WO2017049856A1 - 电磁电容触摸屏 - Google Patents

电磁电容触摸屏 Download PDF

Info

Publication number
WO2017049856A1
WO2017049856A1 PCT/CN2016/074011 CN2016074011W WO2017049856A1 WO 2017049856 A1 WO2017049856 A1 WO 2017049856A1 CN 2016074011 W CN2016074011 W CN 2016074011W WO 2017049856 A1 WO2017049856 A1 WO 2017049856A1
Authority
WO
WIPO (PCT)
Prior art keywords
electromagnetic
electromagnetic induction
touch panel
capacitance touch
panel according
Prior art date
Application number
PCT/CN2016/074011
Other languages
English (en)
French (fr)
Inventor
王庆浦
张雷
谢晓冬
曾亭
陈军
Original Assignee
京东方科技集团股份有限公司
合肥鑫晟光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 合肥鑫晟光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to JP2017500046A priority Critical patent/JP6615855B2/ja
Priority to EP16781271.8A priority patent/EP3355171A4/en
Priority to KR1020177001122A priority patent/KR101850660B1/ko
Priority to US15/306,336 priority patent/US10664106B2/en
Publication of WO2017049856A1 publication Critical patent/WO2017049856A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0448Details of the electrode shape, e.g. for enhancing the detection of touches, for generating specific electric field shapes, for enhancing display quality
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/046Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by electromagnetic means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/047Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using sets of wires, e.g. crossed wires
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04106Multi-sensing digitiser, i.e. digitiser using at least two different sensing technologies simultaneously or alternatively, e.g. for detecting pen and finger, for saving power or for improving position detection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04111Cross over in capacitive digitiser, i.e. details of structures for connecting electrodes of the sensing pattern where the connections cross each other, e.g. bridge structures comprising an insulating layer, or vias through substrate

