in the refractive index matching oil.
  • the signal processing unit includes: a hologram image acquiring unit that acquires an object hologram image from the interference pattern acquired by the light receiving unit in a state where the measurement object is disposed on the support member; a noise removing unit that removes noise from the object hologram image; A phase information extracting unit for extracting phase information of the measurement object, and a refractive index distribution measuring unit for calculating a refractive index distribution of the measurement object using the phase information.
  • a refractive index error measuring unit for calculating a refractive index distribution error by comparing the refractive index distribution of the measurement object with the designed refractive index distribution of the measurement object.
  • the hologram image obtaining unit obtains a reference hologram image from the interference pattern acquired by the light receiving unit in a state in which the measurement object is not disposed on the object hologram image and the support member,
  • the phase information extracting unit extracts a phase of the reference hologram image from the reference hologram image based on the difference between the object phase information obtained from the object hologram image from which the noise is removed and the reference phase information obtained from the noise- The phase information can be extracted.
  • a light source device comprising a light source, a support member for supporting the measurement target object so that the measurement object is disposed only on one side of the optical axis, an optical member for reflecting light from the front and rear surfaces,
  • a method of measuring a refractive index distribution using an interferometer including a light receiving unit for receiving light, comprising the steps of: obtaining a hologram image from an interference pattern acquired by the light receiving unit; removing noise from the hologram image; Extracting phase information of the measurement object, and measuring a refractive index distribution of the measurement object using the phase information.
  • the method may further include the step of calculating a refractive index distribution error by comparing the refractive index profile of the measured object with the refractive index profile of the measured object after the measurement of the refractive index profile.
  • the obtaining of the hologram image may include acquiring an object hologram image in a state where the measurement object is disposed on the support member, and acquiring a reference hologram image in a state where the measurement object is not disposed on the support member
  • the removing the noise includes removing noise from the object hologram image and the reference hologram image
  • the step of extracting the phase information of the measurement object includes the step of extracting the object hologram image And extracting the phase information of the measurement object from the difference between the object phase information obtained from the reference hologram image and the reference phase information obtained from the reference hologram image from which noise has been removed.
  • the thickness of the optical member may be 5 mm to 15 mm.
  • the light reflected by the front surface of the optical member includes a first object region transmitted through the measurement object and a first reference region that is a region other than the first object region, And a second reference area that is an area other than the second object area, wherein before the step of acquiring the hologram image, a part of the light reflected from the front surface and the back surface of the optical member, respectively, And aligning the light source and / or the optical member so that the first object zone and the second object zone do not overlap with each other in the overlapping zone.
  • the step of aligning the light source and / or the optical member may include aligning the light source and / or the optical member such that light is incident on the optical member at 10 to 80 degrees.
  • FIG. 1 is a schematic view showing a refractive index distribution measuring system according to an embodiment of the present invention.
  • FIG. 2 is a conceptual view showing a region B in FIG. 1
  • FIG. 5 is a graph illustrating a distance between light reflected by the front surface and the rear surface of the optical member according to the incident angle of light.
  • a refractive index distribution measuring system includes a light source 100 for emitting light, a light source 100 disposed on a path of light emitted from the light source 100 and having an optical axis OA about an optical axis OA, A support member 200 for supporting the measurement object 210 so that the measurement object 210 is disposed only on one side of the support member 200 and a support member 200 for supporting the measurement object 210 on the front surface 300a and the rear surface 300b, An optical member 300 which reflects light and has a predetermined thickness t, two light beams which are reflected from the front face 300a and the rear face 300b of the optical member 300 and partially overlap each other to form an interference pattern B1 and B2 and a signal processing unit 510 for deriving a refractive index distribution of the measurement object 210 from the interference pattern acquired by the light receiving unit 400.
  • the light source 100 may be a laser light source and may be, for example, a continuous He-Ne laser having a wavelength of about 632.8 nm.
  • the light emitted from the light source 100 may be reflected by the reflective member 810 and then incident on the support member 200 supporting the measurement object 210.
  • a collimator 820 composed of a lens or the like for converting the light emitted from the light source 100 into parallel light may be further disposed between the light source 100 and the reflective member 810.
  • the light source 100, (820) may be formed integrally.
  • a first polarizer 830 may be further disposed between the collimator 820 and the reflective member 810.
  • the first polarizer 830 may transmit only the polarized light in a predetermined direction, 400 can be minimized by interfering with the second polarizer 860 disposed in front of the light receiving unit 400.
  • the direction of the polarization axis of the first polarizer 830 and the direction of the polarization axis of the second polarizer 860 may be identical to each other and the optical element 830 disposed between the first polarizer 830 and the second polarizer 860 It is possible to remove unintended light components such as scattered light that may be generated by the light sources.
  • the polarization direction may be changed, so that at least a part of the scattered light or the like can not pass through the second polarizer 860. That is, at least a part of the scattered light or the like, which may cause noise, can not be incident on the light receiving unit 400.
  • a collimator 820, a first polarizer 830, and a reflection member 810 are disposed between the light source 100 and the support member 200.
  • the present invention is not limited thereto, May be omitted as needed.
  • the support member 200 is arranged on the path of the light reflected by the reflection member 810 and the support member 200 is measured so that the measurement object 210 is disposed on only one side of the optical axis OA with respect to the optical axis OA
  • the object 210 can be supported.
  • a reference numeral A in FIG. 1 shows the measurement object 210 disposed on the support member 200 in a direction in which the light travels.
  • the beam spot includes a center line CL passing the optical axis OA
  • the measurement object 210 is disposed within the beam spot BSP and the measurement target object 210 can be disposed on the support member 200 so as to be located at only one side with respect to the center line CL of the beam spot BSP.
  • the measurement object 210 may be disposed within an index matching oil 220.
  • the refractive index of the refractive index matching oil 220 is the same as or similar to the refractive index of the measuring object 210 and is arranged such that the measuring object 210 is completely immersed in the refractive index matching oil 220, It is possible to prevent scattering or refraction at the interface between the measurement object 210 and the air.
  • One side of the refractive index matching oil 220 can be in contact with the objective lens 840 and the numerical aperture NA of the objective lens 840 can be increased through this configuration.
  • An objective lens 840 and an objective lens 840 having a predetermined magnification are disposed between the support member 200 and the optical member 300.
  • the objective lens 840 and the objective lens 840 are disposed between the support member 200 and the optical member 300,
  • An adjustment lens 850 for converting the light expanded by the light source 810 into parallel light can be disposed.
  • the light incident on the optical member 300 becomes the light transmitted through the support member 200 and the refractive index matching oil 220 when the measurement object 210 is not disposed on the support member 200, The measurement object 210 and the refractive index matching oil 200 when the measurement object 210 is disposed on the support member 200,
  • the size of the two light beams B1 and B2 incident on the light receiving unit 400 forming an interference pattern may be determined by the objective lens 840.
  • the radius may be about 5 mm.
  • the size of the light B1 and B2 may be determined in consideration of the contrast of the interference pattern obtained by the light receiving unit 400 and the size of the light B1 and B2 may be determined based on the intensity of the light, Can be defined on the basis of a point at which 1 / e decreases.
  • the optical member 300 may be an optical glass having a predetermined thickness t and a refractive index n 2 and the light incident on the optical member 300 may be incident on the front surface 300a and the rear surface And 300b, respectively.
  • the first beam B1 reflected from the front surface 300a of the optical member 300 and the second beam B2 reflected from the rear surface 300b are spaced apart from each other by a predetermined distance d, .
  • the distance d means the distance between the center of the first beam B1 and the center of the second beam B2, i.e., the distance between the two optical axes divided by the optical member 300.
  • the first beam (B1) is a measurement target object 210
  • the first object region (O 1) and the first object region (O 1), the area other than the first reference area (R 1) transmitted through the included and the second beam (B2) may include a light transmitted through the measurement target object 210, the second object region (O 2) and the second object region (O 2) regions of the second reference region other than the (R 2) have.
  • the measurement target object 210 is placed only on one side of the optical axis (OA), the first object region (O 1) and a second object area (O 2) are all only one side relative to the center line of the beam . Therefore, when the degree of overlapping of the first beam B1 and the second beam B2 is adjusted by adjusting the distance d between the first beam B1 and the second beam B2, O 1 and the second reference region R 2 may overlap with each other and the interference pattern formed by overlapping the first object region O 1 and the second reference region R 2 may be incident on the light receiving section 400 have.
  • the first object region (O 1) and a second object area (O 2) is a region respectively transmitted through the measurement target object 210, the first object region (O 1) and a second object area (O 2) are superposed
  • the interference pattern includes the phase information for the measurement object 210 in a double manner.
  • the interference pattern includes duplicate images, a large error may occur in the phase information of the measurement object 210 extracted through the interference pattern and the refractive index distribution derived therefrom.
  • the first object zone O 1 and the second object zone O 2 do not overlap with each other, and the first object zone O 1 corresponds to the second reference zone R 2 , To form an interference pattern.
  • the present invention is not limited to this, and the second object zone O 2 may overlap the first reference zone R 1 depending on the position of the measurement object 210 disposed on the support member 200 .
  • the first object zone O 1 and the second object zone O 2 do not overlap each other, and thus the interference pattern obtained by the interferometer of FIG. 1 does not include a dual image.
  • the first object region (O 1) overall are to be included in the first beam (B1) and the the second beam (B2) are superposed overlapping area (OR). When a part of the first object zone O 1 is not included in the overlap area OR, it is not possible to measure the refractive index distribution of the measurement target object 210 corresponding to the area not including the first object zone O 1 .
  • the first object zone O 1 and the second object zone O 2 do not overlap with each other so that the entire first object zone O 1 is included in the overlap area OR,
  • the separation distance d between the first beam B1 and the second beam B2 should be determined and the separation distance d may be determined by the following equation 1:
  • t denotes the thickness of the optical member 300
  • n 2 denotes the refractive index of the optical member 300
  • n 1 denotes the air refractive index
  • ⁇ i denotes the incident angle of the light incident on the optical member 300.
  • n 3 is a graph showing the distance d of light reflected from the front face 300a and the rear face 300b of the optical member 300 according to the incident angle? I of the light incident on the optical member 300, , And the separation distance d is represented by a variable including the thickness t of the optical member 300 and n 1 / n 2 is calculated to be about 0.658, which is the ratio of the optical glass to the refractive index of air.
  • the horizontal axis in FIG. 3 represents the incident angle (? I ) in radian units, and the angle in degree units can be calculated by multiplying the radian by 180 / 3.14.
  • the separation distance d has a maximum value
  • the separation distance d from the angle may have a value of 0.75 x tm.
  • the maximum value of the separation distance is less than 3.5 mm.
  • the center line can be located in the overlap region OR. Therefore, the first object zone O 1 of the first beam B1 overlaps the second object zone O 2 of the second beam B2, and the interference pattern may include a double image.
  • the thickness t of the optical member 300 exceeds about 15 mm, even if the incident angle? I is adjusted, the spacing distance d becomes excessively large, and the area of the overlapping area OR is excessively small, At least a part of the first object zone O 1 of the first beam B1 may be arranged outside the overlap area OR in the area OR. That is, in this case, it is not possible to measure the refractive index distribution for a partial region of the measurement target 210. Therefore, the thickness t of the optical member 300 may have a value of 5 mm to 15 mm.
  • the separation distance (d) as well as thickness (t) of the optical member 300 may be varied according to the incident angle ( ⁇ i) impinging on the optical element 300, the angle of incidence ( ⁇ i) is 10 to 80 degrees It can have an angle.
  • the incident angle? I is less than 10 degrees, the path of the light traveling between the front surface 300a and the rear surface 300b of the optical member 300 is excessively long, so that the optical member 300 having a relatively large size is required, The distance may be long so that the interference between the light reflected from the front surface 300a and the light reflected from the rear surface 300b may not occur well.
  • the incident angle? I exceeds 80 degrees, the path of the light incident on the optical member 300 and the path of the light reflected from the optical member 300 may be too close to align the optical elements.
  • the refractive index distribution measuring system includes two beams B1 and B2 which are partially reflected on the front surface 300a and the rear surface 300b of the optical member 300 and form an interference pattern, A light receiving unit 400 for receiving light and a central processing unit 500.
  • the central processing unit 500 includes a signal processing unit 510 for deriving a refractive index distribution of the measurement object 210 from the interference pattern acquired by the light receiving unit 400 and a signal processing unit And a control unit 520 for adjusting the position of the display unit 850.
  • the control unit 520 may be connected to the light source 100 and the optical member 300 to sense the intensity of the light source 100.
  • the light source 100 may be a two-dimensional solid image sensor such as a charge coupled device (CCD) And the angle of the optical member 300 may be adjusted.
  • CCD charge coupled device
  • FIG. 4 is a block diagram showing the detailed configuration of the signal processing unit of FIG.
  • a detailed configuration of the signal processing unit 400 included in the refractive index distribution measuring system and a method of measuring a refractive index distribution therefrom will be sequentially described with reference to FIG.
  • the signal processing unit 510 includes a hologram image acquiring unit 500 for acquiring an object hologram image from the interference pattern acquired by the light receiving unit 400 while the measurement object 210 is disposed on the support member 200, A phase information extracting unit 513 for extracting phase information of the measurement object 210 and a phase information extracting unit 513 for extracting the refractive index of the measurement object 210 using the phase information, And a refractive index distribution measuring unit 514 for calculating a distribution.
  • the signal processing unit 510 measures the refractive index distribution of the measurement object 210 from the interference pattern acquired through the interferometer including the light source 100, the support member 200, the optical member 300 and the light receiving unit 400
  • the method of measuring a refractive index profile includes the steps of obtaining a hologram image from an interference pattern acquired by a light receiving unit 400, removing noise from the hologram image, measuring the hologram image from the hologram image Extracting phase information of the object 210, and calculating a refractive index distribution of the measurement object 210 using the phase information.
  • the step of acquiring the hologram image may include a step of removing the noise in the hologram image acquiring unit 511, a step of extracting the phase information from the noise removing unit 512, and a step of extracting the phase information from the phase information extracting unit 513,
  • the calculating step may be performed in the refractive index distribution measuring unit 514.
  • the refractive index distribution measuring method further includes a step of calculating a refractive index distribution error by comparing the refractive index profile of the measured object 210 with the refractive index profile of the measured object 210 after the step of calculating the refractive index profile And this can be performed in the refractive index distribution error measuring unit 515 of the signal processing unit 510.
  • the refractive index distribution error of the measurement object 210 can be precisely measured.
  • the measurement object 210 may be a high-performance microlens.
  • the microlens is manufactured by a method of mass-injection of a plastic lens in consideration of manufacturing cost, robustness against impact, etc.
  • the present invention can provide a refractive index distribution measuring system and a refractive index distribution measuring method which can precisely measure the refractive index distribution and the refractive index distribution error.
  • the step of acquiring the hologram image may include acquiring an object hologram image in a state where the measurement object 210 is disposed on the support member 200 and acquiring the hologram image in a state where the measurement object 210 is not disposed on the support member 200
  • the step of removing noise includes a step of removing noise from an object hologram image and a reference hologram image
  • the step of extracting the phase information of the measurement object 210 includes the steps of: And extracting the phase information of the measurement object from the difference between the object phase information obtained from the object hologram image from which the noise has been removed and the reference phase information obtained from the noise-removed reference hologram image.
  • the intensity of the object hologram image acquired by the hologram image acquisition unit 511 is expressed by Equation 2 below.
  • O 1 denotes an electric field of light corresponding to the first object zone O 1 described in FIG. 2
  • R 2 denotes an electric field of light corresponding to the second reference area R 2
  • Equation 2 It can be confirmed that the intensity of the object hologram image does not include information on the light corresponding to the second object zone O 2 , that is, a dual image.
  • the noise removing unit 512 may remove noise such as a DC bias and a virtual image from the hologram intensity of the object hologram image.
  • noise control method using a low pass filtering (LPF) method and an angular spectrum (ASP) method will be described below.
  • Equation (3) In order to numerically recover the complex amplitude included in Equation ( 2 ), light corresponding to the second reference region (R 2 ) is further irradiated to the interference pattern, thereby obtaining a plurality of amplitudes as shown in Equation (3) have.
  • Equation (4) is a complex amplitude in which low frequency filtering and each spectral method are applied in the frequency domain after a fourier transform.
  • f x and f y are spatial frequencies in the x and y axis directions
  • k, ⁇ and d denote the wave number, wavelength, and restoration distance, respectively.
  • a complex amplitude for extracting the phase information for the measurement object 210 can be obtained as shown in Equation (5) by using an inverse fourier transform to convert the complex amplitude in the frequency domain into the spatial domain have.
  • the difference in light path is determined by the difference between the thickness of the measurement object 210 and the refractive index.
  • the difference in the light path can be expressed by the wavelength of the light source and the phase information of the measurement object 210.
  • the information on the refractive index of the measurement object 210 can be expressed by Equation (6).
  • ? X (x, y, d) and? L (x, y, d) mean the phase difference by the measurement target 210 and the thickness of the measurement target 210.
  • the measurement object 210 is disposed in the refractive index matching oil 220 having the same or similar refractive index as that of the measurement object 210, and the phase of the measurement object 210 when the measurement object 210 is disposed on the support member 200 Can be expressed by the following Equation (7), and the phase when the measurement object 210 is not disposed on the support member (200) can be expressed by the following Equation (8).
  • Equation 9 the phase information of the measurement object 210 can be extracted as shown in Equation (9).
  • n lens means a refractive index of the measurement object 210
  • n oil means a refractive index of the refractive index matching oil 220.
  • the refractive index of the refractive index matching oil 220 is the same as the refractive index of the measurement object 210,? Is 0, and if the refractive index difference is constant, ?? has a constant value. That is, when the refractive index (n lens ) of the measurement object 210 is constant according to the position, only a regular interference pattern in the form of a line is formed over the entire overlap region OR.
  • the refractive index of the measurement object 210 including the error can be expressed by the following equation (10).
  • n is the refractive index designed
  • ⁇ lens design of the measurement target object 210 means a refractive error.
  • Equation (11) From Equations (9) and (10), it is possible to derive an equation relating to the refractive index distribution error as shown in Equation (11).
  • the present invention has been described in the case where noise is reduced by minimizing refraction and scattering of light by arranging the measurement object 210 in the refractive index matching oil 220, the present invention is not limited to this, Without the refractive index matching oil 220 on the lens 200. In this case, n oil can be replaced by the air refractive index value.
  • 5 is a graph showing the refractive index distribution error according to the width of the measurement object.
  • the refractive index distribution error according to the width of the measurement object 210 is measured with an accuracy of nanometer or less.
  • the refractive index distribution measuring system and the refractive index distribution measuring method according to an embodiment of the present invention, an interference pattern without duplicate images is obtained, and the refractive index distribution error of the measurement object 210 is precisely And a refractive index distribution error measuring method using the refractive index distribution error measuring system.
  • An apparatus may include a processor, a memory for storing and executing program data, a permanent storage such as a disk drive, a communication port for communicating with an external device, a user interface such as a touch panel, a key, Devices, and the like.
  • Methods implemented with software modules or algorithms may be stored on a computer readable recording medium as computer readable codes or program instructions executable on the processor.
  • the computer-readable recording medium may be a magnetic storage medium such as a read only memory (ROM), a random access memory (RAM), a floppy disk, a hard disk and the like) and an optical reading medium (e.g., a CD ROM, (DVD: Digital Versatile Disc)).
  • the computer-readable recording medium may be distributed over networked computer systems so that computer readable code in a distributed manner can be stored and executed.
  • the medium is readable by a computer, stored in the memory, and executable on the processor.
  • the present invention may be represented by functional block configurations and various processing steps. These functional blocks may be implemented in a wide variety of hardware and / or software configurations that perform particular functions.
  • the present invention employs integrated circuit configurations, such as memory, processing, logic, look-up tables, etc., that can perform various functions by control of one or more microprocessors or by other control devices can do.
  • the present invention may be implemented with software programming or software components, the present invention may be implemented in a variety of ways, including C, C ++, And can be implemented in a programming or scripting language such as Java, assembler, and the like.
  • Functional aspects may be implemented with algorithms running on one or more processors.
  • the present invention may also employ conventional techniques for electronic configuration, signal processing, and / or data processing. Terms such as “mechanism”, “element”, “means”, “configuration” may be used broadly and are not limited to mechanical and physical configurations. The term may include the meaning of a series of routines of software in conjunction with a processor or the like.
  • At least one of the embodiments of the present invention can be used in a refractive index distribution error measuring system and a refractive index distribution error measuring method using the same.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

