WO2017049888A1 - 半透半反显示面板和半透半反显示装置 - Google Patents

半透半反显示面板和半透半反显示装置 Download PDF

Info

Publication number
WO2017049888A1
WO2017049888A1 PCT/CN2016/077224 CN2016077224W WO2017049888A1 WO 2017049888 A1 WO2017049888 A1 WO 2017049888A1 CN 2016077224 W CN2016077224 W CN 2016077224W WO 2017049888 A1 WO2017049888 A1 WO 2017049888A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
display panel
transflective display
reflective
electrode
Prior art date
Application number
PCT/CN2016/077224
Other languages
English (en)
French (fr)
Inventor
李颖祎
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/507,531 priority Critical patent/US10451931B2/en
Publication of WO2017049888A1 publication Critical patent/WO2017049888A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133553Reflecting elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134363Electrodes characterised by their geometrical arrangement for applying an electric field parallel to the substrate, i.e. in-plane switching [IPS]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133553Reflecting elements
    • G02F1/133555Transflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/13439Electrodes characterised by their electrical, optical, physical properties; materials therefor; method of making
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133342Constructional arrangements; Manufacturing methods for double-sided displays
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133531Polarisers characterised by the arrangement of polariser or analyser axes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13356Structural association of cells with optical devices, e.g. polarisers or reflectors characterised by the placement of the optical elements
    • G02F1/133565Structural association of cells with optical devices, e.g. polarisers or reflectors characterised by the placement of the optical elements inside the LC elements, i.e. between the cell substrates
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133618Illuminating devices for ambient light
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133638Waveplates, i.e. plates with a retardation value of lambda/n
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134372Electrodes characterised by their geometrical arrangement for fringe field switching [FFS] where the common electrode is not patterned
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/13793Blue phases
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
    • G02F2201/121Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode common or background
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
    • G02F2201/123Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode pixel
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2413/00Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates
    • G02F2413/02Number of plates being 2
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2413/00Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates
    • G02F2413/05Single plate on one side of the LC cell
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2413/00Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates
    • G02F2413/08Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates with a particular optical axis orientation

