WO2017051514A1 - Cylindrical nonaqueous electrolyte secondary battery - Google Patents

Cylindrical nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
WO2017051514A1
WO2017051514A1 PCT/JP2016/004173 JP2016004173W WO2017051514A1 WO 2017051514 A1 WO2017051514 A1 WO 2017051514A1 JP 2016004173 W JP2016004173 W JP 2016004173W WO 2017051514 A1 WO2017051514 A1 WO 2017051514A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
heat
electrolyte secondary
material layer
cylindrical
Prior art date
Application number
PCT/JP2016/004173
Other languages
French (fr)
Japanese (ja)
Inventor
柴野 靖幸
翔太 矢冨
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Publication of WO2017051514A1 publication Critical patent/WO2017051514A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a cylindrical non-aqueous electrolyte secondary battery, and more particularly to a cylindrical non-aqueous electrolyte secondary battery exhibiting high safety by improving a separator.
  • a non-aqueous electrolyte secondary battery having high energy density is used as a power source for mobile devices such as notebook computers and mobile phones.
  • non-aqueous electrolyte secondary batteries have become widespread as power sources for electric tools, assist bicycles, and electric vehicles, and a further increase in capacity is required.
  • a cylindrical nonaqueous electrolyte secondary battery is often used in a harsh environment as an assembled battery in which a plurality of batteries are connected in series or in parallel. For this reason, the cylindrical nonaqueous electrolyte secondary battery is provided with various means for ensuring safety.
  • a cylindrical center pin is inserted into a hollow portion formed in a core portion of a wound electrode body.
  • Many center pins are formed by bending a metal plate into a cylindrical shape.
  • the center pin so formed has a slit formed on the side surface along the length direction.
  • Patent Documents 1 to 3 are cited as prior art documents disclosing a cylindrical non-aqueous electrolyte secondary battery having a center pin.
  • a center pin is used to short-circuit the inner periphery of the electrode body when the electrode body is crushed.
  • the end portion of the slit of the center pin is deformed outward, and the end portion breaks the inner peripheral portion of the electrode body to promote internal short circuit.
  • a short circuit current concentrates on the inner peripheral side of an electrode body, and the temperature rise of the positive electrode active material layer by a short circuit current is suppressed.
  • a center pin is used to prevent deformation of the electrode body due to charge / discharge.
  • the center pin is not only formed by bending a metal plate into a cylindrical shape, but also in the vicinity of the slit so that the end face of the slit is oriented inside the cylindrical portion of the center pin. Thereby, when the electrode body is crushed, the end surface of the slit of the center pin is deformed toward the inside of the center pin, so that an internal short circuit due to the slit of the center pin is prevented.
  • Non-aqueous electrolyte secondary batteries generally use a polyolefin microporous membrane as a separator.
  • a separator containing a polyolefin having a low melting point exhibits a shutdown function that suppresses movement of lithium ions between the positive and negative electrodes when the battery temperature rises.
  • This shutdown function utilizes the phenomenon that the polyolefin softens with increasing temperature and closes the opening of the separator.
  • polyethylene is preferably used as the polyolefin.
  • Japanese Patent Laid-Open No. 08-255631 Japanese Patent Laid-Open No. 2003-092148 JP 2003-229177 A JP 2006-032246 A Japanese Patent Laid-Open No. 2007-299612 JP 2010-021033 A JP 2013-105578 A
  • Patent Document 1 may not be effective for a high-capacity cylindrical nonaqueous electrolyte secondary battery, and an internal short circuit caused by the center pin when the electrode body is crushed is It is preferably prevented. According to the techniques described in Patent Documents 2 and 3, an internal short circuit caused by the slit of the center pin is suppressed. However, regardless of the presence or absence of slits, when the battery is crushed and the electrode body is crushed, the presence of a center pin applies a large force locally to the electrode plate and separator, so the separator with insufficient mechanical strength breaks. There is a risk.
  • the technology for forming a heat-resistant layer on the surface of the base material layer of the separator as in Patent Documents 4 to 7 is effective as a means for preventing an internal short circuit due to shrinkage or melting of the separator.
  • this technique is not always effective as a means for ensuring safety when the electrode body is crushed in a crush test or the like.
  • the heat-resistant layer is formed on the surface of the base material layer of the separator, it is necessary to reduce the thickness of the base material layer by the thickness of the heat-resistant layer. Therefore, forming a heat-resistant layer on the surface of the separator may lead to a decrease in the mechanical strength of the separator.
  • the present invention has been made in view of the above, and ensures safety during a crushing test of a cylindrical non-aqueous electrolyte secondary battery having a separator having a heat-resistant layer formed on a substrate mainly composed of polyolefin. For the purpose.
  • a cylindrical nonaqueous electrolyte secondary battery includes an electrode body in which a positive electrode plate and a negative electrode plate are wound via a separator, a nonaqueous electrolyte, and an electrode body It has a center pin inserted into a hollow portion formed at a position corresponding to the winding shaft portion, and a bottomed cylindrical outer can that accommodates the electrode body and the nonaqueous electrolyte.
  • the separator includes a base material layer containing polyolefin as a main component and a heat resistant layer formed on at least one surface of the base material layer and containing a heat-resistant polymer as a main component.
  • the maximum height Rz of the surface of the base material layer that is the base of the heat-resistant layer is 0.1 ⁇ m or more and 3 ⁇ m or less.
  • the breakage of the separator is suppressed when the cylindrical nonaqueous electrolyte secondary battery is crushed by the crush test or the like. Therefore, according to the present invention, the safety of the cylindrical nonaqueous electrolyte secondary battery can be enhanced.
  • FIG. 1 is a cross-sectional perspective view of a cylindrical nonaqueous electrolyte secondary battery according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of a main part of a separator according to one embodiment of the present invention.
  • a cylindrical nonaqueous electrolyte secondary battery according to an embodiment of the present invention will be described with reference to FIGS.
  • this invention is not limited to the following embodiment, In the range which does not change the summary of this invention, it can change suitably and can implement.
  • the cylindrical nonaqueous electrolyte secondary battery 10 has an electrode body 14 and a nonaqueous electrolyte housed inside a bottomed cylindrical outer can 20.
  • the inside of the cylindrical non-aqueous electrolyte secondary battery 10 is sealed by caulking and fixing the sealing body 21 to the opening of the outer can 20 via the gasket 19.
  • the electrode body 14 is produced by winding the positive electrode plate 12 and the negative electrode plate 13 through the separator 11. At this time, the hollow portion 15 is formed at a position corresponding to the winding shaft portion of the electrode body.
  • a center pin 16 is inserted into the hollow portion 15. In order to facilitate the insertion of the center pin 16, it is preferable to form the hollow portion 15 so that the cross-sectional shape is a perfect circle.
  • a center pin 16 formed by bending a plate-like member into a cylindrical shape is used, and a slit is formed on the side surface along the length direction. Further, the tip of the slit is bent inside the center pin 16. That is, the cross-sectional shape of the center pin 16 is a shape in which the C-shaped tip is bent inward, but is not limited thereto.
  • a metal member processed into a pipe shape can be used for the center pin 16, it is preferable from the viewpoint of cost reduction to use the center pin 16 formed of a metal plate in a cylindrical shape as in this embodiment.
  • the material of the center pin 16 can be used without limitation as long as it has a strength that can ensure the shape of the hollow portion 15 of the electrode body 14 even when charging and discharging are repeated and corrosion resistance in the nonaqueous electrolyte.
  • Examples of preferred materials for the center pin 16 include stainless steel, nickel, titanium, and iron. When iron is used, it is preferable to plate with nickel in order to ensure corrosion resistance in the non-aqueous electrolyte.
  • the separator 11 is comprised from the base material layer 11a and the heat-resistant layer 11b formed in the surface, as shown in FIG. It is sufficient that the heat-resistant layer 11b is formed on one surface of the base material layer 11a. In the present embodiment, the heat-resistant layer 11 b is formed only on the side of the separator 11 that faces the positive electrode plate 12. The heat-resistant layer 11b may be formed on the side of the separator 11 facing the negative electrode plate 13, or may be formed on both surfaces of the base material layer 11a.
  • the base material layer 11a is made of a microporous film containing polyolefin as a main component, and the polyolefin is preferably polyethylene, polypropylene, or a copolymer of ethylene and propylene.
  • polyolefin is preferably polyethylene, polypropylene, or a copolymer of ethylene and propylene.
  • the base material layer 11a can contain other polymers together with polyolefin. By appropriately selecting another polymer, shrinkage of the base material layer 11a when the battery temperature rises can be prevented.
  • polystyrene examples include polystyrene, rubber-containing polystyrene, and styrene polymers such as acrylonitrile-styrene copolymers; polyesters such as polyethylene terephthalate; polyamides such as polyamide 6 and polyamide 12; acrylic polymers such as polymethyl methacrylate; cellulose derivatives; Examples are thermoplastic polymers such as thermoplastic elastomers.
  • the content of polyolefin in the base material layer 11a is preferably 40 to 100% by mass, more preferably 50 to 100% by mass.
  • the thickness of the base material layer 11a is preferably 3 to 220 ⁇ m.
  • the average pore diameter of the base material layer 11a is preferably 0.05 to 2 ⁇ m.
  • the porosity of the base material layer 11a is preferably 25 to 80% by volume, more preferably 25 to 75% by volume.
  • the puncture strength of the base material layer 11a is preferably 300 gf or more, more preferably 400 gf or more.
  • the heat-resistant layer 11b is mainly composed of a polymer having heat resistance. It is a necessary condition for the heat resistance that the melting point and heat shrinkage starting temperature of the polymer are higher than the melting point and heat shrinkage starting temperature of the base material layer 11a, respectively.
  • a polymer having a melting point higher than 150 ° C. and lower than or equal to 350 ° C., more preferably higher than or equal to 170 ° C. and lower than or equal to 300 ° C. can be used.
  • amide bond-containing polymers amide bond-containing polymers, fluorine-containing polymers, and imide bond-containing polymers are preferable.
  • aramid polyvinylidene fluoride (PVDF), vinylidene fluoride-hexafluoropropylene (VDF-HFP) copolymer, polyimide ( PI) and polyamideimide (PAI) are more preferable.
  • the above polymers can be used alone or in combination of two or more.
  • the heat-resistant layer 11b can contain another polymer other than the heat-resistant polymer as the main component as long as the heat resistance is not impaired. It is preferable that content of the said other polymer is 10 mass% or less with respect to the mass of the heat-resistant layer 11b.
  • the heat-resistant layer 11b can contain an inorganic filler made of insulating inorganic particles in addition to the heat-resistant polymer as the main component.
  • an inorganic filler inorganic oxides such as silicon oxide (SiO 2 ), aluminum oxide (Al 2 O 3 ), titanium oxide (TiO 2 ), magnesium oxide (MgO), and zirconium oxide (ZrO 2 ) are preferable.
  • the thickness of the heat-resistant layer 11b can be selected from the range of 0.01 to 50 ⁇ m, preferably 0.1 to 20 ⁇ m, more preferably 0.5 to 10 ⁇ m.
  • the average pore diameter of the heat-resistant layer 11b is preferably 0.05 to 2 ⁇ m.
  • the porosity of the heat-resistant layer 11b is preferably 25 to 80% by volume, more preferably 25 to 75% by volume.
  • the heat-resistant layer 11b can be formed by applying a coating liquid containing a main component polymer on the base material layer 11a by a known coating method and drying it.
  • a coating liquid containing a main component polymer on the base material layer 11a by a known coating method and drying it.
  • the coating liquid a solution in which the main component polymer is dissolved in a solvent, or a dispersion liquid in which the main component polymer is dispersed in a dispersion medium can be used.
  • solvent or dispersion medium for the coating solution examples include alcohols such as methanol, ethanol, and ethylene glycol (such as C2-4 alkanol or C2-4 alkanediol); ketones such as acetone; ethers such as diethyl ether and tetrahydrofuran; dimethylformamide, and the like Nitriles such as acetonitrile; sulfoxides such as dimethyl sulfoxide; N-methyl-2-pyrrolidone (NMP) and the like.
  • alcohols such as methanol, ethanol, and ethylene glycol (such as C2-4 alkanol or C2-4 alkanediol)
  • ketones such as acetone
  • ethers such as diethyl ether and tetrahydrofuran
  • dimethylformamide and the like
  • Nitriles such as acetonitrile
  • sulfoxides such as dimethyl sulfoxide
  • NMP N-methyl-2-pyrrolidone
  • the positive electrode plate 12 is composed of a positive electrode current collector and a positive electrode active material layer formed on the surface thereof.
  • a positive electrode current collector for example, aluminum, an aluminum alloy, stainless steel, titanium, or a metal foil formed of a titanium alloy can be used.
  • the thickness of the positive electrode current collector is, for example, 1 to 100 ⁇ m, preferably 5 to 70 ⁇ m, more preferably 10 to 50 ⁇ m.
  • the positive electrode active material layer can contain a binder and a conductive agent in addition to the positive electrode active material.
  • the positive electrode active material any material that can electrochemically occlude and release lithium ions can be used without limitation.
  • the positive electrode active material LiCoO 2 , LiNiO 2 , LiCo x Ni 1-x O 2 (0 ⁇ x ⁇ 1), LiMn 2 O 4 , LiNi 0.4 Mn 1.6 O 4 , LiCoPO 4 , LiFePO 4 , LiCoPO 4 4-y F y (0 ⁇ y ⁇ 1), LiFePO 4-z F z (0 ⁇ z ⁇ 1), Li 4 Ti 5 O 12, Li 4 Fe 0.5 Ti 4.5 O 12, and Li 4 Examples include lithium transition metal composite oxides such as Zn 0.5 Ti 4.5 O 12 ; metal oxides such as V 2 O 5 and MnO 2 ; sulfides such as TiS 2 and LiFeS 2 . These can be used alone or in combination of two or more. These may be used by adding
  • the conductive agent examples include carbon black such as acetylene black, ketjen black, channel black, furnace black, lamp black, and thermal black; graphite such as natural graphite and artificial graphite; and conductive fiber such as carbon fiber and metal fiber. Is done.
  • the binder polyvinylidene fluoride (PVDF), a modified product of polyvinylidene fluoride (PVDF), and a fluororesin such as polytetrafluoroethylene (PTFE); styrene-butadiene rubber (SBR), styrene-butadiene rubber (SBR) )
  • rubber particle binders such as polymers having acrylate units; and cellulose derivatives such as carboxymethylcellulose (CMC).
  • the thickness of the positive electrode active material layer is not particularly limited, but is, for example, 0.1 to 150 ⁇ m, preferably 1 to 100 ⁇ m, more preferably 10 to 90 ⁇ m.
  • the negative electrode plate 13 is composed of a negative electrode current collector and a negative electrode active material layer formed on the surface thereof.
  • a negative electrode current collector for example, a metal foil formed of copper, a copper alloy, nickel, a nickel alloy, or stainless steel can be used.
  • the thickness of the negative electrode current collector is, for example, 1 to 100 ⁇ m, preferably 2 to 50 ⁇ m, more preferably 3 to 30 ⁇ m.
  • the negative electrode active material layer can contain a binder and a conductive agent in addition to the negative electrode active material.
  • any material capable of electrochemically occluding and releasing lithium ions can be used without limitation.
  • Carbon materials such as graphite and carbon nanotubes as the negative electrode active material; metal materials containing at least one selected from the group consisting of Li, Al, Zn, Sn, In, Si, Ta, and Nb or oxides thereof; Li 4 Lithium titanium oxide having a spinel structure such as Ti 5 O 12 , Li 4 Fe 0.5 Ti 4.5 O 12 , and Li 4 Zn 0.5 Ti 4.5 O 4 ; Sulfide such as TiS 4 ; LiCo Examples include nitrides such as 2.6 O 0.4 N and Ta 3 N 5 .
  • a small amount of dissimilar metal may be added to the metal material, oxide, sulfide, and nitride.
  • the conductive agent and binder used for the negative electrode plate 13 those exemplified as the conductive agent and binder used for the positive electrode plate 12 can be used.
  • the thickness of the negative electrode active material layer is not particularly limited, but is, for example, 0.1 to 150 ⁇ m, preferably 1 to 120 ⁇ m, more preferably 10 to 100 ⁇ m.
  • Known methods can be used for forming the positive electrode active material layer and the negative electrode active material layer. For example, wet coating methods such as a die coating method and a gravure coating method, a sputtering method, a physical vapor deposition method, a chemical vapor deposition method, and a screen. The printing method is mentioned.
  • wet coating methods such as a die coating method and a gravure coating method, a sputtering method, a physical vapor deposition method, a chemical vapor deposition method, and a screen.
  • the printing method is mentioned.
  • Each of the positive electrode active material layer and the negative electrode active material layer may be formed only on one side of the current collector, or may be formed on both sides.
  • non-aqueous electrolyte a solution obtained by dissolving a lithium salt as an electrolyte salt in a non-aqueous solvent can be used.
  • a cyclic carbonate, a chain carbonate, a cyclic carboxylic acid ester and a chain carboxylic acid ester can be used, and these are preferably used in a mixture of two or more.
  • the cyclic carbonate include ethylene carbonate (EC), propylene carbonate (PC), and butylene carbonate (BC).
  • a cyclic carbonate in which part of hydrogen is substituted with fluorine, such as fluoroethylene carbonate (FEC) can also be used.
  • the chain carbonate include dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), diethyl carbonate (DEC), and methyl propyl carbonate (MPC).
  • Examples of cyclic carboxylic acid esters include ⁇ -butyrolactone ( ⁇ -BL) and ⁇ -valerolactone ( ⁇ -VL).
  • Examples of chain carboxylic acid esters include methyl pivalate, ethyl pivalate, methyl isobutyrate and methyl Pionate is exemplified.
  • LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ) , LiC (CF 3 SO 2 ) 3 , LiC (C 2 F 5 SO 2 ) 3 , LiAsF 6 , LiClO 4 , Li 2 B 10 Cl 10 and Li 2 B 12 Cl 12 are exemplified.
  • LiPF 6 is particularly preferable, and the concentration of the lithium salt in the nonaqueous electrolyte is preferably 0.5 to 2.0 mol / L.
  • Other lithium salts such as LiBF 4 may be mixed with LiPF 6 .
  • Example 1 (Preparation of separator) As the base material layer 11a, a polyethylene microporous film having a thickness of 20 ⁇ m was used. This microporous membrane was produced by extruding molten polyethylene and forming it into a sheet shape, and stretching the obtained molded product in a biaxial direction. The base material layer 11a having a maximum surface height Rz of 0.1 ⁇ m was prepared by adjusting the conditions for stretching the melted polyethylene.
  • a polyamide as a heat-resistant polymer is dissolved in N-methyl-2-pyrrolidone (NMP) as a solvent, and 2 parts by mass of aluminum oxide (Al 2 O 3 , average particle diameter is 1 part by mass of polyamide) 0.013 ⁇ m) was added to the solvent to prepare a coating solution.
  • the coating liquid was applied to one side of the base material layer 11a and dried to form a heat-resistant layer 11b having a thickness of 3.5 ⁇ m. In this way, the separator 11 according to Example 1 was produced.
  • the piercing strength of the base material layer 11a was 420 gf.
  • the puncture strength was determined by applying a needle-like terminal with a tip of ⁇ 1 mm to the base material layer 11a applied with tension from both ends at 200 mm / min. And measured at a constant speed.
  • the maximum load when the base material layer 11a broke was defined as the piercing strength.
  • Preparation of positive electrode plate 100 parts by mass of lithium nickel cobalt aluminum oxide represented by LiNi 0.82 Co 0.15 Al 0.03 O 2 as a positive electrode active material, 1 part by mass of acetylene black as a conductive agent, and as a binder It mixed so that polyvinylidene fluoride (PVDF) might be 0.9 mass part.
  • the mixture was put into N-methyl-2-pyrrolidone (NMP) as a dispersion medium and kneaded to prepare a positive electrode mixture slurry.
  • NMP N-methyl-2-pyrrolidone
  • the positive electrode mixture slurry was intermittently applied to both surfaces of a strip-shaped aluminum foil having a thickness of 15 ⁇ m as a positive electrode current collector, and dried to form a positive electrode active material layer.
  • the positive electrode active material layer was compressed to a predetermined thickness with a roll.
  • the positive electrode lead 12a made of aluminum was ultrasonically welded to the exposed portion of the positive electrode current collector where the positive electrode active material layer was not formed.
  • a positive electrode plate 12 was produced by applying a polyimide insulating tape so as to cover the positive electrode lead 12a.
  • the scale-like graphite as the negative electrode active material is 100 parts by mass
  • the styrene-butadiene rubber (SBR) as the binder is 1 part by mass
  • the sodium salt of carboxymethyl cellulose (CMC) as the thickener is 1 part by mass.
  • the mixture was put into water as a dispersion medium and kneaded to prepare a negative electrode mixture slurry.
  • the negative electrode mixture slurry was intermittently applied to both surfaces of a strip-shaped copper foil having a thickness of 10 ⁇ m as a negative electrode current collector, and dried at 110 ° C. for 30 minutes to form a negative electrode active material layer.
  • the negative electrode active material layer was compressed to a predetermined thickness with a roll.
  • the negative electrode lead 13b made of nickel was resistance-welded to the exposed portion of the negative electrode current collector on which the negative electrode active material layer was not formed, and the negative electrode plate 13 was produced.
  • An electrode body 14 was produced as follows using a core composed of two core rods having a semicircular cross-sectional shape. First, a separator was sandwiched between winding core rods, and only the separator 11 was wound. Next, the positive electrode plate 12 and the negative electrode plate 13 were each inserted between the separators 11 at a predetermined timing, and the positive electrode plate 12 and the negative electrode plate 13 were wound with the separator 11 interposed therebetween. Finally, the end of the outermost winding end was fixed with an insulating tape, and the winding core was pulled out to produce an electrode body 14 having a hollow portion 15 formed at a position corresponding to the winding shaft portion.
  • the center pin 16 was produced by forming a stainless steel plate having a thickness of 0.25 mm into a cylindrical shape.
  • the cross-sectional shape orthogonal to the length direction of the center pin 16 was a shape in which the C-shaped tip was bent inward.
  • a non-aqueous electrolyte is injected into the outer can 20 and the sealing body 21 is caulked and fixed to the grooved portion of the outer can 20 via the gasket 19, whereby a cylinder having a diameter of 18 mm and a height of 65 mm shown in FIG.
  • a nonaqueous electrolyte secondary battery 10 was produced.
  • the volume energy density of the cylindrical nonaqueous electrolyte secondary battery 10 was 680 Wh / L.
  • Example 2 to 7 As shown in Table 1, the maximum height Rz of the surface of the base material layer 11a was changed to any value in the range of 0.5 to 3.0 ⁇ m. Cylindrical nonaqueous electrolyte secondary batteries 10 according to Examples 2 to 7 were produced. The piercing strengths of the base material layers 11a of Examples 2 to 7 were 410 gf, 415 gf, 410 gf, 407 gf, 410 gf, and 400 gf, respectively.
  • a cylindrical non-aqueous electrolyte secondary battery having a volume energy density of 680 Wh / L was used.
  • the present invention provides a cylindrical non-aqueous electrolyte secondary battery having a volume energy density of 650 Wh / L or more. It is effective.
  • a cylindrical nonaqueous electrolyte secondary battery excellent in safety can be provided.
  • the present invention is effective for a high-capacity cylindrical nonaqueous electrolyte secondary battery having a volume energy density of 650 Wh / L or more. Therefore, the industrial applicability of the present invention is great.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)

Abstract

This cylindrical nonaqueous electrolyte secondary battery comprises: an electrode body which is obtained by winding a positive electrode plate and a negative electrode plate together, with a separator being interposed therebetween; an electrolyte solution; a center pin which is inserted into a hollow part that is formed in a position corresponding to the winding axis of the electrode body; and a bottomed cylindrical outer package can which contains the electrode body and the electrolyte solution. The separator comprises a base layer and a heat-resistant layer that is formed on at least one surface of the base layer. The base layer contains a polyolefin as a main component; and the heat-resistant layer contains a heat-resistant polymer as a main component. The maximum height Rz of the surface of the base layer, said surface serving as the base for the heat-resistant layer, is from 0.1 μm to 3 μm (inclusive).

Description

円筒形非水電解質二次電池Cylindrical non-aqueous electrolyte secondary battery
 本発明は円筒形非水電解質二次電池に関し、より詳しくはセパレータの改良により高い安全性を示す円筒形非水電解質二次電池に関する。 The present invention relates to a cylindrical non-aqueous electrolyte secondary battery, and more particularly to a cylindrical non-aqueous electrolyte secondary battery exhibiting high safety by improving a separator.
 ノートパソコンや携帯電話などのモバイル機器の電源として高エネルギー密度を有する非水電解質二次電池が使用されている。近年は、電動工具、アシスト自転車、及び電気自動車用の電源としても非水電解質二次電池が広く普及しており、さらなる高容量化が求められている。特に、円筒形非水電解質二次電池は複数の電池を直列又は並列に接続した組電池として過酷な環境下で使用される場合が多い。そのため、円筒形非水電解質二次電池には安全性を確保するための種々の手段が設けられている。 A non-aqueous electrolyte secondary battery having high energy density is used as a power source for mobile devices such as notebook computers and mobile phones. In recent years, non-aqueous electrolyte secondary batteries have become widespread as power sources for electric tools, assist bicycles, and electric vehicles, and a further increase in capacity is required. In particular, a cylindrical nonaqueous electrolyte secondary battery is often used in a harsh environment as an assembled battery in which a plurality of batteries are connected in series or in parallel. For this reason, the cylindrical nonaqueous electrolyte secondary battery is provided with various means for ensuring safety.
 例えば、円筒形非水電解質二次電池では巻回電極体の巻芯部に形成される中空部に筒状のセンターピンが挿入されている。センターピンとして、金属板を折り曲げて筒状に成形したものが多く用いられている。そのように成形されたセンターピンは側面に長さ方向に沿って形成されたスリットを有している。センターピンを有する円筒形非水電解質二次電池を開示する先行技術文献として特許文献1~3が挙げられる。 For example, in a cylindrical non-aqueous electrolyte secondary battery, a cylindrical center pin is inserted into a hollow portion formed in a core portion of a wound electrode body. Many center pins are formed by bending a metal plate into a cylindrical shape. The center pin so formed has a slit formed on the side surface along the length direction. Patent Documents 1 to 3 are cited as prior art documents disclosing a cylindrical non-aqueous electrolyte secondary battery having a center pin.
 特許文献1では、電極体が押しつぶされたときに電極体の内周部を短絡させるためにセンターピンが用いられている。電極体が押しつぶされると、センターピンのスリットの端部が外側へ変形して、その端部が電極体の内周部を破断して内部短絡が促進される。これにより、短絡電流が電極体の内周側に集中し、短絡電流による正極活物質層の温度上昇が抑制される。 In Patent Document 1, a center pin is used to short-circuit the inner periphery of the electrode body when the electrode body is crushed. When the electrode body is crushed, the end portion of the slit of the center pin is deformed outward, and the end portion breaks the inner peripheral portion of the electrode body to promote internal short circuit. Thereby, a short circuit current concentrates on the inner peripheral side of an electrode body, and the temperature rise of the positive electrode active material layer by a short circuit current is suppressed.
 特許文献2及び3では、充放電に伴う電極体の変形を防止するためにセンターピンが用いられている。そのセンターピンは金属板が筒状に折り曲げられて成形されているだけでなく、スリットの端面がセンターピンの筒状部の内側に配向するようにスリットの近傍が成形されている。これにより電極体が押しつぶされた場合にセンターピンはスリットの端面がセンターピンの内側に向けて変形するため、センターピンのスリットに起因する内部短絡が防止される。 In Patent Documents 2 and 3, a center pin is used to prevent deformation of the electrode body due to charge / discharge. The center pin is not only formed by bending a metal plate into a cylindrical shape, but also in the vicinity of the slit so that the end face of the slit is oriented inside the cylindrical portion of the center pin. Thereby, when the electrode body is crushed, the end surface of the slit of the center pin is deformed toward the inside of the center pin, so that an internal short circuit due to the slit of the center pin is prevented.
 非水電解質二次電池はポリオレフィン製の微多孔膜がセパレータとして一般に用いられている。融点の低いポリオレフィンを含むセパレータは電池温度が上昇したときに正負極間のリチウムイオンの移動を抑制するシャットダウン機能を発揮する。このシャットダウン機能は温度の上昇に伴ってポリオレフィンが軟化して、セパレータの開口を閉塞する現象を利用している。シャットダウン機能を効果的に発揮させるために、ポリオレフィンとしてポリエチレンが好ましく用いられている。 Non-aqueous electrolyte secondary batteries generally use a polyolefin microporous membrane as a separator. A separator containing a polyolefin having a low melting point exhibits a shutdown function that suppresses movement of lithium ions between the positive and negative electrodes when the battery temperature rises. This shutdown function utilizes the phenomenon that the polyolefin softens with increasing temperature and closes the opening of the separator. In order to effectively exhibit the shutdown function, polyethylene is preferably used as the polyolefin.
 ところが、電池温度がセパレータのシャットダウン温度を超えて上昇するとセパレータが収縮、又は溶融し、正負極間の絶縁性が損なわれるおそれがある。そこで、正極と負極の間に耐熱層を配置する手法が提案されている。耐熱層は、正極板、負極板、及びセパレータのいずれかの表面上に形成される。耐熱層は電池温度が異常に上昇した場合でも正負極間の絶縁性を確保することができる。セパレータ上に形成された耐熱層はセパレータの収縮を抑制することができる。セパレータ上に耐熱層を形成することを開示している先行技術文献として、特許文献4~7が挙げられる。 However, when the battery temperature rises above the shutdown temperature of the separator, the separator shrinks or melts, and the insulation between the positive and negative electrodes may be impaired. Therefore, a method of arranging a heat-resistant layer between the positive electrode and the negative electrode has been proposed. The heat resistant layer is formed on the surface of any of the positive electrode plate, the negative electrode plate, and the separator. The heat-resistant layer can ensure insulation between the positive and negative electrodes even when the battery temperature rises abnormally. The heat-resistant layer formed on the separator can suppress the shrinkage of the separator. Patent Documents 4 to 7 are cited as prior art documents disclosing forming a heat-resistant layer on a separator.
特開平08-255631号公報Japanese Patent Laid-Open No. 08-255631 特開2003-092148号公報Japanese Patent Laid-Open No. 2003-092148 特開2003-229177号公報JP 2003-229177 A 特開2006-032246号公報JP 2006-032246 A 特開2007-299612号公報Japanese Patent Laid-Open No. 2007-299612 特開2010-021033号公報JP 2010-021033 A 特開2013-105578号公報JP 2013-105578 A
 特許文献1に記載されている技術は、高容量の円筒形非水電解質二次電池に対しては効果的ではない場合があり、電極体が押しつぶされた場合のセンターピンに起因する内部短絡は防止されることが好ましい。特許文献2及び3に記載されている技術によればセンターピンのスリットに起因する内部短絡が抑制される。しかしスリットの有無に関わらず、電池が圧壊されて電極体が押しつぶされた場合にセンターピンが存在することで極板やセパレータに局所的に大きな力が加わるため、機械強度が十分でないセパレータは破断するおそれがある。 The technique described in Patent Document 1 may not be effective for a high-capacity cylindrical nonaqueous electrolyte secondary battery, and an internal short circuit caused by the center pin when the electrode body is crushed is It is preferably prevented. According to the techniques described in Patent Documents 2 and 3, an internal short circuit caused by the slit of the center pin is suppressed. However, regardless of the presence or absence of slits, when the battery is crushed and the electrode body is crushed, the presence of a center pin applies a large force locally to the electrode plate and separator, so the separator with insufficient mechanical strength breaks. There is a risk.
 特許文献4~7のようにセパレータの基材層の表面に耐熱層を形成する技術は、セパレータの収縮や溶融による内部短絡を防止する手段として有効である。しかし、その技術は圧壊試験などで電極体が押しつぶされた場合の安全性を確保する手段として必ずしも効果的ではない。耐熱層をセパレータの基材層の表面に形成する場合、耐熱層の厚みの分だけ基材層の厚みを薄くする必要がある。そのため、セパレータの表面に耐熱層を形成することがセパレータの機械強度の低下につながる可能性がある。 The technology for forming a heat-resistant layer on the surface of the base material layer of the separator as in Patent Documents 4 to 7 is effective as a means for preventing an internal short circuit due to shrinkage or melting of the separator. However, this technique is not always effective as a means for ensuring safety when the electrode body is crushed in a crush test or the like. When the heat-resistant layer is formed on the surface of the base material layer of the separator, it is necessary to reduce the thickness of the base material layer by the thickness of the heat-resistant layer. Therefore, forming a heat-resistant layer on the surface of the separator may lead to a decrease in the mechanical strength of the separator.
 本発明は上記に鑑みてなされたものであり、ポリオレフィンを主成分とする基材上に耐熱層が形成されたセパレータを有する円筒形非水電解質二次電池の圧壊試験時における安全性を確保することを目的とする。 The present invention has been made in view of the above, and ensures safety during a crushing test of a cylindrical non-aqueous electrolyte secondary battery having a separator having a heat-resistant layer formed on a substrate mainly composed of polyolefin. For the purpose.
 上記課題を解決するために本発明の一態様に係る円筒形非水電解質二次電池は、正極板及び負極板がセパレータを介して巻回された電極体と、非水電解質と、電極体の巻回軸部に対応する位置に形成された中空部に挿入されたセンターピンと、電極体及び非水電解質を収容する有底筒状の外装缶とを有している。セパレータが、ポリオレフィンを主成分とする基材層と、基材層の少なくとも一方の表面に形成されるとともに耐熱性を有するポリマーを主成分とする耐熱層を含む。耐熱層の下地となる基材層の表面の最大高さRzは0.1μm以上3μm以下である。 In order to solve the above problems, a cylindrical nonaqueous electrolyte secondary battery according to one embodiment of the present invention includes an electrode body in which a positive electrode plate and a negative electrode plate are wound via a separator, a nonaqueous electrolyte, and an electrode body It has a center pin inserted into a hollow portion formed at a position corresponding to the winding shaft portion, and a bottomed cylindrical outer can that accommodates the electrode body and the nonaqueous electrolyte. The separator includes a base material layer containing polyolefin as a main component and a heat resistant layer formed on at least one surface of the base material layer and containing a heat-resistant polymer as a main component. The maximum height Rz of the surface of the base material layer that is the base of the heat-resistant layer is 0.1 μm or more and 3 μm or less.
 本発明によれば円筒形非水電解質二次電池が圧壊試験などで電極体が押しつぶされた場合のセパレータの破断が抑制される。そのため、本発明によれば円筒形非水電解質二次電池の安全性を高めることができる。 According to the present invention, the breakage of the separator is suppressed when the cylindrical nonaqueous electrolyte secondary battery is crushed by the crush test or the like. Therefore, according to the present invention, the safety of the cylindrical nonaqueous electrolyte secondary battery can be enhanced.
図1は本発明の一実施形態に係る円筒形非水電解質二次電池の断面斜視図である。FIG. 1 is a cross-sectional perspective view of a cylindrical nonaqueous electrolyte secondary battery according to an embodiment of the present invention. 図2は本発明の一実施形態に係るセパレータの要部断面図である。FIG. 2 is a cross-sectional view of a main part of a separator according to one embodiment of the present invention.
 本発明の一実施形態に係る円筒形非水電解質二次電池について、図1及び図2を参照しながら説明する。なお、本発明は下記の実施形態に限定されず、本発明の要旨を変更しない範囲において適宜変更して実施することができる。 A cylindrical nonaqueous electrolyte secondary battery according to an embodiment of the present invention will be described with reference to FIGS. In addition, this invention is not limited to the following embodiment, In the range which does not change the summary of this invention, it can change suitably and can implement.
 円筒形非水電解質二次電池10は、有底筒状の外装缶20の内部に電極体14と非水電解質が収容されている。外装缶20の開口部にガスケット19を介して封口体21をかしめ固定することで円筒形非水電解質二次電池10の内部が密閉される。 The cylindrical nonaqueous electrolyte secondary battery 10 has an electrode body 14 and a nonaqueous electrolyte housed inside a bottomed cylindrical outer can 20. The inside of the cylindrical non-aqueous electrolyte secondary battery 10 is sealed by caulking and fixing the sealing body 21 to the opening of the outer can 20 via the gasket 19.
 電極体14は正極板12と負極板13とをセパレータ11を介して巻回して作製される。このとき、電極体の巻回軸部に対応する位置に中空部15が形成される。中空部15にはセンターピン16が挿入されている。センターピン16の挿入を容易にするために、断面形状が真円になるように中空部15を成形することが好ましい。 The electrode body 14 is produced by winding the positive electrode plate 12 and the negative electrode plate 13 through the separator 11. At this time, the hollow portion 15 is formed at a position corresponding to the winding shaft portion of the electrode body. A center pin 16 is inserted into the hollow portion 15. In order to facilitate the insertion of the center pin 16, it is preferable to form the hollow portion 15 so that the cross-sectional shape is a perfect circle.
 本実施形態では、板状部材を筒状になるように折り曲げて成形したセンターピン16が使用されており、その側面には長さ方向に沿ってスリットが形成されている。さらに、スリットの先端はセンターピン16の内側に折り曲げられている。つまり、センターピン16の断面形状はC字の先端が内側に折り曲げられた形状となっているが、これに限定されない。センターピン16にはパイプ状に加工された金属部材を用いることもできるが、本実施形態のように金属板を筒状に成形したセンターピン16を用いることはコスト低減の観点から好ましい。 In this embodiment, a center pin 16 formed by bending a plate-like member into a cylindrical shape is used, and a slit is formed on the side surface along the length direction. Further, the tip of the slit is bent inside the center pin 16. That is, the cross-sectional shape of the center pin 16 is a shape in which the C-shaped tip is bent inward, but is not limited thereto. Although a metal member processed into a pipe shape can be used for the center pin 16, it is preferable from the viewpoint of cost reduction to use the center pin 16 formed of a metal plate in a cylindrical shape as in this embodiment.
 センターピン16の材料は充放電が繰り返されても電極体14の中空部15の形状を確保できる強度と、非水電解質中における耐食性を有するものなら制限なく用いることができる。センターピン16の好ましい材料の例として、ステンレス、ニッケル、チタン、及び鉄が挙げられる。鉄を用いる場合は、非水電解質中での耐食性を確保するためにニッケルでめっきをすることが好ましい。 The material of the center pin 16 can be used without limitation as long as it has a strength that can ensure the shape of the hollow portion 15 of the electrode body 14 even when charging and discharging are repeated and corrosion resistance in the nonaqueous electrolyte. Examples of preferred materials for the center pin 16 include stainless steel, nickel, titanium, and iron. When iron is used, it is preferable to plate with nickel in order to ensure corrosion resistance in the non-aqueous electrolyte.
 セパレータ11は、図2に示すように基材層11aとその表面に形成された耐熱層11bから構成される。耐熱層11bは、基材層11aの一方の表面に形成されていれば十分である。本実施形態では、耐熱層11bはセパレータ11の表面のうち正極板12に対向する側にのみ形成されている。耐熱層11bはセパレータ11の表面のうち負極板13に対向する側に形成してもよく、基材層11aの両面に形成してもよい。 The separator 11 is comprised from the base material layer 11a and the heat-resistant layer 11b formed in the surface, as shown in FIG. It is sufficient that the heat-resistant layer 11b is formed on one surface of the base material layer 11a. In the present embodiment, the heat-resistant layer 11 b is formed only on the side of the separator 11 that faces the positive electrode plate 12. The heat-resistant layer 11b may be formed on the side of the separator 11 facing the negative electrode plate 13, or may be formed on both surfaces of the base material layer 11a.
 基材層11aはポリオレフィンを主成分とする微多孔膜からなり、ポリオレフィンとしてはポリエチレン、ポリプロピレン、及びエチレンとプロピレンの共重合体が好ましい。基材層11aとしてポリオレフィンを用いることで、電池温度が異常に上昇したときに120~150℃の温度で基材層11aの孔が閉塞して正負極間の電流が遮断される。これにより、電極反応が停止するため電池温度の上昇を抑制することができる。なお、融点が150℃を超えるポリプロピレンはポリエチレンとともに用いることが好ましい。 The base material layer 11a is made of a microporous film containing polyolefin as a main component, and the polyolefin is preferably polyethylene, polypropylene, or a copolymer of ethylene and propylene. By using polyolefin as the base material layer 11a, when the battery temperature rises abnormally, the holes in the base material layer 11a are closed at a temperature of 120 to 150 ° C., and the current between the positive and negative electrodes is cut off. Thereby, since an electrode reaction stops, the rise in battery temperature can be suppressed. Polypropylene having a melting point exceeding 150 ° C. is preferably used together with polyethylene.
 基材層11aは、ポリオレフィンとともに他のポリマーを含むことができる。他のポリマーを適宜選択することにより、電池温度が上昇したときの基材層11aの収縮を防止することができる。 The base material layer 11a can contain other polymers together with polyolefin. By appropriately selecting another polymer, shrinkage of the base material layer 11a when the battery temperature rises can be prevented.
 他のポリマーとして、ポリスチレン、ゴム含有ポリスチレン、及びアクリロニトリル-スチレン共重合体などのスチレンポリマー;ポリエチレンテレフタラートなどのポリエステル;ポリアミド6及びポリアミド12などのポリアミド;ポリメチルメタクリレートなどのアクリルポリマー;セルロース誘導体;熱可塑性エラストマーなどの熱可塑性ポリマーが例示される。 Other polymers include polystyrene, rubber-containing polystyrene, and styrene polymers such as acrylonitrile-styrene copolymers; polyesters such as polyethylene terephthalate; polyamides such as polyamide 6 and polyamide 12; acrylic polymers such as polymethyl methacrylate; cellulose derivatives; Examples are thermoplastic polymers such as thermoplastic elastomers.
 基材層11a中のポリオレフィンの含有量は、40~100質量%が好ましく、より好ましくは50~100質量%である。基材層11aの厚みは3~220μmが好ましい。基材層11aの平均孔径は0.05~2μmが好ましい。基材層11aの空孔率は25~80体積%が好ましく、より好ましくは25~75体積%である。基材層11aの突刺強度は300gf以上であることが好ましく、より好ましくは400gf以上である。 The content of polyolefin in the base material layer 11a is preferably 40 to 100% by mass, more preferably 50 to 100% by mass. The thickness of the base material layer 11a is preferably 3 to 220 μm. The average pore diameter of the base material layer 11a is preferably 0.05 to 2 μm. The porosity of the base material layer 11a is preferably 25 to 80% by volume, more preferably 25 to 75% by volume. The puncture strength of the base material layer 11a is preferably 300 gf or more, more preferably 400 gf or more.
 耐熱層11bは耐熱性を有するポリマーを主成分としている。ポリマーの融点や熱収縮開始温度がそれぞれ基材層11aの融点や熱収縮開始温度よりも高いことがその耐熱性に求められる必要条件である。耐熱層11bの主成分として、150℃より高く350℃以下、より好ましくは170℃以上300℃以下の融点を有するポリマーを用いることができる。 The heat-resistant layer 11b is mainly composed of a polymer having heat resistance. It is a necessary condition for the heat resistance that the melting point and heat shrinkage starting temperature of the polymer are higher than the melting point and heat shrinkage starting temperature of the base material layer 11a, respectively. As the main component of the heat-resistant layer 11b, a polymer having a melting point higher than 150 ° C. and lower than or equal to 350 ° C., more preferably higher than or equal to 170 ° C. and lower than or equal to 300 ° C. can be used.
 耐熱性を有するポリマーとして、ポリオレフィン;ポリアミド、ポリアミド共重合体、及びアラミドなどのアミド結合含有ポリマー;ポリフッ化ビニリデン(PVDF)、フッ化ビニリデン(VF)と六フッ化プロピレン(HFP)との共重合体、及びポリテトラフルオロエチレン(PTFE)などのフッ素含有ポリマー;ポリイミド(PI)、ポリアミドイミド(PAI)、及びポリエーテルイミド(PEI)などのイミド結合含有ポリマー;ポリエチレンテレフタレート(PET)、ポリプロピレンテレフタレート(PPT)、ポリトリメチレンテレフタレート(PTT)、ポリブチレンテレフタレート(PBT)、ポリエチレンナフタレート(PEN)、ポリブチレンナフタレート(PBN)、ポリエチレンナフタレート(PEN)、及びポリブチレンナフタレート(PBN)などのポリアルキレンアリレート;ポリアリレート(PAR);ポリスルホン(PSF)及びポリエーテルスルホン(PES)などのスルホン基を有するポリマー;ポリフェニレンエーテル(PPE);ポリカーボネート(PC);ポリフェニレンスルフィド(PPS);ポリエーテルケトン(PEK)及びポリエーテルエーテルケトン(PEEK)などの芳香族ポリエーテルケトンポリマー;ポリオキシメチレン(POM);ポリエーテルニトリル(PEN)が例示される。 Polyamides; polyamides, polyamide copolymers, and amide bond-containing polymers such as aramids; polymers of polyvinylidene fluoride (PVDF), vinylidene fluoride (VF) and propylene hexafluoride (HFP) Polymers and fluorine-containing polymers such as polytetrafluoroethylene (PTFE); Imido bond-containing polymers such as polyimide (PI), polyamideimide (PAI), and polyetherimide (PEI); polyethylene terephthalate (PET), polypropylene terephthalate ( PPT), polytrimethylene terephthalate (PTT), polybutylene terephthalate (PBT), polyethylene naphthalate (PEN), polybutylene naphthalate (PBN), polyethylene naphthalate (PEN) And polyalkylene arylates such as polybutylene naphthalate (PBN); polyarylate (PAR); polymers having sulfonic groups such as polysulfone (PSF) and polyethersulfone (PES); polyphenylene ether (PPE); polycarbonate (PC); Examples include polyphenylene sulfide (PPS); aromatic polyetherketone polymers such as polyetherketone (PEK) and polyetheretherketone (PEEK); polyoxymethylene (POM); polyethernitrile (PEN).
 上記ポリマーのうち、アミド結合含有ポリマー、フッ素含有ポリマー、及びイミド結合含有ポリマーが好ましく、特に、アラミド、ポリフッ化ビニリデン(PVDF)、フッ化ビニリデン-六フッ化プロピレン(VDF-HFP)コポリマー、ポリイミド(PI)、及びポリアミドイミド(PAI)がより好ましい。 Of the above polymers, amide bond-containing polymers, fluorine-containing polymers, and imide bond-containing polymers are preferable. In particular, aramid, polyvinylidene fluoride (PVDF), vinylidene fluoride-hexafluoropropylene (VDF-HFP) copolymer, polyimide ( PI) and polyamideimide (PAI) are more preferable.
 上記ポリマーは単独で、又は二種以上を組み合わせて用いることができる。なお、耐熱層11bは、耐熱性を損なわない範囲で主成分である耐熱性を有するポリマー以外の他のポリマーを含むことができる。当該他のポリマーの含有量は耐熱層11bの質量に対して10質量%以下であることが好ましい。 The above polymers can be used alone or in combination of two or more. The heat-resistant layer 11b can contain another polymer other than the heat-resistant polymer as the main component as long as the heat resistance is not impaired. It is preferable that content of the said other polymer is 10 mass% or less with respect to the mass of the heat-resistant layer 11b.
 耐熱層11bは、主成分である耐熱性を有するポリマー以外に絶縁性の無機粒子からなる無機フィラーを含むことができる。無機フィラーとしては、酸化ケイ素(SiO)、酸化アルミニウム(Al)、酸化チタン(TiO)、酸化マグネシウム(MgO)、及び酸化ジルコニウム(ZrO)などの無機酸化物が好ましい。 The heat-resistant layer 11b can contain an inorganic filler made of insulating inorganic particles in addition to the heat-resistant polymer as the main component. As the inorganic filler, inorganic oxides such as silicon oxide (SiO 2 ), aluminum oxide (Al 2 O 3 ), titanium oxide (TiO 2 ), magnesium oxide (MgO), and zirconium oxide (ZrO 2 ) are preferable.
 耐熱層11bの厚みは、0.01~50μmの範囲から選択でき、好ましくは0.1~20μm、より好ましくは0.5~10μmである。耐熱層11bの平均孔径は0.05~2μmが好ましい。耐熱層11bの空孔率は25~80体積%が好ましく、より好ましくは25~75体積%である。 The thickness of the heat-resistant layer 11b can be selected from the range of 0.01 to 50 μm, preferably 0.1 to 20 μm, more preferably 0.5 to 10 μm. The average pore diameter of the heat-resistant layer 11b is preferably 0.05 to 2 μm. The porosity of the heat-resistant layer 11b is preferably 25 to 80% by volume, more preferably 25 to 75% by volume.
 耐熱層11bは、主成分のポリマーを含むコーティング液を公知のコーティング法により基材層11a上に塗布し、乾燥することにより形成することができる。コーティング液としては、主成分のポリマーを溶媒中に溶解した溶液、又は主成分のポリマーを分散媒中に分散した分散液を使用することができる。コーティング液の溶媒又は分散媒としては、メタノール、エタノール、及びエチレングリコールなどのアルコール(C2-4アルカノール又はC2-4アルカンジオールなど);アセトンなどのケトン;ジエチルエーテル及びテトラヒドロフランなどのエーテル;ジメチルホルムアミドなどのアミド;アセトニトリルなどのニトリル;ジメチルスルホキシドなどのスルホキシド;N-メチル-2-ピロリドン(NMP)などが例示される。これらの溶媒及び分散媒は単独で、又は二種以上を組み合わせて使用することができる。 The heat-resistant layer 11b can be formed by applying a coating liquid containing a main component polymer on the base material layer 11a by a known coating method and drying it. As the coating liquid, a solution in which the main component polymer is dissolved in a solvent, or a dispersion liquid in which the main component polymer is dispersed in a dispersion medium can be used. Examples of the solvent or dispersion medium for the coating solution include alcohols such as methanol, ethanol, and ethylene glycol (such as C2-4 alkanol or C2-4 alkanediol); ketones such as acetone; ethers such as diethyl ether and tetrahydrofuran; dimethylformamide, and the like Nitriles such as acetonitrile; sulfoxides such as dimethyl sulfoxide; N-methyl-2-pyrrolidone (NMP) and the like. These solvents and dispersion media can be used alone or in combination of two or more.
 正極板12は、正極集電体とその表面に形成される正極活物質層から構成される。正極集電体としては、例えば、アルミニウム、アルミニウム合金、ステンレス鋼、チタン、又はチタン合金で形成された金属箔を使用することができる。正極集電体の厚みは、例えば、1~100μmであり、好ましくは5~70μm、より好ましくは10~50μmである。 The positive electrode plate 12 is composed of a positive electrode current collector and a positive electrode active material layer formed on the surface thereof. As the positive electrode current collector, for example, aluminum, an aluminum alloy, stainless steel, titanium, or a metal foil formed of a titanium alloy can be used. The thickness of the positive electrode current collector is, for example, 1 to 100 μm, preferably 5 to 70 μm, more preferably 10 to 50 μm.
 正極活物質層は、正極活物質の他、結着剤や導電剤を含むことができる。正極活物質としては、リチウムイオンを電気化学的に吸蔵、放出することができる材料であれば制限なく用いることができる。正極活物質として、LiCoO、LiNiO、LiCoNi1-x2(0<x<1)、LiMn、LiNi0.4Mn1.6、LiCoPO、LiFePO、LiCoPO4-y(0<y<1)、LiFePO4-z(0<z<1)、LiTi12、LiFe0.5Ti4.512、及びLiZn0.5Ti4.512などのリチウム遷移金属複合酸化物;V及びMnOなどの金属酸化物;TiS及びLiFeSなどの硫化物が例示される。これらは単独で、又は二種以上を組み合わせて用いることができる。これらは、Al、Ti、Mg、及びZrからなる群から選ばれる少なくとも一つを添加し、又は金属元素と置換して用いることもできる。 The positive electrode active material layer can contain a binder and a conductive agent in addition to the positive electrode active material. As the positive electrode active material, any material that can electrochemically occlude and release lithium ions can be used without limitation. As the positive electrode active material, LiCoO 2 , LiNiO 2 , LiCo x Ni 1-x O 2 (0 <x <1), LiMn 2 O 4 , LiNi 0.4 Mn 1.6 O 4 , LiCoPO 4 , LiFePO 4 , LiCoPO 4 4-y F y (0 < y <1), LiFePO 4-z F z (0 <z <1), Li 4 Ti 5 O 12, Li 4 Fe 0.5 Ti 4.5 O 12, and Li 4 Examples include lithium transition metal composite oxides such as Zn 0.5 Ti 4.5 O 12 ; metal oxides such as V 2 O 5 and MnO 2 ; sulfides such as TiS 2 and LiFeS 2 . These can be used alone or in combination of two or more. These may be used by adding at least one selected from the group consisting of Al, Ti, Mg, and Zr, or replacing the metal element.
 導電剤としてはアセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、及びサーマルブラックなどのカーボンブラック;天然黒鉛及び人造黒鉛などの黒鉛;炭素繊維及び金属繊維などの導電性繊維などが例示される。結着剤としては、ポリフッ化ビニリデン(PVDF)、ポリフッ化ビニリデン(PVDF)の変性体、及びポリテトラフルオロエチレン(PTFE)などのフッ素樹脂;スチレン-ブタジエンゴム(SBR)、スチレン-ブタジエンゴム(SBR)の変性体、及びアクリレート単位を有するポリマーなどのゴム粒子結着剤;カルボキシメチルセルロース(CMC)等のセルロース誘導体が例示される。 Examples of the conductive agent include carbon black such as acetylene black, ketjen black, channel black, furnace black, lamp black, and thermal black; graphite such as natural graphite and artificial graphite; and conductive fiber such as carbon fiber and metal fiber. Is done. As the binder, polyvinylidene fluoride (PVDF), a modified product of polyvinylidene fluoride (PVDF), and a fluororesin such as polytetrafluoroethylene (PTFE); styrene-butadiene rubber (SBR), styrene-butadiene rubber (SBR) ) And rubber particle binders such as polymers having acrylate units; and cellulose derivatives such as carboxymethylcellulose (CMC).
 正極活物質層の厚みは特に限定されないが、例えば0.1~150μmであり、好ましくは1~100μm、より好ましくは10~90μmである。 The thickness of the positive electrode active material layer is not particularly limited, but is, for example, 0.1 to 150 μm, preferably 1 to 100 μm, more preferably 10 to 90 μm.
 負極板13は、負極集電体とその表面に形成される負極活物質層から構成される。負極集電体としては、例えば、銅、銅合金、ニッケル、ニッケル合金、又はステンレス鋼で形成された金属箔を使用することができる。負極集電体の厚みは、例えば、1~100μmであり、好ましくは2~50μm、より好ましくは3~30μmである。 The negative electrode plate 13 is composed of a negative electrode current collector and a negative electrode active material layer formed on the surface thereof. As the negative electrode current collector, for example, a metal foil formed of copper, a copper alloy, nickel, a nickel alloy, or stainless steel can be used. The thickness of the negative electrode current collector is, for example, 1 to 100 μm, preferably 2 to 50 μm, more preferably 3 to 30 μm.
 負極活物質層は、負極活物質の他、結着剤や導電剤を含むことができる。負極活物質としては、リチウムイオンを電気化学的に吸蔵、放出することができる材料であれば制限なく用いることができる。負極活物質として、黒鉛及びカーボンナノチューブなどの炭素材料;Li、Al、Zn、Sn、In、Si、Ta、及びNbからなる群から選ばれる少なくとも一つを含む金属材料又はその酸化物;LiTi12、LiFe0.5Ti4.512、及びLiZn0.5Ti4.5などのスピネル構造を有するリチウムチタン酸化物;TiSなどの硫化物;LiCo2.60.4N及びTaなどの窒化物が例示される。これらは単独で、又は二種以上を組み合わせて用いることができる。上記の金属材料、酸化物、硫化物、及び窒化物には少量の異種金属を添加してもよい。例示した負極活物質の中では、炭素材料、並びにSi及びその酸化物を用いることが好ましい。 The negative electrode active material layer can contain a binder and a conductive agent in addition to the negative electrode active material. As the negative electrode active material, any material capable of electrochemically occluding and releasing lithium ions can be used without limitation. Carbon materials such as graphite and carbon nanotubes as the negative electrode active material; metal materials containing at least one selected from the group consisting of Li, Al, Zn, Sn, In, Si, Ta, and Nb or oxides thereof; Li 4 Lithium titanium oxide having a spinel structure such as Ti 5 O 12 , Li 4 Fe 0.5 Ti 4.5 O 12 , and Li 4 Zn 0.5 Ti 4.5 O 4 ; Sulfide such as TiS 4 ; LiCo Examples include nitrides such as 2.6 O 0.4 N and Ta 3 N 5 . These can be used alone or in combination of two or more. A small amount of dissimilar metal may be added to the metal material, oxide, sulfide, and nitride. Among the exemplified negative electrode active materials, it is preferable to use a carbon material, Si, and an oxide thereof.
 負極板13に用いられる導電剤及び結着剤としては、正極板12に用いられる導電剤及び結着剤として例示したものを用いることができる。 As the conductive agent and binder used for the negative electrode plate 13, those exemplified as the conductive agent and binder used for the positive electrode plate 12 can be used.
 負極活物質層の厚みは、特に制限されないが、例えば0.1~150μmであり、好ましくは1~120μm、より好ましくは10~100μmである。 The thickness of the negative electrode active material layer is not particularly limited, but is, for example, 0.1 to 150 μm, preferably 1 to 120 μm, more preferably 10 to 100 μm.
 正極活物質層及び負極活物質層の形成方法は公知の方法を用いることができ、例えば、ダイコート法及びグラビアコート法などの湿式のコーティング法、スパッタリング法、物理蒸着法、化学蒸着法、並びにスクリーン印刷法が挙げられる。正極活物質層及び負極活物質層はそれぞれ集電体の片面にのみ形成してもよく、両面に形成してもよい。 Known methods can be used for forming the positive electrode active material layer and the negative electrode active material layer. For example, wet coating methods such as a die coating method and a gravure coating method, a sputtering method, a physical vapor deposition method, a chemical vapor deposition method, and a screen. The printing method is mentioned. Each of the positive electrode active material layer and the negative electrode active material layer may be formed only on one side of the current collector, or may be formed on both sides.
 非水電解質として、非水溶媒中に電解質塩としてのリチウム塩を溶解させたものを用いることができる。 As the non-aqueous electrolyte, a solution obtained by dissolving a lithium salt as an electrolyte salt in a non-aqueous solvent can be used.
 非水溶媒として、環状炭酸エステル、鎖状炭酸エステル、環状カルボン酸エステル及び鎖状カルボン酸エステルを用いることができ、これらは二種以上を混合して用いることが好ましい。環状炭酸エステルとしては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)及びブチレンカーボネート(BC)が例示される。また、フルオロエチレンカーボネート(FEC)のように、水素の一部をフッ素で置換した環状炭酸エステルを用いることもできる。鎖状炭酸エステルとしては、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、ジエチルカーボネート(DEC)及びメチルプロピルカーボネート(MPC)が例示される。環状カルボン酸エステルとしてはγ-ブチロラクトン(γ-BL)及びγ-バレロラクトン(γ-VL)が例示され、鎖状カルボン酸エステルとしてはピバリン酸メチル、ピバリン酸エチル、メチルイソブチレート及びメチルプロピオネートが例示される。 As the non-aqueous solvent, a cyclic carbonate, a chain carbonate, a cyclic carboxylic acid ester and a chain carboxylic acid ester can be used, and these are preferably used in a mixture of two or more. Examples of the cyclic carbonate include ethylene carbonate (EC), propylene carbonate (PC), and butylene carbonate (BC). In addition, a cyclic carbonate in which part of hydrogen is substituted with fluorine, such as fluoroethylene carbonate (FEC), can also be used. Examples of the chain carbonate include dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), diethyl carbonate (DEC), and methyl propyl carbonate (MPC). Examples of cyclic carboxylic acid esters include γ-butyrolactone (γ-BL) and γ-valerolactone (γ-VL). Examples of chain carboxylic acid esters include methyl pivalate, ethyl pivalate, methyl isobutyrate and methyl Pionate is exemplified.
 リチウム塩として、LiPF、LiBF、LiCFSO、LiN(CFSO、LiN(CSO、LiN(CFSO)(CSO)、LiC(CFSO、LiC(CSO、LiAsF、LiClO、Li10Cl10及びLi12Cl12が例示される。これらの中でもLiPFが特に好ましく、非水電解質中のリチウム塩の濃度は0.5~2.0mol/Lであることが好ましい。LiPFにLiBFなど他のリチウム塩を混合することもできる。 LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ) , LiC (CF 3 SO 2 ) 3 , LiC (C 2 F 5 SO 2 ) 3 , LiAsF 6 , LiClO 4 , Li 2 B 10 Cl 10 and Li 2 B 12 Cl 12 are exemplified. Among these, LiPF 6 is particularly preferable, and the concentration of the lithium salt in the nonaqueous electrolyte is preferably 0.5 to 2.0 mol / L. Other lithium salts such as LiBF 4 may be mixed with LiPF 6 .
 本発明の一実施形態について、以下に具体的な実施例を用いてより詳細に説明する。本発明は、以下の実施例に限定されない。 An embodiment of the present invention will be described in more detail below using specific examples. The present invention is not limited to the following examples.
(実施例1)
(セパレータの作製)
 基材層11aとして、厚みが20μmのポリエチレン製の微多孔膜を用いた。この微多孔膜は、溶融したポリエチレンを押し出してシート状に成形し、得られた成形物を2軸方向に延伸して作製した。溶融したポリエチレンを延伸する際の条件を調整することで表面の最大高さRzが0.1μmである基材層11aを作製した。
Example 1
(Preparation of separator)
As the base material layer 11a, a polyethylene microporous film having a thickness of 20 μm was used. This microporous membrane was produced by extruding molten polyethylene and forming it into a sheet shape, and stretching the obtained molded product in a biaxial direction. The base material layer 11a having a maximum surface height Rz of 0.1 μm was prepared by adjusting the conditions for stretching the melted polyethylene.
 耐熱性を有するポリマーとしてのポリアミドを溶媒としてのN-メチル-2-ピロリドン(NMP)に溶解し、1質量部のポリアミドに対して2質量部の酸化アルミニウム(Al、平均粒径は0.013μm)を溶媒に添加してコーティング液を調製した。そのコーティング液を基材層11aの片面に塗布し、乾燥して3.5μmの厚みを有する耐熱層11bを形成した。このようにして実施例1に係るセパレータ11を作製した。 A polyamide as a heat-resistant polymer is dissolved in N-methyl-2-pyrrolidone (NMP) as a solvent, and 2 parts by mass of aluminum oxide (Al 2 O 3 , average particle diameter is 1 part by mass of polyamide) 0.013 μm) was added to the solvent to prepare a coating solution. The coating liquid was applied to one side of the base material layer 11a and dried to form a heat-resistant layer 11b having a thickness of 3.5 μm. In this way, the separator 11 according to Example 1 was produced.
 基材層11aの突き刺し強度は420gfであった。突き刺し強度は、両端部から張力をかけられた基材層11aに先端がφ1mmの針状端子を200mm/min.の一定速度で突き刺して測定した。基材層11aが破断したときの最大荷重を突き刺し強度とした。 The piercing strength of the base material layer 11a was 420 gf. The puncture strength was determined by applying a needle-like terminal with a tip of φ1 mm to the base material layer 11a applied with tension from both ends at 200 mm / min. And measured at a constant speed. The maximum load when the base material layer 11a broke was defined as the piercing strength.
(正極板の作製)
 正極活物質としてのLiNi0.82Co0.15Al0.03で表されるリチウムニッケルコバルトアルミニウム酸化物が100質量部、導電剤としてのアセチレンブラックが1質量部、結着剤としてのポリフッ化ビニリデン(PVDF)が0.9質量部となるように混合した。その混合物を分散媒としてのN-メチル-2-ピロリドン(NMP)へ投入し、混練して正極合剤スラリーを調製した。その正極合剤スラリーを正極集電体としての厚みが15μmの帯状のアルミニウム箔の両面に間欠的に塗布し、乾燥して正極活物質層を形成した。その正極活物質層をロールで所定厚みに圧縮した。正極活物質層が形成されていない正極集電体露出部にアルミニウム製の正極リード12aを超音波溶接した。その正極リード12aを覆うようにポリイミド製の絶縁テープを貼り付けて正極板12を作製した。
(Preparation of positive electrode plate)
100 parts by mass of lithium nickel cobalt aluminum oxide represented by LiNi 0.82 Co 0.15 Al 0.03 O 2 as a positive electrode active material, 1 part by mass of acetylene black as a conductive agent, and as a binder It mixed so that polyvinylidene fluoride (PVDF) might be 0.9 mass part. The mixture was put into N-methyl-2-pyrrolidone (NMP) as a dispersion medium and kneaded to prepare a positive electrode mixture slurry. The positive electrode mixture slurry was intermittently applied to both surfaces of a strip-shaped aluminum foil having a thickness of 15 μm as a positive electrode current collector, and dried to form a positive electrode active material layer. The positive electrode active material layer was compressed to a predetermined thickness with a roll. The positive electrode lead 12a made of aluminum was ultrasonically welded to the exposed portion of the positive electrode current collector where the positive electrode active material layer was not formed. A positive electrode plate 12 was produced by applying a polyimide insulating tape so as to cover the positive electrode lead 12a.
(負極板の作製)
 負極活物質としての鱗片状黒鉛が100質量部、結着剤としてのスチレン-ブタジエンゴム(SBR)が1質量部、増粘剤としてのカルボキシメチルセルロース(CMC)のナトリウム塩が1質量部となるように混合した。その混合物を分散媒としての水へ投入し、混練して負極合剤スラリーを調製した。その負極合剤スラリーを負極集電体としての厚みが10μmの帯状の銅箔の両面に間欠的に塗布し、110℃で30分間乾燥して負極活物質層を形成した。その負極活物質層をロールで所定の厚みに圧縮した。負極活物質層が形成されていない負極集電体露出部にニッケル製の負極リード13bを抵抗溶接して負極板13を作製した。
(Preparation of negative electrode plate)
The scale-like graphite as the negative electrode active material is 100 parts by mass, the styrene-butadiene rubber (SBR) as the binder is 1 part by mass, and the sodium salt of carboxymethyl cellulose (CMC) as the thickener is 1 part by mass. Mixed. The mixture was put into water as a dispersion medium and kneaded to prepare a negative electrode mixture slurry. The negative electrode mixture slurry was intermittently applied to both surfaces of a strip-shaped copper foil having a thickness of 10 μm as a negative electrode current collector, and dried at 110 ° C. for 30 minutes to form a negative electrode active material layer. The negative electrode active material layer was compressed to a predetermined thickness with a roll. The negative electrode lead 13b made of nickel was resistance-welded to the exposed portion of the negative electrode current collector on which the negative electrode active material layer was not formed, and the negative electrode plate 13 was produced.
(電極体の作製)
 半円状の断面形状を有する二つの巻芯棒からなる巻芯を用いて次のように電極体14を作製した。まず、巻芯棒の間にセパレータを挟み込み、セパレータ11のみを巻回した。次に正極板12と負極板13をそれぞれ所定のタイミングでセパレータ11の間に挿入し、正極板12と負極板13をそれらの間にセパレータ11が介在した状態のまま巻回した。最後に、最外周の巻き終り端部を絶縁テープで固定し、巻芯を引き抜くことにより巻回軸部に対応する位置に中空部15が形成された電極体14を作製した。
(Production of electrode body)
An electrode body 14 was produced as follows using a core composed of two core rods having a semicircular cross-sectional shape. First, a separator was sandwiched between winding core rods, and only the separator 11 was wound. Next, the positive electrode plate 12 and the negative electrode plate 13 were each inserted between the separators 11 at a predetermined timing, and the positive electrode plate 12 and the negative electrode plate 13 were wound with the separator 11 interposed therebetween. Finally, the end of the outermost winding end was fixed with an insulating tape, and the winding core was pulled out to produce an electrode body 14 having a hollow portion 15 formed at a position corresponding to the winding shaft portion.
(センターピンの作製)
 センターピン16は厚みが0.25mmのステンレス板を筒状に成形して作製した。センターピン16の長さ方向に直交する断面形状はC字の先端が内側に折り曲げられた形状とした。
(Production of center pin)
The center pin 16 was produced by forming a stainless steel plate having a thickness of 0.25 mm into a cylindrical shape. The cross-sectional shape orthogonal to the length direction of the center pin 16 was a shape in which the C-shaped tip was bent inward.
(円筒形非水電解質二次電池の作製)
 電極体14の下部に下部絶縁板18を配置し電極体14を外装缶20へ挿入した後、負極リード13aを外装缶20の底部に接続した。次いで、電極体14の中空部15にセンターピン16を挿入し、電極体14の上部に上部絶縁板17を配置した。外装缶20の側面のうち上部絶縁板17よりも上側の位置に溝入れ加工を行い、溝入れ部上にガスケット19を配置し、正極リード12aを封口体21に接続した。最後に、非水電解質を外装缶20の内部へ注入し、封口体21を外装缶20の溝入れ部にガスケット19を介してかしめ固定することにより図1に示す直径18mm、高さ65mmの円筒形非水電解質二次電池10を作製した。円筒形非水電解質二次電池10の体積エネルギー密度は680Wh/Lとした。
(Production of cylindrical non-aqueous electrolyte secondary battery)
After the lower insulating plate 18 was disposed below the electrode body 14 and the electrode body 14 was inserted into the outer can 20, the negative electrode lead 13 a was connected to the bottom of the outer can 20. Next, the center pin 16 was inserted into the hollow portion 15 of the electrode body 14, and the upper insulating plate 17 was disposed on the electrode body 14. Groove processing was performed at a position above the upper insulating plate 17 on the side surface of the outer can 20, a gasket 19 was disposed on the groove portion, and the positive electrode lead 12 a was connected to the sealing body 21. Finally, a non-aqueous electrolyte is injected into the outer can 20 and the sealing body 21 is caulked and fixed to the grooved portion of the outer can 20 via the gasket 19, whereby a cylinder having a diameter of 18 mm and a height of 65 mm shown in FIG. A nonaqueous electrolyte secondary battery 10 was produced. The volume energy density of the cylindrical nonaqueous electrolyte secondary battery 10 was 680 Wh / L.
(実施例2~7)
 基材層11aの表面の最大高さRzを、表1に示すように、0.5~3.0μmの範囲のいずれかの値に変更したことを除いては実施例1と同様にして実施例2~7に係る円筒形非水電解質二次電池10を作製した。実施例2~7の基材層11aの突刺し強度はそれぞれ410gf、415gf、410gf、407gf、410gf、及び400gfであった。
(Examples 2 to 7)
As shown in Table 1, the maximum height Rz of the surface of the base material layer 11a was changed to any value in the range of 0.5 to 3.0 μm. Cylindrical nonaqueous electrolyte secondary batteries 10 according to Examples 2 to 7 were produced. The piercing strengths of the base material layers 11a of Examples 2 to 7 were 410 gf, 415 gf, 410 gf, 407 gf, 410 gf, and 400 gf, respectively.
(比較例1~3)
 基材層の最大高さRzを0.05μm、3.3μm、又は3.5μmとしたことを除いては実施例1と同様にして比較例1~3に係る円筒形非水電解質二次電池を作製した。比較例1~3の基材層の最大高さRzを表1に示す。
(Comparative Examples 1 to 3)
Cylindrical non-aqueous electrolyte secondary batteries according to Comparative Examples 1 to 3 in the same manner as in Example 1 except that the maximum height Rz of the base material layer is 0.05 μm, 3.3 μm, or 3.5 μm Was made. Table 1 shows the maximum height Rz of the base material layers of Comparative Examples 1 to 3.
(安全性評価)
 実施例1~7及び比較例1~3の各電池の安全性を評価するために、UL1642に記載されている条件に従って圧壊試験を行った。すなわち、4.2Vになるまで充電された実施例1~7及び比較例1~3の各電池を2枚の平板の間に挿入し、室温で13kNの荷重になるまで加圧を継続した。荷重が13kNに到達した時点で加圧を停止し、試験を終了した。試験後の電池の電圧と温度を測定し、5℃以上の温度上昇が確認された場合を発熱ありと判定した。実施例1~7及び比較例1~3のそれぞれについて5個の電池を用いて試験を行った。表1に発熱ありと判定された電池の数を示す。
(Safety evaluation)
In order to evaluate the safety of the batteries of Examples 1 to 7 and Comparative Examples 1 to 3, a crush test was performed according to the conditions described in UL1642. That is, the batteries of Examples 1 to 7 and Comparative Examples 1 to 3 charged to 4.2 V were inserted between two flat plates, and pressurization was continued until a load of 13 kN was reached at room temperature. When the load reached 13 kN, the pressurization was stopped and the test was terminated. The voltage and temperature of the battery after the test were measured, and when a temperature increase of 5 ° C. or higher was confirmed, it was determined that there was heat generation. Each of Examples 1 to 7 and Comparative Examples 1 to 3 was tested using five batteries. Table 1 shows the number of batteries determined to have heat generation.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 基材層の表面の最大高さRzが0.05μmの比較例1においては、電池の発熱が確認されている。発熱した電池を解体して内部を調べた結果、基材層から耐熱層が剥離していることがわかった。基材層から耐熱層が剥離すると、耐熱層の厚みの分だけセパレータの厚みが減少してしまう。そのため、圧壊試験時に電極体内部の一部に正負極間の絶縁性が十分ではない部位が発生したものと考えられる。 In Comparative Example 1 where the maximum height Rz of the surface of the base material layer is 0.05 μm, heat generation of the battery is confirmed. As a result of disassembling the heated battery and examining the inside, it was found that the heat-resistant layer was peeled off from the base material layer. When the heat-resistant layer is peeled from the base material layer, the thickness of the separator is reduced by the thickness of the heat-resistant layer. For this reason, it is considered that a portion where insulation between the positive and negative electrodes is not sufficiently generated in a part of the inside of the electrode body during the crushing test.
 基材層の最大高さRzが3.0μmを超える比較例2及び3も圧壊試験で電池の発熱が確認されている。表1の結果は、最大高さRzが大きくなるほど発熱が発生しやすくなる傾向を示している。比較例2及び3において発熱した電池についても解体して内部を調べた結果、電極体の内周部側にセパレータの大きな破れがみられた。基材層の最大高さRzを大きくすれば、基材層と耐熱層はアンカー効果により互いの密着性が向上する。しかし、最大高さRzが過度に大きい場合、圧壊試験時にセンターピンから極板が局所的な力を受けると極板が耐熱層を引っ張り、耐熱層に追随して基材層が破断してしまったものと考えられる。 In Comparative Examples 2 and 3 in which the maximum height Rz of the base material layer exceeds 3.0 μm, heat generation of the battery is confirmed in the crush test. The results in Table 1 show a tendency that heat generation is more likely to occur as the maximum height Rz increases. The batteries that generated heat in Comparative Examples 2 and 3 were also disassembled and the inside was examined. As a result, the separator was severely broken on the inner peripheral side of the electrode body. If the maximum height Rz of the base material layer is increased, the adhesion between the base material layer and the heat-resistant layer is improved by the anchor effect. However, if the maximum height Rz is excessively large, when the electrode plate receives a local force from the center pin during the crushing test, the electrode plate pulls the heat-resistant layer, and the base material layer breaks following the heat-resistant layer. It is thought that.
 一方、基材層の最大高さRzを0.1~3.0μmとした実施例1~7においては圧壊試験を受けた場合でも電池には発熱はみられなかった。基材層の最大高さRzを上記の範囲に規定することにより、基材層と耐熱層との間に適度な密着性が確保されるとともに、耐熱層が極板に引っ張られた場合に基材層が耐熱層に追随することが防止されるものと考えられる。 On the other hand, in Examples 1 to 7 in which the maximum height Rz of the base material layer was 0.1 to 3.0 μm, the battery did not generate heat even when subjected to the crush test. By defining the maximum height Rz of the base material layer within the above range, appropriate adhesion between the base material layer and the heat-resistant layer is ensured, and the base layer is pulled when the heat-resistant layer is pulled on the electrode plate. It is considered that the material layer is prevented from following the heat-resistant layer.
 上記の実施例では、680Wh/Lの体積エネルギー密度を有する円筒形非水電解質二次電池を用いたが、本発明は650Wh/L以上の体積エネルギー密度を有する円筒形非水電解質二次電池に効果的である。 In the above embodiment, a cylindrical non-aqueous electrolyte secondary battery having a volume energy density of 680 Wh / L was used. However, the present invention provides a cylindrical non-aqueous electrolyte secondary battery having a volume energy density of 650 Wh / L or more. It is effective.
 以上説明したように本発明によれば、安全性に優れた円筒形非水電解質二次電池を提供することができる。特に本発明は、650Wh/L以上の体積エネルギー密度を有する高容量の円筒形非水電解質二次電池に効果的である。そのため、本発明の産業上の利用可能性は大きい。 As described above, according to the present invention, a cylindrical nonaqueous electrolyte secondary battery excellent in safety can be provided. In particular, the present invention is effective for a high-capacity cylindrical nonaqueous electrolyte secondary battery having a volume energy density of 650 Wh / L or more. Therefore, the industrial applicability of the present invention is great.
10   円筒形非水電解質二次電池
11   セパレータ
11a  基材層
11b  耐熱層
12   正極板
12a  正極リード
13   負極板
13a  負極リード
14   電極体
15   中空部
16   センターピン
17   上部絶縁板
18   下部絶縁板
19   ガスケット
20   外装缶
21   封口体
DESCRIPTION OF SYMBOLS 10 Cylindrical nonaqueous electrolyte secondary battery 11 Separator 11a Base material layer 11b Heat-resistant layer 12 Positive electrode plate 12a Positive electrode lead 13 Negative electrode plate 13a Negative electrode lead 14 Electrode body 15 Hollow part 16 Center pin 17 Upper insulating plate 18 Lower insulating plate 19 Gasket 20 Exterior can 21 Sealing body

Claims (6)

  1.  正極板及び負極板がセパレータを介して巻回された電極体と、
     非水電解質と、
     前記電極体の巻回軸部に対応する位置に形成された中空部に挿入されたセンターピンと、
     前記電極体及び前記非水電解質を収容する有底筒状の外装缶とを備え、
     前記セパレータがポリオレフィンを主成分とする基材層と、前記基材層の少なくとも一方の表面に形成されるとともに耐熱性を有するポリマーを主成分とする耐熱層を含み、
     前記基材層の前記表面の最大高さRzは0.1μm以上3μm以下である、
     円筒形非水電解質二次電池。
    An electrode body in which a positive electrode plate and a negative electrode plate are wound through a separator;
    A non-aqueous electrolyte,
    A center pin inserted in a hollow portion formed at a position corresponding to the winding shaft portion of the electrode body;
    A bottomed cylindrical outer can containing the electrode body and the non-aqueous electrolyte;
    The separator includes a base layer composed mainly of polyolefin, and a heat-resistant layer composed mainly of a polymer having heat resistance and formed on at least one surface of the base layer,
    The maximum height Rz of the surface of the base material layer is 0.1 μm or more and 3 μm or less,
    Cylindrical non-aqueous electrolyte secondary battery.
  2.  前記耐熱層が絶縁性の無機粒子を含む請求項1記載の円筒形非水電解質二次電池。 The cylindrical non-aqueous electrolyte secondary battery according to claim 1, wherein the heat-resistant layer contains insulating inorganic particles.
  3.  前記無機粒子が酸化アルミニウム(Al23)、酸化マグネシウム(MgO)、酸化ケイ素(SiO)、酸化チタン(TiO)、及び酸化ジルコニウム(ZrO)からなる群から選ばれる少なくとも一つである請求項2に記載の円筒形非水電解質二次電池。 The inorganic particles are at least one selected from the group consisting of aluminum oxide (Al 2 O 3 ), magnesium oxide (MgO), silicon oxide (SiO 2 ), titanium oxide (TiO 2 ), and zirconium oxide (ZrO 2 ). The cylindrical nonaqueous electrolyte secondary battery according to claim 2.
  4.  前記ポリマーはポリフッ化ビニリデン、ポリアクリル酸、ポリメタクリル酸、ポリアミド、及びポリイミドからなる群から選ばれる少なくとも一つである請求項1から3のいずれかに記載の円筒形非水電解質二次電池。 The cylindrical nonaqueous electrolyte secondary battery according to any one of claims 1 to 3, wherein the polymer is at least one selected from the group consisting of polyvinylidene fluoride, polyacrylic acid, polymethacrylic acid, polyamide, and polyimide.
  5.  前記基材層の突刺強度は300gf以上である請求項1から4のいずれかに記載の円筒形非水電解質二次電池。 The cylindrical nonaqueous electrolyte secondary battery according to any one of claims 1 to 4, wherein the puncture strength of the base material layer is 300 gf or more.
  6.  体積エネルギー密度は650Wh/L以上である請求項1から5のいずれかに記載の円筒形非水電解質二次電池。 The volume energy density is 650 Wh / L or more, The cylindrical non-aqueous electrolyte secondary battery according to claim 1.
PCT/JP2016/004173 2015-09-25 2016-09-14 Cylindrical nonaqueous electrolyte secondary battery WO2017051514A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-188182 2015-09-25
JP2015188182 2015-09-25

Publications (1)

Publication Number Publication Date
WO2017051514A1 true WO2017051514A1 (en) 2017-03-30

Family

ID=58385881

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/004173 WO2017051514A1 (en) 2015-09-25 2016-09-14 Cylindrical nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
WO (1) WO2017051514A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019065787A1 (en) * 2017-09-29 2019-04-04 東レ株式会社 Porous film, separator for secondary batteries, and secondary battery
WO2019181286A1 (en) * 2018-03-20 2019-09-26 三洋電機株式会社 Non-aqueous electrolyte secondary battery and method of manufacturing non-aqueous electrolyte secondary battery
WO2020059874A1 (en) * 2018-09-20 2020-03-26 株式会社村田製作所 Secondary battery

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1160791A (en) * 1997-08-12 1999-03-05 Mitsubishi Chem Corp Porous film of polyethylene resin and its production
WO2007034856A1 (en) * 2005-09-22 2007-03-29 Mitsubishi Plastics, Inc. Process for producing porous laminate and porous laminate
JP2010540690A (en) * 2007-09-20 2010-12-24 東燃化学株式会社 Microporous membranes and methods of making and using such membranes
JP2011134562A (en) * 2009-12-24 2011-07-07 Teijin Ltd Separator for nonaqueous secondary battery, and nonaqueous secondary battery
JP2011181493A (en) * 2010-02-08 2011-09-15 Hitachi Maxell Energy Ltd Nonaqueous electrolyte secondary battery
WO2013094207A1 (en) * 2011-12-22 2013-06-27 パナソニック株式会社 Sealed battery
JP2015511053A (en) * 2012-03-05 2015-04-13 トレオファン・ジャーマニー・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング・ウント・コンパニー・コマンデイトゲゼルシャフト Highly porous separator film with partial coating
WO2015056385A1 (en) * 2013-10-15 2015-04-23 ソニー株式会社 Battery, battery pack, electronic device, electric vehicle, electric storage device, and power system
JP2015159126A (en) * 2015-05-01 2015-09-03 ソニー株式会社 Separator and nonaqueous electrolyte battery prepared therewith

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1160791A (en) * 1997-08-12 1999-03-05 Mitsubishi Chem Corp Porous film of polyethylene resin and its production
WO2007034856A1 (en) * 2005-09-22 2007-03-29 Mitsubishi Plastics, Inc. Process for producing porous laminate and porous laminate
JP2010540690A (en) * 2007-09-20 2010-12-24 東燃化学株式会社 Microporous membranes and methods of making and using such membranes
JP2011134562A (en) * 2009-12-24 2011-07-07 Teijin Ltd Separator for nonaqueous secondary battery, and nonaqueous secondary battery
JP2011181493A (en) * 2010-02-08 2011-09-15 Hitachi Maxell Energy Ltd Nonaqueous electrolyte secondary battery
WO2013094207A1 (en) * 2011-12-22 2013-06-27 パナソニック株式会社 Sealed battery
JP2015511053A (en) * 2012-03-05 2015-04-13 トレオファン・ジャーマニー・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング・ウント・コンパニー・コマンデイトゲゼルシャフト Highly porous separator film with partial coating
WO2015056385A1 (en) * 2013-10-15 2015-04-23 ソニー株式会社 Battery, battery pack, electronic device, electric vehicle, electric storage device, and power system
JP2015159126A (en) * 2015-05-01 2015-09-03 ソニー株式会社 Separator and nonaqueous electrolyte battery prepared therewith

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019065787A1 (en) * 2017-09-29 2019-04-04 東レ株式会社 Porous film, separator for secondary batteries, and secondary battery
JPWO2019065787A1 (en) * 2017-09-29 2020-09-10 東レ株式会社 Porous film, separator for secondary battery and secondary battery
JP7259329B2 (en) 2017-09-29 2023-04-18 東レ株式会社 Porous film, secondary battery separator and secondary battery
US11742514B2 (en) 2017-09-29 2023-08-29 Toray Industries, Inc. Porous film, separator for secondary batteries, and secondary battery
WO2019181286A1 (en) * 2018-03-20 2019-09-26 三洋電機株式会社 Non-aqueous electrolyte secondary battery and method of manufacturing non-aqueous electrolyte secondary battery
WO2020059874A1 (en) * 2018-09-20 2020-03-26 株式会社村田製作所 Secondary battery

Similar Documents

Publication Publication Date Title
JP5954674B2 (en) Battery and battery manufacturing method
JP4739958B2 (en) Lithium ion secondary battery
JP5748108B2 (en) Lithium secondary battery
WO2012042830A1 (en) Nonaqueous electrolyte secondary battery
CN102160212A (en) Separator for lithium secondary batteries, and lithium secondary battery using same
US20110052971A1 (en) Battery
JP2016081758A (en) Nonaqueous electrolyte secondary battery and manufacturing method thereof
JP2009004289A (en) Nonaqueous electrolyte secondary battery
JP5325227B2 (en) Non-aqueous electrolyte secondary battery electrode plate, method for producing the same, and non-aqueous electrolyte secondary battery
JPWO2012127561A1 (en) Non-aqueous electrolyte battery
JP2010251197A (en) Lithium ion battery
JP2009070726A (en) Method for manufacturing nonaqueous electrolyte battery
CN110546809A (en) Battery cell comprising sealing tape for accelerating heat conduction
WO2019098056A1 (en) Lithium ion secondary battery
JP6051038B2 (en) Foil for positive electrode current collector of lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
EP3624243A1 (en) Bipolar secondary battery
JP5260857B2 (en) Square non-aqueous electrolyte secondary battery and manufacturing method thereof
JP5945401B2 (en) Method for producing positive electrode current collector foil of lithium ion secondary battery
WO2017051514A1 (en) Cylindrical nonaqueous electrolyte secondary battery
JP2002319386A (en) Nonaqueous electrolyte secondary battery
JP2013196788A (en) Nonaqueous electrolyte secondary battery
JP2013201094A (en) Nonaqueous electrolyte secondary battery
US10312520B2 (en) Non-aqueous electrolyte secondary battery
JP2009193842A (en) Nonaqueous secondary battery, and manufacturing method and device thereof
JPWO2019151494A1 (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16848305

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16848305

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP