WO2017050230A1 - 一种有效细化晶粒的无缝钢管在线控制冷却工艺及制造方法 - Google Patents

一种有效细化晶粒的无缝钢管在线控制冷却工艺及制造方法 Download PDF

Info

Publication number
WO2017050230A1
WO2017050230A1 PCT/CN2016/099564 CN2016099564W WO2017050230A1 WO 2017050230 A1 WO2017050230 A1 WO 2017050230A1 CN 2016099564 W CN2016099564 W CN 2016099564W WO 2017050230 A1 WO2017050230 A1 WO 2017050230A1
Authority
WO
WIPO (PCT)
Prior art keywords
seamless steel
steel pipe
steel tube
cooling
manufacturing
Prior art date
Application number
PCT/CN2016/099564
Other languages
English (en)
French (fr)
Inventor
刘耀恒
张忠铧
武冬兴
Original Assignee
宝山钢铁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201510615737.9A external-priority patent/CN105154765A/zh
Priority claimed from CN201610265674.3A external-priority patent/CN105907937A/zh
Priority claimed from CN201610784964.9A external-priority patent/CN106555042A/zh
Application filed by 宝山钢铁股份有限公司 filed Critical 宝山钢铁股份有限公司
Priority to JP2018515854A priority Critical patent/JP6586519B2/ja
Priority to EP16848111.7A priority patent/EP3354756B1/en
Priority to US15/762,929 priority patent/US20180298459A1/en
Publication of WO2017050230A1 publication Critical patent/WO2017050230A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten

Definitions

  • the invention relates to a controlled cooling process, in particular to an on-line controlled cooling process for seamless steel pipes.
  • the hot-rolled seamless steel pipe can only rely on the addition of alloying elements and off-line heat treatment after rolling to improve product performance.
  • the oil well pipe is 555 MPa (80 Ksi) or more. Levels require the addition of more alloying elements to produce, which can significantly increase manufacturing costs.
  • conventional steel grades may be used for off-line quenching and heat treatment production.
  • the so-called off-line heat treatment means that the hot-rolled seamless steel pipe is air-cooled to room temperature after rolling, first into the pipe stock, and then heat-treated as needed.
  • the complexity of the process and the increase in cost are also brought about.
  • the grain size of steel has a direct impact on its properties, and fine grain strengthening is the only strengthening mechanism that simultaneously increases the strength and toughness of steel.
  • the cooling rate of hot steel tubes (austenite state) is accelerated by means of blowing, water spraying, etc., which increases the degree of subcooling of austenite, promotes ferrite nucleation, and improves grain refinement and strength. It is helpful.
  • One of the objects of the present invention is to provide an on-line controlled cooling process for seamless steel tubes which effectively refine grains, which can obtain better grain refinement without adding excessive alloying elements. Seamless steel tubes.
  • the present invention provides an on-line controlled cooling process for seamless steel tubes that effectively refines grains, comprising the steps of:
  • the prior art does not use the method of on-line rapid cooling to cool the steel pipe because the cooling method causes a bainite or martensite transformation, thereby causing the toughness and elongation of the steel pipe to decrease. Since the internal stress level of the seamless steel pipe after thermal deformation is much higher than the internal stress during the offline reheating austenitization, the rapid cooling on the line makes the seamless steel pipe very easy to crack.
  • the inventors of the present invention have found through extensive research that in order to make the crystal grains remarkably refine without bainite or martensite transformation, it is necessary to strictly control the quenching start cooling temperature and the quenching end. The cold temperature and the cooling rate are effectively matched to the elemental content of the steel. Based on this, the inventor of the present invention proposed the technical solution described in the present invention.
  • the waste pipe temperature needs to be higher than the Ar3 temperature. This is because when the waste pipe starts the on-line controlled cooling process of the seamless steel pipe below the Ar3 temperature, some of the pro-eutectoid iron in the seamless steel pipe will be made. The formation of the body affects the grain refining effect and performance.
  • the final cooling temperature at the time of continuous cooling of the tube is controlled within this temperature range, and a better implementation effect can be obtained.
  • the austenite subcooling is insufficient, and sufficient grain refining effect cannot be obtained.
  • the continuous cooling of the waste pipe is controlled at T1 ° C to T 2 ° C.
  • the cooling rate is lower than N1 °C / s, the austenite subcooling is insufficient, and when the cooling rate is higher than N2 ° C / s, the steel pipe is easily cracked. Therefore, in the on-line controlled cooling process of the seamless steel pipe according to the present invention, the cooling rate is controlled to be N1 ° C / s to N 2 ° C / s.
  • Ar3 temperature is known to those skilled in the art or can be obtained by technical conditions, for example, by consulting the manual or by thermal simulation experiments.
  • C, Mn, Cr, Ni and Mo in the above formulas respectively represent the mass percentage of the corresponding elements in the seamless steel pipe, that is, the values of C, Mn, Cr, Ni and Mo substituted in the formula are In the example before the percent sign, for example, in the case where the C mass percentage is 0.17%, the substitution value of C when substituted into the formula is 0.17 instead of 0.0017. The substitution of other elements is analogous and will not be repeated.
  • the above technical formula defines that the above formula does not mean that the seamless steel pipe must contain several elements such as C, Mn, Cr, Ni and Mo, and the formula can be used for quenching by the method.
  • the general formula of the seam steel pipe so when there is no one or several elements involved in the formula, the zero value is substituted into the formula.
  • the grain is further refined by providing an air cooling step after rapid cooling, and the austenite forms a large degree of subcooling due to the rapid cooling of the seamless steel pipe between air cooling.
  • the cooling rate should not be too large.
  • the cooling rate of air cooling exceeds 10 ° C / s, it will cause obvious bainite transformation. Therefore, in the technical solution, the cooling rate of air cooling cannot exceed 10 ° C / s. .
  • the mass percentage of the total alloy content of the seamless steel pipe is ⁇ 3%, wherein the alloy includes C, Mn, Cr, Mo, Ni, Cu, V, Nb. And at least one of Ti.
  • the bainite/martensite phase can be obtained by air cooling, and the method cannot be applied.
  • the alloy element types of the seamless steel pipe in the technical solution are not limited to C, Mn, Cr, Mo, Ni, Cu, V, Nb, and Ti, and may further contain other alloying elements. .
