WO2017050023A1 - 一种单腔平板天线阵列单元 - Google Patents

一种单腔平板天线阵列单元 Download PDF

Info

Publication number
WO2017050023A1
WO2017050023A1 PCT/CN2016/093175 CN2016093175W WO2017050023A1 WO 2017050023 A1 WO2017050023 A1 WO 2017050023A1 CN 2016093175 W CN2016093175 W CN 2016093175W WO 2017050023 A1 WO2017050023 A1 WO 2017050023A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
horn
antenna array
array unit
micro
Prior art date
Application number
PCT/CN2016/093175
Other languages
English (en)
French (fr)
Inventor
汤磊
孙俊
许海生
高晓峰
Original Assignee
南京中网卫星通信股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京中网卫星通信股份有限公司 filed Critical 南京中网卫星通信股份有限公司
Publication of WO2017050023A1 publication Critical patent/WO2017050023A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support

Definitions

  • the invention relates to a single-chamber planar antenna array unit, which is an array unit of a planar antenna.
  • the assembly of the array unit forms a planar antenna for satellite communication, and belongs to the field of antennas.
  • the panel antenna appears in people's field of vision.
  • Such an antenna has the above advantages and is widely used for portable stations, vehicle antennas, airborne antennas, and the like.
  • the feeding mode of the panel antenna seen on the market is mostly a waveguide feeding.
  • Such a feeding form has many advantages, and its disadvantages are large thickness, heavy weight, high processing difficulty, and high cost.
  • flat panel antennas are generally flat design.
  • the antenna surface In order to ensure the performance of the antenna, the antenna surface is often made relatively large. During the handling process, certain damage will occur.
  • a rigid material To ensure the rigidity of the antenna surface, a rigid material must be used. Generally, the weight of the antenna surface is increased, and the portability of the panel antenna is reduced.
  • Flat panel antennas are generally transported in a box-mounted manner. When the panel antenna is large enough, the box is larger, which inevitably reduces the portability of the panel antenna. Satellite signals in different regions have different strengths and weaknesses. For antennas with different antenna sizes, the antennas at this stage often cannot be resized, and the adaptability to different signal regions is not strong.
  • the present invention discloses a single-chamber planar antenna array unit, which is a type of panel antenna that can be combined into an appropriate area by a connection between array units to adapt to different regions and different signals. Satellite communications at the strength required to complete satellite communications.
  • the panel antenna array unit solves the problem of adaptability of the current flat panel antenna to different locations and different signal strengths, and solves the problem that the current high-performance panel antenna has an excessive area, the antenna surface cannot be disassembled, and the portability is not high. Very high practicality.
  • a single-chamber planar antenna array unit mainly comprises: a horn radiating layer, a microstrip feeding layer, a transmitting layer and a reflecting layer, wherein the combination order is a horn radiating layer, a microstrip feeding layer, a transport layer, The microstrip feed layer, the reflective layer, the microstrip feed layer is two, and the microstrip feed layer is divided into a receiving microstrip feed layer and an emission microstrip feed layer, the horn radiating layer and the reflection
  • a connection device is disposed on the layer, and a signal transmission interface and a current transmission interface are disposed on the transmission layer.
  • the horn radiating layer can effectively amplify the signal, and the microstrip feeding layers are respectively on the two sides of the transmission layer, respectively receiving the microstrip feeding layer and the transmitting microstrip feeding layer, and receiving and transmitting at different feeding layers. It is more advantageous to adjust the antenna radiation and the voltage standing wave ratio, and combine them into an area-appropriate panel antenna through the interconnection between the panel antenna array units to adapt to satellite communication requirements in different regions and different signal strengths, and complete satellite communication. .
  • the connecting device is an adsorption type magnetic strip, and the same side of the horn radiating layer and The magnetic properties of the adsorbed magnetic strip of the reflective layer are different.
  • the adsorption magnetic strip can be used to assemble the flat antenna array unit more conveniently, speed up the assembly and improve the working efficiency.
  • the magnetic properties of the horn radiating layer and the reflective layer on the same side are different. Preventing the reverse assembly before and after assembly during installation, greatly reducing the probability of errors during assembly and increasing the speed of assembly.
  • the adsorption type magnetic strip is provided with a magnetic interference preventing pad at a place where the radiation layer and the reflective layer are in contact with each other.
  • the microstrip feed layer is a one-two-phase hetero-phase power divider. With this design, broadband impedance matching can be achieved.