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a transflective display panel and a transflective display device.
  • the liquid crystal display device includes an array substrate and a color filter substrate disposed opposite to each other, and a liquid crystal is disposed between the array substrate and the color filter substrate.
  • the liquid crystal display device Since the liquid crystal itself does not emit light, the liquid crystal display device also needs a light source to display an image. According to different types of light sources, the liquid crystal display device can be classified into a transmissive liquid crystal display device, a reflective liquid crystal display device, and a transflective liquid crystal display device. .
  • the transflective liquid crystal device has the advantages of both a transmissive liquid crystal display device and a reflective liquid crystal display device.
  • the structure and manufacturing process of the transflective liquid crystal device in the prior art are complicated.
  • the invention provides a transflective display panel and a transflective display device for reducing the complexity of the structure and the manufacturing process.
  • a transflective display panel comprising a first substrate and a second substrate disposed opposite to each other and a blue phase liquid crystal disposed between the first substrate and the second substrate.
  • the first substrate includes a first substrate and a pixel electrode and a common electrode disposed on a side of the first substrate facing the second substrate.
  • the pixel electrode serves as a reflective electrode or both the pixel electrode and the common electrode function as a reflective electrode.
  • the second substrate includes a second substrate.
  • a first quarter wave plate and a first polarizing plate may be sequentially disposed on a side of the first base substrate facing away from the second substrate, and the A second quarter-wave plate and a second polarizing plate may be sequentially disposed on a side of the second base substrate facing away from the first substrate.
  • the optical axis direction of the first quarter wave plate and the optical axis direction of the second quarter wave plate may be perpendicular to each other.
  • the transmission axis direction of the first polarizing plate and the transmission axis direction of the second polarizing plate may be the same.
  • an angle between an optical axis direction of the first quarter wave plate and a transmission axis direction of the first polarizing plate may be 45 degrees.
  • an angle between an optical axis direction of the second quarter wave plate and a transmission axis direction of the second polarizing plate may be 45 degrees.
  • the pixel electrode and the common electrode each function as a reflective electrode, and the pixel electrode and the common electrode are on a first surface of the first substrate facing the second substrate Alternately set on the side.
  • the pixel electrode functions as a reflective electrode
  • the first substrate may further include an insulating layer disposed between the first base substrate and the insulating layer, and The insulating layer is disposed between the common electrode and the pixel electrode.
  • a convex structure may be disposed on a side of the reflective electrode facing away from the blue phase liquid crystal.
  • a transverse electric field intensity of a reflective region of the transflective display panel in which the reflective electrode is formed may be smaller than a transmissive region of the transflective display panel in which the reflective electrode is not formed. Transverse electric field strength.
  • a transflective display device comprising a transflective display panel according to the present invention and on a side of the first substrate facing away from the second substrate Backlight module.
  • the transflective display panel and the transflective display device provided by the present invention, it is not necessary to provide an alignment film, thereby reducing the complexity of the structure and the manufacturing process.
  • FIG. 1 is a schematic structural view of a transflective display panel according to an embodiment of the invention.
  • FIG. 2 is a schematic diagram of a sub-pixel of FIG. 1;
  • FIG. 3 is a schematic view showing a transmission mode of the transflective display panel of FIG. 1;
  • FIG. 4 is a schematic view showing a reflection mode of the transflective display panel of FIG. 1;
  • FIG. 5 is a schematic view showing electric field strength of the transflective display panel of FIG. 1;
  • FIG. 6 is a schematic diagram of light changes in a transmission region when the transflective display panel of FIG. 1 is displayed in a black state;
  • FIG. 7 is a schematic diagram of light changes in a reflective region when the transflective display panel of FIG. 1 is displayed in a black state;
  • FIG. 8 is a schematic structural diagram of a transflective display panel according to another embodiment of the present invention.
  • FIG. 9 is a schematic view showing a transmission mode of the transflective display panel of FIG. 8;
  • Figure 10 is a schematic view showing a reflection mode of the transflective display panel of Figure 8.
  • FIG. 11 is a schematic view showing electric field strength of the transflective display panel of FIG. 8.
  • FIG. 1 is a schematic structural view of a transflective display panel according to an embodiment of the invention.
  • the transflective display panel can be divided into a reflective region in which a reflective electrode is formed and a transmissive region in which a reflective electrode is not formed.
  • the transflective display panel may include a first substrate 11 and a second substrate 12 disposed opposite to each other and a blue phase liquid crystal 13 disposed between the first substrate 11 and the second substrate 12.
  • the first substrate 11 may include a first base substrate 111 and a pixel electrode 112 and a common electrode 113 disposed on the first base substrate 111.
  • the pixel electrode 112 and the common electrode 113 are disposed on a side of the first base substrate 111 facing the second substrate 12.
  • the second substrate 12 may include a second base substrate 121. According to the present embodiment, both the pixel electrode 112 and the common electrode 113 can function as reflective electrodes.
  • the blue phase liquid crystal 13 has an isotropic advantage in macroscopicity without a driving voltage, and the blue phase liquid crystal 13 also has an advantage of fast response.
  • the reflective electrode may be made of an opaque metal.
  • the reflective electrode can be made of a highly reflective opaque metal.
  • the first substrate 11 may be an array substrate
  • the second substrate 12 may be a color film substrate.