Definitions

  • Embodiments of the present invention relate to the field of touch screens, and more particularly to the field of electromagnetic touch and capacitive touch.
  • a resistive touch screen In the field of touch screens, according to different working principles, it can be divided into several types, such as a resistive touch screen, a capacitive touch screen, an electromagnetic touch screen, an infrared touch screen, an acoustic wave touch screen, and the like.
  • Capacitive touch screen distinguishes the touch position by sensing the mutual capacitance when the finger is touched. Capacitive touch supports multi-touch function, with higher transmittance, lower overall power consumption, high contact surface hardness, no pressing, and long service life.
  • Electromagnetic touch screens generally use a back-mounted electromagnetic antenna board.
  • the antenna board is composed of criss-crossing metal wires, and the positional information is determined by the induced electromotive force when the electromagnetic pen is slid on the screen.
  • the accuracy of the electromagnetic touch screen is much larger than that of a capacitive touch screen.
  • the capacitive touch and the electromagnetic touch are generally superimposed and used together.
  • the electromagnetic antenna board is usually placed on the back side of the display panel, and the capacitive touch module is placed on the upper side of the display panel or embedded inside the display panel.
  • the inventors of the present invention have found that the above-mentioned dual-touch method of the prior art has the following drawbacks. Firstly, the entire touch product has a complicated structure, a large volume, a thick thickness, and secondly, a high manufacturing cost.
  • embodiments of the present invention provide a product having a simple structure, a small size, a thin thickness, a low cost, and a touch-sensitive function. Electromagnetic capacitance touch screen. Specifically, the following technical solutions are provided.
  • An electromagnetic capacitive touch screen comprising:
  • a capacitor module including a plurality of capacitive sensing units
  • An electromagnetic module comprising a plurality of electromagnetic induction units, the plurality of electromagnetic induction units comprising a plurality of electromagnetic induction lines;
  • the capacitor module and the electromagnetic module are on the same layer.
  • the electromagnetic capacitance touch panel of the above [1] is provided on the same side of the display module by the capacitor module and the electromagnetic module, and is located on the same layer, compared with the above prior art in which the capacitor module and the electromagnetic module are disposed on both sides of the display module. It can realize the dual touch function of the handwriting, and the product structure is simple, small in size, thin in thickness, and can significantly reduce the manufacturing cost.
  • the plurality of capacitive sensing units and the plurality of electromagnetic sensing units are spaced apart from each other.
  • the electromagnetic capacitance touch panel of the above [2] can effectively realize the dual touch function of the handwriting by arranging a plurality of capacitive sensing units and a plurality of electromagnetic induction lines at intervals.
  • At least two lateral electromagnetic induction lines between adjacent two rows of capacitive sensing units arranged in the lateral direction, and currents in at least two lateral electromagnetic induction lines are opposite in direction.
  • the electromagnetic capacitance touch screens of the above [3] and [4] can effectively realize the electromagnetic touch function by providing electromagnetic induction lines having opposite current directions in the lateral direction and/or the longitudinal direction.
  • One of the at least two lateral electromagnetic induction lines and the at least two longitudinal electromagnetic induction lines are connected by a bridging structure at a position where the two are insulated from each other.
  • At least two transverse electromagnetic induction lines form a set of transverse electromagnetic induction lines
  • at least two longitudinal electromagnetic induction lines form a set of longitudinal electromagnetic induction lines
  • a plurality of sets of transverse electromagnetic induction lines and a plurality of sets of longitudinal electromagnetic induction lines staggered.
  • At least one capacitive sensing unit is disposed in an area surrounded by adjacent two sets of lateral electromagnetic induction lines and adjacent two sets of longitudinal electromagnetic induction lines.
  • the dual touch function of the handwriting can be effectively realized.
  • the capacitive sensing units disposed in the adjacent regions are connected by a bridging structure.
  • the capacitive sensing unit includes a mutual capacitive sensing unit including at least one driving electrode and at least one sensing electrode.
  • the electromagnetic capacitive touch screen of the above [9] realizes the capacitive touch function through the mutual capacitive capacitance sensing voltage, and can take advantage of the mutual capacitive capacitive touch screen.
  • the mutual capacitance type sensing unit includes two or more driving electrodes and two or more sensing electrodes
  • one of the driving electrode and the sensing electrode is connected by a bridge structure Pick up.
  • the driving electrodes of the adjacent two capacitive sensing units are connected by a bridge structure.
  • the sensing electrodes of the adjacent two capacitive sensing units are connected by a bridge structure.
  • the bridging structure comprises an insulating layer and a bridging electrode layer, and the bridging electrode layer is located above the electrode layer of the capacitive sensing unit or the electromagnetic induction line via an insulating layer.
  • the insulating layer includes a polymer-based cap layer or an inorganic-based passivation layer.
  • the electrode layer or the bridge electrode layer is prepared using at least one of indium tin oxide, nano silver, Al, Cu, and Mo.
  • the electromagnetic capacitance touch panel of the above [10] to [15] can realize the dual touch function of the handwriting with a simple structure by the bridge structure, and can reduce the manufacturing cost.
  • the electrodes of the capacitive sensing unit are located on the same layer as the electromagnetic induction lines.
  • the driving electrode and/or the sensing electrode of the mutual capacitance type sensing unit are located on the same layer as the electromagnetic induction line.
  • FIG. 1 is a cross-sectional view of an electromagnetic capacitive touch screen in accordance with an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of the overall structure of an electromagnetic capacitance touch screen according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a basic pitch of an electromagnetic capacitive touch screen in accordance with an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of an electromagnetic induction coil of an electromagnetic capacitive touch screen in accordance with an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of an electromagnetic induction coil of an electromagnetic capacitive touch screen in accordance with an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a capacitor module having a bridge structure inside an electromagnetic capacitance touch screen according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of an electromagnetic module having a bridge structure inside an electromagnetic capacitance touch screen according to an embodiment of the present invention.
  • the electromagnetic capacitive touch screen of the present embodiment includes: a display module 150; a capacitor module 120 including a plurality of capacitive sensing units 120a; and an electromagnetic module 130 including a plurality of electromagnetic sensing units 130a, a plurality of The magnetic induction unit 130a includes a plurality of electromagnetic induction lines; the capacitance module 120 and the electromagnetic module 130 are located on the same side of the display module 150 and are located in the same layer.
  • the display module of the present embodiment may be any display module in the art, such as a liquid crystal display module (LCM module), an electrophoretic display module, etc., and the present invention is not limited thereto as long as the display can be performed.
  • LCD module liquid crystal display module
  • electrophoretic display module etc.
  • the capacitor module 120 and the electromagnetic module 130 are located on the same side of the display module 150 and are located on the same layer.
  • the electrodes of the capacitive sensing unit and the electromagnetic induction line are located on the same layer.
  • the capacitor module 120 and the electromagnetic module 130 and the display module 150 are preferably bonded by, for example, Optical Clear Adhesive (OCA) or Optical Clear Resin (OCR). It can be understood that in the present embodiment, the capacitor module 120 and the electromagnetic module 130 can be joined to the display module 150 by other means, and the present invention does not impose any limitation on the manner of bonding.
  • the protection module 110 is disposed on the upper side. It is to be understood that the protection module 110 can employ any material in the art, such as glass or organic materials, and the invention is not limited thereto.
  • the electromagnetic capacitance touch screen of the present embodiment is configured by disposing the capacitor module 120 and the electromagnetic module 130 on the same side of the display module 150 and at the same layer, and the above prior art that the capacitor module and the electromagnetic module are disposed on both sides of the display module.
  • the product structure is simple, the volume is small, the thickness is thin, and the manufacturing cost can be significantly reduced.
  • a plurality of capacitive sensing units 120a and a plurality of electromagnetic sensing units 130a are preferably spaced apart from each other. It can be understood that, in this embodiment, the specific arrangement manners of the plurality of capacitive sensing units 120a and the plurality of electromagnetic sensing units 130a may be selected according to actual needs, as long as the capacitive sensing unit and the electromagnetic sensing unit are provided at various positions of one touch screen, thereby It is possible to simultaneously implement the finger touch function and the electromagnetic pen touch function at various positions of the touch screen. In addition, in the present embodiment, the number of the capacitance sensing unit and the electromagnetic induction unit can be selected as needed, and is not limited to the number shown in FIG.
  • the double touch function of the handwriting can be effectively realized.
  • FIG. 2 is a plan view showing the overall structure of an electromagnetic capacitance touch panel according to an embodiment of the present invention. As shown in FIG. 2, a plurality of capacitance sensing units 120a are arranged vertically and horizontally, and a plurality of electromagnetic induction units 130a are crisscrossed.
  • At least two lateral electromagnetic induction lines are arranged between adjacent two rows of capacitive sensing units arranged in the lateral direction, and currents in at least two lateral electromagnetic induction lines are opposite in direction.
