WO2017049739A1 - 一种提高木质纤维素生物质酶解效率的方法 - Google Patents

一种提高木质纤维素生物质酶解效率的方法 Download PDF

Info

Publication number
WO2017049739A1
WO2017049739A1 PCT/CN2015/093723 CN2015093723W WO2017049739A1 WO 2017049739 A1 WO2017049739 A1 WO 2017049739A1 CN 2015093723 W CN2015093723 W CN 2015093723W WO 2017049739 A1 WO2017049739 A1 WO 2017049739A1
Authority
WO
WIPO (PCT)
Prior art keywords
lignocellulosic biomass
enzymatic hydrolysis
improving
ionic liquid
surfactant
Prior art date
Application number
PCT/CN2015/093723
Other languages
English (en)
French (fr)
Inventor
张耿崚
陈细妹
李韵莹
韩业鉅
王小琴
宁寻安
Original Assignee
广东工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东工业大学 filed Critical 广东工业大学
Publication of WO2017049739A1 publication Critical patent/WO2017049739A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/14Preparation of compounds containing saccharide radicals produced by the action of a carbohydrase (EC 3.2.x), e.g. by alpha-amylase, e.g. by cellulase, hemicellulase

Definitions

  • the invention belongs to the technical field of biomass processing. More specifically, it relates to a method of increasing the efficiency of enzymatic hydrolysis of lignocellulosic biomass.
  • lignocellulosic materials such as agricultural straw and municipal waste to process clean fuel such as ethanol.
  • cellulose itself is a chain polymer compound composed of a large amount of glucose groups, its structure is complicated and a large number of crystal regions exist, and the encapsulation of lignin and hemicellulose makes it difficult to dissolve in water and general.
  • ionic liquids have become an excellent choice for biomass pretreatment systems due to their unique advantages. Compared with traditional chemical solvents, ionic liquids have the characteristics of non-volatility, high thermal stability and chemical stability, good solubility, adjustable performance, easy separation, easy recycling and recycling.
  • the drawbacks of the system are gradually revealed.
  • the low-cost ionic liquid has a poor dissolution effect
  • the ionic liquid has a high dissolution effect
  • the ionic liquid is treated in the washing process. Will cause cellulose to recrystallize.
  • the technical problem to be solved by the present invention is to overcome the defects and deficiencies of the existing biomass energy processing technology, and to provide a surfactant-coupled ionic liquid pretreatment technology, which utilizes a surfactant to reduce surface tension and surface free energy.
  • the addition of surfactant can reduce the surface tension of ionic liquid, overcome the disadvantages revealed in a single system, thereby improving the solvency of ionic liquids on lignocellulosic materials and increasing the rate of enzymatic hydrolysis. Reducing the amount of ionic liquid to obtain a green and efficient method for pretreating lignocellulosic materials can reduce costs and reduce environmental pollution.
  • Another object of the present invention is to provide an application of the above method for improving the enzymatic hydrolysis efficiency of lignocellulosic biomass, especially for improving the enzymatic hydrolysis efficiency of lignocellulose.
  • a method for improving the enzymatic hydrolysis efficiency of lignocellulosic biomass is to pretreat lignocellulosic biomass with a surfactant-coupled ionic liquid, followed by enzymatic hydrolysis.
  • the above method for improving the enzymatic hydrolysis efficiency of lignocellulosic biomass comprises the following steps:
  • the lignocellulosic biomass material is dried, pulverized, and ground to obtain a powder;
  • the ionic liquid used for treating the lignocellulosic biomass is heated at 100 to 150 ° C for 20 to 60 minutes, and continuously stirred;
  • step S3 Weigh the powder of step S1, add the ionic liquid and the surfactant treated in step S2, and stir at 70-130 ° C for 0.5 to 4 h; wherein the weight ratio of powder to ionic liquid is 1:10, surface activity The weight of the agent is 0.1 to 2% of the powder;
  • the ionic liquid in step S2 is 1-butyl-3-methylimidazolium chloride ([BMIM]Cl) or 1-allyl-3-methylimidazolium chloride ([AMIM]Cl ).
  • step S2 is heated at 120 ° C for 30 min.
  • the surfactant in step S3 is sodium dodecyl sulfate (SDS) or cetyltrimethylammonium bromide (CTAB).
  • SDS sodium dodecyl sulfate
