WO2017051921A1 - フレキソ印刷版 - Google Patents

フレキソ印刷版 Download PDF

Info

Publication number
WO2017051921A1
WO2017051921A1 PCT/JP2016/078238 JP2016078238W WO2017051921A1 WO 2017051921 A1 WO2017051921 A1 WO 2017051921A1 JP 2016078238 W JP2016078238 W JP 2016078238W WO 2017051921 A1 WO2017051921 A1 WO 2017051921A1
Authority
WO
WIPO (PCT)
Prior art keywords
printing plate
flexographic printing
area ratio
halftone dot
image
Prior art date
Application number
PCT/JP2016/078238
Other languages
English (en)
French (fr)
Inventor
晴一郎 森川
優介 難波
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to CN201680053619.6A priority Critical patent/CN108025581B/zh
Priority to EP16848709.8A priority patent/EP3354478B1/en
Priority to JP2017540943A priority patent/JP6420490B2/ja
Publication of WO2017051921A1 publication Critical patent/WO2017051921A1/ja
Priority to US15/904,894 priority patent/US10265988B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41NPRINTING PLATES OR FOILS; MATERIALS FOR SURFACES USED IN PRINTING MACHINES FOR PRINTING, INKING, DAMPING, OR THE LIKE; PREPARING SUCH SURFACES FOR USE AND CONSERVING THEM
    • B41N1/00Printing plates or foils; Materials therefor
    • B41N1/12Printing plates or foils; Materials therefor non-metallic other than stone, e.g. printing plates or foils comprising inorganic materials in an organic matrix
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41CPROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
    • B41C1/00Forme preparation
    • B41C1/02Engraving; Heads therefor
    • B41C1/04Engraving; Heads therefor using heads controlled by an electric information signal
    • B41C1/05Heat-generating engraving heads, e.g. laser beam, electron beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41CPROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
    • B41C1/00Forme preparation
    • B41C1/18Curved printing formes or printing cylinders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41NPRINTING PLATES OR FOILS; MATERIALS FOR SURFACES USED IN PRINTING MACHINES FOR PRINTING, INKING, DAMPING, OR THE LIKE; PREPARING SUCH SURFACES FOR USE AND CONSERVING THEM
    • B41N1/00Printing plates or foils; Materials therefor
    • B41N1/16Curved printing plates, especially cylinders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41NPRINTING PLATES OR FOILS; MATERIALS FOR SURFACES USED IN PRINTING MACHINES FOR PRINTING, INKING, DAMPING, OR THE LIKE; PREPARING SUCH SURFACES FOR USE AND CONSERVING THEM
    • B41N1/00Printing plates or foils; Materials therefor
    • B41N1/16Curved printing plates, especially cylinders
    • B41N1/22Curved printing plates, especially cylinders made of other substances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M1/00Inking and printing with a printer's forme
    • B41M1/02Letterpress printing, e.g. book printing
    • B41M1/04Flexographic printing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41PINDEXING SCHEME RELATING TO PRINTING, LINING MACHINES, TYPEWRITERS, AND TO STAMPS
    • B41P2200/00Printing processes
    • B41P2200/10Relief printing
    • B41P2200/12Flexographic printing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor

Definitions

  • the present invention relates to a flexographic printing plate.
  • a flexographic printing plate having a flexible relief-forming layer made of resin or rubber has a relatively soft convex part (image part) for printing and can follow various shapes. It is used for printing on a thick substrate.
  • the image area of the flexographic printing plate consists of a solid part that is printed as if it is painted by transferring the ink entirely, and / or a large number of convex small dots (projections).
  • the size and density of the small dots Is changed to have a halftone dot that expresses the gradation of the image printed on the substrate, and the flexographic printing plate is placed on the peripheral surface of the cylindrical drum.
  • the ink is transferred directly from the surface of the convex portion (image portion) of the printing plate to the substrate to form an image on the substrate.
  • Patent Document 1 discloses that a halftone pattern having a diameter of 30 ⁇ m or more and a grid-like mask are used for a solid portion and a solid portion, and grooves are regularly formed in a grid pattern. (Refer to [Claim 12], [Claim 13], [Claim 17], [FIG. 4A], etc.).
  • the present inventors have examined the printing plate described in Patent Document 1 and found that the ink transferability in a solid portion and a region having a halftone dot area ratio of more than 90% (hereinafter also abbreviated as “solid portion etc.”). Inferior, it was found that moiré, coloration, etc. occurred in a region where the dot area ratio was more than 30% and 90% or less (hereinafter also abbreviated as “intermediate gradation part”), and the print quality might be inferior.
  • an object of the present invention is to provide a flexographic printing plate that is excellent in ink transferability in a solid portion or the like and has good printing quality in an intermediate gradation portion.
  • the present inventors have found that the dots and solid portions in the halftone dot portion or the small dots in the halftone dot portion have two or more different depths according to the dot area ratio. It was found that by providing the concave portion, the ink transferability in the solid portion or the like was excellent, and the print quality in the intermediate gradation portion was improved, and the present invention was completed. That is, the present inventors have found that the above problem can be solved by the following configuration.
  • a flexographic printing plate having a relief layer comprising a non-image area and an image area,
  • the image portion has a halftone dot portion having a dot area ratio of more than 0% and less than 100% and a solid portion having a dot area ratio of 100%,
  • the small dot and the solid part in the halftone dot part, or the small dot in the halftone dot part has two or more recesses having different depths according to the dot area ratio
  • a flexographic printing plate wherein two or more recesses having different depths are recesses that become deeper as the dot area ratio is higher.
  • FIG. 1 is a schematic top view showing an example of the flexographic printing plate of the present invention.
  • FIG. 2 is a schematic cross-sectional view showing an enlarged part of the image portion of the flexographic printing plate shown in FIG.
  • FIG. 3A is a plan view showing an example of a halftone dot portion having a halftone dot area ratio of 30%.
  • FIG. 3B is a plan view showing an example of a solid portion having a dot area ratio of 100%.
  • FIG. 4A is a plan view showing another example of a halftone dot portion having a halftone dot area ratio of 30%.
  • FIG. 4B is a plan view showing another example of a solid portion having a dot area ratio of 100%.
  • FIG. 5A is a plan view showing another example of a halftone dot portion having a halftone dot area ratio of 30%.
  • FIG. 5B is a plan view showing another example of a solid portion having a dot area ratio of 100%.
  • FIG. 6 is a diagram conceptually showing a calendar roll for producing a flexographic printing plate precursor.
  • FIG. 7 is a diagram conceptually showing a main part of a flexographic printing apparatus using the flexographic printing plate according to the present invention.
  • lower limit to upper limit representing a numerical range
  • upper limit to lower limit represents “lower limit or higher and lower limit or higher”. That is, it represents a numerical range including an upper limit and a lower limit.
  • parts by mass” and “% by mass” are synonymous with “parts by weight” and “% by weight”, respectively.
  • an uncrosslinked crosslinkable layer is referred to as a “relief forming layer”, and a layer obtained by crosslinking the relief forming layer is referred to as a “crosslinked relief forming layer”.
  • a layer in which irregularities are formed on the surface by laser engraving is referred to as a “relief layer”.
  • the crosslinking is not particularly limited as long as the crosslinking is performed by light and / or heat and the resin composition is cured.
  • a flexographic printing plate is produced by laser engraving on a printing plate precursor having a crosslinked relief forming layer and rinsing as required.
  • the flexographic printing plate of the present invention is a flexographic printing plate having a relief layer comprising a non-image portion and an image portion, wherein the image portion has a halftone dot portion and a halftone dot having a dot area ratio of more than 0% and less than 100%. It has a solid part with an area ratio of 100%. Further, the small dot and the solid portion in the halftone dot portion, or the small dot in the halftone dot portion has two or more concave portions having different depths depending on the halftone dot area ratio. Moreover, the 2 or more recessed part from which depth differs is a recessed part which becomes deep, so that a dot area ratio is high.
  • the “halftone dot area ratio” is the percentage of the halftone dot area per unit area expressed as a percentage, and as described above, the portion where the halftone dot area ratio is 100% is referred to as a solid part.
  • the flexographic printing plate of the present invention having such a configuration is excellent in ink transferability in a solid portion or the like, and has good printing quality in an intermediate gradation portion.
  • the present inventors presume as follows. In the region where the dot area ratio is more than 90% (solid portion or the like), the inventors increase the amount of ink retained and stabilize the flow of ink (the amount of extrusion) during printing. In the area where the dot area ratio is more than 30% and not more than 90% (intermediate gradation part), the concave portion keeps the ink density at the halftone dot at an appropriate level, and the ink is lost between the halftone dots. I guess it will contribute.
  • the above-mentioned role becomes clear, and the ink transferability in the solid portion etc. It is thought that the print quality in the gradation part was compatible.
  • a printing plate 1 as an example of a flexographic printing plate according to the present invention has a relief layer 2 in which an image portion 3 and a non-image portion 4 are formed.
  • the image portion 3 is an area where ink is applied at the time of printing and this ink is transferred to the printing material, that is, an image is formed at the time of printing.
  • the non-image portion 4 is a region where ink is not applied during printing, that is, an image is not formed.
  • the image portion 3 includes a halftone dot portion 3a having a halftone dot area ratio of more than 0% and less than 100% and a solid portion 3b having a halftone dot area ratio of 100%.
  • the depth Da of the concave portion 5 at each small point of the halftone dot portion 3a is different from the depth Db of the concave portion 5 at the solid portion 3b, and the solid portion 3b has a high dot area ratio.
  • the depth Db of the concave portion 5 is deeper than the depth Da of the concave portion 5 at each small point of the halftone dot portion 3a.
  • two or more recesses having different depths are provided in the halftone dot portion 3a and the solid portion b.
  • the embodiment is not limited to the embodiment shown in FIG.
  • the aspect which is different from B the depth A of a recessed part in the area
  • the shape of the recess 5 may be a groove shape in which the recesses are continuous (FIGS. 3A and 3B).
  • the recess may have a discontinuous hole shape (see FIG. 5A and FIG. 5B).
  • 3A, FIG. 4A, and FIG. 5A all show a mode in which each small dot in the halftone dot portion having a halftone dot area ratio of 30% has a recess
  • FIG. 3B, FIG. 4B, and FIG. 5B shows an embodiment in which the solid portion having a dot area ratio of 100% has a recess.
  • the non-image portion of the flexographic printing plate of the present invention refers to a region where ink is not applied during printing, that is, an image is not formed.
  • areas other than the halftone dots in the halftone dot portion of the image portion described later are regions that are not included in the non-image portion because they are regions for forming a bright (highlight) image.
  • the shape of the non-image part is not particularly limited, and a part other than the image part is a non-image part.
  • the image portion of the flexographic printing plate of the present invention refers to a region where ink is applied during printing and this ink is transferred to a substrate, that is, an image is formed during printing.
  • the image portion has a halftone dot portion having a dot area ratio of more than 0% and less than 100% and a solid portion having a dot area ratio of 100%, and a concave portion to be described later is formed on at least a part of the surface. It is what you have.
  • the small dots constituting the halftone dot portion are usually formed with a predetermined screen line number (definition), for example, a screen line number of about 100 to 200 lpi (line per inch).
  • the size of the small dots constituting the halftone dot portion is not particularly limited because it depends on the halftone dot area ratio and the number of screen lines.
  • the number of screen lines in a circular dot is 150 lpi, and the halftone dot area ratio. Is 70%, the diameter of the dot can be calculated as 160 ⁇ m.
  • a recessed part is a recessed part provided in the small point and solid part in a halftone dot part, or the small point in a halftone dot part.
  • the depth is changed according to the halftone dot area ratio so that the smaller the halftone dot area ratio, the smaller the dot and the solid part in the halftone dot portion, or the small dot in the halftone dot portion, the deeper the dot area ratio.
  • the depth of the concave portion (portion represented by the symbol Da in FIG. 2) is such that the higher the halftone dot area ratio, the deeper the dot and the solid portion in the halftone dot portion or the small dot in the halftone dot portion. Change according to the dot area ratio.
  • the depth of the concave portion is 10 ⁇ m or less in a region where the dot area ratio is more than 0% and 30% or less (hereinafter also referred to as “A section”). Is preferable, and it is more preferable that it is 8 micrometers or less.
  • the depth of the recess is 15 ⁇ m or less. It is preferable that it is 8 ⁇ m or more and 12 ⁇ m or less.
  • the depth of the concave portion is 9 ⁇ m or more and 18 ⁇ m or less. It is preferable that it is 12 ⁇ m or more and 16 ⁇ m or less.
  • the depth of the recess is 11 ⁇ m or more and 23 ⁇ m or less. It is preferable that it is 18 ⁇ m or more and 22 ⁇ m or less.
  • permits adopting the depth of the same value in each area
  • the depths of the recesses in at least two of the above-described A and D sections differ according to the dot area ratio, the depths of the recesses are common in the other sections. It does not need to have a recess.
  • the depth of the concave section of the D section is set to be deeper than the depth of the concave section of the C section, the depth of the concave section of the A section and the B section May be the same as the depth of the C-section recess, or may be common at a value shallower than the depth of the C-section recess, or the A-section and / or B-section has no recess. May be.
  • the depth of the recesses in at least three of the above-described A sections to D sections is different depending on the halftone dot area ratio. More preferably, the halftone dot area ratio varies.
  • the concave portion has a width of 5 to 30 ⁇ m (the portion represented by symbol W in FIG. 2) because the ink is smoothly transferred to the printing medium and printing at a higher ink density is possible.
  • the groove is preferably 10 to 25 ⁇ m.
  • the pitch of the recesses that is, the distance between the centers of the adjacent recesses is preferably 10 to 100 ⁇ m, and the groove is preferably 20 to 60 ⁇ m.
  • the concave portion is a groove formed continuously in a direction orthogonal to the depth direction because the ink is smoothly transferred to the printing medium and printing at a higher ink density is possible. preferable.
  • the image portion is not particularly limited because it depends on the pitch of the recesses described above, but by providing the recesses described above, the specific surface area, that is, the ratio of the surface area (real area) to the measurement area (geometric measurement area). Is approximately 1.5 to 3.5 times.
  • the specific surface area is measured using a three-dimensional laser microscope VK-8700 (objective lens magnification: 20 times, manufactured by Keyence Corporation), and shape analysis application (VK Analyzer, manufactured by Keyence Corporation) is used for shape analysis. The value using.
  • the flexographic printing plate of the present invention may have a support on the back surface side (surface opposite to the engraving surface) of the relief layer.
  • a support body for example, polyester (for example, PET (polyethylene terephthalate), PBT (polybutylene terephthalate), PEN (polyethylene naphthalate)); PAN (Polyacrylonitrile); PI (Polyimide); PA (Polyamide); Fluorine resin such as Teflon (registered trademark); Plastic resin such as silicone resin and polyvinyl chloride; Synthetic rubber such as styrene-butadiene rubber; Reinforced with glass fiber Plastic resin (epoxy resin, phenol resin, etc.);
  • PET film, PEN film, PI film, PA film, fluororesin film, and silicone resin film are preferably used.