According to an embodiment of the present invention, there is provided a refractive index distribution measuring system comprising: a light source for emitting light; a support member arranged on a path of light emitted from the light source so as to support a measurement object such that the measurement object is arranged, about an optical axis, only on one side of the optical axis; an optical member arranged on a path of light, which has passed through the support member, such that the light is reflected at the front and rear surfaces thereof, the optical member having a predetermined thickness; a light-receiving unit for receiving two rays of light, which are reflected at the front and rear surfaces of the optical members, respectively, and parts of which then overlap and form an interference pattern; and a signal processing unit for deriving the refractive index distribution of the measurement object from the interference pattern acquired by the light-receiving unit.

Description

굴절률 분포 측정 시스템 및 이를 이용한 굴절률 분포 측정 방법Refractive index distribution measuring system and refractive index distribution measuring method using the same
본 발명은 굴절률 분포 오차 측정 시스템 및 이를 이용한 굴절률 분포 오차 측정 방법에 관한 것으로, 더욱 상세하게는 변형된 전단 간섭계를 이용하여 측정 대상물의 굴절률 분포를 정밀하게 측정할 수 있는 굴절률 분포 측정 시스템 및 이를 이용한 굴절률 분포 측정 방법에 관한 것이다.The present invention relates to a refractive index distribution measurement system and a refractive index distribution measurement method using the same, and more particularly, to a refractive index distribution measurement system which can precisely measure a refractive index distribution of a measurement object using a deformed shear interferometer. And a method of measuring a refractive index distribution.
IT 기기의 소형화 및 고집적화에 대한 요구가 증가함에 따라 IT 기기에 포함된 광학 렌즈 등의 광학 소자들의 크기 또한 마이크로 단위 이하로 작아지고 있으며, 이러한 광학 소자들의 굴절률 분포에 오차가 발생하는 경우 이를 포함하는 제품의 성능이 저하될 수 있다. 이에, 광학 소자들의 굴절률 분포 및 이를 설계된 굴절률 분포와 비교하여 굴절률 분포 오차를 정밀하게 측정할 수 있는 기술에 대한 요구가 증가하고 있다.As the demand for miniaturization and high integration of IT devices increases, the sizes of optical elements such as optical lenses included in IT devices also become smaller than microns. When an error occurs in the refractive index distribution of these optical elements, The performance of the product may be deteriorated. Accordingly, there is an increasing demand for a technique for precisely measuring the refractive index distribution error by comparing the refractive index distribution of the optical elements and the designed refractive index distribution.
한편, 디지털 홀로그래피 마이크로스코피(digital holography microscopy)는 가간섭성이 높은 광원의 간섭에 의해 형성된 홀로그램 위상 정보를 이용하여, 측정 대상물의 두께 정보 등을 정량적으로 측정할 수 있는 기술이다. On the other hand, digital holography microscopy is a technique for quantitatively measuring thickness information of a measurement object using hologram phase information formed by interference of highly coherent light sources.
일반적으로, 디지털 홀로그래피 마이크로스코피는 광학 간섭계를 이용하여 홀로그램 패턴을 형성한다. 광학 간섭계 중 디지털 홀로그래피 마이크로스코피에 많이 이용되고 있는 마이켈슨(Michelson) 간섭계 및 마하-젠더(Mach-Zender) 간섭계이며, 이들 간섭계는 광원으로부터 방출된 광을 광분리기를 이용하여 물체 광원과 참조 광원으로 분리하고 두 광원을 중첩시켜 간섭 패턴을 형성한다. 그러나, 이들 간섭계에 의해 얻어진 간섭 패턴에는 측정하고자 하는 실상 정보 외에 DC bias 및 허상 정보가 포함되어 있으며, 간섭계의 구성이 복잡하여 진동에 취약한 문제가 존재한다.Generally, a digital holography microscope forms a hologram pattern using an optical interferometer. Michelson interferometer and Mach-Zender interferometer, which are widely used in digital holography microscopes among optical interferometers. These interferometers convert light emitted from a light source into an object light source and a reference light source using a light separator. And the two light sources are overlapped to form an interference pattern. However, in the interference pattern obtained by these interferometers, DC bias and virtual image information are included in addition to real-world information to be measured, and there is a problem that the interferometer has a complicated structure and is vulnerable to vibration.
따라서, 구성이 간소하면서 간섭을 일으키는 2개의 광원의 경로가 실질적으로 동일하여 진동에 의한 오차 발생이 적은 전단 간섭계(lateral shearing interferomer)를 이용하여 광학 소자의 굴절률 분포 오차를 측정할 수 있다. 그러나, 전단 간섭계의 경우 측정하고자 하는 대상물을 통과한 2개의 물체 광원을 이용하여 간섭 패턴을 획득하기 때문에, 간섭 패턴이 대상물에 대한 정보를 이중으로 포함하는 문제가 존재한다.Therefore, it is possible to measure the refractive index distribution error of the optical element by using a lateral shearing interferometer, which has a simple configuration and two optical paths that cause interference, and which generates less errors due to vibration. However, in the case of the front end interferometer, since an interference pattern is obtained by using two object light sources passing through the object to be measured, there is a problem that the interference pattern includes information about the object in duplicate.
본 발명은 이러한 이중 영상(duplicate images)이 없는 간섭 패턴을 획득하고, 이로부터 측정 대상물의 굴절률 분포 및 이를 설계된 굴절률 분포와 비교하여 굴절률 분포 오차를 정밀하게 측정할 수 있는 굴절률 분포 측정 시스템 및 이를 이용한 굴절률 분포 측정 방법을 제공하는 것을 목적으로 한다.The present invention is a refractive index distribution measuring system capable of precisely measuring the refractive index distribution error by obtaining an interference pattern without duplicate images, comparing the refractive index distribution of the object to be measured with the designed refractive index distribution, and And a method of measuring a refractive index distribution.
본 발명의 일 실시예에 따르면, 광을 방출하는 광원, 상기 광원으로부터 방출되는 광의 경로 상에 배치되며, 광축을 중심으로 상기 광축의 일측에만 측정 대상체가 배치되도록 상기 측정 대상체를 지지하는 지지 부재, 상기 지지 부재를 투과한 광의 경로 상에 배치되어 전면 및 후면에서 각각 상기 광을 반사하며, 소정의 두께를 갖는 광학 부재, 상기 광학 부재의 전면 및 후면에서 반사된 후 일부가 중첩되어 간섭 패턴을 형성하는 2개의 광을 수광하는 수광부, 및 상기 수광부에 의해 획득된 간섭 패턴으로부터 상기 측정 대상체의 굴절률 분포를 도출하는 신호 처리부를 포함하는, 굴절률 분포 측정 시스템을 제공한다.According to an embodiment of the present invention, there is provided a light source device comprising: a light source that emits light; a support member that is disposed on a path of light emitted from the light source and supports the measurement target object such that the measurement target object is disposed on only one side of the optical axis, An optical member which is disposed on a path of light transmitted through the support member and reflects the light on the front surface and the rear surface respectively and has a predetermined thickness; And a signal processing unit for deriving a refractive index distribution of the measurement object from the interference pattern acquired by the light receiving unit.
본 발명의 다른 실시예에 따르면, 광원, 광축의 일측에만 측정 대상체가 배치되도록 상기 측정 대상체를 지지하는 지지 부재, 전면 및 후면에서 각각 광을 반사하는 광학 부재, 상기 광학 부재에 의해 반사된 광을 수광하는 수광부를 포함하는 간섭계를 이용한 굴절률 분포 측정 방법에 있어서, 상기 수광부에 의해 획득된 간섭 패턴으로부터 홀로그램 영상을 획득하는 단계, 상기 홀로그램 영상으로부터 노이즈를 제거하는 단계, 노이즈가 제거된 상기 홀로그램 영상으로부터 상기 측정 대상체의 위상 정보를 추출하는 단계, 및 상기 위상 정보를 이용하여 상기 측정 대상체의 굴절률 분포를 측정하는 단계를 포함하는, 굴절률 분포 측정 방법을 제공한다.According to another embodiment of the present invention, there is provided a light source device comprising a light source, a support member for supporting the measurement target object so that the measurement object is disposed only on one side of the optical axis, an optical member for reflecting light from the front and rear surfaces, A method of measuring a refractive index distribution using an interferometer including a light receiving unit for receiving light, comprising the steps of: obtaining a hologram image from an interference pattern acquired by the light receiving unit; removing noise from the hologram image; Extracting phase information of the measurement object, and measuring a refractive index distribution of the measurement object using the phase information.
상기한 바와 같이 이루어진 본 발명의 일 실시예에 따르면, 이중 영상(duplicate images)이 없는 간섭 패턴을 획득하고, 이로부터 측정 대상물의 굴절률 분포 오차를 정밀하게 측정할 수 있는 굴절률 분포 측정 시스템 및 이를 이용한 굴절률 분포 측정 방법을 제공할 수 있다.According to an embodiment of the present invention, as described above, a refractive index distribution measuring system capable of obtaining an interference pattern without duplicate images and accurately measuring the refractive index distribution error of the object to be measured, and A refractive index distribution measuring method can be provided.
도 1은 본 발명의 일 실시예에 따른 굴절률 분포 측정 시스템을 개략적으로도시한 구성도이다.1 is a schematic view showing a refractive index distribution measuring system according to an embodiment of the present invention.
도 2는 도 1의 B 영역을 도시한 개념도이다.2 is a conceptual diagram showing a region B in Fig.
도 3은 도 1에 포함된 광학 부재에 입사되는 광의 입사각에 따른 광학 부재의 전면 및 후면에서 각각 반사된 광의 이격 거리를 나타낸 그래프이다.FIG. 3 is a graph showing the distance of light reflected from the front and back surfaces of the optical member according to the incident angle of light incident on the optical member included in FIG. 1;
도 4는 도 1의 신호 처리부의 상세 구성을 나타낸 블록도이다.4 is a block diagram showing the detailed configuration of the signal processing unit of FIG.
도 5는 측정 대상체의 너비에 따른 굴절률 분포 오차를 나타낸 그래프이다.5 is a graph showing the refractive index distribution error according to the width of the measurement object.
본 발명의 일 실시예에 따르면, 광을 방출하는 광원, 상기 광원으로부터 방출되는 광의 경로 상에 배치되며, 광축을 중심으로 상기 광축의 일측에만 측정 대상체가 배치되도록 상기 측정 대상체를 지지하는 지지 부재, 상기 지지 부재를 투과한 광의 경로 상에 배치되어 전면 및 후면에서 각각 상기 광을 반사하며, 소정의 두께를 갖는 광학 부재, 상기 광학 부재의 전면 및 후면에서 반사된 후 일부가 중첩되어 간섭 패턴을 형성하는 2개의 광을 수광하는 수광부, 및 상기 수광부에 의해 획득된 간섭 패턴으로부터 상기 측정 대상체의 굴절률 분포를 도출하는 신호 처리부를 포함하는, 굴절률 분포 측정 시스템을 제공한다.According to an embodiment of the present invention, there is provided a light source device comprising: a light source that emits light; a support member that is disposed on a path of light emitted from the light source and supports the measurement target object such that the measurement target object is disposed on only one side of the optical axis, An optical member which is disposed on a path of light transmitted through the support member and reflects the light on the front surface and the rear surface respectively and has a predetermined thickness; And a signal processing unit for deriving a refractive index distribution of the measurement object from the interference pattern acquired by the light receiving unit.
상기 지지 부재와 상기 광학 부재 사이에 배치되며, 상기 측정 대상체를 투과한 광을 확대시키는 대물 렌즈 및 상기 대물 렌즈에 의해 확대된 광을 평행광으로 변환하는 조절 렌즈를 더 포함할 수 있다.An objective lens disposed between the support member and the optical member for magnifying light transmitted through the measurement object, and an adjustment lens for converting the light expanded by the objective lens into parallel light.
상기 광원과 상기 지지 부재 사이에 배치된 제1 편광자 및 상기 광학 부재와 상기 수광부 사이에 배치된 제2 편광자를 더 포함하며, 상기 제1 편광자의 편광축 방향과 상기 제2 편광자의 편광축 방향은 서로 동일할 수 있다.A first polarizer disposed between the light source and the support member, and a second polarizer disposed between the optical member and the light receiving unit, wherein a polarization axis direction of the first polarizer and a polarization axis direction of the second polarizer are mutually identical can do.
상기 광학 부재의 상기 소정의 두께는 5 mm 내지 15 mm일 수 있다.The predetermined thickness of the optical member may be 5 mm to 15 mm.
상기 광학 부재의 전면에서 반사된 광은 상기 측정 대상체를 투과한 제1 물체 영역 및 상기 제1 물체 영역 이외의 영역인 제1 참조 영역을 포함하고, 상기 광학 부재의 후면에서 반사된 광은 상기 측정 대상체를 투과한 제2 물체 영역 및 상기 제2 물체 영역 이외의 영역인 제2 참조 영역을 포함하며, 상기 간섭 패턴은, 상기 제1 물체 영역과 상기 제2 참조 영역의 중첩에 의해 형성되거나 상기 제1 참조 영역과 상기 제2 물체 영역의 중첩에 의해 형성되며, 상기 제1 물체 영역과 상기 제2 물체 영역은 서로 중첩되지 않을 수 있다.Wherein the light reflected by the front surface of the optical member includes a first object region transmitted through the measurement object and a first reference region that is a region other than the first object region, And a second reference area that is a region other than the second object area, the interference pattern being formed by overlapping the first object area and the second reference area, 1 reference area and the second object area, and the first object area and the second object area may not overlap with each other.
상기 지지 부재 상에 배치된 굴절률 매칭 오일을 더 포함하며, 상기 측정 대상체는 상기 굴절률 매칭 오일 내에 배치될 수 있다.And a refractive index matching oil disposed on the support member, wherein the measurement object can be disposed in the refractive index matching oil.
상기 신호 처리부는, 상기 지지 부재에 상기 측정 대상체를 배치한 상태에서 상기 수광부에 의해 획득된 간섭 패턴으로부터 물체 홀로그램 영상을 획득하는 홀로그램 영상 획득부, 상기 물체 홀로그램 영상으로부터 노이즈를 제거하는 노이즈 제거부, 상기 측정 대상체의 위상 정보를 추출하는 위상 정보 추출부, 및 상기 위상 정보를 이용하여 상기 측정 대상체의 굴절률 분포를 계산하는 굴절률 분포 측정부를 포함할 수 있다.Wherein the signal processing unit includes: a hologram image acquiring unit that acquires an object hologram image from the interference pattern acquired by the light receiving unit in a state where the measurement object is disposed on the support member; a noise removing unit that removes noise from the object hologram image; A phase information extracting unit for extracting phase information of the measurement object, and a refractive index distribution measuring unit for calculating a refractive index distribution of the measurement object using the phase information.
