WO2017051842A1 - Conductive particles, conductive material, and connection structure - Google Patents

Conductive particles, conductive material, and connection structure Download PDF

Info

Publication number
WO2017051842A1
WO2017051842A1 PCT/JP2016/077952 JP2016077952W WO2017051842A1 WO 2017051842 A1 WO2017051842 A1 WO 2017051842A1 JP 2016077952 W JP2016077952 W JP 2016077952W WO 2017051842 A1 WO2017051842 A1 WO 2017051842A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
resin
conductive
inorganic
conductive particles
Prior art date
Application number
PCT/JP2016/077952
Other languages
French (fr)
Japanese (ja)
Inventor
茂雄 真原
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to CN201680031432.6A priority Critical patent/CN107615403B/en
Priority to KR1020177031668A priority patent/KR102624796B1/en
Priority to JP2016561027A priority patent/JP7016611B2/en
Publication of WO2017051842A1 publication Critical patent/WO2017051842A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/16Non-insulated conductors or conductive bodies characterised by their form comprising conductive material in insulating or poorly conductive material, e.g. conductive rubber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R11/00Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts
    • H01R11/01Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts characterised by the form or arrangement of the conductive interconnection between the connecting locations

Definitions

  • the present invention relates to conductive particles that can be used for electrical connection between electrodes, for example.
  • anisotropic conductive materials such as anisotropic conductive paste and anisotropic conductive film have been used for connection between an IC chip and a flexible printed circuit board, or connection between an IC chip and a circuit board having an ITO electrode. It is used. More specifically, the anisotropic conductive material includes a connection between a flexible printed circuit board and a glass substrate (FOG; Film on Glass), a connection between a semiconductor chip and a flexible printed circuit board (COF; Chip on Film), and a semiconductor chip. And a glass substrate (COG; Chip on Glass) and a connection between a flexible printed circuit board and a glass epoxy substrate (FOB; Film on Board).
  • the anisotropic conductive material is disposed, for example, between an electrode of an IC chip and an electrode of a circuit board, and further enables electrical connection between these electrodes by heating and pressurization.
  • the above anisotropic conductive material is generally formed by dispersing conductive particles in paste, ink or resin.
  • development of conductive particles contained in anisotropic conductive materials has been promoted.
  • the surface of base particles can be coated with other materials.
  • Attempts to improve the performance of conductive particles have been actively made.
  • Patent Document 1 discloses conductive particles coated with silica. By including such silica-coated conductive particles in an anisotropic conductive material, when the anisotropic conductive material is used for electrical connection between electrodes, both conduction reliability and insulation reliability are obtained. Enhanced.
  • the present invention has been made in view of the above, and it is easy to prevent a decrease in the insulating properties of the conductive particles, and it is possible to suppress the aggregation of the conductive particles, and the conductive particles. It is an object to provide a conductive material and a connection structure having the following.
  • the present inventor has found that the above object can be achieved by coating particles that serve as a base material for conductive particles in combination with a resin and an inorganic material.
  • the invention has been completed.
  • the present invention includes, for example, the subject matters described in the following sections.
  • Item 1. Conductive particles comprising base particles and a metal layer covering the surface of the base particles, Conductive particles in which the surface of the metal layer is coated with a resin and an inorganic material.
  • Item 2. Item 2. The conductive particle according to Item 1, wherein the resin includes resin particles.
  • Item 3. Item 3.
  • Item 5. Item 5.
  • the conductive particle according to Item 3 or 4 wherein the coverage of the inorganic particle is 80% or more.
  • Items 1 to 5 above wherein a resin layer coated with the resin is formed on the surface of the metal layer, and an inorganic layer coated with the inorganic material is formed on the surface of the resin layer. Electroconductive particle of any one of these.
  • Item 7. A conductive material comprising the conductive particles according to any one of Items 1 to 6 and a binder resin.
  • a first connection object member having a first electrode on its surface;
  • a second connection target member having a second electrode on its surface;
  • a connection portion connecting the first connection target member and the second connection target member;
  • the material of the connecting portion includes the conductive particles according to any one of Items 1 to 6 or the conductive material according to Item 7.
  • the conductive particles according to the present invention include base particles and a metal layer that covers the surface of the base particles, and since the surface of the metal layer is coated with a resin and an inorganic material, the conductive particles It is easy to prevent the lowering of the insulating property, and the aggregation of the conductive particles hardly occurs.
  • connection structure provided with the electroconductive particle of this invention is shown, and it is the schematic of the cross section.
  • a chemical substance including the term “(meth) acryl” means one or both of “acryl” and “methacryl”.
  • (meth) acryl means one or both of “acryl” and “methacryl”
  • (meth) acrylate means one or both of “acrylate” and “methacrylate”.
  • the conductive particles of the present embodiment include base particles and a metal layer that covers the surface of the base particles, and the surface of the metal layer is coated with a resin and an inorganic material. Such conductive particles are less likely to cause a decrease in insulation and aggregation of the conductive particles.
  • the structure of the electroconductive particle of this embodiment is explained in full detail.
  • the substrate particles include resin particles, inorganic particles excluding metal particles, organic-inorganic hybrid particles, and metal particles.
  • the substrate particles are preferably resin particles, inorganic particles excluding metal particles, or organic-inorganic hybrid particles.
  • the base particles are preferably resin particles that are easily deformable by the compression.
  • the substrate particles are resin particles
  • various organic materials are suitably used as a material for forming the resin particles.
  • such materials include polyethylene resins such as polyethylene, polypropylene, polystyrene, polyvinyl chloride, polyvinylidene chloride, polyisobutylene, and polybutadiene; acrylic resins such as polymethyl methacrylate and polymethyl acrylate; polyalkylene terephthalate, polysulfone, Polycarbonate, polyamide, phenol formaldehyde resin, melamine formaldehyde resin, benzoguanamine formaldehyde resin, urea formaldehyde resin, phenol resin, melamine resin, benzoguanamine resin, epoxy resin, saturated polyester resin, unsaturated polyester resin, polyphenylene oxide, polyacetal, polyimide, polyamideimide , Polyetheretherketone and polyethers Hong, urea resins.
  • polyethylene resins such as polyethylene, polypropylene, polystyrene, poly
  • the resin particles can also be obtained by polymerizing one or more kinds of various polymerizable monomers having an ethylenically unsaturated group.
  • various polymerizable monomers having an ethylenically unsaturated group it is possible to design and synthesize resin particles having physical properties at the time of compression suitable for anisotropic conductive materials.
  • the hardness of the base particle can be easily controlled within a suitable range.
  • the material of the resin particles is preferably a polymer obtained by polymerizing one or more polymerizable monomers having a plurality of ethylenically unsaturated groups.
  • the monomer having an ethylenically unsaturated group may be a non-crosslinkable monomer and / or a crosslinkable monomer. These monomers are mentioned.
  • non-crosslinkable monomer examples include styrene monomers such as styrene and ⁇ -methylstyrene; carboxyl group-containing monomers such as (meth) acrylic acid, maleic acid, and maleic anhydride; (Meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, cetyl (meth) acrylate, stearyl (meth) acrylate, cyclohexyl ( Alkyl (meth) acrylates such as meth) acrylate and isobornyl (meth) acrylate; acids such as 2-hydroxyethyl (meth) acrylate, glycerol (meth) acrylate, polyoxyethylene (meth) acrylate and glycidyl (meth) acrylate Atom
  • crosslinkable monomer examples include tetramethylolmethane tetra (meth) acrylate, tetramethylolmethane tri (meth) acrylate, tetramethylolmethane di (meth) acrylate, trimethylolpropane tri (meth) acrylate, and dipenta Erythritol hexa (meth) acrylate, dipentaerythritol penta (meth) acrylate, glycerol tri (meth) acrylate, glycerol di (meth) acrylate, (poly) ethylene glycol di (meth) acrylate, (poly) propylene glycol di (meth) Polyfunctional (meth) acrylates such as acrylate, (poly) tetramethylene glycol di (meth) acrylate, 1,4-butanediol di (meth) acrylate; triallyl (iso) cyanure And silane
  • crosslinkable and non-crosslinkable monomers are not limited to the monomers listed above, but may be other polymerizable monomers, for example, known polymerizable monomers.
  • the resin particles can be obtained by polymerizing the polymerizable monomer having an ethylenically unsaturated group by a known method. Examples of this method include suspension polymerization in the presence of a radical polymerization initiator, and polymerization by swelling monomers together with a radical polymerization initiator using non-crosslinked seed particles (so-called seed weight). Legal).
  • the substrate particles are inorganic particles or organic-inorganic hybrid particles excluding metal particles
  • examples of the inorganic material that is a material of the substrate particles include silica and carbon black. This inorganic substance is preferably not a metal.
  • the particles formed from the silica are not particularly limited. For example, after forming a crosslinked polymer particle by hydrolyzing a silicon compound having two or more hydrolyzable alkoxysilyl groups, firing may be performed as necessary. The particle
  • the organic / inorganic hybrid particles include organic / inorganic hybrid particles formed of a crosslinked alkoxysilyl polymer and an acrylic resin.
  • the base particles are metal particles
  • examples of the metal that is a material of the metal particles include silver, copper, nickel, silicon, gold, and titanium.
  • the substrate particles are preferably not metal particles.
  • the average particle diameter of the base material particles is not particularly limited.
  • the average particle diameter of the substrate particles is preferably 0.1 ⁇ m or more, more preferably 0.5 ⁇ m or more, even more preferably 1 ⁇ m or more, still more preferably 1.5 ⁇ m or more, particularly preferably 2 ⁇ m or more, preferably 1000 ⁇ m or less, more preferably 500 ⁇ m or less, even more preferably 300 ⁇ m or less, still more preferably 100 ⁇ m or less, still more preferably 50 ⁇ m or less, still more preferably 30 ⁇ m or less, particularly preferably 5 ⁇ m or less, and most preferably 3 ⁇ m or less. it can.
  • the contact area between the conductive particles and the electrodes is increased, so that the conduction reliability between the electrodes is further increased and the conductive particles are connected via the conductive particles.
  • the connection resistance between the electrodes is further reduced.
  • the conductive particles are easily compressed, the connection resistance between the electrodes can be further reduced, and the interval between the electrodes can be further narrowed. .
  • the average particle diameter of the substrate particles is particularly preferably 0.1 ⁇ m or more and 5 ⁇ m or less.
  • the average particle diameter of the substrate particles is in the range of 0.1 or more and 5 ⁇ m or less, even when the distance between the electrodes is small and the metal layer is thick, small conductive particles can be obtained.
  • the average particle size of the base particles is The thickness is preferably 0.5 ⁇ m or more, more preferably 2 ⁇ m or more, and preferably 3 ⁇ m or less. From the viewpoint of further improving the conduction reliability, the average particle diameter of the base material particles is 2.5 ⁇ m or more.
  • the average particle diameter of the base material particles indicates a number average particle diameter.
  • the average particle diameter can be measured using, for example, a Coulter counter (manufactured by Beckman Coulter).
  • grains mentioned above is an example for using for the electroconductive particle of this embodiment, and the other well-known base material particle
  • the metal layer is a layer formed so as to cover the surface of the substrate particles.
  • the thickness of the metal layer is preferably 5 nm or more, more preferably 10 nm or more, still more preferably 20 nm or more, particularly preferably 50 nm or more, preferably 1000 nm or less, more preferably 800 nm or less, still more preferably 500 nm or less, particularly preferably 400 nm or less, most preferably 300 nm or less.
  • the thickness of the metal layer is not less than the above lower limit, the conductivity of the conductive particles is further improved.
  • the thickness of the metal layer is not more than the above upper limit, the difference in coefficient of thermal expansion between the base particle and the metal layer becomes small, and the metal layer becomes difficult to peel from the base particle.
  • the metal layer may be formed in multiple layers, and the thickness of the metal layer in this case refers to the thickness of the entire metal layer formed in the multilayer.
  • Examples of the method for forming the metal layer on the surface of the substrate particles include a method for forming the metal layer by electroless plating and a method for forming the metal layer by electroplating.
  • a method for forming the metal layer on the surface of the substrate particles a known method may be adopted.
  • the metal layer is formed of a material containing a metal, and the type of the metal is not particularly limited.
  • the metal include gold, silver, copper, platinum, palladium, zinc, lead, aluminum, cobalt, indium, nickel, chromium, titanium, antimony, bismuth, germanium and cadmium, and alloys thereof.
  • tin-doped indium oxide (ITO) may be used as the metal.
  • the metal layer may be formed of only one kind of metal or may be formed of two or more kinds of metals.
  • the form of the metal layer mentioned above is an example for using for the electroconductive particle of this embodiment,
  • the well-known metal layer used as electroconductive particle is applied to the electroconductive particle of this embodiment. You can also
  • the substrate particles may have a plurality of protrusions on the surface.
  • an oxide film is often formed on the surface of an electrode connected by conductive particles. Therefore, when conductive particles having protrusions are used, the oxide film can be effectively removed by the protrusions by placing the conductive particles between the electrodes and pressing them. As a result, the electrode and the conductive particles are more reliably in contact with each other, and the connection resistance between the electrodes is further reduced. Furthermore, since the insulating layer between the conductive particles and the electrode is effectively eliminated by the protrusion, the conduction reliability between the electrodes is increased.
  • an insulating layer here shows the layer formed with the resin and inorganic material which are formed in electroconductive particle so that it may mention later.
  • the conventional conductive particles coated with silica as in Patent Document 1 have protrusions, the problem of silica falling off can become even more serious.
  • the substrate particles have protrusions, the above problem can be solved. From this viewpoint, it is preferable to have protrusions.
  • a core material is attached to the surface of the base particle, and then a metal layer is formed by electroless plating, and a metal layer is formed on the surface of the base particle by electroless plating. Thereafter, a method of attaching a core substance and further forming a metal layer by electroless plating may be used. Furthermore, as another method for forming the protrusion, after forming the first metal layer on the surface of the base particle, a core substance is disposed on the first metal layer, and then the second metal layer is formed. Examples thereof include a method of forming a metal layer, and a method of adding a core substance in the middle of forming the metal layer on the surface of the base particle.
  • a core substance is added to the dispersion of the base particle, and the core substance is applied to the surface of the base particle by, for example, van der Waals force.
  • examples thereof include a method of accumulating and adhering, and a method of adding a core substance to a container containing base particles and attaching the core substance to the surface of the base particles by a mechanical action such as rotation of the container.
  • a method in which the core substance is accumulated on the surface of the substrate particles in the dispersion and attached is preferable.
  • the material of the core substance includes a conductive substance and a non-conductive substance.
  • the conductive substance include metals, metal oxides, conductive non-metals such as graphite, and conductive polymers.
  • the conductive polymer include polyacetylene.
  • the nonconductive material include silica, alumina, and zirconia. Especially, a metal is preferable at the point which can raise electroconductivity and can make connection resistance low effectively.
  • the core substance is preferably metal particles.
  • Examples of the metal include gold, silver, copper, platinum, zinc, iron, lead, tin, aluminum, cobalt, indium, nickel, chromium, titanium, antimony, bismuth, germanium and cadmium, and tin-lead.
  • Examples thereof include alloys composed of two or more metals such as alloys, tin-copper alloys, tin-silver alloys, tin-lead-silver alloys, and tungsten carbide. Of these, nickel, copper, silver or gold is preferable.
  • the metal that is the material of the core substance may be the same as or different from the metal that is the material of the metal layer.
  • the material of the core substance preferably includes nickel.
  • Examples of the metal oxide include alumina, silica and zirconia.
  • the shape of the core substance is not particularly limited.
  • the shape of the core substance is preferably a lump.
  • Examples of the core substance include a particulate lump, an agglomerate in which a plurality of fine particles are aggregated, and an irregular lump.
  • the average diameter (average particle diameter) of the core substance is preferably 0.001 ⁇ m or more, more preferably 0.05 ⁇ m or more, preferably 0.9 ⁇ m or less, more preferably 0.2 ⁇ m or less.
  • the connection resistance between the electrodes is effectively reduced.
  • the average diameter (average particle diameter) of the core substance indicates a number average diameter (number average particle diameter).
  • the average diameter of the core material is obtained by observing 50 arbitrary core materials with an electron microscope or an optical microscope and calculating an average value.
  • the average diameter of the core substance can be measured as follows.
  • the conductive particles are added to and dispersed in “Technobit 4000” manufactured by Kulzer so that the content is 30% by weight, and an embedded resin for inspecting conductive particles is produced.
  • the cross section of the conductive particles is cut out using an ion milling device (“IM4000” manufactured by Hitachi High-Technologies Corporation) so as to pass through the vicinity of the center of the dispersed conductive resin in the embedded resin for inspection. Then, using a field emission scanning electron microscope (FE-SEM), the image magnification was set to 50,000 times, 20 conductive particles were randomly selected, and 50 protrusions of each conductive particle were selected. Observe. The diameter of the core substance in the obtained conductive particles is measured, and arithmetically averaged to obtain the average diameter of the core substance.
  • IM4000 manufactured by Hitachi High-Technologies Corporation
  • the average height of the protrusions in the conductive particles is preferably 0.001 ⁇ m or more, more preferably 0.05 ⁇ m or more, preferably 0.9 ⁇ m or less, more preferably 0.2 ⁇ m or less.
  • the connection resistance between the electrodes is effectively reduced.
  • the average height of the protrusions can be measured as follows.
  • the conductive particles are added to and dispersed in “Technobit 4000” manufactured by Kulzer so that the content is 30% by weight, and an embedded resin for inspecting conductive particles is produced.
  • the cross section of the conductive particles is cut out using an ion milling device (“IM4000” manufactured by Hitachi High-Technologies Corporation) so as to pass through the vicinity of the center of the dispersed conductive resin in the embedded resin for inspection.
  • FE-SEM field emission scanning electron microscope
  • the protrusion can be easily formed on the outer surface of the metal layer.
  • the surface of the metal layer is further coated with a resin and an inorganic material. That is, the surface of the metal layer includes a layer formed by coating with a resin and an inorganic material.
  • a layer formed by coating with a resin and / or an inorganic material may be referred to as an “insulating layer”.
  • the resin examples include insulating resin materials. Specifically, polyolefins, (meth) acrylate polymers, (meth) acrylate copolymers, block polymers, thermoplastic resins, crosslinked thermoplastic resins, A thermosetting resin, a water-soluble resin, etc. are mentioned. In addition, the same resin as the resin forming the base particle may be used.
  • polystyrene resin examples include polyethylene, ethylene-vinyl acetate copolymer, and ethylene-acrylic ester copolymer.
  • Examples of the (meth) acrylate polymer include polymethyl (meth) acrylate, polyethyl (meth) acrylate, and polybutyl (meth) acrylate.
  • block polymer examples include polystyrene, styrene-acrylate copolymer, SB type styrene-butadiene block copolymer, SBS type styrene-butadiene block copolymer, and hydrogenated products thereof.
  • thermoplastic resin examples include the resins exemplified above, and other vinyl polymers and vinyl copolymers.
  • thermosetting resin examples include epoxy resins, phenol resins, and melamine resins.
  • water-soluble resin examples include polyvinyl alcohol, polyacrylic acid, polyacrylamide, polyvinyl pyrrolidone, polyethylene oxide, and methylcellulose. Of these, polyvinyl alcohol is more preferable as the water-soluble resin.
  • the shape of the resin is not particularly limited.
  • the shape of the resin can be made particulate. That is, the resin preferably contains resin particles.
  • the resin particles are sometimes referred to as insulating resin particles.
  • the average particle diameter of the insulating particles can be made smaller than the average particle diameter of the conductive particles.
  • the average particle diameter of the insulating resin particles is preferably 0.01 ⁇ m or more, more preferably 0.1 ⁇ m or more, preferably 1.0 ⁇ m or less, more preferably 0.5 ⁇ m or less.
  • the average particle diameter of insulating resin particle here is the same definition as the average particle diameter of the base material particle
  • the insulating particles can be prepared, for example, by (co) polymerizing one or more monomers having an unsaturated double bond.
  • monomers having an unsaturated double bond include (meth) acrylic acid; methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, and 2-ethylhexyl (meth).
  • the monomer may be a known polymerizable monomer.
  • (meth) acrylic acid esters are preferably used.
  • the resin is not in the form of particles but may be in the form of a film, for example.
  • the thickness is preferably 10 nm or more, more preferably 100 nm or more, preferably 1000 nm or less, more preferably 500 nm or less.
  • the thickness of the resin can be measured as follows.
  • the conductive particles are added to and dispersed in “Technobit 4000” manufactured by Kulzer so that the content of the conductive particles is 30% by weight, and an embedded resin for conductive particle inspection is produced.
  • a cross section of the conductive particles is cut out using an ion milling device (“IM4000” manufactured by Hitachi High-Technologies Corporation) so as to pass through the vicinity of the center of the conductive particles dispersed in the embedding resin for inspection.
  • FE-SEM field emission scanning electron microscope
  • the image magnification is set to 50,000 times, 20 conductive particles are randomly selected, and an insulating resin film of each conductive particle is selected. Observe.
  • the thickness of the insulating resin film in the obtained conductive particles is measured, and arithmetically averaged to obtain the thickness of the insulating resin film.
  • the resin may be a polymer electrolyte in addition to the insulating resin particles.
  • a polymer electrolyte a polymer (polyanion or polycation) ionized in an aqueous solution and having a charged functional group in the main chain or side chain can be used.
  • polyanions generally include those having a negatively charged functional group such as sulfonic acid, sulfuric acid, carboxylic acid, and the like, which are appropriately selected according to the surface potential of the conductive particles and the insulating layer. Can do.
  • the polycation generally has a positively charged functional group such as polyamines such as PEI, polyallylamine hydrochloride (PAH), PDDA, polyvinyl pyridine (PVP), polylysine, polyacrylamide. And a copolymer containing at least one of them can be used.
  • a positively charged functional group such as polyamines such as PEI, polyallylamine hydrochloride (PAH), PDDA, polyvinyl pyridine (PVP), polylysine, polyacrylamide.
  • PAH polyallylamine hydrochloride
  • PVP polyvinyl pyridine
  • polylysine polyacrylamide
  • the inorganic material is not particularly limited as long as it is a material formed of an inorganic substance.
  • the inorganic material preferably contains inorganic particles.
  • the inorganic particles include shirasu particles, hydroxyapatite particles, magnesia particles, zirconium oxide particles, silica particles, alumina particles, and zirconia particles.
  • grains formed with a well-known inorganic element or an inorganic compound may be sufficient.
  • silica particles examples include pulverized silica and spherical silica.
  • Silica particles may have a functional group capable of chemical bonding such as a carboxyl group and a hydroxyl group on the surface.
  • the average particle diameter of the inorganic particles is preferably 0.001 ⁇ m or more, more preferably 0.005 ⁇ m or more, preferably 1.0 ⁇ m or less, more preferably 0.5 ⁇ m or less, and further preferably 0.2 ⁇ m or less. .
  • the average particle diameter of an inorganic particle here is the same definition as the average particle diameter of the base material particle
  • the inorganic material is not limited to inorganic particles, and may be in the form of a film formed of an inorganic compound, for example.
  • a film formed of such an inorganic compound can be formed by, for example, a known method, but the formation method is not particularly limited.
  • the structure of the insulating layer (that is, a layer containing a resin and an inorganic material) is not particularly limited.
  • the insulating layer may be formed by laminating a resin layer formed of a resin and an inorganic layer formed of an inorganic material in this order from the metal layer side. That is, in this case, a resin layer that is coated with the resin is formed on the surface of the metal layer, and an inorganic layer that is coated with the inorganic material is formed on the surface of the resin layer. It becomes.
  • the resin layer may contain a material other than the resin, or may be composed of only the resin.
  • the inorganic layer may contain a material other than the inorganic material, or may be composed of only the inorganic material.
  • the insulating layer may be formed by laminating an inorganic layer formed of an inorganic material and a resin layer formed of a resin in this order from the metal layer side. That is, in this case, the surface of the metal layer is formed with an inorganic layer coated with the inorganic material, and the surface of the inorganic layer is formed with a resin layer coated with the resin. It becomes.
  • the exemplified insulating layer is formed in at least a two-layer structure including a resin layer and an inorganic layer, but is not limited thereto.
  • the insulating layer may be formed of a material containing a mixture of the resin and the inorganic material and have a single layer structure.
  • the surface of the metal layer is formed with a resin layer coated with the resin, and the surface of the resin layer is formed with an inorganic layer coated with the inorganic material.
  • a structure is preferred. In this case, even if the outermost inorganic layer falls off, the resin layer is present on the surface, so that the insulating property of the conductive particles is hardly lowered.
  • the presence of the inorganic layer in the outermost layer increases the repulsive action between the conductive particles, so that the aggregation of the conductive particles hardly occurs and the monodispersity of the conductive particles is improved.
  • the inorganic layer includes silica particles, it is easy to improve the monodispersity of the conductive particles.
  • the ratio of the average particle diameter of the inorganic particles to the resin particles is preferably 1/50 or more, more preferably 1/30 or more. More preferably, it is 1/10 or more, preferably 1 or less, more preferably 1/2 or less.
  • the ratio of the average particle diameter of the inorganic particles to the resin particles is 1/50 or more, the insulating particles are easily aggregated and the covering property is improved.
  • the ratio of the average particle diameter of the inorganic particles to the resin particles is 1 or less, the adhesion between the plating surface (metal layer), the resin particles, and the inorganic particles becomes high.
  • the average particle diameter of the resin particles can be 0.2 ⁇ m or more and 1 ⁇ m or less, and the average particle diameter of the inorganic particles can be 0.01 ⁇ m or more and 0.2 ⁇ m or less.
  • the thickness of the insulating layer does not become too thick, the electrical connection by the metal layer is more reliably achieved, and the adhesion between the resin particles and the inorganic particles is also increased.
  • the average particle diameter of the resin particles and inorganic particles indicates the number average particle diameter, and can be measured using a commercially available particle size distribution measuring device or the like. For example, it can be obtained by using a particle size distribution measuring device such as Nikkiso Microtrac “UPA-EX-150”.
  • a particle size distribution measuring device such as Nikkiso Microtrac “UPA-EX-150”.
  • the average particle diameter of the resin particles and inorganic particles can be measured as follows.
  • the conductive particles are added to and dispersed in “Technobit 4000” manufactured by Kulzer so that the content is 30% by weight, and an embedded resin for inspecting conductive particles is produced.
  • the cross section of the conductive particles is cut out using an ion milling device (“IM4000” manufactured by Hitachi High-Technologies Corporation) so as to pass through the vicinity of the center of the dispersed conductive resin in the embedded resin for inspection. Then, using a field emission scanning electron microscope (FE-SEM), the image magnification was set to 50,000 times, 20 conductive particles were randomly selected, and the average particle of each resin particle and inorganic particle Observe 50 diameters. The average particle diameters of the resin particles and the inorganic particles in the obtained conductive particles are measured, and are arithmetically averaged to obtain the average particle diameter of the resin particles and the inorganic particles.
  • IM4000 manufactured by Hitachi High-Technologies Corporation
  • the CV value of the resin particles and inorganic particles is preferably 20% or less.
  • the thickness of the insulating layer becomes uniform.
  • CV value of the particle diameter is calculated by the following formula.
  • CV value of particle diameter (%) standard deviation of particle diameter / average particle diameter ⁇ 100
  • the particle size distribution can be measured with a particle size distribution meter or the like before coating the conductive part of the conductive particles, and can be measured with image analysis of an SEM photograph after coating.
  • the average thickness of the insulating layer is not limited and can be any thickness. In particular, if the average thickness of the insulating layer is larger than the thickness of the protrusions described above, the effect of the insulating layer can be sufficiently exerted, the insulating property is hardly lowered, and the aggregation of conductive particles is prevented. It becomes easy to be done.
  • the average thickness of the insulating layer is preferably 5 nm or more from the viewpoint that when applying conductive particles to applications such as COG, leakage is unlikely to occur and the pressure and amount of heat necessary for thermocompression bonding can be reduced. More preferably, it is 10 nm or more, preferably 1000 nm or less, more preferably 500 nm or less.
  • the coverage of the inorganic particles with respect to the conductive particles is preferably 80% or more. In this case, it is easy to prevent a decrease in the insulating properties of the conductive particles, and since the conductive particles have a more nearly spherical shape, it is easy to suppress the aggregation of the conductive particles. Monodispersity can be improved.
  • the upper limit of the coverage of inorganic particles is 100%.
  • the resin which forms the said insulating layer is a resin particle, it is preferable that the coverage of the resin particle with respect to electroconductive particle is 40% or more. The upper limit of the resin particle coverage is 100%.
  • a coverage means the ratio for which the total area of the part coat
  • the surface area of the inner layer of the inorganic layer can be determined by calculating the surface area of the sphere by regarding the conductive particles excluding the inorganic layer as a sphere.
  • the image magnification is set to 50,000 times, 20 conductive particles are randomly selected, and the surface of each conductive particle is observed. .
  • the percentage of the surface area of the portion covered with the inorganic particles with respect to the projected area of the whole particles is measured, and this is arithmetically averaged to obtain the coverage.
  • the coverage of the inorganic layer and the resin layer can be measured by mapping analysis such as EDX attached to the SEM.
  • the above-described coverage can be adjusted by, for example, the amount of inorganic particles added to the base material particles, the mixing time, etc., and the method for adjusting the coverage is not particularly limited.
  • the above resin (for example, resin particles) and inorganic material (for example, inorganic particles) preferably have a reactive functional group capable of chemical bonding such as covalent bonding.
  • the adhesiveness between the resin (for example, resin particles) and the inorganic material (for example, inorganic particles) becomes stronger, and it is easy to prevent them from falling off the conductive particles.
  • Examples of the reactive functional group include vinyl group, (meth) acryloyl group, silane group, silanol group, carboxyl group, amino group, ammonium group, nitro group, hydroxyl group, carbonyl group, thiol group, sulfonic acid group, and sulfonium.
  • a vinyl group and a (meth) acryloyl group are preferable.
  • the reactive functional group can be introduced by surface treatment with a compound for introducing a reactive functional group into a resin (for example, resin particles) and an inorganic material (for example, inorganic particles).
  • a compound for introducing a reactive functional group into a resin for example, resin particles
  • an inorganic material for example, inorganic particles.
  • examples thereof include a compound having a (meth) acryloyl group, a compound having an epoxy group, and a compound having a vinyl group.
  • Examples of the compound (surface treatment substance) for introducing a vinyl group include a silane compound having a vinyl group, a titanium compound having a vinyl group, and a phosphate compound having a vinyl group.
  • the surface treatment substance is preferably a silane compound having a vinyl group.
  • Examples of the silane compound having a vinyl group include vinyltrimethoxysilane, vinyltriethoxysilane, vinyltriacetoxysilane, and vinyltriisopropoxysilane.
  • a compound (surface treatment substance) for introducing a (meth) acryloyl group a silane compound having a (meth) acryloyl group, a titanium compound having a (meth) acryloyl group, and a phosphoric acid having a (meth) acryloyl group Compounds and the like.
  • the surface treatment substance is also preferably a silane compound having a (meth) acryloyl group.
  • silane compound having a (meth) acryloyl group examples include (meth) acryloxypropyltriethoxysilane, (meth) acryloxypropyltrimethoxysilane, (meth) acryloxypropyltridimethoxysilane, and the like.
  • the method for forming the insulating layer on the surface of the metal layer is not particularly limited, and a known method can be employed. Examples of such methods include chemical methods and physical or mechanical methods.
  • As the chemical method there is a method in which a resin (for example, resin particles) and an inorganic material are attached to the surface of the metal layer by a hetero-aggregation method using van der Waals force or electrostatic force, and further chemically bonded as necessary. Can be mentioned.
  • Examples of the physical or mechanical method include spray drying, hybridization, electrostatic adhesion, spraying, dipping, and vacuum deposition. Among these, a method in which a resin (for example, resin particles) and an inorganic material are attached to the surface of the conductive layer through a chemical bond is preferable because an insulating substance is difficult to be detached.
  • the insulating layer On the surface of the metal layer, it is preferable to first attach the resin to the metal layer and then attach the inorganic material to the metal layer. In this case, since the adhesion between the metal surface and the insulating layer is likely to be high, peeling of the insulating layer can be suppressed. For example, if resin particles are first attached to the metal layer and then inorganic particles are attached to the metal layer, inorganic particles having a small average particle diameter may enter between resin particles having a large average particle diameter.
  • the insulating layer can be formed in a state where the inorganic particles are included in the resin layer. An inorganic particle layer may be further formed on the surface of the insulating layer thus formed.
  • the insulating layer is formed of a resin layer containing inorganic particles and an inorganic layer formed of inorganic particles.
  • the inorganic particles have a size that does not enter the voids of the resin layer, the inorganic particles do not enter the voids of the resin layer, and become an insulating layer having an inorganic layer formed on the surface of the resin layer.
  • the resin particles and the inorganic particles can be attached to the metal layer by the same method, but it is not necessarily required to be attached to the metal layer by the same method.
  • the resin particles may be attached to the insulating layer by hetero-aggregation and chemically bonded to the surface of the metal layer, and the inorganic particles may be physically coated on the surface of the resin layer by a method such as hybridization.
  • the surface of the metal layer and the insulating layer may not be directly chemically bonded, but may be indirectly chemically bonded by a compound having a reactive functional group.
  • the carboxyl group may be chemically bonded to a functional group on the surface of the insulating layer via a polymer electrolyte such as polyethyleneimine.
  • the polymer electrolyte that can be used here can be the same as the polymer electrolyte described above.
  • the conductive particles according to the present embodiment include base particles and a metal layer that covers the surface of the base particles, and the surface of the metal layer is covered with a resin and an inorganic material. It can be a material having a large coating amount of the insulating layer compared to the particles. Thereby, since the insulation of electroconductive particle improves, it is easy to prevent a fall of insulation. Moreover, since the coating amount of the insulating layer in the conductive particles is large, aggregation of the conductive particles is easily suppressed, and as a result, the monodispersity of the conductive particles is also improved. In particular, when the outermost layer of the conductive particles is silica particles, aggregation of the conductive particles is more easily suppressed.
  • the conductive particles when the conductive particles are applied to, for example, COG and the electrodes are connected, a short circuit between adjacent electrodes can be suppressed. Specifically, even if a plurality of conductive particles are in contact with each other between the electrodes, the presence of an insulating material (insulating layer) between the plurality of electrodes suppresses a short circuit between electrodes adjacent in the lateral direction. You can also.
  • the insulating substance (insulating layer) existing between the conductive portion (metal layer) of the conductive particles and the electrode can be easily obtained. Eliminated. And when an electroconductive particle has a Symposium
  • the conductive particles of the present embodiment have an insulating layer containing a resin and an inorganic material, and thus have an appropriate hardness and an appropriate recoverability after compression. Therefore, the electroconductive particle of this embodiment can be used especially suitably for COG in which hardness and recoverability are calculated
  • the stress at 10% compression (10% K value) is preferably 3000 or more and 15000 N / mm 2 or less, and the recovery rate is preferably 30% or more and 80% or less.
  • the electroconductive particle of this embodiment is a material which is excellent also in hardness and a recoverability by having the above-mentioned insulating layer.
  • the stress at 10% compression (10% K value) is preferably 5000 or more and 12000 N / mm 2 or less, and the recovery rate is 40. % Or more and 70% or less is preferable.
  • the 10% K value of the conductive particles can be measured as follows. Using a micro-compression tester, one conductive particle is compressed with a smooth indenter end face of a cylinder (diameter 50 ⁇ m, made of diamond) under the condition that a maximum test load of 90 mN is applied for 30 seconds. The load value (N) and compression displacement (mm) at this time are measured. From the measured value obtained, the compression elastic modulus can be obtained by the following formula. As the micro compression tester, for example, “Fischer Scope H-100” manufactured by Fischer is used.
  • K value (N / mm 2 ) (3/2 1/2 ) ⁇ F ⁇ S ⁇ 3 / 2 ⁇ R ⁇ 1/2
  • F Load value when the conductive particles are 10% compressively deformed (N)
  • S Compression displacement (mm) when the conductive particles are 10% compressively deformed
  • R radius of conductive particles (mm)
  • the recovery rate is determined by adding the maximum test load of 10 mN to one particle and then unloading the load in the same apparatus as described above. The compression displacement L1 (mm) and the recovery displacement L2 (mm) at this time are measured. It can obtain
  • the conductive particles are preferably dispersed in a binder resin and used as a conductive material.
  • the conductive material is preferably an anisotropic conductive material.
  • the conductive material is preferably used for electrical connection of electrodes.
  • the conductive material is preferably a circuit connection material.
  • the binder resin is not particularly limited.
  • a known insulating resin is used.
  • the binder resin preferably includes a thermoplastic component (thermoplastic compound) or a curable component, and more preferably includes a curable component.
  • the curable component include a photocurable component and a thermosetting component.
  • the photocurable component preferably contains a photocurable compound and a photopolymerization initiator.
  • the thermosetting component preferably contains a thermosetting compound and a thermosetting agent.
  • binder resin examples include vinyl resins, thermoplastic resins, curable resins, thermoplastic block copolymers, and elastomers.
  • vinyl resins examples include vinyl resins, thermoplastic resins, curable resins, thermoplastic block copolymers, and elastomers.
  • the said binder resin only 1 type may be used and 2 or more types may be used together.
  • vinyl resin examples include vinyl acetate resin, acrylic resin, and styrene resin.
  • thermoplastic resin examples include polyolefin resin, ethylene-vinyl acetate copolymer, polyamide resin, and the like.
  • the curable resin examples include an epoxy resin, a urethane resin, a polyimide resin, and an unsaturated polyester resin.
  • the curable resin may be a room temperature curable resin, a thermosetting resin, a photocurable resin, or a moisture curable resin.
  • the curable resin may be used in combination with a curing agent.
  • thermoplastic block copolymer examples include a styrene-butadiene-styrene block copolymer, a styrene-isoprene-styrene block copolymer, a hydrogenated product of a styrene-butadiene-styrene block copolymer, and a styrene-isoprene. -Hydrogenated products of styrene block copolymers.
  • Examples of the elastomer include styrene-butadiene copolymer rubber and acrylonitrile-styrene block copolymer rubber.
  • the conductive material includes, for example, a filler, an extender, a softener, a plasticizer, a polymerization catalyst, a curing catalyst, a colorant, an antioxidant, a heat stabilizer, and a light stabilizer.
  • a filler for example, a filler, an extender, a softener, a plasticizer, a polymerization catalyst, a curing catalyst, a colorant, an antioxidant, a heat stabilizer, and a light stabilizer.
  • Various additives such as an agent, an ultraviolet absorber, a lubricant, an antistatic agent and a flame retardant may be contained.
  • the conductive material can be used as a conductive paste and a conductive film.
  • the conductive material is a conductive film
  • a film that does not include conductive particles may be laminated on a conductive film that includes conductive particles.
  • the conductive paste is preferably an anisotropic conductive paste.
  • the conductive film is preferably an anisotropic conductive film.
  • the content of the binder resin in 100% by weight of the conductive material is preferably 10% by weight or more, more preferably 30% by weight or more, still more preferably 50% by weight or more, particularly preferably 70% by weight or more, preferably It is 99.99 weight% or less, More preferably, it is 99.9 weight% or less.
  • the content of the binder resin is not less than the above lower limit and not more than the above upper limit, the conductive particles are efficiently arranged between the electrodes, and the connection reliability of the connection target member connected by the conductive material is further increased.
  • the content of the conductive particles is preferably 0.01% by weight or more, more preferably 0.1% by weight or more, preferably 80% by weight or less, more preferably 60% by weight. Hereinafter, it is more preferably 40% by weight or less, particularly preferably 20% by weight or less, and most preferably 10% by weight or less.
  • the content of the conductive particles is not less than the above lower limit and not more than the above upper limit, the conduction reliability between the electrodes is further enhanced.
  • connection structure can be obtained by connecting the connection target members using the conductive particles described above or using a conductive material including the conductive particles described above and a binder resin.
  • connection structure 81 connects the first connection target member 82, the second connection target member 83, and the first connection target member and the second connection target member.
  • the material that includes the connecting portion 84 and that forms the connecting portion is the conductive particle 1 described above or a conductive material that includes the conductive particle 1 and the binder resin described above.
  • the connection part is a connection structure formed of the above-described conductive particles or a conductive material including the above-described conductive particles and a binder resin. When the conductive particles are used alone, the connection part itself is the conductive particles. That is, the first and second connection target members are connected by the conductive particles.
  • the conductive material used for obtaining the connection structure is preferably an anisotropic conductive material.
  • the first connection object member preferably has a first electrode 82a on the surface.
  • the second connection object member preferably has a second electrode 83a on the surface. It is preferable that the first electrode 82 a and the second electrode 83 a are electrically connected by the conductive particles 1.
  • the manufacturing method of the connection structure is not particularly limited.
  • a method of manufacturing a connection structure a method of placing the conductive material between a first connection target member and a second connection target member to obtain a laminate, and then heating and pressurizing the laminate Etc.
  • the pressure of the pressurization is about 9.8 ⁇ 10 4 or more and 4.9 ⁇ 10 6 Pa or less.
  • the heating temperature is about 120 to 220 ° C.
  • the pressure of the pressurization for connecting the electrode of the flexible printed board, the electrode arranged on the resin film, and the electrode of the touch panel is about 9.8 ⁇ 10 4 or more and 1.0 ⁇ 10 6 Pa or less.
  • connection target member examples include electronic components such as semiconductor chips, capacitors, and diodes, and electronic components such as printed boards, flexible printed boards, glass epoxy boards, and glass boards.
  • the conductive material is preferably a conductive material for connecting electronic components.
  • the conductive paste is a paste-like conductive material, and is preferably applied on the connection target member in a paste-like state.
  • connection target member is preferably a flexible substrate or a connection target member in which electrodes are arranged on the surface of the resin film.
  • the connection target member is preferably a flexible substrate, and is preferably a connection target member in which an electrode is disposed on the surface of the resin film.
  • the flexible substrate is a flexible printed substrate or the like, the flexible substrate generally has electrodes on the surface.
  • the electrode provided on the connection target member examples include metal electrodes such as a gold electrode, a nickel electrode, a tin electrode, an aluminum electrode, a copper electrode, a silver electrode, a molybdenum electrode, and a tungsten electrode.
  • the electrode is preferably a gold electrode, a nickel electrode, a tin electrode, or a copper electrode.
  • the connection target member is a glass substrate, the electrode is preferably an aluminum electrode, a copper electrode, a molybdenum electrode, or a tungsten electrode.
  • the said electrode is an aluminum electrode, the electrode formed only with aluminum may be sufficient and the electrode by which the aluminum layer was laminated
  • the material for the metal oxide layer include indium oxide doped with a trivalent metal element and zinc oxide doped with a trivalent metal element. Examples of the trivalent metal element include Sn, Al, and Ga.
  • Example 1 Divinylbenzene copolymer resin particles having a particle diameter of 3.0 ⁇ m (“Micropearl SP-203” manufactured by Sekisui Chemical Co., Ltd.) were prepared as base material particles for forming the metal layer . After dispersing 10 parts by weight of the resin particles in 100 parts by weight of an alkaline solution containing 5% by weight of a palladium catalyst solution using an ultrasonic disperser, the resin particles were taken out by filtering the solution. Next, the resin particles were added to 100 parts by weight of a 1% by weight dimethylamine borane solution to activate the surface of the resin particles.
  • the resin particles whose surface was activated were sufficiently washed with water, and then added to 500 parts by weight of distilled water and dispersed to obtain a suspension. Next, 1 g of metallic nickel particle slurry (average particle size 100 nm) was added to the dispersion over 3 minutes to obtain base particles to which the core substance was adhered. Suspension was obtained by adding the base material particle
  • nickel plating solution for the previous process, a mixed solution of nickel sulfate 500 g / L, sodium hypophosphite 150 g / L, sodium citrate 150 g / L, and plating stabilizer 6 ml / L was adjusted to pH 8 with ammonia. A plating solution was prepared. 150 ml of this plating solution was added dropwise to the suspension A through a metering pump at an addition rate of 20 ml / min. The reaction temperature was set to 50 ° C. Then, it stirred until pH was stabilized, it confirmed that hydrogen foaming stopped, and the electroless-plating first stage process was performed.
  • a plating solution prepared by adjusting a mixed solution of nickel sulfate 500 g / L, dimethylamine borane 80 g / L and sodium tungstate 10 g / L to pH 11.0 with sodium hydroxide is prepared. did. 350 ml of this plating solution was dropped into the suspension through a metering pump at an addition rate of 10 ml / min. The reaction temperature was set at 30 ° C. Then, it stirred until pH was stabilized, it confirmed that the foaming of hydrogen stopped, and the electroless-plating late process was performed.
  • the mixture was stirred at 200 rpm and polymerized at 70 ° C. for 24 hours in a nitrogen atmosphere. After completion of the reaction, the resin was freeze-dried to obtain insulating resin particles having an average particle diameter of 250 nm and a CV value of 10%.
  • the insulating resin particles were dispersed in ion exchange water under ultrasonic irradiation to obtain a 10 wt% aqueous dispersion of insulating resin particles.
  • Aerosil 50 (average particle size 30 nm) manufactured by Nippon Aerosil Co., Ltd. was used.
  • Examples 2 to 7 Conductive particles in the same manner as in Example 1 except that the average particle size of the base particles, the average particle sizes of the insulating resin particles and the insulating inorganic particles, and the coating amount were changed as shown in Table 1 below. Was made.
  • Example 8 Conductive particles were produced in the same manner as in Example 1 except that 100 mmol of methyl methacrylate was changed to 150 mmol of isobutyl methacrylate when the resin particles were produced.
  • Example 9 Conductive particles were prepared in the same manner as in Example 1 except that the inorganic particles were changed to aluminum oxide C (average particle size 13 nm) manufactured by Nippon Aerosil Co., Ltd.
  • Example 10 The conductive particles, insulating resin particles, and inorganic particles obtained in Example 1 were prepared. After mixing 10 parts by weight of conductive particles and 10 parts by weight of insulating resin particles, the mixture is put into a hybridizer (manufactured by Nara Machinery Co., Ltd.) and treated for 1 hour, whereby a resin layer having a thickness of about 100 nm is formed on the surface of the conductive particles. Coated conductive particles were obtained. Next, 15 parts by weight of inorganic particles were mixed, and then charged into a hybridizer and treated for 30 minutes to obtain conductive particles in which the inorganic particles were uniformly coated on the resin layer.
  • a hybridizer manufactured by Nara Machinery Co., Ltd.
  • Example 11 A nickel conductive layer (metal layer) having no protrusions on the surface of the resin particles is obtained by using base particles to which no core substance is attached without adding a metal nickel particle slurry when forming the metal layer of Example 1.
  • the conductive particles were obtained in the same manner as in Example 1 except that the base particles with the) were disposed.
  • the coverage here refers to the ratio of the total area covered by the insulating layer to the entire surface area of the conductive particles. Specifically, by observing with SEM as described above, 20 insulating layer-coated conductive particles are observed, and the total projected area of the portion covered with the insulating layer occupying the entire surface area of each conductive particle The ratio was calculated as the coverage. And the average value of 20 coverage was made into the coverage of the insulating layer covering electroconductive particle.
  • Compressive modulus (10% K value) when conductive particles are compressed 10% The compression modulus (10% K value) of the obtained conductive particles was measured by the above-described method using a micro compression tester (“Fischer Scope H-100” manufactured by Fischer).
  • PKHC Monodispersed phenoxy resin
  • PGMEA 30 parts by weight and toluene 20 parts by weight were stirred and mixed for 24 hours to completely dissolve the phenoxy resin.
  • conductive particles 0.05 part by weight was added and stirred with a planetary stirrer to obtain a resin composition.
  • the obtained resin composition was applied onto polyethylene terephthalate that had been subjected to a release treatment, and the solvent was dried to obtain an anisotropic conductive film having a thickness of 10 ⁇ m.
  • a transparent glass substrate having an IZO electrode pattern formed on the upper surface of an Al—Nd alloy wiring having L / S of 15 ⁇ m / 15 ⁇ m was prepared. Further, a semiconductor chip was prepared in which a gold electrode pattern having L / S of 15 ⁇ m / 15 ⁇ m was formed on the lower surface.
  • the obtained anisotropic conductive paste was applied on the transparent glass substrate so as to have a thickness of 30 ⁇ m to form an anisotropic conductive paste layer.
  • the semiconductor chip was stacked on the anisotropic conductive paste layer so that the electrodes face each other.
  • a pressure heating head is placed on the upper surface of the semiconductor chip, and a pressure of 70 MPa is applied per bump area.
  • the paste layer was cured at 185 ° C. to obtain a connection structure.
  • the conductivity was determined according to the following criteria. [Conductivity criteria] OO: The ratio of the number of connection structures having a resistance value of 3 ⁇ or less is 90% or more. ⁇ : The ratio of the number of connection structures having a resistance value of 3 ⁇ or less is 80% or more and less than 90%. A: The ratio of the number of connection structures having a resistance value of 3 ⁇ or less is 70% or more and less than 80%. ⁇ : The ratio of the number of connection structures having a resistance value of 3 ⁇ or less is 60% or more and less than 70%. X: The ratio of the number of connection structures having a resistance value of 3 ⁇ or less is less than 60%.
  • Insulation between adjacent electrodes in the horizontal direction
  • the ratio of the number of connection structures having a resistance value of 10 8 ⁇ or more is 90% or more.
  • The ratio of the number of connection structures having a resistance value of 10 8 ⁇ or more is 80% or more and less than 90%.
  • A The ratio of the number of connection structures having a resistance value of 10 8 ⁇ or more is 70% or more and less than 80%.
  • The ratio of the number of connection structures having a resistance value of 10 8 ⁇ or more is 60% or more and less than 70%.
  • X The ratio of the number of connection structures having a resistance value of 10 8 ⁇ or more is less than 60%.
  • Table 1 shows the coverage of insulating resin particles (or resin layers) and inorganic particles, and the 10% K value (N / mm) of the conductive particles for the conductive particles produced in each Example and Comparative Example. 2 ), evaluation results of recovery rate (%), monodispersity, connection resistance value (conductivity) and insulation are shown.
  • the conductive particles obtained in each example have a performance of any of 10% K value (N / mm 2 ), recovery rate (%), monodispersity, connection resistance value, and insulation. Has also been shown to be superior.
  • the sample obtained in the comparative example since the substrate particles are not coated with the resin and the inorganic material, aggregation is likely to occur, and the monodispersity is poor. The result was inferior to the case where the conductive particles were used.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Non-Insulated Conductors (AREA)
  • Conductive Materials (AREA)