  • at least two transverse electromagnetic induction lines and at least two longitudinal One of the electromagnetic induction lines is connected by a bridging structure at a position where the two are insulated from each other.
  • At least two transverse electromagnetic induction lines form a set of transverse electromagnetic induction lines
  • at least two longitudinal electromagnetic induction lines form a set of longitudinal electromagnetic induction lines
  • the lines are criss-crossed.
  • at least one capacitive sensing unit is disposed in an area surrounded by adjacent two sets of lateral electromagnetic induction lines and adjacent two sets of longitudinal electromagnetic induction lines.
  • the capacitive sensing units disposed in the adjacent regions are connected by a bridging structure.
  • the capacitive sensing unit comprises a mutual capacitive capacitive sensing unit comprising at least one drive electrode and at least one sensing electrode.
  • the mutual capacitance type sensing unit includes two or more driving electrodes and two or more sensing electrodes
  • one of the driving electrode and the sensing electrode is connected by a bridge structure.
  • the driving electrodes of the adjacent two capacitive sensing units are connected by a bridging structure.
  • the sensing electrodes of the adjacent two capacitive sensing units are connected by a bridging structure.
  • the capacitance sensing unit includes a mutual capacitance type capacitive sensing unit as an example for description.
  • the mutual capacitance type sensing unit includes two driving electrodes 310 and two sensing electrodes 320.
  • the driving electrode and the sensing electrode of the mutual capacitance type sensing unit are located on the same layer, it is preferable that the driving electrode and the sensing electrode of the mutual capacitance type sensing unit are disposed in the same layer as the electromagnetic sensing line of the electromagnetic induction unit.
  • the driving electrodes of the mutual capacitance type sensing unit and the electromagnetic sensing line of the electromagnetic induction unit may be disposed on the same layer, or may be mutually
  • the sensing electrode of the capacitive sensing unit is disposed on the same layer as the electromagnetic sensing line of the electromagnetic induction unit.
  • Two driving electrodes 310 are connected by wires located on the same layer, and two sensing electrodes 320 is connected by a bridge structure 350.
  • the two sensing electrodes 320 are illustrated as being connected by the bridge structure 350, the two driving electrodes 310 may be connected by a bridge structure.
  • the number and arrangement relationship of the drive electrodes and the sense electrodes can be set as needed.
  • Electromagnetic induction lines in two directions perpendicular to each other that is, two longitudinal electromagnetic induction lines 340 and two lateral electromagnetic induction lines 330 are disposed at the periphery of the mutual capacitance type sensing unit.
  • two longitudinal electromagnetic induction lines 340 and two lateral electromagnetic induction lines 330 are illustrated, the number of longitudinal electromagnetic induction lines 340 and lateral electromagnetic induction lines 330 may be set as needed.
  • the longitudinal electromagnetic induction line 340 is connected to the adjacent longitudinal electromagnetic induction line through the bridge structure 350, and the lateral electromagnetic induction line 330 is directly connected to the adjacent lateral electromagnetic induction line, thereby longitudinally electrically
  • the magnetic induction line 340 and the lateral electromagnetic induction line 330 are insulated from each other at the intersecting positions.
  • the driving electrode 310 is connected to the adjacent driving electrode 310 through the bridging structure 350, and the sensing electrode 320 is connected to the adjacent induction motor 320 through the bridging structure 350, so that the driving electrode 310 and the sensing electrode 320 are insulated from each other by the electromagnetic induction line.
  • the longitudinal electromagnetic induction line 340 is illustrated as being connected to the adjacent longitudinal electromagnetic induction line by the bridge structure 350, the lateral electromagnetic induction line 330 may also pass through the bridge structure 350 and the adjacent lateral direction.
  • the electromagnetic induction lines are connected, and the longitudinal electromagnetic induction lines 340 are directly connected to the adjacent longitudinal electromagnetic induction lines.
  • 4 is a schematic diagram of an electromagnetic induction coil of an electromagnetic capacitive touch screen in accordance with an embodiment of the present invention.
  • 5 is a schematic diagram of an electromagnetic induction coil of an electromagnetic capacitive touch screen in accordance with an embodiment of the present invention.
  • the lateral electromagnetic induction line 410 and the lateral electromagnetic induction line 420 are adjacent to each other, and the current directions are opposite, forming a lateral electromagnetic induction coil.
  • the longitudinal electromagnetic induction line 510 and the longitudinal electromagnetic induction line 520 are adjacent to each other, and the current directions are opposite, forming a longitudinal electromagnetic induction coil.
  • the driving electrodes of each column of the capacitive sensing units arranged in the longitudinal direction are connected to each other by a bridging structure, and the sensing electrodes of each row of the capacitive sensing units arranged in the lateral direction are connected to each other by a bridging structure.
  • the positions of the drive electrode and the sense electrode may be interchanged.
  • the electromagnetic induction lines are criss-crossed, two electromagnetic induction lines are disposed between adjacent two rows of capacitive sensing units, and two electromagnetic induction lines are disposed between adjacent two rows of capacitive sensing units.
  • a capacitance sensing unit is provided in each of the regions surrounded by the criss-cross electromagnetic induction lines.
  • the electromagnetic induction lines are arranged in a crisscross manner as described above, and the capacitance sensing units are arranged vertically and horizontally, that is, a pair of electromagnetic induction lines are disposed between each two capacitive sensing units, between each pair of electromagnetic induction lines.
  • the capacitance sensing unit is disposed so that the finger touch function can be realized by the capacitance sensing unit at each position of the electromagnetic capacitance touch screen, and the pen touch function can be realized by the electromagnetic induction line at each position of the electromagnetic capacitance touch screen.
  • FIG. 6 is a schematic diagram of a capacitor module having a bridge structure inside an electromagnetic capacitance touch screen according to an embodiment of the present invention.
  • 7 is a schematic diagram of an electromagnetic module having a bridge structure inside an electromagnetic capacitance touch screen according to an embodiment of the present invention.
  • the capacitor module having a bridge structure inside includes: a capacitor electrode layer 630; an insulating layer 620 on the capacitor electrode layer 630; and a bridge electrode layer 610 on the insulating layer 620.
  • the electromagnetic module having a bridging structure inside includes: an electromagnetic electrode layer 730; an insulating layer 720 on the electromagnetic electrode layer 730; and a bridging electrode layer 710 on the insulating layer 720.
  • the capacitor electrode layer 630 and the electromagnetic electrode layer 730 are disposed in the same layer
  • the insulating layer 620 and the insulating layer 720 are disposed in the same layer
  • the bridging electrode layer 610 and the bridging electrode layer 710 are disposed in The same layer.
  • the insulating layer 620 The insulating layer 720 is composed of the same layer.
  • the insulating layers 620, 720 preferably include a polymeric cover layer or an inorganic passivation layer, which is not limited in the present invention.
  • the capacitor electrode layer 630, the electromagnetic electrode layer 730, and the bridging electrode layers 610, 710 are preferably prepared using at least one of indium tin oxide, nano silver, Al, Cu, and Mo, and the present invention is not limited thereto.
  • the capacitance sensing unit may also be a self-capacitive capacitive sensing unit.
  • the electrode of the self-capacitive capacitive sensing unit and the electromagnetic induction unit are electrically
  • the magnetic induction lines are on the same floor.
  • the double touch function of the handwriting can be realized with a simple structure by the bridge structure, and the manufacturing cost can be reduced.
  • the electromagnetic capacitance touch screen of one embodiment realizes the capacitive touch function through the mutual capacitance type capacitive sensing voltage, and can take advantage of the mutual capacitance type capacitive touch screen.
  • the basic working principle is as follows: when using a finger touch, the capacitor module is used to identify the position information, and the mutual capacitance change caused by the finger touch causes the received signal to change, the waveform signal is given through the driving electrode, and the waveform signal is received through the sensing electrode, according to The waveform signal difference identifies the position information; when the electromagnetic pen is used for operation, the electromagnetic induction line in the electromagnetic module is sensed during the operation of the electromagnetic pen, and the touch position is calculated by the generated magnetic flux change.
  • the electromagnetic capacitance touch screen of the present embodiment can realize the double handwriting by providing the capacitor module and the electromagnetic module on the same layer of the display module as compared with the above prior art in which the capacitor module and the electromagnetic module are disposed on both sides of the display module.
  • the touch function makes the product simple in structure, small in size, thin in thickness, and can significantly reduce manufacturing costs.
  • the electromagnetic capacitive touch panel of one embodiment by connecting a plurality of capacitive sensing units and a plurality of electromagnetic sensing units to each other, the dual touch function of the handwriting can be effectively realized.
  • an embodiment of the electromagnetic capacitive touch screen is passed in the horizontal and / or vertical direction The electromagnetic induction line with the opposite current direction is arranged to effectively realize the electromagnetic touch function.
  • the electromagnetic capacitance touch panel of one embodiment by providing a capacitance sensing unit in a region surrounded by the criss-crossing electromagnetic induction lines, the dual touch function of the handwriting can be effectively realized.
  • the electromagnetic capacitance touch screen of one embodiment realizes the capacitive touch function through the mutual capacitance type capacitive sensing voltage, and can take advantage of the mutual capacitance type capacitive touch screen.
  • the electromagnetic capacitance touch panel of one embodiment can realize the dual touch function of the handwriting with a simple structure by the bridge structure, and can reduce the manufacturing cost.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Quality & Reliability (AREA)
  • Position Input By Displaying (AREA)