  • the receiving microstrip feeding layer and the transmitting microstrip feeding layer are installed in such a manner that the power dividers are perpendicular to each other.
  • the internal structure of the antenna is optimized to prevent signal interference and ensure antenna performance.
  • the current transmission interface and the signal transmission interface provided on the transmission layer are elastic metal contact structures.
  • the elastic metal contact structure can ensure the normal transmission of signals and currents, and the three interfaces are separated, which can ensure the functions are relatively independent, do not affect each other, ensure the stability of satellite signal transmission, and can also realize signal uploading and The download is carried out at the same time, and with the dual microstrip feed layer, the transmission and reception synchronization, elastic metal contacts, can ensure that the overall rigidity of the antenna surface is not affected during the contact process.
  • the connecting device of the horn radiating layer, the connecting device of the reflective layer, the signal transmission interface and the current transmission interface of the transmission layer are plurality, preferably four, respectively disposed on the horn radiating layer. Reflective layer, around the transport layer.
  • the horn radiating layer, the reflecting layer, the transmitting layer and the microstrip feeding layer adopt a regular polygon design.
  • the regular polygon designs can be combined with each other to form a larger polygonal planar antenna.
  • the antenna rigidity and transmission performance of different shapes are also different. Different designs can be used to increase antenna adaptation for different regions. Sex.
  • the horn radiating layer adopts a regular polygon horn radiator, and the regular polygon horn radiator has the same shape as the horn radiating layer.
  • the shape of the horn radiator is consistent with the shape of the radiation layer, which can maximize the area of the horn and ultimately improve the transmission performance of the antenna.
  • the horn radiator employs a truncated cone horn radiator. After adopting this design, it is convenient to process, and it is more convenient in later debugging and time.
  • the present invention can also be used together with a fixing belt which is provided with a corresponding adsorption type magnetic strip according to the edge distance of a single array unit, and has a buckle at the end. After adopting this design, it is fixed by the fixing strap after being assembled into the panel antenna, thereby ensuring the stability of the antenna operation and improving the rigidity of the antenna surface.
  • the device is a kind of panel antenna that can be combined into an appropriate area through the connection between the array units to adapt to satellite communication requirements in different regions and different signal strengths to complete satellite communication.
  • the panel antenna array unit solves the problem of adaptability of the current flat panel antenna to different locations and different signal strengths, and solves the problem that the current high-performance panel antenna has an excessive area, the antenna surface cannot be disassembled, and the portability is not high. Very high practicality.
  • Figure 1 is a schematic view of the structure of the present invention
  • Figure 2 is a schematic view of the horn radiating layer of the present invention
  • FIG. 3 is a schematic view of a microstrip feed layer of the present invention
  • Figure 4 is a schematic diagram of a transport layer of the present invention.
  • Figure 5 is a schematic view of a reflective layer of the present invention.
  • Figure 6 is an exploded view of the present invention
  • Figure 7 is a diagram showing the combination of the present invention as a panel antenna
  • a single-chamber planar antenna array unit mainly includes: a horn radiating layer 1, a microstrip feeding layer 2, 4, a transport layer 3 and a reflective layer 5, wherein the combination order is horn radiation Layer 1, microstrip feed layer 2, transport layer 3, microstrip feed layer 4, reflective layer 5, the microstrip feed layer is two, and the microstrip feed layer is divided into a receiving microstrip feed layer And transmitting the microstrip feeding layer, the speaker radiating layer 1 and the reflecting layer 5 are provided with connecting means, and the transmission layer 3 is provided with a signal transmission interface and a current transmission interface.
  • the horn radiating layer 1 can effectively amplify the signal, and the microstrip feeding layers 2, 4 are respectively on the two sides of the transport layer 3, respectively, the receiving microstrip feeding layer and the transmitting microstrip feeding layer, and the receiving and transmitting are different.
  • the feeding layer is more advantageous for adjusting the antenna radiation and the voltage standing wave ratio, and is combined into an appropriate area of the planar antenna through the interconnection between the planar antenna array units to adapt to satellite communication in different regions and different signal intensities. Request to complete satellite communications.