  • the above-described manufacturing method for manufacturing the flexographic printing plate of the present invention includes a layer forming step of forming a relief forming layer using a resin composition for laser engraving, A cross-linking step for cross-linking the relief forming layer to obtain a flexographic printing plate precursor having a cross-linked relief forming layer, and an image in which the cross-linked relief forming layer is subjected to laser engraving to form the non-image portion and the concave portion described above.
  • An engraving process for forming a flexographic printing plate by forming a relief layer comprising a portion is explained in full detail.
  • the layer forming step is a step of forming a relief forming layer before crosslinking (before curing) using a resin composition for laser engraving (hereinafter also simply referred to as “resin composition”).
  • a resin composition for forming a relief forming layer of a flexographic printing plate precursor can be used.
  • each component contained in the resin composition used in the layer forming step will be described.
  • the diene polymer is not particularly limited, and a conventionally known diene polymer can be used without limitation.
  • Specific examples of the diene polymer include polyisoprene, polybutadiene, ethylene-propylene-diene copolymer (EPDM), acrylonitrile-butadiene copolymer, styrene-butadiene copolymer (SBR), and styrene- Examples include isoprene copolymers and styrene-isoprene-butadiene copolymers. These may be used alone or in combination of two or more.
  • At least one diene polymer selected from the group consisting of polyisoprene, polybutadiene, and ethylene-propylene-diene copolymer is preferable because the variation in the thickness of the relief forming layer is reduced.
  • the diene polymer preferably has a weight average molecular weight of 200,000 or more, more preferably 300,000 to 2,000,000, from the viewpoint of the tensile strength of the relief forming layer. More preferably, it is 300,000 to 1,500,000, and particularly preferably 300,000 to 700,000.
  • the weight average molecular weight is measured by a gel permeation chromatography (GPC) method and is determined by conversion with standard polystyrene.
  • GPC uses HLC-8220GPC (manufactured by Tosoh Corporation), and 3 columns of TSKgeL Super HZM-H, TSKgeL SuperHZ4000, TSKgeL SuperHZ2000 (manufactured by Tosoh Corporation, 4.6 mm ID ⁇ 15 cm) are used.
  • THF tetrahydrofuran
  • the sample concentration is 0.35% by mass
  • the flow rate is 0.35 mL / min
  • the sample injection amount is 10 ⁇ L
  • the measurement temperature is 40 ° C.
  • an IR detector is used.
  • the calibration curve is “Standard sample TSK standard, polystyrene” manufactured by Tosoh Corporation: “F-40”, “F-20”, “F-4”, “F-1”, “A-5000”, “ It is prepared from 8 samples of “A-2500”, “A-1000” and “n-propylbenzene”.
  • the content of the diene polymer in the resin composition is preferably 5 to 90% by mass, more preferably 15 to 85% by mass, and more preferably 30 to 85% by mass with respect to the total solid content. More preferably. It is preferable for the content of the diene polymer to be in the above range because the engraving residue rinsing property is excellent and the ink transfer property is excellent.
  • thermal polymerization initiator The said thermal polymerization initiator is not specifically limited, A conventionally well-known thermal polymerization initiator (for example, radical polymerization initiator etc.) can be used without a restriction
  • thermal polymerization initiator examples include (a) aromatic ketones, (b) onium salt compounds, (c) organic peroxides, (d) thio compounds, and (e) hexaarylbiphenyls.
  • Imidazole compound (f) ketoxime ester compound, (g) borate compound, (h) azinium compound, (i) metallocene compound, (j) active ester compound, (k) compound having carbon halogen bond, (l) azo
  • these compounds may be used, and these may be used alone or in combination of two or more.
  • the half-life temperature is high, and as a result, the scorch (early curing) at the time of kneading the resin composition can be suppressed, the engraving sensitivity, and applied to the relief forming layer of the flexographic printing plate precursor
  • an organic peroxide is particularly preferable because the relief edge shape is good.
  • aromatic ketones (b) onium salt compounds, (d) thio compounds, (e) hexaarylbiimidazole compounds, (f) ketoxime ester compounds, (g) borate compounds, (h) Examples of azinium compounds, (i) metallocene compounds, (j) active ester compounds, (k) compounds having a carbon halogen bond, and (l) azo compounds include paragraphs 0074 to 0118 of JP-A-2008-63554. Can preferably be used.
  • organic peroxide (c) which is a preferred example, the following compounds are preferable.
  • organic peroxide examples include dicumyl peroxide (10-hour half-life temperature: 116 ° C.), ⁇ , ⁇ ′-di (t-butylperoxy) diisopropylbenzene (10-hour half-life temperature). 119 ° C.), 2,5-dimethyl-2,5-di (t-butylperoxy) hexane (10-hour half-life temperature: 118 ° C.) and the like, and these may be used alone, Two or more kinds may be used in combination.
  • the form of the organic peroxide can be used as it is, but from the viewpoint of handling (danger, workability, etc.), the raw material is converted into an inorganic filler such as calcium carbonate.
  • Diluted products with a concentration of 40 wt% (non-dangerous materials, powder), and master batch type diluted products for the purpose of preventing dusting during kneading and improving dispersibility in polymers can be more preferably used. .
  • Park Mill D (manufactured by NOF Corporation), Perkadox BC-FF (manufactured by Kayaku Akzo Corporation), Luperox DC (manufactured by Arkema Yoshitomi Corporation), Perbutyl P (manufactured by NOF Corporation), Parka Docks 14 (manufactured by Kayaku Akzo Co., Ltd.), Lupelox F (manufactured by Arkema Yoshitomi Co., Ltd.), Lupelox F90P (manufactured by Arkema Yoshitomi Co., Ltd.), Perhexa 25B (manufactured by NOF Corporation), Kayahexa AD (manufactured by Kayaku Akzo Corporation) ), Lupelox 101 (manufactured by Arkema Yoshitomi Co., Ltd.) or the like can be used, but is not limited thereto.
  • Examples of the diluted product include, for example, Park Mill D-40 (manufactured by NOF Corporation: diluted inert filler), Park Mill D-40MB (manufactured by NOF Corporation: diluted silica / polymer, etc.), Kayak Mill D- 40C (manufactured by Kayaku Akzo Co., Ltd .: calcium carbonate diluted product), Kayak Mill D-40MB-S (manufactured by Kayaku Akzo Co., Ltd .: rubber master batch), Kayaku Mill D-40MB (manufactured by Kayaku Akzo Co., Ltd .: rubber master batch) Perbutyl P-40 (manufactured by NOF Corporation: diluted inert filler), PERBUTYL P-40MB (manufactured by NOF Corporation: silica / polymer and other diluted products), Perkadox 14/40 (Kayaku Akzo Corporation) Manufactured by: calcium carbonate diluted product), Parka dox 14-40C (manufact
  • the thermal polymerization initiator is excellent in the sculpture residue rinsing property, and also has good printing durability and ink fillability, so that it is 0.1 to 20.0 with respect to 100 parts by mass of the diene polymer.
  • the amount is preferably part by mass, more preferably 0.5 to 15.0 parts by mass, and still more preferably 1.0 to 15.0 parts by mass.
  • Carbon black The carbon black is not particularly limited. As long as the dispersibility in the resin composition is stable, the carbon black is classified according to American Society for Testing and Materials (ASTM) and used (for example, for color, rubber, dry battery, etc.) Any of () can be used.
  • ASTM American Society for Testing and Materials
  • carbon black is considered to function as a photothermal conversion agent that promotes thermal decomposition of a cured product during laser engraving by absorbing laser light and generating heat.
  • carbon black examples include furnace black, thermal black, channel black, lamp black, and acetylene black. These may be used alone or in combination of two or more. Also good. These carbon blacks can be used as color chips or color pastes that are dispersed in nitrocellulose or a binder in advance using a dispersant as needed to facilitate dispersion. To powder.
  • the carbon black content is preferably 1 to 30 parts by mass with respect to 100 parts by mass of the diene polymer because the sensitivity at the time of laser engraving is good and the ink inking property is also good.
  • it is 2 to 25 parts by mass, more preferably 3 to 20 parts by mass.
  • additives In the resin composition used in the layer forming step, various known additives can be appropriately blended as long as the effects of the present invention are not impaired. Examples include cross-linking aids, silane coupling agents, other fillers, waxes, process oils, metal oxides, antiozonants, anti-aging agents, polymerization inhibitors, colorants, and the like. You may use individually and may use 2 or more types together.
  • a resin composition is prepared, and, if necessary, a solvent is removed from the resin composition and then melt extruded onto a support; a resin composition is prepared, A method in which a resin composition is cast on a support, and this is heated and dried in an oven to remove the solvent. A method in which the resin composition is molded into a sheet using a calendar roll as shown in FIG. And the like.
  • the calendar roll 60 has a first roll 62a to a fourth roll 62d, and the interval between these rolls, the roll temperature, and the rotation speed of the roll can be set.
  • the crosslinking step is a step of forming a crosslinked relief forming layer by crosslinking the relief forming layer formed in the layer forming step.
  • the crosslinking method is not particularly limited as long as the relief forming layer is cured by light and / or heat, and a curing method used in the conventional method for producing a flexographic printing plate precursor is appropriately used. Can do.
  • the relief-forming layer contains a photopolymerization initiator
  • the relief-forming layer is crosslinked by irradiating the relief-forming layer with light that triggers the photopolymerization initiator (hereinafter also referred to as “active light”).
  • active light can do.
  • the irradiation with actinic light is generally performed on the entire surface of the relief forming layer. Examples of actinic rays include visible light, ultraviolet light, and electron beam, and ultraviolet light is the most common.
  • the substrate side for immobilizing the relief forming layer such as the support of the relief forming layer, is the back side, the surface may only be irradiated with light, but the support should be a transparent film that transmits actinic rays.
  • the irradiation from the surface may be performed while the protective film is provided, or may be performed after the protective film is peeled off. Since polymerization inhibition may occur in the presence of oxygen, actinic rays may be irradiated after the relief forming layer is covered with a vinyl chloride sheet and evacuated.
  • the relief forming layer contains a thermal polymerization initiator
  • it can be crosslinked by heating the relief forming layer.
  • heating means for performing crosslinking by heat include a method of heating an uncured layer in a hot air oven or a far infrared oven for a predetermined time, and a method of contacting a heated roll for a predetermined time.
  • crosslinking by heat is preferable from the viewpoint that the relief forming layer can be uniformly cured (crosslinked) from the surface to the inside.
  • the crosslinked relief forming layer crosslinked in the crosslinking step is subjected to laser engraving, and the image portion in which the above-described concave portion is formed on the surface, that is, the small dot and the solid portion in the halftone dot portion.
  • it is a step of forming a relief layer including an image portion provided with two or more concave portions having different depths according to the halftone dot area ratio at small dots in the halftone dot portion.
  • the method of laser engraving is not particularly limited, but in the manufacturing method of the present invention, it is necessary to engrave a portion to be a non-image portion (form a non-image portion) and to form the above-described concave portion on the surface of the image portion. Therefore, a method in which a laser head is controlled by a computer based on digital data of a desired image and scanning irradiation is performed on the crosslinked relief forming layer is preferable.
  • Image data generation method The following method can be used as a method for generating image data for laser engraving.
  • Original image data of a printing plate to be created is acquired.
  • RIP Raster Image Processor
  • the original image data is rasterized, and a plurality of partial areas having a predetermined width are extracted from the outer edge (end side) of each image portion.
  • a mask is generated by superimposing a template of a concave pattern having a predetermined area ratio on each extracted partial region.
  • output image data (light intensity image) is generated by multiplying the generated mask by the image data (binary image) subjected to RIP processing.
  • the depth of the concave portion can be adjusted by a shape profile when generating the light amount image.
  • the laser power is set according to the DEPTH POWER value (DP value) set in relation to the engraving depth. And setting the rotation speed of the drum. In this manner, output image data in which a concave pattern is added to the image portion of the original image data is generated, laser engraving is performed using the output image data, and a flexographic printing plate is produced.
  • the output image data is output from the exposure head toward the printing plate precursor by winding a drum-shaped printing plate precursor on a cylindrical drum and rotating the drum.
  • the type of laser used in laser engraving is not particularly limited, but an infrared laser is preferably used.
  • an infrared laser When irradiated with an infrared laser, the molecules in the crosslinked relief forming layer undergo molecular vibrations and generate heat.
  • a high-power laser such as a carbon dioxide laser or YAG (Yttrium Aluminum Garnet) laser is used as an infrared laser, a large amount of heat is generated in the laser irradiation area, and molecules in the cured layer are selectively cut by molecular cutting or ionization. Removal, ie engraving.
  • the infrared laser a carbon dioxide laser (CO 2 laser) or a semiconductor laser is preferable from the viewpoint of productivity, cost, and the like, and a semiconductor infrared laser with a fiber (FC-LD) is particularly preferable.
  • a semiconductor laser can be downsized with high efficiency and low cost in laser oscillation compared to a CO 2 laser. Moreover, since it is small, it is easy to form an array. Furthermore, the beam shape can be controlled by processing the fiber.