  • CTAB cetyltrimethylammonium bromide
  • the weight of the surfactant in step S3 is 1% of the powder.
  • the agitation condition of step S3 is 1 hour at 110 ° C.
  • step S3 the method of enzymatic hydrolysis in step S3 is as follows:
  • the pretreated lignocellulosic biomass was added to 0.1M sodium citrate buffer solution of pH 4.8 and 0.02% sodium azide solution, shaken, and then added 50FPU/g fiber.
  • the enzyme Novozyme NS22086
  • 40CBU/g glucosidase Novozyme NS22118
  • the enzyme hydrolyzate was centrifuged at 13500 rpm.
  • the above-described method for improving the enzymatic hydrolysis efficiency of lignocellulosic biomass in the treatment of lignocellulosic biomass is also within the scope of the present invention. Specifically, it is applied in improving the enzymatic hydrolysis efficiency of lignocellulose.
  • the invention has found through a large number of studies that the ionic liquid treatment of the cellulose material causes the cellulose to recrystallize during the washing process, thereby affecting the enzymatic hydrolysis effect, and the addition of the surfactant can reduce the tension of the ionic liquid and facilitate the treatment process.
  • the medium ionic liquid is more fully contacted with the substrate, increasing the solvency of the ionic liquid and increasing the fiber conversion rate.
  • surfactant-coupled ionic liquid pretreated rice straw can improve enzymatic reduction sugar yield compared with untreated rice straw. 50% to 54%; compared with the treatment of rice straw with ionic liquid alone, the yield of enzymatic reducing sugar can be increased by 8% to 15%.
  • the method of the invention has high treatment efficiency, mild reaction condition, no corrosion to equipment and less impact on the environment, and will not be produced. Pollution.
  • the present invention facilitates the treatment of ions by adding surfactants to reduce surface tension and surface free energy.
  • the liquid is more fully contacted with the substrate, increasing the solubility of the ionic liquid, increasing the fiber conversion rate, and improving the enzymatic hydrolysis efficiency of the lignocellulosic material.
  • Figure 1 is an SEM image of rice straw treated by different pretreatment methods; wherein each treatment method is: a is Untreated rice straw, b is 1% SDS, c is 1% CTAB, d is BMImcCl, and e is BMImcCl+ 1% SDS, f is BMImcCl + 1% CTAB.
  • Figure 2 shows the effect of different pretreatment methods on the enzymatic hydrolysis of rice straw.
  • Figure 3 shows the effect of [BMIM]Cl and surfactant addition ratio on the enzymatic hydrolysis of rice straw.
  • Figure 4 shows the effect of surfactant-coupled ionic liquid ([AMIM]Cl) on the enzymatic hydrolysis of rice straw.
  • the lignocellulosic material used in this experiment was straw straw.
  • the straw straws were collected and air-dried, pulverized and ground into powder, which is the sample for this experiment.
  • the straw straw is stored in a sealed plastic bag and stored at room temperature in a dry place.
  • the ionic liquid (-1-butyl-3-methylimidazolium chloride, [BMIM]Cl) was heated at 120 ° C for 30 min and continuously stirred for the purpose of removing the ionic liquid. Moisture.
  • the international unit of filter paper activity is equal to the amount of enzyme required to produce 1 ⁇ mol of glucose per minute (expressed as reducing sugar) in an enzymatic reaction, as determined by the standard method recommended by the International Association of Theoretical and Applied Chemistry (IUPAC). Put a roll of whatman No. 1 filter paper strip (1 ⁇ 6 cm) into a tube, add 0.5 mL of cellulase solution diluted 50 times and 1.5 mL of citrate buffer (pH 4.8) in a water bath at 50 ° C for 20 min. After the reaction, the obtained reducing sugar content was measured by the DNS method.
  • the glucose standard curve is used to convert the enzyme activity to reduce the amount of sugar.
  • An enzyme activity unit U is defined as the amount of 1 ⁇ mole of glucose enzyme released per minute per minute ( ⁇ mole/min.mL) under the conditions of this assay.
  • DNS reagent per 100mL: 30g of sodium potassium tartrate dissolved in 80mL of hot water to be completely dissolved, then added NaOH 1.6g to 100mL, then add 1g DNS (3,5-Dinitrosalicylic acid), dissolved and loaded Into the opaque bottle.
  • the removal rates of lignin after treatment with 1% SDS, 1% CTAB and BMIMCl were 12.66%, 8.66% and 24.98%, respectively, and 1% SDS coupled with BMICl and 1% CTAB coupled with BMIMCl after pretreatment of rice straw.
  • the lignin removal rate can be increased to 49.38% and 34.48%, respectively. This also indicates that the surfactant-coupled ionic liquid treatment of rice straw is more likely to destroy the encapsulation of lignin, increase the chance of fiber contact with the enzyme, and thus improve the enzymatic efficiency.
  • SDS sodium lauryl sulfate
  • CTAB cetyltrimethylammonium bromide
  • [BMIM]Cl 1-butyl-3-methylimidazolium chloride
  • Figure 1 is an SEM image of rice straw treated by different pretreatment methods. It was observed that the untreated rice straw cellulose (a) has a very compact structure with a smooth surface and no cracks. The surface morphology of the rice straw treated with the surfactant (b, c) and the ionic liquid (d) alone loses the original rod-like skeleton structure, and becomes hollow and is accompanied by irregular cavities and grooves. However, the surface of the rice straw treated by surfactant-coupled ionic liquid treatment (e, f) was more damaged, and the structure of rice straw became more loose. The original rod-shaped skeleton structure of rice straw was not seen at all, and irregular particles appeared. Shape or lumps, thereby increasing the accessibility of cellulose and enzymes Add, improve the enzymatic effect.
  • Figure 2 shows the effect of different pretreatment methods on the enzymatic hydrolysis of rice straw. From Figure 2, it can be seen that the enzymolysis effect of all samples increased from 0h to 24h, and the amount of sugar produced by prolonged enzymatic hydrolysis to 72h remained basically unchanged. This is because when the enzymatic hydrolysate accumulates to a certain extent, it inhibits the activity of the enzyme.
  • the addition of surfactant SDS and CTAB treated rice straw increases the cellulose conversion rate compared with the untreated rice straw. 53.72% and 49.82%, mainly due to the surfactant's promotion of lignin degradation during the treatment process, further reducing the lignin content of the sample.
  • the addition of surfactant facilitates the contact of ionic liquid with the substrate during the pretreatment process, increases the solubility of the ionic liquid, and makes the treatment process more complete and thus easier. Destroying the lignin encapsulation also greatly reduces the components that are not easily digested in the treated rice straw, and increases the amount of sugar produced by enzymatic hydrolysis.
  • the results of the present invention show that the optimal pretreatment conditions for the treatment of rice straw by different surfactant-coupled ionic liquids are: temperature of 110 ° C, time of 60 min, SDS and CTAB addition amount of 1%, 72h enzymatic hydrolysis of reducing sugar
  • the yields were 23.09mg/100mg rice straw and 21.92mg/100mg rice straw, which were 53.72% and 49.82% higher than the untreated rice straw fiber conversion rate, respectively.
  • the surfactant addition ratio is a single factor, and the treatment method is the same as that in Example 1.
  • the optimum pretreatment conditions are: temperature is 110 ° C, time is 60 min, SDS and CTAB are both added in 1%, and 72 h is enzymatically hydrolyzed.
  • cellulose conversion rate increases first and then decreases with the addition of the surfactant, and the reducing sugar yield reaches the maximum when the surfactant is added in an amount of 1% of the substrate.
  • the addition of a surfactant facilitates the removal of hemicellulose and lignin in the rice straw, thereby improving the pretreatment effect.
  • Excessive addition of surfactant may form micelles in the solution, which may cause side effects on the hydrophobic action of lignin and the hydrophobic group of the surfactant, resulting in a decrease in enzymatic hydrolysis.
  • the ionic liquid contacts the substrate, increases the solvency of the ionic liquid, and makes the treatment process more complete, thereby more easily destroying the lignin encapsulation effect, and also greatly reducing the components which are not easily digested in the treated rice straw. Increase the amount of sugar produced by enzymatic hydrolysis.