Abstract

Provided are conductive particles that make it easy to prevent decreases in the insulating properties of conductive particles and that make it possible to minimize the agglomeration of conductive particles. These conductive particles comprise a substrate particle and a metal layer that covers the surface of the substrate particle. The surface of the metal layer is covered by a resin and an inorganic material. The resin may contain resin particles and the inorganic material may contain inorganic particles. The conductive particles make it easy to prevent decreases in the insulating properties thereof and are unlikely to agglomerate as a result of the surface of the metal layer being covered by the resin and the inorganic material.

Description

導電性粒子、導電材料、および接続構造体Conductive particles, conductive materials, and connection structures
 本発明は、例えば、電極間の電気的な接続に用いることができる導電性粒子に関する。 The present invention relates to conductive particles that can be used for electrical connection between electrodes, for example.
 従来、異方性導電ペースト、異方性導電フィルム等の異方性導電材料は、ICチップとフレキシブルプリント回路基板との接続や、あるいは、ICチップとITO電極を有する回路基板との接続等に用いられている。より具体的には、上記異方性導電材料は、フレキシブルプリント基板とガラス基板との接続(FOG;Film on Glass)、半導体チップとフレキシブルプリント基板との接続(COF;Chip on Film)、半導体チップとガラス基板との接続(COG;Chip on Glass)、並びにフレキシブルプリント基板とガラスエポキシ基板との接続(FOB;Film on Board)等に使用されている。異方性導電材料は、例えば、ICチップの電極と回路基板の電極との間に配置され、さらに、加熱及び加圧することにより、これらの電極どうしを電気的な接続を可能にする。 Conventionally, anisotropic conductive materials such as anisotropic conductive paste and anisotropic conductive film have been used for connection between an IC chip and a flexible printed circuit board, or connection between an IC chip and a circuit board having an ITO electrode. It is used. More specifically, the anisotropic conductive material includes a connection between a flexible printed circuit board and a glass substrate (FOG; Film on Glass), a connection between a semiconductor chip and a flexible printed circuit board (COF; Chip on Film), and a semiconductor chip. And a glass substrate (COG; Chip on Glass) and a connection between a flexible printed circuit board and a glass epoxy substrate (FOB; Film on Board). The anisotropic conductive material is disposed, for example, between an electrode of an IC chip and an electrode of a circuit board, and further enables electrical connection between these electrodes by heating and pressurization.
 上記のような異方性導電材料は、一般的には、ペースト、インク又は樹脂中に導電性粒子が分散されて形成されている。近年では、異方性導電材料の性能を高めるという観点から、異方性導電材料に含まれる導電性粒子の開発が進められており、例えば、基材粒子の表面を他の材料で被覆させることで、導電性粒子の性能を向上させる試みが盛んに行われている。例えば、特許文献1には、シリカで被覆された導電性粒子が開示されている。このようなシリカ被覆導電性粒子を異方性導電材料に含ませることで、該異方性導電材料を電極間の電気的な接続に用いた場合に、導通信頼性及び絶縁信頼性の双方が高められる。 The above anisotropic conductive material is generally formed by dispersing conductive particles in paste, ink or resin. In recent years, from the viewpoint of enhancing the performance of anisotropic conductive materials, development of conductive particles contained in anisotropic conductive materials has been promoted. For example, the surface of base particles can be coated with other materials. Attempts to improve the performance of conductive particles have been actively made. For example, Patent Document 1 discloses conductive particles coated with silica. By including such silica-coated conductive particles in an anisotropic conductive material, when the anisotropic conductive material is used for electrical connection between electrodes, both conduction reliability and insulation reliability are obtained. Enhanced.
特開2014-241281号公報JP 2014-241281 A
 しかしながら、特許文献1に開示の技術では、シリカが導電性粒子から脱落しやすいものであり、シリカが導電性粒子から脱落することにより、導電性粒子の絶縁性の低下を引き起こしていた。さらに、導電性粒子からシリカが脱落することによって、導電性粒子どうしが凝集しやすくなり、導電性粒子の単分散性が徐々に損なわれるいという問題もあった。以上のような観点から、異方性導電材料に含まれる導電性粒子に関して、絶縁性の低下、及び、凝集性を抑制する技術の開発が重要となる。 However, in the technique disclosed in Patent Document 1, silica is easily dropped from the conductive particles, and the silica is dropped from the conductive particles, thereby causing a decrease in the insulating properties of the conductive particles. Further, there is a problem in that the silica is easily aggregated due to the silica falling off from the conductive particles, and the monodispersity of the conductive particles is gradually impaired. From the above viewpoints, it is important to develop a technique for suppressing a decrease in insulation and agglomeration of the conductive particles contained in the anisotropic conductive material.
 本発明は、上記に鑑みてなされたものであり、導電性粒子の絶縁性の低下を防止しやすく、しかも、導電性粒子どうしが凝集することも抑制できる導電性粒子、並びに、この導電性粒子を有する導電材料及び接続構造体を提供することを目的とする。 The present invention has been made in view of the above, and it is easy to prevent a decrease in the insulating properties of the conductive particles, and it is possible to suppress the aggregation of the conductive particles, and the conductive particles. It is an object to provide a conductive material and a connection structure having the following.
 本発明者は、上記目的を達成すべく鋭意研究を重ねた結果、導電性粒子の基材となる粒子を樹脂と無機材料を併用して被覆させることにより、上記目的を達成できることを見出し、本発明を完成するに至った。 As a result of earnest research to achieve the above object, the present inventor has found that the above object can be achieved by coating particles that serve as a base material for conductive particles in combination with a resin and an inorganic material. The invention has been completed.
 即ち、本発明は、例えば以下の項に記載の主題を包含する。
項1.基材粒子と、該基材粒子の表面を覆う金属層とを有してなる導電性粒子であって、
 前記金属層の表面は、樹脂及び無機材料で被覆されている、導電性粒子。
項2.前記樹脂は樹脂粒子を含む、上記項1に記載の導電性粒子。
項3.前記無機材料は無機粒子を含む、上記項1又は2に記載の導電性粒子。
項4.前記樹脂は樹脂粒子を含み、前記無機材料は無機粒子を含み、前記樹脂粒子に対する前記無機粒子の平均粒子径の比が1/50以上、1以下である、上記項1に記載の導電性粒子。
項5.前記無機粒子の被覆率が80%以上である、上記項3又は4に記載の導電性粒子。
項6.前記金属層の表面には前記樹脂で被覆されてなる樹脂層が形成されており、この樹脂層の表面には前記無機材料で被覆されてなる無機層が形成されている、上記項1~5のいずれか1項に記載の導電性粒子。
項7.上記項1~6のいずれか1項に記載の導電性粒子と、バインダー樹脂とを含む、導電材料。
項8.第1の電極を表面に有する第1の接続対象部材と、
 第2の電極を表面に有する第2の接続対象部材と、
 前記第1の接続対象部材と前記第2の接続対象部材とを接続している接続部とを備え、
 前記接続部の材料が、上記項1~6のいずれか1項に記載の導電性粒子又は上記項7に記載の導電材料を含み、
 前記第1の電極と前記第2の電極とが前記導電性粒子又は前記導電材料により電気的に接続されている、接続構造体。
That is, the present invention includes, for example, the subject matters described in the following sections.
Item 1. Conductive particles comprising base particles and a metal layer covering the surface of the base particles,
Conductive particles in which the surface of the metal layer is coated with a resin and an inorganic material.
Item 2. Item 2. The conductive particle according to Item 1, wherein the resin includes resin particles.
Item 3. Item 3. The conductive particle according to Item 1 or 2, wherein the inorganic material includes inorganic particles.
Item 4. The conductive particle according to Item 1, wherein the resin includes resin particles, the inorganic material includes inorganic particles, and a ratio of an average particle diameter of the inorganic particles to the resin particles is 1/50 or more and 1 or less. .
Item 5. Item 5. The conductive particle according to Item 3 or 4, wherein the coverage of the inorganic particle is 80% or more.
Item 6. Items 1 to 5 above, wherein a resin layer coated with the resin is formed on the surface of the metal layer, and an inorganic layer coated with the inorganic material is formed on the surface of the resin layer. Electroconductive particle of any one of these.
Item 7. A conductive material comprising the conductive particles according to any one of Items 1 to 6 and a binder resin.
Item 8. A first connection object member having a first electrode on its surface;
A second connection target member having a second electrode on its surface;
A connection portion connecting the first connection target member and the second connection target member;
The material of the connecting portion includes the conductive particles according to any one of Items 1 to 6 or the conductive material according to Item 7.
A connection structure in which the first electrode and the second electrode are electrically connected by the conductive particles or the conductive material.
 本発明に係る導電性粒子は、基材粒子と、基材粒子の表面を覆う金属層とを有してなり、金属層の表面は、樹脂及び無機材料で被覆されているので、導電性粒子の絶縁性の低下が防止されやすく、しかも、導電性粒子どうしの凝集も起こりにくい。 The conductive particles according to the present invention include base particles and a metal layer that covers the surface of the base particles, and since the surface of the metal layer is coated with a resin and an inorganic material, the conductive particles It is easy to prevent the lowering of the insulating property, and the aggregation of the conductive particles hardly occurs.
本発明の導電性粒子を備える接続構造体の一例を示し、その断面の概略図である。An example of a connection structure provided with the electroconductive particle of this invention is shown, and it is the schematic of the cross section.
 以下、本発明の実施形態について詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail.
 なお、以下の説明において、「(メタ)アクリ」の用語を含む化学物質は「アクリ」と「メタクリ」との一方又は双方を意味するものとする。例えば、「(メタ)アクリル」は「アクリル」と「メタクリル」との一方又は双方を意味し、「(メタ)アクリレート」は「アクリレート」と「メタクリレート」との一方又は双方を意味する。 In the following description, a chemical substance including the term “(meth) acryl” means one or both of “acryl” and “methacryl”. For example, “(meth) acryl” means one or both of “acryl” and “methacryl”, and “(meth) acrylate” means one or both of “acrylate” and “methacrylate”.
 また、本明細書中において、「含有」及び「含む」なる表現については、「含有」、「含む」、「実質的にからなる」及び「のみからなる」という概念を含む。 In addition, in this specification, the expressions “containing” and “including” include concepts of “containing”, “including”, “consisting essentially of”, and “consisting only of”.
 本実施形態の導電性粒子は、基材粒子と、該基材粒子の表面を覆う金属層とを有してなり、金属層の表面は、樹脂及び無機材料で被覆されている。このような導電性粒子は、絶縁性の低下及び導電性粒子どうしの凝集が起こりにくい。以下、本実施形態の導電性粒子の構成について詳述する。 The conductive particles of the present embodiment include base particles and a metal layer that covers the surface of the base particles, and the surface of the metal layer is coated with a resin and an inorganic material. Such conductive particles are less likely to cause a decrease in insulation and aggregation of the conductive particles. Hereinafter, the structure of the electroconductive particle of this embodiment is explained in full detail.
 上記基材粒子としては、樹脂粒子、金属粒子を除く無機粒子、有機無機ハイブリッド粒子及び金属粒子等が挙げられる。上記基材粒子は、樹脂粒子、金属粒子を除く無機粒子又は有機無機ハイブリッド粒子であることが好ましい。 Examples of the substrate particles include resin particles, inorganic particles excluding metal particles, organic-inorganic hybrid particles, and metal particles. The substrate particles are preferably resin particles, inorganic particles excluding metal particles, or organic-inorganic hybrid particles.
 例えば、導電性粒子を有する異方性導電材料を用いてCOG等に使用する場合、電極間を接続する際には、一般的に、導電性粒子を電極間に配置した後、導電性粒子を圧縮させる。そのため、導電性粒子が前記圧縮により変形しやすい材料で形成されていることによって、導電性粒子と電極との接触面積が大きくなるので、電極間の導通信頼性が高くなる。このような観点から、上記基材粒子は、前記圧縮により変形しやすい材料である樹脂粒子であることが好ましい。 For example, when an anisotropic conductive material having conductive particles is used for COG or the like, generally, after connecting the conductive particles between the electrodes, Compress. For this reason, since the conductive particles are formed of a material that is easily deformed by the compression, the contact area between the conductive particles and the electrodes is increased, so that the conduction reliability between the electrodes is increased. From such a viewpoint, the base particles are preferably resin particles that are easily deformable by the compression.
 基材粒子が樹脂粒子である場合、樹脂粒子を形成するための材料として、種々の有機物が好適に用いられる。そのような材料としては、例えば、ポリエチレン、ポリプロピレン、ポリスチレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリイソブチレン、ポリブタジエン等のポリオレフィン樹脂;ポリメチルメタクリレート、ポリメチルアクリレート等のアクリル樹脂;ポリアルキレンテレフタレート、ポリスルホン、ポリカーボネート、ポリアミド、フェノールホルムアルデヒド樹脂、メラミンホルムアルデヒド樹脂、ベンゾグアナミンホルムアルデヒド樹脂、尿素ホルムアルデヒド樹脂、フェノール樹脂、メラミン樹脂、ベンゾグアナミン樹脂、エポキシ樹脂、飽和ポリエステル樹脂、不飽和ポリエステル樹脂、ポリフェニレンオキサイド、ポリアセタール、ポリイミド、ポリアミドイミド、ポリエーテルエーテルケトン、及び、ポリエーテルスルホン、尿素樹脂等が挙げられる。 When the substrate particles are resin particles, various organic materials are suitably used as a material for forming the resin particles. Examples of such materials include polyethylene resins such as polyethylene, polypropylene, polystyrene, polyvinyl chloride, polyvinylidene chloride, polyisobutylene, and polybutadiene; acrylic resins such as polymethyl methacrylate and polymethyl acrylate; polyalkylene terephthalate, polysulfone, Polycarbonate, polyamide, phenol formaldehyde resin, melamine formaldehyde resin, benzoguanamine formaldehyde resin, urea formaldehyde resin, phenol resin, melamine resin, benzoguanamine resin, epoxy resin, saturated polyester resin, unsaturated polyester resin, polyphenylene oxide, polyacetal, polyimide, polyamideimide , Polyetheretherketone and polyethers Hong, urea resins.
 また、樹脂粒子は、エチレン性不飽和基を有する種々の重合性単量体を1種もしくは2種以上重合させることにより得ることもできる。この場合、異方性導電材料に適した任意の圧縮時の物性を有する樹脂粒子を設計すること及び合成することが可能である。また、この場合、基材粒子の硬度を好適な範囲に容易に制御できる。このような観点から、上記樹脂粒子の材料は、エチレン性不飽和基を複数有する重合性単量体を1種又は2種以上重合させた重合体であることが好ましい。 The resin particles can also be obtained by polymerizing one or more kinds of various polymerizable monomers having an ethylenically unsaturated group. In this case, it is possible to design and synthesize resin particles having physical properties at the time of compression suitable for anisotropic conductive materials. In this case, the hardness of the base particle can be easily controlled within a suitable range. From such a viewpoint, the material of the resin particles is preferably a polymer obtained by polymerizing one or more polymerizable monomers having a plurality of ethylenically unsaturated groups.
 上記樹脂粒子を、エチレン性不飽和基を有する単量体を重合させて得る場合には、該エチレン性不飽和基を有する単量体としては、非架橋性の単量体及び/又は架橋性の単量体が挙げられる。 When the resin particles are obtained by polymerizing a monomer having an ethylenically unsaturated group, the monomer having an ethylenically unsaturated group may be a non-crosslinkable monomer and / or a crosslinkable monomer. These monomers are mentioned.
 上記非架橋性の単量体としては、例えば、スチレン、α-メチルスチレン等のスチレン系単量体;(メタ)アクリル酸、マレイン酸、無水マレイン酸等のカルボキシル基含有単量体;メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、セチル(メタ)アクリレート、ステアリル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート等のアルキル(メタ)アクリレート類;2-ヒドロキシエチル(メタ)アクリレート、グリセロール(メタ)アクリレート、ポリオキシエチレン(メタ)アクリレート、グリシジル(メタ)アクリレート等の酸素原子含有(メタ)アクリレート類;(メタ)アクリロニトリル等のニトリル含有単量体;メチルビニルエーテル、エチルビニルエーテル、プロピルビニルエーテル等のビニルエーテル類;酢酸ビニル、酪酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル等の酸ビニルエステル類;エチレン、プロピレン、イソプレン、ブタジエン等の不飽和炭化水素;トリフルオロメチル(メタ)アクリレート、ペンタフルオロエチル(メタ)アクリレート、塩化ビニル、フッ化ビニル、クロルスチレン等のハロゲン含有単量体等が挙げられる。 Examples of the non-crosslinkable monomer include styrene monomers such as styrene and α-methylstyrene; carboxyl group-containing monomers such as (meth) acrylic acid, maleic acid, and maleic anhydride; (Meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, cetyl (meth) acrylate, stearyl (meth) acrylate, cyclohexyl ( Alkyl (meth) acrylates such as meth) acrylate and isobornyl (meth) acrylate; acids such as 2-hydroxyethyl (meth) acrylate, glycerol (meth) acrylate, polyoxyethylene (meth) acrylate and glycidyl (meth) acrylate Atom-containing (meth) acrylates; Nitrile-containing monomers such as (meth) acrylonitrile; Vinyl ethers such as methyl vinyl ether, ethyl vinyl ether and propyl vinyl ether; Vinyl acetates such as vinyl acetate, vinyl butyrate, vinyl laurate and vinyl stearate Esters; Unsaturated hydrocarbons such as ethylene, propylene, isoprene and butadiene; Halogen-containing monomers such as trifluoromethyl (meth) acrylate, pentafluoroethyl (meth) acrylate, vinyl chloride, vinyl fluoride and chlorostyrene Is mentioned.
 上記架橋性の単量体としては、例えば、テトラメチロールメタンテトラ(メタ)アクリレート、テトラメチロールメタントリ(メタ)アクリレート、テトラメチロールメタンジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、グリセロールトリ(メタ)アクリレート、グリセロールジ(メタ)アクリレート、(ポリ)エチレングリコールジ(メタ)アクリレート、(ポリ)プロピレングリコールジ(メタ)アクリレート、(ポリ)テトラメチレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート等の多官能(メタ)アクリレート類;トリアリル(イソ)シアヌレート、トリアリルトリメリテート、ジビニルベンゼン、ジアリルフタレート、ジアリルアクリルアミド、ジアリルエーテル、γ-(メタ)アクリロキシプロピルトリメトキシシラン、トリメトキシシリルスチレン、ビニルトリメトキシシラン等のシラン含有単量体等が挙げられる。 Examples of the crosslinkable monomer include tetramethylolmethane tetra (meth) acrylate, tetramethylolmethane tri (meth) acrylate, tetramethylolmethane di (meth) acrylate, trimethylolpropane tri (meth) acrylate, and dipenta Erythritol hexa (meth) acrylate, dipentaerythritol penta (meth) acrylate, glycerol tri (meth) acrylate, glycerol di (meth) acrylate, (poly) ethylene glycol di (meth) acrylate, (poly) propylene glycol di (meth) Polyfunctional (meth) acrylates such as acrylate, (poly) tetramethylene glycol di (meth) acrylate, 1,4-butanediol di (meth) acrylate; triallyl (iso) cyanure And silane-containing monomers such as divinylbenzene, diallyl phthalate, diallylacrylamide, diallyl ether, γ- (meth) acryloxypropyltrimethoxysilane, trimethoxysilylstyrene, vinyltrimethoxysilane, etc. Can be mentioned.
 架橋性及び非架橋性単量体は、上記例示列挙した単量体に限定されず、その他の重合性単量体、例えば、公知の重合性単量体であってもよい。 The crosslinkable and non-crosslinkable monomers are not limited to the monomers listed above, but may be other polymerizable monomers, for example, known polymerizable monomers.
 上記エチレン性不飽和基を有する重合性単量体を、公知の方法により重合させることで、上記樹脂粒子が得られる。この方法としては、例えば、ラジカル重合開始剤の存在下で懸濁重合する方法、及び非架橋の種粒子を用いてラジカル重合開始剤とともに単量体を膨潤させて重合する方法(いわゆる、シード重合法)等が挙げられる。 The resin particles can be obtained by polymerizing the polymerizable monomer having an ethylenically unsaturated group by a known method. Examples of this method include suspension polymerization in the presence of a radical polymerization initiator, and polymerization by swelling monomers together with a radical polymerization initiator using non-crosslinked seed particles (so-called seed weight). Legal).
 上記基材粒子が金属粒子を除く無機粒子又は有機無機ハイブリッド粒子である場合には、基材粒子の材料である無機物としては、シリカ及びカーボンブラック等が挙げられる。この無機物は金属ではないことが好ましい。上記シリカにより形成された粒子としては特に限定されないが、例えば、加水分解性のアルコキシシリル基を2つ以上有するケイ素化合物を加水分解して架橋重合体粒子を形成した後に、必要に応じて焼成を行うことにより得られる粒子が挙げられる。上記有機無機ハイブリッド粒子としては、例えば、架橋したアルコキシシリルポリマーとアクリル樹脂とにより形成された有機無機ハイブリッド粒子等が挙げられる。 When the substrate particles are inorganic particles or organic-inorganic hybrid particles excluding metal particles, examples of the inorganic material that is a material of the substrate particles include silica and carbon black. This inorganic substance is preferably not a metal. The particles formed from the silica are not particularly limited. For example, after forming a crosslinked polymer particle by hydrolyzing a silicon compound having two or more hydrolyzable alkoxysilyl groups, firing may be performed as necessary. The particle | grains obtained by performing are mentioned. Examples of the organic / inorganic hybrid particles include organic / inorganic hybrid particles formed of a crosslinked alkoxysilyl polymer and an acrylic resin.
 上記基材粒子が金属粒子である場合には、該金属粒子の材料である金属としては、銀、銅、ニッケル、ケイ素、金及びチタン等が挙げられる。ただし、基材粒子は金属粒子ではないことが好ましい。 When the base particles are metal particles, examples of the metal that is a material of the metal particles include silver, copper, nickel, silicon, gold, and titanium. However, the substrate particles are preferably not metal particles.
 上記基材粒子の平均粒子径は、特に限定されない。例えば、上記基材粒子の平均粒子径は、好ましくは0.1μm以上、より好ましくは0.5μm以上、より一層好ましくは1μm以上、更に好ましくは1.5μm以上、特に好ましくは2μm以上、好ましくは1000μm以下、より好ましくは500μm以下、より一層好ましくは300μm以下、更に好ましくは100μm以下、更に好ましくは50μm以下、更に一層好ましくは30μm以下、特に好ましくは5μm以下、最も好ましくは3μm以下とすることができる。基材粒子の平均粒子径が上記下限以上であると、導電性粒子と電極との接触面積が大きくなるため、電極間の導通信頼性がより一層高くなり、導電性粒子を介して接続された電極間の接続抵抗がより一層低くなる。さらに、基材粒子の表面に金属層を無電解めっきにより形成する際に凝集し難くなり、凝集した導電性粒子が形成されにくくなる。基材粒子の平均粒子径が上記上限以下であると、導電性粒子が充分に圧縮されやすく、電極間の接続抵抗をより一層低くすることができ、更に電極間の間隔を狭くすることもできる。 The average particle diameter of the base material particles is not particularly limited. For example, the average particle diameter of the substrate particles is preferably 0.1 μm or more, more preferably 0.5 μm or more, even more preferably 1 μm or more, still more preferably 1.5 μm or more, particularly preferably 2 μm or more, preferably 1000 μm or less, more preferably 500 μm or less, even more preferably 300 μm or less, still more preferably 100 μm or less, still more preferably 50 μm or less, still more preferably 30 μm or less, particularly preferably 5 μm or less, and most preferably 3 μm or less. it can. When the average particle diameter of the base particles is equal to or more than the above lower limit, the contact area between the conductive particles and the electrodes is increased, so that the conduction reliability between the electrodes is further increased and the conductive particles are connected via the conductive particles. The connection resistance between the electrodes is further reduced. Furthermore, when forming a metal layer on the surface of a base particle by electroless plating, it becomes difficult to aggregate and it becomes difficult to form the aggregated electroconductive particle. When the average particle diameter of the substrate particles is not more than the above upper limit, the conductive particles are easily compressed, the connection resistance between the electrodes can be further reduced, and the interval between the electrodes can be further narrowed. .