  • the semiconductor laser preferably has a wavelength of 700 to 1,300 nm, more preferably 800 to 1,200 nm, still more preferably 860 to 1,200 nm, and particularly preferably 900 to 1,100 nm.
  • a semiconductor laser with a fiber is effective for laser engraving because it can efficiently output laser light by further attaching an optical fiber.
  • the beam shape can be controlled by processing the fiber.
  • the beam profile can have a top hat shape, and energy can be stably given to the plate surface. Details of the semiconductor laser are described in “Laser Handbook 2nd Edition” edited by Laser Society, “Practical Laser Technology” edited by IEICE. Further, the plate making apparatus provided with the fiber-coupled semiconductor laser described in detail in JP-A-2009-172658 and JP-A-2009-214334 can be suitably used in the method for producing a flexographic printing plate of the present invention. it can.
  • a method of immersing in an alkaline aqueous solution rotating the rinsing liquid while immersing in an alkaline aqueous solution, and brushing the engraved surface with a brush (eg, animal hair brush, brush with a wavy line with a hair diameter of 100 to 500 ⁇ m, etc.)
  • a brush eg, animal hair brush, brush with a wavy line with a hair diameter of 100 to 500 ⁇ m, etc.
  • a method of rubbing a method of spraying an alkaline aqueous solution, a batch type or conveying brush type washing machine known as a photosensitive resin letterpress developing machine, and a method of brushing the engraving surface mainly in the presence of an alkaline aqueous solution.
  • a rinse solution to which soap or a surfactant is added may be used.
  • the laser engraving (DLE (Direct Laser Engraving) method) is not limited to the above-mentioned, and various known methods such as LAMS (Laser Ablation Masking System) that writes and develops an image on the surface of a printing plate precursor with a laser. Manufacturing methods are available.
  • LAMS Laser Ablation Masking System
  • the LAMS specifically includes methods described in International Publication No. 2004/090638, Japanese Patent Application Laid-Open No. 2014-0663132, and the like.
  • the flexographic printing apparatus basically has the same configuration as that of the conventional flexographic printing apparatus except that the flexographic printing plate is used.
  • FIG. 7 is a diagram conceptually showing a main part of a flexographic printing apparatus using the flexographic printing plate according to the present invention.
  • the flexographic printing apparatus 30 includes the flexographic printing plate 1, a drum (plate cylinder) 31, a conveyance roller (impression cylinder) 32, an anilox roller 33, a doctor chamber 34, and a circulation tank 35.
  • the drum 31 has a cylindrical shape, and the flexographic printing plate 1 is placed on the peripheral surface, and the flexographic printing plate 1 is brought into contact with the printing medium z while rotating.
  • the conveyance roller 32 is a roller that constitutes a conveyance unit (not shown) that conveys the printing medium z along a predetermined conveyance path, and its circumferential surface is arranged to face the circumferential surface of the drum 31, The printed body z is brought into contact with the flexographic printing plate 1.
  • the drum 31 is arranged so that the rotation direction thereof coincides with the conveyance direction of the printing medium z.
  • the anilox roller 33, the doctor chamber 34, and the circulation tank 35 are for supplying ink to the flexographic printing plate 1.
  • the circulation tank 35 stores ink, and the ink in the circulation tank 35 is supplied to the doctor chamber 34 by a pump (not shown).
  • the doctor chamber 34 is provided in close contact with the surface of the anilox roller 33 and holds ink therein.
  • the anilox roller 33 abuts on the peripheral surface of the drum 31 and rotates synchronously to apply (supply) the ink in the doctor chamber 34 to the printing plate 1.
  • the flexographic printing apparatus 30 configured as described above rotates the flexographic printing plate 1 placed on the drum 31 while transferring the printing medium z along a predetermined conveyance path, and transfers ink to the printing medium z. And print. That is, the rotation direction of the drum on which the flexographic printing plate is placed becomes the printing direction.
  • the type of printing medium used in the flexographic printing apparatus using the flexographic printing plate of the present invention there are no particular limitations on the type of printing medium used in the flexographic printing apparatus using the flexographic printing plate of the present invention, and various known printing media used in ordinary flexographic printing apparatuses such as paper, film, and cardboard.
  • the body can be used.
  • the type of ink used in the flexographic printing apparatus using the flexographic printing plate of the present invention is not particularly limited, and is usually an aqueous ink, UV (Ultra Violet) ink, oil-based ink, EB (Electron Beam) ink, or the like.
  • Various known inks used in the flexographic printing apparatus can be used.
  • ⁇ Preparation of flexographic printing plate precursor> The obtained resin composition A was crosslinked by heating at 160 ° C. for 20 minutes at a pressure of 10 MPa using a heating press machine (MP-WCL, manufactured by Toyo Seiki Seisakusho Co., Ltd.), and having a thickness of 915 ⁇ m.
  • a relief forming layer was prepared. After coating a photocurable composition (manufactured by ThreeBond Co., Ltd .: 3030) on one side of the obtained crosslinked relief forming layer so that the average film thickness is 100 ⁇ m, a 125 ⁇ m-thick PET film as a support is applied to the nip roller.
  • the photocurable layer was cured from the PET film side with a UV exposure machine (UV exposure machine ECS-151U, metal halide lamp, 1,500 mJ / cm 2 , 14 sec exposure manufactured by Eye Graphics Co., Ltd.) from the PET film side.
  • UV exposure machine ECS-151U metal halide lamp, 1,500 mJ / cm 2 , 14 sec exposure manufactured by Eye Graphics Co., Ltd.
  • the flexographic printing plate precursor was obtained.
  • a flexographic printing plate having an image portion and a non-image portion was formed by performing laser engraving on the crosslinked relief forming layer of the flexographic printing plate precursor obtained above.
  • Method 1 the DLE method by laser engraving is indicated as “Method 1”.
  • Flexographic printing having an image portion and a non-image portion in which the depth of the concave portion in each section becomes a value shown in Table 1 below by performing laser engraving on the crosslinked relief forming layer of the flexographic printing plate precursor obtained above A plate was made.
  • engraving by laser irradiation is carried out with a laser engraving machine (1300S manufactured by Hel Gravure Systems) at a resolution of 2540 dpi, and then a detergent (Joy (registered trademark) 2% aqueous solution manufactured by The Procter & Gamble Company). ) was hung on the plate, rubbed with a pork brush, and washed with running water to remove engraving residue.
  • a pattern for forming a recess in the image portion, lattice points with equal intervals of a horizontal pitch xp (pix) and a vertical pitch yp (pix) are a (deg) counterclockwise.
  • a mask pattern was prepared by setting engraving points at the rotated positions.
  • the parameter is a real number, and the result calculated according to the parameter is converted to an integer to obtain the coordinates of the engraving point.
  • the recess formation patterns in Table 1 below are the patterns I to III set to the horizontal pitch xp (pix), vertical pitch yp (pix), and a (deg) shown in Table 2 below.
  • the plan view of the halftone dot portion and the solid portion having a halftone dot area ratio of 30% is as shown in FIG. 3A and FIG.
  • 4A and 4B are plan views of a halftone dot portion and a solid portion having a halftone dot area ratio of 30% of the surface of the image portion obtained by using the image, and an image obtained by using the pattern III.
  • 5A and 5B are plan views of a halftone dot portion and a solid portion having a halftone dot area ratio of 30% in the surface of the portion.
  • Examples 2 to 13 Comparative Examples 1 to 3
  • a flexographic printing plate was produced in the same manner as in Example 1 except that the depth of the concave portion in each section was changed to the value shown in Table 1 below.
  • Example 14 A flexographic printing plate was produced in the same manner as in Example 1 except that the pattern II was used instead of the pattern I as the recess formation pattern.
  • Example 15 A flexographic printing plate was produced in the same manner as in Example 1 except that pattern III was used in place of pattern I as the recess formation pattern.
  • Example 16 A flexographic printing plate was produced in the same manner as in Example 1 except that the resin composition B (prescription B) shown below was used instead of the resin composition A.
  • resin composition B prescription B
  • carbon black # 45L carbon black # 1000 (nitrogen adsorption specific surface area: 180m 2 / g, DBP absorption amount: 56cm 3/100 g, Mitsubishi Chemical Corporation) except for using, as with the resin composition A
  • Resin composition A was prepared by the method described above.
  • Example 17 A flexographic printing plate was produced in the same manner as in Example 1 except that the resin composition C (prescription C) shown below was used instead of the resin composition A.
  • Resin composition C was prepared by the method.
  • Example 18 A flexographic printing plate was produced in the same manner as in Example 1 except that the resin composition D (prescription D) shown below was used instead of the resin composition A.
  • the resin composition D (prescription D) shown below was used instead of the resin composition A.
  • SEAST FM nitrogen adsorption specific surface area: 42m 2 / g, DBP absorption amount: 160cm 3/100 g, Tokai Carbon Co., Ltd.
  • a resin composition D was prepared.
  • Example 19 A flexographic printing plate was produced in the same manner as in Example 1 except that the resin composition E (prescription E) shown below was used instead of the resin composition A.
  • resin composition E UBEPOL BR150 (polybutadiene, manufactured by Ube Industries, Ltd.) as the polymer and 80 parts by weight of carbon black # 45L (nitrogen adsorption specific surface area as the light-to-heat conversion agent: 125m 2 / g, DBP absorption amount: 45cm 3/100 g, Mitsubishi Chemical stock
  • a resin composition E was prepared by kneading 12 parts by mass of the product (made by company) and 5 parts by mass of Parkmill D40 [dicumyl peroxide (40% by mass), manufactured by NOF CORPORATION].
  • resin composition F As a polymer, Kraton D-1102 (SBS block copolymer, manufactured by Clayton Co., Ltd.) 60 parts by mass, as a plasticizer DEHP # 80030 (bis (2-ethylhexyl phthalate), manufactured by Sigma-Aldrich), 32 parts by mass, monomer 10 parts by mass of A-HD-N (hexanediol diacrylate, manufactured by Shin-Nakamura Chemical Co., Ltd.), 2 parts by mass of Irgacure 651 (manufactured by BASF) as a photopolymerization initiator, 1 part by mass of dye and heat stability
  • the resin composition F was prepared by kneading the agent.
  • ⁇ Preparation of flexographic printing plate precursor 100 parts by mass of carbon black and 3 parts by mass of plasticizer are added to a binder polymer consisting of 75 parts by mass of acrylic resin and 25 parts by mass of nitrile rubber (NBR), and further 815 parts by mass of methyl isobutyl ketone as a solvent are added. And mixed. After the obtained mixed liquid was dispersed by a roll mill, methyl isobutyl ketone was further added to prepare an infrared ablation composition. The obtained infrared ablation composition was applied with a bar coater so that the thickness after drying was 3 ⁇ m on a substrate on which one surface of a 100 ⁇ m thick PET film was previously applied as a cover film.
  • the resin composition F prepared above is sandwiched between a cover film and a substrate coated with an adhesive in advance on one side of a 125 ⁇ m thick PET film as a support, and the thickness excluding the cover film is 1.14 mm.
  • the flexographic printing plate precursor was obtained by pressing with a press heated to 120 ° C.
  • the plate After imaging, the plate was taken out, returned to a flat surface, and irradiated with actinic radiation (light source Philips ultraviolet low-pressure mercury lamp, illuminance 32 mW / cm 2 at 365 nm) for 420 seconds. Thereafter, methyl ethyl ketone (MEK, manufactured by Idemitsu Kosan Co., Ltd.) was hung on the plate, rubbed with a pig hair brush, and washed with running water for development. After development, the film is dried at 60 ° C.
  • actinic radiation light source Philips ultraviolet low-pressure mercury lamp, illuminance 32 mW / cm 2 at 365 nm
  • MEK methyl ethyl ketone
  • actinic radiation light source Philips ultraviolet low-pressure mercury lamp, illuminance of 32 mW / cm 2 at 365 nm
  • a germicidal lamp to remove surface tack (detack) was irradiated for 300 seconds.
  • the ink transferability was evaluated by measuring the density of the D section on the printed matter obtained above twice at a portable reflection densitometer (manufactured by X-Rite) twice, and calculating the average of the total of six measurements. Calculated and evaluated according to the following criteria.
  • Example 1 and Examples 3 to 4 when the depth of the concave portion is 8 ⁇ m or more and 12 ⁇ m or less in the region (B section) in which the dot area ratio is more than 30% and 70% or less, the suppression of calami It turns out that an effect becomes high. Further, from the comparison between Example 1 and Examples 5 to 6, when the depth of the concave portion in the region (C section) where the dot area ratio is more than 70% and 90% or less is 12 ⁇ m or more and 16 ⁇ m or less, the slippage is suppressed. It turns out that an effect becomes high.
  • Example 1 From comparison between Example 1 and Examples 7 to 8, when the depth of the concave portion in the region (D section) where the dot area ratio is more than 90% and 100% or less is 18 ⁇ m or more and 22 ⁇ m or less, the ink transfer property was found to be better. Further, from the comparison with Examples 1, 14 and 15, it is a concave portion using the pattern I and the pattern II as the concave portion forming pattern, that is, a concave portion composed of grooves continuously formed in the direction perpendicular to the depth direction. It was found that the ink transferability and print quality were better.