Abstract

本发明提供了一种提高木质纤维素生物质酶解效率的方法,其采用表面活性剂耦合离子液体对木质纤维素生物质进行预处理。该方法包括如下步骤:S1.干燥、粉碎木质纤维素生物质得到粉末;S2. 100-150℃下加热离子液体;S3.向S1的粉末中加入S2的离子液体和表面活性剂,70-130℃下搅拌0.5-4h;S4.加入去离子水,离心,获得下层沉淀物用于酶解。

Description

一种提高木质纤维素生物质酶解效率的方法 技术领域
本发明属于生物质处理技术领域。更具体地,涉及一种提高木质纤维素生物质酶解效率的方法。
背景技术
近年来,随着石油、煤炭等不可再生的石化资源总量的日趋减少,木质纤维素材料的重要性日益显著。因此,以木质纤维素为原料制备乙醇是生物质能源化利用的研究热点,该技术是利用农业秸秆、城市垃圾等木质纤维素原料进行加工得到乙醇等清洁燃料。但是由于纤维素本身是由大量葡萄糖基构成的链状高分子化合物,其结构复杂且存在大量结晶区,再加上木质素和半纤维素的包裹作用,使其很难溶于水和一般的有机溶剂,传统的预处理体系有铜氨溶液体系、二硫化碳/氢氧化钠体系蒸汽爆破、高温热解、酸碱法、生物降解等,虽然处理效果好,但由于其消耗量大,难以回收,而且污染严重。因此急需找到一种绿色且有效的处理技术。
近年来,离子液体以其独特的优势,成为生物质前处理体系的优良选择。与传统的化学溶剂相比,离子液体具有不挥发性、热稳定性和化学稳定性高、溶解性好、性能可调、易于分离、易回收和循环使用等特点。
但随着研究的开展和深入,其体系的弊端也逐渐展露,例如成本低的离子液体溶解效果不好,溶解效果好的离子液体成本较高等,且离子液体处理纤维素材料后在洗涤过程中会导致纤维素重结晶。
发明内容
本发明要解决的技术问题是克服现有生物质能源处理技术的缺陷和不足,提供一种表面活性剂耦合离子液体预处理技术,利用表面活性剂具有降低表面张力和表面自由能的作用,在离子液体处理木质纤维素的过程中,添加表面活性剂可以降低离子液体表面张力,能够克服单一体系中显露的弊端,从而提高离子液体对木质纤维素材料的溶解能力,提高酶解产糖率,减少离子液体用量,获得一种绿色且高效的预处理木质纤维素材料方法,可减少成本与降低环境污染。
本发明的目的是提供一种提高木质纤维素生物质酶解效率的方法。
本发明另一目的是提供上述方法在提高木质纤维素生物质酶解效率方面的应用,尤其是在提高木质纤维素酶解效率方面的应用。
本发明上述目的通过以下技术方案实现:
一种提高木质纤维素生物质酶解效率的方法,是采用表面活性剂耦合离子液体对木质纤维素生物质进行预处理后,再进行酶解。
具体地,上述提高木质纤维素生物质酶解效率的方法包括如下步骤:
S1.木质纤维素生物质原料干燥、粉碎、研磨得到粉末;
S2.将处理木质纤维素生物质所用的离子液体在100~150℃下加热20~60min,并不断搅拌;
S3.称取步骤S1的粉末,加入步骤S2处理后的离子液体和表面活性剂,在70~130℃条件下搅拌0.5~4h;其中,粉末与离子液体的重量比为1:10,表面活性剂的重量为粉末的0.1~2%;
S4.加入去离子水,以7000r/min高速离心15min后分离出上层清液,储存;取下层沉淀物,用去离子水反复清洗,去除离子液体,在60℃干燥18~30h,用于酶解。
其中,优选地,步骤S2所述离子液体为氯化-1-丁基-3-甲基咪唑([BMIM]Cl)或1-烯丙基-3-甲基咪唑氯盐([AMIM]Cl)。
优选地,步骤S2是在120℃下加热30min。
优选地,步骤S3所述表面活性剂为十二烷基硫酸钠(SDS)或十六烷基三甲基溴化铵(CTAB)。
优选地,步骤S3所述表面活性剂的重量为粉末的1%。
优选地,步骤S3所述搅拌的条件为110℃搅拌1h。
优选地,步骤S3所述酶解的方法如下:
按照2.5w/v%的比例,取预处理后的木质纤维素生物质加入0.1M pH4.8的柠檬酸钠缓冲溶液和0.02%叠氮化钠溶液中,摇匀,再添加50FPU/g纤维素酶(Novozyme NS22086)和40CBU/g葡萄糖苷酶(Novozyme NS22118),于50±0.5℃恒温条件下,150r/min进行糖化12~72h,反应完毕后13500rpm离心得酶水解液。
另外,上述提高木质纤维素生物质酶解效率的方法在处理木质纤维素生物质方面的应用,也在本发明的保护范围之内。具体是在提高木质纤维素酶解效率方面的应用。
本发明通过大量研究发现,离子液体处理纤维素材料后在洗涤过程中,会导致纤维素重结晶,从而影响纤维素酶解的效果,添加表面活性剂可以降低离子液体的张力,有利于处理过程中离子液体与底物更充分的接触,增加离子液体的溶解能力,提高纤维转化率。研究显示,表面活性剂耦合离子液体预处理稻秆与未处理的稻秆相比,酶解还原糖产量可提高 50%~54%;与单独离子液体处理稻秆相比,酶解还原糖产量可提高8%~15%。
本发明具有以下有益效果:
1、与传统的二硫化碳/氢氧化钠体系蒸汽爆破、高温热解、酸碱法等方法比较,本发明方法处理效率高、反应条件温和、对设备无腐蚀且对环境冲击较小,不会产生污染。
2、与单一体系的离子液体预处理相比,克服了单一离子液体预处理体系的各种弊端,本发明通过添加表面活性剂,降低表面张力和表面自由能的作用,有利于处理过程中离子液体与底物更充分的接触,增加离子液体的溶解能力,提高纤维转化率,提高了木质纤维材料的酶解效率。
附图说明
图1为不同预处理方式处理后的稻秆SEM图;其中,各组处理方式分别为:a为Untreated rice straw,b为1%SDS,c为1%CTAB,d为BMIMCl,e为BMIMCl+1%SDS,f为BMIMCl+1%CTAB。
图2为不同预处理方式对稻秆酶解效果的影响。
图3为[BMIM]Cl与表面活性剂添加比例对稻秆酶解效果的影响。
图4为表面活性剂耦合离子液体([AMIM]Cl)对稻秆酶解效果的影响。
具体实施方式
以下结合说明书附图和具体实施例来进一步说明本发明,但实施例并不对本发明做任何形式的限定。除非特别说明,本发明采用的试剂、方法和设备为本技术领域常规试剂、方法和设备。
除非特别说明,本发明所用试剂和材料均为市购。
实施例1
1、木质纤维素样品的采集
本次实验的木质纤维素原料为稻草秸秆。稻草秸秆收集之后进行风干处理,粉碎后研磨成粉,即为本次实验的样品。将稻草秸秆储存在密封的塑料袋中,于干燥处室温保存。
2、表面活性剂耦合离子液体预处理稻秆粉末
(1)预处理稻秆粉末前,将离子液体(氯化-1-丁基-3-甲基咪唑,[BMIM]Cl)在120℃下加热30min并不断搅拌,目的是去除离子液体中的水分。
(2)称取0.5g稻秆粉末于带螺旋塞的瓶子中,加入5g离子液体及1%的表面活性剂(十二烷基硫酸钠(SDS)或十六烷基三甲基溴化铵(CTAB)),置于磁力搅拌器上,在70~130℃条件下搅拌0.5~4h后,加入45mL去离子水,将混合液置于50mL的 离心管中,以7000r/min高速离心15min后分离。移出上层清液,储存。
(3)取下层沉淀物,用去离子水反复清洗,去除离子液体,在60℃干燥至少18h,取出称重,保存样品以进行下一步的酶解试验。
3、预处理前后的木质纤维素样品酶解糖化
取2.5%(w/v)预处理前后稻秆粉末试样分别置于50mL锥形瓶中,加入0.1M pH 4.8的柠檬酸钠缓冲溶液和100μL 0.02%叠氮化钠溶液,摇匀,再添加50FPU/g纤维素酶(Novozyme NS22086)及40CBU/g葡萄糖苷酶(Novozyme NS22118),置于50±0.5℃恒温水浴振荡器中,转速为150r/min下糖化0,3,6,12,24,48,72h。反应完毕,在13500rpm离心得酶水解液,取样用DNS测定法分析还原糖含量。
4、纤维素酶活的测定
(1)采用国际理论和应用化学协会(IUPAC)推荐的标准方法测定,一个滤纸酶活力国际单位等于酶促反应中每分钟生成1μmol葡萄糖(以还原糖表示)所需的酶量。试管中放入卷成筒状的whatman No.1滤纸条(1×6cm),加入0.5mL稀释50倍后的纤维素酶液和1.5mL柠檬酸缓冲液(pH 4.8)于50℃水浴20min,反应结束后用DNS法测定所得的还原糖含量。
(2)利用葡萄糖标准曲线换算酵素活性反应还原糖量。一个酵素活性单位U定义为在此分析条件下,每分钟每毫升释出1μmole葡萄糖酵素量(μmole/min.mL)。
U=(W×N×5.56)/(V×t)=(W×1×5.56)/(0.05×20)
U:酶活性
W:葡萄糖含量(mg)
N:稀释倍率
V:反应液中酶液加入量(mL)
t:反应时间(min)
5.56:1mg葡萄糖的μmole数
5、还原糖量的测定
(1)DNS试剂的配制(每100mL):酒石酸钾钠30g溶于80mL热水待完全溶解,再加入NaOH 1.6g定量至100mL,再加入1g DNS(3,5-Dinitrosalicylic acid),溶解后装入不透光瓶中。
(2)取0.1mL、已知浓度为0.1mg/mL~5mg/mL葡萄糖溶液,加入0.3mL二硝基水杨酸(Dinitrosalicylic acid,DNS)试剂中。于100℃之水中加热5分钟,之后加入0.6mL 蒸馏水,静置至室温后,使用分光亮度计测量其在波长为575nm之光线下之吸光值后,制备测定还原醣浓度之DNS标准曲线。
(3)依据DNS标准曲线,取0.1mL待测物样品加入0.3mLDNS试剂,将混合液在100℃之水中加热5分钟后加入0.6mL蒸馏水放至室温,利用波长为575nm光照射,并以分光亮度计测其吸光值,即可换算出还原醣浓度。
6、稻秆粉末预处理前后的比较
(1)本实施例比较了不同处理技术的效果,结果显示,未处理与各种不同处理技术处理后的稻秆成分分析如下表1所示。
分别单独添加1%SDS、1%CTAB、BMIMCl处理稻秆后木质素的脱除率依次为12.66%、8.66%、24.98%,而1%SDS耦合BMIMCl及1%CTAB耦合BMIMCl预处理稻秆后木质素脱除率可分别提高为49.38%和34.48%。这也表明表面活性剂耦合离子液体处理稻秆更容易破坏木质素的包裹作用,增加纤维与酶的接触机会,因而提高酶解效率。
表1 未处理与不同预处理技术对稻秆成分的影响
Figure PCTCN2015093723-appb-000001
注:SDS为十二烷基硫酸钠;CTAB为十六烷基三甲基溴化铵;[BMIM]Cl为氯化-1-丁基-3-甲基咪唑
(2)附图1为不同预处理方式处理后的稻秆SEM图,观察发现,未处理的稻秆纤维素(a)结构非常紧致,表面较光滑,没有裂痕。单独表面活性剂(b,c)和单独离子液体(d)处理的稻秆表面微观形貌失去原有杆状骨架结构,变得空洞破碎并伴有不规则空洞和凹槽。而表面活性剂耦合离子液体处理(e,f)的稻秆表面遭到更大的破坏,稻秆结构变得更加疏松,完全看不出稻秆原来的杆状骨架结构,呈现不规则的颗粒状或团状,从而使纤维素与酶可及度增 加,提高酶解效果。
(3)附图2为不同预处理方式对稻秆酶解效果的影响,从图2可知,所有样品在0h到24h的提高酶解效果比较明显,延长酶解至72h产糖量基本保持不变,这是因为酶解产物积累到一定程度时,反过来抑制了酶的活性;添加表面活性剂SDS和CTAB处理后的稻秆与未处理的稻秆相比,纤维素转化率分别提高了53.72%和49.82%,这主要是由于在处理过程中,表面活性剂对木质素的降解有一定的促进作用,进一步降低样品木质素的含量。而在表面活性剂耦合离子液体预处理稻秆过程中,表面活性剂的添加有利于预处理过程中离子液体与底物接触,增大离子液体的溶解能力,使处理过程更加充分,从而更容易破坏木质素的包裹作用,也使处理后稻秆中不易被酶解的成分大大降低,提高酶解产糖量。
另外,本发明研究结果显示,不同表面活性剂耦合离子液体处理稻秆的最佳预处理条件:温度为110℃,时间为60min,SDS和CTAB添加量均为1%,72h酶解产还原糖量分别为23.09mg/100mg稻秆、21.92mg/100mg稻秆,比未处理稻秆纤维转化率分别提高53.72%和49.82%。
实施例2[BMIM]Cl与表面活性剂添加比例对稻秆酶解效果的影响
本实施例以表面活性剂添加比例为单因素,处理方式同实施例1,最佳预处理条件:温度为110℃,时间为60min,SDS和CTAB添加量均为1%,72h酶解。
研究了对[BMIM]Cl与表面活性剂添加比例对稻秆酶解效果的影响,结果如附图3所示。
由图3可知,纤维素转化率随表面活性剂添加量增加呈先上升后下降的趋势,在表面活性剂添加量为底物的1%时,还原糖产量达到最大。表面活性剂的添加有利于去除稻秆中的半纤维素和木质素,从而提高预处理效果。表面活性剂添加过多,可能会在溶液中形成胶团,会对木质素与表面活性剂疏水基团的疏水作用产生副作用,导致酶解效果下降。
实施例3表面活性剂耦合离子液体([AMIM]Cl)对稻秆酶解效果的影响
本实施例研究不同的离子液体耦合表面活性剂对稻秆酶解效果的影响,以离子液体([AMIM]Cl)替换离子液体[BMIM]Cl,结果如附图4所示。
从图4可知,所有样品在0h到24h的提高酶解效果比较明显,延长酶解至70h产糖量基本保持不变,这是因为酶解产物积累到一定程度时,反过来抑制了酶的活性;添加表面活性剂SDS和CTAB处理后的稻秆与未处理的稻秆相比,纤维素转化率显著提高,这主要是由于在处理过程中,表面活性剂对木质素的降解有一定的促进作用,进一步降低样品木质素的含量。而在表面活性剂耦合离子液体预处理稻秆过程中,表面活性剂的添加有利于预 处理过程中离子液体与底物接触,增大离子液体的溶解能力,使处理过程更加充分,从而更容易破坏木质素的包裹作用,也使处理后稻秆中不易被酶解的成分大大降低,提高酶解产糖量。