Abstract

本发明的实施方式提供一种电磁电容触摸屏。根据一个实施方式的电磁电容触摸屏,包括:显示模块;电容模块,其包括多个电容感应单元;以及电磁模块,其包括多个电磁感应单元,所述多个电磁感应单元包括多条电磁感应线;所述电容模块和所述电磁模块位于同一层。

Description

电磁电容触摸屏 技术领域
本发明的实施方式涉及触摸屏领域,更具体地说,涉及电磁触摸及电容触摸领域。
背景技术
在触摸屏领域,按照工作原理的不同,可以分为多个种类,例如电阻触摸屏、电容触摸屏、电磁触摸屏、红外触摸屏、声波触摸屏等。
目前应用最广泛的触摸屏为电容式触摸屏。电容式触摸屏通过感应手指触摸时的互电容大小来分辨触摸位置。电容式触控支持多点触控功能,拥有更高的透光率、更低的整体功耗,其接触面硬度高,无需按压,使用寿命较长。
电磁触摸屏目前一般采用背附式的电磁天线板,天线板由纵横交错的金属线构成,通过感应电磁笔在屏幕上滑动时的感应电动势来确定位置信息。电磁触摸屏的精度与电容触摸屏相比要大很多。
目前为了实现手笔双触控,一般将电容式触控与电磁式触控叠加在一起使用。通常将电磁天线板置于显示面板的背侧,将电容式触控模块置于显示面板的上侧或者内嵌于显示面板内部。
发明内容
本发明的发明人发现现有技术的上述手笔双触控的方式存在以下弊端,首先整个触控产品结构复杂,体积大,厚度厚,其次制造成本高。
为了解决现有技术中存在的上述问题,本发明的实施方式提供了产品结构简单、体积小、厚度薄、成本低、兼具手笔触控功能的 电磁电容触摸屏。具体而言,提供了以下技术方案。
[1]一种电磁电容触摸屏,包括:
显示模块;
电容模块,其包括多个电容感应单元;以及
电磁模块,其包括多个电磁感应单元,多个电磁感应单元包括多条电磁感应线;
电容模块和电磁模块位于同一层。
上述[1]的电磁电容触摸屏,通过将电容模块和电磁模块设置在显示模块的同一侧,且位于同一层,与将电容模块和电磁模块设置在显示模块的两侧的上述现有技术相比,能够在实现手笔双触控功能的同时,使产品结构简单、体积小、厚度薄,并且能够显著降低制造成本。
[2]根据技术方案[1]所述的电磁电容触摸屏,其中,
多个电容感应单元和多个电磁感应单元相互间隔排列。
上述[2]的电磁电容触摸屏,通过将多个电容感应单元和多条电磁感应线相互间隔排列,能够有效地实现手笔双触控功能。
[3]根据技术方案[1]或[2]所述的电磁电容触摸屏,其中,
在横向上排列的相邻两行电容感应单元之间具有至少两条横向的电磁感应线,至少两条横向的电磁感应线中的电流方向相反。
[4]根据技术方案[1]至[3]的任一方案所述的电磁电容触摸屏,其中,
在纵向上排列的相邻两列电容感应单元之间具有至少两条纵向的电磁感应线,至少两条纵向的电磁感应线中的电流方向相反。
上述[3]和[4]的电磁电容触摸屏,通过在横向和/或纵向上设置电流方向相反的电磁感应线,能够有效地实现电磁触控功能。
[5]根据技术方案[1]至[4]的任一方案所述的电磁电容触摸屏,其中,
至少两条横向的电磁感应线和至少两条纵向的电磁感应线中的一方在二者绝缘交叉的位置通过架桥结构连接。
[6]根据技术方案[1]至[5]的任一方案所述的电磁电容触摸屏,其中,
至少两条横向的电磁感应线构成一组横向的电磁感应线,至少两条纵向的电磁感应线构成一组纵向的电磁感应线,多组横向的电磁感应线和多组纵向的电磁感应线纵横交错。
[7]根据技术方案[1]至[6]的任一方案所述的电磁电容触摸屏,其中,
在相邻的每两组横向的电磁感应线和相邻的每两组纵向的电磁感应线所围绕的区域内,设置至少一个电容感应单元。
上述[7]的电磁电容触摸屏,通过在纵横交错的电磁感应线所围绕的区域内设置电容感应单元,能够有效地实现手笔双触控功能。
[8]根据技术方案[1]至[7]的任一方案所述的电磁电容触摸屏,其中,
设置于相邻的所述区域内的电容感应单元之间通过架桥结构连接。
[9]根据技术方案[1]至[8]的任一方案所述的电磁电容触摸屏,其中,
电容感应单元包括互容式电容感应单元,其包括至少一个驱动电极和至少一个感应电极。
上述[9]的电磁电容触摸屏,通过互容式电容感应电压来实现电容触控功能,能够发挥互容式电容触摸屏的优势。
[10]根据技术方案[1]至[9]的任一方案所述的电磁电容触摸屏,其中,
在互容式电容感应单元包括两个以上驱动电极和两个以上感应电极的情况下,驱动电极和感应电极中的一方通过架桥结构连 接。
[11]根据技术方案[1]至[10]的任一方案所述的电磁电容触摸屏,其中,
相邻的两个电容感应单元的驱动电极通过架桥结构连接。
[12]根据技术方案[1]至[11]的任一方案所述的电磁电容触摸屏,其中,
相邻的两个电容感应单元的感应电极通过架桥结构连接。
[13]根据技术方案[1]至[12]的任一方案所述的电磁电容触摸屏,其中,
架桥结构包括绝缘层和架桥电极层,架桥电极层隔着绝缘层位于电容感应单元的电极层或电磁感应线之上。
[14]根据技术方案[1]至[13]的任一方案所述的电磁电容触摸屏,其中,
绝缘层包括高分子类的覆盖层或无机类的钝化层。
[15]根据技术方案[1]至[14]的任一方案所述的电磁电容触摸屏,其中,
电极层或架桥电极层使用氧化铟锡、纳米银、Al、Cu和Mo中的至少一种材料制备。
上述[10]至[15]的电磁电容触摸屏,通过架桥结构,能够以简单的结构实现手笔双触控功能,并且能够降低制造成本。
[16]根据技术方案[1]至[15]的任一方所述的电磁电容触摸屏,其中,
电容感应单元的电极和电磁感应线位于同一层。
[17]根据技术方案[1]至[16]的任一方所述的电磁电容触摸屏,其中,
在电容感应单元为互容式电容感应单元的情况下,互容式电容感应单元的驱动电极和/或感应电极,与电磁感应线位于同一层。
附图说明
为了更清楚地说明本发明的实施方式的技术方案,下面将对实施方式的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施方式,而非对本发明的限制。
图1是根据本发明的一个实施方式的电磁电容触摸屏的截面图。