상기 측정 대상체의 굴절률 분포와 설계된 측정 대상체의 굴절률 분포를 비교하여 굴절률 분포 오차를 계산하는 굴절률 오차 측정부를 더 포함할 수 있다.And a refractive index error measuring unit for calculating a refractive index distribution error by comparing the refractive index distribution of the measurement object with the designed refractive index distribution of the measurement object.
상기 홀로그램 영상 획득부는, 상기 물체 홀로그램 영상 및 상기 지지 부재에 상기 측정 대상체가 배치되지 않은 상태에서 상기 수광부에 의해 획득된 간섭 패턴으로부터 참조 홀로그램 영상을 획득하고, 상기 노이즈 제거부는, 상기 물체 홀로그램 영상 및 상기 참조 홀로그램 영상으로부터 노이즈를 제거하며, 상기 위상 정보 추출부는, 노이즈가 제거된 상기 물체 홀로그램 영상으로부터 얻어진 물체 위상 정보와 노이즈가 제거된 상기 참조 홀로그램 영상으로부터 얻어진 참조 위상 정보의 차이로부터 상기 측정 대상체의 위상 정보를 추출할 수 있다.Wherein the hologram image obtaining unit obtains a reference hologram image from the interference pattern acquired by the light receiving unit in a state in which the measurement object is not disposed on the object hologram image and the support member, Wherein the phase information extracting unit extracts a phase of the reference hologram image from the reference hologram image based on the difference between the object phase information obtained from the object hologram image from which the noise is removed and the reference phase information obtained from the noise- The phase information can be extracted.
본 발명의 다른 실시예에 따르면, 광원, 광축의 일측에만 측정 대상체가 배치되도록 상기 측정 대상체를 지지하는 지지 부재, 전면 및 후면에서 각각 광을 반사하는 광학 부재, 상기 광학 부재에 의해 반사된 광을 수광하는 수광부를 포함하는 간섭계를 이용한 굴절률 분포 측정 방법에 있어서, 상기 수광부에 의해 획득된 간섭 패턴으로부터 홀로그램 영상을 획득하는 단계, 상기 홀로그램 영상으로부터 노이즈를 제거하는 단계, 노이즈가 제거된 상기 홀로그램 영상으로부터 상기 측정 대상체의 위상 정보를 추출하는 단계, 및 상기 위상 정보를 이용하여 상기 측정 대상체의 굴절률 분포를 측정하는 단계를 포함하는, 굴절률 분포 측정 방법을 제공한다.According to another embodiment of the present invention, there is provided a light source device comprising a light source, a support member for supporting the measurement target object so that the measurement object is disposed only on one side of the optical axis, an optical member for reflecting light from the front and rear surfaces, A method of measuring a refractive index distribution using an interferometer including a light receiving unit for receiving light, comprising the steps of: obtaining a hologram image from an interference pattern acquired by the light receiving unit; removing noise from the hologram image; Extracting phase information of the measurement object, and measuring a refractive index distribution of the measurement object using the phase information.
상기 굴절률 분포를 측정하는 단계 후에, 상기 측정 대상체의 굴절률 분포와 설계된 측정 대상체의 굴절률 분포를 비교하여 굴절률 분포 오차를 계산하는 단계를 더 포함할 수 있다.The method may further include the step of calculating a refractive index distribution error by comparing the refractive index profile of the measured object with the refractive index profile of the measured object after the measurement of the refractive index profile.
상기 홀로그램 영상을 획득하는 단계는, 상기 지지 부재에 상기 측정 대상체를 배치한 상태에서 물체 홀로그램 영상을 획득하는 단계 및 상기 지지 부재에 상기 측정 대상체가 배치되지 않은 상태에서 참조 홀로그램 영상을 획득하는 단계를 포함하고, 상기 노이즈를 제거하는 단계는, 상기 물체 홀로그램 영상 및 상기 참조 홀로그램 영상으로부터 노이즈를 제거하는 단계를 포함하며, 상기 측정 대상체의 위상 정보를 추출하는 단계는, 노이즈가 제거된 상기 물체 홀로그램 영상으로부터 얻어진 물체 위상 정보와 노이즈가 제거된 상기 참조 홀로그램 영상으로부터 얻어진 참조 위상 정보의 차이로부터 상기 측정 대상체의 위상 정보를 추출하는 단계를 포함할 수 있다.The obtaining of the hologram image may include acquiring an object hologram image in a state where the measurement object is disposed on the support member, and acquiring a reference hologram image in a state where the measurement object is not disposed on the support member Wherein the removing the noise includes removing noise from the object hologram image and the reference hologram image, and the step of extracting the phase information of the measurement object includes the step of extracting the object hologram image And extracting the phase information of the measurement object from the difference between the object phase information obtained from the reference hologram image and the reference phase information obtained from the reference hologram image from which noise has been removed.
상기 광학 부재의 두께는 5 mm 내지 15 mm일 수 있다.The thickness of the optical member may be 5 mm to 15 mm.
상기 광학 부재의 전면에서 반사된 광은 상기 측정 대상체를 투과한 제1 물체 영역 및 상기 제1 물체 영역 이외의 영역인 제1 참조 영역을 포함하고, 상기 광학 부재의 후면에서 반사된 광은 상기 측정 대상체를 투과한 제2 물체 영역 및 상기 제2 물체 영역 이외의 영역인 제2 참조 영역을 포함하며, 상기 홀로그램 영상을 획득하는 단계 전에, 상기 광학 부재의 전면 및 후면에서 각각 반사된 광의 일부가 서로 중첩되며, 상기 중첩 영역에서 제1 물체 영역 및 상기 제2 물체 영역이 서로 중첩되지 않도록 상기 광원 및/또는 상기 광학 부재를 정렬하는 단계를 더 포함할 수 있다.Wherein the light reflected by the front surface of the optical member includes a first object region transmitted through the measurement object and a first reference region that is a region other than the first object region, And a second reference area that is an area other than the second object area, wherein before the step of acquiring the hologram image, a part of the light reflected from the front surface and the back surface of the optical member, respectively, And aligning the light source and / or the optical member so that the first object zone and the second object zone do not overlap with each other in the overlapping zone.
상기 광원 및/또는 상기 광학 부재를 정렬하는 단계는, 상기 광학 부재에 광이 10도 내지 80도로 입사되도록 상기 광원 및/또는 상기 광학 부재를 정렬하는 단계를 포함할 수 있다.The step of aligning the light source and / or the optical member may include aligning the light source and / or the optical member such that light is incident on the optical member at 10 to 80 degrees.
전술한 것 외의 다른 측면, 특징, 이점은 이하의 발명을 실시하기 위한 구체적인 내용, 특허청구범위 및 도면으로부터 명확해질 것이다.Other aspects, features, and advantages other than those described above will be apparent from the following detailed description, claims, and drawings.
이하, 첨부된 도면을 참조로 본 발명의 바람직한 실시예들에 대하여 보다 상세히 설명한다. 이하의 도면들에서 동일한 참조부호는 동일한 구성요소를 지칭하며, 도면상에서 각 구성요소의 크기는 설명의 명료성과 편의상 과장되어 있을 수 있다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the following drawings, like reference numerals refer to like elements, and the size of each element in the drawings may be exaggerated for clarity and convenience of explanation.
도 1은 본 발명의 일 실시예에 따른 굴절률 분포 측정 시스템을 개략적으로도시한 구성도이고, 도 2는 도 1의 B 영역을 도시한 개념도이고, 도 3은 도 1에 포함된 광학 부재에 입사되는 광의 입사각에 따른 광학 부재의 전면 및 후면에서 각각 반사된 광의 이격 거리를 나타낸 그래프이다.FIG. 1 is a schematic view showing a refractive index distribution measuring system according to an embodiment of the present invention. FIG. 2 is a conceptual view showing a region B in FIG. 1, FIG. 5 is a graph illustrating a distance between light reflected by the front surface and the rear surface of the optical member according to the incident angle of light.
도 1을 참조하면, 일 실시예에 따른 굴절률 분포 측정 시스템은, 광을 방출하는 광원(100), 광원(100)으로부터 방출되는 광의 경로 상에 배치되며 광축(OA)을 중심으로 광축(OA)의 일측에만 측정 대상체(210)가 배치되도록 측정 대상체(210)를 지지하는 지지 부재(200), 지지 부재(200)를 투과한 광의 경로 상에 배치되어 전면(300a) 및 후면(300b)에서 각각 광을 반사하며 소정의 두께(t)를 갖는 광학 부재(300), 광학 부재(300)의 전면(300a) 및 후면(300b)에서 반사된 후 일부가 중첩되어 간섭 패턴을 형성하는 2개의 광(B1, B2)을 수광하는 수광부(400), 및 수광부(400)에 의해 획득된 간섭 패턴으로부터 측정 대상체(210)의 굴절률 분포를 도출하는 신호 처리부(510)를 포함한다.1, a refractive index distribution measuring system according to an embodiment of the present invention includes a light source 100 for emitting light, a light source 100 disposed on a path of light emitted from the light source 100 and having an optical axis OA about an optical axis OA, A support member 200 for supporting the measurement object 210 so that the measurement object 210 is disposed only on one side of the support member 200 and a support member 200 for supporting the measurement object 210 on the front surface 300a and the rear surface 300b, An optical member 300 which reflects light and has a predetermined thickness t, two light beams which are reflected from the front face 300a and the rear face 300b of the optical member 300 and partially overlap each other to form an interference pattern B1 and B2 and a signal processing unit 510 for deriving a refractive index distribution of the measurement object 210 from the interference pattern acquired by the light receiving unit 400. [
상기 광원(100)은 레이저 광원일 수 있으며, 예컨대 약 632.8 nm의 파장을 갖는 연속형 헬륨-네온 레이저(continuous He-Ne laser)일 수 있다. 상기 광원(100)으로부터 방출된 광은 반사 부재(810)에 의해 반사된 후 측정 대상체(210)를 지지하는 지지 부재(200)에 입사될 수 있다. 상기 광원(100)과 반사 부재(810) 사이에는 광원(100)으로부터 방출된 광을 평행광으로 변환해주는 렌즈 등으로 구성된 콜리메이터(collimator, 820)가 더 배치될 수 있으며, 광원(100)과 콜리메이터(820)는 일체로 구성될 수도 있다. The light source 100 may be a laser light source and may be, for example, a continuous He-Ne laser having a wavelength of about 632.8 nm. The light emitted from the light source 100 may be reflected by the reflective member 810 and then incident on the support member 200 supporting the measurement object 210. A collimator 820 composed of a lens or the like for converting the light emitted from the light source 100 into parallel light may be further disposed between the light source 100 and the reflective member 810. The light source 100, (820) may be formed integrally.
또한, 콜리메이터(820)과 반사 부재(810) 사이에는 제1 편광자(830)가 더 배치될 수 있으며, 제1 편광자(830)는 소정의 방향으로 편광된 광만을 투과시키는 기능을 수행하며 수광부(400)의 전방에 배치된 제2 편광자(860)와 연동하여 수광부(400)에 입사되는 간섭 패턴의 노이즈를 최소화하는 기능을 수행할 수 있다. 상기 제1 편광자(830)의 편광축 방향과 제2 편광자(860)의 편광축 방향은 서로 동일할 수 있으며, 이러한 구성을 통해 제1 편광자(830)와 제2 편광자(860) 사이에 배치된 광학 소자들에 의해 발생할 수 있는 산란광 등 의도하지 않은 광 성분을 제거할 수 있다. 상기 산란 등이 발생하는 경우 편광 방향이 변화될 수 있으며, 따라서 산란광 등의 적어도 일부는 제2 편광자(860)를 투과할 수 없다. 즉, 노이즈 원인이 될 수 있는 산란광 등의 적어도 일부는 수광부(400)에 입사될 수 없다. A first polarizer 830 may be further disposed between the collimator 820 and the reflective member 810. The first polarizer 830 may transmit only the polarized light in a predetermined direction, 400 can be minimized by interfering with the second polarizer 860 disposed in front of the light receiving unit 400. [ The direction of the polarization axis of the first polarizer 830 and the direction of the polarization axis of the second polarizer 860 may be identical to each other and the optical element 830 disposed between the first polarizer 830 and the second polarizer 860 It is possible to remove unintended light components such as scattered light that may be generated by the light sources. When the scattering occurs, the polarization direction may be changed, so that at least a part of the scattered light or the like can not pass through the second polarizer 860. That is, at least a part of the scattered light or the like, which may cause noise, can not be incident on the light receiving unit 400.
도 1에서는 광원(100)과 지지 부재(200) 사이에 콜리메이터(820), 제1 편광자(830) 및 반사 부재(810)가 배치된 경우를 도시하고 있지만, 본 발명은 이에 한정되지 않으며 상기 구성들은 필요에 따라 생략될 수 있다.1, a collimator 820, a first polarizer 830, and a reflection member 810 are disposed between the light source 100 and the support member 200. However, the present invention is not limited thereto, May be omitted as needed.
반사 부재(810)에 의해 반사된 광의 경로 상에는 지지 부재(200)가 배치되며, 지지 부재(200)는 광축(OA)을 중심으로 광축(OA)의 일측에만 측정 대상체(210)가 배치되도록 측정 대상체(210)를 지지할 수 있다. 도 1의 참조 부호 A는 지지 부재(200)에 배치된 측정 대상체(210)를 광이 진행하는 방향에서 바라본 형태를 도시한 것으로, 광축(OA)을 지나는 중심선(CL)을 포함하는 빔스팟(BSP) 내에 측정 대상체(210)가 배치되며 측정 대상체(210)는 빔스팟(BSP)의 중심선(CL)에 대하여 일측에만 위치하도록 지지 부재(200) 상에 배치될 수 있다.The support member 200 is arranged on the path of the light reflected by the reflection member 810 and the support member 200 is measured so that the measurement object 210 is disposed on only one side of the optical axis OA with respect to the optical axis OA The object 210 can be supported. A reference numeral A in FIG. 1 shows the measurement object 210 disposed on the support member 200 in a direction in which the light travels. The beam spot includes a center line CL passing the optical axis OA The measurement object 210 is disposed within the beam spot BSP and the measurement target object 210 can be disposed on the support member 200 so as to be located at only one side with respect to the center line CL of the beam spot BSP.
일 실시예에 따르면, 측정 대상체(210)는 굴절률 매칭 오일(index matching oil, 220) 내에 배치될 수 있다. 굴절률 매칭 오일(220)의 굴절률은 측정 대상체(210)의 굴절률과 동일 또는 유사하며, 측정 대상체(210)를 굴절률 매칭 오일(220)에 완전히 잠기도록 배치함으로써 측정 대상체(210)에 입사된 광이 측정 대상체(210)와 공기의 계면에서 산란되거나 굴절되지 않도록 할 수 있다. 굴절률 매칭 오일(220)의 일면은 대물 렌즈(840)와 접할 수 있으며, 이러한 구성을 통해 대물 렌즈(840)의 개구수(NA; numerical aperture)가 증가될 수 있다.According to one embodiment, the measurement object 210 may be disposed within an index matching oil 220. The refractive index of the refractive index matching oil 220 is the same as or similar to the refractive index of the measuring object 210 and is arranged such that the measuring object 210 is completely immersed in the refractive index matching oil 220, It is possible to prevent scattering or refraction at the interface between the measurement object 210 and the air. One side of the refractive index matching oil 220 can be in contact with the objective lens 840 and the numerical aperture NA of the objective lens 840 can be increased through this configuration.
상기 지지 부재(200)를 투과한 광의 경로 상에는 광학 부재(300)가 배치되며, 지지 부재(200)와 광학 부재(300) 사이에는 소정의 배율을 갖는 대물 렌즈(840) 및 대물 렌즈(840)에 의해 확대된 광을 평행광으로 변환시키는 조절 렌즈(850)가 배치될 수 있다. 상기 광학 부재(300)에 입사되는 광은 지지 부재(200) 상에 측정 대상체(210)가 배치되지 않는 경우 지지 부재(200) 및 굴절률 매칭 오일(220)를 투과한 광이 되며, 지지 부재(200) 상에 측정 대상체(210)가 배치된 경우 지지 부재(200), 측정 대상체(210) 및 굴절률 매칭 오일(200)을 투과한 광이 된다.An objective lens 840 and an objective lens 840 having a predetermined magnification are disposed between the support member 200 and the optical member 300. The objective lens 840 and the objective lens 840 are disposed between the support member 200 and the optical member 300, An adjustment lens 850 for converting the light expanded by the light source 810 into parallel light can be disposed. The light incident on the optical member 300 becomes the light transmitted through the support member 200 and the refractive index matching oil 220 when the measurement object 210 is not disposed on the support member 200, The measurement object 210 and the refractive index matching oil 200 when the measurement object 210 is disposed on the support member 200,
서로 일부가 중첩되어 간섭 패턴을 형성하며 수광부(400)에 입사되는 2개의 광(B1, B2)의 크기는 대물 렌즈(840)에 의해 결정될 수 있으며, 예컨대 2개의 광(B1, B2) 각각의 반지름은 약 5 mm일 수 있다. 상기 광(B1, B2)의 크기는 수광부(400)에 의해 얻어진 간섭 패턴의 콘트라스트 등을 고려하여 결정될 수 있으며, 광(B1, B2)의 크기는 광의 세기(intensity)의 최대값에 대하여 광의 세기가 1/e로 감소한 지점을 기준으로 정의될 수 있다. The size of the two light beams B1 and B2 incident on the light receiving unit 400 forming an interference pattern may be determined by the objective lens 840. For example, The radius may be about 5 mm. The size of the light B1 and B2 may be determined in consideration of the contrast of the interference pattern obtained by the light receiving unit 400 and the size of the light B1 and B2 may be determined based on the intensity of the light, Can be defined on the basis of a point at which 1 / e decreases.
상기 광학 부재(300)는 소정의 두께(t) 및 굴절률(n2)을 갖는 광학 유리일 수 있으며, 광학 부재(300)에 입사된 광은 광학 부재(300)의 전면(300a) 및 후면(300b)에서 각각 반사될 수 있다. 상기 광학 부재(300)의 전면(300a)에서 반사된 제1 빔(B1) 및 후면(300b)에서 반사된 제2 빔(B2)은 소정의 거리(d)만큼 이격되어 있으며, 일부가 서로 중첩될 수 있다. 상기 거리(d)는 제1 빔(B1)의 중심 및 제2 빔(B2)의 중심 사이의 거리, 즉, 광학 부재(300)에 의해 나뉘어진 2개의 광축 사이의 거리를 의미한다.The optical member 300 may be an optical glass having a predetermined thickness t and a refractive index n 2 and the light incident on the optical member 300 may be incident on the front surface 300a and the rear surface And 300b, respectively. The first beam B1 reflected from the front surface 300a of the optical member 300 and the second beam B2 reflected from the rear surface 300b are spaced apart from each other by a predetermined distance d, . The distance d means the distance between the center of the first beam B1 and the center of the second beam B2, i.e., the distance between the two optical axes divided by the optical member 300. [
도 2는 광학 부재(300)의 전면(300a) 및 후면(300b)에서 각각 반사된 제1 빔(B1) 및 제2 빔(B2)을 광이 진행하는 방향에서 바라본 형태를 도시한 것으로, 도 2를 참조하면, 제1 빔(B1)은 측정 대상체(210)를 투과한 제1 물체 영역(O1) 및 제1 물체 영역(O1) 이외의 영역인 제1 참조 영역(R1)을 포함하며 제2 빔(B2)은 측정 대상체(210)를 투과한 제2 물체 영역(O2) 및 제2 물체 영역(O2) 이외의 영역인 제2 참조 영역(R2)을 포함할 수 있다.2 shows the first beam B1 and the second beam B2 reflected from the front surface 300a and the rear surface 300b of the optical member 300 in a direction in which light travels, reference to Figure 2 when, the first beam (B1) is a measurement target object 210, the first object region (O 1) and the first object region (O 1), the area other than the first reference area (R 1) transmitted through the included and the second beam (B2) may include a light transmitted through the measurement target object 210, the second object region (O 2) and the second object region (O 2) regions of the second reference region other than the (R 2) have.
상술한 바와 같이, 측정 대상체(210)는 광축(OA)을 중심으로 일측에만 배치되므로, 제1 물체 영역(O1) 및 제2 물체 영역(O2)은 모두 빔의 중심선을 기준으로 일측에만 배치될 수 있다. 따라서, 제1 빔(B1)과 제2 빔(B2) 사이의 거리(d)를 조정하여 제1 빔(B1)과 제2 빔(B2)이 중첩되는 정도를 조절하는 경우 제1 물체 영역(O1)과 제2 참조 영역(R2)이 중첩되도록 할 수 있으며 제1 물체 영역(O1)과 제2 참조 영역(R2)의 중첩에 의해 형성된 간섭 패턴이 수광부(400)에 입사될 수 있다.As described above, the measurement target object 210 is placed only on one side of the optical axis (OA), the first object region (O 1) and a second object area (O 2) are all only one side relative to the center line of the beam . Therefore, when the degree of overlapping of the first beam B1 and the second beam B2 is adjusted by adjusting the distance d between the first beam B1 and the second beam B2, O 1 and the second reference region R 2 may overlap with each other and the interference pattern formed by overlapping the first object region O 1 and the second reference region R 2 may be incident on the light receiving section 400 have.
상기 제1 물체 영역(O1)과 제2 물체 영역(O2)은 각각 측정 대상체(210)를 투과한 영역으로서, 제1 물체 영역(O1)과 제2 물체 영역(O2)이 중첩되어 간섭 패턴을 형성하는 경우 상기 간섭 패턴은 측정 대상체(210)에 대한 위상 정보를 이중으로 포함하게 된다. 간섭 패턴이 이중 영상(duplicate images)을 포함하는 경우, 간섭 패턴을 통해 추출된 측정 대상체(210)의 위상 정보 및 이로부터 도출된 굴절률 분포에 큰 오차가 발생할 수 있다.The first object region (O 1) and a second object area (O 2) is a region respectively transmitted through the measurement target object 210, the first object region (O 1) and a second object area (O 2) are superposed When the interference pattern is formed, the interference pattern includes the phase information for the measurement object 210 in a double manner. When the interference pattern includes duplicate images, a large error may occur in the phase information of the measurement object 210 extracted through the interference pattern and the refractive index distribution derived therefrom.
그러나, 본 발명의 일 실시예에 따르면, 제1 물체 영역(O1)과 제2 물체 영역(O2)은 서로 중첩되지 않으며 제1 물체 영역(O1)은 제2 참조 영역(R2)과 중첩되어 간섭 패턴을 형성한다. 그러나, 본 발명은 이에 한정되지 않으며, 지지 부재(200) 상에 배치된 측정 대상체(210)의 위치에 따라 제2 물체 영역(O2)이 제1 참조 영역(R1)과 중첩될 수도 있다. 어떠한 경우든, 제1 물체 영역(O1)과 제2 물체 영역(O2)은 서로 중첩되지 않으며 따라서, 도 1의 간섭계에 의해 획득된 간섭 패턴은 이중 영상을 포함하지 않는다. 다만, 제1 물체 영역(O1) 전체는 제1 빔(B1)과 제2 빔(B2)이 중첩된 중첩 영역(OR)에 포함되어야 한다. 제1 물체 영역(O1)의 일부라도 중첩 영역(OR)에 포함되어 있지 않은 경우, 포함되지 않은 영역에 대응되는 측정 대상체(210)의 굴절률 분포를 측정할 수 없다. However, according to an embodiment of the present invention, the first object zone O 1 and the second object zone O 2 do not overlap with each other, and the first object zone O 1 corresponds to the second reference zone R 2 , To form an interference pattern. However, the present invention is not limited to this, and the second object zone O 2 may overlap the first reference zone R 1 depending on the position of the measurement object 210 disposed on the support member 200 . In any case, the first object zone O 1 and the second object zone O 2 do not overlap each other, and thus the interference pattern obtained by the interferometer of FIG. 1 does not include a dual image. However, the first object region (O 1) overall are to be included in the first beam (B1) and the the second beam (B2) are superposed overlapping area (OR). When a part of the first object zone O 1 is not included in the overlap area OR, it is not possible to measure the refractive index distribution of the measurement target object 210 corresponding to the area not including the first object zone O 1 .
도 2와 같이, 제1 물체 영역(O1)과 제2 물체 영역(O2)이 서로 중첩되지 않으면서, 제1 물체 영역(O1) 전체가 중첩 영역(OR)에 포함되도록 제1 빔(B1)과 제2 빔(B2)의 이격 거리(d)가 정해져야 하며, 상기 이격 거리(d)는 하기 수학식 1에 의해 결정될 수 있다.The first object zone O 1 and the second object zone O 2 do not overlap with each other so that the entire first object zone O 1 is included in the overlap area OR, The separation distance d between the first beam B1 and the second beam B2 should be determined and the separation distance d may be determined by the following equation 1:
[수학식 1][Equation 1]
Figure PCTKR2016010607-appb-I000001
Figure PCTKR2016010607-appb-I000001
여기서, t는 광학 부재(300)의 두께, n2는 광학 부재(300)의 굴절률, n1은 공기 굴절률, 및 θi는 광학 부재(300)에 입사되는 광의 입사각을 의미한다.Here, t denotes the thickness of the optical member 300, n 2 denotes the refractive index of the optical member 300, n 1 denotes the air refractive index, and θ i denotes the incident angle of the light incident on the optical member 300.
도 3을 참조하면, 광학 부재(300)에 입사되는 광의 입사각(θi)에 따른 광학 부재(300)의 전면(300a) 및 후면(300b)에서 각각 반사된 광의 이격 거리(d)를 나타낸 그래프이며, 이격 거리(d)는 광학 부재(300)의 두께(t)를 포함하는 변수로 표현하였으며, n1/n2은 공기의 굴절률에 대한 광학 유리의 비율인 약 0.658로 계산하였다.3 is a graph showing the distance d of light reflected from the front face 300a and the rear face 300b of the optical member 300 according to the incident angle? I of the light incident on the optical member 300, , And the separation distance d is represented by a variable including the thickness t of the optical member 300 and n 1 / n 2 is calculated to be about 0.658, which is the ratio of the optical glass to the refractive index of air.
도 3의 가로축은 입사각(θi)을 라디안(radian) 단위로 나타낸 것으로, 라디안(radian)에 180/3.14를 곱함으로써 도(degree) 단위의 각도를 계산할 수 있다.The horizontal axis in FIG. 3 represents the incident angle (? I ) in radian units, and the angle in degree units can be calculated by multiplying the radian by 180 / 3.14.
도 3에 도시된 바와 같이, 입사각이 49.29도일 때 이격 거리(d)는 최대값을 가지며 상기 각도에서 이격 거리(d)는 0.75×t m의 값을 가질 수 있다. 이에 의하면, 광학 부재(300)의 두께(t)가 약 5 mm 미만인 경우 이격 거리의 최대값이 3.5 mm 미만이 된다. 그러나, 이 경우 제1 빔(B1)과 제2 빔(B2)의 중첩 영역(OR)의 면적이 지나치게 커지므로 중심선이 중첩 영역(OR) 내에 위치할 수 있다. 따라서, 제1 빔(B1)의 제1 물체 영역(O1)과 제2 빔(B2)의 제2 물체 영역(O2)이 중첩되어 간섭 패턴이 이중 영상을 포함하는 문제가 발생할 수 있다. 또, 광학 부재(300)의 두께(t)가 약 15 mm를 초과하는 경우 입사각(θi)을 조정한다고 하더라도 이격 거리(d)가 지나치게 커지며, 따라서 중첩 영역(OR)의 면적이 지나치게 작아서 중첩 영역(OR)에 제1 빔(B1)의 제1 물체 영역(O1)의 적어도 일부가 중첩 영역(OR)의 외측에 배치될 수 있다. 즉, 이 경우 측정 대상체(210)의 일부 영역에 대한 굴절률 분포를 측정할 수 없다. 따라서, 광학 부재(300)의 두께(t)는 5 mm 내지 15 mm의 값을 가질 수 있다.As shown in FIG. 3, when the incident angle is 49.29 degrees, the separation distance d has a maximum value, and the separation distance d from the angle may have a value of 0.75 x tm. According to this, when the thickness t of the optical member 300 is less than about 5 mm, the maximum value of the separation distance is less than 3.5 mm. However, in this case, since the area of the overlap region OR between the first beam B1 and the second beam B2 becomes excessively large, the center line can be located in the overlap region OR. Therefore, the first object zone O 1 of the first beam B1 overlaps the second object zone O 2 of the second beam B2, and the interference pattern may include a double image. If the thickness t of the optical member 300 exceeds about 15 mm, even if the incident angle? I is adjusted, the spacing distance d becomes excessively large, and the area of the overlapping area OR is excessively small, At least a part of the first object zone O 1 of the first beam B1 may be arranged outside the overlap area OR in the area OR. That is, in this case, it is not possible to measure the refractive index distribution for a partial region of the measurement target 210. Therefore, the thickness t of the optical member 300 may have a value of 5 mm to 15 mm.
상기 이격 거리(d)는 광학 부재(300)의 두께(t)뿐 아니라 광학 부재(300)에 입사되는 광의 입사각(θi)에 따라 달라질 수 있으며, 입사각(θi)은 10도 내지 80도의 각도를 가질 수 있다. 입사각(θi)이 10도 미만인 경우 광학 부재(300)의 전면(300a)과 후면(300b) 사이에서 진행하는 광의 경로가 지나치게 길어져 상대적으로 큰 크기를 갖는 광학 부재(300)가 요구되며, 간섭 거리가 길어져 전면(300a)에서 반사된 광과 후면(300b)에서 반사된 광 사이의 간섭이 잘 일어나지 않을 수 있다. 또, 입사각(θi)이 80도를 초과하는 경우 광이 광학 부재(300)에 입사되는 경로와 광학 부재(300)로부터 반사된 광의 경로가 지나치게 가까워 광학 소자들의 정렬이 어려울 수 있다.The separation distance (d) as well as thickness (t) of the optical member 300 may be varied according to the incident angle (θ i) impinging on the optical element 300, the angle of incidence (θ i) is 10 to 80 degrees It can have an angle. When the incident angle? I is less than 10 degrees, the path of the light traveling between the front surface 300a and the rear surface 300b of the optical member 300 is excessively long, so that the optical member 300 having a relatively large size is required, The distance may be long so that the interference between the light reflected from the front surface 300a and the light reflected from the rear surface 300b may not occur well. When the incident angle? I exceeds 80 degrees, the path of the light incident on the optical member 300 and the path of the light reflected from the optical member 300 may be too close to align the optical elements.
본 발명의 일 실시예에 따른 굴절률 분포 측정 시스템은 광학 부재(300)의 전면(300a) 및 후면(300b)에서 반사된 후 일부가 중첩되어 간섭 패턴을 형성하는 2개의 광(B1, B2)을 수광하는 수광부(400) 및 중앙 처리 장치(500)를 포함할 수 있다. 중앙 처리 장치(500)는 수광부(400)에 의해 획득된 간섭 패턴으로부터 측정 대상체(210)의 굴절률 분포를 도출하는 신호 처리부(510) 및 지지 부재(200), 대물 렌즈(840) 및 조절 렌즈(850)의 위치를 조절하는 제어부(520)를 포함할 수 있다. 상기 수광부(400)는 CCD(charge coupled device)와 같은 이차원 고체 이미지 센서일 수 있으며, 도시하진 않았지만, 제어부(520)는 광원(100) 및 광학 부재(300)와 연결되어 광원(100)의 세기 및 광학 부재(300)의 각도 등을 조절할 수도 있다.The refractive index distribution measuring system according to an embodiment of the present invention includes two beams B1 and B2 which are partially reflected on the front surface 300a and the rear surface 300b of the optical member 300 and form an interference pattern, A light receiving unit 400 for receiving light and a central processing unit 500. The central processing unit 500 includes a signal processing unit 510 for deriving a refractive index distribution of the measurement object 210 from the interference pattern acquired by the light receiving unit 400 and a signal processing unit And a control unit 520 for adjusting the position of the display unit 850. Although not shown, the control unit 520 may be connected to the light source 100 and the optical member 300 to sense the intensity of the light source 100. The light source 100 may be a two-dimensional solid image sensor such as a charge coupled device (CCD) And the angle of the optical member 300 may be adjusted.