 上記基材粒子の平均粒子径は、0.1μm以上、5μm以下であることが特に好ましい。上記基材粒子の平均粒子径が0.1以上、5μm以下の範囲内であると、電極間の間隔が小さくなり、かつ金属層の厚みを厚くしても、小さい導電性粒子が得られる。電極間の間隔をより一層小さくすることができ、あるいは、金属層の厚みを厚くしても、より一層小さい導電性粒子を得ることができる観点からは、上記基材粒子の平均粒子径は、好ましくは0.5μm以上、より好ましくは2μm以上、好ましくは3μm以下である。導通信頼性をより一層高める観点からは、上記基材粒子の平均粒子径は2.5μm以上である。 The average particle diameter of the substrate particles is particularly preferably 0.1 μm or more and 5 μm or less. When the average particle diameter of the substrate particles is in the range of 0.1 or more and 5 μm or less, even when the distance between the electrodes is small and the metal layer is thick, small conductive particles can be obtained. From the viewpoint of being able to obtain even smaller conductive particles even when the distance between the electrodes can be further reduced, or even if the thickness of the metal layer is increased, the average particle size of the base particles is The thickness is preferably 0.5 μm or more, more preferably 2 μm or more, and preferably 3 μm or less. From the viewpoint of further improving the conduction reliability, the average particle diameter of the base material particles is 2.5 μm or more.
 上記基材粒子の上記平均粒子径は数平均粒子径を示す。該平均粒子径は、例えばコールターカウンター(ベックマンコールター社製)を用いて測定可能である。 The average particle diameter of the base material particles indicates a number average particle diameter. The average particle diameter can be measured using, for example, a Coulter counter (manufactured by Beckman Coulter).
 なお、上述した基材粒子の形態は、本実施形態の導電性粒子に使用するための一例であり、その他、導電性粒子として用いられている公知の基材粒子を本実施形態の導電性粒子に適用することもできる。 In addition, the form of the base material particle | grains mentioned above is an example for using for the electroconductive particle of this embodiment, and the other well-known base material particle | grains used as electroconductive particle are the electroconductive particle of this embodiment. It can also be applied to.
 金属層は、上記基材粒子の表面を覆うように形成されている層である。 The metal layer is a layer formed so as to cover the surface of the substrate particles.
 上記金属層の厚みは、好ましくは5nm以上、より好ましくは10nm以上、更に好ましくは20nm以上、特に好ましくは50nm以上、好ましくは1000nm以下、より好ましくは800nm以下、更に好ましくは500nm以下、特に好ましくは400nm以下、最も好ましくは300nm以下である。上記金属層の厚みが上記下限以上であると、導電性粒子の導電性がより一層良好になる。上記金属層の厚みが上記上限以下であると、基材粒子と金属層との熱膨張率の差が小さくなり、基材粒子から金属層が剥離し難くなる。なお、金属層が多層に形成されていてもよく、この場合の金属層の厚みとは、多層に形成されている金属層全体の厚みをいう。 The thickness of the metal layer is preferably 5 nm or more, more preferably 10 nm or more, still more preferably 20 nm or more, particularly preferably 50 nm or more, preferably 1000 nm or less, more preferably 800 nm or less, still more preferably 500 nm or less, particularly preferably 400 nm or less, most preferably 300 nm or less. When the thickness of the metal layer is not less than the above lower limit, the conductivity of the conductive particles is further improved. When the thickness of the metal layer is not more than the above upper limit, the difference in coefficient of thermal expansion between the base particle and the metal layer becomes small, and the metal layer becomes difficult to peel from the base particle. The metal layer may be formed in multiple layers, and the thickness of the metal layer in this case refers to the thickness of the entire metal layer formed in the multilayer.
 上記基材粒子の表面上に上記金属層を形成する方法としては、無電解めっきにより上記金属層を形成する方法、並びに電気めっきにより上記金属層を形成する方法等が挙げられる。その他、上記基材粒子の表面上に上記金属層を形成する方法として、公知の方法を採用してもよい。 Examples of the method for forming the metal layer on the surface of the substrate particles include a method for forming the metal layer by electroless plating and a method for forming the metal layer by electroplating. In addition, as a method for forming the metal layer on the surface of the substrate particles, a known method may be adopted.
 上記金属層は、金属を含む材料で形成され、該金属の種類は特に限定されない。該金属としては、例えば、金、銀、銅、白金、パラジウム、亜鉛、鉛、アルミニウム、コバルト、インジウム、ニッケル、クロム、チタン、アンチモン、ビスマス、ゲルマニウム及びカドミウム、並びにこれらの合金等が挙げられる。また、上記金属として、錫ドープ酸化インジウム(ITO)を用いてもよい。金属層は、1種の金属のみで形成されていてもよいし、あるいは、2種以上の金属で形成されていてもよい。 The metal layer is formed of a material containing a metal, and the type of the metal is not particularly limited. Examples of the metal include gold, silver, copper, platinum, palladium, zinc, lead, aluminum, cobalt, indium, nickel, chromium, titanium, antimony, bismuth, germanium and cadmium, and alloys thereof. Further, tin-doped indium oxide (ITO) may be used as the metal. The metal layer may be formed of only one kind of metal or may be formed of two or more kinds of metals.
 なお、上述した金属層の形態は、本実施形態の導電性粒子に使用するための一例であり、その他、導電性粒子として用いられている公知の金属層を本実施形態の導電性粒子に適用することもできる。 In addition, the form of the metal layer mentioned above is an example for using for the electroconductive particle of this embodiment, In addition, the well-known metal layer used as electroconductive particle is applied to the electroconductive particle of this embodiment. You can also
 本実施形態の導電性粒子では、例えば、基材粒子がその表面に複数の突起を有していてもよい。例えば、COG等において、導電性粒子により接続される電極の表面には、酸化被膜が形成されていることが多い。そのため、突起を有する導電性粒子を用いると、電極間に導電性粒子を配置して圧着させることにより、突起により上記酸化被膜が効果的に排除されやすくなる。その結果として、電極と導電性粒子とがより一層確実に接触し、電極間の接続抵抗がより一層低くなる。さらに、突起によって、導電性粒子と電極との間の絶縁層が効果的に排除されるので、電極間の導通信頼性が高くなる。なお、ここでいう絶縁層とは、後述するように、導電性粒子に形成されている樹脂及び無機材料で形成されている層のことを示す。また、特許文献1のような従来のシリカで被覆された導電粒子が突起を有する場合は、シリカの脱落の課題がより一層深刻となり得る。基材粒子が突起を有している場合は、上記課題を解決しうるものであり、この観点からも、突起を有することが好ましい。 In the conductive particles of the present embodiment, for example, the substrate particles may have a plurality of protrusions on the surface. For example, in COG or the like, an oxide film is often formed on the surface of an electrode connected by conductive particles. Therefore, when conductive particles having protrusions are used, the oxide film can be effectively removed by the protrusions by placing the conductive particles between the electrodes and pressing them. As a result, the electrode and the conductive particles are more reliably in contact with each other, and the connection resistance between the electrodes is further reduced. Furthermore, since the insulating layer between the conductive particles and the electrode is effectively eliminated by the protrusion, the conduction reliability between the electrodes is increased. In addition, an insulating layer here shows the layer formed with the resin and inorganic material which are formed in electroconductive particle so that it may mention later. In addition, when the conventional conductive particles coated with silica as in Patent Document 1 have protrusions, the problem of silica falling off can become even more serious. When the substrate particles have protrusions, the above problem can be solved. From this viewpoint, it is preferable to have protrusions.
 上記突起を形成する方法としては、基材粒子の表面に芯物質を付着させた後、無電解めっきにより金属層を形成する方法、並びに基材粒子の表面に無電解めっきにより金属層を形成した後、芯物質を付着させ、更に無電解めっきにより金属層を形成する方法等が挙げられる。さらに、上記突起を形成する他の方法としては、基材粒子の表面上に、第1の金属層を形成した後、該第1の金属層上に芯物質を配置し、次に第2の金属層を形成する方法、並びに基材粒子の表面上に金属層を形成する途中段階で、芯物質を添加する方法等が挙げられる。 As a method for forming the protrusions, a core material is attached to the surface of the base particle, and then a metal layer is formed by electroless plating, and a metal layer is formed on the surface of the base particle by electroless plating. Thereafter, a method of attaching a core substance and further forming a metal layer by electroless plating may be used. Furthermore, as another method for forming the protrusion, after forming the first metal layer on the surface of the base particle, a core substance is disposed on the first metal layer, and then the second metal layer is formed. Examples thereof include a method of forming a metal layer, and a method of adding a core substance in the middle of forming the metal layer on the surface of the base particle.
 上記基材粒子の表面に芯物質を付着させる方法としては、例えば、基材粒子の分散液中に、芯物質を添加し、基材粒子の表面に芯物質を、例えば、ファンデルワールス力により集積させ、付着させる方法、並びに基材粒子を入れた容器に、芯物質を添加し、容器の回転等による機械的な作用により基材粒子の表面に芯物質を付着させる方法等が挙げられる。なかでも、付着させる芯物質の量を制御しやすいという観点から、分散液中の基材粒子の表面に芯物質を集積させ、付着させる方法が好ましい。 As a method of attaching the core substance to the surface of the base particle, for example, a core substance is added to the dispersion of the base particle, and the core substance is applied to the surface of the base particle by, for example, van der Waals force. Examples thereof include a method of accumulating and adhering, and a method of adding a core substance to a container containing base particles and attaching the core substance to the surface of the base particles by a mechanical action such as rotation of the container. Among these, from the viewpoint that it is easy to control the amount of the core substance to be attached, a method in which the core substance is accumulated on the surface of the substrate particles in the dispersion and attached is preferable.
 上記芯物質の材料としては、導電性物質及び非導電性物質が挙げられる。上記導電性物質としては、金属、金属の酸化物、黒鉛等の導電性非金属及び導電性ポリマー等が挙げられる。上記導電性ポリマーとしては、ポリアセチレン等が挙げられる。上記非導電性物質としては、シリカ、アルミナ及びジルコニア等が挙げられる。なかでも、導電性を高めることができ、更に接続抵抗を効果的に低くすることができる点で、金属が好ましい。上記芯物質は金属粒子であることが好ましい。 The material of the core substance includes a conductive substance and a non-conductive substance. Examples of the conductive substance include metals, metal oxides, conductive non-metals such as graphite, and conductive polymers. Examples of the conductive polymer include polyacetylene. Examples of the nonconductive material include silica, alumina, and zirconia. Especially, a metal is preferable at the point which can raise electroconductivity and can make connection resistance low effectively. The core substance is preferably metal particles.
 上記金属としては、例えば、金、銀、銅、白金、亜鉛、鉄、鉛、錫、アルミニウム、コバルト、インジウム、ニッケル、クロム、チタン、アンチモン、ビスマス、ゲルマニウム及びカドミウム等の金属、並びに錫-鉛合金、錫-銅合金、錫-銀合金、錫-鉛-銀合金及び炭化タングステン等の2種類以上の金属で構成される合金等が挙げられる。なかでも、ニッケル、銅、銀又は金が好ましい。上記芯物質の材料である金属は、上記金属層の材料である金属と同じであってもよく、異なっていてもよい。上記芯物質の材料は、ニッケルを含むことが好ましい。また、上記金属の酸化物としては、アルミナ、シリカ及びジルコニア等が挙げられる。 Examples of the metal include gold, silver, copper, platinum, zinc, iron, lead, tin, aluminum, cobalt, indium, nickel, chromium, titanium, antimony, bismuth, germanium and cadmium, and tin-lead. Examples thereof include alloys composed of two or more metals such as alloys, tin-copper alloys, tin-silver alloys, tin-lead-silver alloys, and tungsten carbide. Of these, nickel, copper, silver or gold is preferable. The metal that is the material of the core substance may be the same as or different from the metal that is the material of the metal layer. The material of the core substance preferably includes nickel. Examples of the metal oxide include alumina, silica and zirconia.
 上記芯物質の形状は特に限定されない。芯物質の形状は塊状であることが好ましい。芯物質としては、例えば、粒子状の塊、複数の微小粒子が凝集した凝集塊、及び不定形の塊等が挙げられる。 The shape of the core substance is not particularly limited. The shape of the core substance is preferably a lump. Examples of the core substance include a particulate lump, an agglomerate in which a plurality of fine particles are aggregated, and an irregular lump.
 上記芯物質の平均径(平均粒子径)は、好ましくは0.001μm以上、より好ましくは0.05μm以上、好ましくは0.9μm以下、より好ましくは0.2μm以下である。上記芯物質の平均径が上記下限以上及び上記上限以下であると、電極間の接続抵抗が効果的に低くなる。 The average diameter (average particle diameter) of the core substance is preferably 0.001 μm or more, more preferably 0.05 μm or more, preferably 0.9 μm or less, more preferably 0.2 μm or less. When the average diameter of the core substance is not less than the above lower limit and not more than the above upper limit, the connection resistance between the electrodes is effectively reduced.
 上記芯物質の平均径(平均粒子径)は、数平均径(数平均粒子径)を示す。芯物質の平均径は、任意の芯物質50個を電子顕微鏡又は光学顕微鏡にて観察し、平均値を算出することにより求められる。導電性粒子において芯物質の平均径を測定する場合には、例えば、以下のようにして、芯物質の平均径を測定することができる。導電性粒子を含有量が30重量%となるように、Kulzer社製「テクノビット4000」に添加し、分散させて、導電性粒子検査用埋め込み樹脂を作製する。その検査用埋め込み樹脂中の分散した導電性樹脂の中心付近を通るようにイオンミリング装置(日立ハイテクノロジーズ社製「IM4000」)を用いて、導電性粒子の断面を切り出す。そして、電界放射型走査型電子顕微鏡(FE-SEM)を用いて、画像倍率5万倍に設定し、20個の導電性粒子を無作為に選択し、それぞれの導電性粒子の突起50個を観察する。得られた導電性粒子における芯物質の径を計測し、それを算術平均して芯物質の平均径とする。 The average diameter (average particle diameter) of the core substance indicates a number average diameter (number average particle diameter). The average diameter of the core material is obtained by observing 50 arbitrary core materials with an electron microscope or an optical microscope and calculating an average value. When measuring the average diameter of the core substance in the conductive particles, for example, the average diameter of the core substance can be measured as follows. The conductive particles are added to and dispersed in “Technobit 4000” manufactured by Kulzer so that the content is 30% by weight, and an embedded resin for inspecting conductive particles is produced. The cross section of the conductive particles is cut out using an ion milling device (“IM4000” manufactured by Hitachi High-Technologies Corporation) so as to pass through the vicinity of the center of the dispersed conductive resin in the embedded resin for inspection. Then, using a field emission scanning electron microscope (FE-SEM), the image magnification was set to 50,000 times, 20 conductive particles were randomly selected, and 50 protrusions of each conductive particle were selected. Observe. The diameter of the core substance in the obtained conductive particles is measured, and arithmetically averaged to obtain the average diameter of the core substance.
 上記導電性粒子における上記突起の平均高さは、好ましくは0.001μm以上、より好ましくは0.05μm以上、好ましくは0.9μm以下、より好ましくは0.2μm以下である。上記突起の平均高さが上記下限以上及び上記上限以下であると、電極間の接続抵抗が効果的に低くなる。 The average height of the protrusions in the conductive particles is preferably 0.001 μm or more, more preferably 0.05 μm or more, preferably 0.9 μm or less, more preferably 0.2 μm or less. When the average height of the protrusions is not less than the above lower limit and not more than the above upper limit, the connection resistance between the electrodes is effectively reduced.
 導電性粒子において上記突起の平均高さを測定する場合には、例えば、以下のようにして、上記突起の平均高さを測定することができる。導電性粒子を含有量が30重量%となるように、Kulzer社製「テクノビット4000」に添加し、分散させて、導電性粒子検査用埋め込み樹脂を作製する。その検査用埋め込み樹脂中の分散した導電性樹脂の中心付近を通るようにイオンミリング装置(日立ハイテクノロジーズ社製「IM4000」)を用いて、導電性粒子の断面を切り出す。そして、電界放射型走査型電子顕微鏡(FE-SEM)を用いて、画像倍率5万倍に設定し、20個の導電性粒子を無作為に選択し、それぞれの導電性粒子の突起50個を観察する。突起の底面から突起の頂部までの高さを突起の高さとし、算術平均して上記突起の平均高さとする。 When measuring the average height of the protrusions in the conductive particles, for example, the average height of the protrusions can be measured as follows. The conductive particles are added to and dispersed in “Technobit 4000” manufactured by Kulzer so that the content is 30% by weight, and an embedded resin for inspecting conductive particles is produced. The cross section of the conductive particles is cut out using an ion milling device (“IM4000” manufactured by Hitachi High-Technologies Corporation) so as to pass through the vicinity of the center of the dispersed conductive resin in the embedded resin for inspection. Then, using a field emission scanning electron microscope (FE-SEM), the image magnification was set to 50,000 times, 20 conductive particles were randomly selected, and 50 protrusions of each conductive particle were selected. Observe. The height from the bottom of the protrusion to the top of the protrusion is taken as the height of the protrusion, and the arithmetic average is taken as the average height of the protrusion.
 上記のように、芯物質が金属層中に埋め込まれていれば、金属層の外表面に突起を容易に形成することが可能である。 As described above, if the core substance is embedded in the metal layer, the protrusion can be easily formed on the outer surface of the metal layer.
 上記の金属層は、その表面がさらに樹脂及び無機材料で被覆されている。すなわち、金属層の表面は、樹脂及び無機材料で被覆されて形成された層を備える。なお、以下では、樹脂及び/又は無機材料で被覆されて形成された層を「絶縁層」と表記することがある。 The surface of the metal layer is further coated with a resin and an inorganic material. That is, the surface of the metal layer includes a layer formed by coating with a resin and an inorganic material. Hereinafter, a layer formed by coating with a resin and / or an inorganic material may be referred to as an “insulating layer”.
 上記樹脂は、絶縁性の樹脂材料が例示され、具体的には、ポリオレフィン類、(メタ)アクリレート重合体、(メタ)アクリレート共重合体、ブロックポリマー、熱可塑性樹脂、熱可塑性樹脂の架橋物、熱硬化性樹脂及び水溶性樹脂等が挙げられる。その他、基材粒子を形成する樹脂と同様の樹脂であってもよい。 Examples of the resin include insulating resin materials. Specifically, polyolefins, (meth) acrylate polymers, (meth) acrylate copolymers, block polymers, thermoplastic resins, crosslinked thermoplastic resins, A thermosetting resin, a water-soluble resin, etc. are mentioned. In addition, the same resin as the resin forming the base particle may be used.
 上記ポリオレフィン類としては、ポリエチレン、エチレン-酢酸ビニル共重合体及びエチレン-アクリル酸エステル共重合体等が挙げられる。 Examples of the polyolefins include polyethylene, ethylene-vinyl acetate copolymer, and ethylene-acrylic ester copolymer.
 上記(メタ)アクリレート重合体としては、ポリメチル(メタ)アクリレート、ポリエチル(メタ)アクリレート及びポリブチル(メタ)アクリレート等が挙げられる。 Examples of the (meth) acrylate polymer include polymethyl (meth) acrylate, polyethyl (meth) acrylate, and polybutyl (meth) acrylate.
 上記ブロックポリマーとしては、ポリスチレン、スチレン-アクリル酸エステル共重合体、SB型スチレン-ブタジエンブロック共重合体、及びSBS型スチレン-ブタジエンブロック共重合体、並びにこれらの水素添加物等が挙げられる。 Examples of the block polymer include polystyrene, styrene-acrylate copolymer, SB type styrene-butadiene block copolymer, SBS type styrene-butadiene block copolymer, and hydrogenated products thereof.
 上記熱可塑性樹脂としては、上記例示列挙した樹脂の他、それ以外のビニル重合体及びビニル共重合体等が挙げられる。 Examples of the thermoplastic resin include the resins exemplified above, and other vinyl polymers and vinyl copolymers.
 上記熱硬化性樹脂としては、エポキシ樹脂、フェノール樹脂及びメラミン樹脂等が挙げられる。 Examples of the thermosetting resin include epoxy resins, phenol resins, and melamine resins.
 上記水溶性樹脂としては、ポリビニルアルコール、ポリアクリル酸、ポリアクリルアミド、ポリビニルピロリドン、ポリエチレンオキシド及びメチルセルロース等が挙げられる。なかでも、水溶性樹脂としては、ポリビニルアルコールがより好ましい。 Examples of the water-soluble resin include polyvinyl alcohol, polyacrylic acid, polyacrylamide, polyvinyl pyrrolidone, polyethylene oxide, and methylcellulose. Of these, polyvinyl alcohol is more preferable as the water-soluble resin.
 上記樹脂の形状は特に限定されない。例えば、上記樹脂の形状を粒子状とすることができる。すなわち、上記樹脂は、樹脂粒子を含むことが好ましい。以下、この樹脂粒子を特に、絶縁性樹脂粒子ということがある。上記樹脂が絶縁性樹脂粒子を含む場合は、該絶縁性粒子の平均粒子径は、導電性粒子の平均粒子径よりも小さくすることができる。具体的には、絶縁性樹脂粒子の平均粒子径は、好ましくは0.01μm以上、より好ましくは0.1μm以上であり、好ましくは1.0μm以下、より好ましくは0.5μm以下である。絶縁性樹脂粒子の平均粒子径を上記範囲に調整することにより、バインダー分散時に絶縁粒子が外れにくく、粒子接触を防げる。また、電極間接続の際には効果的に排除されるので低抵抗が確保できる。なお、ここでいう絶縁性樹脂粒子の平均粒子径は、上述した基材粒子の平均粒子径と同じ定義である。 The shape of the resin is not particularly limited. For example, the shape of the resin can be made particulate. That is, the resin preferably contains resin particles. Hereinafter, the resin particles are sometimes referred to as insulating resin particles. When the resin contains insulating resin particles, the average particle diameter of the insulating particles can be made smaller than the average particle diameter of the conductive particles. Specifically, the average particle diameter of the insulating resin particles is preferably 0.01 μm or more, more preferably 0.1 μm or more, preferably 1.0 μm or less, more preferably 0.5 μm or less. By adjusting the average particle diameter of the insulating resin particles to the above range, the insulating particles are unlikely to come off when the binder is dispersed, and particle contact can be prevented. Moreover, since it is effectively eliminated when connecting the electrodes, a low resistance can be ensured. In addition, the average particle diameter of insulating resin particle here is the same definition as the average particle diameter of the base material particle | grains mentioned above.
 上記絶縁性粒子は、例えば、不飽和二重結合を有する単量体の一種又は二種以上を(共)重合することで調製することができる。上記不飽和二重結合を有する単量体としては、(メタ)アクリル酸;メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、グリシジル(メタ)アクリレート、テトラメチロールメタンテトラ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、グリセロールトリ(メタ)アクリレート、(ポリ)エチレングリコールジ(メタ)アクリレート、(ポリ)プロピレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート等の(メタ)アクリル酸エステル類;ビニルエーテル類;塩化ビニル;スチレン、ジビニルベゼン等のスチレン系化合物、アクリロニトリル等が挙げられる。その他、上記単量体は、公知の重合性単量体であってもよい。中でも(メタ)アクリル酸エステル類が好適に用いられる。 The insulating particles can be prepared, for example, by (co) polymerizing one or more monomers having an unsaturated double bond. Examples of the monomer having an unsaturated double bond include (meth) acrylic acid; methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, and 2-ethylhexyl (meth). Acrylate, glycidyl (meth) acrylate, tetramethylolmethane tetra (meth) acrylate, trimethylolpropane tri (meth) acrylate, glycerol tri (meth) acrylate, (poly) ethylene glycol di (meth) acrylate, (poly) propylene glycol di (Meth) acrylates such as (meth) acrylate and 1,4-butanediol di (meth) acrylate; vinyl ethers; vinyl chloride; styrene compounds such as styrene and divinylbesen, acrylonitrile, etc. That. In addition, the monomer may be a known polymerizable monomer. Of these, (meth) acrylic acid esters are preferably used.