图2是根据本发明的一个实施方式的电磁电容触摸屏的总体结构的示意图。
图3是根据本发明的一个实施方式的电磁电容触摸屏的一个基本单元(pitch)的示意图。
图4是根据本发明的一个实施方式的电磁电容触摸屏的电磁感应线圈的示意图。
图5是根据本发明的一个实施方式的电磁电容触摸屏的电磁感应线圈的示意图。
图6是根据本发明的一个实施方式的电磁电容触摸屏的内部具有架桥结构的电容模块的示意图。
图7是根据本发明的一个实施方式的电磁电容触摸屏的内部具有架桥结构的电磁模块的示意图。
具体实施方式
为使本发明的实施方式的目的、技术方案和优点更加清楚,下面将结合本发明的实施方式的附图,对本发明的实施方式的技术方案进行清楚、完整地描述。显然,所描述的实施方式是本发明的一部分实施方式,而不是全部的实施方式。基于所描述的本发明的实施方式,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施方式,都属于本发明保护的范围。
在本发明的描述中,需要说明的是,术语“上”、“下”、“顶”、“底”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,在本发明的描述中,除非另有说明,“多个”的含义是两个或两个以上,“多条”的含义是两条或两条以上。
下面就结合附图对本发明的各个优选实施方式进行详细的说明。
图1是根据本发明的一个实施方式的电磁电容触摸屏的截面图。如图1所示,本实施方式的电磁电容触摸屏,包括:显示模块150;电容模块120,其包括多个电容感应单元120a;以及电磁模块130,其包括多个电磁感应单元130a,多个电磁感应单元130a包括多条电磁感应线;电容模块120和电磁模块130位于显示模块150的同一侧,且位于同一层。
本实施方式的显示模块可以是本领域的任何显示模块,例如液晶显示模块(LCM模块)、电泳显示模块等,本发明对此没有任何限制,只要能够进行显示即可。
在本实施方式中,电容模块120和电磁模块130位于显示模块150的同一侧,且位于同一层。优选,电容感应单元的电极和电磁感应线位于同一层。另外,电容模块120和电磁模块130与显示模块150之间,优选地通过例如光学透明粘合剂(Optically Clear Adhesive,OCA)或光学透明树脂(Optical Clear Resin,OCR)进行粘合。可以理解,在本实施方式中,完全可以通过其他方式将电容模块120和电磁模块130与显示模块150进行接合,本发明对接合的方式没有任何限制。
另外,在一个实施方式中,优选在电容模块120和电磁模块130 上设置保护模块110。可以理解,保护模块110可以采用本领域的任何材料,例如玻璃或有机材料,本发明对此没有任何限制。
本实施方式的电磁电容触摸屏,通过将电容模块120和电磁模块130设置在显示模块150的同一侧,且位于同一层,与将电容模块和电磁模块设置在显示模块的两侧的上述现有技术相比,能够在实现手笔双触控功能的同时,使产品结构简单、体积小、厚度薄,并且能够显著降低制造成本。
在一个实施方式中,如图1所示,优选将多个电容感应单元120a和多个电磁感应单元130a相互间隔排列。可以理解,在本实施方式中,多个电容感应单元120a和多个电磁感应单元130a的具体排列方式可以根据实际需要进行选择,只要在一个触摸屏的各个位置具有电容感应单元和电磁感应单元,从而能够在触摸屏的各个位置同时实现手指触摸功能和电磁笔触摸功能即可。另外,在本实施方式中,电容感应单元和电磁感应单元的数量可以根据需要进行选择,并不限于图1所示的数量。
本实施方式的电磁电容触摸屏,通过将多个电容感应单元120a和多个电磁感单元130a相互间隔排列,能够有效地实现手笔双触控功能。
下面以图2为例具体说明一个实施方式中的电容感应单元和电磁感应单元的配置关系的优选方式。图2是根据本发明的一个实施方式的电磁电容触摸屏的总体结构的平面图。如图2所示,多个电容感应单元120a纵横排列,多个电磁感应单元130a纵横交错。
总的来说,优选在横向上排列的相邻两行电容感应单元之间具有至少两条横向的电磁感应线,至少两条横向的电磁感应线中的电流方向相反。优选,在纵向上排列的相邻两列电容感应单元之间具有至少两条纵向的电磁感应线,至少两条纵向的电磁感应线中的电流方向相反。优选,至少两条横向的电磁感应线和至少两条纵向的 电磁感应线中的一方在二者绝缘交叉的位置通过架桥结构连接。优选,至少两条横向的电磁感应线构成一组横向的电磁感应线,至少两条纵向的电磁感应线构成一组纵向的电磁感应线,多组横向的电磁感应线和多组纵向的电磁感应线纵横交错。优选,在相邻的两组横向的电磁感应线和相邻的两组纵向的电磁感应线所围绕的区域内,设置至少一个电容感应单元。优选,设置于相邻的所述区域内的电容感应单元之间通过架桥结构连接。优选,电容感应单元包括互容式电容感应单元,其包括至少一个驱动电极和至少一个感应电极。在互容式电容感应单元包括两个以上驱动电极和两个以上感应电极的情况下,优选驱动电极和感应电极中的一方通过架桥结构连接。优选,相邻的两个电容感应单元的驱动电极通过架桥结构连接。优选,相邻的两个电容感应单元的感应电极通过架桥结构连接。
下面参照图3-5对电容感应单元和电磁感应单元的具体配置关系进行详细说明。可以理解,图3-5的配置仅仅是举例说明一种优选的配置关系。
图3是根据本发明的一个实施方式的电磁电容触摸屏的一个基本单元(pitch)的示意图。在参照图3的说明中,以电容感应单元包括互容式电容感应单元为例进行说明。
如图3所示,互容式电容感应单元包括2个驱动电极310和2个感应电极320。在互容式电容感应单元的驱动电极和感应电极位于同一层的情况下,优选,将互容式电容感应单元的驱动电极和感应电极与电磁感应单元的电磁感应线设置在同一层。另外,在互容式电容感应单元的驱动电极和感应电极位于不同层的情况下,可以将互容式电容感应单元的驱动电极与电磁感应单元的电磁感应线设置在同一层,也可以将互容式电容感应单元的感应电极与电磁感应单元的电磁感应线设置在同一层。
