WO2017049509A1 - 一种Cable网络供电系统、方法及相关设备 - Google Patents

一种Cable网络供电系统、方法及相关设备 Download PDF

Info

Publication number
WO2017049509A1
WO2017049509A1 PCT/CN2015/090445 CN2015090445W WO2017049509A1 WO 2017049509 A1 WO2017049509 A1 WO 2017049509A1 CN 2015090445 W CN2015090445 W CN 2015090445W WO 2017049509 A1 WO2017049509 A1 WO 2017049509A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
power supply
power converter
supply branch
converter
Prior art date
Application number
PCT/CN2015/090445
Other languages
English (en)
French (fr)
Inventor
王宣强
王苏
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2015/090445 priority Critical patent/WO2017049509A1/zh
Publication of WO2017049509A1 publication Critical patent/WO2017049509A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems

Definitions

  • the present invention relates to the field of cable network technologies, and in particular, to a cable network power supply system, method, and related device.
  • the head end equipment such as the Distributed Cable Modem Termination System (DCMTS) head end equipment, optical station, coaxial cable based Ethernet (English: Ethernet over Coax, abbreviation: EOC) head-end equipment, mainly through the cable (English: Cable) media to provide users with FM (English: Frequency Modulation, abbreviation: FM) broadcast, digital TV, analog TV, Cable data service interface specification (English: Data Over Cable Service Interface Specifications, abbreviation: DOCSIS) data and DOCSIS-based voice and other services, Cable transmits the above-mentioned service signals, but also provides 60V AC (English: Alternating Current, abbreviation: AC), to realize the centralized cable-supplied power supply of active devices in the cable network, solves the problem of difficulty in taking power of active devices in the cable network, but also raises the reliability of the cable network power supply system. Requirements.
  • DCMTS Distributed Cable Modem Termination System
  • EOC coaxial cable based Ethernet
  • EOC Ethernet over Coax
  • a cable network power supply scheme provided by the prior art is provided by a single power converter for powering an active device such as a head end device and a bidirectional amplifier in a cable network, apparently at a power converter input terminal of 220V AC.
  • an abnormality or power converter fails, the active devices such as the head end device and the bidirectional amplifier are powered off, resulting in service interruption of the entire cable network.
  • FIG. 2 another cable network power supply solution provided by the prior art is provided with a set of power converters compared to the power supply scheme of FIG. 1, and a switch is disposed inside the head end device, and the first power converter is provided. And the second power converter is responsible for powering half of the active devices in the cable network.
  • the first power converter has a power failure
  • the head end device is not powered off, but the first power converter is responsible for supplying power.
  • the source device will be powered off, causing half of the user's service interruption in the entire cable network.
  • the maintenance personnel can make the second power converter supply power to all the active devices by closing the switch in FIG. 2, thereby restoring the half user.
  • the embodiment of the invention discloses a cable network power supply system and related equipment, which is used to ensure continuity of service of the entire cable network when the power supply of the cable network fails.
  • a first aspect of the embodiments of the present invention discloses a cable network power supply system, including a head end device, a first power converter, and a second power converter, wherein:
  • the first power converter is connected to the head end device as a first power supply branch for supplying power to an active device connected to the first power supply branch;
  • the second power converter is connected to the head end device as a second power supply branch for supplying power to the active device connected to the second power supply branch;
  • the head end device is configured to monitor a power supply condition of the first power converter and the second power converter, and when the first power converter detects a power failure, control the second power converter Supplying power to the active device connected to the first power supply branch and the second power supply branch, and when the power failure of the first power converter is restored, controlling the first power converter to be the first An active device connected to the power supply branch supplies power, and the second power converter supplies power to the active device connected to the second power supply branch.
  • the system further includes a power supply switching circuit, or the head end device includes the power supply switching circuit,
  • the power switching circuit includes a first controlled switch, a second controlled switch, and a third controlled switch, the first controlled switch is disposed at an input end of the first power converter, and the second controlled switch is configured And at the input end of the second power converter, the third controlled switch is disposed between the first power supply branch and the second power supply branch, when the head end device detects the first
  • the head end device controls the first controlled switch and the second controlled when a power converter and the second power converter are powered normally
  • the switch remains closed and controls the third controlled switch to remain open, wherein:
  • the head end device When the head end device detects that a power failure occurs in the first power converter, the head end device controls the first controlled switch to be turned off, and controls the third time when a preset first time period is experienced The controlled switch is closed such that the second power converter supplies power to the active devices connected to the first power supply branch and the second power supply branch;
  • the head end device When the head end device receives a disconnection command for the third controlled switch input, the head end device determines a power failure recovery of the first power converter, and controls the third controlled switch to be off. Turning on, and controlling the first controlled switch to close when experiencing a preset second time period, so that the first power converter supplies power to the active device connected to the first power supply branch, the second power source The converter supplies power to the active devices connected to the second power supply branch.
  • the system further includes a voltage monitoring device or the The head end device includes the voltage monitoring device, and the voltage monitoring device is connected to the input end and the output end of the first power converter and the second power converter for collecting the first power converter and the Voltage data at the input and output of the second power converter, wherein:
  • the head end device determines a power supply condition of the first power converter and the second power converter according to the voltage data.
  • the head end device is a distributed cable modem terminal system DCMTS head end device, an optical station, and a coaxial Any of the Ethernet EOC headend devices of the cable.
  • a second aspect of the embodiments of the present invention discloses a head end device, which is applied to a cable network power supply system, where the cable network power supply system includes the head end device, a first power converter, and a second power converter, where:
  • the first power converter is connected to the head end device as a first power supply branch for supplying power to an active device connected to the first power supply branch;
  • the first power converter is connected to the head end device as a second power supply branch for supplying power to an active device connected to the second power supply branch;
  • the head end device includes a power supply circuit and a control circuit, wherein:
  • the power circuit is connected to the control circuit for utilizing the first power converter and the The power provided by the second power converter supplies power to the control circuit;
  • the control circuit is configured to monitor a power supply situation of the first power converter and the second power converter, and control the second power converter when a power failure occurs in the first power converter is detected Supplying power to the active device connected to the first power supply branch and the second power supply branch, and when the power failure of the first power converter is restored, controlling the first power converter to be the first An active device connected to the power supply branch supplies power, and the second power converter supplies power to the active device connected to the second power supply branch.
  • the system further includes a power supply switching circuit, or the head end device further includes the power supply switching circuit,
  • the power switching circuit includes a first controlled switch, a second controlled switch, and a third controlled switch, the first controlled switch is disposed at an input end of the first power converter, and the second controlled switch Provided at an input end of the second power converter, the third controlled switch is disposed between the first power supply branch and the second power supply branch, when the control circuit detects the The control circuit controls the first controlled switch and the second controlled switch to remain closed when a power converter and the second power converter are powered normally, and controls the third controlled switch to remain Disconnected state, where:
  • the control circuit controls the first controlled switch to be turned off when the control circuit detects that a power failure occurs in the first power converter, and controls the third controlled time when a preset first time period is experienced
  • the switch is closed to enable the second power converter to supply power to the active device connected to the first power supply branch and the second power supply branch;
  • the control circuit When the control circuit receives a disconnection command for the third controlled switch input, the control circuit determines a power failure recovery of the first power converter, and controls the third controlled switch to be turned off, And controlling the first controlled switch to be closed when the preset second time period is experienced, so that the first power converter supplies power to the active device connected to the first power supply branch, the second power converter Powering the active device connected to the second power supply branch.
  • the system further includes a voltage monitoring device or the The head end device further includes the voltage monitoring device, the voltage monitoring device connecting an input end and an output end of the first power converter and the second power converter for collecting the first power converter and Voltage data of the input end and the output end of the second power converter, wherein:
  • the control circuit determines a power supply condition of the first power converter and the second power converter according to the voltage data.
  • a third aspect of the embodiments of the present invention discloses a cable network power supply method, which is applied to a cable network power supply system, where the cable network power supply system includes a head end device, a first power converter, and a second power converter, where:
  • the first power converter is connected to the head end device as a first power supply branch for supplying power to an active device connected to the first power supply branch;
  • the first power converter is connected to the head end device as a second power supply branch for supplying power to an active device connected to the second power supply branch;
  • the method includes:
  • the head end device acquires a power supply condition of the first power converter and the second power converter
  • the head end device controls the second power converter to be the said power supply fault when determining that the first power converter has a power failure according to a power supply condition of the first power converter and the second power converter Powering the first power supply branch and the active device connected to the second power supply branch;
  • the head end device controls the first power converter to supply power to the active device connected to the first power supply branch when determining that the power failure of the first power converter is restored, the second power conversion The device supplies power to the active device connected to the second power supply branch.
  • the system further includes a power supply switching circuit, or the head end device includes the power supply switching circuit,
  • the power switching circuit includes a first controlled switch, a second controlled switch, and a third controlled switch, the first controlled switch is disposed at an input end of the first power converter, and the second controlled switch is configured And at the input end of the second power converter, the third controlled switch is disposed between the first power supply branch and the second power supply branch, when the head end device determines the first When the power converter and the second power converter are powered normally, the head end device controls the first controlled switch and the second controlled switch to remain in a closed state, and controls the third controlled switch Keep disconnected, where:
  • the head end device controls the second power converter to be the said power supply fault when determining that the first power converter has a power failure according to a power supply condition of the first power converter and the second power converter
  • the specific manner of power supply of the first power supply branch and the active power source connected to the second power supply branch is:
  • the head end device controls the first receiving device when determining that a power failure occurs in the first power converter according to a power supply condition of the first power converter and the second power converter
  • the control switch is turned off, and controls the third controlled switch to be closed when the preset first time period is elapsed, so that the second power converter is connected to the first power supply branch and the second power supply branch Powering the active device;
  • the head end device controls the first power converter to supply power to the active device connected to the first power supply branch when determining that the power failure of the first power converter is restored, the second power conversion
  • the specific way for the power supply of the active device connected to the second power supply branch is:
  • the head end device When the head end device receives a disconnection command for the third controlled switch input, the head end device determines a power failure recovery of the first power converter, and controls the third controlled switch to be off. Turning on, and controlling the first controlled switch to close when experiencing a preset second time period, so that the first power converter supplies power to the active device connected to the first power supply branch, the second power source The converter supplies power to the active devices connected to the second power supply branch.
  • the system further includes a voltage monitoring device or the The head end device includes the voltage monitoring device, the voltage monitoring device connecting an input end and an output end of the first power converter and the second power converter, wherein:
  • the specific manner in which the head end device obtains the power supply situation of the first power converter and the second power converter is:
  • the head end device acquires voltage data of the input end and the output end of the first power converter and the second power converter collected by the voltage monitoring device;
  • the head end device determines a power supply condition of the first power converter and the second power converter according to the voltage data.