  • the mass percentage of the total alloy content of the seamless steel pipe is 0.2 to 3%.
  • the technical solution is particularly suitable for conventional carbon steel or low alloy steel, and can produce a seamless steel pipe satisfying performance requirements without adding too much alloying elements.
  • Another object of the present invention is to provide a method for manufacturing a seamless steel pipe that effectively refines grains, comprising the steps of:
  • Cooling is performed using a seamless steel pipe on-line controlled cooling process as described above.
  • the effect of effectively refining crystal grains is achieved by using the seamless steel pipe on-line controlled cooling process described above, and thus compared with the prior art.
  • the technical solution of the invention does not require reheating to austenitize the seamless steel pipe, and the direct control of the seamless steel pipe for on-line control can make the seamless steel pipe have better toughness.
  • the method for manufacturing the tube blank may be that the molten steel after the smelting is directly cast into a round tube blank, or the cast slab may be first forged or rolled into a tube blank.
  • the tube blank in the step (2), is heated to 1100 to 1300 ° C for 1 to 4 hours, and then subjected to perforation, continuous rolling, and tension reduction. Or sizing into a waste pipe.
  • Another object of the present invention is to provide a seamless steel pipe which is produced by the above-described seamless steel pipe manufacturing method.
  • the grain size is at least 7.5.
  • the microstructure is mainly pearlite and ferrite, and the ratio of pearlite to ferrite is ⁇ 80%.
  • the microstructure thereof further contains bainite and/or cementite.
  • the on-line controlled cooling process of the seamless steel pipe according to the present invention can effectively refine the grain, so that the grain size of the seamless steel pipe is at least 7.5;
  • the on-line controlled cooling process and manufacturing method of the seamless steel pipe according to the present invention can effectively improve the toughness of the steel pipe, and greatly reduce the addition amount of the alloying element under the same performance level;
  • the on-line controlled cooling process and the manufacturing method of the seamless steel pipe according to the present invention can avoid the cracking of the seamless steel pipe which cannot be avoided in the prior art, thereby ensuring the pass rate of the product;
  • the seamless steel tubes of the above embodiments A1-A7 are obtained by the following steps:
  • the tube blank is made into a waste pipe: the tube blank is heated to 1100-1300 ° C for 1 to 4 hours, and then the waste pipe is made by perforation, continuous rolling, tension reduction or sizing.
  • Adopt online control cooling process when the waste pipe temperature is higher than Ar3, spray water evenly in the circumferential direction of the waste pipe to continuously cool the waste pipe to T1 °C ⁇ T2 °C, and the cooling speed is controlled to N1 °C / s.
  • the comparative steps B1-B6 adopt the same process steps as in the embodiment in the process of manufacturing the tube blank and the waste pipe, and the controlled cooling process is adopted outside the protection scope of the technical solution. Process parameters.
  • Table 1 lists the mass ratios of the chemical elements of the seamless steel pipes of Examples A1 to A7 and the seamless steel pipes of Comparative Examples B1 to B6.
  • Table 2 lists the specific process parameters of the seamless steel tubes of Examples A1 to A7 and the manufacturing methods of the seamless steel tubes of Comparative Examples B1 to B6.
  • the seamless steel pipes of Examples A1 to A7 and the seamless steel pipes of Comparative Examples B1 to B6 were subjected to various performance tests, and the obtained data are shown in Table 3.
  • the yield strength data is obtained by processing the seamless steel tubes of Examples A1 to A7 and the seamless steel tubes of Comparative Examples B1-B6 into API curved samples, and taking the average according to the API standard test; the impact sample is
  • the seamless steel tubes of Examples A1 to A7 and Comparative Examples B1 to B6 were processed into standard impact samples of 10 mm * 10 mm * 55 mm size and V-notch, which were inspected at 0 ° C.
  • the hardness of each of the examples and the comparative examples after quenching and cooling was measured by a Rockwell hardness tester, and the grain size was measured by the GB/T6394 standard after sampling, and the metallographic method was used for the comparison.
  • Comparative Example B2 has a cooling rate lower than the cooling rate range defined in this case, so that it cannot obtain the desired microstructure and thus affects its performance, while the final cooling temperature of Comparative Example B3 is higher than the T2 °C defined in the present case. Thus, the seamless steel tube of Comparative Example B3 would not be able to obtain the desired microstructure and thus affect its performance.
  • the cooling rate of Comparative Example B4 is higher than the cooling rate range defined in the present case, so that the steel pipe is cracked and the hardness is insufficient; the final cooling temperature of Comparative Example B5 is lower than the T1 ° C defined in the present case and the air cooling of Comparative Example B6.
  • the speed is higher than the cooling rate range defined in the present case, which causes significant bainite transformation of Comparative Example B5 and Comparative Example B6 to cause insufficient toughness.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

一种有效细化晶粒的无缝钢管在线控制冷却工艺,其包括步骤:在荒管温度高于Ar3时,在荒管周向方向上均匀喷水,以将荒管连续冷却至T1℃~T2℃,冷却速度控制为N1℃/s~N2℃/s,其中T1=810-360C-80(Mn+Cr)-37Ni-83Mo,T2=T1+115℃,N1=55-80×C,N2=168×(0.8-C),各式中的C、Mn、Cr、Ni和Mo分别表示无缝钢管中相应元素的质量百分比;然后,空冷至室温,冷却速度不超过10℃/s。相应地,还提供了一种有效细化晶粒的无缝钢管制造方法以及一种无缝钢管。该无缝钢管在线控制冷却工艺无需添加过多的合金元素,工艺简单,可以得到晶粒细化程度较好,强韧性更佳的无缝钢管。

Description

一种有效细化晶粒的无缝钢管在线控制冷却工艺及制造方法 技术领域
本发明涉及一种控制冷却工艺,尤其涉及一种无缝钢管的在线控制冷却工艺。
背景技术
现有技术中,热轧无缝钢管由于产品形态和制造方法的限制,长期以来仅能依靠添加合金元素和轧制后的离线热处理来提升产品性能,以油井管为例,555MPa(80Ksi)以上级别需要添加较多合金元素方可生产,这种生产方式会大幅增加制造成本。或者也可采用常规钢种进行离线调质热处理生产,此处所谓的离线热处理是指,热轧无缝钢管在轧制后空冷到室温,先入管料库,然后再根据需要进行热处理。然而,采用这种方式同样也带来了工序的复杂化和成本的增加。
钢的晶粒大小对其性能有直接影响,细晶强化是唯一一种能同时提高钢的强度和韧性的强化机制。一般而言,通过吹风、喷水等手段加快热态钢管(奥氏体状态)的冷却速度,会增大奥氏体的过冷度,促进铁素体形核,对晶粒细化和强度提升是有帮助的。
既然本领域内技术人员已经知晓采用在线加速冷却可以使得无缝钢管获得更细的晶粒和更好的性能,为何现有技术仍然不采用呢?这是因为一方面冷速过快会引起贝氏体乃至马氏体相变,虽然强度会明显提升,但往往会引起材料性能的巨大变化,如韧性、延伸率下降,屈强比上升等,并不一定适应使用需求;另一方面钢管由于其断面的特殊性,内应力水平要高于板材等产品,强制冷却速度过快容易引发开裂等问题。
鉴于此,期望获得一种无缝钢管在线控制冷却工艺,其能利用钢管热轧后的余热,对在线冷却工艺进行控制,在不发生贝氏体或马氏体等非平衡态相变的前提下,有效细化晶粒,提高无缝钢管强韧性。
发明内容
本发明的目的之一在于提供一种有效细化晶粒的无缝钢管在线控制冷却工艺,采用该工艺,在无需添加过多的合金元素的前提下,就可以得到晶粒细化程度较好的无缝钢管。
基于上述发明目的,本发明提供了一种有效细化晶粒的无缝钢管在线控制冷却工艺,其包括步骤:
在荒管温度高于Ar3时,在荒管周向方向上均匀喷水,以将荒管连续冷却至T1℃~T2℃,冷却速度控制为N1℃/s~N2℃/s,其中T1=810-360C-80(Mn+Cr)-37Ni-83Mo,T2=T1+115℃,N1=55-80×C,N2=168×(0.8-C),各式中的C、Mn、Cr、Ni和Mo分别表示无缝钢管中相应元素的质量百分比;
然后,空冷至室温,冷却速度不超过10℃/s。
如前文已经阐述过的,现有技术中不采用在线快速冷却的方法来冷却钢管,是因为这种冷却方法会引起贝氏体乃至马氏体相变,从而使得钢管韧性、延伸率下降,此外由于无缝钢管在热变形后,其内应力水平要远高于离线重新加热奥氏体化时的内应力,因此在线快速冷却会使得无缝钢管非常容易开裂。为了解决这一技术难题,本案发明人经过大量研究发现,在不发生贝氏体或马氏体相变的情况下,想要使晶粒明显细化,需要严格控制淬火开始冷却温度、淬火终冷温度以及冷却速度,使其与钢种的元素含量进行有效配合。基于此,本案发明人提出了本发明所述的技术方案。
在本技术方案中,荒管温度需要高于Ar3温度以上,这是因为荒管在低于Ar3温度开始进行无缝钢管在线控制冷却工艺时,将会使得无缝钢管中有部分先共析铁素体生成,影响晶粒细化效果和性能。
另外,将荒管连续冷却控制在T1℃~T2℃,其中T1=810-360C-80(Mn+Cr)-37Ni-83Mo,T2=T1+115℃,是因为:经发明人研究发现,荒管连续冷却时的终冷温度控制在该温度范围内,可以获得较好的实施效果。当荒管连续冷却时的终冷温度高于T2℃时,奥氏体过冷度不够,无法得到足够的晶粒细化效果。当荒管的终冷温度低于T1时则会发生贝氏体或马氏体相变,进而对无缝钢管的最终性能造成重大不利影响。因而,在本发明所述的无缝钢管在线控制冷却工艺中将荒管连续冷却控制在T1℃~T2℃。
并且,本案发明人还发现将冷却速度控制为N1℃/s~N2℃/s,N1=55-80× C,N2=168×(0.8-C)时所获得的无缝钢管具有较优的性能。当冷却速度低于N1℃/s时,会导致奥氏体过冷度不够,而当冷却速度高于N2℃/s时,则容易引起钢管开裂。因而在本发明所述的无缝钢管在线控制冷却工艺中将冷却速度控制为N1℃/s~N2℃/s。
需要说明的是,Ar3温度对于本领域内技术人员是已知的或是可以由技术条件获得的,例如,可以通过查阅手册获得或是用热模拟实验测得。
另外需要说明的是,上述各公式中的C、Mn、Cr、Ni和Mo分别表示无缝钢管中相应元素的质量百分比,也就是说公式中C、Mn、Cr、Ni和Mo代入的数值是百分号前的数值,例如C质量百分比为0.17%的实施例中,代入公式中时C的代入数值是0.17,而不是0.0017。其他元素的代入情况以此类推,不再赘述。
还需要说明的是,本技术方案限定了上述公式并不表示该无缝钢管中一定同时含有C、Mn、Cr、Ni和Mo这几种元素,该公式是可以针对采用本方法进行淬火的无缝钢管的通用公式,因此当不含有公式中涉及的某一种或某几种元素时,则将零值对应代入该公式中。
此外,在本技术方案中,通过在快速冷却后设置空冷步骤来进一步细化晶粒,由于无缝钢管在空冷之间的快速冷却过程中使得奥氏体形成了较大的过冷度,因此在空冷时要控制冷速不能过大,当空冷的冷却速度超过10℃/s时会引起明显的贝氏体相变,因而,在本技术方案中,空冷的冷却速度不能超过10℃/s。
进一步地,在本发明所述的无缝钢管在线控制冷却工艺中,无缝钢管的总合金含量的质量百分比≤3%,其中合金包括C、Mn、Cr、Mo、Ni、Cu、V、Nb和Ti的至少其中之一。超过3%合金含量的钢,采用空冷就可得到贝氏体/马氏体相,无法应用本方法。另外需要说明的是,本技术方案中的无缝钢管的合金元素种类并不限于C、Mn、Cr、Mo、Ni、Cu、V、Nb和Ti这几种,其也可以进一步含有其他合金元素。
更进一步地,在本发明所述的无缝钢管在线控制冷却工艺中,无缝钢管的总合金含量的质量百分比为0.2~3%。
本技术方案尤其适用于常规碳钢或低合金钢,在不需要添加过多合金元素的条件下即可以生产出满足性能要求的无缝钢管。
相应地,本发明的另一目的在于提供一种有效细化晶粒的无缝钢管制造方法,其包括步骤:
(1)制造管坯;
(2)将管坯制成荒管;
(3)采用如上文所述的无缝钢管在线控制冷却工艺进行冷却。
在本发明所述的有效细化晶粒的无缝钢管制造方法中,利用上文所述的无缝钢管在线控制冷却工艺实现了有效细化晶粒的实施效果,因而与现有技术相比,本发明所述的技术方案无须重新加热使无缝钢管奥氏体化,并且直接采用无缝钢管在线控制冷却可以使无缝钢管具有更好的韧性。
需要说明的是,在步骤(1)中,管坯的制造方法可以采用将冶炼后的钢水直接浇注为圆管坯,也可以采用先浇注再讲其铸坯锻造或轧制成管坯。
进一步地,在本发明所述的无缝钢管制造方法中,在所述步骤(2)中,将管坯加热到1100~1300℃,保持1~4h,然后经穿孔、连轧、张力减径或定径制成荒管。
此外,本发明的又一目的在于所述一种无缝钢管,其采用上文所述的无缝钢管制造方法制得。
进一步地,在本发明所述的无缝钢管中,其晶粒度至少达到7.5级。
进一步地,在本发明所述的无缝钢管中,其微观组织以珠光体和铁素体为主,其中珠光体+铁素体的相比例≥80%。
进一步地,在本发明所述的无缝钢管中,其微观组织还含有贝氏体和/或渗碳体。
本发明所述的有效细化晶粒的无缝钢管在线控制冷却工艺及制造方法具有以下优点及有益效果:
(1)本发明所述的无缝钢管在线控制冷却工艺能有效细化晶粒,使无缝钢管的晶粒度至少达到7.5级;
(2)采用本发明所述的无缝钢管在线控制冷却工艺和制造方法,可以有效提高钢管强韧性,同等性能水平下,大大降低合金元素的添加量;
(3)采用本发明所述的无缝钢管在线控制冷却工艺和制造方法,可以避免现有技术中无法避免的无缝钢管开裂现象,从而保证了产品的合格率;
具体实施方式
下面将结合具体的实施例对本发明所述有效细化晶粒的无缝钢管在线控制冷却工艺做进一步的解释和说明,然而该解释和说明并不对本发明的技术方案构成不当限定。
实施例A1-A7和对比例B1-B6
上述实施例A1-A7的无缝钢管采用下述步骤制得:
(1)制造管坯:按照表1所列的各化学元素的质量百分比冶炼,将其浇铸成锭,并将铸锭锻造成管坯。
(2)将管坯制成荒管:将管坯加热到1100~1300℃,保持1~4h,然后经穿孔、连轧、张力减径或定径制成荒管。
(3)采用在线控制冷却工艺:在荒管温度高于Ar3时,在荒管周向方向上均匀喷水,以将荒管连续冷却至T1℃~T2℃,冷却速度控制为N1℃/s~N2℃/s,其中T1=810-360C-80(Mn+Cr)-37Ni-83Mo,T2=T1+115℃,N1=55-80×C,N2=168×(0.8-C),各式中的C、Mn、Cr、Ni和Mo分别表示无缝钢管中相应元素的质量百分比;然后空冷到室温,控制冷却速度不超过10℃/s。
为了显示本案在线控制冷却工艺对本案实施效果的影响,对比例B1-B6在制造管坯和荒管步骤采用了与实施例相同的工艺步骤,而控制冷却工艺则采用了本技术方案保护范围以外的工艺参数。
表1列出了实施例A1-A7的无缝钢管以及对比例B1-B6的无缝钢管的各化学元素的质量百分配比。
表1.(wt%,余量为Fe和其他不可避免的其他杂质元素)
Figure PCTCN2016099564-appb-000001
Figure PCTCN2016099564-appb-000002
表2列出了实施例A1-A7的无缝钢管以及对比例B1-B6的无缝钢管中制造方法的具体工艺参数。
表2
Figure PCTCN2016099564-appb-000003
对实施例A1-A7的无缝钢管以及对比例B1-B6的无缝钢管进行各项性能测试,所得数据列于表3。其中,屈服强度数据是将实施例A1-A7的无缝钢管以及对比例B1-B6的无缝钢管加工成API弧形试样,按API标准检验后取平均数得出;冲击试样是将实施例A1-A7以及对比例B1-B6的无缝钢管加工成10mm*10mm*55mm尺寸、V型缺口的标准冲击试样,在0℃下检验得出。另外,各实施例和对比例淬火冷却后硬度采用洛氏硬度计测得,晶粒度通过取样后按GB/T6394标准测得,相比例采用金相法测得。
表3.各实施例和各对比例的性能数据
Figure PCTCN2016099564-appb-000004
Figure PCTCN2016099564-appb-000005
由表3可以看出,实施例A1-A7的无缝钢管的屈服强度均高于336MPa,0℃全尺寸冲击功均高于98J,且晶粒度均高于7.5级,并且微观组织中珠光体+铁素体的相比例≥80%。
结合表2及表1可以看出,各实施例与各对比例间的各化学元素的组分配比没有区别,然而各实施例和对比例的制造方法有着显著的区别,因而,使得实施例A1-A7的无缝钢管的各性能综合而言优于对比例B1-B6。此外,结合表2和表3可以看出,对比例B1的开冷温度低于Ar3温度使得B1析出先共析铁素体,降低了其淬火后的硬度,并且也影响了其无缝钢管的强度;对比例B2的冷却速度低于本案所限定的冷却速度范围从而使其无法获得所需的微观组织因而影响了其性能,而对比例B3的终冷温度高于了本案所限定的T2℃因而使得对比例B3的无缝钢管会无法获得所需的微观组织进而影响了其性能。另外,对比例B4的冷却速度高于了本案所限定的冷却速度范围,因而使得其钢管开裂,硬度不足;对比例B5的终冷温度低于本案所限定的T1℃以及对比例B6的空冷冷却速度高于本案所限定的冷却速度范围,会使得对比例B5和对比例B6发生明显的贝氏体相变导致其韧性不足。
需要注意的是,以上列举的仅为本发明的具体实施例,显然本发明不限于以上实施例,随之有着许多的类似变化。本领域的技术人员如果从本发明公开的内容直接导出或联想到的所有变形,均应属于本发明的保护范围。

Claims (9)

  1. 一种有效细化晶粒的无缝钢管在线控制冷却工艺,其特征在于,其包括步骤:
    在荒管温度高于Ar3时,在荒管周向方向上均匀喷水,以将荒管连续冷却至T1℃~T2℃,冷却速度控制为N1℃/s~N2℃/s,其中T1=810-360C-80(Mn+Cr)-37Ni-83Mo,T2=T1+115℃,N1=55-80×C,N2=168×(0.8-C),各式中的C、Mn、Cr、Ni和Mo分别表示无缝钢管中相应元素的质量百分比;
    然后,空冷至室温,冷却速度不超过10℃/s。
  2. 如权利要求1所述的无缝钢管在线控制冷却工艺,其特征在于,无缝钢管的总合金含量的质量百分比≤3%,其中合金包括C、Mn、Cr、Mo、Ni、Cu、V、Nb和Ti的至少其中之一。
  3. 如权利要求2所述的无缝钢管在线控制冷却工艺,其特征在于,无缝钢管的总合金含量的质量百分比为0.2~3%。
  4. 一种有效细化晶粒的无缝钢管制造方法,其包括步骤:
    (1)制造管坯;
    (2)将管坯制成荒管;
    (3)采用如权利要求1-3中任意一项所述的无缝钢管在线控制冷却工艺进行冷却。
  5. 如权利要求4所述的无缝钢管制造方法,其特征在于,制得晶粒度至少达到7.5级的无缝钢管。
  6. 如权利要求4所述的无缝钢管制造方法,其特征在于,在所述步骤(2)中,将管坯加热到1100~1300℃,保持1~4h,然后经穿孔、连轧、张力减径或定径制成荒管。
  7. 一种无缝钢管,其采用如权利要求4-6中任意一项所述的无缝钢管制造方法制得。
  8. 如权利要求7所述的无缝钢管,其特征在于,其微观组织以珠光体和铁素体为主,其中珠光体+铁素体的相比例≥80%。
  9. 如权利要求8所述的无缝钢管,其特征在于,其微观组织还含有贝氏体和 /或渗碳体。
PCT/CN2016/099564 2015-09-24 2016-09-21 一种有效细化晶粒的无缝钢管在线控制冷却工艺及制造方法 WO2017050230A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018515854A JP6586519B2 (ja) 2015-09-24 2016-09-21 効果的に結晶粒を微細化する継目無鋼管のオンライン制御冷却方法および製造方法
EP16848111.7A EP3354756B1 (en) 2015-09-24 2016-09-21 Online-controlled seamless steel tube cooling process and seamless steel tube manufacturing method with effective grain refinement
US15/762,929 US20180298459A1 (en) 2015-09-24 2016-09-21 Online-control cooling process for seamless steel tube for effectively refining grains and the method for manufacturing thereof

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201510615737.9A CN105154765A (zh) 2015-09-24 2015-09-24 一种高强韧性无缝钢管及其制造方法
CN201510615737.9 2015-09-24
CN201610265674.3A CN105907937A (zh) 2016-04-26 2016-04-26 一种贝氏体型高强度无缝钢管的制造方法和贝氏体型高强度无缝钢管
CN201610265674.3 2016-04-26
CN201610784964.9A CN106555042A (zh) 2015-09-24 2016-08-30 一种有效细化晶粒的无缝钢管在线控制冷却工艺及制造方法
CN201610784964.9 2016-08-30

Publications (1)

Publication Number Publication Date
WO2017050230A1 true WO2017050230A1 (zh) 2017-03-30

Family

ID=58385674

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/099564 WO2017050230A1 (zh) 2015-09-24 2016-09-21 一种有效细化晶粒的无缝钢管在线控制冷却工艺及制造方法

Country Status (1)

Country Link
WO (1) WO2017050230A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113564327A (zh) * 2021-07-20 2021-10-29 浙江泰富无缝钢管有限公司 一种适用于制造电站锅炉用厚壁钢管的热处理工艺
CN115058566A (zh) * 2022-05-31 2022-09-16 大冶特殊钢有限公司 一种改善Cr-Mo-V耐热合金钢管晶粒均匀性的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002226945A (ja) * 2001-02-02 2002-08-14 Nkk Corp 鋼管及びその製造方法
CN101481995A (zh) * 2008-01-11 2009-07-15 江苏嘉宝科技制管有限公司 一种高钢级石油套管和油管制造工艺
CN101829679A (zh) * 2009-03-09 2010-09-15 鞍钢股份有限公司 一种改善热轧油井管接箍料冲击韧性的生产方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002226945A (ja) * 2001-02-02 2002-08-14 Nkk Corp 鋼管及びその製造方法
CN101481995A (zh) * 2008-01-11 2009-07-15 江苏嘉宝科技制管有限公司 一种高钢级石油套管和油管制造工艺
CN101829679A (zh) * 2009-03-09 2010-09-15 鞍钢股份有限公司 一种改善热轧油井管接箍料冲击韧性的生产方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113564327A (zh) * 2021-07-20 2021-10-29 浙江泰富无缝钢管有限公司 一种适用于制造电站锅炉用厚壁钢管的热处理工艺
CN115058566A (zh) * 2022-05-31 2022-09-16 大冶特殊钢有限公司 一种改善Cr-Mo-V耐热合金钢管晶粒均匀性的方法

Similar Documents

Publication Publication Date Title
JP6586519B2 (ja) 効果的に結晶粒を微細化する継目無鋼管のオンライン制御冷却方法および製造方法
JP6107437B2 (ja) 耐硫化物応力腐食割れ性に優れた油井用低合金高強度継目無鋼管の製造方法
JP6479527B2 (ja) 酸洗性、および焼入れ焼戻し後の耐遅れ破壊性に優れたボルト用線材、並びにボルト
JP2012197507A (ja) 低温における優れた靭性および硫化物応力腐食亀裂抵抗をもつ高強度の鋼管
RU2270873C1 (ru) Способ производства штрипсовой стали для труб подводных морских газопроводов высоких параметров
JP4123672B2 (ja) 靱性に優れた高強度継目無鋼管の製造方法
WO2017050227A1 (zh) 一种高强韧性无缝钢管及其制造方法
WO2016063224A1 (en) An ultra-high strength thermo-mechanically processed steel
TWI595101B (zh) Cold forging and quenching and tempering after the delay breaking resistance of the wire with excellent bolts, and bolts
JP2020125538A (ja) 冷間加工用機械構造用鋼およびその製造方法
WO2017050230A1 (zh) 一种有效细化晶粒的无缝钢管在线控制冷却工艺及制造方法
CN107779744B (zh) 一种贝氏体型x100级无缝管线管及其制造方法
CN109055645A (zh) 一种正火态交货的经济型抗hic管线钢板x52ns及其制造方法
WO2017050229A1 (zh) 一种利用余热的无缝钢管在线淬火冷却工艺及制造方法
JP3589066B2 (ja) 高強度高靱性継目無鋼管の製造方法
JP4975343B2 (ja) 冷間鍛造加工性に優れた鋼管およびその製造方法
CN113637890B (zh) 一种超细晶粒无缝钢管及其制造方法
JP4793499B2 (ja) ラインパイプ用厚肉継目無鋼管
WO2017050228A1 (zh) 一种贝氏体型高强度无缝钢管的制造方法和贝氏体型高强度无缝钢管
JPH04210453A (ja) 低温靱性に優れるマルテンサイト系ステンレス鋼管及びその製造方法。
CN104630624A (zh) 一种高频焊j55套管用钢、套管及其制造方法
JPS62263924A (ja) 強靭鋼管の製造方法
CN114717476A (zh) 提升轧态碳钢无缝钢管性能的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16848111

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15762929

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2018515854

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016848111

Country of ref document: EP