2个驱动电极310通过位于同一层的导线连接,2个感应电极 320通过架桥结构350连接。这里,虽然图示了2个感应电极320通过架桥结构350连接,但是也可以是2个驱动电极310通过架桥结构连接。另外,虽然图示了2个驱动电极和2个感应电极,但是驱动电极和感应电极的数量和配置关系可以根据需要进行设定。
在互容式电容感应单元的周边设置了相互垂直的两个方向的电磁感应线,即两条纵向的电磁感应线340和两条横向的电磁感应线330。这里,虽然图示了两条纵向的电磁感应线340和两条横向的电磁感应线330,但是纵向的电磁感应线340和横向的电磁感应线330的条数可以根据需要进行设定。
如图3所示,纵向的电磁感应线340通过架桥结构350与相邻的纵向的电磁感应线连接,横向的电磁感应线330与相邻的横向的电磁感应线直接连接,从而纵向的电磁感应线340和横向的电磁感应线330在交叉的位置相互绝缘。驱动电极310通过架桥结构350与相邻的驱动电极310连接,感应电极320通过架桥结构350与相邻的感应电机320连接,从而驱动电极310和感应电极320与电磁感应线相互绝缘。可以理解,虽然图示了纵向的电磁感应线340通过架桥结构350与相邻的纵向的电磁感应线连接,但是也可以是横向的电磁感应线330通过架桥结构350与相邻的横向的电磁感应线连接,纵向的电磁感应线340与相邻的纵向的电磁感应线直接连接。
图4是根据本发明的一个实施方式的电磁电容触摸屏的电磁感应线圈的示意图。图5是根据本发明的一个实施方式的电磁电容触摸屏的电磁感应线圈的示意图。
如图4所示,横向的电磁感应线410和横向的电磁感应线420彼此相邻,且电流方向相反,构成横向的电磁感应线圈。如图5所示,纵向的电磁感应线510和纵向的电磁感应线520彼此相邻,且电流方向相反,构成纵向的电磁感应线圈。
下面返回图2,对本实施方式的优选方式进一步进行说明。
如图2所示,纵向排列的每列电容感应单元的驱动电极通过架桥结构彼此连接,横向排列的每行电容感应单元的感应电极通过架桥结构彼此连接。这里,也可以将驱动电极和感应电极的位置互换。
另外,如图2所示,电磁感应线纵横交错,在相邻的两列电容感应单元之间设置两条电磁感应线,在相邻的两行电容感应单元之间设置两条电磁感应线。换句话说,在纵横交错的电磁感应线所围绕的每个区域内,设置电容感应单元。
本实施方式的电磁电容触摸屏,通过如上纵横交错设置电磁感应线,并纵横排列电容感应单元,即在每两个电容感应单元之间设置一对电磁感应线,在每两对电磁感应线之间设置电容感应单元,从而可以在电磁电容触摸屏的每个位置通过电容感应单元实现手指触摸功能,并且可以在电磁电容触摸屏的每个位置通过电磁感应线能实现笔触摸功能。
下面参照图6和7对架桥结构进行详细说明。可以理解,图6和7仅仅是举例说明一种优选的架桥结构。
图6是根据本发明的一个实施方式的电磁电容触摸屏的内部具有架桥结构的电容模块的示意图。图7是根据本发明的一个实施方式的电磁电容触摸屏的内部具有架桥结构的电磁模块的示意图。
如图6所示,在内部具有架桥结构的电容模块包括:电容电极层630;在电容电极层630上的绝缘层620;以及在绝缘层620上的架桥电极层610。
如图7所示,在内部具有架桥结构的电磁模块包括:电磁电极层730;在电磁电极层730上的绝缘层720;以及在绝缘层720上的架桥电极层710。
在此情况下,优选,将电容电极层630和电磁电极层730设置在同一层,将绝缘层620和绝缘层720设置在同一层,并将架桥电极层610和架桥电极层710设置在同一层。另外,优选,绝缘层620 和绝缘层720由同一层构成。
在一个实施方式中,绝缘层620、720优选包括高分子类的覆盖层或无机类的钝化层,本发明对此没有任何限制。
另外,电容电极层630、电磁电极层730和架桥电极层610、710优选使用氧化铟锡、纳米银、Al、Cu和Mo中的至少一种材料制备,本发明对此没有任何限制。
另外,以上虽然以互容式电容感应单元为例进行了说明,但是电容感应单元也可以是自容式电容感应单元,在此情况下,自容式电容感应单元的电极与电磁感应单元的电磁感应线位于同一层。
本实施方式的电磁电容触摸屏,通过架桥结构,能够以简单的结构实现手笔双触控功能,并且能够降低制造成本。另外,一个实施方式的电磁电容触摸屏,通过互容式电容感应电压来实现电容触控功能,能够发挥互容式电容触摸屏的优势。
下面简单说明一个实施方式的电磁电容触摸屏的工作原理。
基本工作原理如下所述:当采用手指触摸时,采用电容模块识别位置信息,手指触摸时造成的互电容变化导致接受信号发生变化,通过驱动电极给出波形信号,通过感应电极接受波形信号,根据波形信号差异识别位置信息;当采用电磁笔操作时,利用电磁笔操作过程中与电磁模块中电磁感应线发生感应,由产生的磁通量变化来运算出触控位置点。
本实施方式的电磁电容触摸屏,通过将电容模块和电磁模块设置在显示模块的同一层,与将电容模块和电磁模块设置在显示模块的两侧的上述现有技术相比,能够在实现手笔双触控功能的同时,使产品结构简单、体积小、厚度薄,并且能够显著降低制造成本。另外,一个实施方式的电磁电容触摸屏,通过将多个电容感应单元和多个电磁感应单元相互间隔排列,能够有效地实现手笔双触控功能。另外,一个实施方式的电磁电容触摸屏,通过在横向和/或纵向 上设置电流方向相反的电磁感应线,能够有效地实现电磁触控功能。另外,一个实施方式的电磁电容触摸屏,通过在纵横交错的电磁感应线所围绕的区域内设置电容感应单元,能够有效地实现手笔双触控功能。另外,一个实施方式的电磁电容触摸屏,通过互容式电容感应电压来实现电容触控功能,能够发挥互容式电容触摸屏的优势。另外,一个实施方式的电磁电容触摸屏,通过架桥结构,能够以简单的结构实现手笔双触控功能,并且能够降低制造成本。
以上虽然通过一些示例性的实施方式详细地描述了本发明的电磁电容触摸屏,但是以上这些实施方式并不是穷举的,本领域技术人员可以在本发明的精神和范围内实现各种变化和修改。因此,本发明并不限于这些实施方式,本发明的范围仅以所附权利要求为准。