 また、上記樹脂は粒子状ではなく、例えば、膜状であってもよい。上記樹脂が膜状である場合、その厚みは、好ましくは、10nm以上、より好ましくは100nm以上であり、好ましくは1000nm以下、より好ましくは500nm以下である。絶縁性樹脂の厚みを上記範囲に調整することにより、バインダー分散時に絶縁粒子が外れにくく、粒子接触を防げる。また、電極間接続の際には効果的に排除されるので低抵抗が確保できる。 Further, the resin is not in the form of particles but may be in the form of a film, for example. When the resin is in the form of a film, the thickness is preferably 10 nm or more, more preferably 100 nm or more, preferably 1000 nm or less, more preferably 500 nm or less. By adjusting the thickness of the insulating resin to the above range, it is difficult for the insulating particles to come off when the binder is dispersed, and particle contact can be prevented. Moreover, since it is effectively eliminated when connecting the electrodes, a low resistance can be ensured.
 上記樹脂の厚みは、以下のようにして測定することができる。例えば、導電性粒子を含有量が30重量%となるように、Kulzer社製「テクノビット4000」に添加し、分散させて、導電性粒子検査用埋め込み樹脂を作製する。検査用埋め込み樹脂中に分散した導電性粒子の中心付近を通るようにイオンミリング装置(日立ハイテクノロジーズ社製「IM4000」)を用いて、導電性粒子の断面を切り出す。そして、電界放射型走査型電子顕微鏡(FE-SEM)を用いて、画像倍率5万倍に設定し、20個の導電性粒子を無作為に選択し、それぞれの導電性粒子の絶縁性樹脂膜を観察する。得られた導電性粒子における絶縁性樹脂膜の厚みを計測し、それを算術平均して絶縁性樹脂膜の厚みが求められる。 The thickness of the resin can be measured as follows. For example, the conductive particles are added to and dispersed in “Technobit 4000” manufactured by Kulzer so that the content of the conductive particles is 30% by weight, and an embedded resin for conductive particle inspection is produced. A cross section of the conductive particles is cut out using an ion milling device (“IM4000” manufactured by Hitachi High-Technologies Corporation) so as to pass through the vicinity of the center of the conductive particles dispersed in the embedding resin for inspection. Then, using a field emission scanning electron microscope (FE-SEM), the image magnification is set to 50,000 times, 20 conductive particles are randomly selected, and an insulating resin film of each conductive particle is selected. Observe. The thickness of the insulating resin film in the obtained conductive particles is measured, and arithmetically averaged to obtain the thickness of the insulating resin film.
 上記樹脂は絶縁性樹脂粒子の他、高分子電解質等であってもよい。高分子電解質としては、水溶液中で電離し、荷電を有する官能基を主鎖又は側鎖に持つ高分子(ポリアニオン又はポリカチオン)を用いることができる。ポリアニオンとしては、一般的に、スルホン酸、硫酸、カルボン酸等負の電荷を帯びることのできる官能基を有するものが挙げられ、導電性粒子や絶縁層の表面電位に応じて、適宜選択することができる。ポリカチオンとしては、一般に、ポリアミン類等のように正荷電を帯びることのできる官能基を有するもの、例えば、PEI、ポリアリルアミン塩酸塩(PAH)、PDDA、ポリビニルピリジン(PVP)、ポリリジン、ポリアクリルアミド及びそれらを少なくとも1種以上を含む共重合体等を用いることができる。 The resin may be a polymer electrolyte in addition to the insulating resin particles. As the polymer electrolyte, a polymer (polyanion or polycation) ionized in an aqueous solution and having a charged functional group in the main chain or side chain can be used. Examples of polyanions generally include those having a negatively charged functional group such as sulfonic acid, sulfuric acid, carboxylic acid, and the like, which are appropriately selected according to the surface potential of the conductive particles and the insulating layer. Can do. The polycation generally has a positively charged functional group such as polyamines such as PEI, polyallylamine hydrochloride (PAH), PDDA, polyvinyl pyridine (PVP), polylysine, polyacrylamide. And a copolymer containing at least one of them can be used.
 上記無機材料としては、無機物質で形成されている材料であれば特に限定されない。本実施形態では、無機材料は無機粒子を含むことが好ましい。 The inorganic material is not particularly limited as long as it is a material formed of an inorganic substance. In the present embodiment, the inorganic material preferably contains inorganic particles.
 上記無機粒子としては、シラス粒子、ハイドロキシアパタイト粒子、マグネシア粒子、酸化ジルコニウム粒子、シリカ粒子、アルミナ粒子、ジルコニア粒子等が挙げられる。その他、上記無機粒子としては、公知の無機元素又は無機化合物で形成される粒子であってもよい。 Examples of the inorganic particles include shirasu particles, hydroxyapatite particles, magnesia particles, zirconium oxide particles, silica particles, alumina particles, and zirconia particles. In addition, as said inorganic particle, the particle | grains formed with a well-known inorganic element or an inorganic compound may be sufficient.
 上記シリカ粒子としては、粉砕シリカ、球状シリカが挙げられる。また、シリカ粒子は表面に、例えばカルボキシル基、水酸基等の化学結合可能な官能基を有していてもよい。 Examples of the silica particles include pulverized silica and spherical silica. Silica particles may have a functional group capable of chemical bonding such as a carboxyl group and a hydroxyl group on the surface.
 上記無機粒子の平均粒子径は、好ましくは0.001μm以上、より好ましくは0.005μm以上であり、好ましくは1.0μm以下、より好ましくは0.5μm以下、さらに好ましくは0.2μm以下である。上記無機粒子の平均粒子径を上記範囲に調整することにより、バインダー分散時に絶縁粒子が外れにくく、粒子接触を防げる。また、電極間接続の際には効果的に排除されるので低抵抗が確保でき、適切な絶縁性を発揮できる。なお、ここでいう無機粒子の平均粒子径は、上述した基材粒子の平均粒子径と同じ定義である。 The average particle diameter of the inorganic particles is preferably 0.001 μm or more, more preferably 0.005 μm or more, preferably 1.0 μm or less, more preferably 0.5 μm or less, and further preferably 0.2 μm or less. . By adjusting the average particle diameter of the inorganic particles to the above range, the insulating particles are unlikely to come off when the binder is dispersed, and particle contact can be prevented. Further, since it is effectively eliminated when connecting the electrodes, a low resistance can be ensured and appropriate insulation can be exhibited. In addition, the average particle diameter of an inorganic particle here is the same definition as the average particle diameter of the base material particle | grains mentioned above.
 無機材料は無機粒子に限定されず、例えば、無機化合物で形成される膜状の形態であってもよい。このような無機化合物で形成される膜は、例えば、公知の方法で形成することが可能であるが、その形成方法は特に限定されない。 The inorganic material is not limited to inorganic particles, and may be in the form of a film formed of an inorganic compound, for example. A film formed of such an inorganic compound can be formed by, for example, a known method, but the formation method is not particularly limited.
 上記絶縁層(すなわち、樹脂及び無機材料を含む層)の構造は特に限定されない。 The structure of the insulating layer (that is, a layer containing a resin and an inorganic material) is not particularly limited.
 例えば、絶縁層は、樹脂で形成される樹脂層と、無機材料で形成される無機層とが、金属層側からこの順に積層されて形成されていてもよい。つまり、この場合、前記金属層の表面には前記樹脂で被覆されてなる樹脂層が形成されており、この樹脂層の表面には前記無機材料で被覆されてなる無機層が形成されている構成となる。なお、上記樹脂層には、上記樹脂以外の材料が含まれていてもよく、あるいは、上記樹脂のみで構成されていてもよい。また、上記無機層には、上記無機材料以外の材料が含まれていてもよく、あるいは、上記無機材料のみで構成されていてもよい。 For example, the insulating layer may be formed by laminating a resin layer formed of a resin and an inorganic layer formed of an inorganic material in this order from the metal layer side. That is, in this case, a resin layer that is coated with the resin is formed on the surface of the metal layer, and an inorganic layer that is coated with the inorganic material is formed on the surface of the resin layer. It becomes. The resin layer may contain a material other than the resin, or may be composed of only the resin. The inorganic layer may contain a material other than the inorganic material, or may be composed of only the inorganic material.
 絶縁層の他の形態として、絶縁層は、無機材料で形成される無機層と、樹脂で形成される樹脂層とが、金属層側からこの順に積層されて形成されていてもよい。つまり、この場合、前記金属層の表面には前記無機材料で被覆されてなる無機層が形成されており、この無機層の表面には前記樹脂で被覆されてなる樹脂層が形成されている構成となる。 As another form of the insulating layer, the insulating layer may be formed by laminating an inorganic layer formed of an inorganic material and a resin layer formed of a resin in this order from the metal layer side. That is, in this case, the surface of the metal layer is formed with an inorganic layer coated with the inorganic material, and the surface of the inorganic layer is formed with a resin layer coated with the resin. It becomes.
 上記例示した絶縁層は、樹脂層及び無機層を含む少なくとも2層構造に形成されているが、これに限定されない。例えば、絶縁層は、前記樹脂及び前記無機材料からなる混合物を含む材料で形成されて、1層構造となっていてもよい。 The exemplified insulating layer is formed in at least a two-layer structure including a resin layer and an inorganic layer, but is not limited thereto. For example, the insulating layer may be formed of a material containing a mixture of the resin and the inorganic material and have a single layer structure.
 上記の中でも特に、前記金属層の表面は前記樹脂で被覆されてなる樹脂層が形成されており、この樹脂層の表面は前記無機材料で被覆されてなる無機層が形成されている、2層構造であることが好ましい。この場合、仮に、最外層の無機層が脱落したとしても、樹脂層が表面に存在するので、導電性粒子の絶縁性の低下が起こりにくい。また、最外層に無機層が存在することで、導電性粒子どうしの反発作用が高まるので、導電性粒子どうしの凝集が起こりにくく、導電性粒子の単分散性が向上する。特に、無機層がシリカ粒子を含んで構成される場合には、導電性粒子の単分散性を向上させやすい。 Among the above, the surface of the metal layer is formed with a resin layer coated with the resin, and the surface of the resin layer is formed with an inorganic layer coated with the inorganic material. A structure is preferred. In this case, even if the outermost inorganic layer falls off, the resin layer is present on the surface, so that the insulating property of the conductive particles is hardly lowered. In addition, the presence of the inorganic layer in the outermost layer increases the repulsive action between the conductive particles, so that the aggregation of the conductive particles hardly occurs and the monodispersity of the conductive particles is improved. In particular, when the inorganic layer includes silica particles, it is easy to improve the monodispersity of the conductive particles.
 絶縁層を形成する樹脂が樹脂粒子であり、無機材料が無機粒子である場合、前記樹脂粒子に対する前記無機粒子の平均粒子径の比は、好ましくは1/50以上、より好ましくは1/30以上、更に好ましくは1/10以上であり、好ましくは1以下、より好ましくは1/2以下である。前記樹脂粒子に対する前記無機粒子の平均粒子径の比が1/50以上では、絶縁粒子同士は凝集し易く、被覆性が向上する。前記樹脂粒子に対する前記無機粒子の平均粒子径の比が1以下では、めっき表面(金属層)と樹脂粒子及び無機粒子との密着性が高くなる。 When the resin forming the insulating layer is resin particles and the inorganic material is inorganic particles, the ratio of the average particle diameter of the inorganic particles to the resin particles is preferably 1/50 or more, more preferably 1/30 or more. More preferably, it is 1/10 or more, preferably 1 or less, more preferably 1/2 or less. When the ratio of the average particle diameter of the inorganic particles to the resin particles is 1/50 or more, the insulating particles are easily aggregated and the covering property is improved. When the ratio of the average particle diameter of the inorganic particles to the resin particles is 1 or less, the adhesion between the plating surface (metal layer), the resin particles, and the inorganic particles becomes high.
 例えば、樹脂粒子の平均粒子径は0.2μm以上、1μm以下とすることができ、無機粒子の平均粒子径は0.01μm以上0.2μm以下とすることができる。この場合には、絶縁層の厚みが厚くなり過ぎないので、金属層による電気的接続がより一層確実に果たされ、また、樹脂粒子及び無機粒子の付着性も高まる。 For example, the average particle diameter of the resin particles can be 0.2 μm or more and 1 μm or less, and the average particle diameter of the inorganic particles can be 0.01 μm or more and 0.2 μm or less. In this case, since the thickness of the insulating layer does not become too thick, the electrical connection by the metal layer is more reliably achieved, and the adhesion between the resin particles and the inorganic particles is also increased.
 樹脂粒子及び無機粒子の平均粒子径は、数平均粒子径を示し、市販の粒度分布測定装置等を用いて計測することができる。例えば日機装社製マイクロトラック「UPA-EX-150」等の粒度分布測定装置を用いて求められる。導電性粒子において樹脂粒子及び無機粒子の平均粒子径を測定する場合には、例えば、以下のようにして、樹脂粒子及び無機粒子の平均粒子径を測定することができる。導電性粒子を含有量が30重量%となるように、Kulzer社製「テクノビット4000」に添加し、分散させて、導電性粒子検査用埋め込み樹脂を作製する。その検査用埋め込み樹脂中の分散した導電性樹脂の中心付近を通るようにイオンミリング装置(日立ハイテクノロジーズ社製「IM4000」)を用いて、導電性粒子の断面を切り出す。そして、電界放射型走査型電子顕微鏡(FE-SEM)を用いて、画像倍率5万倍に設定し、20個の導電性粒子を無作為に選択し、それぞれの樹脂粒子及び無機粒子の平均粒子径50個を観察する。得られた導電性粒子における樹脂粒子及び無機粒子の平均粒子径を計測し、それを算術平均して樹脂粒子及び無機粒子の平均粒子径とする。 The average particle diameter of the resin particles and inorganic particles indicates the number average particle diameter, and can be measured using a commercially available particle size distribution measuring device or the like. For example, it can be obtained by using a particle size distribution measuring device such as Nikkiso Microtrac “UPA-EX-150”. When measuring the average particle diameter of the resin particles and inorganic particles in the conductive particles, for example, the average particle diameter of the resin particles and inorganic particles can be measured as follows. The conductive particles are added to and dispersed in “Technobit 4000” manufactured by Kulzer so that the content is 30% by weight, and an embedded resin for inspecting conductive particles is produced. The cross section of the conductive particles is cut out using an ion milling device (“IM4000” manufactured by Hitachi High-Technologies Corporation) so as to pass through the vicinity of the center of the dispersed conductive resin in the embedded resin for inspection. Then, using a field emission scanning electron microscope (FE-SEM), the image magnification was set to 50,000 times, 20 conductive particles were randomly selected, and the average particle of each resin particle and inorganic particle Observe 50 diameters. The average particle diameters of the resin particles and the inorganic particles in the obtained conductive particles are measured, and are arithmetically averaged to obtain the average particle diameter of the resin particles and the inorganic particles.
 樹脂粒子及び無機粒子のCV値は、20%以下であることが好ましい。CV値が20%以下であると、絶縁層の厚さが均一になるため、例えば、導電性粒子をCOG等の用途に適用する場合に、電極間で熱圧着する際に均一に圧力をかけやすくなり、導通不良が生じ難くなる。なお、上記粒子径のCV値は、下記式により算出される。
粒子径のCV値(%)=粒子径の標準偏差/平均粒子径×100
 粒子径分布は、導電性粒子における導電部を被覆する前は粒度分布計等で測定可能であり、被覆した後はSEM写真の画像解析等で測定可能である。
The CV value of the resin particles and inorganic particles is preferably 20% or less. When the CV value is 20% or less, the thickness of the insulating layer becomes uniform. For example, when applying conductive particles to applications such as COG, a uniform pressure is applied when thermocompression bonding between electrodes. It becomes easy and it becomes difficult to produce poor conduction. The CV value of the particle diameter is calculated by the following formula.
CV value of particle diameter (%) = standard deviation of particle diameter / average particle diameter × 100
The particle size distribution can be measured with a particle size distribution meter or the like before coating the conductive part of the conductive particles, and can be measured with image analysis of an SEM photograph after coating.
 絶縁層の平均厚みは、限定的ではなく、任意の厚みにすることができる。特に、絶縁層の平均厚みは、上述した突起の厚みよりも厚ければ、絶縁層の効果を十分に発揮することができ、絶縁性の低下が起こりにくく、また、導電性粒子の凝集も防止されやすくなる。 The average thickness of the insulating layer is not limited and can be any thickness. In particular, if the average thickness of the insulating layer is larger than the thickness of the protrusions described above, the effect of the insulating layer can be sufficiently exerted, the insulating property is hardly lowered, and the aggregation of conductive particles is prevented. It becomes easy to be done.
 絶縁層の平均厚みは、導電性粒子をCOG等の用途に適用する場合に、リークが起こりにくく、かつ、熱圧着する際に必要な圧力及び熱量を小さくできるという観点から、好ましくは5nm以上、より好ましくは10nm以上、好ましくは1000nm以下、より好ましくは500nm以下である。 The average thickness of the insulating layer is preferably 5 nm or more from the viewpoint that when applying conductive particles to applications such as COG, leakage is unlikely to occur and the pressure and amount of heat necessary for thermocompression bonding can be reduced. More preferably, it is 10 nm or more, preferably 1000 nm or less, more preferably 500 nm or less.
 本実施形態の導電性粒子において、上記絶縁層を形成する無機材料が無機粒子である場合、導電性粒子に対する無機粒子の被覆率が80%以上であることが好ましい。この場合、導電性粒子の絶縁性の低下を防止しやすく、しかも、導電性粒子がより真球状に近い形状となるので、導電性粒子どうしが凝集することも抑制しやすくなり、導電性粒子の単分散性を向上させることができる。無機粒子の被覆率の上限は100%である。また、上記絶縁層を形成する樹脂が樹脂粒子である場合、導電性粒子に対する樹脂粒子の被覆率が40%以上であることが好ましい。樹脂粒子の被覆率の上限は100%である。 In the conductive particles of the present embodiment, when the inorganic material forming the insulating layer is inorganic particles, the coverage of the inorganic particles with respect to the conductive particles is preferably 80% or more. In this case, it is easy to prevent a decrease in the insulating properties of the conductive particles, and since the conductive particles have a more nearly spherical shape, it is easy to suppress the aggregation of the conductive particles. Monodispersity can be improved. The upper limit of the coverage of inorganic particles is 100%. Moreover, when the resin which forms the said insulating layer is a resin particle, it is preferable that the coverage of the resin particle with respect to electroconductive particle is 40% or more. The upper limit of the resin particle coverage is 100%.
 なお、ここでいう被覆率は、導電性粒子(又は無機層の内側の層(例えば樹脂層))の表面積全体のうち、無機粒子により被覆されている部分の総面積が占める割合を示す。上記の無機層内側の層の表面積については、無機層を排除した導電性粒子を球形とみなして、この球の表面積を算出することで求めることができる。 In addition, a coverage here means the ratio for which the total area of the part coat | covered with the inorganic particle accounts in the whole surface area of electroconductive particle (or inner layer (for example, resin layer) of an inorganic layer). The surface area of the inner layer of the inorganic layer can be determined by calculating the surface area of the sphere by regarding the conductive particles excluding the inorganic layer as a sphere.
 例えば、電界放射型走査型電子顕微鏡(FE-SEM)を用いて、画像倍率5万倍に設定し、20個の導電性粒子を無作為に選択し、それぞれの導電性粒子の表面を観察する。得られた導電性粒子における無機粒子が被覆されている部分の表面積の粒子全体の投影面積に対する百分率を計測し、それを算術平均して被覆率とする。 For example, using a field emission scanning electron microscope (FE-SEM), the image magnification is set to 50,000 times, 20 conductive particles are randomly selected, and the surface of each conductive particle is observed. . In the obtained conductive particles, the percentage of the surface area of the portion covered with the inorganic particles with respect to the projected area of the whole particles is measured, and this is arithmetically averaged to obtain the coverage.
 また、無機層および樹脂層の被覆率はSEMに付随するEDX等のマッピング分析によっても測定が可能である。 Also, the coverage of the inorganic layer and the resin layer can be measured by mapping analysis such as EDX attached to the SEM.
 上記被覆率は、例えば、無機粒子の基材粒子に対する添加量、混合時間等によって、調節することができるので、被覆率を調節する方法は特に限定されない。 The above-described coverage can be adjusted by, for example, the amount of inorganic particles added to the base material particles, the mixing time, etc., and the method for adjusting the coverage is not particularly limited.
 上記の樹脂(例えば、樹脂粒子)及び無機材料(例えば、無機粒子)には、共有結合等の化学結合が可能な反応性官能基を有していることが好ましい。この場合、樹脂(例えば、樹脂粒子)と無機材料(例えば、無機粒子)との密着性がより強くなり、導電性粒子からのこれらの脱落が防止されやすくなる。 The above resin (for example, resin particles) and inorganic material (for example, inorganic particles) preferably have a reactive functional group capable of chemical bonding such as covalent bonding. In this case, the adhesiveness between the resin (for example, resin particles) and the inorganic material (for example, inorganic particles) becomes stronger, and it is easy to prevent them from falling off the conductive particles.
 上記反応性官能基としては、例えば、ビニル基、(メタ)アクリロイル基、シラン基、シラノール基、カルボキシル基、アミノ基、アンモニウム基、ニトロ基、水酸基、カルボニル基、チオール基、スルホン酸基、スルホニウム基、ホウ酸基、オキサゾリン基、ピロリドン基、リン酸基及びニトリル基等が挙げられる。中でも、ビニル基、(メタ)アクリロイル基が好ましい。 Examples of the reactive functional group include vinyl group, (meth) acryloyl group, silane group, silanol group, carboxyl group, amino group, ammonium group, nitro group, hydroxyl group, carbonyl group, thiol group, sulfonic acid group, and sulfonium. Group, boric acid group, oxazoline group, pyrrolidone group, phosphoric acid group and nitrile group. Among these, a vinyl group and a (meth) acryloyl group are preferable.
 上記反応性官能基は、樹脂(例えば、樹脂粒子)及び無機材料(例えば、無機粒子)に反応性官能基を導入するための化合物で表面処理することにより導入できる。例えば、(メタ)アクリロイル基を有する化合物、エポキシ基を有する化合物及びビニル基を有する化合物等が挙げられる。 The reactive functional group can be introduced by surface treatment with a compound for introducing a reactive functional group into a resin (for example, resin particles) and an inorganic material (for example, inorganic particles). Examples thereof include a compound having a (meth) acryloyl group, a compound having an epoxy group, and a compound having a vinyl group.
 ビニル基を導入するための化合物(表面処理物質)としては、ビニル基を有するシラン化合物、ビニル基を有するチタン化合物、及びビニル基を有するリン酸化合物等が挙げられる。上記表面処理物質は、ビニル基を有するシラン化合物であることが好ましい。上記ビニル基を有するシラン化合物としては、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリアセトキシシラン及びビニルトリイソプロポキシシラン等が挙げられる。 Examples of the compound (surface treatment substance) for introducing a vinyl group include a silane compound having a vinyl group, a titanium compound having a vinyl group, and a phosphate compound having a vinyl group. The surface treatment substance is preferably a silane compound having a vinyl group. Examples of the silane compound having a vinyl group include vinyltrimethoxysilane, vinyltriethoxysilane, vinyltriacetoxysilane, and vinyltriisopropoxysilane.