도 4는 도 1의 신호 처리부의 상세 구성을 나타낸 블록도이다. 이하, 도 4를 중심으로 굴절률 분포 측정 시스템에 포함된 신호 처리부(400)의 상세 구성 및 이를 통한 굴절률 분포 측정 방법에 관하여 순차적으로 설명한다.4 is a block diagram showing the detailed configuration of the signal processing unit of FIG. Hereinafter, a detailed configuration of the signal processing unit 400 included in the refractive index distribution measuring system and a method of measuring a refractive index distribution therefrom will be sequentially described with reference to FIG.
도 4를 참조하면, 신호 처리부(510)는 지지 부재(200)에 상기 측정 대상체(210)를 배치한 상태에서 수광부(400)에 의해 획득된 간섭 패턴으로부터 물체 홀로그램 영상을 획득하는 홀로그램 영상 획득부(511), 물체 홀로그램 영상으로부터 노이즈를 제거하는 노이즈 제거부(512), 측정 대상체(210)의 위상 정보를 추출하는 위상 정보 추출부(513) 및 위상 정보를 이용하여 측정 대상체(210)의 굴절률 분포를 계산하는 굴절률 분포 측정부(514)를 포함할 수 있다.4, the signal processing unit 510 includes a hologram image acquiring unit 500 for acquiring an object hologram image from the interference pattern acquired by the light receiving unit 400 while the measurement object 210 is disposed on the support member 200, A phase information extracting unit 513 for extracting phase information of the measurement object 210 and a phase information extracting unit 513 for extracting the refractive index of the measurement object 210 using the phase information, And a refractive index distribution measuring unit 514 for calculating a distribution.
상기 신호 처리부(510)는 광원(100), 지지 부재(200), 광학 부재(300) 및 수광부(400)를 포함하는 간섭계를 통해 획득된 간섭 패턴으로부터 측정 대상체(210)의 굴절률 분포를 측정하며, 본 발명의 일 실시예에 따른 굴절률 분포 측정 방법은, 수광부(400)에 의해 획득된 간섭 패턴으로부터 홀로그램 영상을 획득하는 단계, 홀로그램 영상으로부터 노이즈를 제거하는 단계, 노이즈가 제거된 홀로그램 영상으로부터 측정 대상체(210)의 위상 정보를 추출하는 단계, 및 위상 정보를 이용하여 측정 대상체(210)의 굴절률 분포를 계산하는 단계를 포함한다. 상기 홀로그램 영상을 획득하는 단계는 홀로그램 영상 획득부(511)에서, 노이즈를 제거하는 단계는 노이즈 제거부(512)에서, 위상 정보를 추출하는 단계는 위상 정보 추출부(513)에서, 굴절률 분포를 계산하는 단계는 굴절률 분포 측정부(514)에서 수행될 수 있다.The signal processing unit 510 measures the refractive index distribution of the measurement object 210 from the interference pattern acquired through the interferometer including the light source 100, the support member 200, the optical member 300 and the light receiving unit 400 The method of measuring a refractive index profile according to an embodiment of the present invention includes the steps of obtaining a hologram image from an interference pattern acquired by a light receiving unit 400, removing noise from the hologram image, measuring the hologram image from the hologram image Extracting phase information of the object 210, and calculating a refractive index distribution of the measurement object 210 using the phase information. The step of acquiring the hologram image may include a step of removing the noise in the hologram image acquiring unit 511, a step of extracting the phase information from the noise removing unit 512, and a step of extracting the phase information from the phase information extracting unit 513, The calculating step may be performed in the refractive index distribution measuring unit 514. [
일 실시예에 따르면, 굴절률 분포 측정 방법은 상기 굴절률 분포를 계산하는 단계 후에 측정 대상체(210)의 굴절률 분포와 설계된 측정 대상체(210)의 굴절률 분포를 비교하여 굴절률 분포 오차를 계산하는 단계를 더 포함할 수 있으며, 이는 신호 처리부(510)의 굴절률 분포 오차 측정부(515)에서 수행될 수 있다. 이를 통해 측정 대상체(210)의 굴절률 분포 오차를 정밀하게 측정할 수 있다. 예컨대, 측정 대상체(210)는 고성능 마이크로 렌즈일 수 있다. 마이크로 렌즈는 제작 비용, 충격에 대한 강건성 등을 고려하여 플라스틱 재질의 렌즈를 대량 사출하는 방식으로 제작되며, 플라스틱 렌즈 사출 과정을 통한 광학 렌즈의 제조 방법에 의해 마이크로 렌즈를 제조하는 경우 금형 위치에 따른 냉각 속도와 압력 등의 차이로 제조된 마이크로 렌즈의 굴절률이 위치에 따라 의도한 바와 달라질 수 있다. 그 결과, 휴대용 멀티미디어 단말기기 등이 상기와 같은 마이크로 렌즈를 포함하는 경우 고해상도의 영상을 획득하기 어려운 문제가 발생할 수 있다. 따라서, 제작된 마이크로 렌즈의 굴절률 분포 및 이를 설계된 굴절률 분포와 비교하여 굴절률 분포 오차를 측정하는 기술에 대한 수요가 증가되고 있다. 본 발명은, 굴절률 분포 및 굴절률 분포 오차를 정밀하게 측정할 수 있는 굴절률 분포 측정 시스템 및 굴절률 분포 측정 방법을 제공할 수 있다.According to an embodiment of the present invention, the refractive index distribution measuring method further includes a step of calculating a refractive index distribution error by comparing the refractive index profile of the measured object 210 with the refractive index profile of the measured object 210 after the step of calculating the refractive index profile And this can be performed in the refractive index distribution error measuring unit 515 of the signal processing unit 510. The refractive index distribution error of the measurement object 210 can be precisely measured. For example, the measurement object 210 may be a high-performance microlens. The microlens is manufactured by a method of mass-injection of a plastic lens in consideration of manufacturing cost, robustness against impact, etc. When a microlens is manufactured by an optical lens manufacturing method through a plastic lens injection process, The refraction index of the microlens manufactured by the difference of the cooling speed and the pressure can be changed according to the position. As a result, when a portable multimedia terminal or the like includes a microlens as described above, it may be difficult to obtain a high-resolution image. Therefore, there is an increasing demand for a technique for measuring the refractive index distribution error by comparing the refractive index distribution of the manufactured microlens with the designed refractive index distribution. INDUSTRIAL APPLICABILITY The present invention can provide a refractive index distribution measuring system and a refractive index distribution measuring method which can precisely measure the refractive index distribution and the refractive index distribution error.
상기 홀로그램 영상을 획득하는 단계는, 지지 부재(200)에 측정 대상체(210)를 배치한 상태에서 물체 홀로그램 영상을 획득하는 단계 및 지지 부재(200)에 측정 대상체(210)가 배치되지 않은 상태에서 참조 홀로그램 영상을 획득하는 단계를 포함하고, 노이즈를 제거하는 단계는, 물체 홀로그램 영상 및 참조 홀로그램 영상으로부터 노이즈를 제거하는 단계를 포함하며, 측정 대상체(210)의 위상 정보를 추출하는 단계는, 노이즈가 제거된 물체 홀로그램 영상으로부터 얻어진 물체 위상 정보와 노이즈가 제거된 참조 홀로그램 영상으로부터 얻어진 참조 위상 정보의 차이로부터 상기 측정 대상체의 위상 정보를 추출하는 단계를 포함할 수 있다.The step of acquiring the hologram image may include acquiring an object hologram image in a state where the measurement object 210 is disposed on the support member 200 and acquiring the hologram image in a state where the measurement object 210 is not disposed on the support member 200 Wherein the step of removing noise includes a step of removing noise from an object hologram image and a reference hologram image, and the step of extracting the phase information of the measurement object 210 includes the steps of: And extracting the phase information of the measurement object from the difference between the object phase information obtained from the object hologram image from which the noise has been removed and the reference phase information obtained from the noise-removed reference hologram image.
홀로그램 영상 획득부(511)에 의해 획득된 물체 홀로그램 영상의 세기(intensity)는 하기 수학식 2와 같다.The intensity of the object hologram image acquired by the hologram image acquisition unit 511 is expressed by Equation 2 below.
[수학식 2]&Quot; (2) "
Figure PCTKR2016010607-appb-I000002
Figure PCTKR2016010607-appb-I000002
여기서, O1은 도 2에서 설명한 제1 물체 영역(O1)에 대응되는 광의 전기장(electric field), R2는 제2 참조 영역(R2)에 대응되는 광의 전기장을 의미하며, 수학식 2를 통해 물체 홀로그램 영상의 세기는 제2 물체 영역(O2)에 대응되는 광에 대한 정보, 즉 이중 영상을 포함하지 않음을 확인할 수 있다.Here, O 1 denotes an electric field of light corresponding to the first object zone O 1 described in FIG. 2, R 2 denotes an electric field of light corresponding to the second reference area R 2 , and Equation 2 It can be confirmed that the intensity of the object hologram image does not include information on the light corresponding to the second object zone O 2 , that is, a dual image.
노이즈 제거부(512)는 상기 물체 홀로그램 영상의 홀로그램 세기로부터 DC 바이어스(DC bias) 및 허상(virtual image) 등과 같은 노이즈를 제거하는 단계를 수행할 수 있다. 이러한 노이즈를 제거하기 위하여 다양한 방법이 제안되어 있지만, 이하에서는 저주파 필터링(LPF; low pass filtering) 방법 및 각 스펙트럼(ASP; angular spectrum) 방법을 사용한 노이즈 제어 방법에 관하여 설명한다.The noise removing unit 512 may remove noise such as a DC bias and a virtual image from the hologram intensity of the object hologram image. Various methods for eliminating such noise have been proposed. Hereinafter, a noise control method using a low pass filtering (LPF) method and an angular spectrum (ASP) method will be described below.
상기 수학식 2에 포함된 복소 진폭을 수치적으로 복원하기 위해, 간섭 패턴에 제2 참조 영역(R2)에 대응되는 광을 추가적으로 조사하며, 이를 통해 하기 수학식 3과 같은 복수 진폭을 얻을 수 있다.In order to numerically recover the complex amplitude included in Equation ( 2 ), light corresponding to the second reference region (R 2 ) is further irradiated to the interference pattern, thereby obtaining a plurality of amplitudes as shown in Equation (3) have.
[수학식 3]&Quot; (3) "
Figure PCTKR2016010607-appb-I000003
Figure PCTKR2016010607-appb-I000003
획득된 복소 진폭으로부터 DC 바이어스 및 허상을 제거하기 위해 저주파 필러링이 수행되었고, 각 스펙트럼 방법을 이용하여 측정 대상체(210)에 대한 위상 정보를 복원 평면에서 추출하였다. 하기 수학식 4는 푸리에 변환(fourier transform) 후 주파수 영역에서 저주파 필터링 및 각 스펙트럼 방법이 적용된 복소 진폭이다. Low frequency pilling was performed to remove the DC bias and the virtual image from the obtained complex amplitude, and phase information for the measurement object 210 was extracted from the reconstruction plane using each spectral method. Equation (4) is a complex amplitude in which low frequency filtering and each spectral method are applied in the frequency domain after a fourier transform.
[수학식 4]&Quot; (4) "
Figure PCTKR2016010607-appb-I000004
Figure PCTKR2016010607-appb-I000004
여기서,
Figure PCTKR2016010607-appb-I000005
은 저주파 필터링에 의해 DC 바이어스 및 허상이 제거된 복수 진폭이며, 지수 부분은 각 스펙트럼 방법의 적용을 의미한다. 또, fx와 fy는 x축과 y축 방향의 공간 주파수이고, k, λ 및 d는 각각 파수, 파장 및 복원 거리를 의미한다.
here,
Figure PCTKR2016010607-appb-I000005
Is a plurality of amplitudes from which the DC bias and the virtual image are removed by low frequency filtering, and the exponent part means the application of each spectral method. In addition, f x and f y are spatial frequencies in the x and y axis directions, and k, λ and d denote the wave number, wavelength, and restoration distance, respectively.
최종적으로, 주파수 영역에서의 복소 진폭을 공간 영역으로 변환하기 위해 역 푸리에 변환(inverse fourier transform)을 사용하여, 측정 대상체(210)에 대한 위상 정보 추출을 위한 복소 진폭을 수학식 5와 같이 구할 수 있다.Finally, a complex amplitude for extracting the phase information for the measurement object 210 can be obtained as shown in Equation (5) by using an inverse fourier transform to convert the complex amplitude in the frequency domain into the spatial domain have.
[수학식 5]&Quot; (5) "
Figure PCTKR2016010607-appb-I000006
Figure PCTKR2016010607-appb-I000006
일반적으로, 광경로의 차이는 측정 대상체(210)의 두께와 굴절률 차이에 의해 결정된다. 또한, 광경로의 차이는 광원의 파장과 측정 대상체(210)의 위상 정보로 표현될 수 있다. 일 실시예에 따르면, 측정 대상체(210)의 굴절률에 대한 정보는 하기 수학식 6과 같이 표현될 수 있다.Generally, the difference in light path is determined by the difference between the thickness of the measurement object 210 and the refractive index. In addition, the difference in the light path can be expressed by the wavelength of the light source and the phase information of the measurement object 210. According to one embodiment, the information on the refractive index of the measurement object 210 can be expressed by Equation (6).
[수학식 6]&Quot; (6) "
Figure PCTKR2016010607-appb-I000007
Figure PCTKR2016010607-appb-I000007
여기서, △Φ(x, y, d)와 △L(x, y, d)는 측정 대상체(210)에 의한 위상 차이와 측정 대상체(210)의 두께를 의미한다. Here,? X (x, y, d) and? L (x, y, d) mean the phase difference by the measurement target 210 and the thickness of the measurement target 210.
일 실시예에 따르면, 측정 대상체(210)는 측정 대상체(210)와 굴절률이 동일 또는 유사한 굴절률 매칭 오일(220) 내에 배치된 것으로 측정 대상체(210)가 지지 부재(200)에 배치된 경우의 위상은 하기 수학식 7와 같이 표현할 수 있으며, 측정 대상체(210)가 지지 부재(200)에 배치되지 않은 경우의 위상은 하기 수학식 8과 같이 표현할 수 있다.According to one embodiment, the measurement object 210 is disposed in the refractive index matching oil 220 having the same or similar refractive index as that of the measurement object 210, and the phase of the measurement object 210 when the measurement object 210 is disposed on the support member 200 Can be expressed by the following Equation (7), and the phase when the measurement object 210 is not disposed on the support member (200) can be expressed by the following Equation (8).
[수학식 7]&Quot; (7) "
Figure PCTKR2016010607-appb-I000008
Figure PCTKR2016010607-appb-I000008
[수학식 8]&Quot; (8) "
Figure PCTKR2016010607-appb-I000009
Figure PCTKR2016010607-appb-I000009