Abstract

本発明は、ベタ部等におけるインキ転写性に優れ、中間階調部における印刷品質が良好なフレキソ印刷版を提供することを課題とする。本発明のフレキソ印刷版は、非画像部と画像部とを備えるレリーフ層を有するフレキソ印刷版であって、画像部が、網点面積率が0%超100%未満の網点部と網点面積率が100%のベタ部とを有し、網点部における小点およびベタ部、または、網点部における小点が、網点面積率に応じて深さの異なる2以上の凹部を有し、深さの異なる2以上の凹部が、網点面積率が高いほど深くなる凹部である、フレキソ印刷版である。

Description

フレキソ印刷版
 本発明は、フレキソ印刷版に関する。
 樹脂製やゴム製の柔軟なレリーフ形成層を有するフレキソ印刷版は、印刷用の凸部(画像部)が比較的柔らかく、種々の形状に追従可能なことから、様々な材質の被印刷体や厚みのある被印刷体等への印刷に利用されている。
 フレキソ印刷版の画像部は、インキを全面的に転写することで、塗りつぶすように印刷するベタ部、および/または、多数の凸状の小点(突起体)からなり、小点の大きさや密度を変化させることで、被印刷体上に印刷される画像の濃淡(グラデーション)を表現する網点部を有して構成されており、フレキソ印刷版を円筒状のドラムの周面に載置してローラを回転させつつ、被印刷体に接触させることによって、印刷版の凸部(画像部)の表面から、被印刷体に直接、インキを転写して被印刷体上に画像を形成する。
 このようなフレキソ印刷版においては、印圧等の印刷条件によってはベタ部におけるインキの転写性が劣り、インキ濃度が低くなることが知られている。
 このような問題を解決するために、特許文献1には、直径30μm以上の広さの中間調部、および、ベタ部に、格子状のマスクを用いて、碁盤目状に溝を規則的に形成することが記載されている([請求項12][請求項13][請求項17][図4A]など参照)。
特表2012-511175号公報
 本発明者らは、特許文献1に記載された印刷版について検討したところ、ベタ部および網点面積率が90%超の領域(以下、「ベタ部等」とも略す。)におけるインキ転写性が劣り、網点面積率が30%超90%以下の領域(以下、「中間階調部」とも略す。)においてモアレやカラミ等が発生し、印刷品質が劣る場合があるこが分かった。なお、中間階調部のうち、網点面積率が0%超30%以下の領域(A区分)では、モアレが発生する傾向があり、網点面積率が30%超70%以下の領域(B区分)では、カラミが発生する傾向があり、網点面積率が70%超90%以下の領域(C区分)では、ツブレが発生する傾向があることが分かった。
 そこで、本発明は、ベタ部等におけるインキ転写性に優れ、中間階調部における印刷品質が良好なフレキソ印刷版を提供することを課題とする。
 本発明者らは、上記課題を達成すべく鋭意研究した結果、網点部における小点およびベタ部、または、網点部における小点に、網点面積率に応じた深さの異なる2以上の凹部を設けることにより、ベタ部等におけるインキ転写性に優れ、中間階調部における印刷品質が良好となることを見出し、本発明を完成させた。
 すなわち、本発明者らは、以下の構成により上記課題が解決できることを見出した。
 [1] 非画像部と画像部とを備えるレリーフ層を有するフレキソ印刷版であって、
 画像部が、網点面積率が0%超100%未満の網点部と網点面積率が100%のベタ部とを有し、
 網点部における小点およびベタ部、または、網点部における小点が、網点面積率に応じて深さの異なる2以上の凹部を有し、
 深さの異なる2以上の凹部が、網点面積率が高いほど深くなる凹部である、フレキソ印刷版。
 [2] 凹部の深さが、網点面積率が0%超30%以下の領域において、10μm以下である、[1]に記載のフレキソ印刷版。
 [3] 凹部の深さが、網点面積率が30%超70%以下の領域において、15μm以下である、[1]または[2]に記載のフレキソ印刷版。
 [4] 凹部の深さが、網点面積率が70%超90%以下の領域において、9μm以上18μm以下である、[1]~[3]のいずれかに記載のフレキソ印刷版。
 [5] 凹部の深さが、網点面積率が90%超100%以下の領域において、11μm以上23μm以下である、[1]~[4]のいずれかに記載のフレキソ印刷版。
 [6] 凹部が、深さ方向と直交する方向に連続して形成された溝からなる、[1]~[5]のいずれかに記載のフレキソ印刷版。
 本発明によれば、ベタ部等におけるインキ転写性に優れ、中間階調部における印刷品質が良好なフレキソ印刷版を提供することを提供することができる。
図1は、本発明のフレキソ印刷版の一例を示す概略上面図である。 図2は、図1に示すフレキソ印刷版の画像部の一部を拡大して示す模式的な断面図である。 図3Aは、網点面積率が30%の網点部の一例を示す平面図である。 図3Bは、網点面積率が100%のベタ部の一例を示す平面図である。 図4Aは、網点面積率が30%の網点部の他の一例を示す平面図である。 図4Bは、網点面積率が100%のベタ部の他の一例を示す平面図である。 図5Aは、網点面積率が30%の網点部の他の一例を示す平面図である。 図5Bは、網点面積率が100%のベタ部の他の一例を示す平面図である。 図6は、フレキソ印刷版原版を作製するためのカレンダーロールを概念的に示す図である。 図7は、本発明に係るフレキソ印刷版を用いるフレキソ印刷装置の要部を概念的に示す図である。
 以下、本発明について詳細に説明する。
 なお、本発明において、数値範囲を表す「下限~上限」の記載は、「下限以上、上限以下」を表し、「上限~下限」の記載は、「上限以下、下限以上」を表す。すなわち、上限及び下限を含む数値範囲を表す。
 また、「質量部」および「質量%」は、それぞれ、「重量部」および「重量%」と同義である。
 ここで、フレキソ印刷版およびフレキソ印刷版原版の説明に関し、未架橋の架橋性層を「レリーフ形成層」と称し、上記レリーフ形成層を架橋した層を「架橋レリーフ形成層」と称し、これをレーザー彫刻して表面に凹凸を形成した層を「レリーフ層」と称する。
 また、上記架橋は、光および/または熱により行われ、樹脂組成物が硬化される反応であれば特に限定されない。
 また、架橋レリーフ形成層を有する印刷版原版にレーザー彫刻し、所望によりリンスすることによりフレキソ印刷版が作製される。
[フレキソ印刷版]
 本発明のフレキソ印刷版は、非画像部と画像部とを備えるレリーフ層を有するフレキソ印刷版であって、画像部が、網点面積率が0%超100%未満の網点部と網点面積率が100%のベタ部とを有する。
 また、網点部における小点およびベタ部、または、網点部における小点が、網点面積率に応じて深さの異なる2以上の凹部を有する。
 また、深さの異なる2以上の凹部が、網点面積率が高いほど深くなる凹部である。
 ここで、「網点面積率」とは、単位面積あたりに占める網点面積の割合をパーセントで表したものであり、上述した通り、網点面積率が100%の部分をベタ部という。
 このような構成を有する本発明のフレキソ印刷版は、ベタ部等におけるインキ転写性に優れ、中間階調部における印刷品質が良好となる。
 これは、詳細には明らかではないが、本発明者らは以下のように推測している。
 本発明者らは、網点面積率が90%超の領域(ベタ部等)においては、凹部がインキの保持量を増やし、印刷時のインキの流れ(押し出し量)を安定化する役割を果たし、網点面積率が30%超90%以下の領域(中間階調部)においては、凹部が網点におけるインキ濃度を適正に保ち、かつ、網点と網点との間におけるインキの抜けに寄与すると推測している。
 すなわち、網点面積率の高い領域における凹部の深さを網点面積率の低い領域における凹部の深さよりも深くすることにより、上述した役割が明確となり、ベタ部等におけるインキ転写性と、中間階調部における印刷品質が両立できたと考えられる。
 次に、本発明のフレキソ印刷版の全体の構成(特に、画像部に形成される凹部)を図1~図5を用いて説明した後に、各構成について詳述する。
 図1に示すように、本発明に係るフレキソ印刷版の一例である印刷版1は、画像部3と、非画像部4とが形成されたレリーフ層2を有する。
 画像部3は、印刷時にインキを着けてこのインキを被印刷物に転写する、すなわち、印刷時に画像を形成する領域である。また、非画像部4は、印刷時にインキを着けない、すなわち、画像を形成しない領域である。
 図2に示すように、画像部3は、網点面積率が0%超100%未満の網点部3aと、網点面積率が100%のベタ部3bとを有する。
 また、図2に示すように、網点部3aの各小点における凹部5の深さDaと、ベタ部3bにおける凹部5の深さDbとが異なり、網点面積率が高いベタ部3bにおける凹部5の深さDbが、網点部3aの各小点における凹部5の深さDaよりも深い。なお、図2に示す符号Wは、凹部5の幅を示す。
 ここで、図2に示す態様においては、深さの異なる2以上の凹部が網点部3aとベタ部bに設けられているが、本発明の図2に示す態様に限定されず、例えば、所定の網点面積率の領域Aの網点部における小点が有する凹部の深さAと他の所定の網点面積率の領域Bの網点部における小点が有する他の凹部の深さBとが異なる態様や、網点面積率が90%超の領域(ベタ部を含む)における凹部の深さAと網点面積率が90%未満の領域Bの網点部における小点が有する他の凹部の深さBとが異なる態様などであってもよい。
 図3Aおよび図3B、図4Aおよび図4B、ならびに、図5Aおよび図5Bの平面図に示すように、凹部5の形状は、凹部が連続した溝形状であってもよく(図3Aおよび図3B、ならびに、図4Aおよび図4B参照)、凹部が不連続の孔形状であってもよい(図5Aおよび図5B参照)。
 また、図3A、図4Aおよび図5Aは、いずれも、網点面積率が30%の網点部における各小点が凹部を有している態様を示しており、図3B、図4Bおよび図5Bは、いずれも、網点面積率が100%のベタ部が凹部を有している態様を示している。
 〔非画像部〕
 本発明のフレキソ印刷版が有する非画像部は、上述した通り、印刷時にインキを着けない、すなわち、画像を形成しない領域をいう。なお、後述する画像部の網点部における網点以外の領域は、明るい(ハイライト)画像を形成するための領域であるため、非画像部には含まれない領域である。
 なお、非画像部の形状は、特に限定されず、画像部以外の部分が非画像部となる。
 〔画像部〕
 本発明のフレキソ印刷版が有する画像部は、上述した通り、印刷時にインキを着けてこのインキを被印刷物に転写する、すなわち、印刷時に画像を形成する領域をいう。
 本発明においては、画像部は、網点面積率が0%超100%未満の網点部と網点面積率が100%のベタ部とを有し、表面の少なくとも一部に後述する凹部を有するものである。
 ここで、網点部を構成する小点は、通常、所定のスクリーン線数(精細度)、例えば、100~200lpi(line per inch)程度のスクリーン線数で形成される。
 また、網点部を構成する小点の大きさは、網点面積率およびスクリーン線数によって左右されるため特に限定されないが、例えば、円形ドットにおいてスクリーン線数が150lpiであり、網点面積率が70%であると、小点の直径は160μmと算出することができる。
 <凹部>
 凹部は、網点部における小点およびベタ部、または、網点部における小点に設けられる凹部である。
 本発明においては、網点部における小点およびベタ部、または、網点部における小点に、網点面積率が高いほど深くなるように網点面積率に応じて深さを変えた2以上、好ましくは3以上、より好ましくは4以上の凹部を設ける。
 上記凹部の深さ(図2において符号Daで表される部分)は、網点部における小点およびベタ部において、あるいは、網点部における小点において、網点面積率が高いほど深くなるように網点面積率に応じて変更する。
 ここで、モアレの発生をより抑制する観点から、網点面積率が0%超30%以下の領域(以下、「A区分」ともいう。)においては、凹部の深さが10μm以下であるのが好ましく、8μm以下であるのがより好ましい。
 また、網点カラミの発生をより抑制する観点から、網点面積率が30%超70%以下の領域(以下、「B区分」ともいう。)においは、凹部の深さが15μm以下であるのが好ましく、8μm以上12μm以下であるのがより好ましい。
 また、網点ツブレの発生をより抑制する観点から、網点面積率が70%超90%以下の領域(以下、「C区分」ともいう。)においては、凹部の深さが9μm以上18μm以下であるのが好ましく、12μm以上16μm以下であるのがより好ましい。
 また、インキ転写性がより良好となる理由から、網点面積率が90%超100%以下の領域(以下、「D区分」ともいう。)においては、凹部の深さが11μm以上23μm以下であるのが好ましく、18μm以上22μm以下であるのがより好ましい。
 なお、上述した凹部の深さの好適範囲のうち、各領域において一部重複している数値が記載されているが、これは、各領域において同一の値の深さを採用することを許容するものでない。
 本発明においては、上述したA区分~D区分のうち、少なくとも2区分における凹部の深さが網点面積率に応じて異なっていれば、他の区分においては、凹部の深さが共通していてもよく、凹部を有していなくてもよい。
 具体的には、例えば、上述したC区分およびD区分において、D区分の凹部の深さをC区分の凹部の深さよりも深くして設けていれば、A区分およびB区分の凹部の深さはC区分の凹部の深さと共通していてもよく、C区分の凹部の深さよりも浅い値で共通していてもよく、あるいは、A区分および/またはB区分には凹部を有していなくてもよい。
 また、本発明においては、上述したA区分~D区分のうち、少なくとも3区分における凹部の深さが網点面積率に応じて異なっているのが好ましく、4区分のすべてにおいて凹部の深さが網点面積率に応じて異なっているのがより好ましい。
 上記凹部は、インキを被印刷体にスムーズに転移させ、より高いインキ濃度での印刷が可能となる理由から、凹部の幅(図2において符号Wで表される部分)が5~30μmであることが好ましく、10~25μmとなる溝であることが好ましい。
 同様の理由から、凹部のピッチ、すなわち、隣接する凹部の中心間距離が、10~100μmであることが好ましく、20~60μmとなる溝であることが好ましい。
 また、上記凹部は、インキを被印刷体にスムーズに転移させ、より高いインキ濃度での印刷が可能となる理由から、深さ方向と直交する方向に連続して形成された溝であることが好ましい。
 <比表面積>
 画像部は、上述した凹部のピッチ等に左右されるため特に限定されないが、上述した凹部を設けることにより、比表面積、すなわち、測定面積(幾何学的測定面積)に対する表面積(実面積)の割合は、概ね1.5倍~3.5倍となる。
 ここで、上記比表面積の測定は、3次元レーザー顕微鏡VK-8700(対物レンズ倍率:20倍、株式会社キーエンス製)を用い、形状解析には形状解析アプリケーション(VK Analyzer、株式会社キーエンス社製)を用いた値をいう。
 〔支持体〕
 本発明のフレキソ印刷版は、レリーフ層の裏面側(彫刻面とは反対側の面)に支持体を有してもよい。
 このような支持体としては特に限定されないが、寸法安定性の高いものが好ましく使用され、例えば、ポリエステル(例えばPET(ポリエチレンテレフタレート)、PBT(ポリブチレンテレフタレート)、PEN(ポリエチレンナフタレート));PAN(ポリアクリロニトリル);PI(ポリイミド);PA(ポリアミド);テフロン(登録商標)等のフッ素樹脂;シリコーン樹脂やポリ塩化ビニルなどのプラスチック樹脂;スチレン-ブタジエンゴムなどの合成ゴム;ガラスファイバーで補強されたプラスチック樹脂(エポキシ樹脂やフェノール樹脂など);等が挙げられる。
 支持体としては、PETフィルム、PENフィルム、PIフィルム、PAフィルム、フッ素樹脂フィルム、シリコーン樹脂フィルムが好ましく用いられる。
[フレキソ印刷版の製造方法]
 上述した本発明のフレキソ印刷版を製造する製造方法(以下、単に「本発明の製造方法」ともいう。)は、レーザー彫刻用樹脂組成物を用いてレリーフ形成層を形成する層形成工程と、上記レリーフ形成層を架橋して架橋レリーフ形成層を有するフレキソ印刷版原版を得る架橋工程と、上記架橋レリーフ形成層にレーザー彫刻を施して、上記非画像部と、上述した凹部が形成された画像部とを備えるレリーフ層を形成し、フレキソ印刷版を得る彫刻工程と、を有するフレキソ印刷版の製造方法である。
 以下に、本発明の製造方法の各工程について詳述する。
 〔層形成工程〕
 層形成工程は、レーザー彫刻用樹脂組成物(以下、単に「樹脂組成物」ともいう。)を用いて架橋前(硬化前)のレリーフ形成層を形成する工程である。