  • the connecting device is an adsorption type magnetic strip, and the magnetic properties of the adsorbing magnetic strip of the horn radiating layer 1 and the reflecting layer 5 on the same side are different.
  • the adsorption magnetic strip can be used to assemble the flat antenna array unit more conveniently, speed up the assembly and improve the working efficiency.
  • the magnetic properties of the horn radiating layer 1 and the reflective layer 5 on the same side magnetic strip are different. It is to prevent the reverse assembly before and after assembly during installation, greatly reducing the probability of errors during assembly and increasing the speed of assembly.
  • the remaining structural features and advantages are identical to those of Embodiment 1.
  • the adsorption type magnetic strip is provided with a magnetic interference preventing pad at a place where the horn radiating layer 1 and the reflective layer 5 are in contact.
  • the magnetic stripe can be prevented from interfering with the signal, the stability of the signal can be more ensured, and the performance can be improved.
  • the remaining structure and advantages are identical to those of Embodiment 1.
  • the microstrip feed layers 2, 4 are a one-two-phase hetero-phase power splitter. With this design, broadband impedance matching can be achieved. The remaining structure and advantages are identical to those of Embodiment 1.
  • the receiving microstrip feeding layer and the transmitting microstrip feeding layer are installed in such a manner that the power dividers are perpendicular to each other.
  • the internal structure of the antenna is optimized to prevent signal interference and ensure the day. Line performance.
  • the remaining structure and advantages are identical to those of Embodiment 1.
  • the current transmission interface and the signal transmission interface provided on the transmission layer 3 are elastic metal contact structures.
  • the elastic metal contact structure can ensure the normal transmission of signals and currents, and the three interfaces are separated, which can ensure the functions are relatively independent, do not affect each other, ensure the stability of satellite signal transmission, and can also realize signal uploading and The download is carried out at the same time, and with the dual microstrip feed layer, the transmission and reception synchronization, elastic metal contacts, can ensure that the overall rigidity of the antenna surface is not affected during the contact process.
  • the remaining structure and advantages are identical to those of Embodiment 1.
  • the connecting device of the horn radiating layer 1, the connecting device of the reflective layer 5, the signal transmission interface and the current transmission interface of the transmission layer 3 are plural, preferably four, respectively arranged in the horn The radiation layer 1, the reflective layer 5, and the periphery of the transmission layer 3.
  • the horn radiating layer 1, the reflecting layer 5, the transport layer 3, and the microstrip feeding layers 2, 4 are designed in a regular polygon.
  • the regular polygon designs can be combined with each other to form a larger polygonal planar antenna.
  • the antenna rigidity and transmission performance of different shapes are also different. Different designs can be used to increase antenna adaptation for different regions. Sex. The remaining structure and advantages are identical to those of Embodiment 1.
  • the horn radiating layer 1 employs a regular polygon horn radiator, and the regular polygon horn radiator conforms to the shape of the horn radiating layer 1.
  • the shape of the horn radiator is consistent with the shape of the radiation layer 1, which can maximize the area of the horn and ultimately improve the transmission performance of the antenna.
  • the remaining structure and advantages are identical to those of Embodiment 1.
  • the horn radiator employs a truncated cone horn radiator. After adopting this design, it is convenient to process, and it is more convenient in later debugging and time. The remaining structure and advantages are identical to those of Embodiment 1.
  • the present invention can also be used together with a fixing belt which is provided with a corresponding adsorption type magnetic strip according to the edge distance of a single array unit, and has a buckle at the end. After adopting this design, it is fixed by the fixing strap after being assembled into the panel antenna, thereby ensuring the stability of the antenna operation and improving the rigidity of the antenna surface.
  • a fixing belt which is provided with a corresponding adsorption type magnetic strip according to the edge distance of a single array unit, and has a buckle at the end.
  • Embodiments 2, 3, 4, 5, 6, 7, 8, 9, 10 can also combine at least one of the technical features described in Embodiments 2, 3, 4, 5, 6, 7, 8, 9, 10 with Embodiment 1 into a new embodiment.
  • the technical means disclosed in the solution of the present invention is not limited to the technical means disclosed by the above technical means, and includes a technical solution composed of any combination of the above technical features.