여기서, D는 굴절률 매칭 오일(220)의 광이 진행하는 방향에 따른 거리, ?L은 측정 대상체(210)의 광이 진행하는 방향에 따른 거리를 의미한다.Where D is the distance along the direction in which the light of the refractive index matching oil 220 advances and? L is the distance along the direction in which the light of the measurement object 210 travels.
상기 수학식 7 및 수학식 8로부터 측정 대상체(210)의 위상 정보를 하기 수학식 9와 같이 추출할 수 있다.From Equation (7) and Equation (8), the phase information of the measurement object 210 can be extracted as shown in Equation (9).
[수학식 9]&Quot; (9) "
Figure PCTKR2016010607-appb-I000010
Figure PCTKR2016010607-appb-I000010
여기서, nlens는 측정 대상체(210)의 굴절률을 의미하고, noil은 굴절률 매칭 오일(220)의 굴절률을 의미한다.Here, n lens means a refractive index of the measurement object 210, and n oil means a refractive index of the refractive index matching oil 220.
만약, 굴절률 매칭 오일(220)과 측정 대상체(210)의 굴절률이 같다면, ?Φ는 0이 되며, 굴절률 차이가 일정하다면 △Φ는 일정한 값을 갖게 된다. 즉, 측정 대상체(210)의 굴절률(nlens)이 위치에 따라 일정한 경우 중첩 영역(OR) 전체에 걸쳐 라인(line) 형태의 규칙적인 간섭 패턴만이 형성된다.If the refractive index of the refractive index matching oil 220 is the same as the refractive index of the measurement object 210,? Is 0, and if the refractive index difference is constant, ?? has a constant value. That is, when the refractive index (n lens ) of the measurement object 210 is constant according to the position, only a regular interference pattern in the form of a line is formed over the entire overlap region OR.
그러나, 측정 대상체(210)가 위치에 따라 굴절률이 다른 경우, 즉, 측정 대상체(210)의 설계된 굴절률과 실제 측정 대상체(210)의 굴절률 사이에 오차가 발생하는 경우, 상기 오차에 의해 간섭 패턴이 변형되어 불규칙적인 형태의 간섭 패턴이 형성될 수 있다. 오차를 포함하는 측정 대상체(210)의 굴절률은 하기 수학식 10과 같이 표현될 수 있다.However, when an error occurs between the refractive index of the measurement target 210 and the refractive index of the actual measurement target 210 depending on the position of the measurement target 210, An irregularly shaped interference pattern can be formed. The refractive index of the measurement object 210 including the error can be expressed by the following equation (10).
[수학식 10]&Quot; (10) "
Figure PCTKR2016010607-appb-I000011
Figure PCTKR2016010607-appb-I000011
여기서, ndesigned는 측정 대상체(210)의 설계된 굴절률, σlens는 굴절률 오차를 의미한다. Here, n is the refractive index designed, σ lens design of the measurement target object 210 means a refractive error.
상기 수학식 9와 수학식 10으로부터 하기 수학식 11과 같이 굴절률 분포 오차에 관한 수식을 도출할 수 있다.From Equations (9) and (10), it is possible to derive an equation relating to the refractive index distribution error as shown in Equation (11).
[수학식 11]&Quot; (11) "
Figure PCTKR2016010607-appb-I000012
Figure PCTKR2016010607-appb-I000012
상기 수식에서 ndesigned, noil 및 ?L은 이미 알려진 값이며, ?Φ는 간섭 패턴으로부터 얻어진 값으로, 상기 수학식 11에 의해 굴절률 분포 오차를 도출할 수 있다. 본 발명은, 측정 대상체(210)를 굴절률 매칭 오일(220) 내에 배치함으로써 광의 굴절 및 산란을 최소화하여 노이즈를 감소시킨 경우를 예시하였지만, 본 발명은 이에 한정되지 않으며 측정 대상체(210)는 지지 부재(200) 상에 굴절률 매칭 오일(220) 없이 배치될 수 있다. 이 경우, noil는 공기 굴절률 값으로 대체될 수 있다. In the above formula, n designed, n oil and? L is a known value,? Φ is the value obtained from the interference pattern, it is possible to derive the refractive index profile errors by the equation (11). Although the present invention has been described in the case where noise is reduced by minimizing refraction and scattering of light by arranging the measurement object 210 in the refractive index matching oil 220, the present invention is not limited to this, Without the refractive index matching oil 220 on the lens 200. In this case, n oil can be replaced by the air refractive index value.
도 5는 측정 대상체의 너비에 따른 굴절률 분포 오차를 나타낸 그래프이다.5 is a graph showing the refractive index distribution error according to the width of the measurement object.
도 5를 참조하면, 측정 대상체(210)의 너비에 따른 굴절률 분포 오차가 나노미터 이하의 정밀도로 측정된 결과를 확인할 수 있다.Referring to FIG. 5, it can be seen that the refractive index distribution error according to the width of the measurement object 210 is measured with an accuracy of nanometer or less.
즉, 본 발명의 일 실시예에 따른 굴절률 분포 측정 시스템 및 굴절률 분포 측정 방법에 따르면, 이중 영상(duplicate images)이 없는 간섭 패턴을 획득하고, 이로부터 측정 대상체(210)의 굴절률 분포 오차를 정밀하게 측정할 수 있는 굴절률 분포 오차 측정 시스템 및 이를 이용한 굴절률 분포 오차 측정 방법을 제공할 수 있다.That is, according to the refractive index distribution measuring system and the refractive index distribution measuring method according to an embodiment of the present invention, an interference pattern without duplicate images is obtained, and the refractive index distribution error of the measurement object 210 is precisely And a refractive index distribution error measuring method using the refractive index distribution error measuring system.
본 발명에 따른 장치는 프로세서, 프로그램 데이터를 저장하고 실행하는 메모리, 디스크 드라이브와 같은 영구 저장부(permanent storage), 외부 장치와 통신하는 통신 포트, 터치 패널, 키(key), 버튼 등과 같은 사용자 인터페이스 장치 등을 포함할 수 있다. 소프트웨어 모듈 또는 알고리즘으로 구현되는 방법들은 상기 프로세서 상에서 실행 가능한 컴퓨터가 읽을 수 있는 코드들 또는 프로그램 명령들로서 컴퓨터가 읽을 수 있는 기록 매체 상에 저장될 수 있다. 여기서 컴퓨터가 읽을 수 있는 기록 매체로 마그네틱 저장 매체(예컨대, ROM(read only memory), RAM(random access memory), 플로피 디스크, 하드 디스크 등) 및 광학적 판독 매체(예컨대, 시디롬(CD ROM), 디브이디(DVD: Digital Versatile Disc)) 등이 있다. 상기 컴퓨터가 읽을 수 있는 기록 매체는 네트워크로 연결된 컴퓨터 시스템들에 분산되어, 분산 방식으로 컴퓨터가 판독 가능한 코드가 저장되고 실행될 수 있다. 상기 매체는 컴퓨터에 의해 판독가능하며, 상기 메모리에 저장되고, 상기 프로세서에서 실행될 수 있다. An apparatus according to the present invention may include a processor, a memory for storing and executing program data, a permanent storage such as a disk drive, a communication port for communicating with an external device, a user interface such as a touch panel, a key, Devices, and the like. Methods implemented with software modules or algorithms may be stored on a computer readable recording medium as computer readable codes or program instructions executable on the processor. Here, the computer-readable recording medium may be a magnetic storage medium such as a read only memory (ROM), a random access memory (RAM), a floppy disk, a hard disk and the like) and an optical reading medium (e.g., a CD ROM, (DVD: Digital Versatile Disc)). The computer-readable recording medium may be distributed over networked computer systems so that computer readable code in a distributed manner can be stored and executed. The medium is readable by a computer, stored in the memory, and executable on the processor.
본 발명에서 인용하는 공개 문헌, 특허 출원, 특허 등을 포함하는 모든 문헌들은 각 인용 문헌이 개별적으로 및 구체적으로 병합하여 나타내는 것 또는 본 발명에서 전체적으로 병합하여 나타낸 것과 동일하게 본 발명에 병합될 수 있다.All documents, including publications, patent applications, patents, etc., cited in the present invention may be incorporated into the present invention in the same manner as each cited document is shown individually and specifically in conjunction with one another, .
본 발명의 이해를 위하여, 도면에 도시된 바람직한 실시예들에서 참조 부호를 기재하였으며, 상기 실시예들을 설명하기 위하여 특정 용어들을 사용하였으나, 상기 특정 용어에 의해 본 발명이 한정되는 것은 아니며, 본 발명은 당업자에 있어서 통상적으로 생각할 수 있는 모든 구성 요소들을 포함할 수 있다. In order to facilitate understanding of the present invention, reference will be made to the preferred embodiments shown in the drawings, and specific terminology is used to describe the embodiments. However, the present invention is not limited to the specific terminology, Lt; / RTI > may include all elements commonly conceivable by those skilled in the art.
본 발명은 기능적인 블록 구성들 및 다양한 처리 단계들로 나타내어질 수 있다. 이러한 기능 블록들은 특정 기능들을 실행하는 다양한 개수의 하드웨어 또는/및 소프트웨어 구성들로 구현될 수 있다. 예를 들어, 본 발명은 하나 이상의 마이크로프로세서들의 제어 또는 다른 제어 장치들에 의해서 다양한 기능들을 실행할 수 있는, 메모리, 프로세싱, 로직(logic), 룩업 테이블(look up table) 등과 같은 직접 회로 구성들을 채용할 수 있다. 본 발명의 구성 요소들이 소프트웨어 프로그래밍 또는 소프트웨어 요소들로 실행될 수 있는 것과 유사하게, 본 발명은 데이터 구조, 프로세스들, 루틴들 또는 다른 프로그래밍 구성들의 조합으로 구현되는 다양한 알고리즘을 포함하여, C, C++, 자바(Java), 어셈블러(assembler) 등과 같은 프로그래밍 또는 스크립팅 언어로 구현될 수 있다. 기능적인 측면들은 하나 이상의 프로세서들에서 실행되는 알고리즘으로 구현될 수 있다. 또한 본 발명은 전자적인 환경 설정, 신호 처리, 및/또는 데이터 처리 등을 위하여 종래 기술을 채용할 수 있다. "매커니즘", "요소", "수단", "구성"과 같은 용어는 넓게 사용될 수 있으며, 기계적이고 물리적인 구성들로서 한정되는 것은 아니다. 상기 용어는 프로세서 등과 연계하여 소프트웨어의 일련의 처리들(routines)의 의미를 포함할 수 있다.The present invention may be represented by functional block configurations and various processing steps. These functional blocks may be implemented in a wide variety of hardware and / or software configurations that perform particular functions. For example, the present invention employs integrated circuit configurations, such as memory, processing, logic, look-up tables, etc., that can perform various functions by control of one or more microprocessors or by other control devices can do. Similar to the components of the present invention may be implemented with software programming or software components, the present invention may be implemented in a variety of ways, including C, C ++, And can be implemented in a programming or scripting language such as Java, assembler, and the like. Functional aspects may be implemented with algorithms running on one or more processors. The present invention may also employ conventional techniques for electronic configuration, signal processing, and / or data processing. Terms such as "mechanism", "element", "means", "configuration" may be used broadly and are not limited to mechanical and physical configurations. The term may include the meaning of a series of routines of software in conjunction with a processor or the like.
본 발명에서 설명하는 특정 실행들은 일 실시예들로서, 어떠한 방법으로도 본 발명의 범위를 한정하는 것은 아니다. 명세서의 간결함을 위하여, 종래 전자적인 구성들, 제어 시스템들, 소프트웨어, 상기 시스템들의 다른 기능적인 측면들의 기재는 생략될 수 있다. 또한, 도면에 도시된 구성 요소들 간의 선들의 연결 또는 연결 부재들은 기능적인 연결 및/또는 물리적 또는 회로적 연결들을 예시적으로 나타낸 것으로서, 실제 장치에서는 대체 가능하거나 추가의 다양한 기능적인 연결, 물리적인 연결, 또는 회로 연결들로서 나타내어질 수 있다. 또한, "필수적인", "중요하게" 등과 같이 구체적인 언급이 없다면 본 발명의 적용을 위하여 반드시 필요한 구성 요소가 아닐 수 있다.The specific acts described in the present invention are, by way of example, not intended to limit the scope of the invention in any way. For brevity of description, descriptions of conventional electronic configurations, control systems, software, and other functional aspects of such systems may be omitted. Also, the connections or connecting members of the lines between the components shown in the figures are illustrative of functional connections and / or physical or circuit connections, which may be replaced or additionally provided by a variety of functional connections, physical Connection, or circuit connections. Also, unless explicitly mentioned, such as " essential ", " importantly ", etc., it may not be a necessary component for application of the present invention.
본 발명의 명세서(특히 특허청구범위에서)에서 "상기"의 용어 및 이와 유사한 지시 용어의 사용은 단수 및 복수 모두에 해당하는 것일 수 있다. 또한, 본 발명에서 범위(range)를 기재한 경우 상기 범위에 속하는 개별적인 값을 적용한 발명을 포함하는 것으로서(이에 반하는 기재가 없다면), 발명의 상세한 설명에 상기 범위를 구성하는 각 개별적인 값을 기재한 것과 같다. 마지막으로, 본 발명에 따른 방법을 구성하는 단계들에 대하여 명백하게 순서를 기재하거나 반하는 기재가 없다면, 상기 단계들은 적당한 순서로 행해질 수 있다. 반드시 상기 단계들의 기재 순선에 따라 본 발명이 한정되는 것은 아니다. 본 발명에서 모든 예들 또는 예시적인 용어(예들 들어, 등등)의 사용은 단순히 본 발명을 상세히 설명하기 위한 것으로서 특허청구범위에 의해 한정되지 않는 이상 상기 예들 또는 예시적인 용어로 인해 본 발명의 범위가 한정되는 것은 아니다. 또한, 당업자는 다양한 수정, 조합 및 변경이 부가된 특허청구범위 또는 그 균등물의 범주 내에서 설계 조건 및 팩터에 따라 구성될 수 있음을 알 수 있다.The use of the terms " above " and similar indication words in the specification of the present invention (particularly in the claims) may refer to both singular and plural. In addition, in the present invention, when a range is described, it includes the invention to which the individual values belonging to the above range are applied (unless there is contradiction thereto), and each individual value constituting the above range is described in the detailed description of the invention The same. Finally, the steps may be performed in any suitable order, unless explicitly stated or contrary to the description of the steps constituting the method according to the invention. The present invention is not necessarily limited to the description line of the above steps. The use of all examples or exemplary language (e.g., etc.) in this invention is for the purpose of describing the present invention only in detail and is not to be limited by the scope of the claims, It is not. It will also be appreciated by those skilled in the art that various modifications, combinations, and alterations may be made depending on design criteria and factors within the scope of the appended claims or equivalents thereof.
본 발명은 도면에 도시된 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 본 기술 분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 다른 실시예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의하여 정해져야 할 것이다.While the present invention has been described with reference to exemplary embodiments, it is to be understood that the invention is not limited to the disclosed exemplary embodiments, but, on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims. Accordingly, the true scope of the present invention should be determined by the technical idea of the appended claims.
본 발명의 실시예들 중 적어도 하나는 굴절률 분포 오차 측정 시스템 및 이를 이용한 굴절률 분포 오차 측정 방법에 이용할 수 있다.At least one of the embodiments of the present invention can be used in a refractive index distribution error measuring system and a refractive index distribution error measuring method using the same.

Claims (15)

  1. 광을 방출하는 광원;A light source for emitting light;
    상기 광원으로부터 방출되는 광의 경로 상에 배치되며, 광축을 중심으로 상기 광축의 일측에만 측정 대상체가 배치되도록 상기 측정 대상체를 지지하는 지지 부재;A support member disposed on a path of light emitted from the light source and supporting the measurement object so that the measurement object is disposed only on one side of the optical axis with respect to the optical axis;
    상기 지지 부재를 투과한 광의 경로 상에 배치되어 전면 및 후면에서 각각 상기 광을 반사하며, 소정의 두께를 갖는 광학 부재;An optical member disposed on a path of light transmitted through the support member and reflecting the light on the front surface and the rear surface, respectively, the optical member having a predetermined thickness;
    상기 광학 부재의 전면 및 후면에서 반사된 후 일부가 중첩되어 간섭 패턴을 형성하는 2개의 광을 수광하는 수광부; 및A light receiving unit for receiving two lights, which are partially overlapped after being reflected from the front surface and the rear surface of the optical member to form an interference pattern; And
    상기 수광부에 의해 획득된 간섭 패턴으로부터 상기 측정 대상체의 굴절률 분포를 도출하는 신호 처리부;를 포함하는, 굴절률 분포 측정 시스템.And a signal processing unit for deriving a refractive index distribution of the measurement object from the interference pattern acquired by the light receiving unit.
  2. 제1 항에 있어서,The method according to claim 1,
    상기 지지 부재와 상기 광학 부재 사이에 배치되며, 상기 측정 대상체를 투과한 광을 확대시키는 대물 렌즈 및 상기 대물 렌즈에 의해 확대된 광을 평행광으로 변환하는 조절 렌즈를 더 포함하는, 굴절률 분포 측정 시스템.Further comprising an objective lens disposed between the support member and the optical member for magnifying light transmitted through the measurement object and an adjustment lens for converting the light expanded by the objective lens into parallel light, .
  3. 제1 항에 있어서,The method according to claim 1,
    상기 광원과 상기 지지 부재 사이에 배치된 제1 편광자 및 상기 광학 부재와 상기 수광부 사이에 배치된 제2 편광자를 더 포함하며,A first polarizer disposed between the light source and the supporting member, and a second polarizer disposed between the optical member and the light receiving unit,
    상기 제1 편광자의 편광축 방향과 상기 제2 편광자의 편광축 방향은 서로 동일한, 굴절률 분포 측정 시스템.Wherein the polarization axis direction of the first polarizer is the same as the polarization axis direction of the second polarizer.
  4. 제1 항에 있어서,The method according to claim 1,
    상기 광학 부재의 상기 소정의 두께는 5 mm 내지 15 mm인, 굴절률 분포 측정 시스템.Wherein the predetermined thickness of the optical member is 5 mm to 15 mm.
  5. 제1 항에 있어서,The method according to claim 1,
    상기 광학 부재의 전면에서 반사된 광은 상기 측정 대상체를 투과한 제1 물체 영역 및 상기 제1 물체 영역 이외의 영역인 제1 참조 영역을 포함하고,Wherein the light reflected from the front surface of the optical member includes a first object zone which has passed through the measurement object and a first reference zone which is an area other than the first object zone,
    상기 광학 부재의 후면에서 반사된 광은 상기 측정 대상체를 투과한 제2 물체 영역 및 상기 제2 물체 영역 이외의 영역인 제2 참조 영역을 포함하며,The light reflected from the back surface of the optical member includes a second object region that has passed through the measurement object and a second reference region that is a region other than the second object region,
    상기 간섭 패턴은, 상기 제1 물체 영역과 상기 제2 참조 영역의 중첩에 의해 형성되거나 상기 제1 참조 영역과 상기 제2 물체 영역의 중첩에 의해 형성되며, 상기 제1 물체 영역과 상기 제2 물체 영역은 서로 중첩되지 않는, 굴절률 분포 측정 시스템. Wherein the interference pattern is formed by overlapping the first object region and the second reference region or by overlapping the first reference region and the second object region, and the interference pattern is formed by overlapping the first object region and the second reference region, Wherein the regions do not overlap with each other.
  6. 제1 항에 있어서,The method according to claim 1,
    상기 지지 부재 상에 배치된 굴절률 매칭 오일을 더 포함하며, 상기 측정 대상체는 상기 굴절률 매칭 오일 내에 배치된, 굴절률 분포 측정 시스템.Further comprising a refractive index matching oil disposed on the support member, wherein the measurement object is disposed within the refractive index matching oil.
  7. 제1 항에 있어서,The method according to claim 1,
    상기 신호 처리부는, The signal processing unit,
    상기 지지 부재에 상기 측정 대상체를 배치한 상태에서 상기 수광부에 의해 획득된 간섭 패턴으로부터 물체 홀로그램 영상을 획득하는 홀로그램 영상 획득부;A hologram image acquiring unit for acquiring an object hologram image from the interference pattern acquired by the light receiving unit in a state where the measurement object is disposed on the support member;
    상기 물체 홀로그램 영상으로부터 노이즈를 제거하는 노이즈 제거부;A noise removing unit for removing noise from the object hologram image;
    상기 측정 대상체의 위상 정보를 추출하는 위상 정보 추출부; 및A phase information extracting unit for extracting phase information of the measurement object; And
    상기 위상 정보를 이용하여 상기 측정 대상체의 굴절률 분포를 계산하는 굴절률 분포 측정부;를 포함하는, 굴절률 분포 측정 시스템.And a refractive index distribution measuring unit for calculating a refractive index distribution of the measurement target using the phase information.
  8. 제7 항에 있어서,8. The method of claim 7,
    상기 측정 대상체의 굴절률 분포와 설계된 측정 대상체의 굴절률 분포를 비교하여 굴절률 분포 오차를 계산하는 굴절률 오차 측정부를 더 포함하는, 굴절률 분포 측정 시스템.Further comprising a refractive index error measuring unit for calculating a refractive index distribution error by comparing the refractive index profile of the measurement subject with the designed refractive index profile of the measurement subject.
  9. 제7 항에 있어서,8. The method of claim 7,
    상기 홀로그램 영상 획득부는, 상기 물체 홀로그램 영상 및 상기 지지 부재에 상기 측정 대상체가 배치되지 않은 상태에서 상기 수광부에 의해 획득된 간섭 패턴으로부터 참조 홀로그램 영상을 획득하고, Wherein the hologram image obtaining unit obtains the reference hologram image from the interference pattern acquired by the light receiving unit in a state in which the measurement object is not disposed on the object hologram image and the support member,
    상기 노이즈 제거부는, 상기 물체 홀로그램 영상 및 상기 참조 홀로그램 영상으로부터 노이즈를 제거하며,Wherein the noise removing unit removes noise from the object hologram image and the reference hologram image,
    상기 위상 정보 추출부는, 노이즈가 제거된 상기 물체 홀로그램 영상으로부터 얻어진 물체 위상 정보와 노이즈가 제거된 상기 참조 홀로그램 영상으로부터 얻어진 참조 위상 정보의 차이로부터 상기 측정 대상체의 위상 정보를 추출하는, 굴절률 분포 측정 시스템.Wherein the phase information extraction unit extracts phase information of the measurement object from a difference between object phase information obtained from the object hologram image from which the noise has been removed and reference phase information obtained from the reference hologram image from which noises have been removed, .
  10. 광원, 광축의 일측에만 측정 대상체가 배치되도록 상기 측정 대상체를 지지하는 지지 부재, 전면 및 후면에서 각각 광을 반사하는 광학 부재, 상기 광학 부재에 의해 반사된 광을 수광하는 수광부를 포함하는 간섭계를 이용한 굴절률 분포 측정 방법에 있어서,An interferometer including a light source, a support member for supporting the measurement object so that the measurement object is disposed only on one side of the optical axis, an optical member for reflecting light from the front and back surfaces, and a light receiving section for receiving the light reflected by the optical member In the refractive index distribution measuring method,
    상기 수광부에 의해 획득된 간섭 패턴으로부터 홀로그램 영상을 획득하는 단계;Acquiring a hologram image from the interference pattern acquired by the light receiving unit;
    상기 홀로그램 영상으로부터 노이즈를 제거하는 단계;Removing noise from the hologram image;
    노이즈가 제거된 상기 홀로그램 영상으로부터 상기 측정 대상체의 위상 정보를 추출하는 단계; 및Extracting phase information of the measurement object from the noise-removed hologram image; And
    상기 위상 정보를 이용하여 상기 측정 대상체의 굴절률 분포를 측정하는 단계;를 포함하는, 굴절률 분포 측정 방법.And measuring a refractive index distribution of the measurement object using the phase information.
  11. 제10 항에 있어서,11. The method of claim 10,
    상기 굴절률 분포를 측정하는 단계 후에,After measuring the refractive index distribution,
    상기 측정 대상체의 굴절률 분포와 설계된 측정 대상체의 굴절률 분포를 비교하여 굴절률 분포 오차를 계산하는 단계를 더 포함하는, 굴절률 분포 측정 방법.Further comprising the step of calculating a refractive index distribution error by comparing the refractive index profile of the measurement subject with the designed refractive index profile of the measurement subject.
  12. 제10 항에 있어서,11. The method of claim 10,
    상기 홀로그램 영상을 획득하는 단계는, 상기 지지 부재에 상기 측정 대상체를 배치한 상태에서 물체 홀로그램 영상을 획득하는 단계 및 상기 지지 부재에 상기 측정 대상체가 배치되지 않은 상태에서 참조 홀로그램 영상을 획득하는 단계를 포함하고,The obtaining of the hologram image may include obtaining an object hologram image in a state where the measurement object is disposed on the support member, and acquiring a reference hologram image in a state where the measurement object is not disposed on the support member Including,
    상기 노이즈를 제거하는 단계는, 상기 물체 홀로그램 영상 및 상기 참조 홀로그램 영상으로부터 노이즈를 제거하는 단계를 포함하며,Wherein the removing the noise includes removing noise from the object hologram image and the reference hologram image,
    상기 측정 대상체의 위상 정보를 추출하는 단계는, 노이즈가 제거된 상기 물체 홀로그램 영상으로부터 얻어진 물체 위상 정보와 노이즈가 제거된 상기 참조 홀로그램 영상으로부터 얻어진 참조 위상 정보의 차이로부터 상기 측정 대상체의 위상 정보를 추출하는 단계를 포함하는, 굴절률 분포 측정 방법.The step of extracting the phase information of the measurement object extracts the phase information of the measurement object from the difference between the object phase information obtained from the object hologram image from which the noise has been removed and the reference phase information obtained from the reference hologram image from which noise has been removed Wherein the refractive index distribution measurement method comprises the steps of:
  13. 제10 항에 있어서,11. The method of claim 10,
    상기 광학 부재의 두께는 5 mm 내지 15 mm인, 굴절률 분포 측정 방법.Wherein the thickness of the optical member is 5 mm to 15 mm.
  14. 제10 항에 있어서,11. The method of claim 10,
    상기 광학 부재의 전면에서 반사된 광은 상기 측정 대상체를 투과한 제1 물체 영역 및 상기 제1 물체 영역 이외의 영역인 제1 참조 영역을 포함하고,Wherein the light reflected from the front surface of the optical member includes a first object zone which has passed through the measurement object and a first reference zone which is an area other than the first object zone,
    상기 광학 부재의 후면에서 반사된 광은 상기 측정 대상체를 투과한 제2 물체 영역 및 상기 제2 물체 영역 이외의 영역인 제2 참조 영역을 포함하며,The light reflected from the back surface of the optical member includes a second object region that has passed through the measurement object and a second reference region that is a region other than the second object region,
    상기 홀로그램 영상을 획득하는 단계 전에,Before the step of acquiring the hologram image,
    상기 광학 부재의 전면 및 후면에서 각각 반사된 광이 서로 적어도 일부가 중첩되며, 상기 중첩 영역에서 제1 물체 영역 및 상기 제2 물체 영역이 서로 중첩되지 않도록 상기 광원 및/또는 상기 광학 부재를 정렬하는 단계를 더 포함하는, 굴절률 분포 측정 방법.Wherein the light reflected from the front surface and the rear surface of the optical member are at least partially overlapped with each other, and the light source and / or the optical member are aligned so that the first object area and the second object area do not overlap each other in the overlap area ≪ / RTI > further comprising the steps of:
  15. 제14 항에 있어서,15. The method of claim 14,
    상기 광원 및/또는 상기 광학 부재를 정렬하는 단계는, 상기 광학 부재에 광이 10도 내지 80도로 입사되도록 상기 광원 및/또는 상기 광학 부재를 정렬하는 단계를 포함하는, 굴절률 분포 측정 방법.Wherein aligning the light source and / or the optical member comprises aligning the light source and / or the optical member such that light is incident on the optical member at 10 to 80 degrees.
PCT/KR2016/010607 2015-09-25 2016-09-23 Refractive index distribution measuring system and refractive index distribution measuring method using same WO2017052244A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2015-0136741 2015-09-25
KR20150136741 2015-09-25
KR10-2016-0051697 2016-04-27
KR1020160051697 2016-04-27

Publications (1)

Publication Number Publication Date
WO2017052244A1 true WO2017052244A1 (en) 2017-03-30

Family

ID=58386436

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/010607 WO2017052244A1 (en) 2015-09-25 2016-09-23 Refractive index distribution measuring system and refractive index distribution measuring method using same

Country Status (1)

Country Link
WO (1) WO2017052244A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3670821B2 (en) * 1997-10-03 2005-07-13 株式会社リコー Refractive index distribution measuring device
KR20060031199A (en) * 2004-10-07 2006-04-12 삼성전자주식회사 Fizeau interferometer for refraction index measurement
KR20090105545A (en) * 2008-04-03 2009-10-07 한국과학기술원 Apparatus for measuring the Refractive Index and Thickness of Phase Object using Three-different-wavelength Light Sources and the Method therewith
KR20130083120A (en) * 2012-01-12 2013-07-22 (주)미토스 Refractive index measuring method for plastic lens with curvature
KR20160029358A (en) * 2014-09-05 2016-03-15 광운대학교 산학협력단 Apparatus and method for restructuring shape of object using single beam

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3670821B2 (en) * 1997-10-03 2005-07-13 株式会社リコー Refractive index distribution measuring device
KR20060031199A (en) * 2004-10-07 2006-04-12 삼성전자주식회사 Fizeau interferometer for refraction index measurement
KR20090105545A (en) * 2008-04-03 2009-10-07 한국과학기술원 Apparatus for measuring the Refractive Index and Thickness of Phase Object using Three-different-wavelength Light Sources and the Method therewith
KR20130083120A (en) * 2012-01-12 2013-07-22 (주)미토스 Refractive index measuring method for plastic lens with curvature
KR20160029358A (en) * 2014-09-05 2016-03-15 광운대학교 산학협력단 Apparatus and method for restructuring shape of object using single beam

Similar Documents

Publication Publication Date Title
WO2018097569A1 (en) Digital holographic reconstruction device and method using single generation phase shifting method
US5995223A (en) Apparatus for rapid phase imaging interferometry and method therefor
KR100225923B1 (en) Phase shifting diffraction interferometer
KR20100134609A (en) Apparatus and method for measuring surface topography of an object
CN103245285B (en) A kind of reflection type point diffraction carrier synchronization movable phase interfere pick-up unit and detection method
JP2004294432A (en) Method and instrument for measuring shape and thickness variation of polished opaque plate
CN107462149B (en) Phase-shift interferometry system and wave plate phase-shift method thereof
CN103134445A (en) Wide-range high-precision facial contour detection device and detection method thereof
CN107561007B (en) Thin film measuring device and method
WO2014165540A1 (en) Wafer shape and thickness measurement system utilizing shearing interferometers
US6639683B1 (en) Interferometric sensor and method to detect optical fields
WO2013141537A1 (en) Device and method for measuring thickness and shape by using optical method
WO2018072446A1 (en) Asymmetric optical interference measurement method and apparatus
Broistedt et al. Random-phase-shift Fizeau interferometer
CN109443554B (en) Wavelength measuring device and method based on graphene optical spin Hall effect
US6909510B2 (en) Application of the phase shifting diffraction interferometer for measuring convex mirrors and negative lenses
JP2892075B2 (en) Measuring method of refractive index distribution and transmitted wavefront and measuring device used for this method
WO2017052244A1 (en) Refractive index distribution measuring system and refractive index distribution measuring method using same
CN103322912B (en) A kind of reflection type point diffraction is from axle simultaneous phase-shifting interference checking device and detection method
Huang et al. An optical glass plane angle measuring system with photoelectric autocollimator
Gong et al. Flexible method of refraction correction in vision measurement systems with multiple glass ports
CN114719741B (en) Common-path polarization point diffraction synchronous phase-shifting interference system and method
JPH11194011A (en) Interference apparatus
Zheng et al. Spatial mismatch calibration based on fast partial phase correlation for interferograms in dynamic Fizeau interferometer
KR101796223B1 (en) System and methode for measuring refractive index distribution

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16848969

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 26/07/2018)

122 Ep: pct application non-entry in european phase

Ref document number: 16848969

Country of ref document: EP

Kind code of ref document: A1