  • the first power converter is connected to the head end device as a first power supply branch for supplying power to the active device connected to the first power supply branch; the second power converter and the head end The device is connected as a second power supply branch for supplying power to the active device connected to the second power supply branch; the head end device is configured to monitor the power supply of the first power converter and the second power converter Controlling the second power converter to supply power to the first power supply branch and the active device connected to the second power supply branch when the power failure of the first power converter is detected, when the first power converter Power failure recovery In response, the first power converter is controlled to supply power to the active device connected to the first power supply branch, and the second power converter supplies power to the active device connected to the second power supply branch. It can be seen that when the power supply of the Cable network fails, the active devices connected to the respective power supply branches are not powered off, thereby ensuring the continuity of the service of the entire Cable network user.
  • FIG. 1 is a schematic structural diagram of a cable network power supply system disclosed in the prior art
  • FIG. 2 is a schematic structural diagram of another cable network power supply system disclosed in the prior art
  • FIG. 3 is a schematic structural diagram of a cable network power supply system according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a head end device according to an embodiment of the present invention.
  • FIG. 5 is a schematic flowchart of a cable network power supply method according to an embodiment of the present invention.
  • the embodiment of the invention discloses a cable network power supply system, method and related device, which are used for ensuring the continuity of the entire cable network service when the power supply of the cable network fails. The details are described below separately.
  • the head end device described in the embodiment of the present invention is any one of a distributed cable modem terminal system DCMTS head end device, an optical station, and a coaxial cable based Ethernet EOC head end device.
  • FIG. 3 is a schematic structural diagram of a cable network power supply system according to an embodiment of the present invention.
  • the cable network power supply system described in this embodiment includes: a head end device, a first power converter, and a second power converter, wherein:
  • the input end of the first power converter is connected to an external power source, and the output end of the first power converter is connected to the head end device through the first power inserter as a power supply branch a for active connection with the power supply branch a
  • the device is powered.
  • the head end device is connected to the bidirectional amplifier as a power supply branch b, and the power supply branch b is connected to the power supply branch a for supplying power to the active device connected to the power supply branch b, wherein the power supply branch a and the power supply branch b constitutes the first power supply branch.
  • the input end of the second power converter is connected to the external power source, and the output end of the second power converter is connected to the head end device through the second power plug-in as a power supply branch c for the active connection with the power supply branch c
  • the device is powered.
  • the head end device is connected to the bidirectional amplifier as a power supply branch d, and the power supply branch d is connected to the power supply branch c for supplying power to the active device connected to the power supply branch d, wherein the power supply branch c and the power supply branch d constitutes a second power supply branch.
  • the active device specifically includes a head end device and a bidirectional amplifier.
  • the bidirectional amplifier is used for amplifying the downlink signal sent by the head end device to the user equipment and the uplink signal sent by the user equipment to the head end device, wherein the bidirectional amplifier may have multiple stages.
  • the external power source can be 220V AC, and the first power converter and the second power converter convert 220V AC to 60V AC, respectively.
  • the power supply branch a and the power supply branch c are connected to the power supply circuit of the head end device, and the power supply circuit of the head end device is used to pass the 60V AC and the second power converter provided by the first power converter through the power supply branch a through the power supply branch
  • the 60V AC provided by c is converted to direct current (English: Direct Current, abbreviation: DC) to supply power to the control circuit of the head end equipment.
  • a first controlled switch is disposed between the input end of the first power converter and the external power source, and a second controlled switch is provided between the input end of the second power converter and the external power source, the first power supply branch and the second power supply branch Power supply
  • a third controlled switch is disposed between the roads (ie, between the power supply branch b and the power supply branch d), and the input and output ends of the first power converter are respectively provided with a voltage monitoring device 1 and a voltage monitoring device 2,
  • the input end and the output end of the two power converters are respectively provided with a voltage monitoring device 3 and a voltage monitoring device 4, a first controlled switch, a second controlled switch, a third controlled switch, a voltage monitoring device 1, and a voltage monitoring device 2
  • the voltage monitoring device 3 and the voltage monitoring device 4 are both connected to a control circuit of the head end device.
  • the control circuit of the head end device is configured to monitor the power supply condition of the first power converter according to the voltage data of the input end and the output end of the first power converter collected by the voltage monitoring device 1 and the voltage monitoring device 2, according to the voltage monitoring device 3 and the voltage
  • the voltage data of the input and output of the second power converter collected by the monitoring device 4 monitors the power supply of the second power converter.
  • the voltage monitoring device 1 is configured to monitor the state of the external power source 220V AC by collecting the voltage data of the input end of the first power converter
  • the voltage monitoring device 2 is configured to monitor the output of the 60V AC by collecting the voltage data of the output of the first power converter.
  • the voltage monitoring device 3 is configured to monitor the state of the external power source 220V AC by collecting the voltage data of the input end of the second power converter
  • the voltage monitoring device 4 is configured to monitor the output of the 60V AC by collecting the voltage data of the output of the second power converter. status.
  • control circuit of the head end device monitors that the first power converter and the second power converter are powered normally, controlling the first controlled switch and the second controlled switch to remain closed, and controlling the third controlled switch to remain off .
  • the control circuit of the head end device determines a power failure occurs in the first power converter for controlling the first controlled switch to be turned off, and controlling the third controlled switch to be closed when the preset first time period is elapsed, and the power supply branch b and the power supply branch d are connected at this time,
  • the active device that connects the second power converter to the first power supply branch (ie, the power supply branch a and the power supply branch b) and the second power supply branch (ie, the power supply branch c and the power supply branch d) is powered.
  • the abnormal state of the external power supply 220V AC at the input end of the first power converter includes a sudden interruption of the external power supply 220V AC, or the external power supply 220V AC fluctuates drastically, and the parameters such as the peak voltage value and the effective voltage value are lower than the preset first threshold.
  • a state abnormality of the first power converter output 60V AC includes a failure of the first power converter such that the output voltage of the output does not reach a preset second threshold.
  • the preset first duration may be a short period of time, such as the ms level, because The external power source connected to the input end of the first power converter may be different from the external power source connected to the input end of the second power converter.
  • the control circuit of the head end device controls the first controlled switch to be turned off, and the delay is preset for the first time. Controlling the third controlled switch closure can effectively avoid the risk of hedging of the two sets of external power sources, and because of the capacitive load in the cable network power supply system, the first power supply branch (ie, the power supply branch a and the power supply branch b) The connected active device will not be powered off immediately, and can still work normally within the preset first time period of the delay. After the third controlled switch is closed, the active device connected to the first power supply branch can be powered by the second power supply. The converter is powered.
  • the control circuit of the head end device determines the power failure recovery of the first power converter, controls the third controlled switch to be disconnected, and is undergoing
  • the second time period is preset, the first controlled switch is closed, and the power supply branch b and the power supply branch d are disconnected, so that the first power converter supplies power to the active device connected to the first power supply branch.
  • the two power converters supply power to the active devices connected to the second power supply branch.
  • the power failure recovery of the first power converter includes the state of the external power source 220V AC of the first power converter input returning to normal (for example, the external power source 220V AC is restored or restored), or the fault recovery of the first power converter.
  • the preset second duration may be a short period of time, for example, the ms level.
  • the head end device may be The control circuit issues an instruction to disconnect the third controlled switch, and the control circuit of the head end device controls the third controlled switch to be disconnected, because the external power supply connected to the input end of the first power converter and the second power converter input end The connected external power supply may be out of phase.
  • the delay is preset for the second time period and then the first controlled switch is closed to effectively prevent the two sets of external power sources from appearing.
  • the active devices connected to the first power supply branch ie, the power supply branch a and the power supply branch b
  • the second time period can still work normally.
  • the active device connected to the first power supply branch is powered by the first power converter, and the second power supply branch is connected to the active source.
  • the device is powered by a second power converter.
  • first power converter, the first power inserter, the second power converter, the second power inserter, the first controlled switch, the second controlled switch, and the voltage monitoring device 1 in this embodiment The voltage monitoring device 2, the voltage monitoring device 3 and the voltage monitoring device 4 may also be integrated in whole or in part.
  • the inside of the head end device is not limited in the embodiment of the present invention.
  • the first power converter is connected to the head end device as a first power supply branch for supplying power to the active device connected to the first power supply branch; the second power converter and the head end The device is connected as a second power supply branch for supplying power to the active device connected to the second power supply branch; the head end device is configured to monitor the power supply of the first power converter and the second power converter Controlling the second power converter to supply power to the first power supply branch and the active device connected to the second power supply branch when the power failure of the first power converter is detected, when the first power converter When the power failure recovers, the first power converter is controlled to supply power to the active device connected to the first power supply branch, and the second power converter supplies power to the active device connected to the second power supply branch. It can be seen that when the power supply of the Cable network fails, the active devices connected to the respective power supply branches are not powered off, thereby ensuring the continuity of the service of the entire Cable network user.
  • FIG. 4 is a schematic structural diagram of a head end device according to an embodiment of the present invention.
  • the head end device described in this embodiment is applied to a cable network power supply system as shown in FIG. 3.
  • the cable network power supply system includes a head end device, a first power converter, and a second power converter, wherein:
  • the input end of the first power converter is connected to an external power source, and the output end of the first power converter is connected to the head end device through the first power inserter as a power supply branch a for active connection with the power supply branch a
  • the device is powered.
  • the head end device is connected to the bidirectional amplifier as a power supply branch b, and the power supply branch b is connected to the power supply branch a for supplying power to the active device connected to the power supply branch b, wherein the power supply branch a and the power supply branch b constitutes the first power supply branch.
  • the input end of the second power converter is connected to the external power source, and the output end of the second power converter is connected to the head end device through the second power plug-in as a power supply branch c for the active connection with the power supply branch c
  • the device is powered.
  • the head end device is connected to the bidirectional amplifier as a power supply branch d, and the power supply branch d is connected to the power supply branch c for supplying power to the active device connected to the power supply branch d, wherein the power supply branch c and the power supply branch d constitutes a second power supply branch.
  • the headend device includes a power supply circuit and a control circuit, wherein:
  • a power circuit connected to the control circuit for utilizing the first power converter and the second power converter The supplied power supplies power to the control and service circuits.
  • the service circuit may specifically include a optomechanical circuit, a coaxial media converter (CM: CMC) circuit and a mixing circuit for providing broadband Internet access and analog telephone services for user equipment in the Cable network ( English: Plain Old Telephone Service (POTS) and cable TV (English: Cable Television, abbreviation: CATV).
  • CM coaxial media converter
  • CATV Cable Television, abbreviation: CATV
  • the external power source can be 220V AC
  • the first power converter and the second power converter respectively convert 220V AC to 60V AC
  • the power circuit of the head end device can specifically include two primary power sources (for example, one power supply m and one time)
  • the power supply n) and the combination circuit the input end of the primary power supply m is connected to the power supply branch a, the input end of the primary power supply n is connected to the power supply branch c, and the output end of the primary power supply m and the output end of the primary power supply n are connected with the combined circuit
  • the primary power supply m is used to convert the first power converter through the 60V AC provided by the power supply branch a to 12V DC and 24V DC
  • the primary power supply n is used to convert the second power converter through the 60V AC provided by the power supply branch c.
  • the combined circuit is used to supply the control circuit and the service circuit of the head end equipment after combining the primary power supply m and the direct current output of the primary power supply
  • a control circuit configured to monitor a power supply condition of the first power converter and the second power converter, and when the first power converter detects a power failure, control the second power converter as a first power supply branch (ie, a power supply branch)
  • the active device connected to the road a and the power supply branch b) and the second power supply branch (ie, the power supply branch c and the power supply branch d) is powered, and when the power failure of the first power converter is restored, the first power conversion is controlled.
  • the device supplies power to the active device connected to the first power supply branch, and the second power converter supplies power to the active device connected to the second power supply branch.
  • the cable network power supply system further includes a power switching circuit or the head end device further includes a power switching circuit, where the power switching circuit includes a first controlled switch, a second controlled switch, and a third controlled switch, A controlled switch is disposed at an input end of the first power converter, a second controlled switch is disposed at an input end of the second power converter, and a third controlled switch is disposed at the first power supply branch and the second power supply branch Between the power supply branch b and the power supply branch d, when the control circuit detects that the first power converter and the second power converter are powered normally, controlling the first controlled switch and the second controlled switch to remain closed State and control the third controlled switch to remain open, where:
  • control circuit When the control circuit detects that the first power converter has a power failure, the control circuit controls the first controlled switch to be turned off, and controls the third controlled switch to close when the preset first time period is elapsed, so that the second power converter is turned on Power is supplied to the active devices connected to the first power supply branch and the second power supply branch.
  • the preset first duration may be a short period of time, such as an ms level.
  • the control circuit of the head end device controls the first controlled switch to be disconnected, and the delay is pre- Setting the first duration and then controlling the third controlled switch closure can effectively avoid the risk of hedging of the two sets of external power sources.
  • the first power supply branch ie, the power supply branch a and The active device connected to the power supply branch b
  • the active device connected to the first power supply branch is It can be powered by a second power converter.
  • the control circuit determines the power failure recovery of the first power converter, controls the third controlled switch to be turned off, and controls the preset second time period The first controlled switch is closed such that the first power converter supplies power to the active device connected to the first power supply branch and the second power converter supplies power to the active device connected to the second power supply branch.
  • the preset second duration may be a short period of time, such as an ms level.
  • the instruction of disconnecting the third controlled switch may be issued to the control circuit of the head end device, and the head end device The control circuit controls the third controlled switch to be disconnected. Since the external power source connected to the input end of the first power converter may be out of phase with the external power source connected to the input end of the second power converter, the control circuit of the head end device controls the third After the control switch is disconnected, the delay is preset for the second time period and then the first controlled switch is closed to effectively avoid the risk of hedging of the two sets of external power sources.
  • the first power supply The active device connected to the branch circuit (ie, the power supply branch a and the power supply branch b) will not be powered off immediately, and can still work normally for a preset second time period of delay, first after the first controlled switch is closed.
  • the active device connected to the power supply branch is powered by the first power converter, and the active device connected to the second power supply branch is powered by the second power converter.
  • the cable network power supply system further includes a voltage monitoring device or the head end device further includes a voltage monitoring device, and the voltage monitoring device is connected to the input end and the output end of the first power converter and the second power converter. And collecting voltage data of the input end and the output end of the first power converter and the second power converter, wherein:
  • the control circuit determines the power supply of the first power converter and the second power converter based on the voltage data.
  • the voltage monitoring device may include a voltage monitoring device 1, a voltage monitoring device 2, a voltage monitoring device 3, and a voltage monitoring device 4, wherein the voltage monitoring device 1 is configured to monitor the state of the external power supply 220V AC at the input end of the first power converter.
  • the voltage monitoring device 2 is configured to monitor the state of the first power converter output terminal 60V AC
  • the voltage monitoring device 3 is configured to monitor the state of the external power source 220V AC of the second power converter input terminal
  • the voltage monitoring device 4 is configured to monitor the second state.
  • the control circuit determines the first The power converter has a power failure.
  • the first power converter, the first power inserter, the second power converter, the second power inserter, the first controlled switch, the second controlled switch, and the third controlled The switch, the voltage monitoring device 1, the voltage monitoring device 2, the voltage monitoring device 3, and the voltage monitoring device 4 may be integrated in the head end device in whole or in part, which is not limited in the embodiment of the present invention.
  • control circuit of the head end device is configured to cut off the external power supply of the input end of the first power converter when the power failure of the first power converter is detected, and control the second power converter to be the first power supply branch. (ie, the power supply branch a and the power supply branch b) and the active power supply connected to the second power supply branch (ie, the power supply branch c and the power supply branch d), when the power failure recovery of the first power converter is detected
  • the first power converter is controlled to supply power to the active device connected to the first power supply branch, and the second power converter supplies power to the active device connected to the second power supply branch. It can be seen that when the power supply of the Cable network fails, the active devices connected to the respective power supply branches are not powered off, thereby ensuring the continuity of the entire Cable network service.
  • FIG. 5 is a schematic flowchart diagram of a cable network power supply method according to an embodiment of the present invention.
  • the cable network power supply method described in this embodiment is applied to a cable network power supply system as shown in FIG. 3, and the cable network power supply system includes a head end device, a first power converter, and a second power converter, wherein a power converter is connected to the head end device as a first power supply branch for supplying power to the active device connected to the first power supply branch, and the first power converter is connected to the head end device as a second power supply branch For powering an active device connected to the second power supply branch.
  • the Cable network power supply method includes the following steps:
  • the head end device acquires a power supply condition of the first power converter and the second power converter.
  • the head end device controls the second power converter to be the first power supply branch and the second power supply branch when determining that the first power converter has a power failure according to the power supply condition of the first power converter and the second power converter. Powered by active devices connected to the road.
  • the power failure of the first power converter includes an abnormal state of the external power supply 220V AC of the first power converter input, or an abnormal state of the first power converter output 60V AC.
  • the abnormal state of the external power supply 220V AC at the input end of the first power converter includes a sudden interruption of the external power supply 220V AC, or the external power supply 220V AC fluctuates drastically, causing the peak voltage value, the effective voltage value and the like to be lower than the preset first threshold value.
  • a state abnormality of the first power converter output 60V AC includes a failure of the first power converter such that the output voltage of the output does not reach a preset second threshold.
  • the head end device controls the first power converter to supply power to the active device connected to the first power supply branch when the power failure of the first power converter is restored, and the second power converter is connected to the second power supply branch. Powered by active devices.
  • the cable network power supply system further includes a power switching circuit or the head end device includes a power switching circuit
  • the power switching circuit includes a first controlled switch, a second controlled switch, and a third controlled switch
  • first The controlled switch is disposed at an input end of the first power converter
  • the second controlled switch is disposed at an input end of the second power converter
  • the third controlled switch is disposed between the first power supply branch and the second power supply branch
  • the head end device controls the second power converter to be the first power supply branch and the second power supply branch connection when determining that the first power converter has a power failure according to the power supply condition of the first power converter and the second power converter
  • the specific way to power the active device is:
  • the head end device determines that the first power converter has a power failure according to the power supply condition of the first power converter and the second power converter, the head end device controls the first controlled switch to be disconnected, and undergoes the preset first The third controlled switch is closed for a period of time such that the second power converter supplies power to the active devices connected to the first power supply branch and the second power supply branch.
  • the preset first duration may be a short period of time, such as an ms level.
  • the head end device controls the first controlled switch to be disconnected, and the delay is pre- Setting the first duration and then controlling the third controlled switch closure can effectively avoid the risk of hedging of the two sets of external power sources.
  • the first power supply branch ie, the power supply branch a and The active device connected to the power supply branch b
  • the active device connected to the first power supply branch is It can be powered by a second power converter.
  • the head end device determines that the power failure of the first power converter is restored, the first power converter is controlled to supply power to the active device connected to the first power supply branch, and the second power converter is connected to the second power supply branch.
  • the specific method of powering the source device is:
  • the head end device determines the power failure recovery of the first power converter, controls the third controlled switch to be turned off, and when the preset second time period is elapsed
  • the first controlled switch is controlled to be closed such that the first power converter supplies power to the active device connected to the first power supply branch and the second power converter supplies power to the active device connected to the second power supply branch.
  • the preset second duration may be a short period of time, such as an ms level.
  • the instruction of disconnecting the third controlled switch may be issued to the head end device, and the head end device controls the third The controlled switch is disconnected, because the external power source connected to the input of the first power converter may be out of phase with the external power source connected to the input of the second power converter, and the head end device controls the third controlled switch to be disconnected, and the delay is pre- Setting the second duration to control the first controlled switch closure can effectively avoid the risk of hedging of the two sets of external power sources.
  • the first power supply branch ie, the power supply branch a and The power supply branch b
  • the active device connected by the first power supply branch is The first power converter is powered
  • the active device connected to the second power supply branch is powered by the second power converter.
  • the Cable network power supply system further includes a voltage monitoring device or the head end device includes a voltage monitoring device, and the voltage monitoring device connects the input end and the output end of the first power converter and the second power converter, wherein:
  • the specific manner in which the head end device obtains the power supply condition of the first power converter and the second power converter is:
  • the head end device acquires the first power converter and the second power converter collected by the voltage monitoring device Voltage data at the input and output.
  • the head end device determines the power supply of the first power converter and the second power converter based on the voltage data.
  • the voltage monitoring device may include a voltage monitoring device 1, a voltage monitoring device 2, a voltage monitoring device 3, and a voltage monitoring device 4, wherein the voltage monitoring device 1 is configured to monitor the state of the external power supply 220V AC at the input end of the first power converter.
  • the voltage monitoring device 2 is configured to monitor the state of the first power converter output terminal 60V AC
  • the voltage monitoring device 3 is configured to monitor the state of the external power source 220V AC of the second power converter input terminal
  • the voltage monitoring device 4 is configured to monitor the second state.
  • the head end device determines the first A power converter has a power failure.
  • the head end device acquires the power supply condition of the first power converter and the second power converter, and determines that the first power converter has a power failure according to the power supply condition of the first power converter and the second power converter. Controlling the second power converter to supply power to the active device connected to the first power supply branch and the second power supply branch, and controlling the first power converter to be the first when determining that the power failure of the first power converter is restored.
  • the active device connected to the power supply branch supplies power, and the second power converter supplies power to the active device connected to the second power supply branch. It can be seen that when the power supply of the Cable network fails, the active devices connected to the respective power supply branches are not powered off, thereby ensuring the continuity of the service of the entire Cable network user.
  • the program may be stored in a computer readable storage medium, and the storage medium may include: Flash disk, Read-Only Memory (ROM), Random Access Memory (RAM), disk or optical disk.