Landscapes

  • Aerials With Secondary Devices (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

一种单腔平板天线阵列单元,其主要包括:喇叭辐射层(1),微带馈电层(2、4),传输层(3)和反射层(5),组合顺序依次为喇叭辐射层(1),微带馈电层(2),传输层(3),微带馈电层(4),反射层(5),微带馈电层(2、4)为两个,微带馈电层(2、4)分为接收微带馈电层和发射微带馈电层,喇叭辐射层(1)和反射层(5)上设置有连接装置,传输层(3)上设置有信号传输接口和电流传输接口。喇叭辐射层(1)能够有效的对信号进行放大,微带馈电层(2、4)分别在传输层(3)的两侧,分别为接收微带馈电层和发射微带馈电层,接收和发射在不同的馈电层,有利调节天线辐射性和电压驻波比,该平板天线阵列单元之间相互连接,组合成为一个面积适当的平板天线,适应不同地区,不同信号强度下的卫星通信要求,完成卫星通信。

Description

一种单腔平板天线阵列单元 技术领域
本发明涉及一种单腔平板天线阵列单元,它是一种平板天线的阵列单元,通过阵列单元的组装,形成平板天线,实现卫星通信的目的,属于天线领域。
背景技术
随着卫星通信事业的发展,人们对卫星通信天线的要求越来越高,要求卫星通信天线重量轻、剖面低、性能高、便携性等优点。抛物面天线由于其结构特点,不可能做到体积很小,而且抛物面天线由于其精度要求比较高,因此对于抛物面天线来说,不可能将天线面拆分成为很多部分,对于操作人员的要求比较高,装配精度不达标,也会导致天线性能不达标,正是因为抛物面天线的种种问题,车载天线和机载天线,他们对天线高度和重量都有严格的要求,因为天线的高度和重量直接影响车辆的行驶速度和飞机的风行速度。于是平板天线就出现在人们的视野中,此类天线具有以上优点,广泛以用于便携站、车载天线、机载天线等。目前市场上见到的平板天线的馈电方式,多为波导馈电,此类馈电形式具有很多优点,它的的缺点是厚度大,重量重,加工难度大,成本高。
现阶段平板天线一般都是采用扁平化设计,为了保证天线性能,往往天线面制作的比较大,在搬运过程中,会发生一定的损坏,要保证天线面的刚性,必须采用刚性好的材料,一般会提升天线面的重量,降低了平板天线的便携性。平板天线一般采用箱装的方式进行运输,当平板天线足够大时,箱子要更大,必然会降低平板天线的便携性。不同的地区卫星信号强弱不同,对于平板天天线的大小要求不同,现阶段的天线往往不能改变大小,对于不同信号地区的适应性不强。
发明内容
为了解决上述存在的问题,本发明公开了一种单腔平板天线阵列单元,该设备是一种可以通过阵列单元之间的连接,组合成为一个面积适当的平板天线,以适应不同地区,不同信号强度下的卫星通信要求,完成卫星通信。该平板天线阵列单元解决了目前平板天线对于不同地点,不同信号强度下的适应性问题,解决了目前高性能平板天线的面积过大,天线面不能拆装,便携性不高的问题。具有非常高的实用性。
一种单腔平板天线阵列单元,其主要包括:喇叭辐射层,微带馈电层,传输层和反射层,其特征在于:组合顺序依次为喇叭辐射层,微带馈电层,传输层,微带馈电层,反射层,所述的微带馈电层为两个,微带馈电层分为接收微带馈电层和发射微带馈电层,所述的喇叭辐射层和反射层上设置有连接装置,传输层上设置有信号传输接口和电流传输接口。喇叭辐射层能够有效的对信号进行放大,微带馈电层分别在传输层的两侧,分别为接收微带馈电层和发射微带馈电层,接收和发射在不同的馈电层,更加有利调节天线辐射性和电压驻波比,通过该平板天线阵列单元之间的相互连接,组合成为一个面积适当的平板天线,以适应不同地区,不同信号强度下的卫星通信要求,完成卫星通信。