Claims (17)

  1. 一种电磁电容触摸屏,包括:
    显示模块;
    电容模块,其包括多个电容感应单元;以及
    电磁模块,其包括多个电磁感应单元,所述多个电磁感应单元包括多条电磁感应线;
    所述电容模块和所述电磁模块位于同一层。
  2. 根据权利要求1所述的电磁电容触摸屏,其中,
    所述多个电容感应单元和所述多个电磁感应单元相互间隔排列。
  3. 根据权利要求2所述的电磁电容触摸屏,其中,
    在横向上排列的相邻两行电容感应单元之间具有至少两条横向的电磁感应线,所述至少两条横向的电磁感应线中的电流方向相反。
  4. 根据权利要求2或3所述的电磁电容触摸屏,其中,
    在纵向上排列的相邻两列电容感应单元之间具有至少两条纵向的电磁感应线,所述至少两条纵向的电磁感应线中的电流方向相反。
  5. 根据权利要求4所述的电磁电容触摸屏,其中,
    所述至少两条横向的电磁感应线和所述至少两条纵向的电磁感应线中的一方在二者绝缘交叉的位置通过架桥结构连接。
  6. 根据权利要求4所述的电磁电容触摸屏,其中,
    所述至少两条横向的电磁感应线构成一组横向的电磁感应线,所述至少两条纵向的电磁感应线构成一组纵向的电磁感应线,多组所述横向的电磁感应线和多组所述纵向的电磁感应线纵横交错。
  7. 根据权利要求6所述的电磁电容触摸屏,其中,
    在相邻的每两组横向的电磁感应线和相邻的每两组纵向的电磁感应线所围绕的区域内,设置至少一个所述电容感应单元。
  8. 根据权利要求7所述的电磁电容触摸屏,其中,
    设置于相邻的所述区域内的电容感应单元之间通过架桥结构连接。
  9. 根据权利要求1所述的电磁电容触摸屏,其中,
    所述电容感应单元包括互容式电容感应单元,其包括至少一个驱动电极和至少一个感应电极。
  10. 根据权利要求9所述的电磁电容触摸屏,其中,
    在所述互容式电容感应单元包括两个以上驱动电极和两个以上感应电极的情况下,驱动电极和感应电极中的一方通过架桥结构连接。
  11. 根据权利要求9所述的电磁电容触摸屏,其中,
    相邻的两个电容感应单元的驱动电极通过架桥结构连接。
  12. 根据权利要求9所述的电磁电容触摸屏,其中,
    相邻的两个电容感应单元的感应电极通过架桥结构连接。
  13. 根据权利要求5、8、10-12的任一项所述的电磁电容触摸屏,其中,
    所述架桥结构包括绝缘层和架桥电极层,所述架桥电极层隔着所述绝缘层位于所述电容感应单元的电极层或所述电磁感应线之上。
  14. 根据权利要求13所述的电磁电容触摸屏,其中,
    所述绝缘层包括高分子类的覆盖层或无机类的钝化层。
  15. 根据权利要求13所述的电磁电容触摸屏,其中,
    所述电极层或所述架桥电极层使用氧化铟锡、纳米银、Al、Cu和Mo中的至少一种材料制备。
  16. 根据权利要求1所述的电磁电容触摸屏,其中,
    所述电容感应单元的电极和所述电磁感应线位于同一层。
  17. 根据权利要求9所述的电磁电容触摸屏,其中,
    所述互容式电容感应单元的驱动电极和/或感应电极,与所述电磁感应线位于同一层。
PCT/CN2016/074011 2015-09-25 2016-02-18 电磁电容触摸屏 WO2017049856A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017500046A JP6615855B2 (ja) 2015-09-25 2016-02-18 電磁誘導および静電容量を併用したタッチスクリーン
EP16781271.8A EP3355171A4 (en) 2015-09-25 2016-02-18 ELECTROMAGNETIC CAPACITIVE TOUCH SCREEN
KR1020177001122A KR101850660B1 (ko) 2015-09-25 2016-02-18 전자기 용량 터치스크린
US15/306,336 US10664106B2 (en) 2015-09-25 2016-02-18 Electromagnetic capacitive touch screen including a capacitive module and an electromagnetic module located on a same layer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510621518.1 2015-09-25
CN201510621518.1A CN105204702B (zh) 2015-09-25 2015-09-25 电磁电容触摸屏

Publications (1)

Publication Number Publication Date
WO2017049856A1 true WO2017049856A1 (zh) 2017-03-30

Family

ID=54952428

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/074011 WO2017049856A1 (zh) 2015-09-25 2016-02-18 电磁电容触摸屏

Country Status (6)

Country Link
US (1) US10664106B2 (zh)
EP (1) EP3355171A4 (zh)
JP (1) JP6615855B2 (zh)
KR (1) KR101850660B1 (zh)
CN (1) CN105204702B (zh)
WO (1) WO2017049856A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020531932A (ja) * 2017-08-21 2020-11-05 京東方科技集團股▲ふん▼有限公司Boe Technology Group Co.,Ltd. タッチパネル、その製造方法及びタッチ表示装置