Abstract

一种Cable网络供电系统、方法及相关设备,所述系统包括头端设备、第一电源转换器和第二电源转换器,其中:所述第一电源转换器与所述头端设备连接,作为第一供电支路;所述第二电源转换器与所述头端设备连接,作为第二供电支路;所述头端设备用于当监测到所述第一电源转换器出现供电故障时,控制所述第二电源转换器为所述第一供电支路和所述第二供电支路连接的有源设备供电,当所述第一电源转换器的供电故障恢复时,控制所述第一电源转换器为所述第一供电支路连接的有源设备供电,所述第二电源转换器为所述第二供电支路连接的有源设备供电。可在Cable网络的供电出现故障时保证整个Cable网络用户业务的连续性。

Description

一种Cable网络供电系统、方法及相关设备 技术领域
本发明涉及Cable网络技术领域,尤其涉及一种Cable网络供电系统、方法及相关设备。
背景技术
目前,国内广播电视系统中,头端(英文:head end)设备,例如分布式电缆调制解调器终端系统(英文:Distributed Cable Modem Termination System,缩写:DCMTS)头端设备、光站、基于同轴电缆的以太网(英文:Ethernet over Coax,缩写:EOC)头端设备,主要通过电缆(英文:Cable)这种介质为用户提供调频(英文:Frequency Modulation,缩写:FM)广播、数字电视、模拟电视、有线电缆数据服务接口规范(英文:Data Over Cable Service Interface Specifications,缩写:DOCSIS)数据以及基于DOCSIS协议的语音等多种业务,Cable在传输上述业务信号的同时,还提供60V的交流电(英文:Alternating Current,缩写:AC),以实现Cable网络中有源设备的集中随缆供电,解决了Cable网络中有源设备取电难的问题,但同时也对Cable网络供电系统的可靠性提出了很高的要求。
如图1,为现有技术提供的一种Cable网络供电方案,由单组电源转换器负责为Cable网络中的头端设备、双向放大器等有源设备供电,显然在电源转换器输入端的220V AC异常或者电源转换器出现故障时头端设备、双向放大器等有源设备都会下电,从而导致整个Cable网络的业务中断。
如图2,为现有技术提供的另一种Cable网络供电方案,相较于图1中的供电方案,增加了一组电源转换器,同时头端设备内部设有一开关,第一电源转换器和第二电源转换器分别负责为Cable网络中一半的有源设备供电,在第一电源转换器出现供电故障时,头端设备并不会下电,但是由第一电源转换器负责供电的有源设备会下电,导致整个Cable网络会有一半用户的业务中断,维修人员通过将图2中的开关闭合,可以使第二电源转换器为全部的有源设备供电,从而恢复这一半用户的业务;在第一电源转换器的供电故障恢复时,维修人员需要先将图2中的开关断开,此时由第一电源转换器负责供电的有源设 备会再次下电,导致这一半用户的业务再次中断,待维修人员将第一电源转换器重新接入Cable网络后,由第一电源转换器负责供电的有源设备的供电才会恢复,此时这一半用户的业务恢复正常,显然在出现供电故障时,有一半用户的业务需要二次中断后才能恢复正常。
可见,如何在Cable网络的供电出现故障时保证整个Cable网络用户业务的连续已成为亟待解决的问题。
发明内容
本发明实施例公开了一种Cable网络供电系统及相关设备,用于在Cable网络的供电出现故障时保证整个Cable网络用户业务的连续。
本发明实施例第一方面公开了一种Cable网络供电系统,包括头端设备、第一电源转换器和第二电源转换器,其中:
所述第一电源转换器与所述头端设备连接,作为第一供电支路,用于为与所述第一供电支路连接的有源设备供电;
所述第二电源转换器与所述头端设备连接,作为第二供电支路,用于为与所述第二供电支路连接的有源设备供电;
所述头端设备用于监测所述第一电源转换器和所述第二电源转换器的供电情况,当监测到所述第一电源转换器出现供电故障时,控制所述第二电源转换器为所述第一供电支路和所述第二供电支路连接的有源设备供电,当所述第一电源转换器的供电故障恢复时,控制所述第一电源转换器为所述第一供电支路连接的有源设备供电,所述第二电源转换器为所述第二供电支路连接的有源设备供电。
结合本发明实施例第一方面,在本发明实施例第一方面的第一种可能的实现方式中,所述系统还包括供电切换电路或者所述头端设备包括所述供电切换电路,所述供电切换电路包括第一受控开关、第二受控开关和第三受控开关,所述第一受控开关设于所述第一电源转换器的输入端,所述第二受控开关设于所述第二电源转换器的输入端,所述第三受控开关设于所述第一供电支路和所述第二供电支路之间,当所述头端设备监测到所述第一电源转换器和所述第二电源转换器供电正常时,所述头端设备控制所述第一受控开关和所述第二受控 开关保持闭合状态,并控制所述第三受控开关保持断开状态,其中:
当所述头端设备监测到所述第一电源转换器出现供电故障时,所述头端设备控制所述第一受控开关断开,并在经历预设第一时长时控制所述第三受控开关闭合,以使得所述第二电源转换器为所述第一供电支路和所述第二供电支路连接的有源设备供电;
当所述头端设备接收到针对所述第三受控开关输入的断开指令时,所述头端设备确定所述第一电源转换器的供电故障恢复,控制所述第三受控开关断开,并在经历预设第二时长时控制所述第一受控开关闭合,以使得所述第一电源转换器为所述第一供电支路连接的有源设备供电,所述第二电源转换器为所述第二供电支路连接的有源设备供电。
结合本发明实施例第一方面或第一方面的第一种可能的实现方式,在本发明实施例第一方面的第二种可能的实现方式中,所述系统还包括电压监测装置或者所述头端设备包括所述电压监测装置,所述电压监测装置连接所述第一电源转换器和所述第二电源转换器的输入端与输出端,用于采集所述第一电源转换器和所述第二电源转换器的输入端与输出端的电压数据,其中:
所述头端设备根据所述电压数据确定所述第一电源转换器和所述第二电源转换器的供电情况。
结合本发明实施例第一方面,在本发明实施例第一方面的第三种可能的实现方式中,所述头端设备为分布式电缆调制解调器终端系统DCMTS头端设备、光站和基于同轴电缆的以太网EOC头端设备中的任一种。
本发明实施例第二方面公开了一种头端设备,应用于Cable网络供电系统中,所述Cable网络供电系统包括所述头端设备、第一电源转换器和第二电源转换器,其中:
所述第一电源转换器与所述头端设备连接,作为第一供电支路,用于为与所述第一供电支路连接的有源设备供电;
所述第一电源转换器与所述头端设备连接,作为第二供电支路,用于为与所述第二供电支路连接的有源设备供电;
所述头端设备包括电源电路和控制电路,其中:
所述电源电路,与所述控制电路连接,用于利用所述第一电源转换器和所 述第二电源转换器提供的电源为所述控制电路供电;
所述控制电路,用于监测所述第一电源转换器和所述第二电源转换器的供电情况,当监测到所述第一电源转换器出现供电故障时,控制所述第二电源转换器为所述第一供电支路和所述第二供电支路连接的有源设备供电,当所述第一电源转换器的供电故障恢复时,控制所述第一电源转换器为所述第一供电支路连接的有源设备供电,所述第二电源转换器为所述第二供电支路连接的有源设备供电。
结合本发明实施例第二方面,在本发明实施例第二方面的第一种可能的实现方式中,所述系统还包括供电切换电路或者所述头端设备还包括所述供电切换电路,所述供电切换电路包括第一受控开关、第二受控开关和第三受控开关,所述第一受控开关设于所述第一电源转换器的输入端,所述第二受控开关设于所述第二电源转换器的输入端,所述第三受控开关设于所述第一供电支路和所述第二供电支路之间,当所述控制电路监测到所述第一电源转换器和所述第二电源转换器供电正常时,所述控制电路控制所述第一受控开关和所述第二受控开关保持闭合状态,并控制所述第三受控开关保持断开状态,其中:
当所述控制电路监测到所述第一电源转换器出现供电故障时,所述控制电路控制所述第一受控开关断开,并在经历预设第一时长时控制所述第三受控开关闭合,以使得所述第二电源转换器为所述第一供电支路和所述第二供电支路连接的有源设备供电;
当所述控制电路接收到针对所述第三受控开关输入的断开指令时,所述控制电路确定所述第一电源转换器的供电故障恢复,控制所述第三受控开关断开,并在经历预设第二时长时控制所述第一受控开关闭合,以使得所述第一电源转换器为所述第一供电支路连接的有源设备供电,所述第二电源转换器为所述第二供电支路连接的有源设备供电。
结合本发明实施例第二方面或第二方面的第一种可能的实现方式,在本发明实施例第二方面的第二种可能的实现方式中,所述系统还包括电压监测装置或者所述头端设备还包括所述电压监测装置,所述电压监测装置连接所述第一电源转换器和所述第二电源转换器的输入端与输出端,用于采集所述第一电源转换器和所述第二电源转换器的输入端与输出端的电压数据,其中:
所述控制电路根据所述电压数据确定所述第一电源转换器和所述第二电源转换器的供电情况。
本发明实施例第三方面公开了一种Cable网络供电方法,应用于Cable网络供电系统,所述Cable网络供电系统包括头端设备、第一电源转换器和第二电源转换器,其中:
所述第一电源转换器与所述头端设备连接,作为第一供电支路,用于为与所述第一供电支路连接的有源设备供电;
所述第一电源转换器与所述头端设备连接,作为第二供电支路,用于为与所述第二供电支路连接的有源设备供电;
所述方法包括:
所述头端设备获取所述第一电源转换器和所述第二电源转换器的供电情况;
所述头端设备在根据所述第一电源转换器和所述第二电源转换器的供电情况确定出所述第一电源转换器出现供电故障时,控制所述第二电源转换器为所述第一供电支路和所述第二供电支路连接的有源设备供电;
所述头端设备在确定出所述第一电源转换器的供电故障恢复时,控制所述第一电源转换器为所述第一供电支路连接的有源设备供电,所述第二电源转换器为所述第二供电支路连接的有源设备供电。
结合本发明实施例第三方面,在本发明实施例第三方面的第一种可能的实现方式中,所述系统还包括供电切换电路或者所述头端设备包括所述供电切换电路,所述供电切换电路包括第一受控开关、第二受控开关和第三受控开关,所述第一受控开关设于所述第一电源转换器的输入端,所述第二受控开关设于所述第二电源转换器的输入端,所述第三受控开关设于所述第一供电支路和所述第二供电支路之间,当所述头端设备确定出所述第一电源转换器和所述第二电源转换器供电正常时,所述头端设备控制所述第一受控开关和所述第二受控开关保持闭合状态,并控制所述第三受控开关保持断开状态,其中:
所述头端设备在根据所述第一电源转换器和所述第二电源转换器的供电情况确定出所述第一电源转换器出现供电故障时,控制所述第二电源转换器为所述第一供电支路和所述第二供电支路连接的有源设备供电的具体方式为:
所述头端设备在根据所述第一电源转换器和所述第二电源转换器的供电情况确定出所述第一电源转换器出现供电故障时,所述头端设备控制所述第一受控开关断开,并在经历预设第一时长时控制所述第三受控开关闭合,以使得所述第二电源转换器为所述第一供电支路和所述第二供电支路连接的有源设备供电;
所述头端设备在确定出所述第一电源转换器的供电故障恢复时,控制所述第一电源转换器为所述第一供电支路连接的有源设备供电,所述第二电源转换器为所述第二供电支路连接的有源设备供电的具体方式为:
当所述头端设备接收到针对所述第三受控开关输入的断开指令时,所述头端设备确定所述第一电源转换器的供电故障恢复,控制所述第三受控开关断开,并在经历预设第二时长时控制所述第一受控开关闭合,以使得所述第一电源转换器为所述第一供电支路连接的有源设备供电,所述第二电源转换器为所述第二供电支路连接的有源设备供电。
结合本发明实施例第三方面或第三方面的第一种可能的实现方式,在本发明实施例第三方面的第二种可能的实现方式中,所述系统还包括电压监测装置或者所述头端设备包括所述电压监测装置,所述电压监测装置连接所述第一电源转换器和所述第二电源转换器的输入端与输出端,其中:
所述头端设备获取所述第一电源转换器和所述第二电源转换器的供电情况的具体方式为:
所述头端设备获取所述电压监测装置采集到的所述第一电源转换器和所述第二电源转换器的输入端与输出端的电压数据;
所述头端设备根据所述电压数据确定所述第一电源转换器和所述第二电源转换器的供电情况。
本发明实施例中,第一电源转换器与头端设备连接,作为第一供电支路,用于为与该第一供电支路连接的有源设备供电;第二电源转换器与该头端设备连接,作为第二供电支路,用于为与该第二供电支路连接的有源设备供电;该头端设备用于监测该第一电源转换器和该第二电源转换器的供电情况,当监测到该第一电源转换器出现供电故障时,控制该第二电源转换器为该第一供电支路和该第二供电支路连接的有源设备供电,当该第一电源转换器的供电故障恢 复时,控制该第一电源转换器为该第一供电支路连接的有源设备供电,该第二电源转换器为该第二供电支路连接的有源设备供电。可见,在Cable网络的供电出现故障时各个供电支路连接的有源器件均不会下电,从而保证了整个Cable网络用户业务的连续性。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例和现有技术中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是现有技术公开的一种Cable网络供电系统的结构示意图;
图2是现有技术公开的另一种Cable网络供电系统的结构示意图;
图3是本发明实施例公开的一种Cable网络供电系统的结构示意图;
图4是本发明实施例公开的一种头端设备的结构示意图;
图5是本发明实施例公开的一种Cable网络供电方法的流程示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例公开了一种Cable网络供电系统、方法及相关设备,用于在Cable网络的供电出现故障时保证整个Cable网络业务的连续性。以下分别进行详细说明。
本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”和“第三”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、 方法、产品或设备固有的其它步骤或单元。
其中,本发明实施例中所描述的头端设备为分布式电缆调制解调器终端系统DCMTS头端设备、光站和基于同轴电缆的以太网EOC头端设备中的任一种。
请参阅图3,为本发明实施例公开的一种Cable网络供电系统的结构示意图。本实施例中所描述的Cable网络供电系统,包括:头端设备、第一电源转换器和第二电源转换器,其中:
第一电源转换器的输入端连接外部电源,第一电源转换器的输出端通过第一电源插入器与头端设备连接,作为供电支路a,用于为与供电支路a连接的有源设备供电。
头端设备与双向放大器连接,作为供电支路b,供电支路b与供电支路a连接,用于为与供电支路b连接的有源设备供电,其中,供电支路a和供电支路b构成第一供电支路。
第二电源转换器的输入端连接外部电源,第二电源转换器的输出端通过第二电源插入器与头端设备连接,作为供电支路c,用于为与供电支路c连接的有源设备供电。
头端设备与双向放大器连接,作为供电支路d,供电支路d与供电支路c连接,用于为与供电支路d连接的有源设备供电,其中,供电支路c和供电支路d构成第二供电支路。
其中,有源设备具体包括头端设备和双向放大器。
双向放大器用于对头端设备向用户设备发送的下行信号以及用户设备向头端设备发送的上行信号进行放大,其中,双向放大器具体可以有多级。
具体的,外部电源可为220V AC,第一电源转换器和第二电源转换器分别将220V AC转换为60V AC。供电支路a和供电支路c连接头端设备的电源电路,头端设备的电源电路用于将第一电源转换器通过供电支路a提供的60V AC和第二电源转换器通过供电支路c提供的60V AC转换为直流电(英文:Direct Current,缩写:DC)后为头端设备的控制电路供电。
第一电源转换器的输入端与外部电源之间设有第一受控开关,第二电源转换器的输入端与外部电源之间设有第二受控开关,第一供电支路和第二供电支 路之间(即供电支路b和供电支路d之间)设有第三受控开关,第一电源转换器的输入端与输出端分别设有电压监测装置1和电压监测装置2,第二电源转换器的输入端与输出端分别设有电压监测装置3和电压监测装置4,第一受控开关、第二受控开关、第三受控开关、电压监测装置1、电压监测装置2、电压监测装置3和电压监测装置4均连接至头端设备的控制电路。
头端设备的控制电路用于根据电压监测装置1和电压监测装置2采集到的第一电源转换器输入端与输出端的电压数据监测第一电源转换器的供电情况,根据电压监测装置3和电压监测装置4采集到的第二电源转换器输入端与输出端的电压数据监测第二电源转换器的供电情况。
具体的,电压监测装置1用于通过采集第一电源转换器输入端的电压数据监测外部电源220V AC的状态,电压监测装置2用于通过采集第一电源转换器输出端的电压数据监测输出的60V AC的状态,电压监测装置3用于通过采集第二电源转换器输入端的电压数据监测外部电源220V AC的状态,电压监测装置4用于通过采集第二电源转换器输出端的电压数据监测输出的60V AC的状态。
当头端设备的控制电路监测到第一电源转换器和第二电源转换器供电正常时,控制第一受控开关和第二受控开关保持闭合状态,并控制第三受控开关保持断开状态。
当电压监测装置1监测到第一电源转换器输入端外部电源220V AC的状态异常,或者电压监测装置2监测到第一电源转换器输出端60V AC的状态异常时,头端设备的控制电路确定第一电源转换器出现供电故障,用于控制第一受控开关断开,并在经历预设第一时长时控制第三受控开关闭合,此时供电支路b和供电支路d连接,以使得第二电源转换器为第一供电支路(即供电支路a和供电支路b)和第二供电支路(即供电支路c和供电支路d)连接的有源设备供电。
其中,第一电源转换器输入端外部电源220V AC的状态异常包括外部电源220V AC突然中断,或者外部电源220V AC剧烈波动导致峰值电压值、有效电压值等参数低于预设第一门限值。第一电源转换器输出端60V AC的状态异常包括第一电源转换器出现故障导致输出端的输出电压达不到预设第二门限值。
具体的,预设第一时长具体可以为一段很短的时间,例如ms级别,由于 第一电源转换器输入端连接的外部电源与第二电源转换器输入端连接的外部电源可能不同相,头端设备的控制电路控制第一受控开关断开后,延时预设第一时长再控制第三受控开关闭合可以有效避免这两组外部电源可能出现的对冲风险,同时由于Cable网络供电系统中存在容性负载,第一供电支路(即供电支路a和供电支路b)连接的有源设备不会立即下电,并在延时的预设第一时长内仍然可以正常工作,第三受控开关闭合后第一供电支路连接的有源设备即可由第二电源转换器供电。
当头端设备的控制电路接收到针对第三受控开关输入的断开指令时,头端设备的控制电路确定第一电源转换器的供电故障恢复,控制第三受控开关断开,并在经历预设第二时长时控制第一受控开关闭合,此时供电支路b和供电支路d断开连接,以使得第一电源转换器为第一供电支路连接的有源设备供电,第二电源转换器为第二供电支路连接的有源设备供电。
其中,第一电源转换器的供电故障恢复包括第一电源转换器输入端外部电源220V AC的状态恢复正常(例如外部电源220V AC恢复连接或者恢复稳定),或者第一电源转换器的故障修复。
具体的,预设第二时长具体可以为一段很短的时间,例如ms级别,当维修人员确定外部电源220V AC的状态恢复正常或者将第一电源转换器的故障修复时,可向头端设备的控制电路下发断开第三受控开关的指令,头端设备的控制电路控制第三受控开关断开,由于第一电源转换器输入端连接的外部电源与第二电源转换器输入端连接的外部电源可能不同相,头端设备的控制电路控制第三受控开关断开后,延时预设第二时长再控制第一受控开关闭合可以有效避免这两组外部电源可能出现的对冲风险,同时由于Cable网络供电系统中存在容性负载,第一供电支路(即供电支路a和供电支路b)连接的有源设备不会立即下电,并在延时的预设第二时长内仍然可以正常工作,第一受控开关闭合后第一供电支路连接的有源设备由第一电源转换器供电,第二供电支路连接的有源设备由第二电源转换器供电。
需要说明的是,本实施例中的第一电源转换器、第一电源插入器、第二电源转换器、第二电源插入器、第一受控开关、第二受控开关、电压监测装置1、电压监测装置2、电压监测装置3和电压监测装置4也可以全部或者部分集成在 头端设备内部,本发明实施例不做限定。
本发明实施例中,第一电源转换器与头端设备连接,作为第一供电支路,用于为与该第一供电支路连接的有源设备供电;第二电源转换器与该头端设备连接,作为第二供电支路,用于为与该第二供电支路连接的有源设备供电;该头端设备用于监测该第一电源转换器和该第二电源转换器的供电情况,当监测到该第一电源转换器出现供电故障时,控制该第二电源转换器为该第一供电支路和该第二供电支路连接的有源设备供电,当该第一电源转换器的供电故障恢复时,控制该第一电源转换器为该第一供电支路连接的有源设备供电,该第二电源转换器为该第二供电支路连接的有源设备供电。可见,在Cable网络的供电出现故障时各个供电支路连接的有源器件均不会下电,从而保证了整个Cable网络用户业务的连续性。
请参阅图4,为本发明实施例公开的一种头端设备的结构示意图。本实施例中所描述的头端设备,应用于如图3所示的Cable网络供电系统中,Cable网络供电系统包括头端设备、第一电源转换器和第二电源转换器,其中:
第一电源转换器的输入端连接外部电源,第一电源转换器的输出端通过第一电源插入器与头端设备连接,作为供电支路a,用于为与供电支路a连接的有源设备供电。
头端设备与双向放大器连接,作为供电支路b,供电支路b与供电支路a连接,用于为与供电支路b连接的有源设备供电,其中,供电支路a和供电支路b构成第一供电支路。
第二电源转换器的输入端连接外部电源,第二电源转换器的输出端通过第二电源插入器与头端设备连接,作为供电支路c,用于为与供电支路c连接的有源设备供电。
头端设备与双向放大器连接,作为供电支路d,供电支路d与供电支路c连接,用于为与供电支路d连接的有源设备供电,其中,供电支路c和供电支路d构成第二供电支路。
头端设备包括电源电路和控制电路,其中:
电源电路,与控制电路连接,用于利用第一电源转换器和第二电源转换器 提供的电源为控制电路和业务电路供电。
其中,业务电路具体可包括光机电路、同轴媒体转换器(英文:Coaxial Media Converter,缩写:CMC)电路和混频电路,用于为Cable网络中的用户设备提供宽带上网、模拟电话业务(英文:Plain Old Telephone Service,缩写:POTS)以及有线电视(英文:Cable Television,缩写:CATV)等业务。
具体的,外部电源可为220V AC,第一电源转换器和第二电源转换器分别将220V AC转换为60V AC,头端设备的电源电路具体可包括两个一次电源(例如一次电源m和一次电源n)和合路电路,一次电源m的输入端连接供电支路a,一次电源n的输入端连接供电支路c,一次电源m的输出端和一次电源n的输出端均与合路电路连接,一次电源m用于将第一电源转换器通过供电支路a提供的60V AC转换为12V DC和24V DC,一次电源n用于将第二电源转换器通过供电支路c提供的60V AC转换为12V DC和24V DC,合路电路用于将一次电源m和一次电源n输出的直流电合路后为头端设备的控制电路和业务电路供电。
控制电路,用于监测第一电源转换器和第二电源转换器的供电情况,当监测到第一电源转换器出现供电故障时,控制第二电源转换器为第一供电支路(即供电支路a和供电支路b)和第二供电支路(即供电支路c和供电支路d)连接的有源设备供电,当第一电源转换器的供电故障恢复时,控制第一电源转换器为第一供电支路连接的有源设备供电,第二电源转换器为第二供电支路连接的有源设备供电。
在一些可行的实施方式中,Cable网络供电系统还包括供电切换电路或者头端设备还包括供电切换电路,供电切换电路包括第一受控开关、第二受控开关和第三受控开关,第一受控开关设于第一电源转换器的输入端,第二受控开关设于第二电源转换器的输入端,第三受控开关设于第一供电支路和第二供电支路之间(即供电支路b和供电支路d)之间,当控制电路监测到第一电源转换器和第二电源转换器供电正常时,控制第一受控开关和第二受控开关保持闭合状态,并控制第三受控开关保持断开状态,其中:
当控制电路监测到第一电源转换器出现供电故障时,控制电路控制第一受控开关断开,并在经历预设第一时长时控制第三受控开关闭合,以使得第二电源转换器为第一供电支路和第二供电支路连接的有源设备供电。
其中,预设第一时长具体可以为一段很短的时间,例如ms级别。
具体的,由于第一电源转换器输入端连接的外部电源与第二电源转换器输入端连接的外部电源可能不同相,头端设备的控制电路控制第一受控开关断开后,延时预设第一时长再控制第三受控开关闭合可以有效避免这两组外部电源可能出现的对冲风险,同时由于Cable网络供电系统中存在容性负载,第一供电支路(即供电支路a和供电支路b)连接的有源设备不会立即下电,并在延时的预设第一时长内仍然可以正常工作,第三受控开关闭合后第一供电支路连接的有源设备即可由第二电源转换器供电。
当控制电路接收到针对第三受控开关输入的断开指令时,控制电路确定第一电源转换器的供电故障恢复,控制第三受控开关断开,并在经历预设第二时长时控制第一受控开关闭合,以使得第一电源转换器为第一供电支路连接的有源设备供电,第二电源转换器为第二供电支路连接的有源设备供电。
其中,预设第二时长具体可以为一段很短的时间,例如ms级别。
具体的,当维修人员确定外部电源220V AC的状态恢复正常或者将第一电源转换器的故障修复时,可向头端设备的控制电路下发断开第三受控开关的指令,头端设备的控制电路控制第三受控开关断开,由于第一电源转换器输入端连接的外部电源与第二电源转换器输入端连接的外部电源可能不同相,头端设备的控制电路控制第三受控开关断开后,延时预设第二时长再控制第一受控开关闭合可以有效避免这两组外部电源可能出现的对冲风险,同时由于Cable网络供电系统中存在容性负载,第一供电支路(即供电支路a和供电支路b)连接的有源设备不会立即下电,并在延时的预设第二时长内仍然可以正常工作,第一受控开关闭合后第一供电支路连接的有源设备由第一电源转换器供电,第二供电支路连接的有源设备由第二电源转换器供电。
在一些可行的实施方式中,Cable网络供电系统还包括电压监测装置或者头端设备还包括电压监测装置,电压监测装置连接第一电源转换器和第二电源转换器的输入端与输出端,用于采集第一电源转换器和第二电源转换器的输入端与输出端的电压数据,其中:
控制电路根据电压数据确定第一电源转换器和第二电源转换器的供电情况。
具体的,电压监测装置可包括电压监测装置1、电压监测装置2、电压监测装置3和电压监测装置4,其中,电压监测装置1用于监测第一电源转换器输入端外部电源220V AC的状态,电压监测装置2用于监测第一电源转换器输出端60V AC的状态,电压监测装置3用于监测第二电源转换器输入端外部电源220V AC的状态,电压监测装置4用于监测第二电源转换器输出端60V AC的状态。
其中,当电压监测装置1监测到第一电源转换器输入端外部电源220V AC的状态异常,或者电压监测装置2监测到第一电源转换器输出端60V AC的状态异常时,控制电路确定第一电源转换器出现供电故障。
需要说明的是,本实施例中的第一电源转换器、第一电源插入器、第二电源转换器、第二电源插入器、第一受控开关、第二受控开关、第三受控开关、电压监测装置1、电压监测装置2、电压监测装置3和电压监测装置4可全部或者部分集成在头端设备内部,本发明实施例不做限定。
本实施例中,头端设备的控制电路用于在监测到第一电源转换器出现供电故障时,切断第一电源转换器输入端的外部电源,并控制第二电源转换器为第一供电支路(即供电支路a和供电支路b)和第二供电支路(即供电支路c和供电支路d)连接的有源设备供电,在监测到第一电源转换器的供电故障恢复时,控制第一电源转换器为第一供电支路连接的有源设备供电,第二电源转换器为第二供电支路连接的有源设备供电。可见,在Cable网络的供电出现故障时各个供电支路连接的有源器件均不会下电,从而保证了整个Cable网络业务的连续性。
请参阅图5,为本发明实施例公开的一种Cable网络供电方法的流程示意图。本实施例中所描述的Cable网络供电方法,应用于如图3所示的Cable网络供电系统中,Cable网络供电系统包括头端设备、第一电源转换器和第二电源转换器,其中,第一电源转换器与头端设备连接,作为第一供电支路,用于为与第一供电支路连接的有源设备供电,第一电源转换器与头端设备连接,作为第二供电支路,用于为与第二供电支路连接的有源设备供电。
Cable网络供电方法包括以下步骤:
S501、头端设备获取第一电源转换器和第二电源转换器的供电情况。
S502、头端设备在根据第一电源转换器和第二电源转换器的供电情况确定出第一电源转换器出现供电故障时,控制第二电源转换器为第一供电支路和第二供电支路连接的有源设备供电。
其中,第一电源转换器出现供电故障包括第一电源转换器输入端外部电源220V AC的状态异常,或者第一电源转换器输出端60V AC的状态异常。第一电源转换器输入端外部电源220V AC的状态异常包括外部电源220V AC突然中断,或者外部电源220V AC剧烈波动导致峰值电压值、有效电压值等参数低于预设第一门限值。第一电源转换器输出端60V AC的状态异常包括第一电源转换器出现故障导致输出端的输出电压达不到预设第二门限值。
S503、头端设备在确定出第一电源转换器的供电故障恢复时,控制第一电源转换器为第一供电支路连接的有源设备供电,第二电源转换器为第二供电支路连接的有源设备供电。
在一些可行的实施方式中,Cable网络供电系统还包括供电切换电路或者头端设备包括供电切换电路,供电切换电路包括第一受控开关、第二受控开关和第三受控开关,第一受控开关设于第一电源转换器的输入端,第二受控开关设于第二电源转换器的输入端,第三受控开关设于第一供电支路和第二供电支路之间,当头端设备确定出第一电源转换器和第二电源转换器供电正常时,头端设备控制第一受控开关和第二受控开关保持闭合状态,并控制第三受控开关保持断开状态,其中:
头端设备在根据第一电源转换器和第二电源转换器的供电情况确定出第一电源转换器出现供电故障时,控制第二电源转换器为第一供电支路和第二供电支路连接的有源设备供电的具体方式为:
头端设备在根据第一电源转换器和第二电源转换器的供电情况确定出第一电源转换器出现供电故障时,头端设备控制第一受控开关断开,并在经历预设第一时长时控制第三受控开关闭合,以使得第二电源转换器为第一供电支路和第二供电支路连接的有源设备供电。
其中,预设第一时长具体可以为一段很短的时间,例如ms级别。
具体的,由于第一电源转换器输入端连接的外部电源与第二电源转换器输入端连接的外部电源可能不同相,头端设备控制第一受控开关断开后,延时预 设第一时长再控制第三受控开关闭合可以有效避免这两组外部电源可能出现的对冲风险,同时由于Cable网络供电系统中存在容性负载,第一供电支路(即供电支路a和供电支路b)连接的有源设备不会立即下电,并在延时的预设第一时长内仍然可以正常工作,第三受控开关闭合后第一供电支路连接的有源设备即可由第二电源转换器供电。
头端设备在确定出第一电源转换器的供电故障恢复时,控制第一电源转换器为第一供电支路连接的有源设备供电,第二电源转换器为第二供电支路连接的有源设备供电的具体方式为:
当头端设备接收到针对第三受控开关输入的断开指令时,头端设备确定第一电源转换器的供电故障恢复,控制第三受控开关断开,并在经历预设第二时长时控制第一受控开关闭合,以使得第一电源转换器为第一供电支路连接的有源设备供电,第二电源转换器为第二供电支路连接的有源设备供电。
其中,预设第二时长具体可以为一段很短的时间,例如ms级别。
具体的,当维修人员确定外部电源220V AC的状态恢复正常或者将第一电源转换器的故障修复时,可向头端设备下发断开第三受控开关的指令,头端设备控制第三受控开关断开,由于第一电源转换器输入端连接的外部电源与第二电源转换器输入端连接的外部电源可能不同相,头端设备控制第三受控开关断开后,延时预设第二时长再控制第一受控开关闭合可以有效避免这两组外部电源可能出现的对冲风险,同时由于Cable网络供电系统中存在容性负载,第一供电支路(即供电支路a和供电支路b)连接的有源设备不会立即下电,并在延时的预设第二时长内仍然可以正常工作,第一受控开关闭合后第一供电支路连接的有源设备由第一电源转换器供电,第二供电支路连接的有源设备由第二电源转换器供电。
在一些可行的实施方式中,Cable网络供电系统还包括电压监测装置或者头端设备包括电压监测装置,电压监测装置连接第一电源转换器和第二电源转换器的输入端与输出端,其中:
头端设备获取第一电源转换器和第二电源转换器的供电情况的具体方式为:
头端设备获取电压监测装置采集到的第一电源转换器和第二电源转换器 的输入端与输出端的电压数据。
头端设备根据电压数据确定第一电源转换器和第二电源转换器的供电情况。
具体的,电压监测装置可包括电压监测装置1、电压监测装置2、电压监测装置3和电压监测装置4,其中,电压监测装置1用于监测第一电源转换器输入端外部电源220V AC的状态,电压监测装置2用于监测第一电源转换器输出端60V AC的状态,电压监测装置3用于监测第二电源转换器输入端外部电源220V AC的状态,电压监测装置4用于监测第二电源转换器输出端60V AC的状态。
其中,当电压监测装置1监测到第一电源转换器输入端外部电源220V AC的状态异常,或者电压监测装置2监测到第一电源转换器输出端60V AC的状态异常时,头端设备确定第一电源转换器出现供电故障。
本实施例中,头端设备获取第一电源转换器和第二电源转换器的供电情况,在根据第一电源转换器和第二电源转换器的供电情况确定出第一电源转换器出现供电故障时,控制第二电源转换器为第一供电支路和第二供电支路连接的有源设备供电,在确定出第一电源转换器的供电故障恢复时,控制第一电源转换器为第一供电支路连接的有源设备供电,第二电源转换器为第二供电支路连接的有源设备供电。可见,在Cable网络的供电出现故障时各个供电支路连接的有源器件均不会下电,从而保证了整个Cable网络用户业务的连续性。
本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序可以存储于一计算机可读存储介质中,存储介质可以包括:闪存盘、只读存储器(Read-Only Memory,ROM)、随机存取器(Random Access Memory,RAM)、磁盘或光盘等。
以上对本发明实施例所提供的一种Cable网络供电系统、方法及相关设备进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的结构、方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (10)

  1. 一种Cable网络供电系统,其特征在于,包括头端设备、第一电源转换器和第二电源转换器,其中:
    所述第一电源转换器与所述头端设备连接,作为第一供电支路,用于为与所述第一供电支路连接的有源设备供电;
    所述第二电源转换器与所述头端设备连接,作为第二供电支路,用于为与所述第二供电支路连接的有源设备供电;
    所述头端设备用于监测所述第一电源转换器和所述第二电源转换器的供电情况,当监测到所述第一电源转换器出现供电故障时,控制所述第二电源转换器为所述第一供电支路和所述第二供电支路连接的有源设备供电,当所述第一电源转换器的供电故障恢复时,控制所述第一电源转换器为所述第一供电支路连接的有源设备供电,所述第二电源转换器为所述第二供电支路连接的有源设备供电。
  2. 根据权利要求1所述的系统,其特征在于,所述系统还包括供电切换电路或者所述头端设备包括所述供电切换电路,所述供电切换电路包括第一受控开关、第二受控开关和第三受控开关,所述第一受控开关设于所述第一电源转换器的输入端,所述第二受控开关设于所述第二电源转换器的输入端,所述第三受控开关设于所述第一供电支路和所述第二供电支路之间,当所述头端设备监测到所述第一电源转换器和所述第二电源转换器供电正常时,所述头端设备控制所述第一受控开关和所述第二受控开关保持闭合状态,并控制所述第三受控开关保持断开状态,其中:
    当所述头端设备监测到所述第一电源转换器出现供电故障时,所述头端设备控制所述第一受控开关断开,并在经历预设第一时长时控制所述第三受控开关闭合,以使得所述第二电源转换器为所述第一供电支路和所述第二供电支路连接的有源设备供电;
    当所述头端设备接收到针对所述第三受控开关输入的断开指令时,所述头端设备确定所述第一电源转换器的供电故障恢复,控制所述第三受控开关断 开,并在经历预设第二时长时控制所述第一受控开关闭合,以使得所述第一电源转换器为所述第一供电支路连接的有源设备供电,所述第二电源转换器为所述第二供电支路连接的有源设备供电。
  3. 根据权利要求1或2所述的系统,其特征在于,所述系统还包括电压监测装置或者所述头端设备包括所述电压监测装置,所述电压监测装置连接所述第一电源转换器和所述第二电源转换器的输入端与输出端,用于采集所述第一电源转换器和所述第二电源转换器的输入端与输出端的电压数据,其中:
    所述头端设备根据所述电压数据确定所述第一电源转换器和所述第二电源转换器的供电情况。
  4. 根据权利要求1所述的系统,其特征在于,
    所述头端设备为分布式电缆调制解调器终端系统DCMTS头端设备、光站和基于同轴电缆的以太网EOC头端设备中的任一种。
  5. 一种头端设备,其特征在于,应用于Cable网络供电系统中,所述Cable网络供电系统包括所述头端设备、第一电源转换器和第二电源转换器,其中:
    所述第一电源转换器与所述头端设备连接,作为第一供电支路,用于为与所述第一供电支路连接的有源设备供电;
    所述第一电源转换器与所述头端设备连接,作为第二供电支路,用于为与所述第二供电支路连接的有源设备供电;
    所述头端设备包括电源电路和控制电路,其中:
    所述电源电路,与所述控制电路连接,用于利用所述第一电源转换器和所述第二电源转换器提供的电源为所述控制电路供电;
    所述控制电路,用于监测所述第一电源转换器和所述第二电源转换器的供电情况,当监测到所述第一电源转换器出现供电故障时,控制所述第二电源转换器为所述第一供电支路和所述第二供电支路连接的有源设备供电,当所述第一电源转换器的供电故障恢复时,控制所述第一电源转换器为所述第一供电支路连接的有源设备供电,所述第二电源转换器为所述第二供电支路连接的有源 设备供电。
  6. 根据权利要求5所述的头端设备,其特征在于,所述系统还包括供电切换电路或者所述头端设备还包括所述供电切换电路,所述供电切换电路包括第一受控开关、第二受控开关和第三受控开关,所述第一受控开关设于所述第一电源转换器的输入端,所述第二受控开关设于所述第二电源转换器的输入端,所述第三受控开关设于所述第一供电支路和所述第二供电支路之间,当所述控制电路监测到所述第一电源转换器和所述第二电源转换器供电正常时,所述控制电路控制所述第一受控开关和所述第二受控开关保持闭合状态,并控制所述第三受控开关保持断开状态,其中:
    当所述控制电路监测到所述第一电源转换器出现供电故障时,所述控制电路控制所述第一受控开关断开,并在经历预设第一时长时控制所述第三受控开关闭合,以使得所述第二电源转换器为所述第一供电支路和所述第二供电支路连接的有源设备供电;
    当所述控制电路接收到针对所述第三受控开关输入的断开指令时,所述控制电路确定所述第一电源转换器的供电故障恢复,控制所述第三受控开关断开,并在经历预设第二时长时控制所述第一受控开关闭合,以使得所述第一电源转换器为所述第一供电支路连接的有源设备供电,所述第二电源转换器为所述第二供电支路连接的有源设备供电。
  7. 根据权利要求5或6所述的头端设备,其特征在于,所述系统还包括电压监测装置或者所述头端设备还包括所述电压监测装置,所述电压监测装置连接所述第一电源转换器和所述第二电源转换器的输入端与输出端,用于采集所述第一电源转换器和所述第二电源转换器的输入端与输出端的电压数据,其中:
    所述控制电路根据所述电压数据确定所述第一电源转换器和所述第二电源转换器的供电情况。
  8. 一种Cable网络供电方法,其特征在于,应用于Cable网络供电系统, 所述Cable网络供电系统包括头端设备、第一电源转换器和第二电源转换器,其中:
    所述第一电源转换器与所述头端设备连接,作为第一供电支路,用于为与所述第一供电支路连接的有源设备供电;
    所述第一电源转换器与所述头端设备连接,作为第二供电支路,用于为与所述第二供电支路连接的有源设备供电;
    所述方法包括:
    所述头端设备获取所述第一电源转换器和所述第二电源转换器的供电情况;
    所述头端设备在根据所述第一电源转换器和所述第二电源转换器的供电情况确定出所述第一电源转换器出现供电故障时,控制所述第二电源转换器为所述第一供电支路和所述第二供电支路连接的有源设备供电;
    所述头端设备在确定出所述第一电源转换器的供电故障恢复时,控制所述第一电源转换器为所述第一供电支路连接的有源设备供电,所述第二电源转换器为所述第二供电支路连接的有源设备供电。
  9. 根据权利要求8所述的方法,其特征在于,所述系统还包括供电切换电路或者所述头端设备包括所述供电切换电路,所述供电切换电路包括第一受控开关、第二受控开关和第三受控开关,所述第一受控开关设于所述第一电源转换器的输入端,所述第二受控开关设于所述第二电源转换器的输入端,所述第三受控开关设于所述第一供电支路和所述第二供电支路之间,当所述头端设备确定出所述第一电源转换器和所述第二电源转换器供电正常时,所述头端设备控制所述第一受控开关和所述第二受控开关保持闭合状态,并控制所述第三受控开关保持断开状态,其中:
    所述头端设备在根据所述第一电源转换器和所述第二电源转换器的供电情况确定出所述第一电源转换器出现供电故障时,控制所述第二电源转换器为所述第一供电支路和所述第二供电支路连接的有源设备供电的具体方式为:
    所述头端设备在根据所述第一电源转换器和所述第二电源转换器的供电情况确定出所述第一电源转换器出现供电故障时,所述头端设备控制所述第一 受控开关断开,并在经历预设第一时长时控制所述第三受控开关闭合,以使得所述第二电源转换器为所述第一供电支路和所述第二供电支路连接的有源设备供电;
    所述头端设备在确定出所述第一电源转换器的供电故障恢复时,控制所述第一电源转换器为所述第一供电支路连接的有源设备供电,所述第二电源转换器为所述第二供电支路连接的有源设备供电的具体方式为:
    当所述头端设备接收到针对所述第三受控开关输入的断开指令时,所述头端设备确定所述第一电源转换器的供电故障恢复,控制所述第三受控开关断开,并在经历预设第二时长时控制所述第一受控开关闭合,以使得所述第一电源转换器为所述第一供电支路连接的有源设备供电,所述第二电源转换器为所述第二供电支路连接的有源设备供电。
  10. 根据权利要求8或9所述的方法,其特征在于,所述系统还包括电压监测装置或者所述头端设备包括所述电压监测装置,所述电压监测装置连接所述第一电源转换器和所述第二电源转换器的输入端与输出端,其中:
    所述头端设备获取所述第一电源转换器和所述第二电源转换器的供电情况的具体方式为:
    所述头端设备获取所述电压监测装置采集到的所述第一电源转换器和所述第二电源转换器的输入端与输出端的电压数据;
    所述头端设备根据所述电压数据确定所述第一电源转换器和所述第二电源转换器的供电情况。
PCT/CN2015/090445 2015-09-23 2015-09-23 一种Cable网络供电系统、方法及相关设备 WO2017049509A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/090445 WO2017049509A1 (zh) 2015-09-23 2015-09-23 一种Cable网络供电系统、方法及相关设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/090445 WO2017049509A1 (zh) 2015-09-23 2015-09-23 一种Cable网络供电系统、方法及相关设备

Publications (1)

Publication Number Publication Date
WO2017049509A1 true WO2017049509A1 (zh) 2017-03-30

Family

ID=58385586

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/090445 WO2017049509A1 (zh) 2015-09-23 2015-09-23 一种Cable网络供电系统、方法及相关设备

Country Status (1)

Country Link
WO (1) WO2017049509A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201075734Y (zh) * 2007-08-08 2008-06-18 邹宏昌 可寻址有线电视网络专用自动供电智能转换器
CN101478175A (zh) * 2009-01-14 2009-07-08 大连天途有线电视网络股份有限公司 有线电视网络供电器
CN101499855A (zh) * 2008-01-31 2009-08-05 宁波环球广电科技有限公司 可在电力中断传输信号的光接收器及其紧急广播系统
CN201854081U (zh) * 2010-08-07 2011-06-01 安徽省电力公司淮北供电公司 三电源备用电源自动投入装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201075734Y (zh) * 2007-08-08 2008-06-18 邹宏昌 可寻址有线电视网络专用自动供电智能转换器
CN101499855A (zh) * 2008-01-31 2009-08-05 宁波环球广电科技有限公司 可在电力中断传输信号的光接收器及其紧急广播系统
CN101478175A (zh) * 2009-01-14 2009-07-08 大连天途有线电视网络股份有限公司 有线电视网络供电器
CN201854081U (zh) * 2010-08-07 2011-06-01 安徽省电力公司淮北供电公司 三电源备用电源自动投入装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
AN, CUNZAN: "Offsite Auto Power Supply System Design of CATV Trunk 60V Source", CABLE TELEVISION TECHNOLOGY, vol. 10, no. 2, 28 February 2003 (2003-02-28), pages 63 - 64, ISSN: 1008-5351 *

Similar Documents

Publication Publication Date Title
US6288916B1 (en) Multiple output uninterruptible alternating current power supplies for communications system
US9531551B2 (en) Dynamically configurable power-over-ethernet apparatus and method
US8203235B2 (en) AC and DC uninterruptible online power supplies
US6476519B1 (en) Power back-up unit with low voltage disconnects that provide load shedding
EP2327134B1 (en) Methods and systems for distributing load transfers in power supply systems
US20150035358A1 (en) Electrical power management system and method
CN103701617B (zh) 具有共享连接接口和两个水平涌流限制的受电设备控制器
US9992353B2 (en) Reverse power feed system
WO2006102829A1 (fr) Systeme d'alimentation longue distance pour systeme de communication
JP2002528023A (ja) 被制御鉄共振変圧器回路を用いた無停電電源システム、電圧レギュレータ及び動作方法
JP4155190B2 (ja) 無停電電源装置、電力供給制御プログラム、電力供給制御プログラム記録媒体及び電力供給制御方法
DE69836475T2 (de) Verfahren und vorrichtung zur instandhaltung der verfügbarkeit eines rettungstelefondienstes in einem hybrid-faser-koaxial-netzwerk
CN107294196B (zh) 数字用户线接入设备的备用储能装置及其控制方法
WO2017049509A1 (zh) 一种Cable网络供电系统、方法及相关设备
JP2008278666A (ja) 無停電電源装置
US7923863B2 (en) System for line powering
EP3451581B1 (en) Switching device
US11502726B2 (en) Coaxial cable power signal distribution systems and methods
CN105449835B (zh) 一种区域备自投方法
KR101515474B1 (ko) 자동 전원 절체 장치
US20230420982A1 (en) Backup power system for cable television networks
EP2949023B1 (en) Electrical device
CN210806838U (zh) 通信电源系统
CN108174130A (zh) 一种电视
JP2002262255A (ja) 電源遮断時のバックアップ機能を有するケーブルモデム及び同モデムにおける電源遮断時のバックアップ方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15904396

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15904396

Country of ref document: EP

Kind code of ref document: A1