  • 2 is a schematic diagram of a sub-pixel of FIG. 1.
  • each of the pixels may include alternately disposed transmission sub-pixels (for example, sub-pixels shown as R, G, and B) and reflective sub-pixels ( For example, it is shown as a sub-pixel formed with a reflective electrode).
  • the region where the reflective electrode is formed is a reflection region of the transflective display panel, and the region where the reflective electrode is not formed is a transmissive region of the transflective display panel.
  • the transmission sub-pixel may include a red sub-pixel R, a green sub-pixel G, or a blue sub-pixel B.
  • each of the pixels includes a red sub-pixel R, a reflective sub-pixel, a green sub-pixel G, a reflective sub-pixel, a blue sub-pixel B, and a reflective sub-pixel which are sequentially arranged in the lateral direction.
  • the transmission sub-pixels of the respective colors can be formed by providing color resists (not shown) on the second base substrate 121. It should be appreciated that various changes can be made to the color of each of the transmissive sub-pixels and the arrangement of the transmissive sub-pixels and the reflective sub-pixels, which is not limited in this application.
  • the transflective display panel according to an embodiment of the present invention may be provided with a transmissive mode and a reflective mode.
  • 3 is a schematic view showing a transmission mode of the transflective display panel of FIG. 1
  • FIG. 4 is a schematic view showing a reflection mode of the transflective display panel of FIG. 1.
  • the backlight emitted by the backlight module 14 can pass through the transmissive area, thereby realizing color display.
  • the backlight emitted by the backlight module 14 does not pass through the reflective region where the reflective electrode is formed, but is reflected back to the backlight module 14.
  • the reflective electrode may include the pixel electrode 112 and the common electrode 113.
  • the backlight module 14 in the reflective mode, the backlight module 14 is turned off, and the light that is irradiated at this time comes from external ambient light. Ambient light is reflected on the reflective electrode of the reflective area and reflected. In the reflective mode, the backlight module 14 may not be turned on, but the display function of the display panel is realized by ambient light illumination, thereby achieving the purpose of saving power.
  • the transflective display panel according to an embodiment of the present invention can adopt a reflective mode in a brighter environment, in a darker ring Transmission mode is adopted in the environment.
  • the pixel electrode 112 and the common electrode 113 are alternately disposed on the first base substrate 111.
  • the transflective display panel according to the embodiment is an In Plane Switching (IPS) type display panel.
  • IPS In Plane Switching
  • the pixel electrode 112 and the common electrode 113 are both located above the first base substrate 11, and the pixel electrode 112 and the common electrode 113 are disposed in the same layer.
  • FIG. 5 is a schematic view showing electric field strength of the transflective display panel of FIG. 1.
  • the electric field intensity between the adjacent pixel electrode 112 and the common electrode 113 is higher, and the electric field intensity above the pixel electrode 112 and the electric field intensity above the common electrode 113 are weak. . Therefore, the electric field intensity of the reflection region is smaller than the electric field strength of the transmission region. Since the electric field intensity of the reflective region is smaller than the electric field strength of the transmissive region, the transverse electric field strength of the reflective region is less than the transverse electric field strength of the transmissive region.
  • the optical path difference between the reflective region and the transmissive region can be controlled by controlling the transverse electric field strength of the reflective region and the transverse electric field strength of the transmissive region, thereby making the optical path difference between the reflective region and the transmissive region uniform.
  • the optical path difference between the reflective region and the transmissive region can be achieved by making the transverse electric field intensity of the reflective region smaller than the transverse electric field strength of the transmissive region, thereby eliminating the need to consider the box thickness problem of the transflective display panel and reducing The complexity of the manufacturing process.
  • a convex structure (not shown) may be disposed under the reflective electrode to achieve the purpose of enhancing the lateral electric field.
  • “Bottom” herein refers to the side of the reflective electrode facing away from the blue phase liquid crystal.
  • a convex structure may be disposed under the pixel electrode 112 and the common electrode 113 to enhance the lateral electric field.
  • the first quarter-wave plate 115 and the first polarizing plate 114 may be sequentially disposed on the first base substrate 111.
  • the first quarter wave plate 115 and the first polarizing plate 114 may be disposed on a side of the first base substrate 111 facing away from the second substrate 12.
  • the second quarter wave plate 123 and the second polarizing plate 122 may be sequentially disposed on the second base substrate 121.
  • the second quarter wave plate 123 and the second polarizing plate 122 are It is disposed on a side of the second base substrate 12 facing away from the first substrate 11.
  • the optical axis directions of the first quarter wave plate 115 and the second quarter wave plate 123 may be perpendicular to each other, the transmission axis direction of the first polarizing plate 114 and the second polarizing plate 122.
  • the transmission axis direction may be the same, and the angle between the optical axis direction of the first quarter wave plate 115 and the transmission axis direction of the first polarizing plate 114 may be 45 degrees, and the second quarter wave plate 123
  • the angle between the optical axis direction and the transmission axis direction of the second polarizing plate 122 may be 45 degrees.
  • the direction of the transmission axis of the first polarizing plate 114 may be 45 degrees with respect to the direction of the transverse electric field of the transflective display panel, and the optical axis direction of the first quarter wave plate 115 is 0 degrees, and the second The optical axis direction of the quarter-wave plate 123 is 90 degrees, and the transmission axis direction of the second polarizing plate 122 is 45 degrees.
  • FIG. 6 is a schematic diagram of light changes in a transmission region when the transflective display panel of FIG. 1 is displayed in a black state