 (メタ)アクリロイル基を導入するための化合物(表面処理物質)としては、(メタ)アクリロイル基を有するシラン化合物、及び(メタ)アクリロイル基を有するチタン化合物、及び(メタ)アクリロイル基を有するリン酸化合物等が挙げられる。表面処理物質は、(メタ)アクリロイル基を有するシラン化合物であることも好ましい。上記(メタ)アクリロイル基を有するシラン化合物としては、(メタ)アクリロキシプロピルトリエトキシシラン、(メタ)アクリロキシプロピルトリメトキシシラン及び(メタ)アクリロキシプロピルトリジメトキシシラン等が挙げられる。 As a compound (surface treatment substance) for introducing a (meth) acryloyl group, a silane compound having a (meth) acryloyl group, a titanium compound having a (meth) acryloyl group, and a phosphoric acid having a (meth) acryloyl group Compounds and the like. The surface treatment substance is also preferably a silane compound having a (meth) acryloyl group. Examples of the silane compound having a (meth) acryloyl group include (meth) acryloxypropyltriethoxysilane, (meth) acryloxypropyltrimethoxysilane, (meth) acryloxypropyltridimethoxysilane, and the like.
 金属層の表面に、絶縁層を形成させる方法としては、特に限定されず、公知の方法を採用することができる。そのような方法としては、例えば、化学的方法、及び物理的もしくは機械的方法等が挙げられる。上記化学的方法としては、ファンデルワールス力又は静電気力によるヘテロ凝集法により、金属層の表面上に樹脂(例えば、樹脂粒子)及び無機材料を付着させ、さらに必要に応じて化学結合させる方法が挙げられる。また、上記物理的もしくは機械的方法としては、スプレードライ、ハイブリダイゼーション、静電付着法、噴霧法、ディッピング及び真空蒸着による方法等が挙げられる。なかでも、絶縁物質が脱離し難いことから、上記導電層の表面に、化学結合を介して樹脂(例えば、樹脂粒子)及び無機材料を付着させる方法が好ましい。 The method for forming the insulating layer on the surface of the metal layer is not particularly limited, and a known method can be employed. Examples of such methods include chemical methods and physical or mechanical methods. As the chemical method, there is a method in which a resin (for example, resin particles) and an inorganic material are attached to the surface of the metal layer by a hetero-aggregation method using van der Waals force or electrostatic force, and further chemically bonded as necessary. Can be mentioned. Examples of the physical or mechanical method include spray drying, hybridization, electrostatic adhesion, spraying, dipping, and vacuum deposition. Among these, a method in which a resin (for example, resin particles) and an inorganic material are attached to the surface of the conductive layer through a chemical bond is preferable because an insulating substance is difficult to be detached.
 金属層の表面に、絶縁層を形成させるにあたっては、最初に樹脂を金属層に付着させてから次に無機材料を金属層に付着させることが好ましい。この場合、金属表面と絶縁層との密着性が高くなりやすいので絶縁層の剥離を抑制することができる。例えば、最初に樹脂粒子を金属層に付着させてから次に無機粒子を金属層に付着させると、平均粒子径の大きな樹脂粒子の間に平均粒子径の小さい無機粒子が入り込んだ状態となり得るので、無機粒子が樹脂層に含まれる状態で絶縁層が形成され得る。このように形成される絶縁層の表面にさらに無機粒子の層が形成されていてもよく、この場合、絶縁層は無機粒子を含む樹脂層と、無機粒子で形成される無機層とで形成される。一方、無機粒子が樹脂層の空隙に入らないサイズである場合は、無機粒子は樹脂層の空隙には入り込まずに、樹脂層の表面に無機層が形成された絶縁層となる。 In forming the insulating layer on the surface of the metal layer, it is preferable to first attach the resin to the metal layer and then attach the inorganic material to the metal layer. In this case, since the adhesion between the metal surface and the insulating layer is likely to be high, peeling of the insulating layer can be suppressed. For example, if resin particles are first attached to the metal layer and then inorganic particles are attached to the metal layer, inorganic particles having a small average particle diameter may enter between resin particles having a large average particle diameter. The insulating layer can be formed in a state where the inorganic particles are included in the resin layer. An inorganic particle layer may be further formed on the surface of the insulating layer thus formed. In this case, the insulating layer is formed of a resin layer containing inorganic particles and an inorganic layer formed of inorganic particles. The On the other hand, when the inorganic particles have a size that does not enter the voids of the resin layer, the inorganic particles do not enter the voids of the resin layer, and become an insulating layer having an inorganic layer formed on the surface of the resin layer.
 金属層の表面に、絶縁層を形成させるにあたり、樹脂粒子と無機粒子は同様の方法で金属層に付着させることができるが、必ずしも同じ方法で金属層に付着させる必要はない。例えば、樹脂粒子は例えばヘテロ凝集で絶縁層に付着させて金属層表面と化学結合させ、無機粒子はハイブリダイゼーション等の方法で樹脂層表面に物理被覆させる方法を採用してもよい。 In forming the insulating layer on the surface of the metal layer, the resin particles and the inorganic particles can be attached to the metal layer by the same method, but it is not necessarily required to be attached to the metal layer by the same method. For example, the resin particles may be attached to the insulating layer by hetero-aggregation and chemically bonded to the surface of the metal layer, and the inorganic particles may be physically coated on the surface of the resin layer by a method such as hybridization.
 なお、金属層の表面と上記絶縁層とは、直接化学結合していなくてもよく、反応性官能基を有する化合物によって間接的に化学結合していてもよい。例えば、金属層の表面にカルボキシル基を導入した後、該カルボキシル基がポリエチレンイミンなどの高分子電解質を介して絶縁層の表面の官能基と化学結合していても構わない。ここで使用できる高分子電解質としては、上述した高分子電解質と同様とすることができる。 In addition, the surface of the metal layer and the insulating layer may not be directly chemically bonded, but may be indirectly chemically bonded by a compound having a reactive functional group. For example, after introducing a carboxyl group to the surface of the metal layer, the carboxyl group may be chemically bonded to a functional group on the surface of the insulating layer via a polymer electrolyte such as polyethyleneimine. The polymer electrolyte that can be used here can be the same as the polymer electrolyte described above.
 本実施形態の導電性粒子は、基材粒子と、基材粒子の表面を覆う金属層とを有してなり、金属層の表面が樹脂及び無機材料で被覆されているので、従来の導電性粒子に比べて、絶縁層の被覆量が大きい材料となり得る。これにより、導電性粒子の絶縁性が向上するので、絶縁性の低下を防止しやすい。また、導電性粒子における絶縁層の被覆量が大きいことで、導電性粒子どうしの凝集が抑制されやすく、その結果として、導電性粒子の単分散性も向上する。特に、導電性粒子の最外層がシリカ粒子であれば、導電性粒子どうしの凝集がより抑制されやすくなる。 The conductive particles according to the present embodiment include base particles and a metal layer that covers the surface of the base particles, and the surface of the metal layer is covered with a resin and an inorganic material. It can be a material having a large coating amount of the insulating layer compared to the particles. Thereby, since the insulation of electroconductive particle improves, it is easy to prevent a fall of insulation. Moreover, since the coating amount of the insulating layer in the conductive particles is large, aggregation of the conductive particles is easily suppressed, and as a result, the monodispersity of the conductive particles is also improved. In particular, when the outermost layer of the conductive particles is silica particles, aggregation of the conductive particles is more easily suppressed.
 そして、上記導電性粒子を例えばCOG等に適用して電極間を接続すると、隣接する電極間の短絡を抑制できる。具体的には、電極間で複数の導電性粒子どうしが互いに接触したとしても、複数の電極間に絶縁物質(絶縁層)が存在することで、横方向に隣り合う電極間の短絡を抑制することもできる。なお、電極間の接続の際に、2つの電極で導電性粒子を加圧することにより、導電性粒子の導電部(金属層)と電極との間に存在する絶縁物質(絶縁層)は容易に排除される。そして、導電性粒子が金属層の表面に突起を有する場合には、絶縁物質(絶縁層)がより一層容易に排除される。 And, when the conductive particles are applied to, for example, COG and the electrodes are connected, a short circuit between adjacent electrodes can be suppressed. Specifically, even if a plurality of conductive particles are in contact with each other between the electrodes, the presence of an insulating material (insulating layer) between the plurality of electrodes suppresses a short circuit between electrodes adjacent in the lateral direction. You can also. In addition, by pressurizing the conductive particles with the two electrodes at the time of connection between the electrodes, the insulating substance (insulating layer) existing between the conductive portion (metal layer) of the conductive particles and the electrode can be easily obtained. Eliminated. And when an electroconductive particle has a processus | protrusion on the surface of a metal layer, an insulating substance (insulating layer) is excluded much more easily.
 本実施形態の導電性粒子は、樹脂及び無機材料を含む絶縁層を有していることで、適度の硬さと、圧縮後の適度な回復性とを兼ね備えている。そのため、本実施形態の導電性粒子は、硬さと回復性が求められるCOGに特に好適に使用することができる。 The conductive particles of the present embodiment have an insulating layer containing a resin and an inorganic material, and thus have an appropriate hardness and an appropriate recoverability after compression. Therefore, the electroconductive particle of this embodiment can be used especially suitably for COG in which hardness and recoverability are calculated | required.
 具体的に本実施形態の導電性粒子では、10%圧縮時の応力(10%K値)が3000以上、15000N/mm以下が好ましく、回復率が30%以上、80%以下が好ましい。このように、本実施形態の導電性粒子は、上述の絶縁層を有していることで、硬さ及び回復性にも優れる材料である。特に、本実施形態の導電性粒子がCOGに適用される場合、10%圧縮時の応力(10%K値)が5000以上、12000N/mm以下であることが好ましく、また、回復率が40%以上、70%以下であることが好ましい。 Specifically, in the conductive particles of this embodiment, the stress at 10% compression (10% K value) is preferably 3000 or more and 15000 N / mm 2 or less, and the recovery rate is preferably 30% or more and 80% or less. Thus, the electroconductive particle of this embodiment is a material which is excellent also in hardness and a recoverability by having the above-mentioned insulating layer. In particular, when the conductive particles of the present embodiment are applied to COG, the stress at 10% compression (10% K value) is preferably 5000 or more and 12000 N / mm 2 or less, and the recovery rate is 40. % Or more and 70% or less is preferable.
 上記導電性粒子の上記10%K値は、以下のようにして測定できる。微小圧縮試験機を用いて、円柱(直径50μm、ダイヤモンド製)の平滑圧子端面で、25℃、最大試験荷重90mNを30秒かけて負荷する条件下で導電性粒子1個を圧縮する。このときの荷重値(N)及び圧縮変位(mm)を測定する。得られた測定値から、上記圧縮弾性率を下記式により求めることができる。上記微小圧縮試験機として、例えば、フィッシャー社製「フィッシャースコープH-100」等が用いられる。
K値(N/mm)=(3/21/2)・F・S-3/2・R-1/2
F:導電性粒子が10%圧縮変形したときの荷重値(N)
S:導電性粒子が10%圧縮変形したときの圧縮変位(mm)
R:導電性粒子の半径(mm)
 回復率は、上記と同様の装置において、粒子1個に対して最大試験荷重10mNを付加した後、荷重を除荷する。この時の圧縮変位L1(mm)と回復変位L2(mm)を測定する。得られた測定値から下記の計算式で求めることができる。
回復率(%)=(L2/L1)×100
 上記導電性粒子は、バインダー樹脂中に分散され、導電材料をとして用いられることが好ましい。上記導電材料は、異方性導電材料であることが好ましい。上記導電材料は、電極の電気的な接続に好適に用いられる。上記導電材料は、回路接続材料であることが好ましい。
The 10% K value of the conductive particles can be measured as follows. Using a micro-compression tester, one conductive particle is compressed with a smooth indenter end face of a cylinder (diameter 50 μm, made of diamond) under the condition that a maximum test load of 90 mN is applied for 30 seconds. The load value (N) and compression displacement (mm) at this time are measured. From the measured value obtained, the compression elastic modulus can be obtained by the following formula. As the micro compression tester, for example, “Fischer Scope H-100” manufactured by Fischer is used.
K value (N / mm 2 ) = (3/2 1/2 ) · F · S −3 / 2 · R −1/2
F: Load value when the conductive particles are 10% compressively deformed (N)
S: Compression displacement (mm) when the conductive particles are 10% compressively deformed
R: radius of conductive particles (mm)
The recovery rate is determined by adding the maximum test load of 10 mN to one particle and then unloading the load in the same apparatus as described above. The compression displacement L1 (mm) and the recovery displacement L2 (mm) at this time are measured. It can obtain | require with the following formula from the obtained measured value.
Recovery rate (%) = (L2 / L1) × 100
The conductive particles are preferably dispersed in a binder resin and used as a conductive material. The conductive material is preferably an anisotropic conductive material. The conductive material is preferably used for electrical connection of electrodes. The conductive material is preferably a circuit connection material.
 上記バインダー樹脂は特に限定されない。上記バインダー樹脂として、公知の絶縁性の樹脂が用いられる。上記バインダー樹脂は、熱可塑性成分(熱可塑性化合物)又は硬化性成分を含むことが好ましく、硬化性成分を含むことがより好ましい。上記硬化性成分としては、光硬化性成分及び熱硬化性成分が挙げられる。 The binder resin is not particularly limited. As the binder resin, a known insulating resin is used. The binder resin preferably includes a thermoplastic component (thermoplastic compound) or a curable component, and more preferably includes a curable component. Examples of the curable component include a photocurable component and a thermosetting component.
 上記光硬化性成分は、光硬化性化合物及び光重合開始剤を含むことが好ましい。上記熱硬化性成分は、熱硬化性化合物及び熱硬化剤を含むことが好ましい。 The photocurable component preferably contains a photocurable compound and a photopolymerization initiator. The thermosetting component preferably contains a thermosetting compound and a thermosetting agent.
 上記バインダー樹脂としては、例えば、ビニル樹脂、熱可塑性樹脂、硬化性樹脂、熱可塑性ブロック共重合体及びエラストマー等が挙げられる。上記バインダー樹脂は、1種のみが用いられてもよく、2種以上が併用されてもよい。 Examples of the binder resin include vinyl resins, thermoplastic resins, curable resins, thermoplastic block copolymers, and elastomers. As for the said binder resin, only 1 type may be used and 2 or more types may be used together.
 上記ビニル樹脂としては、例えば、酢酸ビニル樹脂、アクリル樹脂及びスチレン樹脂等が挙げられる。 Examples of the vinyl resin include vinyl acetate resin, acrylic resin, and styrene resin.
 上記熱可塑性樹脂としては、例えば、ポリオレフィン樹脂、エチレン-酢酸ビニル共重合体及びポリアミド樹脂等が挙げられる。 Examples of the thermoplastic resin include polyolefin resin, ethylene-vinyl acetate copolymer, polyamide resin, and the like.
 上記硬化性樹脂としては、例えば、エポキシ樹脂、ウレタン樹脂、ポリイミド樹脂及び不飽和ポリエステル樹脂等が挙げられる。なお、上記硬化性樹脂は、常温硬化型樹脂、熱硬化型樹脂、光硬化型樹脂又は湿気硬化型樹脂であってもよい。上記硬化性樹脂は、硬化剤と併用されてもよい。 Examples of the curable resin include an epoxy resin, a urethane resin, a polyimide resin, and an unsaturated polyester resin. The curable resin may be a room temperature curable resin, a thermosetting resin, a photocurable resin, or a moisture curable resin. The curable resin may be used in combination with a curing agent.
 上記熱可塑性ブロック共重合体としては、例えば、スチレン-ブタジエン-スチレンブロック共重合体、スチレン-イソプレン-スチレンブロック共重合体、スチレン-ブタジエン-スチレンブロック共重合体の水素添加物、及びスチレン-イソプレン-スチレンブロック共重合体の水素添加物等が挙げられる。 Examples of the thermoplastic block copolymer include a styrene-butadiene-styrene block copolymer, a styrene-isoprene-styrene block copolymer, a hydrogenated product of a styrene-butadiene-styrene block copolymer, and a styrene-isoprene. -Hydrogenated products of styrene block copolymers.
 上記エラストマーとしては、例えば、スチレン-ブタジエン共重合ゴム、及びアクリロニトリル-スチレンブロック共重合ゴム等が挙げられる。 Examples of the elastomer include styrene-butadiene copolymer rubber and acrylonitrile-styrene block copolymer rubber.
 上記導電材料は、上記導電性粒子及び上記バインダー樹脂の他に、例えば、充填剤、増量剤、軟化剤、可塑剤、重合触媒、硬化触媒、着色剤、酸化防止剤、熱安定剤、光安定剤、紫外線吸収剤、滑剤、帯電防止剤及び難燃剤等の各種添加剤を含んでいてもよい。 In addition to the conductive particles and the binder resin, the conductive material includes, for example, a filler, an extender, a softener, a plasticizer, a polymerization catalyst, a curing catalyst, a colorant, an antioxidant, a heat stabilizer, and a light stabilizer. Various additives such as an agent, an ultraviolet absorber, a lubricant, an antistatic agent and a flame retardant may be contained.
 上記導電材料は、導電ペースト及び導電フィルム等として使用され得る。導電材料が、導電フィルムである場合には、導電性粒子を含む導電フィルムに、導電性粒子を含まないフィルムが積層されていてもよい。上記導電ペーストは異方性導電ペーストであることが好ましい。上記導電フィルムは異方性導電フィルムであることが好ましい。 The conductive material can be used as a conductive paste and a conductive film. When the conductive material is a conductive film, a film that does not include conductive particles may be laminated on a conductive film that includes conductive particles. The conductive paste is preferably an anisotropic conductive paste. The conductive film is preferably an anisotropic conductive film.
 上記導電材料100重量%中、上記バインダー樹脂の含有量は好ましくは10重量%以上、より好ましくは30重量%以上、更に好ましくは50重量%以上、特に好ましくは70重量%以上であり、好ましくは99.99重量%以下、より好ましくは99.9重量%以下である。上記バインダー樹脂の含有量が上記下限以上及び上記上限以下であると、電極間に導電性粒子が効率的に配置され、導電材料により接続された接続対象部材の接続信頼性がより一層高くなる。 The content of the binder resin in 100% by weight of the conductive material is preferably 10% by weight or more, more preferably 30% by weight or more, still more preferably 50% by weight or more, particularly preferably 70% by weight or more, preferably It is 99.99 weight% or less, More preferably, it is 99.9 weight% or less. When the content of the binder resin is not less than the above lower limit and not more than the above upper limit, the conductive particles are efficiently arranged between the electrodes, and the connection reliability of the connection target member connected by the conductive material is further increased.
 上記導電材料100重量%中、上記導電性粒子の含有量は好ましくは0.01重量%以上、より好ましくは0.1重量%以上であり、好ましくは80重量%以下、より好ましくは60重量%以下、更に好ましくは40重量%以下、特に好ましくは20重量%以下、最も好ましくは10重量%以下である。上記導電性粒子の含有量が上記下限以上及び上記上限以下であると、電極間の導通信頼性がより一層高くなる。 In 100% by weight of the conductive material, the content of the conductive particles is preferably 0.01% by weight or more, more preferably 0.1% by weight or more, preferably 80% by weight or less, more preferably 60% by weight. Hereinafter, it is more preferably 40% by weight or less, particularly preferably 20% by weight or less, and most preferably 10% by weight or less. When the content of the conductive particles is not less than the above lower limit and not more than the above upper limit, the conduction reliability between the electrodes is further enhanced.
 (接続構造体)
 上述した導電性粒子を用いて、又は上述した導電性粒子とバインダー樹脂とを含む導電材料を用いて、接続対象部材を接続することにより、接続構造体を得ることができる。
(Connection structure)
A connection structure can be obtained by connecting the connection target members using the conductive particles described above or using a conductive material including the conductive particles described above and a binder resin.
 図1に一例として示すように、上記接続構造体81は、第1の接続対象部材82と、第2の接続対象部材83と、第1の接続対象部材と第2の接続対象部材とを接続している接続部84とを備え、上記接続部を形成する材料が、上述した導電性粒子1であるか、又は上述した導電性粒子1とバインダー樹脂とを含む導電材料であることが好ましい。上記接続部が、上述した導電性粒子により形成されているか、又は上述した導電性粒子とバインダー樹脂とを含む導電材料により形成されている接続構造体であることが好ましい。導電性粒子が単独で用いられた場合には、接続部自体が導電性粒子である。すなわち、第1,第2の接続対象部材が導電性粒子により接続される。上記接続構造体を得るために用いられる上記導電材料は、異方性導電材料であることが好ましい。 As shown in FIG. 1 as an example, the connection structure 81 connects the first connection target member 82, the second connection target member 83, and the first connection target member and the second connection target member. It is preferable that the material that includes the connecting portion 84 and that forms the connecting portion is the conductive particle 1 described above or a conductive material that includes the conductive particle 1 and the binder resin described above. It is preferable that the connection part is a connection structure formed of the above-described conductive particles or a conductive material including the above-described conductive particles and a binder resin. When the conductive particles are used alone, the connection part itself is the conductive particles. That is, the first and second connection target members are connected by the conductive particles. The conductive material used for obtaining the connection structure is preferably an anisotropic conductive material.
 上記第1の接続対象部材は、第1の電極82aを表面に有することが好ましい。上記第2の接続対象部材は、第2の電極83aを表面に有することが好ましい。上記第1の電極82aと上記第2の電極83aとが、上記導電性粒子1により電気的に接続されていることが好ましい。 The first connection object member preferably has a first electrode 82a on the surface. The second connection object member preferably has a second electrode 83a on the surface. It is preferable that the first electrode 82 a and the second electrode 83 a are electrically connected by the conductive particles 1.
 上記接続構造体の製造方法は特に限定されない。接続構造体の製造方法の一例として、第1の接続対象部材と第2の接続対象部材との間に上記導電材料を配置し、積層体を得た後、該積層体を加熱及び加圧する方法等が挙げられる。上記加圧の圧力は9.8×10以上、4.9×10Pa以下程度である。上記加熱の温度は、120以上、220℃以下程度である。フレキシブルプリント基板の電極、樹脂フィルム上に配置された電極及びタッチパネルの電極を接続するための上記加圧の圧力は9.8×10以上、1.0×10Pa以下程度である。 The manufacturing method of the connection structure is not particularly limited. As an example of a method of manufacturing a connection structure, a method of placing the conductive material between a first connection target member and a second connection target member to obtain a laminate, and then heating and pressurizing the laminate Etc. The pressure of the pressurization is about 9.8 × 10 4 or more and 4.9 × 10 6 Pa or less. The heating temperature is about 120 to 220 ° C. The pressure of the pressurization for connecting the electrode of the flexible printed board, the electrode arranged on the resin film, and the electrode of the touch panel is about 9.8 × 10 4 or more and 1.0 × 10 6 Pa or less.
 上記接続対象部材としては、具体的には、半導体チップ、コンデンサ及びダイオード等の電子部品、並びにプリント基板、フレキシブルプリント基板、ガラスエポキシ基板及びガラス基板等の回路基板などの電子部品等が挙げられる。上記導電材料は、電子部品を接続するための導電材料であることが好ましい。上記導電ペーストはペースト状の導電材料であり、ペースト状の状態で接続対象部材上に塗工されることが好ましい。 Specific examples of the connection target member include electronic components such as semiconductor chips, capacitors, and diodes, and electronic components such as printed boards, flexible printed boards, glass epoxy boards, and glass boards. The conductive material is preferably a conductive material for connecting electronic components. The conductive paste is a paste-like conductive material, and is preferably applied on the connection target member in a paste-like state.
 上記導電性粒子及び上記導電材料は、タッチパネルにも好適に用いられる。従って、上記接続対象部材は、フレキシブル基板であるか、又は樹脂フィルムの表面上に電極が配置された接続対象部材であることも好ましい。上記接続対象部材は、フレキシブル基板であることが好ましく、樹脂フィルムの表面上に電極が配置された接続対象部材であることが好ましい。上記フレキシブル基板がフレキシブルプリント基板等である場合に、フレキシブル基板は一般に電極を表面に有する。 The conductive particles and the conductive material are also suitably used for touch panels. Therefore, the connection target member is preferably a flexible substrate or a connection target member in which electrodes are arranged on the surface of the resin film. The connection target member is preferably a flexible substrate, and is preferably a connection target member in which an electrode is disposed on the surface of the resin film. When the flexible substrate is a flexible printed substrate or the like, the flexible substrate generally has electrodes on the surface.
 上記接続対象部材に設けられている電極としては、金電極、ニッケル電極、錫電極、アルミニウム電極、銅電極、銀電極、モリブデン電極及びタングステン電極等の金属電極が挙げられる。上記接続対象部材がフレキシブル基板である場合には、上記電極は金電極、ニッケル電極、錫電極又は銅電極であることが好ましい。上記接続対象部材がガラス基板である場合には、上記電極はアルミニウム電極、銅電極、モリブデン電極又はタングステン電極であることが好ましい。なお、上記電極がアルミニウム電極である場合には、アルミニウムのみで形成された電極であってもよく、金属酸化物層の表面にアルミニウム層が積層された電極であってもよい。上記金属酸化物層の材料としては、3価の金属元素がドープされた酸化インジウム及び3価の金属元素がドープされた酸化亜鉛等が挙げられる。上記3価の金属元素としては、Sn、Al及びGa等が挙げられる。 Examples of the electrode provided on the connection target member include metal electrodes such as a gold electrode, a nickel electrode, a tin electrode, an aluminum electrode, a copper electrode, a silver electrode, a molybdenum electrode, and a tungsten electrode. When the connection object member is a flexible substrate, the electrode is preferably a gold electrode, a nickel electrode, a tin electrode, or a copper electrode. When the connection target member is a glass substrate, the electrode is preferably an aluminum electrode, a copper electrode, a molybdenum electrode, or a tungsten electrode. In addition, when the said electrode is an aluminum electrode, the electrode formed only with aluminum may be sufficient and the electrode by which the aluminum layer was laminated | stacked on the surface of the metal oxide layer may be sufficient. Examples of the material for the metal oxide layer include indium oxide doped with a trivalent metal element and zinc oxide doped with a trivalent metal element. Examples of the trivalent metal element include Sn, Al, and Ga.
 以下、実施例により本発明をより具体的に説明するが、本発明はこれら実施例の態様に限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the embodiments.
 (実施例1)
 金属層の形成
 基材粒子として、粒子径が3.0μmであるジビニルベンゼン共重合体樹脂粒子(積水化学工業社製「ミクロパールSP-203」)を用意した。パラジウム触媒液を5重量%含むアルカリ溶液100重量部に、上記樹脂粒子10重量部を、超音波分散器を用いて分散させた後、溶液をろ過することにより、樹脂粒子を取り出した。次いで、樹脂粒子をジメチルアミンボラン1重量%溶液100重量部に添加し、樹脂粒子の表面を活性化させた。表面が活性化された樹脂粒子を十分に水洗した後、蒸留水500重量部に加え、分散させることにより、懸濁液を得た。次に、金属ニッケル粒子スラリー(平均粒子径100nm)1gを3分間かけて上記分散液に添加し、芯物質が付着された基材粒子を得た。芯物質が付着された基材粒子を蒸留水500重量部に加え、分散させることにより、懸濁液を得た。
Example 1
Divinylbenzene copolymer resin particles having a particle diameter of 3.0 μm (“Micropearl SP-203” manufactured by Sekisui Chemical Co., Ltd.) were prepared as base material particles for forming the metal layer . After dispersing 10 parts by weight of the resin particles in 100 parts by weight of an alkaline solution containing 5% by weight of a palladium catalyst solution using an ultrasonic disperser, the resin particles were taken out by filtering the solution. Next, the resin particles were added to 100 parts by weight of a 1% by weight dimethylamine borane solution to activate the surface of the resin particles. The resin particles whose surface was activated were sufficiently washed with water, and then added to 500 parts by weight of distilled water and dispersed to obtain a suspension. Next, 1 g of metallic nickel particle slurry (average particle size 100 nm) was added to the dispersion over 3 minutes to obtain base particles to which the core substance was adhered. Suspension was obtained by adding the base material particle | grains to which the core substance was adhered to 500 weight part of distilled water, and making it disperse | distribute.
 また、前期工程用ニッケルめっき液として、硫酸ニッケル500g/L、次亜リン酸ナトリウム150g/L、クエン酸ナトリウム150g/L、及びめっき安定剤6ml/Lの混合液をアンモニアにてpH8に調整しためっき液を用意した。このめっき液150mlを、20ml/分の添加速度で定量ポンプを通して、懸濁液Aに滴下した。反応温度は、50℃に設定した。その後、pHが安定するまで攪拌し、水素の発泡が停止するのを確認し、無電解めっき前期工程を行った。 In addition, as a nickel plating solution for the previous process, a mixed solution of nickel sulfate 500 g / L, sodium hypophosphite 150 g / L, sodium citrate 150 g / L, and plating stabilizer 6 ml / L was adjusted to pH 8 with ammonia. A plating solution was prepared. 150 ml of this plating solution was added dropwise to the suspension A through a metering pump at an addition rate of 20 ml / min. The reaction temperature was set to 50 ° C. Then, it stirred until pH was stabilized, it confirmed that hydrogen foaming stopped, and the electroless-plating first stage process was performed.
 次に、後期工程用ニッケルめっき液として、硫酸ニッケル500g/L、ジメチルアミンボラン80g/L、及びタングステン酸ナトリウム10g/Lの混合液を水酸化ナトリウムにてpH11.0に調整しためっき液を用意した。このめっき液350mlを、10ml/分の添加速度で定量ポンプを通して、懸濁液に滴下した。反応温度は、30℃に設定した。その後、pHが安定するまで攪拌し、水素の発泡が停止するのを確認し、無電解めっき後期工程を行った。 Next, as a nickel plating solution for the latter process, a plating solution prepared by adjusting a mixed solution of nickel sulfate 500 g / L, dimethylamine borane 80 g / L and sodium tungstate 10 g / L to pH 11.0 with sodium hydroxide is prepared. did. 350 ml of this plating solution was dropped into the suspension through a metering pump at an addition rate of 10 ml / min. The reaction temperature was set at 30 ° C. Then, it stirred until pH was stabilized, it confirmed that the foaming of hydrogen stopped, and the electroless-plating late process was performed.
 その後、懸濁液をろ過することにより、粒子を取り出し、水洗し、乾燥することにより、樹脂粒子の表面に突起を有するニッケル導電層(金属層)が配置された基材粒子を得た。 Thereafter, by filtering the suspension, the particles were taken out, washed with water, and dried to obtain base particles having a nickel conductive layer (metal layer) having protrusions on the surface of the resin particles.
 樹脂粒子の作製
 4ツ口セパラブルカバー、攪拌翼、三方コック、冷却管及び温度プローブが取り付けられた1000mLのセパラブルフラスコに、メタクリル酸メチル100mmolと、ジメタクリル酸エチレングリコール13mmol、N,N,N-トリメチル-N-2-メタクリロイルオキシエチルアンモニウムクロライド1mmolと、2,2’-アゾビス(2-アミジノプロパン)二塩酸塩1mmolとを含むモノマー組成物を固形分率が5重量%となるようにイオン交換水に秤取した後、200rpmで攪拌し、窒素雰囲気下70℃で24時間重合を行った。反応終了後、凍結乾燥して、平均粒子径250nm及びCV値10%の絶縁性樹脂粒子を得た。絶縁性樹脂粒子を超音波照射下でイオン交換水に分散させ、絶縁性樹脂粒子の10重量%水分散液を得た。
Preparation of Resin Particles A 1000 mL separable flask equipped with a four-neck separable cover, a stirring blade, a three-way cock, a condenser tube and a temperature probe was charged with 100 mmol methyl methacrylate, 13 mmol ethylene glycol dimethacrylate, N, N, A monomer composition containing 1 mmol of N-trimethyl-N-2-methacryloyloxyethylammonium chloride and 1 mmol of 2,2′-azobis (2-amidinopropane) dihydrochloride so that the solid content is 5% by weight. After weighing in ion-exchanged water, the mixture was stirred at 200 rpm and polymerized at 70 ° C. for 24 hours in a nitrogen atmosphere. After completion of the reaction, the resin was freeze-dried to obtain insulating resin particles having an average particle diameter of 250 nm and a CV value of 10%. The insulating resin particles were dispersed in ion exchange water under ultrasonic irradiation to obtain a 10 wt% aqueous dispersion of insulating resin particles.
 無機粒子
 日本アエロジル社製 アエロジル50(平均粒径30nm)を使用した。
Inorganic particles Aerosil 50 (average particle size 30 nm) manufactured by Nippon Aerosil Co., Ltd. was used.
 導電性粒子の作製
 上記のように得られた金属層が配置された基材粒子10gをイオン交換水500mLに分散させ、絶縁性樹脂粒子の水分散液4gを添加し、室温で6時間攪拌した。0.3μmのメッシュフィルターでろ過した後、更にメタノールで洗浄し、乾燥し、絶縁性樹脂粒子が付着した導電性粒子を得た。絶縁性樹脂粒子は粒子表面の40%に被覆されていた。
Production of Conductive Particles 10 g of the base particle on which the metal layer obtained as described above was placed was dispersed in 500 mL of ion exchange water, 4 g of an aqueous dispersion of insulating resin particles was added, and the mixture was stirred at room temperature for 6 hours. . After filtration through a 0.3 μm mesh filter, the particles were further washed with methanol and dried to obtain conductive particles having insulating resin particles attached thereto. The insulating resin particles were covered by 40% of the particle surface.
 得られた絶縁性樹脂粒子付き導電性粒子10g、無機粒子1.5g、平均粒径5mmのジルコニア球100gを容積1Lのボールミル容器に投入し、500rpmの回転速度で5時間撹拌した後、ジルコニア球を分離して絶縁層被覆導電性粒子(単に導電性粒子ともいう)を得た。得られた導電性粒子は、導電性粒子の表面に絶縁性樹脂粒子が被覆され、更にその上部から無機粒子が覆うように被覆されていた。無機粒子は粒子表面の98%に被覆されていた。 10 g of the obtained conductive particles with insulating resin particles, 1.5 g of inorganic particles, and 100 g of zirconia spheres having an average particle diameter of 5 mm are put into a 1 L volume ball mill container and stirred for 5 hours at a rotation speed of 500 rpm, and then zirconia spheres. Then, insulating layer-coated conductive particles (also simply referred to as conductive particles) were obtained. The obtained conductive particles were coated so that the surface of the conductive particles was coated with insulating resin particles, and further the inorganic particles were covered from the upper part. Inorganic particles were coated on 98% of the particle surface.
 (実施例2~7)
 基材粒子の平均粒子径、絶縁性樹脂粒子及び絶縁性無機粒子の平均粒子径、並びに、被覆量を後掲の表1のように変更した事以外は実施例1と同様にして導電性粒子を作製した。
(Examples 2 to 7)
Conductive particles in the same manner as in Example 1 except that the average particle size of the base particles, the average particle sizes of the insulating resin particles and the insulating inorganic particles, and the coating amount were changed as shown in Table 1 below. Was made.
 (実施例8)
 樹脂粒子の作製時にメタクリル酸メチル100mmolをイソブチルメタクリレート150mmolに変更した事以外は実施例1と同様にして導電性粒子を作製した。
(Example 8)
Conductive particles were produced in the same manner as in Example 1 except that 100 mmol of methyl methacrylate was changed to 150 mmol of isobutyl methacrylate when the resin particles were produced.
 (実施例9)
 無機粒子を日本アエロジル社製酸化アルミニウムC(平均粒径13nm)に変更した事以外は実施例1と同様にして導電性粒子を作製した。
Example 9
Conductive particles were prepared in the same manner as in Example 1 except that the inorganic particles were changed to aluminum oxide C (average particle size 13 nm) manufactured by Nippon Aerosil Co., Ltd.
 (実施例10)
 実施例1で得られた導電性粒子および絶縁性樹脂粒子、無機粒子を準備した。導電性粒子10重量部と絶縁性樹脂粒子10重量部を混合してからハイブリタイザー(奈良機械社製)に投入し1時間処理を行うことで導電性粒子表面に約100nmの厚みの樹脂層が被覆された導電性粒子を得た。次いで無機粒子15重量部を混合してからハイブリタイザーに投入し30分間処理を行うことで、無機粒子が樹脂層上に均一に被覆した、導電性粒子を得た。
(Example 10)
The conductive particles, insulating resin particles, and inorganic particles obtained in Example 1 were prepared. After mixing 10 parts by weight of conductive particles and 10 parts by weight of insulating resin particles, the mixture is put into a hybridizer (manufactured by Nara Machinery Co., Ltd.) and treated for 1 hour, whereby a resin layer having a thickness of about 100 nm is formed on the surface of the conductive particles. Coated conductive particles were obtained. Next, 15 parts by weight of inorganic particles were mixed, and then charged into a hybridizer and treated for 30 minutes to obtain conductive particles in which the inorganic particles were uniformly coated on the resin layer.
 (実施例11)
実施例1の金属層の形成時に金属ニッケル粒子スラリーを添加せず、芯物質が付着されていない基材粒子を使用することで、樹脂粒子の表面に突起を有さないニッケル導電層(金属層)が配置された基材粒子を得たこと以外は、実施例1と同様にして導電性粒子を得た。
(Example 11)
A nickel conductive layer (metal layer) having no protrusions on the surface of the resin particles is obtained by using base particles to which no core substance is attached without adding a metal nickel particle slurry when forming the metal layer of Example 1. The conductive particles were obtained in the same manner as in Example 1 except that the base particles with the) were disposed.
 (比較例1)
 無機粒子を被覆しなかったこと以外は実施例1と同様に導電性粒子を得た。
(Comparative Example 1)
Conductive particles were obtained in the same manner as in Example 1 except that the inorganic particles were not coated.
 (比較例2)
 樹脂粒子を被覆しなかったこと以外は実施例1と同様に導電性粒子を得た。
(Comparative Example 2)
Conductive particles were obtained in the same manner as in Example 1 except that the resin particles were not coated.
 (比較例3)
 樹脂粒子及び無機粒子のいずれも被覆しなかったこと以外は実施例1と同様に導電性粒子を得た。
(Comparative Example 3)
Conductive particles were obtained in the same manner as in Example 1 except that neither resin particles nor inorganic particles were coated.
 (評価)
 (1)被覆率
 ここでいう被覆率は、導電性粒子の表面積全体に対して、絶縁層により被覆されている部分の合計面積が占める割合を示す。具体的には、上述のようにSEMでの観察により、20個の絶縁層被覆導電性粒子を観察し、各々の導電性粒子の表面積全体に占める絶縁層により被覆されている部分の合計投影面積の割合を被覆率として算出した。そして、20個の被覆率の平均値を絶縁層被覆導電性粒子の被覆率とした。
(Evaluation)
(1) Coverage The coverage here refers to the ratio of the total area covered by the insulating layer to the entire surface area of the conductive particles. Specifically, by observing with SEM as described above, 20 insulating layer-coated conductive particles are observed, and the total projected area of the portion covered with the insulating layer occupying the entire surface area of each conductive particle The ratio was calculated as the coverage. And the average value of 20 coverage was made into the coverage of the insulating layer covering electroconductive particle.
 (2)導電性粒子を10%圧縮したときの圧縮弾性率(10%K値)
 得られた導電性粒子の上記圧縮弾性率(10%K値)を、上述した方法により、微小圧縮試験機(フィッシャー社製「フィッシャースコープH-100」)を用いて測定した。
(2) Compressive modulus (10% K value) when conductive particles are compressed 10%
The compression modulus (10% K value) of the obtained conductive particles was measured by the above-described method using a micro compression tester (“Fischer Scope H-100” manufactured by Fischer).
 (3)導電性粒子の回復率
 得られた導電性粒子の回復率を、上述した方法により、微小圧縮試験機(フィッシャー社製「フィッシャースコープH-100」)を用いて測定した。
(3) Recovery rate of conductive particles The recovery rate of the obtained conductive particles was measured by the above-described method using a micro compression tester (Fischer Scope H-100 manufactured by Fischer).
 (4)単分散性
 フェノキシ樹脂(ユニオンカーバイド社製「PKHC」)50重量部とPGMEA30重量部とトルエン20重量部を24時間撹拌混合し、フェノキシ樹脂を完全に溶解した。得られた溶解樹脂10重量部に、導電性粒子を0.05重量部投入して遊星式攪拌機で撹拌し、樹脂組成物を得た。得られた樹脂組成物を剥離処理されたポリエチレンテレフタレート上に塗布し、溶媒を乾燥させて、厚みが10μmである異方性導電フィルムを得た。得られたフィルムを光学顕微鏡で観察し、導電性粒子100万個相当分を観察した時に、単分散ではない、すなわち、凝集している粒子の個数をカウントした。
[単分散性の判定基準]
○○○:凝集粒子が3個未満である。
○○:凝集粒子が3個以上、10個未満である。
○:凝集粒子が10個以上、20個未満である。
△:凝集粒子が20個以上、30個未満である。
×:凝集粒子が30個以上である。
(4) Monodispersed phenoxy resin (“PKHC” manufactured by Union Carbide) 50 parts by weight, PGMEA 30 parts by weight and toluene 20 parts by weight were stirred and mixed for 24 hours to completely dissolve the phenoxy resin. To 10 parts by weight of the obtained dissolved resin, 0.05 part by weight of conductive particles was added and stirred with a planetary stirrer to obtain a resin composition. The obtained resin composition was applied onto polyethylene terephthalate that had been subjected to a release treatment, and the solvent was dried to obtain an anisotropic conductive film having a thickness of 10 μm. The obtained film was observed with an optical microscope, and when the equivalent of 1 million conductive particles was observed, the number of particles that were not monodispersed, that is, aggregated was counted.
[Criteria for monodispersity]
OO: Aggregated particles are less than 3.
◯: There are 3 or more and less than 10 aggregated particles.
A: There are 10 or more and less than 20 aggregated particles.
Δ: There are 20 or more and less than 30 aggregated particles.
X: There are 30 or more aggregated particles.
 (5)導通性(上下の電極間)
 得られた絶縁性粒子付き導電性粒子を含有量が10重量%となるように、三井化学社製「ストラクトボンドXN-5A」に添加し、遊星式攪拌機を使って分散させ、異方性導電ペーストを得た。
(5) Conductivity (between upper and lower electrodes)
The obtained conductive particles with insulating particles are added to “Strectbond XN-5A” manufactured by Mitsui Chemicals so that the content becomes 10% by weight, and dispersed using a planetary stirrer. A paste was obtained.
 L/Sが15μm/15μmであるAl-Nd合金配線にIZO電極パターンが上面に形成された透明ガラス基板を用意した。また、L/Sが15μm/15μmである金電極パターンが下面に形成された半導体チップを用意した。 A transparent glass substrate having an IZO electrode pattern formed on the upper surface of an Al—Nd alloy wiring having L / S of 15 μm / 15 μm was prepared. Further, a semiconductor chip was prepared in which a gold electrode pattern having L / S of 15 μm / 15 μm was formed on the lower surface.
 上記透明ガラス基板上に、得られた異方性導電ペーストを厚さ30μmとなるように塗工し、異方性導電ペースト層を形成した。次に、異方性導電ペースト層上に上記半導体チップを、電極同士が対向するように積層した。その後、異方性導電ペースト層の温度が185℃となるようにヘッドの温度を調整しながら、半導体チップの上面に加圧加熱ヘッドを載せ、バンプ面積あたり70MPaの圧力をかけて異方性導電ペースト層を185℃で硬化させて、接続構造体を得た。 The obtained anisotropic conductive paste was applied on the transparent glass substrate so as to have a thickness of 30 μm to form an anisotropic conductive paste layer. Next, the semiconductor chip was stacked on the anisotropic conductive paste layer so that the electrodes face each other. After that, while adjusting the head temperature so that the temperature of the anisotropic conductive paste layer is 185 ° C., a pressure heating head is placed on the upper surface of the semiconductor chip, and a pressure of 70 MPa is applied per bump area. The paste layer was cured at 185 ° C. to obtain a connection structure.
 得られた20個の接続構造体の上下の電極間の接続抵抗をそれぞれ、4端子法により測定した。なお、電圧=電流×抵抗の関係から、一定の電流を流した時の電圧を測定することにより接続抵抗を求めることができる。導通性を下記の基準で判定した。
[導通性の判定基準]
○○○:抵抗値が3Ω以下の接続構造体の個数の割合が90%以上である。
○○:抵抗値が3Ω以下の接続構造体の個数の割合が80%以上、90%未満である。
○:抵抗値が3Ω以下の接続構造体の個数の割合が70%以上、80%未満である。
△:抵抗値が3Ω以下の接続構造体の個数の割合が60%以上、70%未満である。
×:抵抗値が3Ω以下の接続構造体の個数の割合が60%未満である。
The connection resistances between the upper and lower electrodes of the 20 connection structures obtained were each measured by the 4-terminal method. Note that the connection resistance can be obtained by measuring the voltage when a constant current is passed from the relationship of voltage = current × resistance. The conductivity was determined according to the following criteria.
[Conductivity criteria]
OO: The ratio of the number of connection structures having a resistance value of 3Ω or less is 90% or more.
◯: The ratio of the number of connection structures having a resistance value of 3Ω or less is 80% or more and less than 90%.
A: The ratio of the number of connection structures having a resistance value of 3Ω or less is 70% or more and less than 80%.
Δ: The ratio of the number of connection structures having a resistance value of 3Ω or less is 60% or more and less than 70%.
X: The ratio of the number of connection structures having a resistance value of 3Ω or less is less than 60%.
 (6)絶縁性(横方向に隣り合う電極間)
 上記(5)導通性の評価で得られた20個の接続構造体において、隣接する電極間のリークの有無を、テスターで抵抗を測定することにより評価した。絶縁性を下記の基準で判定した。
[絶縁性の判定基準]
○○○:抵抗値が10Ω以上の接続構造体の個数の割合が90%以上である。
○○:抵抗値が10Ω以上の接続構造体の個数の割合が80%以上、90%未満である。
○:抵抗値が10Ω以上の接続構造体の個数の割合が70%以上、80%未満である。
△:抵抗値が10Ω以上の接続構造体の個数の割合が60%以上、70%未満である。
×:抵抗値が10Ω以上の接続構造体の個数の割合が60%未満である。
(6) Insulation (between adjacent electrodes in the horizontal direction)
In the 20 connection structures obtained in the above (5) conductivity evaluation, the presence or absence of leakage between adjacent electrodes was evaluated by measuring resistance with a tester. Insulation was judged according to the following criteria.
[Insulation criteria]
OO: The ratio of the number of connection structures having a resistance value of 10 8 Ω or more is 90% or more.
◯: The ratio of the number of connection structures having a resistance value of 10 8 Ω or more is 80% or more and less than 90%.
A: The ratio of the number of connection structures having a resistance value of 10 8 Ω or more is 70% or more and less than 80%.
Δ: The ratio of the number of connection structures having a resistance value of 10 8 Ω or more is 60% or more and less than 70%.
X: The ratio of the number of connection structures having a resistance value of 10 8 Ω or more is less than 60%.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1には、各実施例及び比較例にて作製した導電性粒子について、絶縁性樹脂粒子(又は樹脂層)及び無機粒子の被覆率、並びに、導電性粒子の10%K値(N/mm)、回復率(%)、単分散性、接続抵抗値(導通性)及び絶縁性の評価結果を示している。 Table 1 shows the coverage of insulating resin particles (or resin layers) and inorganic particles, and the 10% K value (N / mm) of the conductive particles for the conductive particles produced in each Example and Comparative Example. 2 ), evaluation results of recovery rate (%), monodispersity, connection resistance value (conductivity) and insulation are shown.
 表1からわかるように、各実施例で得られた導電性粒子は、10%K値(N/mm)、回復率(%)、単分散性、接続抵抗値及び絶縁性のいずれの性能も優れることが示されている。一方、比較例で得られたサンプルでは、基材粒子が樹脂及び無機材料で被覆されていないため、凝集が生じやすく、単分散性が悪いものであり、さらに、絶縁性についても実施例の導電性粒子を使用した場合よりも劣る結果であった。 As can be seen from Table 1, the conductive particles obtained in each example have a performance of any of 10% K value (N / mm 2 ), recovery rate (%), monodispersity, connection resistance value, and insulation. Has also been shown to be superior. On the other hand, in the sample obtained in the comparative example, since the substrate particles are not coated with the resin and the inorganic material, aggregation is likely to occur, and the monodispersity is poor. The result was inferior to the case where the conductive particles were used.