 <樹脂組成物>
 上記樹脂組成物は、フレキソ印刷版原版のレリーフ形成層を形成する従来公知の樹脂組成物を用いることができ、例えば、ジエン系ポリマー、熱重合開始剤、および、カーボンブラックを含有する樹脂組成物が挙げられる。
 次に、層形成工程に用いる樹脂組成物に含有する各成分について説明する。
 (ジエン系ポリマー)
 上記ジエン系ポリマーは特に限定されず、従来公知のジエン系ポリマーを制限なく使用することができる。
 上記ジエン系ポリマーとしては、具体的には、例えば、ポリイソプレン、ポリブタジエン、エチレン-プロピレン-ジエン共重合体(EPDM)、アクリロニトリル-ブタジエン共重合体、スチレン-ブタジエン共重合体(SBR)、スチレン-イソプレン共重合体、スチレン-イソプレン-ブタジエン共重合体等が挙げられ、これらを1種単独で用いてもよく、2種以上を併用してもよい。
 これらのうち、レリーフ形成層の膜厚のばらつきが小さくなる理由から、ポリイソプレン、ポリブタジエンおよびエチレン-プロピレン-ジエン共重合体よりなる群から選択される少なくとも1種のジエン系ポリマーであるのが好ましい。
 本発明においては、ジエン系ポリマーは、レリーフ形成層の引張強度の観点から、重量平均分子量は200,000以上であることが好ましく、300,000~2,000,000であることがより好ましく、300,000~1,500,000であることが更に好ましく、300,000~700,000であることが特に好ましい。
 ここで、重量平均分子量は、ゲル浸透クロマトグラフ法(GPC)法にて測定され、標準ポリスチレンで換算して求められる。具体的には、例えば、GPCは、HLC-8220GPC(東ソー株式会社製)を用い、カラムとして、TSKgeL Super HZM-H、TSKgeL SuperHZ4000、TSKgeL SuperHZ2000(東ソー株式会社製、4.6mmID×15cm)を3本用い、溶離液としてTHF(テトラヒドロフラン)を用いる。また、条件としては、試料濃度を0.35質量%、流速を0.35mL/min、サンプル注入量を10μL、測定温度を40℃とし、IR検出器を用いて行う。また、検量線は、東ソー株式会社製「標準試料TSK standard,polystyrene」:「F-40」、「F-20」、「F-4」、「F-1」、「A-5000」、「A-2500」、「A-1000」、「n-プロピルベンゼン」の8サンプルから作製する。
 ジエン系ポリマーの樹脂組成物中の含有量は、全固形分に対して、5~90質量%であることが好ましく、15~85質量%であることがより好ましく、30~85質量%であることが更に好ましい。ジエン系ポリマーの含有量が上記範囲内であると、彫刻カスのリンス性に優れ、インキ転移性により優れるので好ましい。
 (熱重合開始剤)
 上記熱重合開始剤は特に限定されず、従来公知の熱重合開始剤(例えば、ラジカル重合開始剤等)を制限なく使用することができる。
 上記熱重合開始剤としては、具体的には、例えば、(a)芳香族ケトン類、(b)オニウム塩化合物、(c)有機過酸化物、(d)チオ化合物、(e)ヘキサアリールビイミダゾール化合物、(f)ケトオキシムエステル化合物、(g)ボレート化合物、(h)アジニウム化合物、(i)メタロセン化合物、(j)活性エステル化合物、(k)炭素ハロゲン結合を有する化合物、(l)アゾ系化合物等が挙げられ、これらを1種単独で用いてもよく、2種以上を併用してもよい。
 これらのうち、半減期温度が高く、その結果、樹脂組成物の混練時のスコーチ(早期硬化)を抑制することができり理由や、彫刻感度と、フレキソ印刷版原版のレリーフ形成層に適用した際にはレリーフエッジ形状を良好とするといった理由などから、(c)有機過酸化物が特に好ましい。
 ここで、上記(a)芳香族ケトン類、(b)オニウム塩化合物、(d)チオ化合物、(e)ヘキサアリールビイミダゾール化合物、(f)ケトオキシムエステル化合物、(g)ボレート化合物、(h)アジニウム化合物、(i)メタロセン化合物、(j)活性エステル化合物、(k)炭素ハロゲン結合を有する化合物、および、(l)アゾ系化合物としては、特開2008-63554号公報の段落0074~0118に挙げられている化合物を好ましく用いることができる。
 一方、好適例である(c)有機過酸化物としては、以下に示す化合物が好ましい。
 上記有機過酸化物としては、具体的には、例えば、ジクミルペルオキシド(10時間半減期温度:116℃)、α,α’-ジ(t-ブチルパーオキシ)ジイソプロピルベンゼン(10時間半減期温度:119℃)、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン(10時間半減期温度:118℃)等が挙げられ、これらを1種単独で用いてもよく、2種以上を併用してもよい。
 本発明において、有機過酸化物の形態としては、原体のまま使用することも可能であるが、取扱い上の問題(危険性、作業性など)から、原体を炭酸カルシウムなどの無機フィラーに吸着させた濃度40wt%の希釈品(非危険物、粉状)や更に、混練時の粉立ち防止、ポリマーへの分散性改善を目的としたマスターバッチタイプの希釈品をより好ましく用いることができる。
 原体としては、例えば、パークミルD(日油株式会社製)、PerkadoxBC-FF(化薬アクゾ株式会社製)、ルペロックスDC(アルケマ吉富株式会社製)、パーブチルP(日油株式会社製)、パーカドックス14(化薬アクゾ株式会社製)、ルペロックスF(アルケマ吉富株式会社製)、ルペロックスF90P(アルケマ吉富株式会社製)、パーヘキサ25B(日油株式会社製)、カヤヘキサAD(化薬アクゾ株式会社製)、ルペロックス101(アルケマ吉富株式会社製)等を用いることができるが、これらに限定されるものではない。
 また、希釈品としては、例えば、パークミルD-40(日油株式会社製:不活性充填剤希釈品)、パークミルD-40MB(日油株式会社製:シリカ/ポリマー他希釈品)、カヤクミルD-40C(化薬アクゾ株式会社製:炭酸カルシウム希釈品)、カヤクミルD-40MB-S(化薬アクゾ株式会社製:ゴムマスターバッチ)、カヤクミルD-40MB(化薬アクゾ株式会社製:ゴムマスターバッチ)、パーブチルP-40(日油株式会社製:不活性充填剤希釈品)、パーブチルP-40MB(日油株式会社製:シリカ/ポリマー他希釈品)、パーカドックス14/40(化薬アクゾ株式会社製:炭酸カルシウム希釈品)、パーカドックス14-40C(化薬アクゾ株式会社製:炭酸カルシウム希釈品)、ルペロックスF40(アルケマ吉富株式会社製)、パーヘキサ25B-40(日油株式会社製:シリカ他希釈品)、カヤヘキサAD-40C(化薬アクゾ株式会社製:ケイ酸カルシウム希釈品)、トリゴノックス101-40MB(化薬アクゾ株式会社製:ゴムマスターバッチ)、ルペロックス101XL(アルケマ吉富株式会社製)等を用いることができるが、これらに限定されるものではない。
 本発明においては、熱重合開始剤は、彫刻カスのリンス性に優れ、耐刷性やインキ着肉性も良好となる理由から、ジエン系ポリマー100質量部に対して0.1~20.0質量部であることが好ましく、0.5~15.0質量部であることがより好ましく、1.0~15.0質量部であるのが更に好ましい。
 (カーボンブラック)
 上記カーボンブラックは特に限定されず、樹脂組成物中における分散性などが安定である限り、American Society for Testing and Materials(ASTM)による分類のほか、用途(例えば、カラー用、ゴム用、乾電池用など)の如何に拘らずいずれも使用可能である。
 ここで、本発明においては、カーボンブラックは、レーザーの光を吸収し発熱することで、レーザー彫刻時の硬化物の熱分解を促進する光熱変換剤として機能していると考えられる。
 上記カーボンブラックとしては、具体的には、例えば、ファーネスブラック、サーマルブラック、チャンネルブラック、ランプブラック、アセチレンブラック等が挙げられ、これらを1種単独で用いてもよく、2種以上を併用してもよい。
 なお、これらのカーボンブラックは、分散を容易にするため、必要に応じて分散剤を用い、予めニトロセルロースやバインダーなどに分散させたカラーチップやカラーペーストとして使用することができるが、コストの観点から粉体で使用することが好ましい。
 本発明においては、カーボンブラックの含有量は、レーザー彫刻時の感度が良好となり、インキ着肉性も良好となる理由から、ジエン系ポリマー100質量部に対して1~30質量部であることが好ましく、2~25質量部であることがより好ましく、3~20質量部が特に好ましい。
 (その他の添加剤)
 層形成工程に用いる樹脂組成物には、公知の各種添加剤を、本発明の効果を阻害しない範囲で適宜配合することができる。例えば、架橋助剤、シランカップリング剤、他の充填剤、ワックス、プロセス油、金属酸化物、オゾン分解防止剤、老化防止剤、重合禁止剤、着色剤等が挙げられ、これらは1種を単独で使用してもよいし、2種以上を併用してもよい。
 (形成方法)
 レリーフ形成層の形成方法としては、例えば、樹脂組成物を調製し、必要に応じて、この樹脂組成物から溶剤を除去した後に、支持体上に溶融押し出しする方法;樹脂組成物を調製し、樹脂組成物を支持体上に流延し、これをオーブンなどの中で加熱乾燥して溶剤を除去する方法、図6に示すようなカレンダーロールを用い、樹脂組成物をシート状に成型する方法;などが好適に挙げられる。
 図6中、カレンダーロール60は第1ロール62a~第4ロール62dを有しおり、これらのロールの間隔、ロールの温度、および、ロールの回転速度が設定可能となっている。
 このロールの間に樹脂組成物の混練物70をセットし、圧延成形することにより、シート状の未硬化層71を得ることができる。
 〔架橋工程〕
 架橋工程は、上記層形成工程で形成したレリーフ形成層を架橋して架橋レリーフ形成層を形成する工程である。
 ここで、架橋させる方法としては、光および/または熱によりレリーフ形成層を硬化させる方法であれば特に特に限定されず、従来のフレキソ印刷版原版の製造方法で用いられる硬化方法を適宜利用することができる。
 (光硬化)
 レリーフ形成層が光重合開始剤を含有する場合には、光重合開始剤のトリガーとなる光(以下、「活性光線」ともいう。)をレリーフ形成層に照射することで、レリーフ形成層を架橋することができる。
 活性光線の照射は、レリーフ形成層全面に行うのが一般的である。
 活性光線としては、例えば、可視光、紫外光、電子線などが挙げられるが、紫外光が最も一般的である。レリーフ形成層の支持体等、レリーフ形成層を固定化するための基材側を裏面とすれば、表面に光を照射するだけでもよいが、支持体が活性光線を透過する透明なフィルムであれば、更に裏面からも光を照射することが好ましい。表面からの照射は、保護フィルムが存在する場合、これを設けたまま行ってもよいし、保護フィルムを剥離した後に行ってもよい。酸素の存在下では重合阻害が生じる恐れがあるので、レリーフ形成層に塩化ビニルシートを被せて真空引きした上で、活性光線の照射を行ってもよい。
 (熱硬化)
 レリーフ形成層が熱重合開始剤を含有する場合、レリーフ形成層を加熱することにより架橋することができる。
 熱による架橋を行うための加熱手段としては、未硬化層を熱風オーブンや遠赤外オーブン内で所定時間加熱する方法や、加熱したロールに所定時間接する方法が挙げられる。
 レリーフ形成層の硬化方法としては、レリーフ形成層を表面から内部まで均一に硬化(架橋)可能という観点で、熱による架橋の方が好ましい。
 レリーフ形成層を熱により架橋することにより、第1にレーザー彫刻後形成されるレリーフがシャープになり、第2にレーザー彫刻の際に発生する彫刻カスの粘着性が抑制されるという利点がある。
 〔彫刻工程〕
 彫刻工程は、上記架橋工程で架橋させた架橋レリーフ形成層にレーザー彫刻を施して、非画像部と、表面に上述した凹部が形成された画像部、すなわち、網点部における小点およびベタ部、または、網点部における小点において網点面積率に応じて深さの異なる2以上の凹部を設けた画像部とを備えるレリーフ層を形成する工程である。
 レーザー彫刻の方法は特に限定されないが、本発明の製造方法においては、非画像部となる部分を彫刻(非画像部を形成)するとともに、画像部の表面に上述した凹部を形成する必要があるため、所望の画像のデジタルデータを元にコンピューターでレーザーヘッドを制御し、架橋レリーフ形成層に対して走査照射する方法が好ましく挙げられる。
 (画像データ生成方法)
 レーザー彫刻のための画像データの生成方法は、以下の手法を用いることができる。
 まず、作成する印刷版の原画像データを取得する。次に、この原画像データを、レーザー彫刻を行うためのデータに変換するため、RIP(Raster Image Processor)処理を行う。一方で、原画像データをラスタライズして、各画像部の外縁(端辺)から所定の幅の複数の部分領域を抽出する。抽出した各部分領域に、それぞれ所定の面積率の凹部パターンのテンプレートを重ねてマスクを生成する。さらに、RIP処理をした画像データ(2値画像)に、生成したマスクを掛け合わせて、出力画像データ(光量画像)を生成する。
 ここで、凹部の深さの調整は、光量画像を生成する際の形状プロファイルにより行うことができ、例えば、彫刻深度との関係で設定されるDEPTH POWER値(DP値)に応じて、レーザーパワーとドラムの回転速度を設定することにより行うことができる。
 このようにして、原画像データの画像部に凹部パターンを付加した出力画像データを生成して、この出力画像データを用いてレーザー彫刻を行い、フレキソ印刷版を作製する。
 (レーザー彫刻)
 レーザー彫刻の方法としては、例えば、円筒形を有するドラムの外周面にシート状のレーザー彫刻用印刷版原版を巻き付けてドラムを回転させて、印刷版原版に向けて露光ヘッドから、上記出力画像データに応じたレーザー光を射出し、露光ヘッドを主走査方向と直交する副走査方向に所定ピッチで走査させることで、印刷版原版の表面に2次元画像を高速で彫刻(記録)する方法、等が利用可能である。
 レーザー彫刻において利用されるレーザーの種類については特に限定はないが、赤外線レーザーが好ましく用いられる。赤外線レーザーが照射されると、架橋レリーフ形成層中の分子が分子振動し、熱が発生する。赤外線レーザーとして炭酸ガスレーザーやYAG(Yttrium Aluminum Garnet)レーザーのような高出力のレーザーを用いると、レーザー照射部分に大量の熱が発生し、硬化層中の分子は分子切断又はイオン化されて選択的な除去、すなわち、彫刻がなされる。
 赤外線レーザーとしては、生産性、コスト等の面から、炭酸ガスレーザー(CO2レーザー)又は半導体レーザーが好ましく、ファイバー付き半導体赤外線レーザー(FC-LD)が特に好ましい。一般に、半導体レーザーは、CO2レーザーに比べレーザー発振が高効率且つ安価で小型化が可能である。また、小型であるためアレイ化が容易である。更に、ファイバーの処理によりビーム形状を制御できる。
 半導体レーザーとしては、波長が700~1,300nmのものが好ましく、800~1,200nmのものがより好ましく、860~1,200nmのものが更に好ましく、900~1,100nmのものが特に好ましい。
 また、ファイバー付き半導体レーザーは、更に光ファイバーを取り付けることで効率よくレーザー光を出力できるため、レーザー彫刻には有効である。更に、ファイバーの処理によりビーム形状を制御できる。例えば、ビームプロファイルはトップハット形状とすることができ、安定に版面にエネルギーを与えることができる。半導体レーザーの詳細は、「レーザーハンドブック第2版」レーザー学会編、「実用レーザー技術」電子通信学会編著等に記載されている。
 また、特開2009-172658号公報及び特開2009-214334号公報に詳細に記載されるファイバー付き半導体レーザーを備えた製版装置は、本発明のフレキソ印刷版の製造方法に好適に使用することができる。
 〔リンス工程〕
 本発明の製造方法では、彫刻工程の後に、彫刻表面をアルカリ水溶液でリンスするリンス工程を有していてもよい。リンス工程を有することにより、彫刻表面の付着・残留する彫刻カスを洗い流し、除去することが可能である。
 リンスの手段として、アルカリ水溶液に浸漬する方法、アルカリ水溶液に浸漬しながら、リンス液を回転させ、彫刻表面をブラシ(例えば、獣毛ブラシ、毛径が100~500μmの波線加工済みブラシ等)で摺る方法、アルカリ水溶液をスプレー噴射する方法、感光性樹脂凸版の現像機として公知のバッチ式又は搬送式のブラシ式洗い出し機で、彫刻表面を主にアルカリ水溶液の存在下でブラシ擦りする方法などが挙げられ、彫刻カスのヌメリがとれない場合は、石鹸や界面活性剤を添加したリンス液を用いてもよい。
 〔乾燥工程〕
 本発明の製造方法では、彫刻表面をリンスするリンス工程を行った場合、彫刻工程の後に、乾燥してリンス液を揮発させる乾燥工程を追加してもよい。
 〔後架橋工程〕
 本発明の製造方法では、必要に応じて、彫刻工程の後に更に架橋する後架橋工程を追加してもよい。追加の架橋工程である後架橋工程を行うことにより、彫刻によって形成されたレリーフをより強固にすることができる。
 本発明においては、上述のレーザー彫刻(DLE(Direct Laser Engraving)方式)に限定はされず、レーザーで印刷版原版の表面に画像を書き込み現像するLAMS(Laser Ablation Masking System)等の種々の公知の製造方法が利用可能である。
 なお、LAMSは、具体的には、国際公開第2004/090638号や特開2014-063132号公報などに記載された方式が挙げられる。
[フレキソ印刷装置]
 次に、上述した本発明のフレキソ印刷版を用いるフレキソ印刷装置の構成について詳細に説明する。フレキソ印刷装置は、上記フレキソ印刷版を用いる以外は、基本的に、従来のフレキソ印刷装置と同様の構成を有する。
 図7は、本発明に係るフレキソ印刷版を用いるフレキソ印刷装置の要部を概念的に示す図である。
 図7に示すように、フレキソ印刷装置30は、上記フレキソ印刷版1、ドラム(版胴)31、搬送ローラ(圧胴)32、アニロックスローラ33、ドクターチャンバ34、および、循環タンク35を有する。
 ドラム31は、円筒状であり、フレキソ印刷版1を周面に載置して、回転しつつ、フレキソ印刷版1を被印刷体zに接触させるものである。
 搬送ローラ32は、被印刷体zを所定の搬送経路で搬送する搬送部(図示せず)を構成するローラであり、その周面が、ドラム31の周面と対面して配置されて、被印刷体zをフレキソ印刷版1に接触させるものである。
 ドラム31はその回転方向が、被印刷体zの搬送方向と一致するように配置されている。
 アニロックスローラ33、ドクターチャンバ34、および、循環タンク35は、フレキソ印刷版1にインキを供給するためのものである。循環タンク35はインキを貯留しており、循環タンク35内のインキが、ポンプ(図示せず)によってドクターチャンバ34に供給される。ドクターチャンバ34は、アニロックスローラ33の表面に密接して設けられ、内部にインキが保持されている。アニロックスローラ33は、ドラム31の周面に当接して同調回転し、ドクターチャンバ34内のインキを印刷版1に塗布(供給)する。
 このように構成されたフレキソ印刷装置30は、被印刷体zを所定の搬送経路で搬送しつつ、ドラム31に載置されたフレキソ印刷版1を回転させて、インキを被印刷体zに転写して印刷を行う。すなわち、フレキソ印刷版を載置するドラムの回転方向が印刷方向となる。
 本発明のフレキソ印刷版を用いるフレキソ印刷装置で用いられる被印刷体の種類には、特に限定はなく、紙、フィルム、段ボール等の、通常のフレキソ印刷装置で用いられる、種々の公知の被印刷体を用いることができる。
 また、本発明のフレキソ印刷版を用いるフレキソ印刷装置で用いられるインキの種類にも、特に限定はなく、水性インキ、UV(Ultra Violet)インキ、油性インキ、EB(Electron Beam)インキ等の、通常のフレキソ印刷装置で用いられる、種々の公知のインキを用いることができる。
 以下に実施例に基づいて本発明をさらに詳細に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す実施例により限定的に解釈されるべきものではない。
[実施例1]
 <樹脂組成物Aの調製>
 ポリマーとしてEPDM:MITSUI EPT1045〔エチレン・プロピレン・ジエン共重合体、エチレン含量:58質量%、ジエン含量:5質量%、ジエン種:ジシクロロペンタジエン(DCPD)、三井化学株式会社製〕を80質量部と、光熱変換剤としてカーボンブラック#45L(窒素吸着比表面積:125m2/g、DBP吸収量:45cm3/100g、三菱化学株式会社製)を12質量部と、パークミルD40〔ジクミルペルオキシド(40質量%)、日油株式会社製〕を5質量部とを混練し、樹脂組成物Aを調製した。なお、下記第1表中、樹脂組成物Aを用いた処方を「処方A」と表示し、後述する樹脂組成物B~Fを用いた場合についても同様に「処方B~F」と表示する。
 <フレキソ印刷版原版の作製>
 得られた樹脂組成物Aを、加熱プレス機(MP-WCL、株式会社東洋精機製作所製)を用いて、10MPaの圧力で、160℃で20分間加熱して架橋し、厚さが915μmの架橋レリーフ形成層を作製した。
 得られた架橋レリーフ形成層の片側に、光硬化性組成物(株式会社スリーボンド製:3030)を平均膜厚が100μmになるように塗設した後、支持体として125μm厚のPETフィルムをニップローラにて貼り合わせ、20秒後にPETフィルム側からUV露光機(アイグラフィックス株式会社製UV露光機ECS―151U、メタルハライドランプ、1,500mJ/cm2、14sec露光)にて光硬化性層を硬化させて、フレキソ印刷版原版を得た。
 <フレキソ印刷版の作製>
 上記で得たフレキソ印刷版原版の架橋レリーフ形成層にレーザー彫刻を施すことにより、画像部、および、非画像部を有するフレキソ印刷版を形成した。なお、下記第1表中、レーザー彫刻によるDLE方式を「方法1」と表示する。
 上記で得たフレキソ印刷版原版の架橋レリーフ形成層にレーザー彫刻を施すことにより、各区分における凹部の深さが下記第1表に示す値となる画像部、および、非画像部を有するフレキソ印刷版を作製した。
 具体的には、レーザー照射による彫刻は、レーザー彫刻機(Hell Gravure Systems社製 1300S)により、解像度2540dpiで彫刻し、その後、洗浄剤(The Procter & Gamble Company社製 ジョイ(登録商標)2%水溶液)を版上に垂らし、豚毛ブラシで擦り、流水にて水洗することで彫刻カスを除去した。
 また、画像部に凹部を形成するためのパターン(凹部形成パターン)として、横ピッチxp(pix)、縦ピッチyp(pix)の等間隔の格子点について、これを反時計回りにa(deg)回転させた位置に彫刻点を設定してマスクパターンを作製した。パラメータは実数とし、パラメータに従って計算した結果を整数化して彫刻点の座標とする。
 なお、下記第1表中の凹部形成パターンは、下記第2表に示す横ピッチxp(pix)、縦ピッチyp(pix)、および、a(deg)に設定したパターンI~IIIである。ここで、パターンIを用いて得られた画像部の表面のうち、網点面積率が30%の網点部とベタ部の平面図は図3Aおよび図3Bに示す通りであり、パターンIIを用いて得られた画像部の表面のうち、網点面積率が30%の網点部とベタ部の平面図は図4Aおよび図4Bに示す通りであり、パターンIIIを用いて得られた画像部の表面のうち、網点面積率が30%の網点部とベタ部の平面図は図5Aおよび図5Bに示す通りである。
[実施例2~13、比較例1~3]
 各区分における凹部の深さを下記第1表に示す値となるように変更した以外は、実施例1と同様の方法により、フレキソ印刷版を製造した。
[実施例14]
 凹部形成パターンとして、パターンIに代えて、パターンIIを用いた以外は、実施例1と同様の方法により、フレキソ印刷版を製造した。
[実施例15]
 凹部形成パターンとして、パターンIに代えて、パターンIIIを用いた以外は、実施例1と同様の方法により、フレキソ印刷版を製造した。
[実施例16]
 樹脂組成物Aに代えて、以下に示す樹脂組成物B(処方B)を用いた以外は、実施例1と同様の方法により、フレキソ印刷版を製造した。
 <樹脂組成物Bの調製>
 カーボンブラック#45Lに代えて、カーボンブラック#1000(窒素吸着比表面積:180m2/g、DBP吸収量:56cm3/100g、三菱化学株式会社製)を用いた以外は、樹脂組成物Aと同様の方法により、樹脂組成物Aを調製した。
[実施例17]
 樹脂組成物Aに代えて、以下に示す樹脂組成物C(処方C)を用いた以外は、実施例1と同様の方法により、フレキソ印刷版を製造した。
 <樹脂組成物Cの調製>
 カーボンブラック#45Lに代えて、F-200(窒素吸着比表面積:51m2/g、DBP吸収量:180cm3/100g、旭カーボン株式会社製)を用いた以外は、樹脂組成物Aと同様の方法により、樹脂組成物Cを調製した。
[実施例18]
 樹脂組成物Aに代えて、以下に示す樹脂組成物D(処方D)を用いた以外は、実施例1と同様の方法により、フレキソ印刷版を製造した。
 <樹脂組成物Dの調製>
 カーボンブラック#45Lに代えて、シーストFM(窒素吸着比表面積:42m2/g、DBP吸収量:160cm3/100g、東海カーボン株式会社製)を用いた以外は、樹脂組成物Aと同様の方法により、樹脂組成物Dを調製した。
[実施例19]
 樹脂組成物Aに代えて、以下に示す樹脂組成物E(処方E)を用いた以外は、実施例1と同様の方法により、フレキソ印刷版を製造した。
 <樹脂組成物Eの調製>
 ポリマーとしてUBEPOL BR150(ポリブタジエン、宇部興産株式会社製)を80質量部と、光熱変換剤としてカーボンブラック#45L(窒素吸着比表面積:125m2/g、DBP吸収量:45cm3/100g、三菱化学株式会社製)を12質量部と、パークミルD40〔ジクミルペルオキシド(40質量%)、日油株式会社製〕を5質量部とを混練し、樹脂組成物Eを調製した。
[実施例20]
 <樹脂組成物Fの調製>
 ポリマーとして、Kraton D-1102(SBSブロックコポリマー、クレイトン株式会社製)を60質量部と、可塑剤としてDEHP#80030〔フタル酸ビス(2-エチルヘキシル)、シグマアルドリッチ製〕を32質量部と、モノマーとしてA-HD-N(ヘキサンジオールジアクリレート、新中村化学株式会社製)10質量部と、光重合開始剤としてイルガキュア651(BASF社製)を2質量部と、1質量部の染料及び熱安定剤とを混練し、樹脂組成物Fを調製した。
 <フレキソ印刷版原版の作製>
 アクリル樹脂75質量部およびニトリルゴム(NBR)25質量部からなるバインダーポリマーに対し、カーボンブラック100質量部と可塑剤3質量部とを加え、さらに溶剤としてメチルイソブチルケトン815質量部を加え、攪拌機にて混合した。得られた混合液をロールミルにより分散させた後、さらにメチルイソブチルケトンを加えることにより、赤外線アブレーション組成物を調製した。
 得られた赤外線アブレーション組成物を、カバーフィルムとして100μm厚のPETフィルムの片面に予め粘着防止剤を塗布した基板上に、乾燥後の厚みが3μmとなるようにバーコーターで塗布した。
 そして、先に調製した樹脂組成物Fを、支持体として125μm厚のPETフィルムの片面に予め接着剤を塗布した基板と、カバーフィルムとの間に挟み、カバーフィルムを除く厚みが1.14mmとなるように、120℃に加熱したプレス機でプレスすることにより、フレキソ印刷版原版を得た。
 <フレキソ印刷版の作製>
 上記で得たフレキソ印刷版原版の支持体側から化学線(光源Philips紫外線低圧水銀ランプ、365nmにおける照度32mW/cm2)を15秒間照射した。その後、カバーフィルムを剥離した。
 カバーフィルムを剥離した版を、Esko CDI SPARK4835に巻き付け、解像度4000dpiでイメージングを行った。この時、各区分における凹部の深さが下記第1表に示す値となる画像部、および、非画像部を有するようにアブレーション層を作製した。
 イメージング後、版を取り出し、平面に戻し、化学線(光源Philips紫外線低圧水銀ランプ、365nmにおける照度32mW/cm2)を420秒間照射した。
 その後、メチルエチルケトン(MEK、出光興産株式会社製)を版上に垂らし、豚毛ブラシで擦り、流水にて水洗することで現像を行った。現像後、60℃で10分間乾燥し、化学線(光源Philips紫外線低圧水銀ランプ、365nmにおける照度32mW/cm2)を600秒間照射し、最後に表面粘着性を除去する(デタック)ために殺菌灯を300秒間照射した。
[評価]
 〔インキ転写性〕
 得られたフレキソ印刷版を印刷機(ILF-270-4F、太陽機械製作所)にセットし、水性フレキソ藍(ハイドリックFCG 739、大日精化製)をインキとして用い、印刷紙として、太閤OPPフィルム FOS-AQ(フタムラ化学株式会社製)を用いて、40m/minにて印刷を継続し、印刷開始から1,000mにおける印刷物上のD区分のインキの付着度合いによりインキ転写性を比較した。
 インキ転写性の評価は、上記で得た印刷物上のD区分の濃度を、3箇所をポータブル反射濃度計(エックスライト社製)により各2回測定し、計6回の測定値の平均値を算出し、以下の基準で評価した。
 A:濃度の平均値が1.75以上であるもの。
 B:濃度の平均値が1.75未満1.60以上であるもの。
 C:濃度の平均値が1.60未満であるもの。
 〔印刷品質〕
 <モアレ>
 モアレの評価は、インキ転写性の評価で得た印刷物上のA区分について、周期的なムラの発生度合を目視により確認し、以下の基準で評価した。
 A:ムラが確認できない。
 B:軽度なムラが確認できるが、実用上、問題のないレベル。
 C:ムラがはっきりと確認できる。
 <カラミ>
 カラミの評価は、インキ転写性の評価で得た印刷物上のB区分について、網点間のインキの詰まり具合を目視により確認し、以下の基準で評価した。
 A:1cm2あたりのインキの詰まりが1ヶ所以下
 B:1cm2あたりのインキの詰まりが2~9ヶ所
 C:1cm2あたりのインキの詰まりが10ヶ所以上
 <反転>
 反転の評価は、インキ転写性の評価で得た印刷物上のC区分について、画像部と非画像部に対応するインキの転写具合を目視により確認し、以下の基準で評価した。
 A:非画像部より小点のインキ量が多い(濃さで判断)
 B:小点と非画像部のインキ量が同じである(濃さで判断)
 C:小点より非画像部のインキ量が多い(濃さで判断)
 <ツブレ>
 ツブレの評価は、インキ転写性の評価で得た印刷物上のC区分について、非画像部のインキの転写具合を目視により確認し、以下の基準で評価した。
 A:非画像部にインキが詰まっていない。
 B:非画像部にややインキが詰まっているが、実用上、問題のないレベル。
 C:非画像部にインキが詰まっており、問題になるレベル。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 第1表に示すように、画像部に凹部を形成しない場合は、インキ転写性が劣ることが分かり(比較例1)、深さが均一な凹部を画像部に設けた場合は、インキ転写性は良好であったが、印刷品質(特にモアレの抑制効果)が劣ることが分かった(比較例2~3)。
 一方、画像部の網点部における小点およびベタ部、または、網点部における小点に、網点面積率に応じて深さが深くなる凹部を設けた場合は、いずれも、インキ転写性および印刷品質が良好となることが分かった(実施例1~20)。
 特に、実施例1と実施例2との対比から、網点面積率が0%超30%以下の領域(A区分)における凹部の深さが8μm以下であると、モアレの抑制効果が高くなることが分かった。
 また、実施例1と実施例3~4との対比から、網点面積率が30%超70%以下の領域(B区分)における凹部の深さが8μm以上12μm以下であると、カラミの抑制効果が高くなることが分かった。
 また、実施例1と実施例5~6との対比から、網点面積率が70%超90%以下の領域(C区分)における凹部の深さが12μm以上16μm以下であると、ツブレの抑制効果が高くなることが分かった。
 また、実施例1と実施例7~8との対比から、網点面積率が90%超100%以下の領域(D区分)における凹部の深さが18μm以上22μm以下であると、インキ転写性がより良好となることが分かった。
 また、実施例1、14および15の対比から、凹部形成パターンとしてパターンIおよびパターンIIを用いた凹部、すなわち、深さ方向と垂直する方向に連続して形成された溝からなる凹部であると、インキ転写性および印刷品質がより良好となることが分かった。
 1 フレキソ印刷版
 2 レリーフ層
 3 画像部
 3a 網点部
 3b ベタ部
 4 非画像部
 5 凹部
 Da、Db 凹部の深さ
 W 凹部の幅
 30 フレキソ印刷装置
 31 ドラム
 32 搬送ローラ
 33 アニロックスローラ
 34 ドクターチャンバ
 35 循環タンク
 60 カレンダーロール
 62a~62d 第1ロール~第4ロール
 70 混錬物
 71 未硬化層
 z 被印刷体

Claims (6)

  1.  非画像部と画像部とを備えるレリーフ層を有するフレキソ印刷版であって、
     前記画像部が、網点面積率が0%超100%未満の網点部と網点面積率が100%のベタ部とを有し、
     前記網点部における小点および前記ベタ部、または、前記網点部における小点が、網点面積率に応じて深さの異なる2以上の凹部を有し、
     前記深さの異なる2以上の凹部が、網点面積率が高いほど深くなる凹部である、フレキソ印刷版。
  2.  前記凹部の深さが、網点面積率が0%超30%以下の領域において、10μm以下である、請求項1に記載のフレキソ印刷版。
  3.  前記凹部の深さが、網点面積率が30%超70%以下の領域において、15μm以下である、請求項1または2に記載のフレキソ印刷版。
  4.  前記凹部の深さが、網点面積率が70%超90%以下の領域において、9μm以上18μm以下である、請求項1~3のいずれか1項に記載のフレキソ印刷版。
  5.  前記凹部の深さが、網点面積率が90%超100%以下の領域において、11μm以上23μm以下である、請求項1~4のいずれか1項に記載のフレキソ印刷版。
  6.  前記凹部が、深さ方向と直交する方向に連続して形成された溝からなる、請求項1~5のいずれか1項に記載のフレキソ印刷版。
PCT/JP2016/078238 2015-09-25 2016-09-26 フレキソ印刷版 WO2017051921A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201680053619.6A CN108025581B (zh) 2015-09-25 2016-09-26 柔版印刷版
EP16848709.8A EP3354478B1 (en) 2015-09-25 2016-09-26 Flexographic printing plate
JP2017540943A JP6420490B2 (ja) 2015-09-25 2016-09-26 フレキソ印刷版
US15/904,894 US10265988B2 (en) 2015-09-25 2018-02-26 Flexographic printing plate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-188682 2015-09-25
JP2015188682 2015-09-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/904,894 Continuation US10265988B2 (en) 2015-09-25 2018-02-26 Flexographic printing plate

Publications (1)

Publication Number Publication Date
WO2017051921A1 true WO2017051921A1 (ja) 2017-03-30

Family

ID=58386152

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/078238 WO2017051921A1 (ja) 2015-09-25 2016-09-26 フレキソ印刷版

Country Status (5)

Country Link
US (1) US10265988B2 (ja)
EP (1) EP3354478B1 (ja)
JP (1) JP6420490B2 (ja)
CN (1) CN108025581B (ja)
WO (1) WO2017051921A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018034414A (ja) * 2016-08-31 2018-03-08 Dic株式会社 フレキソ印刷の端部かすれ防止方法
JP2020029003A (ja) * 2018-08-21 2020-02-27 住友ゴム工業株式会社 フレキソ印刷版とそれを用いた液晶表示素子の製造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6278942B2 (ja) * 2015-10-21 2018-02-14 日本航空電子工業株式会社 フレキソ印刷による絶縁膜の形成方法
TWI672107B (zh) * 2018-08-29 2019-09-21 立普思股份有限公司 具深度影像偵測的生產設備
JP7008651B2 (ja) * 2019-02-04 2022-01-25 ユニバーサル製缶株式会社 ボトル缶及びその製造方法
TWI777614B (zh) * 2021-06-11 2022-09-11 達運精密工業股份有限公司 金屬遮罩及其製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002293049A (ja) * 2001-03-29 2002-10-09 Komuratekku:Kk 薄膜形成用樹脂凸版
JP2008000927A (ja) * 2006-06-20 2008-01-10 Asahi Kasei Corp 微細パターン形成用凸版
JP2010032603A (ja) * 2008-07-25 2010-02-12 Asahi Kasei Corp ネガ型感光性レジストのパターン形成方法および印刷版
JP2013188961A (ja) * 2012-03-14 2013-09-26 Hoshodo:Kk 印刷用刷版
JP2014069575A (ja) * 2012-09-27 2014-04-21 E.I.Du Pont De Nemours And Company 表示を有する印刷版原版、および原版から印刷版を製造する方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6213018B1 (en) * 1999-05-14 2001-04-10 Pcc Artwork Systems Flexographic printing plate having improved solids rendition
JP2009286113A (ja) * 2007-12-18 2009-12-10 Asahi Kasei Corp 印刷用凸版及びそれを用いた印刷方法
US8399177B2 (en) * 2008-12-08 2013-03-19 Eastman Kodak Company Enhanced relief printing plate
JP2010137420A (ja) * 2008-12-10 2010-06-24 Asahi Kasei Corp エレクトロニクス用の印刷用凸版
JP5497525B2 (ja) * 2010-04-20 2014-05-21 富士フイルム株式会社 印刷用凸版作成装置、システム、方法及びプログラム
US20120048133A1 (en) * 2010-08-25 2012-03-01 Burberry Mitchell S Flexographic printing members
JP5503615B2 (ja) * 2011-09-26 2014-05-28 富士フイルム株式会社 凸版印刷版
JP5496162B2 (ja) * 2011-09-26 2014-05-21 富士フイルム株式会社 凸版印刷版の製造方法、凸版印刷版作成装置、並びにプログラム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002293049A (ja) * 2001-03-29 2002-10-09 Komuratekku:Kk 薄膜形成用樹脂凸版
JP2008000927A (ja) * 2006-06-20 2008-01-10 Asahi Kasei Corp 微細パターン形成用凸版
JP2010032603A (ja) * 2008-07-25 2010-02-12 Asahi Kasei Corp ネガ型感光性レジストのパターン形成方法および印刷版
JP2013188961A (ja) * 2012-03-14 2013-09-26 Hoshodo:Kk 印刷用刷版
JP2014069575A (ja) * 2012-09-27 2014-04-21 E.I.Du Pont De Nemours And Company 表示を有する印刷版原版、および原版から印刷版を製造する方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018034414A (ja) * 2016-08-31 2018-03-08 Dic株式会社 フレキソ印刷の端部かすれ防止方法
JP2020029003A (ja) * 2018-08-21 2020-02-27 住友ゴム工業株式会社 フレキソ印刷版とそれを用いた液晶表示素子の製造方法
CN110843373A (zh) * 2018-08-21 2020-02-28 住友橡胶工业株式会社 柔版印刷版与使用其的液晶显示元件的制造方法
CN110843373B (zh) * 2018-08-21 2021-09-28 住友橡胶工业株式会社 柔版印刷版与使用其的液晶显示元件的制造方法

Also Published As

Publication number Publication date
EP3354478A4 (en) 2018-10-31
JPWO2017051921A1 (ja) 2018-06-14
US10265988B2 (en) 2019-04-23
EP3354478B1 (en) 2019-10-23
CN108025581B (zh) 2019-11-12
JP6420490B2 (ja) 2018-11-07
US20180186161A1 (en) 2018-07-05
CN108025581A (zh) 2018-05-11
EP3354478A1 (en) 2018-08-01

Similar Documents

Publication Publication Date Title
JP6420490B2 (ja) フレキソ印刷版
JP6401860B2 (ja) フレキソ印刷版、フレキソ印刷版原版、および、これらの製造方法
EP3059091B1 (en) Flexo printing plate
EP3260301B1 (en) Flexographic printing plate
JP2009288700A (ja) フレキソ印刷版の製造方法
US10272710B2 (en) Flexographic printing plate, flexographic printing plate precursor, and manufacturing methods therefor
EP3290220B1 (en) Flexographic printing plate
US10513139B2 (en) Flexographic printing plate, method for manufacturing flexographic printing plate, and flexographic printing plate precursor
JP2017154301A (ja) フレキソ印刷版、フレキソ印刷版の製造方法およびフレキソ印刷版の製造装置
JP2008046447A (ja) 印刷版の製造方法
JP2003035954A (ja) 感光性印刷用原版
JP2009248366A (ja) レーザー彫刻用印刷原版及びこの印刷原版を用いた印刷版の製造方法
JP2016210104A (ja) 接着層付フレキソ印刷版、接着層付フレキソ印刷版原版、積層構造物およびこれらの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16848709

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017540943

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE