WO2017050296A1 - 一种子带调度方法、装置 - Google Patents

一种子带调度方法、装置 Download PDF

Info

Publication number
WO2017050296A1
WO2017050296A1 PCT/CN2016/100138 CN2016100138W WO2017050296A1 WO 2017050296 A1 WO2017050296 A1 WO 2017050296A1 CN 2016100138 W CN2016100138 W CN 2016100138W WO 2017050296 A1 WO2017050296 A1 WO 2017050296A1
Authority
WO
WIPO (PCT)
Prior art keywords
subband
message
target
sub
band
Prior art date
Application number
PCT/CN2016/100138
Other languages
English (en)
French (fr)
Inventor
刘亚林
曾广珠
陈磊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP16848177.8A priority Critical patent/EP3346651B1/en
Publication of WO2017050296A1 publication Critical patent/WO2017050296A1/zh
Priority to US15/928,069 priority patent/US10582500B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0064Rate requirement of the data, e.g. scalable bandwidth, data priority
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • H04L5/008Timing of allocation once only, on installation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/0045Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by altering transmission time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/543Allocation or scheduling criteria for wireless resources based on quality criteria based on requested quality, e.g. QoS
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a subband scheduling method and apparatus.
  • the random access process mainly includes the interaction between the terminal and the base station to synchronize with the base station, and at the same time, the base station allocates resources for the user.
  • LTE Long Term Evolution
  • the random access resource notifies the terminal through system messages or mobile control information, and different systems may adopt different random access resource configurations; specifically, may be configured by the system.
  • LTE supports contention based random access and non-contention based random access.
  • Contention-based random access means that multiple terminals use the same preamble (English: preamble) to perform random access on the same time-frequency resource.
  • Non-contention based random access means that the system assigns a dedicated preamble to the terminal, and the terminal does not collide when accessing the system.
  • contention-based random access is usually completed in four steps.
  • Figure 1 is a contention-based random access procedure, as shown in Figure 1 below:
  • Step 1 The user terminal randomly selects a preamble and sends the message to the base station through the message 1 on the random access channel (English: Random Access Channel; RACH);
  • Step 2 The base station detects the preamble and sends a random access response (message 2) to the user terminal.
  • the random access response includes the following information: the uplink resource location indication information allocated to the user terminal, and the temporarily allocated cell radio network temporary. Identification (English: Cell-Radio Network Temporary Identifier; abbreviation: C-RNTI);
  • Step 3 After receiving the random access response, the user terminal sends an uplink message (message 3) on the allocated uplink resource according to the indication.
  • Step 4 The base station receives the uplink message of the user terminal, and returns a conflict resolution message (message 4) to the user terminal with successful access.
  • a set of 64 preambles is defined, and the preamble is a set of zero correlation codes.
  • the preamble for contention is divided into two groups, GroupA and GroupB.
  • the number of GroupA is determined by the parameter preamblesGroupA, if the number of GroupA and the total number of preambles used for contention.
  • the goal is equal, which means that GroupB does not exist and select one of the predecessors from GroupA.
  • the accuracy of the preamble synchronization is relatively low, and the base station estimates the time advance of the user terminal according to the received preamble (English: Timing Advance; TA: abbreviation: TA), thereby adjusting the uplink transmission timing of the user terminal.
  • the random access response is sent to the user terminal, and the random access response message includes the TA and the uplink grant (English: Uplink Grant or UL Grant) resources, and the UL Grant resource is based on the preamble of the transmission.
  • the uplink transmission resource of the corresponding size is determined, and the user terminal uses the UL Grant resource to perform the transmission of the message 3.
  • US20140071954A1 discloses a method for adaptive transmission time interval (English: Transmission Time Interval; TTI), which is mainly for adapting to various service requirements in the future, for example, some services have lower transmission delays. Some services have a high transmission delay. Therefore, US20140071954A1 defines a frame structure that can adapt to different services, and can support multiple different TTIs at the same time to adapt to different services in the future.
  • TTI Transmission Time Interval
  • one frequency band is divided into a plurality of sub-bands or carriers, and each sub-band transmits a frame structure of a length TTI.
  • the sub-band refers to dividing a large frequency band into a plurality of small frequency bands, and there is no band leakage protection band between each frequency band or interference cancellation between bands using only one OFDM symbol.
  • a subband can also be an independent small band or carrier.
  • the information of the TTI supported by the system is notified to the terminal through a system broadcast message. In general, the notification message will only be notified in one sub-band. Therefore, there will be a sub-band for transmitting the downlink broadcast message.
  • This sub-band is used as a common sub-band and is mainly used to send downlink broadcast messages, for example. MIB, SIB, etc.
  • random access resources are not defined in each subband, for example, random access resources may be defined in a common subband.
  • the existing LTE random access procedure is performed on the same carrier (the carrier aggregation scenario also completes the random access procedure on one carrier), and the flow is shown in FIG. 1 .
  • the base station After the message 3 transmission is completed, the base station sends a contention resolution message. When the competition is completed, the random access process is completed and the data transmission process is entered.
  • LTE only supports a single frame structure, using the same TTI, currently defined as 10ms, and the future TTI length may be 1ms, the existing technology can not adapt to the scheduling requirements of the future 1ms delay. At the same time, if multiple TTIs are supported in the future, the existing technology cannot adapt to the scheduling requirements of multiple TTIs in the future.
  • the embodiment of the invention provides a seed band scheduling method and device, which can quickly and randomly access a target sub-band suitable for transmitting current data or services, so as to implement a fast data or service transmission process in the target sub-band.
  • the embodiment of the present invention provides a seed band scheduling method, including: the method is used in a random access process, and a first message carrying data attribute requirement information of data to be transmitted is sent to a base station on a source subband,
  • the data attribute requirement information includes at least one of the following: a transmission delay, a transmission delay category, a data bandwidth requirement, and a packet loss sensitivity;
  • the subband information includes at least one of the following: a subband number, a frequency of the subband, a timing advance, an uplink resource allocated by the base station, a subband transmission power level, and a bandwidth;
  • Data is transmitted on the target sub-band according to the sub-band information of the target sub-band.
  • the first message is a non-transport layer message
  • the second message is a contention resolution message
  • the method further includes: performing the sub-band in the target sub-band With synchronization.
  • the first message is a message for carrying a random access preamble
  • the second message is a response message of a random access
  • the method further includes: performing the sub-band in the target sub-band With synchronization.
  • the random access preamble carrying the signature information in the message for carrying the random access preamble Where different signatures correspond to different data attributes.
  • the uplink resource refers to a time-frequency resource allocated in the target sub-band.
  • the seventh possible implementation in the first aspect In the current mode, the time-frequency resource includes a time domain subframe number and a frequency domain resource block;
  • the time domain subframe number is determined according to a subframe number of a subframe in which the second message is located, or is indicated by the base station by using a random access message.
  • the random access message includes at least one of message 1, message 2, message 3, and message 4 in the embodiment part.
  • the time domain subframe number is determined to be included according to a subframe number of a subframe in which the second message is located :
  • the subframe number of the subframe closest to the current time on the target subband is the time domain subframe number
  • the number of target subband subframe distance to the next nearest sub-subframe is the current time of time-domain subframe number
  • ⁇ T is the time difference between the current time and the start time of the subframe closest to the current time on the target subband
  • is the time advance amount
  • T p is the scheduling processing time of the target subband.
  • the source subband and the target subband correspond to different transmission time intervals TTI.
  • the method further includes:
  • the other subbands that remove the target subband transmit the SR by carrying the SR in the data received on the target subband.
  • the embodiment of the present invention provides a seed band scheduling method, including: the method is used in a random access procedure, and receives, from a user terminal, a first message carrying data attribute requirement information of data to be transmitted on a source subband.
  • the data attribute requirement information includes at least one of the following: a transmission delay, a transmission delay category, a data bandwidth requirement, and a packet loss sensitivity;
  • the subband information includes at least one of the following: a subband number, a frequency of the subband, a timing advance, an uplink resource allocated to the user terminal, a subband transmission power level, and a bandwidth;
  • Data is transmitted on the target sub-band according to the sub-band information of the target sub-band.
  • the first message is a non-transport layer message
  • the second message is a contention resolution message
  • the method further includes: performing the sub-band in the target sub-band With synchronization.
  • the first message is a message for carrying a random access preamble
  • the second message is a response message of a random access.
  • the method further includes: performing the sub-band in the target sub-band With synchronization.
  • the random access preamble carrying the signature information in the message for carrying the random access preamble Where different signatures correspond to different data attributes.
  • the uplink resource refers to a time-frequency resource allocated in the target sub-band.
  • the time-frequency resource includes a time domain subframe number and a frequency domain resource block
  • the time domain subframe number is determined according to a subframe number of a subframe in which the second message is located, or is indicated by a random access message.
  • the random access message includes at least one of message 1, message 2, message 3, and message 4 in the embodiment part.
  • the time domain subframe number is determined to be included according to a subframe number of a subframe in which the second message is located :
  • the subframe number of the subframe closest to the current time on the target subband is the time domain subframe number
  • the number of target subband subframe distance to the next nearest sub-subframe is the current time of time-domain subframe number
  • ⁇ T is the time difference between the current time and the start time of the subframe closest to the current time on the target subband
  • is the time advance amount
  • T p is the scheduling processing time of the target subband.
  • the source subband and the target subband correspond to different transmission time intervals TTI.
  • the method further includes:
  • the other subbands of the target subband are removed to receive the SR by carrying the SR in the data received on the target subband.
  • an embodiment of the present invention provides a seedband scheduling apparatus, including: the apparatus is used in a random access process,
  • a sending module configured to send, by the source subband, a first message that carries data attribute requirement information of the data to be transmitted to the base station, where the data attribute requirement information includes at least one of the following: a transmission delay, a transmission delay category , data bandwidth requirements and packet loss sensitivity;
  • a receiving module configured to receive, on the source subband, a second message that carries subband information of a target subband from the base station, where the target subband is scheduled by the base station to satisfy the data to be transmitted.
  • a subband required by the data attribute the subband information including at least one of the following: a subband number, a frequency of the subband, a timing advance, an uplink resource allocated by the base station, a subband transmission power level, and a bandwidth;
  • a processing module configured to transmit data on the target subband according to the subband information of the target subband.
  • an embodiment of the present invention provides a seedband scheduling apparatus, including: the apparatus is used in a random access process,
  • a receiving module configured to receive, on the source subband, a first message that carries data attribute requirement information of the data to be transmitted from the user terminal, where the data attribute requirement information includes at least one of the following: a transmission delay, a transmission delay Category, data bandwidth requirements, and packet loss sensitivity;
  • a sending module configured to send, to the user equipment, a second message that carries the subband information of the target subband, where the target subband is scheduled to be sent to the user terminal, and the data to be transmitted is satisfied.
  • Subbands required by the data attribute, the subband information includes at least one of the following: a subband number, a frequency of the subband, a timing advance, an uplink resource allocated to the user terminal, a subband transmission power level, and Bandwidth
  • a processing module configured to transmit data on the target subband according to the subband information of the target subband.
  • the embodiment of the present invention provides a seed band scheduling method.
  • the base station sends the data attribute requirement information of the data to be transmitted to the base station, and the base station feeds back the corresponding sub-band information according to the data attribute request information, and the user terminal may according to the indication of the sub-band information.
  • the source subband is scheduled to the target subband, wherein the subband characteristics of the target subband can satisfy the data attribute requirement of the transmitted data; further, the TTI corresponding to the target subband and the data attribute of the data to be transmitted are matched.
  • Figure 1 is a contention based random access procedure
  • FIG. 3 is a schematic diagram of a subband scheduling method according to Embodiment 1 of the present invention.
  • FIG. 5 is a schematic diagram of a subband scheduling method according to Embodiment 2 of the present invention.
  • FIG. 6 is a schematic diagram of a method for obtaining a signature according to Embodiment 2 of the present invention.
  • FIG. 7 is an example of determining a subframe number according to Embodiment 3 of the present invention.
  • FIG. 8 is a schematic diagram of a method for sending a scheduling request according to Embodiment 4 of the present invention.
  • FIG. 9 is a schematic diagram of an SR transmission method according to Embodiment 4 of the present invention.
  • FIG. 10 is a schematic diagram of a subband scheduling apparatus according to an embodiment of the present invention.
  • FIG. 11 is a schematic diagram of a subband scheduling apparatus according to an embodiment of the present invention.
  • FIG. 12 is a schematic diagram of a subband scheduling apparatus according to an embodiment of the present invention.
  • FIG. 13 is a schematic diagram of a subband scheduling device according to an embodiment of the present invention.
  • the user terminal in the embodiment of the present invention may also be referred to as a user equipment (English: User Equipment; UE), a mobile terminal (English: Mobile Terminal), a mobile user equipment, etc., and may be accessed via a radio access network (English: Radio) Access Network; referred to as: RAN) communicates with one or more core networks, which may be mobile terminals, such as mobile phones (or "cellular" phones) and computers with mobile terminals, for example, portable, pocket-sized Mobile, handheld, computer built-in or in-vehicle mobile devices that exchange language and/or data with a wireless access network.
  • UE User Equipment
  • UE User Equipment
  • Mobile Terminal a mobile terminal
  • RAN Radio Access Network
  • Base station (English: Base Station; BS for short), which can be a base station in GSM or CDMA (called Base Transceiver Station), a base station in WCDMA (called NodeB), or an evolved base station in LTE.
  • BS Base Station
  • NodeB base station in WCDMA
  • LTE Long Term Evolution
  • eNB evolutional Node B
  • PLMN Public Land Mobile Network
  • 5G network 5G system
  • the base station is not limited in the present invention.
  • a frequency band or carrier in a future communication system can be divided into a plurality of sub-bands, wherein the number of sub-bands and the bandwidth of each sub-band are not limited.
  • Figure 2 is a schematic diagram of subband division, as shown in Figure 2:
  • a frequency band or a carrier that can be a certain bandwidth is divided into several sub-bands, for example, four sub-bands in FIG. 2, wherein the channels occupied by the sub-band 1, the sub-band 2, and the sub-band 3 are traffic channels (or data channels). (In Figure 2, the gray-marked part is removed, and the rest can be considered as a traffic channel or a data channel.)
  • the user completes the access data needs to be transmitted in these sub-bands; one sub-band corresponds to one TTI, and the corresponding sub-bands have TTIs.
  • the frame structure of the frames transmitted on these sub-bands should also support different TTIs, that is, the frame structure of the frames transmitted on each sub-band should support the sub-frame.
  • the common sub-band occupies a common channel, which can be further regarded as a common control channel or a random access control channel, and the random access is initiated mainly in the common sub-band.
  • the subband division does not change within the duration of one radio frame, and the subband division may change within the duration of several radio frames. For example, when the subband is updated in FIG. 2, subband 1 and subband 2 of the previous radio frame. Merge into the next radio frame Sub-band 1, of course, the sub-band division can also be changed or partially changed.
  • the embodiment of the present invention provides a seeding band scheduling method, which can implement user terminal scheduling from a common subband to a target subband in a random access process (typically, the target subband corresponds to a specific TTI or a target subband corresponding to satisfy a service requirement or data. TTI of transmission requirements; further, in the process of sub-band scheduling, random access in the target sub-band can be implemented to achieve fast data transmission in the target sub-band.
  • sub-band scheduling method provided by the embodiment of the present invention may also be used for a scenario that spans carriers and has multiple different TTIs.
  • a subband scheduling method provided by an embodiment of the present invention includes:
  • the user terminal sends a first message carrying the data attribute request information data attribute request information of the data to be transmitted to the base station on the source subband, where the data attribute request information data attribute request information includes at least one of the following: transmission delay, transmission Delay class, data bandwidth requirements, and packet loss sensitivity;
  • the user terminal receives, on the source subband, a second message carrying the subband information of the target subband from the base station, where the target subband is a subband scheduled by the base station to meet the data attribute requirement of the data to be transmitted, and the subband information includes at least the following One type: bandwidth, timing advance, and uplink resources allocated by the base station;
  • Data is transmitted on the target subband according to the subband information of the target subband.
  • the “source subband” is a subband that performs signaling interaction before the subband scheduling is completed or a subband that initiates access, and is used to distinguish from the target subband, which may be a common subband, or even The other sub-bands of the target sub-band are removed; and the target sub-band is a sub-band for signaling interaction after the sub-band scheduling is completed.
  • the base station requests the information data attribute request information according to the data attribute of the transmission data sent by the user equipment.
  • the user equipment schedules or allocates a target sub-band that satisfies the data attribute requirements in order for the user equipment to transmit data or communicate on the target sub-band.
  • the source sub-band and the target sub-band may also be the same sub-band.
  • the target subband and the source subband are the same subband, there is no need to perform subband scheduling or reallocating a new target subband, but directly communicate on the source subband. Further, at this time, the source The subband shall also satisfy the data attribute requirements of the data to be transmitted.
  • the subband scheduling method provided by the embodiment of the present invention is used in a random access procedure.
  • the source subband and the target subband correspond to different TTIs.
  • the source subband and the target subband are the same subband, the two correspond to the same TTI.
  • the transmitting the data on the target subband according to the subband information of the target subband may include: after receiving the subband information of the target subband sent by the base station, the user terminal may use the subband information of the target subband from the source.
  • the subband is scheduled to the target subband, for example, the time synchronization is adjusted according to the timing advance in the subband information, and the data is transmitted on the uplink resource indicated by the subband information.
  • the sub-band scheduling method provided by the embodiment of the present invention can quickly and randomly access a target sub-band suitable for transmitting current data or services, so as to implement a fast data or service transmission process in the target sub-band.
  • the first message (message 1) carries a preamble for random access, and its role is to prevent collisions and collisions; the base station detects the time of the user terminal through the preamble. Advance quantity, and distinguish between different user terminals through the preamble.
  • the second message (message 2) is a random access response message, configured to notify the user terminal that the base station detects the preamble sent by the user terminal, and adjusts the timing advance of the user terminal, so that the data subsequently transmitted by the user terminal arrives at the base station. The time meets the detection requirements of the base station. It should be noted that receiving the message 2 by the user terminal does not mean that the user terminal has accessed the base station.
  • the third message (message 3) is used for the user terminal to transmit the non-access stratum message to the base station, which is a message submitted by the upper layer to the MAC layer.
  • the base station After receiving the third message, the base station returns a contention resolution message (message 4) to the user terminal, and the user terminal uses the message 4 to determine whether the random access is successful.
  • the message 1 is a message for carrying a random access preamble
  • the message 2 is a response message of random access
  • the message 3 is a non-access stratum message
  • the message 4 is a contention resolution message.
  • Message 1, Message 2, Message 3, and Message 4 are directly used in the following embodiments.
  • first message in the foregoing embodiment may be the message 3 of the random access procedure, and the second message may be the message 4 of the random access procedure; or the first message is the message 1 of the random access procedure, and the second The message is message 2 of the random access procedure.
  • Sub-band scheduler for each of the following embodiments The law provides a more detailed description or other details, as detailed below.
  • the base station When the user terminal performs random access, the base station cannot obtain the service information of the user terminal in the initial stage, and it is impossible to determine which TTI the user terminal uses for the service transmission. Therefore, it is necessary to wait until the user terminal notifies the base station of the data attribute or service type. After that, the selection of the corresponding TTI sub-band can be performed.
  • the third terminal of the random access that is, the message 3 generally carries a non-access layer (English: Non Access Stratum; NAS) message, and the base station does not parse the message. content.
  • the sub-band scheduling method provided in the first embodiment of the present invention can adapt to the scenario in which the frame structure of the future communication system supports multiple TTIs by enhancing or improving the conventional random access procedure.
  • FIG. 3 is a schematic diagram of a subband scheduling method according to Embodiment 1 of the present invention.
  • a sub-band scheduling process is shown in FIG. 3:
  • message 1 and message 2 shown in FIG. 3 have the same functions as messages 1 and 2 in the conventional random access procedure (the specific structure may be different); for message 3,
  • the traditional random access procedure differs in that the message 3 carries the data attribute request information data attribute request information, and the data attribute request information data attribute requirement information includes at least one of the following: transmission delay, transmission delay category, and data bandwidth requirement. And packet loss sensitivity. Further, the sub-band transmission power level may also be included in the message 3.
  • the base station After receiving the message 3, the base station selects an appropriate target subband for the user terminal according to the data attribute requirement information data requirement information and the resource information of each subband, and sends the message to the user terminal in the message 4, where the target subband is A subband that satisfies the data attribute requirements.
  • the message 4 carries the subband information of the target subband, and the subband information may specifically include at least one of the following: a subband number, a frequency of the subband, a timing advance or a timing advance (English: Timing Advance; : TA) information, uplink resources allocated by the base station, sub-band transmission power levels, bandwidth, and the like.
  • TA Timing Advance
  • the subband information may be carried in a medium access control (English: Media Access Control; MAC) layer control element (English: Control Element; abbreviated as: CE), and the UL Grant resource is a resource on the target subband.
  • the user terminal After receiving the message 4, the user terminal acquires subband information (for example, TA information and UL Grant).
  • the resource information is synchronized on the subband indicated by the subband information (ie, the target subband) (that is, the subband synchronization), and the first uplink transmission is performed on the UL Grant resource.
  • the sub-band indicated by the sub-band information herein performs uplink synchronization (sub-band synchronization) different from the conventional synchronization, and the conventional synchronization requires timing synchronization through a synchronization sequence, and the sub-band synchronization here refers to Since the TTIs of different subbands are different, the subframe boundaries may not be aligned.
  • the subframe boundary alignment that is, uplink synchronization
  • the subframe boundary alignment needs to be completed on the specified target subband. Since each sub-band is aligned at the beginning of the radio frame, that is, the user terminal has implemented frame synchronization, sub-band synchronization can achieve sub-frame alignment by adjusting the TA (see Embodiment 3 for details), without Synchronization is achieved by synchronizing signals. Therefore, the subband synchronization described here is not the same as the usual synchronization. It should be noted that the target sub-band in the sub-band scheduling process may also be a common sub-band.
  • FIG. 4 is another seed band scheduling method according to Embodiment 1 of the present invention.
  • the subband information of the target subband is to be sent to the user terminal.
  • the non-contention-based sub-band scheduling process includes: the source base station provides the user equipment with the sub-band information of the target base station by using the handover message, and may specifically include at least one of the columns: the sub-band number, the TTI information of the sub-band, or the frequency domain resource location.
  • the source base station may send the sub-band information to the user terminal through the air interface switching message, which may include the earliest scheduled resource and the physical uplink control channel (English: Physical Uplink Control Channel; PUCCH) resource allocation.
  • PUCCH Physical Uplink Control Channel
  • the user terminal After receiving the subband information, the user terminal directly synchronizes in the corresponding subband of the target base station (ie, the subband indicated in the handover message), and after the synchronization is completed, the physical downlink control channel can be performed (English: Physical Downlink Control Channel) Abbreviated as: PDCCH) to obtain scheduling resource information or to perform uplink resource request by using the indicated PUCCH resource.
  • the physical downlink control channel can be performed (English: Physical Downlink Control Channel) Abbreviated as: PDCCH) to obtain scheduling resource information or to perform uplink resource request by using the indicated PUCCH resource.
  • the user terminal may perform random access at the target base station by using the specified preamble, and after receiving the preamble, the target base station sends the message to the user terminal in message 2.
  • Subband scheduling can then be done in the target subband.
  • the user terminal needs to inform the base station in advance of the data attribute request information data attribute request information (for example, TTI requirement) of the data to be transmitted. Since the user terminal only transmits one message 1 before the message 3, the message 1 is the only message that may carry the data attribute request information data attribute request information. If the message 1 carries the data attribute request information attribute request information, the base station can adjust the TA of the user terminal by using the message 2, and allocate a UL Grant resource for the service scheduling on the target subband. Resources.
  • FIG. 5 is a subband scheduling method according to Embodiment 2 of the present invention.
  • message 1 and message 2 are transmitted on a source subband (for example, a common subband in FIG. 5(a)).
  • Message 3 and Message 4 are transmitted on the scheduled target subband (e.g., subband 2 in Figure 5(a)).
  • the scheduled target subband e.g., subband 2 in Figure 5(a)
  • the preamble may be used to carry signature information, and each signature represents a type of data attribute, thereby implementing information attribute request information data request information carried by the message 1.
  • each signature represents a type of data attribute, thereby implementing information attribute request information data request information carried by the message 1.
  • the data attribute letter as a TTI requirement as an example, it can be expected that the number of different TTIs supported by the communication system in the future may not be arbitrary, and generally it is a plurality of TTIs that the defined system needs to support.
  • TTI signature TTI-1 Signature 1
  • TTI-2 Signature TTI-3 Signature 3
  • TTI-4 Signature TTI-5 Signature 5
  • Table 1 is only an example, and the embodiment of the present invention does not limit the specific TTI length and number. A similar approach can be extended.
  • the specific TTI length and signature code (that is, the codeword obtained by encoding each signature separately) are not given in Table 1.
  • the signature code may be code division multiple access (English: Code Division Multiple) Access; abbreviation: CDMA) code, or low density signature (English: Low Density Signature; LDS) code or sparse code multiple access (English: Sparse Code Multiple Access; referred to as: SCMA) code.
  • the user terminal when transmitting the preamble, uses the signature code and the selected preamble to multiply or scramble (or scramble code) to carry the signature information, thereby transmitting the data attribute request information data attribute request information to the receiving end.
  • the base station performs calculation on the matched and filtered signal by using the signature code, and then performs signal energy accumulation, and the correlation operation can solve the preamble or descrambling to obtain the preamble.
  • the message 2 carrying the subband information of the target subband is sent to the user terminal, for example,
  • the subband information may include one or more of the following: a subband number, a frequency of the subband, a timing advance, an uplink resource allocated by the base station, a subband transmission power level, and a bandwidth.
  • the subband information may include one or more of the following: access resource information, TA adjustment information, or power transmission information.
  • the user terminal schedules the target subband according to the obtained subband information. Specifically, the user terminal calculates the TA adjustment amount of the target sub-band according to the TA adjustment information or directly uses the TA adjustment information to perform TA adjustment (specific TA adjustment method depends on the system-defined TA adjustment method, see Embodiment 3);
  • the target subband performs the transmission of message 3 and message 4.
  • the base station can instruct the user terminal to perform the TA adjustment again in the message 4, so that the transmission between the user terminal and the base station is more synchronized. accurate.
  • FIG. 6 is a schematic diagram of a method for acquiring a signature according to Embodiment 2 of the present invention.
  • the receiving end for example, the base station in FIG. 5
  • the signal and each signature are calculated, and each of the calculated branch signals is accumulated by the accumulator, and then the energy of each branch output signal is detected.
  • the preamble is considered to have been received.
  • the signature code corresponding to the branch whose energy exceeds the threshold is the signature code used by the transmitting end (for example, the user terminal in FIG. 5).
  • n is the number of signature codes
  • m is the number of preambles
  • Ts is a part of the correlator.
  • the allocated resource refers to the resource after 4 subframes after the current subframe, that is, the location of l+4 is given to the user terminal.
  • the user terminal when the user terminal transmits from the current subband scheduling to the target subband, it is necessary to determine the subframe number of the target subband (that is, determine the start of the resource allocated to the user terminal). Position), but since the waveforms of the sub-bands corresponding to different TTIs are different, the starting position of each sub-frame of different sub-bands may be different.
  • the subframe number scheduled in the target subband two factors need to be considered: one is the TA that the user terminal needs to adjust due to the distance from the base station; the other is the time deviation of the start position of the subframes of two different subbands.
  • the time offset can be used to determine whether the starting location of the resource allocated by the base station is the starting position of the next subframe of the target subband or the starting position of the next subframe of the target subband.
  • the position of the frame automatically calculates the subframe number (or subframe position) of the target subband allocated by the base station to the user terminal.
  • the first method is relatively simple, that is, specifying a subframe number (or a subframe position) in a random access UL Grant resource allocation is relatively easy to implement, but brings signaling overhead.
  • the second method has two options, one is to consider the TA, and the other is to not consider the TA. It is simpler to consider TA, but the benefit of considering TA is that scheduling will be more precise and more timely. If the TA is negative, that is, the timing is shifted forward, the user terminal may miss the scheduling because the current processing has not been processed, and the transmission cannot be performed at the scheduled transmission time. If the TA is positive, that is, periodically offset backwards, it will cause a transmission delay, which may cause the transmission to be possible at a predetermined time, but it is not sent.
  • Embodiment 3 of the present invention provides a method for calculating a subframe number of a resource scheduled by a target subband when considering a TA, as follows:
  • the radio frame length T f is a certain constant
  • the i-th sub-band subframe length is The jth subband subframe length is The frame synchronization is performed on different sub-bands, and the multiple TTIs of different sub-bands or the sub-frame lengths of different sub-bands are multiplied. It should be noted that if the starting boundaries of the sub-frames are aligned, the TTIs of different sub-bands or the sub-frame lengths of different sub-bands may not be in a multiple relationship.
  • the total time difference is: ⁇ T + ⁇ .
  • the subframe number corresponding to the starting position of the resource is If ⁇ T + ⁇ ⁇ T p, in the target subband scheduling resources corresponding to the start position of the sub-frame number Indicates that the pair is rounded up.
  • FIG. 7 is an example of determining a subframe number according to Embodiment 3 of the present invention.
  • there are 5 sub-bands and their corresponding TTIs are equal to 5 ms, 2 ms, 1 ms, 0.5 ms, and 0.25 ms, respectively.
  • the sub-frame length of the sub-band with a TTI equal to 5 ms and the sub-frame length of the sub-band with a TTI equal to 2 ms are not in a multiple relationship. Taking the TTI as a 1 ms frame as an example, consider scheduling from subbands with a TTI of 1 ms to other subbands.
  • a moderate sub-band of TTI may be selected, such as a sub-band with a TTI of 1 ms as a common sub-band. Assuming that a radio frame (or superframe) is 10 ms, the subframes within one superframe in each subband are sequentially numbered, and the starting subframe number is 0, as shown in FIG. 7, the TTI is 0.25 ms. Sub-band, one frame (superframe) includes 40 subframes, and for a sub-band with a TTI of 5 ms, one frame includes 2 subframes, and the like.
  • the scheduling eg, message 4 in FIG. 3 or message 2 in FIG. 5
  • the scheduling on the target subband (eg, subband synchronization in Figure 3 or message 3 in Figure 5) is in subframe 2
  • the scheduling is received in the third subframe with a TTI of 1 ms (subframe 2 with a TTI of 1 ms). Then, the scheduling of the target subband can only be performed on the subframe 3.
  • the method for determining the subframe number can be directly calculated according to the formula provided by the embodiment of the present invention. It is also possible to obtain a table according to the method provided by the embodiment of the present invention, and determine the subframe number in a manner of finding a table. In addition, since the sub-frame length of each sub-band is fixed, determining the sub-frame number is equivalent to determining the start position of the sub-frame, and vice versa.
  • the user terminal can transmit simultaneously in multiple sub-bands.
  • the traditional method is that the user terminal performs the uplink scheduling request (English: Scheduling Request; SR: short) transmission by initiating a random access procedure.
  • the method of performing the uplink scheduling request transmission by initiating the random access procedure wastes system resources and also brings data transmission delay.
  • the SR may be sent through the resources on the sub-band corresponding to the other TTI.
  • FIG. 8 is a schematic diagram of a method for sending a scheduling request according to Embodiment 4 of the present invention.
  • the upper part of FIG. 8 shows an example of an independent MAC (or an independent MAC entity) under multiple TTIs, and each TTI corresponds to The sub-band has a MAC entity (TTI1 MAC, TTI2 MAC, ..., TTIk MAC), and has a one-to-one correspondence with the sub-bands.
  • TTI1 MAC, TTI2 MAC, ..., TTIk MAC MAC entity
  • the sub-band 1 has data to be transmitted, the sub-band 1 is not configured with the PUCCH and no data is transmitted. Therefore, the sub-band 2 resources can be used for the SR transmission, and the SR can be transmitted with the data in the sub-band 2, if If subband 2 has no data transmission, it can be transmitted by using the PUCCH of subband 2.
  • FIG. 9 is a schematic diagram of an SR transmission method according to Embodiment 4 of the present invention.
  • the user terminal determines a subband (ie, a target subband) for transmitting an SR, and reports the SR and the buffer status (English: Buffer) Status Report; Abbreviation: BSR)
  • the MAC entity sent to the target subband, which carries the SR on the data to be transmitted, or sends the SR through the PUCCH.
  • the SR includes at least subband information of the source subband (such as subband 1 in FIG. 8). If the SR transmits through the PUCCH, the target subband notifies the physical layer to transmit the SR, which includes the subband information of the source subband. If the target sub-package carries data, the base station is notified to allocate resources to the source sub-band by attaching a BSR (a MAC layer command) to the data, and the BSR can also carry the sub-band of the source sub-band. information.
  • a BSR a MAC layer command
  • the PDCCH on the target subband is monitored.
  • the base station receives the request, it allocates resources for the source subband.
  • the base station sends the allocated resources to the source sub-band.
  • the allocated UL Grant resource is directly transmitted in the PDCCH of the source sub-band, and the PDCCH is monitored by the source sub-band. Directly; the second is to transmit through the target sub-band, and the target sub-band sends to the transmitting sub-band.
  • the target sub-band If the target sub-band is transmitted, after transmitting the SR or BSR, the user terminal does not need to monitor the PDCCH (in FIG. The terminal monitors the PDCCH in the target subband.
  • the disadvantage of the second method is that the target sub-band needs to send the allocated UL Grant resource to the source sub-band, which brings a certain delay.
  • a system supporting multiple TTIs may configure PUCCH in only one subband without configuring PUCCH in each subband.
  • the embodiment of the present invention further provides a sub-band scheduling device.
  • the device is used in a random access process, including:
  • the sending module 1001 is configured to send, to the base station, a first message that carries data attribute requirement information data attribute requirement information of the data to be transmitted on the source subband, where the data attribute requirement information data attribute requirement information includes at least one of the following: a delay, a transmission delay category, a data bandwidth requirement, and a packet loss sensitivity; the receiving module 1003, configured to receive, on the source subband, a second message that carries the subband information of the target subband from the base station, where the target subband is The sub-band scheduled by the base station satisfies the data attribute requirement of the data to be transmitted, and the sub-band information includes at least one of the following: a sub-band number, a frequency of the sub-band, a timing advance, an uplink resource allocated by the base station, and a sub-band transmission power level. And bandwidth;
  • the processing module 1002 is configured to transmit data on the target subband according to the subband information of the target subband.
  • the source subband and the target subband correspond to different TTIs.
  • the transmitting the data on the target sub-band according to the sub-band information of the target sub-band may include: after receiving the sub-band information of the target sub-band sent by the base station, the user terminal may perform the sub-band according to the target sub-band.
  • the information is scheduled from the source subband to the target subband, and the time synchronization is adjusted according to the timing advance in the subband information, and the data is transmitted on the uplink resource indicated by the subband information.
  • the apparatus further includes: a synchronization module for performing subband synchronization in the target subband.
  • the embodiment of the present invention further provides a sub-band scheduling device.
  • the device is used in a random access process, including: a physical transceiver module, multiple MAC processing modules, and a MAC control module. And a plurality of data scheduling modules;
  • the data scheduling unit is configured to schedule data having the same data attribute requirement information in the same MAC processing module according to the data attribute requirement information of the data to be transmitted; optionally, the data attribute request information and the TTI (or TTI) Demand) is corresponding, therefore, data with the same TTI requirement can be scheduled in the same MAC processing module;
  • a MAC processing module configured to perform MAC layer processing, including parsing, encapsulating, receiving data of a data scheduling module, etc. of a random access message (eg, message 1, message 2, message 3, or message 4); specifically, scheduling data from the data
  • the data transmitted in the module performs MAC layer processing; optionally, different MAC processing modules correspond to different TTIs, that is, different MAC processing modules process data corresponding to different TTIs.
  • a MAC control module configured to implement message transmission between multiple MAC processing modules. Specifically, when scheduling from one subband to another subband, the source MAC processing module needs to notify the target MAC processing module, and the source MAC processing module According to the subband information received from the base station (the subband information satisfies the data attribute requirement of the data to be transmitted), the timing adjustment information (ie, the subframe delimitation information, and the subband information must include the timing adjustment information at this time) is controlled by the MAC. The module sends the signal to the target MAC processing module; at this time, the data to be transmitted can be transmitted through the target MAC processing module.
  • the physical transceiver module is configured to send data transmitted from multiple MAC processing modules, and/or perform physical layer processing on the received data and send the data to the MAC processing module.
  • the embodiment of the present invention further provides a sub-band scheduling device, As shown in FIG. 12, the device is used in a random access process, including:
  • the receiving module 1201 is configured to receive, on the source subband, a first message that carries data attribute requirement information of the data to be transmitted from the user terminal, where the data attribute requirement information includes at least one of the following: a transmission delay, a transmission delay category. , data bandwidth requirements and packet loss sensitivity;
  • the sending module 1203 is configured to send, on the source subband, a second message carrying the subband information of the target subband to the user terminal, where the target subband is a subband that is scheduled to the user terminal and meets the data attribute requirement of the data to be transmitted.
  • the subband information includes at least one of the following: a subband number, a frequency of the subband, a timing advance, an uplink resource allocated to the user terminal, a subband transmission power level, and a bandwidth;
  • the processing module 1202 is configured to transmit data on the target subband according to the subband information of the target subband.
  • the source subband and the target subband correspond to different TTIs.
  • the processing module 1201, according to the subband information of the target subband, transmitting data on the target subband may include: after receiving the subband information of the target subband sent by the base station, the user terminal may use the subband information of the target subband. From the source subband scheduling to the target subband, the time synchronization is adjusted according to the timing advance in the subband information, and the data is transmitted on the uplink resource indicated by the subband information.
  • the subband scheduling apparatus provided by the embodiment of the present invention can be used on a user terminal, a network element node device, or a base station.
  • the embodiment of the present invention further provides a processing device, as shown in FIG. 13, comprising: a processor 1301, a memory 1302, a transmitter 1303, a receiver 1305, and a bus 1304, wherein the processor 1301, the memory 1302, the transmitter 1303, and the receiving
  • the machine 1305 is connected to perform data transmission through a bus 1304, and the memory 1302 is configured to store data processed by the processor 1301;
  • the bus 1304 may be an Industry Standard Architecture (ISA) bus, a Peripheral Component (PCI) bus, or an Extended Industry Standard Architecture (EISA) bus. Etc., here is not limited.
  • the bus 1304 can be divided It is an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in FIG. 13, but it does not mean that there is only one bus or one type of bus. among them:
  • the memory 1302 is configured to store data or executable program code, where the program code includes computer operating instructions, specifically: an operating system, an application, and the like.
  • the memory 1302 may include a high speed RAM memory and may also include a non-volatile memory such as at least one disk memory.
  • the processor 1301 may be a central processing unit (CPU), or an application specific integrated circuit (ASIC), or one or more configured to implement the embodiments of the present invention. integrated circuit.
  • CPU central processing unit
  • ASIC application specific integrated circuit
  • the transmitter 1303 and the receiver 1305 are configured to send and receive messages
  • the processor 1301 is configured to implement the sub-band scheduling method in the foregoing embodiment by executing the program code in the memory 1302, where some technical features, sub-band synchronization, and signature information are involved.
  • the determination of the subframe number, and the like are similar to or corresponding to some technical features involved in the method embodiment of the present invention, and the description is not repeated in this embodiment. The specific process will not be repeated.
  • the size of the serial numbers of the above processes does not mean the order of execution, and the order of execution of each process should be determined by its function and internal logic, and should not be implemented by the present invention.
  • the implementation of the examples constitutes any limitation.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division, and the actual implementation may have another The manner of division, for example, multiple units or components may be combined or integrated into another system, or some features may be omitted or not performed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, or an electrical, mechanical or other form of connection.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the embodiments of the present invention.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit. Specifically, it can be implemented by means of software and necessary general hardware.
  • the general hardware includes a general-purpose integrated circuit, a general-purpose CPU (English: Central Processing Unit, Chinese: central processing unit), and a general-purpose digital signal processor (English: Digital Signal Processor) , referred to as: DSP), Field Programmable Gate Array (English: Field Programming Gate Array, referred to as: FPGA), Programmable Logical Device (English: Programmable Logical Device, PLD for short), general-purpose memory, general-purpose components, etc. It can be realized by dedicated hardware including an application specific integrated circuit (ASIC), a dedicated CPU, a dedicated memory, a dedicated component, and the like.
  • ASIC application specific integrated circuit
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the technical solution of the present invention contributes in essence or to the prior art, or all or part of the technical solution may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read only memory (English: Read Only Memory, abbreviated as ROM), a random access memory (English: Random Access Memory, abbreviated as RAM), a magnetic disk or an optical disk, and the like.
  • ROM Read Only Memory
  • RAM Random Access Memory
  • Software or instructions can also be transferred over a transmission medium.
  • a transmission medium For example, if you use coaxial cable, fiber optic cable, twisted pair, digital subscriber line (English: Digital Subscriber Line, DSL for short) Or wireless technology (such as infrared, radio, and microwave) to transmit software from a website, server, or other remote source, then coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies (such as infrared, radio, and microwave) are included in the transmission.
  • coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提出了一种子带调度方法,包括:在源子带上向基站发送携带待传输数据的数据属性要求信息的第一消息,其中,数据属性要求信息至少包括下列的一种:传输时延、传输时延类别、数据带宽需求和丢包敏感性;在源子带上从基站接收携带目标子带的子带信息的第二消息,其中,目标子带是基站调度的满足待传输数据的数据属性要求的子带,子带信息至少包括下列的一种:子带号、子带的频点、时间提前量、基站分配的上行资源、子带发送功率水平和带宽;根据目标子带的子带信息,在目标子带上传输数据。通过本发明实施例提供的子带调度方法,可以快速地随机接入到适合传输当前数据或业务的目标子带,以便在目标子带实现快速的数据或业务传输过程。

Description

一种子带调度方法、装置 技术领域
本发明涉及通信技术领域,具体涉及一种子带调度方法、装置。
背景技术
在传统的蜂窝通信中,终端如果要接入蜂窝网络,都需要完成随机接入过程。随机接入过程主要包括终端和基站的交互,以实现和基站的同步,同时,基站为用户分配资源。在长期演进(英文:Long Term Evolution;简称:LTE)中,随机接入资源通过系统消息或移动控制信息通知终端,不同的系统可以采用不同的随机接入资源配置;具体地,可以由系统配置随机接入资源的频域位置以及在哪些帧和子帧配置随机接入资源。
LTE支持基于竞争的随机接入和基于非竞争的随机接入。基于竞争的随机接入是指多个终端采用相同的前导(英文:preamble)在相同的时频资源上进行随机接入。基于非竞争的随机接入是指系统为终端指定专用的前导,终端接入系统时不会发生冲突。在LTE系统中,基于竞争的随机接入通常通过四个步骤完成,图1为基于竞争的随机接入过程,如下图1所示:
步骤1:用户终端随机选择一个前导,在随机接入信道(英文:Random Access Channel;简称:RACH)上通过消息1向基站发送;
步骤2:基站在检测到前导,向用户终端发送随机接入响应(消息2),随机接入响应中包含以下信息:为该用户终端分配的上行资源位置指示信息、临时分配的小区无线网络临时标识(英文:Cell-Radio Network Temporary Identifier;简称:C-RNTI);
步骤3:用户终端在收到随机接入响应后,根据其指示,在分配的上行资源上发送上行消息(消息3)。
步骤4:基站接收用户终端的上行消息,并向接入成功的用户终端返回冲突解决消息(消息4)。
在LTE中,定义了一组共64个前导,前导是一组零相关的码。其中,用于竞争的前导被分为GroupA和GroupB两组,GroupA的数目由参数preamblesGroupA来决定,如果GroupA的数目和用于竞争的前导的总数的数 目相等,就意味着GroupB不存在并从GroupA中选择其中一个前导。前导对同步的要求精度相对较低,基站根据收到的前导对用户终端的时间提前量(英文:Timing Advance;简称:TA)进行估计,从而对用户终端的上行传输定时进行调整。
如果基站能正确解调出前导,则向用户终端发送随机接入响应,在随机接入响应消息中包含TA和上行授权(英文:Uplink Grant或UL Grant)资源,UL Grant资源是根据发送的前导确定的相应大小的上行传输资源,用户终端使用该UL Grant资源进行消息3的传输。
US20140071954A1公开了一种自适应传输时间间隔(英文:Transmission Time Interval;简称:TTI)的方法,主要是为了在未来能够适应各种不同的业务需求,例如有的业务具有较低的传输时延,而有的业务具有较高的传输时延,因此,US20140071954A1定义了一种能适应不同业务的帧结构,可以同时支持多种不同的TTI以适应未来不同的业务。
在US20140071954A1公开的帧结构中,一个频带被划分为多个子带或载波,每个子带传输一种长度TTI的帧结构。所述子带是指将一个大的频带划分成多个小的频带,各频带之间没有频带泄露保护带或仅用一个OFDM符号来进行频带间的干扰消除。就广义而言,一个子带也可以是一个独立的小的频带或载波。通常,系统支持的TTI的信息会通过系统广播消息通知给终端。而一般而言,通知消息只会在一个子带进行通知,因此,会有一个子带用来发送下行广播消息,本专利称该子带为公共子带,主要用来发送下行广播消息,例如MIB,SIB等。同样的,为了节省随机接入资源,不会在每个子带定义随机接入资源,比如可以将随机接入资源定义在公共子带。
现有的LTE的随机接入过程是在同一个载波上完成的(载波聚合的场景下也是在一个载波上完成随机接入过程),其流程如图1所示。在消息3传输完成之后,基站会发送一个竞争解决消息。当竞争完成之后,随机接入过程也就完成,随即进入数据传输过程。
LTE仅支持单一的帧结构,采用相同的TTI,目前定义为10ms,而未来一个TTI长度可能为1ms,则现有技术无法适应未来1ms延迟的调度需求。同时,如果未来支持多种TTI,那么现有技术也无法适应未来多个TTI的调度需求。
发明内容
本发明实施例提出了一种子带调度方法、装置,可以快速地随机接入到适合传输当前数据或业务的目标子带,以便在目标子带实现快速的数据或业务传输过程。
第一方面,本发明实施例提出了一种子带调度方法,包括:所述方法用于随机接入过程,在源子带上向基站发送携带待传输数据的数据属性要求信息的第一消息,其中,所述数据属性要求信息至少包括下列的一种:传输时延、传输时延类别、数据带宽需求和丢包敏感性;
在所述源子带上从所述基站接收携带目标子带的子带信息的第二消息,其中,所述目标子带是所述基站调度的满足所述待传输数据的数据属性要求的子带,所述子带信息至少包括下列的一种:子带号、子带的频点、时间提前量、所述基站分配的上行资源、子带发送功率水平和带宽;
根据所述目标子带的子带信息,在所述目标子带上传输数据。
结合第一方面,在第一方面的第一种可能的实现方式中,所述第一消息为非传输层消息;所述第二消息为竞争解决消息。
结合第一方面的第一种可能的实现方式,在第一方面的第二种可能的实现方式中,在接收所述第二消息后,所述方法还包括:在所述目标子带进行子带同步。
结合第一方面,在第一方面的第三种可能的实现方式中,所述第一消息为用于携带随机接入前导的消息;所述第二消息为随机接入的响应消息。
结合第一方面的第三种可能的实现方式,在第一方面的第四种可能的实现方式中,在接收所述第二消息后,所述方法还包括:在所述目标子带进行子带同步。
结合第一方面的第三或第四种可能的实现方式,在第一方面的第五种可能的实现方式中,所述用于携带随机接入前导的消息中的随机接入前导携带签名信息,其中,不同的签名对应不同的数据属性。
结合第一方面的第一至第五种可能的实现方式,在第一方面的第六种可能的实现方式中,所述上行资源是指在所述目标子带分配的时频资源。
结合第一方面的第六种可能的实现方式,在第一方面的第七种可能的实 现方式中,所述时频资源包括时域子帧号和频域资源块;
所述时域子帧号根据所述第二消息所在的子帧的子帧号确定,或者由所述基站通过随机接入消息指示。其中,随机接入消息包括实施例部分的消息1、消息2、消息3和消息4中的至少一个。
结合第一方面的第七种可能的实现方式,在第一方面的第八种可能的实现方式中,所述时域子帧号根据所述第二消息所在的子帧的子帧号确定包括:
当ΔT+δ>Tp时,所述目标子带上距离当前时刻最近的子帧的子帧号为所述时域子帧号,
当ΔT+δ≤Tp时,所述目标子带上距离当前时刻最近的子帧的下一子帧的子帧号为所述时域子帧号;
其中,ΔT为当前时刻与所述目标子带上距离当前时刻后最近的子帧的起始时刻之间的时间差,δ为时间提前量,Tp为所述目标子带的调度处理时间。
结合第一方面的第一至第八种可能的实现方式,在第一方面的第九种可能的实现方式中,所述源子带和所述目标子带对应不同的传输时间间隔TTI。
结合第一方面的第一至第九种可能的实现方式,在第一方面的第十种可能的实现方式中,所述方法还包括:
除去所述目标子带的其他子带通过所述目标子带的物理上行链路控制信道PUCCH发送调度请求SR;或者
除去所述目标子带的其他子带通过在所述目标子带上接收的数据中携带SR来发送SR。
第二方面,本发明实施例提出了一种子带调度方法,包括:所述方法用于随机接入过程,在源子带上从用户终端接收携带待传输数据的数据属性要求信息的第一消息,其中,所述数据属性要求信息至少包括下列的一种:传输时延、传输时延类别、数据带宽需求和丢包敏感性;
在所述源子带上向用户终端发送携带目标子带的子带信息的第二消息,其中,所述目标子带是调度给所述用户终端的满足所述待传输数据的数据属性要求的子带,所述子带信息至少包括下列的一种:子带号、子带的频点、时间提前量、分配给所述用户终端的上行资源、子带发送功率水平和带宽;
根据所述目标子带的子带信息,在所述目标子带上传输数据。
结合第二方面,在第二方面的第一种可能的实现方式中,所述第一消息为非传输层消息;所述第二消息为竞争解决消息。
结合第二方面的第一种可能的实现方式,在第二方面的第二种可能的实现方式中,在发送所述第二消息后,所述方法还包括:在所述目标子带进行子带同步。
结合第二方面,在第二方面的第三种可能的实现方式中,所述第一消息为用于携带随机接入前导的消息;所述第二消息为随机接入的响应消息。
结合第二方面的第三种可能的实现方式,在第二方面的第四种可能的实现方式中,在发送所述第二消息后,所述方法还包括:在所述目标子带进行子带同步。
结合第二方面的第三或第四种可能的实现方式,在第二方面的第五种可能的实现方式中,所述用于携带随机接入前导的消息中的随机接入前导携带签名信息,其中,不同的签名对应不同的数据属性。
结合第二方面的第一至第五种可能的实现方式,在第二方面的第六种可能的实现方式中,所述上行资源是指在所述目标子带分配的时频资源。
结合第二方面的第六种可能的实现方式,在第二方面的第七种可能的实现方式中,所述时频资源包括时域子帧号和频域资源块;
所述时域子帧号根据所述第二消息所在的子帧的子帧号确定,或者通过随机接入消息指示。其中,随机接入消息包括实施例部分的消息1、消息2、消息3和消息4中的至少一个。
结合第二方面的第七种可能的实现方式,在第二方面的第八种可能的实现方式中,所述时域子帧号根据所述第二消息所在的子帧的子帧号确定包括:
当ΔT+δ>Tp时,所述目标子带上距离当前时刻最近的子帧的子帧号为所述时域子帧号,
当ΔT+δ≤Tp时,所述目标子带上距离当前时刻最近的子帧的下一子帧的子帧号为所述时域子帧号;
其中,ΔT为当前时刻与所述目标子带上距离当前时刻后最近的子帧的起始时刻之间的时间差,δ为时间提前量,Tp为所述目标子带的调度处理时 间。
结合第二方面的第一至第八种可能的实现方式,在第二方面的第九种可能的实现方式中,所述源子带和所述目标子带对应不同的传输时间间隔TTI。
结合第二方面的第一至第九种可能的实现方式,在第二方面的第十种可能的实现方式中,所述方法还包括:
除去所述目标子带的其他子带通过所述目标子带的物理上行链路控制信道PUCCH接收调度请求SR;或者
除去所述目标子带的其他子带通过在所述目标子带上接收的数据中携带SR来接收SR。
第三方面,本发明实施例提出了一种子带调度装置,包括:所述装置用于随机接入过程,
发送模块,用于在源子带上向基站发送携带待传输数据的数据属性要求信息的第一消息,其中,所述数据属性要求信息至少包括下列的一种:传输时延、传输时延类别、数据带宽需求和丢包敏感性;
接收模块,用于在所述源子带上从所述基站接收携带目标子带的子带信息的第二消息,其中,所述目标子带是所述基站调度的满足所述待传输数据的数据属性要求的子带,所述子带信息至少包括下列的一种:子带号、子带的频点、时间提前量、所述基站分配的上行资源、子带发送功率水平和带宽;
处理模块,用于根据所述目标子带的子带信息,在所述目标子带上传输数据。
第四方面,本发明实施例提出了一种子带调度装置,包括:所述装置用于随机接入过程,
接收模块,用于在源子带上从用户终端接收携带待传输数据的数据属性要求信息的第一消息,其中,所述数据属性要求信息至少包括下列的一种:传输时延、传输时延类别、数据带宽需求和丢包敏感性;
发送模块,用于在所述源子带上向用户终端发送携带目标子带的子带信息的第二消息,其中,所述目标子带是调度给所述用户终端的满足所述待传输数据的数据属性要求的子带,所述子带信息至少包括下列的一种:子带号、子带的频点、时间提前量、分配给所述用户终端的上行资源、子带发送功率水平和带宽;
处理模块,用于根据所述目标子带的子带信息,在所述目标子带上传输数据。
本发明实施例提出了一种子带调度方法,通过将待传输数据的数据属性要求信息发送给基站,基站根据数据属性要求信息反馈相应的子带信息,用户终端可以根据子带信息的指示,从源子带调度到目标子带,其中目标子带的子带特性可以满足带传输数据的数据属性要求;进一步地,目标子带对应的TTI和待传输数据的数据属性是相匹配的。通过本发明提供的实施例,可以快速地接入到适合传输当前数据或业务的目标子带,以便在目标子带实现快速的数据或业务传输过程。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为基于竞争的随机接入过程;
图2为一种子带划分示意图;
图3为本发明实施例一提供的一种子带调度方法;
图4为本发明实施例一提供的另一种子带调度方法;
图5为本发明实施例二提供的一种子带调度方法;
图6为本发明实施例二提供的一种获取签名的方法;
图7为本发明实施例三提供的确定子帧号的示例;
图8为本发明实施例四提供的一种发送调度请求的方法;
图9为本发明实施例四提供的一种SR传输方法;
图10为本发明实施例提供的一种子带调度装置;
图11为本发明实施例提供的一种子带调度装置;
图12为本发明实施例提供的一种子带调度装置;
图13为本发明实施例提供的一种子带调度设备。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例中的用户终端也可称之为用户设备(英文:User Equipment;简称:UE)、移动终端(英文:Mobile Terminal)、移动用户设备等,可以经无线接入网(英文:Radio Access Network;简称:RAN)与一个或多个核心网进行通信,用户设备可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。
基站(英文:Base Station;简称:BS),可以是GSM或CDMA中的基站(称为Base Transceiver Station),也可以是WCDMA中的基站(称为NodeB),还可以是LTE中的演进型基站(英文:evolutional Node B;简称:eNB或e-NodeB)或未来演进的公共陆地移动网络(英文:Public Land Mobile Network;简称:PLMN)通信系统(简称“5G网络”或“5G系统”)中的基站,本发明并不限定。
未来通信系统中的频带或载波可以被分成多个子带,其中,子带的个数以及各个子带的带宽均没有限制。图2为一种子带划分示意图,如图2所示:
在频域上将可以一定带宽的频带或载波划分为若干个子带,例如图2中的4个子带,其中,子带1、子带2、子带3占用的信道为业务信道(或数据信道)(图2中除去灰色标记的部分,其余均可认为是业务信道或数据信道),当用户完成接入后需要在这些子带传输数据;一个子带对应一个TTI,这些子带对应的TTI可以各不相同,也可以部分相同,而在这些子带上传输的帧的帧结构也应当可以支持不同的TTI,也就是说,在每个子带上传输的帧的帧结构应当可以支持该子带对应的TTI。公共子带(图2中灰色标记的部分)占用的信道为公共信道,进一步可以认为是公共控制信道或随机接入的控制信道,而随机接入的发起主要在公共子带。在一个无线帧的时长内子带划分不发生变化,而几个无线帧的时长内,子带的划分可能发生变化,例如图2中子带更新时,上一个无线帧的子带1和子带2合并为下一个无线帧 的子带1,当然,子带的划分也可以一直不变或部分发生改变。
因为每个子带的对应的TTI长度可能不一样,不同的TTI长度适配不同类型的业务需求或数据传输需求,则需要根据业务需求或数据传输需求选择用于传输的子带。本发明实施例提供了一种子带调度方法,可以实现用户终端在随机接入过程中从公共子带调度到目标子带(通常,目标子带对应特定TTI或者目标子带对应满足业务需求或数据传输需求的TTI);进一步地,在子带调度的过程中,可以实现在目标子带的随机接入,以便在目标子带实现快速的数据传输。
另外,本发明实施例提供的子带调度方法也可以用于跨载波且具有多种不同TTI的场景。
当用户终端要接入网络或进行随机接入时,其会选择的一个子带或者公共子带向基站发起接入,然后由基站根据该用户终端待传输数据的数据属性要求信息或待传输业务的业务属性信息为该用户终端调度或分配一个合适的子带。为方便描述,下面将用户终端选择的一个子带或者公共子带称为“源子带”,将基站为该用户终端调度或分配一个子带称为目标子带。具体地,本发明实施例提供的一种子带调度方法包括:
用户终端在源子带上向基站发送携带待传输数据的数据属性要求信息数据属性要求信息的第一消息,其中,数据属性要求信息数据属性要求信息至少包括下列的一种:传输时延、传输时延类别、数据带宽需求和丢包敏感性;
用户终端在源子带上从基站接收携带目标子带的子带信息的第二消息,其中,目标子带是基站调度的满足待传输数据的数据属性要求的子带,子带信息至少包括下列的一种:带宽、时间提前量和所述基站分配的上行资源;
根据目标子带的子带信息,在目标子带上传输数据。
可选地,上述“源子带”是子带调度完成前进行信令交互的子带或者是发起接入的子带,是为了和目标子带区分,其可以是公共子带,甚至可以是除去目标子带的其他任何子带;而目标子带是子带调度完成后进行信令交互的子带,进一步地,基站根据用户设备发送的带传输数据的数据属性要求信息数据属性要求信息为用户设备调度或分配一个满足数据属性要求的目标子带,以便于用户设备在目标子带上传输数据或者通信。应注意,在某些特 殊的情况下,源子带和目标子带也有可能是同一个子带。当目标子带和源子带是同一子带时,就无需进行子带调度或重新分配一个新的目标子带,而是直接在源子带上进行通信即可,进一步地,此时,源子带也应满足待传输数据的数据属性要求。
可选地,本发明实施例提供的子带调度方法用于随机接入过程。
可选地,源子带和目标子带对应不同的TTI。特别地,当源子带和目标子带为同一子带,则二者对应相同的TTI。
具体地,根据目标子带的子带信息,在目标子带上传输数据可以包括:用户终端收到基站发送的目标子带的子带信息后,可以根据目标子带的子带信息,从源子带调度到目标子带,例如,根据子带信息中的时间提前量调整时间同步,在子带信息指示的上行资源上传输数据。
通过本发明实施例提供的子带调度方法,可以快速地随机接入到适合传输当前数据或业务的目标子带,以便在目标子带实现快速的数据或业务传输过程。
在LTE系统中,基于竞争的随机接入通常通过四条消息完成:第一条消息(消息1)携带用于随机接入的前导,其作用是防止冲突和碰撞;基站通过前导检测用户终端的时间提前量,并通过前导对不同用户终端进行区分。第二条消息(消息2)是随机接入响应消息,用于通知用户终端基站检测到用户终端发送的前导,并对用户终端的时间提前量进行调整,以便用户终端后续传输的数据到达基站的时间满足基站的检测要求。需要说明的是,用户终端接收到消息2并不表示用户终端已经接入基站。第三条消息(消息3)用于用户终端向基站传输非接入层消息,是由高层提交给MAC层的消息。在接收到第三条消息后,基站会向用户终端返回竞争解决消息(消息4),用户终端利用消息4判断其随机接入是否竞争成功。进一步地,可以认为:消息1为用于携带随机接入前导的消息,消息2为随机接入的响应消息,消息3为非接入层消息,消息4为竞争解决消息。为了方便描述,下文实施例中直接使用消息1、消息2、消息3和消息4。
进一步地,上述实施例中的第一消息可以为随机接入过程的消息3,第二消息可以为随机接入过程的消息4;或者,第一消息为随机接入过程的消息1,第二消息为随机接入过程的消息2。下面的各个实施例对子带调度方 法提供了更详细的描述或其他细节,具体见下。
实施例一
当用户终端进行随机接入时,在开始阶段基站无法获取用户终端的业务信息,无法确定用户终端采用哪种TTI进行业务传输是最优的,因此,需要等到用户终端通知基站数据属性或业务类型后,才可以进行相应TTI子带的选择。在传统的随机接入过程中,用户终端在随机接入的第三条消息,即消息3中一般携带的是非接入层(英文:Non Access Stratum;简称:NAS)消息,基站不会解析其内容。但如果基站需要根据数据属性或业务类型对进行数据传输的子带进行调度,就需要知道用户终端待传输数据的数据属性要求信息数据属性要求信息或者待传输业务的业务类型。通过对传统的随机接入过程进行增强或改进,本发明实施例一提供的子带调度方法可以适应未来通信系统的帧结构支持多种TTI的场景。
图3为本发明实施例一提供的一种子带调度方法,在支持多TTI帧结构的系统或未来通信系统中,其子带调度过程如图3所示:
在基于竞争的随机接入中,图3所示的消息1和消息2与传统的随机接入过程中的消息1和消息2的功能相同(具体结构可能有所不同);对消息3,与传统随机接入过程不同的是,在消息3中携带数据属性要求信息数据属性要求信息,该数据属性要求信息数据属性要求信息包括下列中的至少一个:传输延迟、传输时延类别、数据带宽需求和丢包敏感性等。进一步地,消息3中还可以包括子带发送功率水平。
当基站收到消息3后,根据数据属性要求信息数据属性要求信息及各子带的资源信息,为用户终端选择合适的目标子带,并在消息4中发送给用户终端,其中目标子带是满满足数据属性要求的子带。具体地,消息4中携带目标子带的子带信息,子带信息具体可以包括下列中的至少一个:子带号、子带的频点、时间提前量或定时提前(英文:Timing Advance;简称:TA)信息、基站分配的上行资源、子带发送功率水平和带宽等。当然,也可以包括传统的UL Grant资源信息。子带信息可以携带在一个介质访问控制(英语:Media Access Control;简称:MAC)层控制元素(英文:Control Element;简称:CE)中,而UL Grant资源则是目标子带上的资源。
用户终端在收到消息4后,获取子带信息(例如,TA信息以及UL Grant 资源信息),在子带信息指示的子带(即目标子带)上进行同步(也就是子带同步),并在UL Grant资源上进行第一次上行传输。进一步地,这里所指的在子带信息所指示的子带进行上行同步(子带同步)和传统的同步不同,传统的同步需要通过同步序列来进行定时同步,而这里的子带同步是指由于不同子带对应的TTI不同,其子帧边界可能没有对齐,当用户需要在指定的子带进行传输时,首先需要在指定的目标子带上完成子帧边界对齐,也就是上行同步。由于每个子带在无线帧的起始位置是对齐的,即用户终端已经实现了帧同步,因此,子带同步可以通过TA的调整来实现子帧对齐(具体参见实施例三),而不需要通过同步信号来实现同步。因此,此处所述子带同步与通常的同步不一样。需要指明的是,子带调度过程中的目标子带也有可能是公共子带。
图4为本发明实施例一提供的另一种子带调度方法,如图4所示,在基于非竞争的随机接入中,若要将目标子带的子带信息发送给用户终端,可以有两种方案:一种方案是在切换消息中将目标子带的子带信息发送给用户终端(如图4(a)),另一种方案是在消息2中携带目标子带的子带信息(如图4(b))。应理解,在消息2中还有可能携带其他子带的子带信息。
基于非竞争的子带调度过程包括:源基站通过切换消息为用户终端提供目标基站的子带信息(具体可以包括列中的至少一个:子带号、子带的TTI信息或频域资源位置,还可以包括最早调度的资源、物理上行链路控制信道(英文:Physical Uplink Control Channel;简称:PUCCH)资源分配),源基站将子带信息通过空口的切换消息发送给用户终端。用户终端在收到子带信息后,直接在目标基站的对应子带(即切换消息中指示的子带)进行同步,同步完成后即可进行物理下行链路控制信道(英文:Physical Downlink Control Channel;简称:PDCCH)的监控以获取调度资源信息或通过指示的PUCCH资源进行上行资源请求。
如果切换消息中没有携带目标基站的子带信息,但是包含有专用前导,用户终端可以采用指定的前导在目标基站进行随机接入,目标基站收到该前导后,在消息2中向用户终端发送用户终端被调度的子带信息以及TA信息。
实施例二
如果基站可以提前获知用户终端的业务传输需求(或数据传输需求), 则可以在目标子带完成子带调度。要在目标子带上完成子带调度,用户终端需要提前通知基站其要传输的数据的数据属性要求信息数据属性要求信息(例如:TTI需求)。由于在消息3之前用户终端只传输了一条消息1,因此,消息1是唯一可能携带数据属性要求信息数据属性要求信息的消息。如果消息1携带数据属性要求信息数据属性要求信息,则基站可以通过消息2对用户终端的TA进行调整,并为其分配UL Grant资源,该UL Grant资源为在目标子带上用于业务调度的资源。
图5为本发明实施例二提供的一种子带调度方法,如图5(a)所示,消息1和消息2在源子带(例如图5(a)中的公共子带)上传输,消息3和消息4在调度到的目标子带(例如图5(a)中的子带2)上进行传输。要实现子带调度需要在消息1中携带数据
属性信息;具体地,可以利用前导携带签名信息,每个签名代表一类数据属性,以此来实现通过消息1携带数据属性要求信息数据属性要求信息。以数据属性信是TTI需求为例进行说明,可以预期,未来通信系统支持的不同TTI数量也可能并不是随意的,一般会是定义好的系统需要支持的几种TTI。目前来看,子载波间隔(不同的子载波间隔与不同的TTI对应)为3.75KHz(Ts=226.7μs),7.5KHz(Ts=133.3μs),15KHz(Ts=66.7μs),30KHz(Ts=33.3μs),60KHz(Ts=16.7μs)等几种子载波间隔能基本满足业务需求,当然,也完全可以根据需要进行扩展,这里只是一个示例,每种TTI对应一定的子载波间隔,甚至,也可能不同的TTI对应相同的子载波间隔,只是每个不同的TTI中包含的符号数不同。举例来说,针对每种TTI分配一个签名,可以如表1所示:
表1签名和TTI对照表
TTI 签名
TTI-1 Signature 1
TTI-2 Signature 2
TTI-3 Signature 3
TTI-4 Signature 4
TTI-5 Signature 5
表1所示仅是一个示例,本发明实施例并不限定具体TTI长度及个数, 类似的方法可以被扩展。表1中并没有给出具体的TTI长度和签名码(也就是对每个签名分别进行编码得到的码字),举例来说,其中,签名码可以是码分多址(英文:Code Division Multiple Access;简称:CDMA)码,也可以是低密度签名(英文:Low Density Signature;简称:LDS)码或稀疏码多址(英文:Sparse Code Multiple Access;简称:SCMA)码等。
在发射端,用户终端在发送前导时,用签名码和选定的前导进行相乘或加扰(或加扰码)来携带签名信息,从而将数据属性要求信息数据属性要求信息发送到接收端(例如图5中的基站)。在接收端,基站对匹配滤波后的信号用签名码进行运算,再进行信号能量累积,通过相关运算可以解出前导或者解扰以得到前导。
当基站检测到前导,并获得用户终端的数据属性要求信息数据属性要求信息(例如图6所示的方法)后,向用户终端发送携带目标子带的子带信息的消息2,举例来说,子带信息可以包括下列一种或多种:子带号、子带的频点、时间提前量、基站分配的上行资源、子带发送功率水平和带宽。或者,子带信息可以包括下列一种或多种:接入资源信息、TA调整信息或功率发射信息。
用户终端收到消息2后,根据获得的子带信息,调度到目标子带。具体地,用户终端根据TA调整信息计算目标子带的TA调整量或直接利用该TA调整信息进行TA调整(具体哪种TA调整方式依赖于系统定义的TA调整方法,参见实施例三);在目标子带进行消息3和消息4的传输。和传统随机接入过程不同的是,当用户终端在目标子带完成首次消息3的传输后,基站在消息4中可以指示用户终端再次进行TA调整,以使得用户终端和基站间的传输同步更加精确。
图6为本发明实施例二提供的一种获取签名的方法,如图6所示,在接收端(例如图5中的基站)对接收到的信号(例如图5中的消息1)匹配滤波之后,将信号和各个签名进行运算,运算后的各个支路信号再通过累加器对信号能量进行累加,随后对各个支路输出信号进行能量检测,当能量超过一定门限时,则认为收到了前导,其中能量超过门限的支路对应的签名码就是发射端(例如图5中的用户终端)使用的签名码。另外,图6中n为签名码的个数,m为前导的个数,Ts是相关器的一部分。
实施例三
在传统通信系统中,基站对用户终端进行调度时,因为系统处理能力的限制,其所分配的资源是指当前子帧以后的4个子帧之后的资源,即l+4的位置是给用户终端分配的资源的起始位置,其中l为当前子帧位置。
而在支持多TTI帧结构的系统中,当用户终端从当前子带调度到目标子带进行传输时,需要确定在目标子带的子帧号(也就是确定给用户终端分配的资源的起始位置),但由于对应不同TTI的子带的波形不一样,导致不同子带的每个子帧的起始位置可能会不同。确定在目标子带调度的子帧号,需要考虑两个方面的因素:一是用户终端因离基站的距离而需要调整的TA;二是两个不同子带的子帧起始位置的时间偏差,该时间偏差可以用于确定基站分配的资源的起始位置是在目标子带的下一个子帧的起始位置还是在目标子带的下下个子帧的起始位置。
确定在目标子带调度的子帧号可以有两种方法:一是在随机接入的调度中携带目标子带分配的资源的起始位置,二是用户终端根据当前子带接收到的调度子帧的位置自动计算基站为用户终端分配的在目标子带的子帧号(或子帧位置)。第一种方法比较简单,即在随机接入的UL Grant资源分配时指定子帧号(或子帧位置),比较容易实现,但是带来信令开销。
第二种方法有两种方案,一种方案是将TA考虑进来,另一种方案是不考虑TA。不考虑TA时比较简单,但考虑TA的好处是调度会更加精确,也会更加及时。如果TA为负值,即定时向前偏移,可能就会导致用户终端错过一次调度,因为当前处理还没有处理完,在预定发送时刻不能进行发送。而如果TA为正值,即定时向后偏移,就会导致传输延迟,可能造成在某个预定时刻本来可以进行发送,但却没有发送。本发明实施例三提供了考虑TA时计算目标子带调度的资源的子帧号的方法,具体如下:
假定无线帧长度Tf为某一常数,并假定用户终端从第i个子带调整到第j个子带,第i个子带子帧长度为
Figure PCTCN2016100138-appb-000001
第j个子带子帧长度为
Figure PCTCN2016100138-appb-000002
其中,设不同子带已经进行了帧同步,且不同子带对应的TTI之间成倍数关系或不同子带的子帧长度之间成倍数关系。应注意,若子帧的起始边界是对齐的,不同子带对应的TTI之间或者不同子带的子帧长度之间可以不成倍数关系。
Figure PCTCN2016100138-appb-000003
时,第i个子带的子帧起始边界也是第j个子带的子帧起始边 界,因此,这两个子带之间的子帧边界偏差为0,此时调整定时偏差时仅需要考虑TA=δ(δ为实数)即可。假设基站的处理时延为Tp,当前子带的子帧号为k,则在目标子带上调度的资源的起始位置对应的子帧号为
Figure PCTCN2016100138-appb-000004
个子帧之后,
Figure PCTCN2016100138-appb-000005
表示对·向下取整。
Figure PCTCN2016100138-appb-000006
时,假定当前子带的子帧号为k,则该子帧相比于无线帧起始时刻的时间长度为
Figure PCTCN2016100138-appb-000007
其所对应的目标子带的子帧号为
Figure PCTCN2016100138-appb-000008
因此,当前时刻与目标子带对应当前时刻的子帧的下一子帧的起始位置间的时间差为
Figure PCTCN2016100138-appb-000009
因此,在考虑TA=δ时,总的时间差为:ΔT+δ。假设处理时延为Tp,在目标子带分配的资源的起始位置相对当前时刻至少相差Tp。如果ΔT+δ>Tp,则资源的起始位置对应的子帧号为
Figure PCTCN2016100138-appb-000010
如果ΔT+δ<Tp,则在目标子带上调度的资源的起始位置对应的子帧号为
Figure PCTCN2016100138-appb-000011
Figure PCTCN2016100138-appb-000012
表示对·向上取整。
举例来说,图7为本发明实施例三提供的确定子帧号的示例,如图7所示,共有5个子带,它们对应的TTI分别等于5ms、2ms、1ms、0.5ms、0.25ms。应注意,TTI等于5ms的子带的子帧长度和TTI等于2ms的子带的子帧长度并不成倍数关系。以TTI为1ms帧为例,考虑从TTI为1ms的子带调度到其他子带。如果未来通信系统的帧结构设计考虑兼容LTE及其他低版本协议的通信系统,可以选择TTI适中的子带,比如TTI为1ms的子带作为公共子带。假定一个无线帧(或者称为超帧)是10ms,那么,对每个子带内一个超帧内的子帧进行顺序编号,起始子帧号为0,如图7所示,TTI为0.25ms的子带,一帧(超帧)包括40个子帧,而对TTI为5ms的子带,一帧包括2个子帧等。
示例地,假定基站的处理时延是2ms,从图7中可以看出,如果调度(例如图3中的消息4或图5中的消息2)是在TTI为1ms的第二个子帧(TTI为1ms的子帧1)收到的,那么,在目标子带(TTI为2ms)上的调度(例如图3中的子带同步或图5中的消息3)即在子帧2,而如果调度是在TTI为1ms的第三子帧(TTI为1ms的子帧2)收到的,那么,目标子带的调度只能是在子帧3上进行。
应理解,确定子帧号的方法可以直接根据本发明实施例提供的公式计算 得到,也可以根据本发明实施例提供的方法得到表格,以查找表格的方式确定子帧号。另外,因为各个子带的子帧长度是固定的,则确定了子帧号就相当于确定了子帧的起始位置,反之亦然。
实施例四
当未来用户终端支持多TTI传输时,用户终端可以在多个子带同时进行传输,为了省电,如果用户终端在某个TTI对应的子带上没有数据传输,且在该子带上又没有配置PUCCH,当用户终端在该子带有数据要进行上行传输时,传统的方法是用户终端通过发起随机接入过程来进行上行调度请求(英文:Scheduling Request;简称:SR)传输。但是,当用户终端在其他子带配置有PUCCH或正在进行数据传输时,这种通过发起随机接入过程来进行上行调度请求传输的方法会浪费系统资源,也会带来数据传输时延。
对于这一问题,有效的做法是针对每个TTI(或针对每个子带)有一个独立的MAC,使得系统的调度及传输更加高效。因此,当某个TTI对应的子带有SR需要发送时,如果当前TTI对应的子带(或物理通道)上没有配置PUCCH资源,则可以通过其他TTI对应的子带上的资源进行SR的发送。
图8为本发明实施例四提供的一种发送调度请求的方法,如图8所示,图8中上面部分表示多TTI下独立MAC(或独立的MAC实体)的示例,每个TTI对应的子带有一个MAC实体(TTI1 MAC、TTI2 MAC、……、TTIk MAC),和子带一一对应。当子带1有数据需要发送时,此时子带1没有配置PUCCH,也没有数据发送,因此可以借用子带2的资源进行SR的发送,SR在子带2中可以随数据进行发送,如果子带2没有数据发送,则可以借用子带2的PUCCH进行发送。
图9为本发明实施例四提供的一种SR传输方法,如图9所示,用户终端确定用来发送SR的子带(即目标子带),并将SR及缓存状态报告(英文:Buffer Status Report;简称:BSR)发送给目标子带的MAC实体,该目标子带在要发送的数据上携带SR,或者通过PUCCH发送SR。
其中,SR至少包括源子带(如图8中的子带1)的子带信息。如果SR通过PUCCH发送,则目标子带通知物理层发送SR,该SR包括源子带的子带信息。如果目标子带有数据发送,则通过在数据中附加一个BSR(一种MAC层命令)来通知基站为源子带分配资源,该BSR中还可以携带源子带的子带 信息。
当源子带(或源子带的MAC实体)向目标子带(或目标子带的MAC实体)发送SR或BSR后,监测目标子带上的PDCCH。当基站收到请求后,为源子带分配资源。基站将分配的资源发送给源子带,具体地,可以有两种发送方法:一是直接在源子带的PDCCH发送分配的UL Grant资源,由于源子带监测PDCCH,这种方法实现上比较直接;二是通过目标子带进行发送,由目标子带发送给发送子带,如果通过目标子带发送,则在发送SR或BSR后,用户终端无需监测PDCCH(在图9中就不需要用户终端在目标子带监测PDCCH)。第二种方法的缺点在于目标子带需要将分配的UL Grant资源发送给源子带,会带来一定的延迟。
源子带收到分配的资源后,在该资源上进行数据发送。进一步的,为了提升PUCCH资源利用率,支持多TTI的系统可以仅在一个子带配置PUCCH,而不必在每个子带配置PUCCH。
相应于上面的方法实施例,本发明实施例还提供一种子带调度装置,参见图10所示,该装置用于随机接入过程,包括:
发送模块1001,用于在源子带上向基站发送携带待传输数据的数据属性要求信息数据属性要求信息的第一消息,其中,数据属性要求信息数据属性要求信息至少包括下列的一种:传输时延、传输时延类别、数据带宽需求和丢包敏感性;接收模块1003,用于在源子带上从基站接收携带目标子带的子带信息的第二消息,其中,目标子带是基站调度的满足待传输数据的数据属性要求的子带,子带信息至少包括下列的一种:子带号、子带的频点、时间提前量、基站分配的上行资源、子带发送功率水平和带宽;
处理模块1002,用于根据目标子带的子带信息,在目标子带上传输数据。
由于上述发送模块1001,接收模块1003以及处理模块1002在实现相应的功能时所执行的步骤在方法实施例部分已经进行了详细的描述,所以此处不再赘述。
可选地,源子带和目标子带对应不同的TTI。
具体地,根据目标子带的子带信息,在目标子带上传输数据可以包括:用户终端收到基站发送的目标子带的子带信息后,可以根据目标子带的子带 信息,从源子带调度到目标子带,根据子带信息中的时间提前量调整时间同步,在子带信息指示的上行资源上传输数据。
进一步地,该装置还包括:同步模块,用于在目标子带进行子带同步。
其中涉及到的一些技术特征,例如:子带同步、签名信息、子帧号的确定等,和本发明方法实施例涉及到的一些技术特征类似或对应,本实施例不再进行重复说明。
相应于上面的方法实施例,本发明实施例还提供一种子带调度装置,参见图11所示,该装置用于随机接入过程,包括:物理收发模块、多个MAC处理模块、MAC控制模块以及多个数据调度模块;
其中,数据调度单元,用于根据待传输数据的数据属性要求信息,将具有相同数据属性要求信息的数据在同一个MAC处理模块中进行调度;可选地,数据属性要求信息与TTI(或TTI需求)是对应的,因此,可以将具有相同TTI需求的数据在同一个MAC处理模块中进行调度;
MAC处理模块,用于进行MAC层处理,包括随机接入消息(例如消息1、消息2、消息3或消息4)的解析、封装、接收数据调度模块的数据等;具体地,对从数据调度模块中传输来的数据进行MAC层处理;可选地,不同的MAC处理模块对应不同的TTI,也就是说,不同的MAC处理模块处理对应不同TTI的数据。
MAC控制模块,用于实现多个MAC处理模块之间的消息传输,具体地,当从一个子带调度到另一个子带时,源MAC处理模块需要通知目标MAC处理模块,则源MAC处理模块根据从基站接收的子带信息(该子带信息满足待传输数据的数据属性要求),将定时调整信息(即子帧定界信息,此时子带信息中必须包含定时调整信息)通过MAC控制模块发送给目标MAC处理模块;此时,待传输数据便可以通过目标MAC处理模块进行传输。
物理收发模块,用于发送从多个MAC处理模块传输来的数据,和/或将接收到的数据进行物理层处理后发送给MAC处理模块。
其中涉及到的一些技术特征,例如:子带同步、签名信息、子帧号的确定等,和本发明方法实施例涉及到的一些技术特征类似或对应,本实施例不再进行重复说明。
相应于上面的方法实施例,本发明实施例还提供一种子带调度装置,参 见图12所示,该装置用于随机接入过程,包括:
接收模块1201,用于在源子带上从用户终端接收携带待传输数据的数据属性要求信息的第一消息,其中,数据属性要求信息至少包括下列的一种:传输时延、传输时延类别、数据带宽需求和丢包敏感性;
发送模块1203,用于在源子带上向用户终端发送携带目标子带的子带信息的第二消息,其中,目标子带是调度给用户终端的满足待传输数据的数据属性要求的子带,子带信息至少包括下列的一种:子带号、子带的频点、时间提前量、分配给用户终端的上行资源、子带发送功率水平和带宽;
处理模块1202,用于根据目标子带的子带信息,在目标子带上传输数据。
由于上述发送模块1201,接收模块1203以及处理模块1202在实现相应的功能时所执行的步骤在方法实施例部分已经进行了详细的描述,所以此处不再赘述。
可选地,源子带和目标子带对应不同的TTI。
具体地,处理模块1201根据目标子带的子带信息,在目标子带上传输数据可以包括:用户终端收到基站发送的目标子带的子带信息后,可以根据目标子带的子带信息,从源子带调度到目标子带,根据子带信息中的时间提前量调整时间同步,在子带信息指示的上行资源上传输数据。
其中涉及到的一些技术特征,例如:子带同步、签名信息、子帧号的确定等,和本发明方法实施例涉及到的一些技术特征类似或对应,本实施例不再进行重复说明。
本发明实施例提供的子带调度装置可用于用户终端、网元节点设备或基站上。
本发明实施例还提供一种处理设备,参照图13所示,包括:处理器1301、存储器1302、发射机1303、接收机1305及总线1304,其中处理器1301、存储器1302、发射机1303和接收机1305通过总线1304连接进行数据传输,存储器1302用于存储处理器1301处理的数据;
该总线1304可以是工业标准体系结构(Industry Standard Architecture,简称为ISA)总线、外部设备互连(Peripheral Component,简称为PCI)总线或扩展工业标准体系结构(Extended Industry Standard Architecture,简称为EISA)总线等,此处并不限定。该总线1304可以分 为地址总线、数据总线、控制总线等。为便于表示,图13中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。其中:
存储器1302用于存储数据或可执行程序代码,其中程序代码包括计算机操作指令,具体可以为:操作系统、应用程序等。存储器1302可能包含高速RAM存储器,也可能还包括非易失性存储器(non-volatile memory),例如至少一个磁盘存储器。
处理器1301可能是一个中央处理器(Central Processing Unit,简称为CPU),或者是特定集成电路(Application Specific Integrated Circuit,简称为ASIC),或者是被配置成实施本发明实施例的一个或多个集成电路。
发射机1303和接收机1305用于收发消息,处理器1301用于通过执行存储器1302中的程序代码实现上述实施例中的子带调度方法,其中涉及到的一些技术特征,子带同步、签名信息、子帧号的确定等,和本发明方法实施例涉及到的一些技术特征类似或对应,本实施例不再进行重复说明。具体过程也不再赘述。
应理解地,在本发明的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外 的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本发明实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。具体的,可以借助软件加必需的通用硬件的方式来实现,通用硬件包括通用集成电路、通用CPU(英文:Central Processing Unit,中文:中央处理器)、通用数字信号处理器(英文:Digital Signal Processor,简称:DSP)、现场可编程门阵列(英文:Field Programming Gate Array,简称:FPGA)、可编程逻辑器件(英文:Programmable Logical Device,简称:PLD)、通用存储器、通用元器件等,当然也可以通过专用硬件包括专用集成电路(英文:Application Specific Integrated Circuit,简称ASIC)、专用CPU、专用存储器、专用元器件等来实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分,或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(英文:Read Only Memory,简称为ROM)、随机存取存储器(英文:Random Access Memory,简称为RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
软件或指令还可以通过传输介质来传输。例如,如果使用同轴电缆、光纤光缆、双绞线、数字用户线(英文:Digital Subscriber Line,简称:DSL) 或者无线技术(如红外线、无线电和微波)从网站、服务器或其它远程源传输软件,那么同轴电缆、光纤光缆、双绞线、DSL或者无线技术(如红外线、无线电和微波))包括在传输介质的定义中。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (42)

  1. 一种子带调度方法,其特征在于,所述方法用于随机接入过程,包括:
    在源子带上向基站发送携带待传输数据的数据属性要求信息的第一消息,其中,所述数据属性要求信息至少包括下列的一种:传输时延、传输时延类别、数据带宽需求和丢包敏感性;
    在所述源子带上从所述基站接收携带目标子带的子带信息的第二消息,其中,所述目标子带是所述基站调度的满足所述待传输数据的数据属性要求的子带,所述子带信息至少包括下列的一种:子带号、子带的频点、时间提前量、所述基站分配的上行资源、子带发送功率水平和带宽;
    根据所述目标子带的子带信息,在所述目标子带上传输数据。
  2. 根据权利要求1所述的方法,其特征在于,
    所述第一消息为非传输层消息;
    所述第二消息为竞争解决消息。
  3. 根据权利要求2所述的方法,其特征在于,在接收所述第二消息后,所述方法还包括:
    在所述目标子带进行子带同步。
  4. 根据权利要求1所述的方法,其特征在于,
    所述第一消息为用于携带随机接入前导的消息;
    所述第二消息为随机接入的响应消息。
  5. 根据权利要求4所述的方法,其特征在于,在接收所述第二消息后,所述方法还包括:
    在所述目标子带进行子带同步。
  6. 根据权利要求4或5所述的方法,其特征在于,
    所述第一消息中的随机接入前导携带签名信息,其中,不同的签名对应不同的数据属性。
  7. 根据权利要求1至6任一项所述的方法,其特征在于,
    所述上行资源是指在所述目标子带分配的时频资源。
  8. 根据权利要求7所述的方法,其特征在于,
    所述时频资源包括时域子帧号和频域资源块;
    所述时域子帧号根据所述第二消息所在的子帧的子帧号确定,或者由所述基站通过随机接入消息指示。
  9. 根据权利要求8所述的方法,其特征在于,
    所述时域子帧号根据所述第二消息所在的子帧的子帧号确定包括:
    当ΔT+δ>Tp时,所述目标子带上距离当前时刻最近的子帧的子帧号为所述时域子帧号,
    当ΔT+δ≤Tp时,所述目标子带上距离当前时刻最近的子帧的下一子帧的子帧号为所述时域子帧号;
    其中,ΔT为当前时刻与所述目标子带上距离当前时刻后最近的子帧的起始时刻之间的时间差,δ为时间提前量,Tp为所述目标子带的调度处理时间。
  10. 根据权利要求1至9任一项所述的方法,其特征在于,
    所述源子带和所述目标子带对应不同的传输时间间隔TTI。
  11. 根据权利要求1至10任一项所述的方法,其特征在于,还包括:
    除去所述目标子带的其他子带通过所述目标子带的物理上行链路控制信道PUCCH发送调度请求SR;或者
    除去所述目标子带的其他子带通过在所述目标子带上发送的数据中携带SR来发送SR。
  12. 一种子带调度方法,其特征在于,所述方法用于随机接入过程,包括:
    在源子带上从用户终端接收携带待传输数据的数据属性要求信息的第一消息,其中,所述数据属性要求信息至少包括下列的一种:传输时延、传输时延类别、数据带宽需求和丢包敏感性;
    在所述源子带上向用户终端发送携带目标子带的子带信息的第二消息,其中,所述目标子带是调度给所述用户终端的满足所述待传输数据的数据属性要求的子带,所述子带信息至少包括下列的一种:子带号、子带的频点、时间提前量、分配给所述用户终端的上行资源、子带发送功率水平和带宽;
    根据所述目标子带的子带信息,在所述目标子带上传输数据。
  13. 根据权利要求12所述的方法,其特征在于,
    所述第一消息为非传输层消息;
    所述第二消息为竞争解决消息。
  14. 根据权利要求13所述的方法,其特征在于,在发送所述第二消息后,所述方法还包括:
    在所述目标子带进行子带同步。
  15. 根据权利要求12所述的方法,其特征在于,
    所述第一消息为用于携带随机接入前导的消息;
    所述第二消息为随机接入的响应消息。
  16. 根据权利要求15所述的方法,其特征在于,在发送所述第二消息后,所述方法还包括:
    在所述目标子带进行子带同步。
  17. 根据权利要求15或16所述的方法,其特征在于,
    所述第一消息中的随机接入前导携带签名信息,其中,不同的签名对应不同的数据属性。
  18. 根据权利要求12至17任一项所述的方法,其特征在于,
    所述上行资源是指在所述目标子带分配的时频资源。
  19. 根据权利要求18所述的方法,其特征在于,
    所述时频资源包括时域子帧号和频域资源块;
    所述时域子帧号根据所述第二消息所在的子帧的子帧号确定,或者通过随机接入消息指示。
  20. 根据权利要求19所述的方法,其特征在于,
    所述时域子帧号根据所述第二消息所在的子帧的子帧号确定包括:
    当ΔT+δ>Tp时,所述目标子带上距离当前时刻最近的子帧的子帧号为所述时域子帧号,
    当ΔT+δ≤Tp时,所述目标子带上距离当前时刻最近的子帧的下一子帧的子帧号为所述时域子帧号;
    其中,ΔT为当前时刻与所述目标子带上距离当前时刻后最近的子帧的起始时刻之间的时间差,δ为时间提前量,Tp为所述目标子带的调度处理时间。
  21. 根据权利要求12至20任一项所述的方法,其特征在于,
    所述源子带和所述目标子带对应不同的传输时间间隔TTI。
  22. 根据权利要求12至21任一项所述的方法,其特征在于,还包括:
    除去所述目标子带的其他子带通过所述目标子带的物理上行链路控制信道PUCCH接收调度请求SR;或者
    除去所述目标子带的其他子带通过在所述目标子带上接收的数据中携带SR来接收SR。
  23. 一种子带调度装置,其特征在于,所述装置用于随机接入过程,包括:
    发送模块,用于在源子带上向基站发送携带待传输数据的数据属性要求信息的第一消息,其中,所述数据属性要求信息至少包括下列的一种:传输时延、传输时延类别、数据带宽需求和丢包敏感性;
    接收模块,用于在所述源子带上从所述基站接收携带目标子带的子带信息的第二消息,其中,所述目标子带是所述基站调度的满足所述待传输数据的数据属性要求的子带,所述子带信息至少包括下列的一种:子带号、子带的频点、时间提前量、所述基站分配的上行资源、子带发送功率水平和带宽;
    处理模块,用于根据所述目标子带的子带信息,在所述目标子带上传输数据。
  24. 根据权利要求23所述的装置,其特征在于,
    所述第一消息为非传输层消息;
    所述第二消息为竞争解决消息。
  25. 根据权利要求24所述的装置,其特征在于,所述装置还包括:
    同步模块,用于在所述目标子带进行子带同步。
  26. 根据权利要求23所述的装置,其特征在于,
    所述第一消息为用于携带随机接入前导的消息;
    所述第二消息为随机接入的响应消息。
  27. 根据权利要求26所述的装置,其特征在于,所述装置还包括:
    同步模块,用于在所述目标子带进行子带同步。
  28. 根据权利要求26或27所述的装置,其特征在于,
    所述第一消息中的随机接入前导携带签名信息,其中,不同的签名对应不同的数据属性。
  29. 根据权利要求23至28任一项所述的装置,其特征在于,
    所述上行资源是指在所述目标子带分配的时频资源。
  30. 根据权利要求29所述的装置,其特征在于,
    所述时频资源包括时域子帧号和频域资源块;
    所述时域子帧号根据所述第二消息所在的子帧的子帧号确定,或者由所述基站通过随机接入消息指示。
  31. 根据权利要求30所述的装置,其特征在于,
    所述时域子帧号根据所述第二消息所在的子帧的子帧号确定包括:
    当ΔT+δ>Tp时,所述目标子带上距离当前时刻最近的子帧的子帧号为所述时域子帧号,
    当ΔT+δ≤Tp时,所述目标子带上距离当前时刻最近的子帧的下一子帧的子帧号为所述时域子帧号;
    其中,ΔT为当前时刻与所述目标子带上距离当前时刻后最近的子帧的起始时刻之间的时间差,δ为时间提前量,Tp为所述目标子带的调度处理时间。
  32. 根据权利要求23至31任一项所述的装置,其特征在于,
    所述源子带和所述目标子带对应不同的传输时间间隔TTI。
  33. 根据权利要求23至32任一项所述的装置,其特征在于,所述接收模块还用于
    除去所述目标子带的其他子带通过所述目标子带的物理上行链路控制信道PUCCH发送调度请求SR;或者
    除去所述目标子带的其他子带通过在所述目标子带上发送接收的数据中携带SR来发送SR。
  34. 一种子带调度装置,其特征在于,所述装置用于随机接入过程,包括:
    接收模块,用于在源子带上从用户终端接收携带待传输数据的数据属性要求信息的第一消息,其中,所述数据属性要求信息至少包括下列的一种:传输时延、传输时延类别、数据带宽需求和丢包敏感性;
    发送模块,用于在所述源子带上向用户终端发送携带目标子带的子带信息的第二消息,其中,所述目标子带是调度给所述用户终端的满足所述待传输数据的数据属性要求的子带,所述子带信息至少包括下列的一种:子带号、 子带的频点、时间提前量、分配给所述用户终端的上行资源、子带发送功率水平和带宽;
    处理模块,用于根据所述目标子带的子带信息,在所述目标子带上传输数据。
  35. 根据权利要求34所述的装置,其特征在于,
    所述第一消息为非传输层消息;
    所述第二消息为竞争解决消息。
  36. 根据权利要求34所述的装置,其特征在于,
    所述第一消息为用于携带随机接入前导的消息;
    所述第二消息为随机接入的响应消息。
  37. 根据权利要求36所述的装置,其特征在于,
    所述第一消息中的随机接入前导携带签名信息,其中,不同的签名对应不同的数据属性。
  38. 根据权利要求34至37任一项所述的装置,其特征在于,
    所述上行资源是指在所述目标子带分配的时频资源。
  39. 根据权利要求38所述的装置,其特征在于,
    所述时频资源包括时域子帧号和频域资源块;
    所述时域子帧号根据所述第二消息所在的子帧的子帧号确定,或者通过随机接入消息指示。
  40. 根据权利要求39所述的装置,其特征在于,
    所述时域子帧号根据所述第二消息所在的子帧的子帧号确定包括:
    当ΔT+δ>Tp时,所述目标子带上距离当前时刻最近的子帧的子帧号为所述时域子帧号,
    当ΔT+δ≤Tp时,所述目标子带上距离当前时刻最近的子帧的下一子帧的子帧号为所述时域子帧号;
    其中,ΔT为当前时刻与所述目标子带上距离当前时刻后最近的子帧的起始时刻之间的时间差,δ为时间提前量,Tp为所述目标子带的调度处理时间。
  41. 根据权利要求34至40任一项所述的装置,其特征在于,
    所述源子带和所述目标子带对应不同的传输时间间隔TTI。
  42. 根据权利要求34至41任一项所述的装置,其特征在于,所述发送模块还用于:
    除去所述目标子带的其他子带通过所述目标子带的物理上行链路控制信道PUCCH接收调度请求SR;或者
    除去所述目标子带的其他子带通过在所述目标子带上接收的数据中携带SR来接收SR。
PCT/CN2016/100138 2015-09-24 2016-09-26 一种子带调度方法、装置 WO2017050296A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP16848177.8A EP3346651B1 (en) 2015-09-24 2016-09-26 Method and device for dispatching sub-bands
US15/928,069 US10582500B2 (en) 2015-09-24 2018-03-21 Sub-band scheduling method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510617843.0A CN106559874B (zh) 2015-09-24 2015-09-24 一种子带调度方法、装置
CN201510617843.0 2015-09-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/928,069 Continuation US10582500B2 (en) 2015-09-24 2018-03-21 Sub-band scheduling method and apparatus

Publications (1)

Publication Number Publication Date
WO2017050296A1 true WO2017050296A1 (zh) 2017-03-30

Family

ID=58385656

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/100138 WO2017050296A1 (zh) 2015-09-24 2016-09-26 一种子带调度方法、装置

Country Status (4)

Country Link
US (1) US10582500B2 (zh)
EP (1) EP3346651B1 (zh)
CN (1) CN106559874B (zh)
WO (1) WO2017050296A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018227493A1 (zh) * 2017-06-15 2018-12-20 华为技术有限公司 随机接入方法及相关装置
CN109246828B (zh) * 2017-07-11 2023-06-27 普天信息技术有限公司 多子带系统中下行业务处理方法、基站及用户设备
CN108476401B (zh) * 2017-09-07 2021-02-26 北京小米移动软件有限公司 调度信令的检测方法、装置、用户设备和基站
CN109587789B (zh) * 2017-09-28 2021-09-24 维沃移动通信有限公司 随机接入方法、移动终端及网络设备
WO2019157731A1 (zh) * 2018-02-14 2019-08-22 华为技术有限公司 一种随机接入方法及其装置
WO2019191861A1 (en) * 2018-04-02 2019-10-10 Qualcomm Incorporated Parallel transmission of preamble sequences with data layers for improved data detection
CN112425232A (zh) * 2018-07-18 2021-02-26 上海诺基亚贝尔股份有限公司 基于争用的传输中的资源指示
WO2020215339A1 (zh) * 2019-04-26 2020-10-29 Oppo广东移动通信有限公司 一种选取传输资源方法以及选取传输数据的方法、终端
CN113055066B (zh) * 2019-12-26 2022-11-04 大唐移动通信设备有限公司 一种通信方法和装置
US20230156737A1 (en) * 2020-08-05 2023-05-18 Apple Inc. System and methods for dynamic scheduling in new radio with user equipment
WO2023272605A1 (zh) * 2021-06-30 2023-01-05 北京小米移动软件有限公司 激活指示、频段激活方法和装置、通信装置和存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101212410A (zh) * 2006-12-30 2008-07-02 大唐移动通信设备有限公司 一种实现下行资源调度的方法、系统及装置
CN101567714A (zh) * 2008-04-24 2009-10-28 夏普株式会社 用于信息反馈的子带判决方法、基站、用户设备以及通信系统
KR20110088382A (ko) * 2010-01-27 2011-08-03 엘지전자 주식회사 위치기반서비스를 위한 상향링크 신호 전송방법 및 사용자기기와, 상향링크 신호를 이용한 사용자기기의 위치측정방법 및 기지국
CN102484553A (zh) * 2009-08-24 2012-05-30 日本电气株式会社 通信终端
US20120276943A1 (en) * 2011-04-26 2012-11-01 Hitachi, Ltd. Wireless communication system, wireless communication method, and base station device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101260079B1 (ko) * 2007-02-06 2013-05-02 엘지전자 주식회사 무선 통신 시스템의 랜덤 액세스 방법
WO2010094325A1 (en) * 2009-02-18 2010-08-26 Nokia Siemens Networks Oy Controlling transmissions on composite carriers
US8576780B2 (en) * 2009-03-22 2013-11-05 Lg Electronics Inc. Random access response processing
US9642161B2 (en) * 2011-05-11 2017-05-02 Nokia Solutions And Networks Oy Cross-scheduling for random access response
KR20230145244A (ko) * 2011-09-30 2023-10-17 인터디지탈 패튼 홀딩스, 인크 감소된 채널 대역폭을 사용하는 장치 통신
US9131498B2 (en) 2012-09-12 2015-09-08 Futurewei Technologies, Inc. System and method for adaptive transmission time interval (TTI) structure
EP4287668A3 (en) * 2012-10-29 2024-01-03 Huawei Technologies Co., Ltd. Resource determining method, and base station
US10420054B2 (en) * 2014-03-28 2019-09-17 Qualcomm Incorporated Wireless communications in a system that supports a first subframe type having a first symbol duration and a second subframe type having a second symbol duration
JP6789211B2 (ja) * 2014-09-08 2020-11-25 インターデイジタル パテント ホールディングス インコーポレイテッド 異なる送信時間間隔(tti)持続時間により動作するシステムおよび方法
HUE043644T2 (hu) * 2015-04-22 2019-08-28 Intel Ip Corp Alacsony várakozási idejû, versenyzésre alapozott ütemezési kérelem

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101212410A (zh) * 2006-12-30 2008-07-02 大唐移动通信设备有限公司 一种实现下行资源调度的方法、系统及装置
CN101567714A (zh) * 2008-04-24 2009-10-28 夏普株式会社 用于信息反馈的子带判决方法、基站、用户设备以及通信系统
CN102484553A (zh) * 2009-08-24 2012-05-30 日本电气株式会社 通信终端
KR20110088382A (ko) * 2010-01-27 2011-08-03 엘지전자 주식회사 위치기반서비스를 위한 상향링크 신호 전송방법 및 사용자기기와, 상향링크 신호를 이용한 사용자기기의 위치측정방법 및 기지국
US20120276943A1 (en) * 2011-04-26 2012-11-01 Hitachi, Ltd. Wireless communication system, wireless communication method, and base station device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3346651A4 *

Also Published As

Publication number Publication date
EP3346651A1 (en) 2018-07-11
US10582500B2 (en) 2020-03-03
CN106559874B (zh) 2020-12-15
CN106559874A (zh) 2017-04-05
US20180213534A1 (en) 2018-07-26
EP3346651B1 (en) 2020-11-11
EP3346651A4 (en) 2018-09-19

Similar Documents

Publication Publication Date Title
WO2017050296A1 (zh) 一种子带调度方法、装置
CN108012329B (zh) 一种寻呼的方法、通信定时的方法和装置
CN109309961B (zh) 一种配置随机接入的方法、网络设备及终端设备
US10505690B2 (en) Information transmission method and apparatus
US20180376454A1 (en) Transmission and reception of broadcast information in a wireless communication system
CN108462998B (zh) 用于随机接入的基站、用户设备和方法
KR101996357B1 (ko) 반송파 집적 기술을 사용하는 무선통신시스템에서 복수 개의 타이밍 어드밴스 그룹을 운용하는 방법 및 장치
CN107846372B (zh) 在载波聚合通信系统中执行多定时超前调整
CN111316737B (zh) 数据传输方法、终端设备和网络设备
WO2017133555A1 (zh) 一种随机接入方法、基站、终端和计算机存储介质
CN109729589B (zh) 上行信号传输方法、终端、网络设备及系统
JP2014518041A (ja) Lte−aシステムにおける搬送波集約を用いたランダムアクセス手順のための方法及び装置
US20160212769A1 (en) Data Transmission Method, Device and System
EP3573402B1 (en) Communication method and terminal
EP3886517B1 (en) Bandwidth resource configuration method, apparatus, and system
CN108141737A (zh) 系统信息传输方法、基站和用户设备
KR20170110645A (ko) 사용자 장비에 대한 물리적 랜덤 액세스 채널 및 랜덤 액세스 응답 검출
CN115052363B (zh) 信道接入过程切换的方法
KR20190100239A (ko) 정보 송신 방법, 정보 수신 방법, 장치 및 시스템
EP3372017B1 (en) Communications device, infrastructure equipment, communications system and methods
EP3454611B1 (en) Ta acquisition method and device
EP3186915B1 (en) Enhanced random access channel procedure
EP3425950B1 (en) Uplink data transmission method and apparatus
EP3340677B1 (en) Method for wireless communication, network device and terminal device
CN111818664B (zh) 随机接入方法、用户设备、基站以及随机接入系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16848177

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016848177

Country of ref document: EP