Claims (8)

  1.  基材粒子と、該基材粒子の表面を覆う金属層とを有してなる導電性粒子であって、
     前記金属層の表面は、樹脂及び無機材料で被覆されている、導電性粒子。
    Conductive particles comprising base particles and a metal layer covering the surface of the base particles,
    Conductive particles in which the surface of the metal layer is coated with a resin and an inorganic material.
  2.  前記樹脂は樹脂粒子を含む、請求項1に記載の導電性粒子。 The conductive particle according to claim 1, wherein the resin includes resin particles.
  3.  前記無機材料は無機粒子を含む、請求項1又は2に記載の導電性粒子。 The conductive particles according to claim 1 or 2, wherein the inorganic material includes inorganic particles.
  4.  前記樹脂は樹脂粒子を含み、前記無機材料は無機粒子を含み、前記樹脂粒子に対する前記無機粒子の平均粒子径の比が1/50以上、1以下である、請求項1に記載の導電性粒子。 2. The conductive particle according to claim 1, wherein the resin includes resin particles, the inorganic material includes inorganic particles, and a ratio of an average particle diameter of the inorganic particles to the resin particles is 1/50 or more and 1 or less. .
  5.  前記無機粒子の被覆率が80%以上である、請求項3又は4に記載の導電性粒子。 The conductive particles according to claim 3 or 4, wherein a coverage of the inorganic particles is 80% or more.
  6.  前記金属層の表面には前記樹脂で被覆されてなる樹脂層が形成されており、この樹脂層の表面には前記無機材料で被覆されてなる無機層が形成されている、請求項1~5のいずれか1項に記載の導電性粒子。 A resin layer coated with the resin is formed on the surface of the metal layer, and an inorganic layer coated with the inorganic material is formed on the surface of the resin layer. Electroconductive particle of any one of these.
  7.  請求項1~6のいずれか1項に記載の導電性粒子と、バインダー樹脂とを含む、導電材料。 A conductive material comprising the conductive particles according to any one of claims 1 to 6 and a binder resin.
  8.  第1の電極を表面に有する第1の接続対象部材と、
     第2の電極を表面に有する第2の接続対象部材と、
     前記第1の接続対象部材と前記第2の接続対象部材とを接続している接続部とを備え、
     前記接続部の材料が、請求項1~6のいずれか1項に記載の導電性粒子又は請求項7に記載の導電材料を含み、
     前記第1の電極と前記第2の電極とが前記導電性粒子又は前記導電材料により電気的に接続されている、接続構造体。
    A first connection object member having a first electrode on its surface;
    A second connection target member having a second electrode on its surface;
    A connection portion connecting the first connection target member and the second connection target member;
    The material of the connecting portion includes the conductive particles according to any one of claims 1 to 6 or the conductive material according to claim 7.
    A connection structure in which the first electrode and the second electrode are electrically connected by the conductive particles or the conductive material.
PCT/JP2016/077952 2015-09-24 2016-09-23 Conductive particles, conductive material, and connection structure WO2017051842A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680031432.6A CN107615403B (en) 2015-09-24 2016-09-23 Conductive particle, conductive material, and connection structure
KR1020177031668A KR102624796B1 (en) 2015-09-24 2016-09-23 Conductive particles, conductive material, and connection structure
JP2016561027A JP7016611B2 (en) 2015-09-24 2016-09-23 Conductive particles, conductive materials, and connecting structures