作为本发明的一种改进,所述的连接装置为吸附式磁条,且同侧的喇叭辐射层和 反射层的吸附式磁条的磁性不相同。采用这种设计以后,采用吸附式磁条,可以更加方便的对平板天线阵列单元进行组装,加快组装速度,提高工作效率,喇叭辐射层和反射层在同侧磁条的磁性不相同,是为了防止安装过程中出现组装前后反装的情况,大大降低了组装过程中出错的概率,并且提升了组装的速度。
作为本发明的一种改进,所述的吸附式磁条与喇叭辐射层和反射层接触的地方设置有防磁干扰垫片。采用这种设计以后,可以防止磁条的对于信号的干扰,能够更加保证信号的稳定性,并且提升性能。
作为本发明的一种改进,所述的微带馈电层采用的是一分二等异相功分器。采用这种设计以后,可以实现了宽频阻抗匹配。
作为本发明的一种改进,所述的接收微带馈电层和发射微带馈电层采用功分器相互垂直的方式进行安装。采用这种设计以后,优化了天线内部结构,防止信号出现干涉,保证天线性能。
作为本发明的一种改进,所述的传输层上设置的电流传输接口和信号传输接口为弹性金属触点结构。采用这种设计以后,采用弹性金属触点结构,能够保证信号,电流正常传输,三接口分开,可以保证功能相对独立,互不影响,保证卫星信号传输的稳定性,还能够实现信号的上传和下载同时进行,并且配合双微带馈电层,实现收发同步,弹性的金属触点,能够保证在接触过程中不会影响天线面整体的刚性。
作为本发明的一种改进,所述的喇叭辐射层的连接装置,反射层的连接装置,传输层的信号传输接口和电流传输接口为多个,优选为四个,分别设置在喇叭辐射层,反射层,传输层的四周。采用这种设计以后,在安装时候不需要特别进行方向确认,能够最快速的进行组装,提升了工作效率。
作为本发明的一种改进,所述的喇叭辐射层,反射层,传输层,微带馈电层采用正多边形设计。采用这种设计以后,正多边形设计可以相互之间组合成为更大的多边形平板天线,不同的形状的天线刚性和传输性能也有所不同,针对不同的地区,可以进行不同的设计,以增加天线适应性。
作为本发明的一种改进,所述的喇叭辐射层采用正多边形喇叭辐射器,所述的正多边形喇叭辐射器与喇叭辐射层的形状一致。采用这种设计以后,喇叭辐射器形状与辐射层的形状一致,能够最大程度的提升喇叭的面积,最终提升天线的传输性能。
作为本发明的一种改进,所述的喇叭辐射器采用圆台型喇叭辐射器。采用这种设计以后,方便加工,在后期调试和时候更加的方便。
作为本发明的一种改进,本发明还可以配合一个固定带一同使用,固定带上根据单个阵列单元边距离设置对应的吸附式磁条,并且在末端具有搭扣。采用这种设计以后,在组装成为平板天线之后通过固定带进行固定,从而保证天线运行的稳定性,提升天线面的刚性。
该设备是一种可以通过阵列单元之间的连接,组合成为一个面积适当的平板天线,以适应不同地区,不同信号强度下的卫星通信要求,完成卫星通信。该平板天线阵列单元解决了目前平板天线对于不同地点,不同信号强度下的适应性问题,解决了目前高性能平板天线的面积过大,天线面不能拆装,便携性不高的问题。具有非常高的实用性。
附图说明
图1是本发明的结构示意图,
图2是本发明的喇叭辐射层示意图,
图3是本发明的微带馈电层示意图,
图4是本发明的传输层示意图,
图5是本发明的反射层示意图,
图6是本发明的爆炸图,
图7是本发明的组合成为平板天线的图,
附图标记列表:1—喇叭辐射层,2—微带馈电层,3—传输层,4—微带馈电层,5—反射层。
具体实施方式
下面结合附图和具体实施方式,进一步阐明本发明。
实施例1:
结合附图可见,一种单腔平板天线阵列单元,其主要包括:喇叭辐射层1,微带馈电层2、4,传输层3和反射层5,其特征在于:组合顺序依次为喇叭辐射层1,微带馈电层2,传输层3,微带馈电层4,反射层5,所述的微带馈电层为两个,微带馈电层分为接收微带馈电层和发射微带馈电层,所述的喇叭辐射层1和反射层5上设置有连接装置,传输层3上设置有信号传输接口和电流传输接口。喇叭辐射层1能够有效的对信号进行放大,微带馈电层2、4分别在传输层3的两侧,分别为接收微带馈电层和发射微带馈电层,接收和发射在不同的馈电层,更加有利调节天线辐射性和电压驻波比,通过该平板天线阵列单元之间的相互连接,组合成为一个面积适当的平板天线,以适应不同地区,不同信号强度下的卫星通信要求,完成卫星通信。
实施例2:
作为本发明的一种改进,所述的连接装置为吸附式磁条,且同侧的喇叭辐射层1和反射层5的吸附式磁条的磁性不相同。采用这种设计以后,采用吸附式磁条,可以更加方便的对平板天线阵列单元进行组装,加快组装速度,提高工作效率,喇叭辐射层1和反射层5在同侧磁条的磁性不相同,是为了防止安装过程中出现组装前后反装的情况,大大降低了组装过程中出错的概率,并且提升了组装的速度。其余结构特点和优点与实施例1完全相同。
实施例3:
作为本发明的一种改进,所述的吸附式磁条与喇叭辐射层1和反射层5接触的地方设置有防磁干扰垫片。采用这种设计以后,可以防止磁条的对于信号的干扰,能够更加保证信号的稳定性,并且提升性能。其余结构和优点和实施例1完全相同。
实施例4:
作为本发明的一种改进,所述的微带馈电层2、4采用的是一分二等异相功分器。采用这种设计以后,可以实现了宽频阻抗匹配。其余结构和优点和实施例1完全相同。
实施例5:
作为本发明的一种改进,所述的接收微带馈电层和发射微带馈电层采用功分器相互垂直的方式进行安装。采用这种设计以后,优化了天线内部结构,防止信号出现干涉,保证天 线性能。其余结构和优点和实施例1完全相同。
实施例6:
作为本发明的一种改进,所述的传输层3上设置的电流传输接口和信号传输接口为弹性金属触点结构。采用这种设计以后,采用弹性金属触点结构,能够保证信号,电流正常传输,三接口分开,可以保证功能相对独立,互不影响,保证卫星信号传输的稳定性,还能够实现信号的上传和下载同时进行,并且配合双微带馈电层,实现收发同步,弹性的金属触点,能够保证在接触过程中不会影响天线面整体的刚性。其余结构和优点和实施例1完全相同。
实施例7:
作为本发明的一种改进,所述的喇叭辐射层1的连接装置,反射层5的连接装置,传输层3的信号传输接口和电流传输接口为多个,优选为四个,分别设置在喇叭辐射层1,反射层5,传输层3的四周。采用这种设计以后,在安装时候不需要特别进行方向确认,能够最快速的进行组装,提升了工作效率。其余结构和优点和实施例1完全相同。
实施例8:
作为本发明的一种改进,所述的喇叭辐射层1,反射层5,传输层3,微带馈电层2、4采用正多边形设计。采用这种设计以后,正多边形设计可以相互之间组合成为更大的多边形平板天线,不同的形状的天线刚性和传输性能也有所不同,针对不同的地区,可以进行不同的设计,以增加天线适应性。其余结构和优点和实施例1完全相同。
实施例9:
作为本发明的一种改进,所述的喇叭辐射层1采用正多边形喇叭辐射器,所述的正多边形喇叭辐射器与喇叭辐射层1的形状一致。采用这种设计以后,喇叭辐射器形状与辐射层1的形状一致,能够最大程度的提升喇叭的面积,最终提升天线的传输性能。其余结构和优点和实施例1完全相同。
实施例10:
作为本发明的一种改进,所述的喇叭辐射器采用圆台型喇叭辐射器。采用这种设计以后,方便加工,在后期调试和时候更加的方便。其余结构和优点和实施例1完全相同。
实施例11:
作为本发明的一种改进,本发明还可以配合一个固定带一同使用,固定带上根据单个阵列单元边距离设置对应的吸附式磁条,并且在末端具有搭扣。采用这种设计以后,在组装成为平板天线之后通过固定带进行固定,从而保证天线运行的稳定性,提升天线面的刚性。其余结构和优点和实施例1完全相同。
本发明还可以将实施例2、3、4、5、6、7、8、9、10所述的技术特征至少一个与实施例1组合成新的实施方式。
本发明方案所公开的技术手段不仅限于上述技术手段所公开的技术手段,还包括由以上技术特征任意组合所组成的技术方案。

Claims (10)

  1. 一种单腔平板天线阵列单元,其主要包括:喇叭辐射层(1),微带馈电层(2、4),传输层(3)和反射层(5),其特征在于:组合顺序依次为喇叭辐射层(1),微带馈电层(2),传输层(3),微带馈电层(4),反射层(5),所述的微带馈电层为两个,微带馈电层分为接收微带馈电层和发射微带馈电层,所述的喇叭辐射层(1)和反射层(5)上设置有连接装置,传输层(3)上设置有信号传输接口和电流传输接口。
  2. 根据权利要求1所述的一种单腔平板天线阵列单元,其特征在于:所述的连接装置为吸附式磁条,且同侧的喇叭辐射层(1)和反射层(5)的吸附式磁条的磁性不相同。
  3. 根据权利要求2所述的一种单腔平板天线阵列单元,其特征在于:所述的吸附式磁条与喇叭辐射层(1)和反射层(5)接触的地方设置有防磁干扰垫片。
  4. 根据权利要求1所述的一种单腔平板天线阵列单元,其特征在于:所述的微带馈电层(2、4)采用的是一分二等异相功分器。
  5. 根据权利要求4所述的一种单腔平板天线阵列单元,其特征在于:所述的接收微带馈电层和发射微带馈电层采用功分器相互垂直的方式进行安装。
  6. 根据权利要求1所述的一种单腔平板天线阵列单元,其特征在于:所述的传输层(3)上设置的电流传输接口和信号传输接口为弹性金属触点结构。
  7. 根据权利要求1所述的一种单腔平板天线阵列单元,其特征在于:所述的喇叭辐射层(1)的连接装置,反射层(5)的连接装置,传输层(3)的信号传输接口和电流传输接口为多个,优选为四个,分别设置在喇叭辐射层(1),反射层(5),传输层(3)的四周。
  8. 根据权利要求1所述的一种单腔平板天线阵列单元,其特征在于:所述的喇叭辐射层(1),反射层(5),传输层(3),微带馈电层(2、4)采用正多边形设计。
  9. 根据权利要求8所述的一种单腔平板天线阵列单元,其特征在于:所述的喇叭辐射层(1)采用正多边形喇叭辐射器,所述的正多边形喇叭辐射器与喇叭辐射层(1)的形状一致。
  10. 根据权利要求1所述的一种单腔平板天线阵列单元,其特征在于:所述的喇叭辐射器采用圆台型喇叭辐射器。
PCT/CN2016/093175 2015-09-25 2016-08-04 一种单腔平板天线阵列单元 WO2017050023A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510618952.4 2015-09-25
CN201510618952.4A CN105161838A (zh) 2015-09-25 2015-09-25 一种单腔平板天线阵列单元

Publications (1)

Publication Number Publication Date
WO2017050023A1 true WO2017050023A1 (zh) 2017-03-30

Family

ID=54802640

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/093175 WO2017050023A1 (zh) 2015-09-25 2016-08-04 一种单腔平板天线阵列单元

Country Status (2)

Country Link
CN (1) CN105161838A (zh)
WO (1) WO2017050023A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105161838A (zh) * 2015-09-25 2015-12-16 南京中网卫星通信股份有限公司 一种单腔平板天线阵列单元

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1885616A (zh) * 2005-06-23 2006-12-27 北京海域天华通讯设备有限公司 高增益波导喇叭阵列平板天线
CN101752666A (zh) * 2010-02-23 2010-06-23 厦门大学 用于ku波段的康托尔分形微带阵列天线
US20120287019A1 (en) * 2010-01-27 2012-11-15 Murata Manufacturing Co., Ltd. Wideband antenna
CN203577330U (zh) * 2013-12-04 2014-05-07 魏正鹏 一种改进的多面接触电子积木
CN104201479A (zh) * 2014-08-29 2014-12-10 南京中网卫星通信股份有限公司 一种Ku波段低剖面平板天线
CN105161838A (zh) * 2015-09-25 2015-12-16 南京中网卫星通信股份有限公司 一种单腔平板天线阵列单元
CN205050988U (zh) * 2015-09-25 2016-02-24 南京中网卫星通信股份有限公司 一种单腔平板天线阵列单元

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1885616A (zh) * 2005-06-23 2006-12-27 北京海域天华通讯设备有限公司 高增益波导喇叭阵列平板天线
US20120287019A1 (en) * 2010-01-27 2012-11-15 Murata Manufacturing Co., Ltd. Wideband antenna
CN101752666A (zh) * 2010-02-23 2010-06-23 厦门大学 用于ku波段的康托尔分形微带阵列天线
CN203577330U (zh) * 2013-12-04 2014-05-07 魏正鹏 一种改进的多面接触电子积木
CN104201479A (zh) * 2014-08-29 2014-12-10 南京中网卫星通信股份有限公司 一种Ku波段低剖面平板天线
CN105161838A (zh) * 2015-09-25 2015-12-16 南京中网卫星通信股份有限公司 一种单腔平板天线阵列单元
CN205050988U (zh) * 2015-09-25 2016-02-24 南京中网卫星通信股份有限公司 一种单腔平板天线阵列单元

Also Published As

Publication number Publication date
CN105161838A (zh) 2015-12-16

Similar Documents

Publication Publication Date Title
US10027015B2 (en) Antenna device
US10511088B2 (en) Antenna system
TWI634700B (zh) 通訊裝置
CN105958201A (zh) 一种金属框手机天线
US20150200457A1 (en) Antenna
CN101388494B (zh) 多天线整合模组
US10468775B2 (en) Antenna assembly, wireless communications electronic device and remote control having the same
WO2016138763A1 (zh) 双极化天线
US11095044B2 (en) Combined omnidirectional and directional antennas
CN101246988A (zh) 一种超宽频短路偶极天线
CN109616768A (zh) 一种手机天线结构
KR20010020244A (ko) 다중 주파수 안테나용 커플러
US20120162035A1 (en) All-in-one multi-band antenna for wireless communication system
WO2017050023A1 (zh) 一种单腔平板天线阵列单元
CN102683829B (zh) 移动通信装置及其天线结构
CN102931476B (zh) 双频圆极化天线
CN205050988U (zh) 一种单腔平板天线阵列单元
TW202131550A (zh) 天線裝置
CN108183314B (zh) 一种新型宽带双模圆极化微带天线、车载天线、卫星
KR100663914B1 (ko) 무급전 커플링 다중대역 안테나
CN219759960U (zh) 一种共地耦合wifi天线结构及移动设备
CN221057665U (zh) 移动通信天线和移动通信系统
KR20110109495A (ko) 이중대역 패치 안테나
KR102666553B1 (ko) 고이득 ka 밴드용 이중 오프셋 리플렉트어레이 안테나
CN210692768U (zh) 基站天线和多频带基站天线

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16847905

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16847905

Country of ref document: EP

Kind code of ref document: A1