  • FIG. 7 is a schematic diagram of light changes in a reflection region when the transflective display panel of FIG. 1 is displayed in a black state.
  • the backlight in the transmissive region, the backlight becomes first linearly polarized light after passing through the first polarizing plate 114, and the polarization direction of the first linearly polarized light coincides with the transmission axis direction of the first polarizing plate 114.
  • the first linearly polarized light passes through the first quarter wave plate 115 and becomes circularly polarized light. Since the blue phase liquid crystal 13 is macroscopically isotropic without voltage driving, the circularly polarized light does not change the original polarization characteristic after passing through the blue phase liquid crystal 13, and is still circularly polarized light.
  • the circularly polarized light passes through the second quarter wave plate 123 and becomes the second linearly polarized light.
  • the polarization direction of the second linearly polarized light is perpendicular to the transmission axis direction of the second polarizing plate 122, so the second linearly polarized light cannot be penetrated.
  • the second polarizing plate 122 is not emitted from the transflective display panel, thereby realizing black state display under voltageless driving.
  • the ambient light passes through the second polarizing plate 122 to become a third linearly polarized light, and the polarization direction of the third linearly polarized light coincides with the transmission axis direction of the second polarizing plate 122.
  • the third linearly polarized light passes through the second quarter wave plate 123 and becomes circularly polarized light. Since the blue phase liquid crystal 13 is macroscopically isotropic without voltage driving, the circularly polarized light does not change the original polarization characteristic after passing through the blue phase liquid crystal 13, and is still circularly polarized light. The circularly polarized light is still circularly polarized after being reflected by the reflective electrode and passing through the blue phase liquid crystal 13 again.
  • the circularly polarized light becomes the first after passing through the second quarter wave plate 123
  • the linearly polarized light has a polarization direction perpendicular to the transmission axis direction of the second polarizing plate 122, so that the fourth linearly polarized light cannot pass through the second polarizing plate 122 and cannot be displayed from the transflective
  • the panel exits to achieve a black state display without voltage drive.
  • the transflective display panel according to the present embodiment does not need to be provided with an alignment film, thereby reducing the complexity of the structure and the manufacturing process.
  • the blue phase liquid crystal is used and the pixel electrode and the common electrode are both located on the side of the first substrate facing the second substrate, thereby improving the optical efficiency of the transflective display panel.
  • FIG. 8 is a schematic structural view of a transflective display panel according to another embodiment of the present invention
  • FIG. 9 is a schematic diagram of a transmissive mode of the transflective display panel of FIG. 8
  • FIG. 10 is a transflective display of FIG. Schematic diagram of the reflection mode of the panel
  • FIG. 11 is a schematic diagram of the electric field intensity of the transflective display panel of FIG.
  • the first substrate 11 may further include an insulating layer 116.
  • the common electrode 113 is disposed between the first base substrate 111 and the insulating layer 116, and the insulating layer 116 is disposed between the common electrode 113 and the pixel electrode 112.
  • the differences from the foregoing embodiments will be described in detail, and the description of the same portions will be omitted.
  • the backlight emitted by the backlight module 14 can pass through the transmissive area, thereby achieving color display.
  • the backlight emitted by the backlight module 14 does not pass through the reflective region where the reflective electrode is formed, but is reflected back to the backlight module 14.
  • the reflective electrode includes only the pixel electrode 112.
  • the backlight module 14 is turned off, and the light that is irradiated at this time comes from external ambient light. Ambient light is reflected on the reflective electrode of the reflective area and reflected.
  • the reflective electrode includes only the pixel electrode 112.
  • the pixel electrode 112 is disposed above the common electrode 113, and an insulating layer 116 is disposed between the pixel electrode 112 and the common electrode 113.
  • the transflective display panel according to the embodiment is an ADVANCED Super Dimension Switch (ADS) type display panel.
  • the electric field intensity between the pixel electrode 112 and the common electrode 113 is higher, and the electric field intensity above the pixel electrode 112 is weaker. Therefore, the electric field intensity of the reflective region is smaller than that of the transmissive region. Electric field strength. Due to the electric field in the reflection zone The intensity is less than the electric field strength of the transmissive region, so the transverse electric field strength of the reflective region is less than the transverse electric field strength of the transmissive region.
  • the optical path difference between the reflective region and the transmissive region can be achieved by making the transverse electric field intensity of the reflective region smaller than the transverse electric field strength of the transmissive region, thereby eliminating the need to consider the box thickness of the transflective display panel and reducing the thickness of the transflective display panel.
  • the complexity of the manufacturing process is the following:
  • a convex structure (not shown) may be provided on the side of the reflective electrode facing away from the blue phase liquid crystal, thereby achieving the purpose of enhancing the lateral electric field.
  • a convex structure may be provided on the side of the pixel electrode 112 facing away from the blue phase liquid crystal to enhance the lateral electric field.
  • the transflective display panel according to the embodiment of the invention may be applied to a transflective display device, the transflective display device further comprising a backlight module, the backlight module being located on a side of the first substrate facing away from the second substrate on.
  • the backlight module can adopt an LED light source.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Geometry (AREA)
  • Liquid Crystal (AREA)