Claims (10)

  1. 一种提高木质纤维素生物质酶解效率的方法,其特征在于,是采用表面活性剂耦合离子液体对木质纤维素生物质进行预处理后,再进行酶解。
  2. 根据权利要求1所述提高木质纤维素生物质酶解效率的方法,其特征在于,包括如下步骤:
    S1.木质纤维素生物质原料干燥、粉碎、研磨得到粉末;
    S2.将处理木质纤维素生物质所用的离子液体在100~150℃下加热20~60min,并不断搅拌;
    S3.称取步骤S1的粉末,加入步骤S2处理后的离子液体和表面活性剂,在70~130℃条件下搅拌0.5~4h;其中,粉末与离子液体的重量比为1:10,表面活性剂的重量为粉末的0.1~2%;
    S4.加入去离子水,以7000r/min高速离心15min后分离出上层清液,储存;取下层沉淀物,用去离子水反复清洗,去除离子液体,在60℃干燥18~30h,用于酶解。
  3. 根据权利要求2所述提高木质纤维素生物质酶解效率的方法,其特征在于,步骤S2所述离子液体为氯化-1-丁基-3-甲基咪唑或1-烯丙基-3-甲基咪唑氯盐。
  4. 根据权利要求2所述提高木质纤维素生物质酶解效率的方法,其特征在于,步骤S2是在120℃下加热30min。
  5. 根据权利要求2所述提高木质纤维素生物质酶解效率的方法,其特征在于,步骤S3所述表面活性剂为十二烷基硫酸钠或十六烷基三甲基溴化铵。
  6. 根据权利要求2所述提高木质纤维素生物质酶解效率的方法,其特征在于,步骤S3所述表面活性剂的重量为粉末的1%。
  7. 根据权利要求2所述提高木质纤维素生物质酶解效率的方法,其特征在于,步骤S3所述搅拌的条件为110℃搅拌1h。
  8. 根据权利要求2所述提高木质纤维素生物质酶解效率的方法,其特征在于,步骤S3所述酶解的方法如下:
    按照2.5w/v%的比例,取预处理后的木质纤维素生物质加入0.1M pH4.8的柠檬酸钠缓冲溶液和0.02%叠氮化钠溶液中,摇匀,再添加50FPU/g纤维素酶和40CBU/g葡萄糖苷酶,于50±0.5℃恒温条件下,150r/min进行糖化12~72h,反应完毕后13500rpm离心得酶水解液。
  9. 权利要求1所述提高木质纤维素生物质酶解效率的方法在处理木质纤维素生物质方面的应用。
  10. 根据权利要求9所述应用,其特征在于,是在提高木质纤维素酶解效率方面的应用。
PCT/CN2015/093723 2015-09-25 2015-11-03 一种提高木质纤维素生物质酶解效率的方法 WO2017049739A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510619914.0A CN105177083A (zh) 2015-09-25 2015-09-25 一种提高木质纤维素生物质酶解效率的方法
CN201510619914.0 2015-09-25

Publications (1)

Publication Number Publication Date
WO2017049739A1 true WO2017049739A1 (zh) 2017-03-30

Family

ID=54899509

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/093723 WO2017049739A1 (zh) 2015-09-25 2015-11-03 一种提高木质纤维素生物质酶解效率的方法

Country Status (2)

Country Link
CN (1) CN105177083A (zh)
WO (1) WO2017049739A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110699401A (zh) * 2019-09-29 2020-01-17 天津科技大学 一种乙二胺预处理柠条的方法
CN113215209A (zh) * 2021-06-11 2021-08-06 南京林业大学 一种促进木质纤维素酶水解的方法
CN114317638A (zh) * 2022-01-18 2022-04-12 中南林业科技大学 一种多酶协同表面活性剂循环酶解糖化木质纤维素的方法
CN114544534A (zh) * 2022-02-25 2022-05-27 贵州大学 一种简易快速测定木质纤维素生物质中木质素含量的方法
CN116763838A (zh) * 2023-07-21 2023-09-19 广东心宝药业科技有限公司 一种蒲地蓝消炎片及其制备方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105838741A (zh) * 2016-03-11 2016-08-10 青岛农业大学 一种利用花生壳降解糖发酵生产类异戊二烯化合物的方法
CN106086109B (zh) * 2016-06-07 2019-07-02 江南大学 一种离子液体混合体系预处理木质纤维素提高其酶解效率的方法
CN107361243A (zh) * 2017-07-20 2017-11-21 通化师范学院 一种促进冷水鱼生长的饲料添加剂及其用途
CN109517862A (zh) * 2018-12-04 2019-03-26 齐鲁工业大学 一种利用咪唑类离子液体协同生物酶制剂降解木质纤维素的方法
CN110066840A (zh) * 2019-03-08 2019-07-30 华南农业大学 一种水热-微波结合离子液体两步预处理木质纤维素原料提高酶解效率的方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101765663A (zh) * 2007-03-14 2010-06-30 托莱多大学 生物质预处理

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL217280B1 (pl) * 2010-08-25 2014-07-31 Inst Chemii Fizycznej Polskiej Akademii Nauk Sposób otrzymywania celulozowego nanokompozytu z wbudowanymi nanorurkami węglowymi i celulozowy nanokompozyt z wbudowanymi nanorurkami węglowymi

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101765663A (zh) * 2007-03-14 2010-06-30 托莱多大学 生物质预处理

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110699401A (zh) * 2019-09-29 2020-01-17 天津科技大学 一种乙二胺预处理柠条的方法
CN113215209A (zh) * 2021-06-11 2021-08-06 南京林业大学 一种促进木质纤维素酶水解的方法
CN113215209B (zh) * 2021-06-11 2023-11-03 南京林业大学 一种促进木质纤维素酶水解的方法
CN114317638A (zh) * 2022-01-18 2022-04-12 中南林业科技大学 一种多酶协同表面活性剂循环酶解糖化木质纤维素的方法
CN114317638B (zh) * 2022-01-18 2023-09-22 中南林业科技大学 一种多酶协同表面活性剂循环酶解糖化木质纤维素的方法
CN114544534A (zh) * 2022-02-25 2022-05-27 贵州大学 一种简易快速测定木质纤维素生物质中木质素含量的方法
CN116763838A (zh) * 2023-07-21 2023-09-19 广东心宝药业科技有限公司 一种蒲地蓝消炎片及其制备方法
CN116763838B (zh) * 2023-07-21 2024-02-13 广东心宝药业科技有限公司 一种蒲地蓝消炎片及其制备方法

Also Published As

Publication number Publication date
CN105177083A (zh) 2015-12-23

Similar Documents

Publication Publication Date Title
WO2017049739A1 (zh) 一种提高木质纤维素生物质酶解效率的方法
Yan et al. Enhanced lignin removal and enzymolysis efficiency of grass waste by hydrogen peroxide synergized dilute alkali pretreatment
Zhu et al. Pretreatment of rice straw for ethanol production by a two-step process using dilute sulfuric acid and sulfomethylation reagent
Jeihanipour et al. Ethanol production from cotton-based waste textiles
CN102212976B (zh) 一种分离甘蔗渣纤维素和木质素的方法
Asakawa et al. Comparison of choline acetate ionic liquid pretreatment with various pretreatments for enhancing the enzymatic saccharification of sugarcane bagasse
CN106011199B (zh) 一种农作物秸秆的预处理方法
BR112012019668B1 (pt) Metodo para a remoção de crostas durante um processo de conversão lignocelulósica
Zhang et al. Recycled aqueous ammonia expansion (RAAE) pretreatment to improve enzymatic digestibility of corn stalks
Du et al. A co-production of sugars, lignosulfonates, cellulose, and cellulose nanocrystals from ball-milled woods
CN105385724A (zh) 一种联合处理提高木质纤维素转化效率的方法以及高效制备乙醇的方法
Wunna et al. Effect of alkali pretreatment on removal of lignin from sugarcane bagasse
Wei et al. Comparison of microwave-assisted zinc chloride hydrate and alkali pretreatments for enhancing eucalyptus enzymatic saccharification
CN104830928A (zh) 一种微波辅助碱性亚硫酸钠的木质纤维素预处理方法
Liu et al. Effect of bisulfite treatment on composition, structure, enzymatic hydrolysis and cellulase adsorption profiles of sugarcane bagasse
Baksi et al. Efficacy of a novel sequential enzymatic hydrolysis of lignocellulosic biomass and inhibition characteristics of monosugars
CN104498562A (zh) 氢氧化钠/尿素/水体系预处理农业废弃物生物质的方法
Liu et al. Comparative study of pretreated corn stover for sugar production using cotton pulping black liquor (CPBL) instead of sodium hydroxide
CN104404108A (zh) 一种提高木质纤维素糖转化率的预处理方法
Lu et al. Production of high concentration bioethanol from reed by combined liquid hot water and sodium carbonate-oxygen pretreatment
Xie et al. 1-Butyl-3-methylimidazolium chloride pretreatment of cotton stalk and structure characterization
Lin et al. Microwave irradiation with dilute acid hydrolysis applied to enhance the saccharification rate of water hyacinth (Eichhornia crassipes)
CN103146781B (zh) 一种棉杆水解液及其制备方法
CN105803017A (zh) 一种提高木质纤维原料酶水解糖化效率的方法
CN106906265A (zh) 一种无废液产生的秸秆预处理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15904614

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15904614

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 15904614

Country of ref document: EP

Kind code of ref document: A1