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015186944 2015-09-24
JP2015-186944 2015-09-24

Publications (1)

Publication Number Publication Date
WO2017051842A1 true WO2017051842A1 (en) 2017-03-30

Family

ID=58386692

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/077952 WO2017051842A1 (en) 2015-09-24 2016-09-23 Conductive particles, conductive material, and connection structure

Country Status (5)

Country Link
JP (2) JP7016611B2 (en)
KR (1) KR102624796B1 (en)
CN (1) CN107615403B (en)
TW (1) TWI735465B (en)
WO (1) WO2017051842A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115298231A (en) * 2020-03-26 2022-11-04 积水化学工业株式会社 Resin particle, conductive material, and connection structure
WO2023171631A1 (en) * 2022-03-09 2023-09-14 株式会社レゾナック Conductive particles, adhesive film for circuit connection, production method therefor, connection structure, and production method therefor
WO2023171630A1 (en) * 2022-03-09 2023-09-14 株式会社レゾナック Conductive particles, adhesive film for circuit connection and method for producing same, and connection structure and method for producing same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210083246A (en) * 2018-11-07 2021-07-06 니폰 가가쿠 고교 가부시키가이샤 Coated particles, conductive material containing same, and method for producing coated particles

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011029180A (en) * 2009-07-02 2011-02-10 Hitachi Chem Co Ltd Coated conductive particle
JP2012234821A (en) * 2010-07-28 2012-11-29 Sekisui Chem Co Ltd Conductive particle with insulating particles and connection structure
JP2014029856A (en) * 2012-07-03 2014-02-13 Sekisui Chem Co Ltd Conductive particles with insulating particles, conductive material, and connection structure
JP5530571B1 (en) * 2012-11-28 2014-06-25 積水化学工業株式会社 Conductive particles with insulating particles, conductive material, and connection structure
JP2014225440A (en) * 2013-04-16 2014-12-04 積水化学工業株式会社 Conductive particle for photocurable conductive material, photocurable conductive material, method of producing connection structure and connection structure
JP2014241276A (en) * 2013-05-16 2014-12-25 日立化成株式会社 Conductive particles, insulation coated conductive particles, anisotropic conductive adhesive and method of producing conductive particles
JP2015028923A (en) * 2013-06-27 2015-02-12 積水化学工業株式会社 Conductive particle, conductive material and connection structure
JP2015187983A (en) * 2014-03-10 2015-10-29 積水化学工業株式会社 Conductive particles with insulating particles, conductive materials and connection structure

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100722493B1 (en) * 2005-09-02 2007-05-28 제일모직주식회사 Insulated Conductive Particles and an Anisotropic Conductive Adhesive Film Using the Same
CN102474024B (en) * 2009-07-02 2014-09-17 日立化成株式会社 Conductive particle
WO2013108740A1 (en) * 2012-01-19 2013-07-25 積水化学工業株式会社 Conductive particles, conductive material and connection structure
CN104471650A (en) * 2012-10-02 2015-03-25 积水化学工业株式会社 Conductive particle, conductive material and connecting structure
JP6577698B2 (en) 2013-05-14 2019-09-18 積水化学工業株式会社 Conductive film and connection structure

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011029180A (en) * 2009-07-02 2011-02-10 Hitachi Chem Co Ltd Coated conductive particle
JP2012234821A (en) * 2010-07-28 2012-11-29 Sekisui Chem Co Ltd Conductive particle with insulating particles and connection structure
JP2014029856A (en) * 2012-07-03 2014-02-13 Sekisui Chem Co Ltd Conductive particles with insulating particles, conductive material, and connection structure
JP5530571B1 (en) * 2012-11-28 2014-06-25 積水化学工業株式会社 Conductive particles with insulating particles, conductive material, and connection structure
JP2014225440A (en) * 2013-04-16 2014-12-04 積水化学工業株式会社 Conductive particle for photocurable conductive material, photocurable conductive material, method of producing connection structure and connection structure
JP2014241276A (en) * 2013-05-16 2014-12-25 日立化成株式会社 Conductive particles, insulation coated conductive particles, anisotropic conductive adhesive and method of producing conductive particles
JP2015028923A (en) * 2013-06-27 2015-02-12 積水化学工業株式会社 Conductive particle, conductive material and connection structure
JP2015187983A (en) * 2014-03-10 2015-10-29 積水化学工業株式会社 Conductive particles with insulating particles, conductive materials and connection structure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115298231A (en) * 2020-03-26 2022-11-04 积水化学工业株式会社 Resin particle, conductive material, and connection structure
WO2023171631A1 (en) * 2022-03-09 2023-09-14 株式会社レゾナック Conductive particles, adhesive film for circuit connection, production method therefor, connection structure, and production method therefor
WO2023171630A1 (en) * 2022-03-09 2023-09-14 株式会社レゾナック Conductive particles, adhesive film for circuit connection and method for producing same, and connection structure and method for producing same

Also Published As

Publication number Publication date
JP7016611B2 (en) 2022-02-07
JPWO2017051842A1 (en) 2018-07-12
KR20180059392A (en) 2018-06-04
TW201719679A (en) 2017-06-01
KR102624796B1 (en) 2024-01-12
TWI735465B (en) 2021-08-11
CN107615403A (en) 2018-01-19
JP7036872B2 (en) 2022-03-15
JP2020194794A (en) 2020-12-03
CN107615403B (en) 2021-12-24

Similar Documents

Publication Publication Date Title
JP5216165B1 (en) Conductive particles, conductive materials, and connection structures
JP6475805B2 (en) Conductive particles with insulating particles, conductive material, and connection structure
JP7036872B2 (en) Conductive particles, conductive materials, and connecting structures
JP6034177B2 (en) Conductive particles, conductive materials, and connection structures
TWI820157B (en) Conductive particles, conductive materials and connection structures
JP5636118B2 (en) Conductive particles, conductive materials, and connection structures
JP6276351B2 (en) Conductive particles, conductive materials, and connection structures
JP6151990B2 (en) Conductive particles with insulating particles, conductive material, and connection structure
JP6478308B2 (en) Conductive particles, conductive materials, and connection structures
JP2014026971A (en) Conductive particle, conductive material, and connection structure
JP2016154139A (en) Conductive particle powder, method for producing conductive particle powder, conductive material and connection structure
JP6888903B2 (en) Conductive particles, conductive materials and connecting structures
JP6441555B2 (en) Conductive particles, conductive materials, and connection structures
JP7132274B2 (en) Conductive particles, conductive materials and connecting structures
JP7132112B2 (en) Conductive film and connection structure
JP2018137225A (en) Conductive particles, conductive material and connection structure
JP2015057768A (en) Conductive particle, conductive material and connection structure
JP2015056306A (en) Electrically conductive particle, electrically conductive material, and connection structure
JP2015057769A (en) Conductive particle, conductive material and connection structure

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016561027

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16848630

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177031668

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16848630

Country of ref document: EP

Kind code of ref document: A1