Abstract

一种半透半反显示面板和半透半反显示装置。半透半反显示面板包括相对设置的第一基板(11)和第二基板(12)以及设置在第一基板(11)和第二基板(12)之间的蓝相液晶(13),第一基板(11)包括第一衬底基板(111)和设置在第一衬底基板(111)的面对第二基板(12)的一侧上的像素电极(112)和公共电极(113),像素电极(112)用作反射电极或者像素电极(112)和公共电极(113)均用作反射电极,第二基板(12)包括第二衬底基板(121)。

Description

半透半反显示面板和半透半反显示装置 技术领域
本发明涉及显示技术领域,特别涉及一种半透半反显示面板和半透半反显示装置。
背景技术
液晶显示装置(Liquid Crystal Display,简称:LCD)以其功耗小、显示效果好等优点而得到广泛的应用。液晶显示装置包括相对设置的阵列基板和彩膜基板,阵列基板和彩膜基板之间设置有液晶。
由于液晶本身不发光,因此液晶显示装置还需要光源以显示图像,根据采用光源类型的不同,液晶显示装置可分为透射式液晶显示装置、反射式液晶显示装置和半透半反式液晶显示装置。
半透半反式液晶装置兼具透射式液晶显示装置和反射式液晶显示装置的优点。但是,现有技术中半透半反式液晶装置的结构和制造工艺较为复杂。
发明内容
本发明提供一种半透半反显示面板和半透半反显示装置,用于降低结构和制造工艺的复杂度。
根据本发明的一个方面,提供一种半透半反显示面板,包括相对设置的第一基板和第二基板以及设置在所述第一基板和所述第二基板之间的蓝相液晶。所述第一基板包括第一衬底基板和设置在所述第一衬底基板的面对所述第二基板的一侧上的像素电极和公共电极。所述像素电极用作反射电极或者所述像素电极和所述公共电极均用作反射电极。所述第二基板包括第二衬底基板。
根据本发明的实施例,所述第一衬底基板的与所述第二基板相背离的一侧上可以按顺序地设置有第一四分之一波片和第一偏振片,并且所述第二衬底基板的与所述第一基板相背离的一侧上可以按顺序地设置有第二四分之一波片和第二偏振片。
根据本发明的实施例,所述第一四分之一波片的光轴方向和所述第二四分之一波片的光轴方向可以相互垂直。
根据本发明的实施例,所述第一偏振片的透过轴方向和所述第二偏振片的透过轴方向可以相同。
根据本发明的实施例,所述第一四分之一波片的光轴方向和所述第一偏振片的透过轴方向的夹角可以为45度。
根据本发明的实施例,所述第二四分之一波片的光轴方向和所述第二偏振片的透过轴方向的夹角可以为45度。
根据本发明的实施例,所述像素电极和所述公共电极均用作反射电极,并且所述像素电极和所述公共电极在所述第一衬底基板的面对所述第二基板的一侧上交替设置。
根据本发明的实施例,所述像素电极用作反射电极,并且所述第一基板还可以包括绝缘层,所述公共电极设置在所述第一衬底基板与所述绝缘层之间,并且所述绝缘层设置在所述公共电极与所述像素电极之间。
根据本发明的实施例,在所述反射电极的背离所述蓝相液晶的一侧上可以设置有凸起结构。
根据本发明的实施例,所述半透半反显示面板的形成有所述反射电极的反射区的横向电场强度可以小于所述半透半反显示面板的没有形成所述反射电极的透射区的横向电场强度。
根据本发明的另一个方面,提供一种半透半反显示装置,包括根据本发明的半透半反显示面板以及位于所述第一基板的与所述第二基板相背离的一侧上的背光模组。
根据本发明提供的半透半反显示面板和半透半反显示装置,无需设置配向膜,从而降低了结构和制造工艺的复杂度。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将结合附图对本发明的各实施例进行详细描述。应当认识到,下面的描述仅用于说明本发明的实施例,而非限制本发明的范围。对于本领域普通技术 人员来讲,在不脱离本发明的范围的情况下,可以对各实施例进行各种修改和改变。在所示的附图中:
图1为根据本发明实施例的半透半反显示面板的结构示意图;
图2为图1中子像素的示意图;
图3为图1中半透半反显示面板的透射模式的示意图;
图4为图1中半透半反显示面板的反射模式的示意图;
图5为图1中半透半反显示面板的电场强度的示意图;
图6为图1中半透半反显示面板进行黑态显示时透射区的光线变化示意图;
图7为图1中半透半反显示面板进行黑态显示时反射区的光线变化示意图;
图8为根据本发明另一实施例的半透半反显示面板的结构示意图;
图9为图8中半透半反显示面板的透射模式的示意图;
图10为图8中半透半反显示面板的反射模式的示意图;以及
图11为图8中半透半反显示面板的电场强度的示意图。
具体实施方式
为使本领域的技术人员更好地理解本发明的技术方案,下面结合附图对本发明提供的半透半反显示面板和半透半反显示装置进行详细描述。
图1为根据本发明实施例的半透半反显示面板的结构示意图。
如图1所示,半透半反显示面板可以划分为形成有反射电极的反射区和没有形成反射电极的透射区。半透半反显示面板可以包括相对设置的第一基板11和第二基板12以及设置在第一基板11和第二基板12之间的蓝相液晶13。第一基板11可以包括第一衬底基板111和设置在第一衬底基板111上的像素电极112和公共电极113。像素电极112和公共电极113设置在第一衬底基板111面对第二基板12的一侧上。第二基板12可以包括第二衬底基板121。根据本实施例,像素电极112和公共电极113可以都用作反射电极。
蓝相液晶13在没有驱动电压的情况下宏观上具有各向同性的优点,并且蓝相液晶13还具有快速响应的优点。
根据本发明的实施例,反射电极可采用不透明金属制成。例如,反射电极可采用高反射率的不透明金属制成。
根据本发明的实施例,第一基板11可以为阵列基板,第二基板12可以为彩膜基板。图2为图1中子像素的示意图。
如图2所示,在半透半反显示面板上形成多个像素,每个像素可以包括交替设置的透射子像素(例如,示出为R、G和B的子像素)和反射子像素(例如,示出为形成有反射电极的子像素)。形成有反射电极的区域为半透半反显示面板的反射区,没有形成反射电极的区域为半透半反显示面板的透射区。透射子像素可以包括红色子像素R、绿色子像素G或者蓝色子像素B。
在图2所示的示例中,每个像素包括依次横向排列的红色子像素R、反射子像素、绿色子像素G、反射子像素、蓝色子像素B、反射子像素。可通过在第二衬底基板121上设置色阻(图中未示出)来形成相应颜色的透射子像素。应当认识到,可以对各个透射子像素的颜色以及透射子像素与反射子像素的排列方式进行各种改变,本申请不对此进行限定。
根据本发明的实施例的半透半反显示面板可以具备透射模式和反射模式。图3为图1中半透半反显示面板的透射模式的示意图,图4为图1中半透半反显示面板的反射模式的示意图。
如图3所示,在透射模式下,背光模组14发出的背光能够透过透射区,从而实现彩色显示。背光模组14发出的背光到达形成有反射电极的反射区后不能透过,而是被反射回背光模组14。在本实施例中,反射电极可以包括像素电极112和公共电极113。
如图4所示,在反射模式下,背光模组14关闭,此时照射的光线来自于外部的环境光。环境光照射到反射区的反射电极上而被反射。在反射模式下,可不开启背光模组14,而是采用环境光照明实现显示面板的显示功能,从而达到节约电能的目的。根据本发明的实施例的半透半反显示面板可以在较亮环境中采用反射模式,在较暗环 境中采用透射模式。
在本实施例中,像素电极112和公共电极113交替设置在第一衬底基板111上。根据本实施例的半透半反显示面板为平面转换(In Plane Switching,简称:IPS)型显示面板。此时,像素电极112和公共电极113均位于第一衬底基板11之上,并且像素电极112和公共电极113设置在同一层。
图5为图1中半透半反显示面板的电场强度的示意图。
参见图1和图5,对于IPS型显示面板,相邻的像素电极112和公共电极113之间的电场强度较高,而像素电极112上方的电场强度和公共电极113上方的电场强度均较弱。因此,反射区的电场强度小于透射区的电场强度。由于反射区的电场强度小于透射区的电场强度,因此反射区的横向电场强度小于透射区的横向电场强度。背光通过透射区时经过蓝相液晶一次,环境光照射到反射区并被反射时经过蓝相液晶两次。对于半透半反显示面板而言,通常要求在反射区和透射区的光程差一致。因此,可通过控制反射区的横向电场强度和透射区的横向电场强度来控制反射区和透射区的光程差,从而使得在反射区和透射区的光程差一致。具体地,可通过使反射区的横向电场强度小于透射区的横向电场强度来实现在反射区和透射区的光程差一致的目的,从而无需考虑半透半反显示面板的盒厚问题,降低了制造工艺的复杂度。
根据本发明的实施例,可以在反射电极下方设置凸起结构(未在图中示出),从而达到增强横向电场的目的。这里的“下方”指的是反射电极背离蓝相液晶的一侧。在本实施例中,由于像素电极112和公共电极113都用作反射电极,因此可以在像素电极112和公共电极113下方设置凸起结构,以增强横向电场。
在图1所示的实施例中,可以在第一衬底基板111上按顺序地设置第一四分之一波片115和第一偏振片114。第一四分之一波片115和第一偏振片114可以设置在第一衬底基板111背离第二基板12的一侧上。可以在第二衬底基板121上按顺序地设置第二四分之一波片123和第二偏振片122。第二四分之一波片123和第二偏振片122可 以设置在第二衬底基板12背离第一基板11的一侧上。
根据本发明的实施例,第一四分之一波片115和第二四分之一波片123的光轴方向可以相互垂直,第一偏振片114的透过轴方向和第二偏振片122的透过轴方向可以相同,第一四分之一波片115的光轴方向和第一偏振片114的透过轴方向的夹角可以为45度,第二四分之一波片123的光轴方向和第二偏振片122的透过轴方向的夹角可以为45度。例如,相对于半透半反显示面板的横向电场的方向,第一偏振片114的透过轴方向可以为45度,第一四分之一波片115的光轴方向为0度,第二四分之一波片123的光轴方向为90度,第二偏振片122的透过轴方向为45度。
下面以半透半反显示面板进行黑态显示的光线变化过程为例,对半透半反显示面板的工作原理进行描述。图6为图1中半透半反显示面板进行黑态显示时透射区的光线变化示意图,图7为图1中半透半反显示面板进行黑态显示时反射区的光线变化示意图。
参见图1和图6,在透射区,背光经过第一偏振片114之后变成第一线偏振光,该第一线偏振光的偏振方向和第一偏振片114的透过轴方向一致。第一线偏振光经过第一四分之一波片115之后变成圆偏振光。由于蓝相液晶13在没有电压驱动的情况下宏观上各向同性,因此圆偏振光经过蓝相液晶13之后不会改变原有的偏振特性,仍然为圆偏振光。圆偏振光经过第二四分之一波片123之后变成第二线偏振光,该第二线偏振光的偏振方向和第二偏振片122的透过轴方向垂直,因此该第二线偏振光不能透过第二偏振片122而无法从半透半反显示面板出射,从而实现在无电压驱动下的黑态显示。
参见图1和图7,在反射区,环境光经过第二偏振片122之后变成第三线偏振光,该第三线偏振光的偏振方向和第二偏振片122的透过轴方向一致。第三线偏振光经过第二四分之一波片123之后变成圆偏振光。由于蓝相液晶13在没有电压驱动的情况下宏观上各向同性,因此圆偏振光经过蓝相液晶13之后不会改变原有的偏振特性,仍然为圆偏振光。圆偏振光经过反射电极的反射并再次经过蓝相液晶13后仍然为圆偏振光。圆偏振光经过第二四分之一波片123之后变成第 四线偏振光,该第四线偏振光的偏振方向和第二偏振片122的透过轴方向垂直,因此该第四线偏振光不能透过第二偏振片122而无法从半透半反显示面板出射,从而实现在无电压驱动下的黑态显示。
根据本实施例的半透半反显示面板无需设置配向膜,从而降低了结构和制造工艺的复杂度。本实施例中,采用蓝相液晶并且像素电极和公共电极均位于第一衬底基板面对第二基板的一侧,从而提高了半透半反显示面板的光学效率。
图8为根据本发明另一实施例的半透半反显示面板的结构示意图,图9为图8中半透半反显示面板的透射模式的示意图,图10为图8中半透半反显示面板的反射模式的示意图,图11为图8中半透半反显示面板的电场强度的示意图。
如图8所示,与前述参照图1至图7描述的实施例的不同之处在于,在本实施例中,第一基板11还可以包括绝缘层116。公共电极113设置在第一衬底基板111与绝缘层116之间,绝缘层116设置在公共电极113与像素电极112之间。下面,针对与前述实施例的差别进行详细描述,而省略了相同部分的描述。
如图9所示,在透射模式下,背光模组14发出的背光能够透过透射区,从而实现彩色显示。背光模组14发出的背光到达形成有反射电极的反射区后不能透过,而是被反射回背光模组14。在本实施例中,反射电极仅包括像素电极112。
如图10所示,在反射模式下,背光模组14关闭,此时照射的光线来自于外部的环境光。环境光照射到反射区的反射电极上而被反射。反射电极仅包括像素电极112。
在本实施例中,像素电极112设置在公共电极113上方,并且在像素电极112与公共电极113之间设置有绝缘层116。根据本实施例的半透半反显示面板为高级超维场转换(ADvanced Super Dimension Switch,简称:ADS)型显示面板。
参见图8和图11,对于ADS型显示面板,像素电极112和公共电极113之间的电场强度较高,而像素电极112上方的电场强度较弱,因此,反射区的电场强度小于透射区的电场强度。由于反射区的电场 强度小于透射区的电场强度,因此反射区的横向电场强度小于透射区的横向电场强度。因此,可通过使反射区的横向电场强度小于透射区的横向电场强度来实现在反射区和透射区的光程差一致的目的,从而无需考虑半透半反显示面板的盒厚问题,降低了制造工艺的复杂度。
类似于前述实施例,可以在反射电极背离蓝相液晶的一侧上设置凸起结构(未在图中示出),从而达到增强横向电场的目的。在本实施例中,由于仅像素电极112用作反射电极,因此可以在像素电极112背离蓝相液晶的一侧上设置凸起结构,以增强横向电场。
根据本发明的实施例的半透半反显示面板可以应用于半透半反显示装置,该半透半反显示装置还包括背光模组,背光模组位于第一基板背离第二基板的一侧上。背光模组可采用LED光源。
可以理解的是,以上实施方式仅仅是为了说明本发明的原理而采用的示例性实施方式,然而本发明并不局限于此。对于本领域内的普通技术人员而言,在不脱离本发明的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本发明的保护范围。

Claims (11)

  1. 一种半透半反显示面板,包括相对设置的第一基板和第二基板以及设置在所述第一基板和所述第二基板之间的蓝相液晶,
    其中,所述第一基板包括第一衬底基板和设置在所述第一衬底基板的面对所述第二基板的一侧上的像素电极和公共电极,所述像素电极用作反射电极或者所述像素电极和所述公共电极均用作反射电极,并且
    所述第二基板包括第二衬底基板。
  2. 根据权利要求1所述的半透半反显示面板,其中,所述第一衬底基板的与所述第二基板相背离的一侧上按顺序地设置有第一四分之一波片和第一偏振片,并且
    所述第二衬底基板的与所述第一基板相背离的一侧上按顺序地设置有第二四分之一波片和第二偏振片。
  3. 根据权利要求2所述的半透半反显示面板,其中,所述第一四分之一波片的光轴方向和所述第二四分之一波片的光轴方向相互垂直。
  4. 根据权利要求2所述的半透半反显示面板,其中,所述第一偏振片的透过轴方向和所述第二偏振片的透过轴方向相同。
  5. 根据权利要求2所述的半透半反显示面板,其中,所述第一四分之一波片的光轴方向和所述第一偏振片的透过轴方向的夹角为45度。
  6. 根据权利要求2所述的半透半反显示面板,其中,所述第二四分之一波片的光轴方向和所述第二偏振片的透过轴方向的夹角为45度。
  7. 根据权利要求1所述的半透半反显示面板,其中,所述像素电极和所述公共电极均用作反射电极,并且所述像素电极和所述公共电极在所述第一衬底基板的面对所述第二基板的一侧上交替设置。
  8. 根据权利要求1所述的半透半反显示面板,其中,所述像素电极用作反射电极,并且所述第一基板还包括绝缘层,所述公共电极设置在所述第一衬底基板与所述绝缘层之间,并且所述绝缘层设置在所述公共电极与所述像素电极之间。
  9. 根据权利要求1所述的半透半反显示面板,其中,在所述反射电极的背离所述蓝相液晶的一侧上设置有凸起结构。
  10. 根据权利要求1至9任一所述的半透半反显示面板,其中,所述半透半反显示面板的形成有所述反射电极的反射区的横向电场强度小于所述半透半反显示面板的没有形成所述反射电极的透射区的横向电场强度。
  11. 一种半透半反显示装置,包括根据权利要求1至10中任一所述的半透半反显示面板以及位于所述第一基板的与所述第二基板相背离的一侧上的背光模组。
PCT/CN2016/077224 2015-09-22 2016-03-24 半透半反显示面板和半透半反显示装置 WO2017049888A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/507,531 US10451931B2 (en) 2015-09-22 2016-03-24 Transflective display panel and transflective display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510609220.9 2015-09-22
CN201510609220.9A CN105093665A (zh) 2015-09-22 2015-09-22 半透半反显示面板和半透半反显示装置

Publications (1)

Publication Number Publication Date
WO2017049888A1 true WO2017049888A1 (zh) 2017-03-30

Family

ID=54574441

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/077224 WO2017049888A1 (zh) 2015-09-22 2016-03-24 半透半反显示面板和半透半反显示装置

Country Status (3)

Country Link
US (1) US10451931B2 (zh)
CN (1) CN105093665A (zh)
WO (1) WO2017049888A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105093665A (zh) 2015-09-22 2015-11-25 京东方科技集团股份有限公司 半透半反显示面板和半透半反显示装置
CN107357076A (zh) * 2017-08-16 2017-11-17 深圳市华星光电半导体显示技术有限公司 透反式液晶显示装置及其制作方法
CN107942560A (zh) * 2017-10-27 2018-04-20 四川大学 一种低电压高透过率的透反蓝相液晶显示器
US10656461B2 (en) * 2017-11-13 2020-05-19 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Display substrate, display panel and display apparatus
CN109683392A (zh) * 2018-11-30 2019-04-26 重庆秉为科技有限公司 可减少光线损耗率的反射式显示装置
CN109521602A (zh) * 2018-11-30 2019-03-26 重庆秉为科技有限公司 一种基于透明显示层的反射式显示器
CN113589579A (zh) * 2021-07-23 2021-11-02 Tcl华星光电技术有限公司 半透半反显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080067041A (ko) * 2007-01-15 2008-07-18 삼성전자주식회사 반투과형 액정 표시 패널
CN102650778A (zh) * 2012-05-07 2012-08-29 昆山龙腾光电有限公司 半透半反式蓝相液晶显示装置
US20140016052A1 (en) * 2012-07-10 2014-01-16 Innolux Corporation Liquid crystal panel, driving method thereof, and liquid crystal display device containing the same
CN103969899A (zh) * 2014-04-25 2014-08-06 京东方科技集团股份有限公司 一种半透半反液晶显示面板以及液晶显示装置
CN105093665A (zh) * 2015-09-22 2015-11-25 京东方科技集团股份有限公司 半透半反显示面板和半透半反显示装置
CN204945560U (zh) * 2015-09-22 2016-01-06 京东方科技集团股份有限公司 半透半反显示面板和半透半反显示装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100376934C (zh) * 2004-02-14 2008-03-26 鸿富锦精密工业(深圳)有限公司 液晶显示装置
JP2009036800A (ja) * 2007-07-31 2009-02-19 Epson Imaging Devices Corp 半透過型液晶表示パネル及び電子機器
US8289482B2 (en) * 2009-12-16 2012-10-16 Au Optronics Corporation Transflective liquid crystal display device with plurality of electrodes formed on color filter
CN102789101A (zh) * 2012-07-27 2012-11-21 京东方科技集团股份有限公司 一种蓝相液晶面板和显示装置
CN202693962U (zh) * 2012-07-27 2013-01-23 京东方科技集团股份有限公司 一种蓝相液晶面板和显示装置
CN103176307B (zh) * 2013-03-26 2015-07-22 京东方科技集团股份有限公司 半透半反液晶显示面板以及液晶显示装置
CN103941454B (zh) * 2014-04-30 2017-04-19 上海天马微电子有限公司 一种液晶显示面板、其制造方法及液晶显示装置
CN105204246B (zh) * 2015-10-29 2018-11-23 武汉华星光电技术有限公司 半透半反式液晶显示面板

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080067041A (ko) * 2007-01-15 2008-07-18 삼성전자주식회사 반투과형 액정 표시 패널
CN102650778A (zh) * 2012-05-07 2012-08-29 昆山龙腾光电有限公司 半透半反式蓝相液晶显示装置
US20140016052A1 (en) * 2012-07-10 2014-01-16 Innolux Corporation Liquid crystal panel, driving method thereof, and liquid crystal display device containing the same
CN103969899A (zh) * 2014-04-25 2014-08-06 京东方科技集团股份有限公司 一种半透半反液晶显示面板以及液晶显示装置
CN105093665A (zh) * 2015-09-22 2015-11-25 京东方科技集团股份有限公司 半透半反显示面板和半透半反显示装置
CN204945560U (zh) * 2015-09-22 2016-01-06 京东方科技集团股份有限公司 半透半反显示面板和半透半反显示装置

Also Published As

Publication number Publication date
US10451931B2 (en) 2019-10-22
US20180180953A1 (en) 2018-06-28
CN105093665A (zh) 2015-11-25

Similar Documents

Publication Publication Date Title
WO2017049888A1 (zh) 半透半反显示面板和半透半反显示装置
JP4042516B2 (ja) 表示装置
EP2894510B1 (en) Liquid crystal display device with a multi-layer wire-grid polariser
WO2015093077A1 (ja) ヘッドアップディスプレイ装置用液晶表示装置及びヘッドアップディスプレイ装置
JP2008076501A (ja) 液晶表示装置
JP3767255B2 (ja) 液晶装置及び電子機器
JP2006343738A (ja) 半透過半反射型の液晶ディスプレイ
JP4337854B2 (ja) 液晶表示装置
JP2007108648A (ja) 半透過型液晶表示装置
JP2005292709A (ja) 液晶表示素子
JP2005534989A (ja) 反射透過型液晶表示装置
US20180284539A1 (en) Transflective lcd
US7859619B2 (en) Liquid crystal display device
CN204945560U (zh) 半透半反显示面板和半透半反显示装置
US10747049B2 (en) Display device
KR101420829B1 (ko) 표시 장치
JP4846527B2 (ja) 液晶表示素子
WO2020054302A1 (ja) 表示装置及びミラー装置
KR20070034697A (ko) 액정 표시 장치 및 이의 구동방법
WO2024084680A1 (ja) 表示装置
JP2013182225A (ja) 反射型表示装置
JP2008076503A (ja) 液晶表示装置
KR20070027918A (ko) 반사투과형 횡전계 모드 액정표시장치
JP5359240B2 (ja) 液晶装置および電子機器
JP2010072391A (ja) 液晶表示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15507531

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16847770

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16847770

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 23/08/2018)

122 Ep: pct application non-entry in european phase

Ref document number: 16847770

Country of ref document: EP

Kind code of ref document: A1