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105204702B (zh) * 2015-09-25 2018-04-20 京东方科技集团股份有限公司 电磁电容触摸屏
JP6605292B2 (ja) * 2015-10-16 2019-11-13 株式会社ジャパンディスプレイ 表示装置
KR20180099230A (ko) * 2017-02-28 2018-09-05 동우 화인켐 주식회사 디지타이저 및 그 제조 방법
CN107390962A (zh) * 2017-08-16 2017-11-24 祝小军 一种电磁电容双触摸无边框超窄超薄的教育触摸一体机
CN108052230B (zh) * 2018-01-02 2021-03-05 京东方科技集团股份有限公司 触控模组及其制备方法、触控屏和触控显示装置
CN208588881U (zh) * 2018-06-12 2019-03-08 广州视源电子科技股份有限公司 直下式背光显示模组和显示设备
CN111324242A (zh) * 2020-01-13 2020-06-23 江西华创触控科技有限公司 具备电磁电容两种触控方式的触控装置
CN111596811A (zh) * 2020-05-15 2020-08-28 深圳市鸿合创新信息技术有限责任公司 一种电磁电容式触摸屏
CN111813279A (zh) * 2020-07-13 2020-10-23 深圳市鸿合创新信息技术有限责任公司 触控装置
TWI818421B (zh) 2021-01-29 2023-10-11 南韓商希迪普公司 觸控裝置、其之驅動方法及觸控系統
KR102528556B1 (ko) * 2021-01-29 2023-05-04 주식회사 하이딥 터치 디바이스, 그 구동 방법, 및 터치 시스템

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103885654A (zh) * 2013-03-12 2014-06-25 深圳市信濠精密技术股份有限公司 电磁电容一体式触摸屏及其制作方法
CN103941946A (zh) * 2014-04-09 2014-07-23 京东方科技集团股份有限公司 一种触摸屏及显示装置
CN104714707A (zh) * 2014-11-28 2015-06-17 上海天马微电子有限公司 电磁电容一体触摸屏、触摸显示面板和触摸显示装置
CN105204702A (zh) * 2015-09-25 2015-12-30 京东方科技集团股份有限公司 电磁电容触摸屏

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4734546A (en) * 1987-03-16 1988-03-29 Calcomp, Inc. Digitizer system with loopback conductor grid
KR101799031B1 (ko) * 2010-08-09 2017-12-21 삼성디스플레이 주식회사 터치 감지층을 포함하는 액정 표시 장치 및 그 제조 방법
CN102375612B (zh) * 2011-10-18 2014-07-09 台均科技(深圳)有限公司 触控阵列、触控传感器、触控显示屏及触控设备
CN102541384B (zh) * 2012-02-10 2015-02-11 福建华映显示科技有限公司 双模式触控感应装置
KR102049261B1 (ko) 2012-09-14 2019-11-29 삼성디스플레이 주식회사 표시장치
CN102955639B (zh) * 2012-11-09 2015-09-09 北京京东方光电科技有限公司 一种外挂式触控模组及触控显示装置
CN202976043U (zh) * 2012-11-09 2013-06-05 北京京东方光电科技有限公司 一种外挂式触控模组及触控显示装置
CN103914203B (zh) * 2013-12-30 2017-01-18 上海天马微电子有限公司 电感式触控显示基板、电感式触控屏及触控显示装置
KR102174679B1 (ko) * 2013-12-31 2020-11-06 엘지디스플레이 주식회사 터치패널
KR102405610B1 (ko) * 2014-04-14 2022-06-07 삼성디스플레이 주식회사 터치 감지 구조물 및 표시 장치
CN104298411B (zh) * 2014-10-30 2017-11-17 上海天马微电子有限公司 触控基板、触控屏、触控显示面板及触控显示装置
CN205050123U (zh) * 2015-09-25 2016-02-24 京东方科技集团股份有限公司 电磁电容触摸屏

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103885654A (zh) * 2013-03-12 2014-06-25 深圳市信濠精密技术股份有限公司 电磁电容一体式触摸屏及其制作方法
CN103941946A (zh) * 2014-04-09 2014-07-23 京东方科技集团股份有限公司 一种触摸屏及显示装置
CN104714707A (zh) * 2014-11-28 2015-06-17 上海天马微电子有限公司 电磁电容一体触摸屏、触摸显示面板和触摸显示装置
CN105204702A (zh) * 2015-09-25 2015-12-30 京东方科技集团股份有限公司 电磁电容触摸屏

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020531932A (ja) * 2017-08-21 2020-11-05 京東方科技集團股▲ふん▼有限公司Boe Technology Group Co.,Ltd. タッチパネル、その製造方法及びタッチ表示装置
JP7202187B2 (ja) 2017-08-21 2023-01-11 京東方科技集團股▲ふん▼有限公司 タッチパネル、その製造方法及びタッチ表示装置

Also Published As

Publication number Publication date
JP6615855B2 (ja) 2019-12-04
CN105204702B (zh) 2018-04-20
US10664106B2 (en) 2020-05-26
EP3355171A4 (en) 2019-05-08
EP3355171A1 (en) 2018-08-01
JP2018533085A (ja) 2018-11-08
CN105204702A (zh) 2015-12-30
US20170269731A1 (en) 2017-09-21
KR101850660B1 (ko) 2018-04-19
KR20170054377A (ko) 2017-05-17

Similar Documents

Publication Publication Date Title
WO2017049856A1 (zh) 电磁电容触摸屏
US10467449B2 (en) Touch panel and display device including the same
CN103513842B (zh) 触摸屏面板
KR101428568B1 (ko) 터치스크린을 포함하는 표시장치 및 그 구동 방법
TWI426427B (zh) 觸控面板
US20110291994A1 (en) Touch screen panel and display device having the same
KR101113471B1 (ko) 터치 스크린 패널
EP2555091A2 (en) Touch-sensing panel and touch-sensing apparatus
CN105117089A (zh) 触控基板、触控显示面板及其驱动方法、触控显示装置
TWI559198B (zh) A touch panel of the sensing structure
US9791985B2 (en) Cross hatch ITO sensor pattern for touchscreens
TW201137701A (en) Touch screen panel and image display device having the same
TW201519031A (zh) 觸控面板與觸控顯示面板
CN103186297B (zh) 一种电容式触摸液晶显示面板和液晶显示装置
CN103823588B (zh) 触控装置及其驱动方法
CN103246384A (zh) 触摸面板
CN104076991B (zh) 一种触摸屏、触摸显示面板和触摸显示装置
TW201621566A (zh) 觸控面板
CN102419654A (zh) 一种感应层的布线结构
CN205318344U (zh) 阵列基板、触控显示面板
KR101219597B1 (ko) 터치스크린 패널 및 그 제조방법
CN103176631A (zh) 触摸基板、触摸屏及触摸显示装置
CN102331891A (zh) 一种电容式触控屏
CN102331876A (zh) 单层ito的布线结构
CN205050123U (zh) 电磁电容触摸屏

Legal Events

Date Code Title Description
REEP Request for entry into the european phase

Ref document number: 2016781271

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2016781271

Country of ref document: EP

Ref document number: 15306336

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2017500046

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20177001122

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16781271

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE