WO2017049431A1 - 一种acm切换方法、acm切换装置及发射器 - Google Patents

一种acm切换方法、acm切换装置及发射器 Download PDF

Info

Publication number
WO2017049431A1
WO2017049431A1 PCT/CN2015/090124 CN2015090124W WO2017049431A1 WO 2017049431 A1 WO2017049431 A1 WO 2017049431A1 CN 2015090124 W CN2015090124 W CN 2015090124W WO 2017049431 A1 WO2017049431 A1 WO 2017049431A1
Authority
WO
WIPO (PCT)
Prior art keywords
data stream
layer
transmitted
transmission performance
layers
Prior art date
Application number
PCT/CN2015/090124
Other languages
English (en)
French (fr)
Inventor
马骏
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2015/090124 priority Critical patent/WO2017049431A1/zh
Priority to CN201580083503.2A priority patent/CN108141429B/zh
Publication of WO2017049431A1 publication Critical patent/WO2017049431A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems

Definitions

  • the present invention relates to the field of wireless communications, and in particular, to an ACM switching method, an ACM switching device, and a transmitter.
  • Superposition Coding allocates user data with poor channel quality to a basic constellation according to different channel quality levels of multiple users, and allocates user data with good channel quality to an additional constellation.
  • the basic constellation diagram has higher power, better transmission performance, less power of the additional constellation diagram, and poor transmission performance.
  • the user data is superimposed and combined in the transmission process, which can achieve a more uniform error rate and maximum transmission capacity among multiple users.
  • LTE Long time evolution
  • BER bit error rate
  • a voice session is 10 -2
  • the bit error rate for a buffered video is 10 -6 .
  • the transmitter divides the services of different transmission performance requirements in the data stream to be transmitted into M layers, each layer is mapped onto a standard constellation diagram, and then superimposed and transmitted.
  • the invention provides an automatic coding and modulation (ACM) switching method, an ACM switching device and a transmitter, which can improve the data transmission rate of the superimposed code.
  • ACM automatic coding and modulation
  • an embodiment of the present invention provides an automatic code modulation ACM switching method, including:
  • the number of layers M of the data stream to be transmitted and the modulation mode to be switched are obtained according to the current system transmission performance, and the number of layers M is less than or equal to the number of services in the data stream to be transmitted;
  • the number of layers M, the modulation mode to be switched, the service data of each layer mapping, and the normalized power of each layer are used to make the transmitter according to the number of layers M, the modulation mode to be switched, and the service of each layer mapping.
  • the data and the normalized power of each layer are superimposed and transmitted on the transmitted data stream.
  • the current system transmission performance includes an MSE of the current received data stream, and the layered quantity of the data stream to be transmitted is obtained according to the current system transmission performance.
  • the modulation modes to be switched include:
  • the integer part of the quotient value is taken as the layered quantity M, and the reference modulation mode is used as the modulation mode to be switched;
  • the quotient value is greater than the number of services in the data stream to be transmitted, increase the second bit number until the quotient value is less than or equal to the number of services in the data stream to be transmitted, and then obtain the layered quantity M according to the quotient value, and increase the second number.
  • the modulation mode corresponding to the number of bits obtained after the number of bits is used as the modulation mode to be switched.
  • the service data in the data stream to be transmitted is mapped to the number of layers.
  • the various layers of M include:
  • the service data in the data stream to be transmitted is mapped to each layer of the layered number M according to the transmission performance requirement value of the service, so that each layer has one type of service, and between the transmission performance requirement values of different services in the same layer The difference is less than the first threshold;
  • mapping the service data in the data stream to be transmitted to each layer of the number of layers M includes:
  • the service data in the data stream to be transmitted is mapped into each layer of the layer number M, so that each layer has a service.
  • calculating each layer The normalized power for each layer includes:
  • the normalized power of the layer is calculated according to the average BER of each layer such that the sum of the normalized powers of the layers is 1, and the normalized power of each layer is inversely proportional to the average BER of the layer.
  • the first possible implementation of the first aspect or any one of the possible implementations of the third possible implementation of the first aspect, in a fourth possible implementation of the first aspect, in a fourth possible implementation of the first aspect
  • the trigger conditions for satisfying the ACM handover specifically include:
  • the trigger condition of the ACM handover is satisfied, and the first average transmission performance parameter is a layer in the received data stream.
  • the average transmission performance parameter, the second average transmission performance parameter is an average transmission performance parameter threshold of the corresponding layer in the receiving link setting parameter.
  • the first possible implementation of the first aspect, or any one of the possible implementations of the third possible implementation of the first aspect, in a fifth possible implementation of the first aspect To meet the trigger conditions of ACM switching, including:
  • the trigger condition of the ACM handover is satisfied.
  • the first possible implementation of the first aspect, or any one of the possible implementations of the third possible implementation of the first aspect, in a sixth possible implementation of the first aspect To meet the trigger conditions of ACM switching, including:
  • the trigger condition of the ACM handover is satisfied.
  • the method further includes:
  • the threshold value of the average transmission performance parameter of the corresponding layer in the receiving link setting parameter is updated according to the average transmission performance parameter of each layer.
  • the average transmission performance parameter includes one or more of a BER, a symbol error rate SER, or a mean square error MSEkind.
  • the transmission performance requirement value includes a bit error rate BER requirement value or a packet loss rate PER requirement value.
  • the method further includes:
  • the MSE of the received data stream is calculated by the following formula:
  • N i the average MSE of the i-th layer multiplied by the normalized power of the i-th layer.
  • an embodiment of the present invention provides an ACM switching method, including:
  • the transmitter obtains the number of layers M when the data stream to be transmitted is superimposed and encoded, the modulation mode to be switched, the service data of each hierarchical mapping, and the normalized power of each layer;
  • the transmitter performs constellation mapping on the service data to be transmitted in the data stream according to the hierarchical quantity M and the service data of each hierarchical mapping, and assigns normalized power of each layer to each layer to obtain superimposed encoded data;
  • the transmitter transmits the superimposed encoded data according to the modulation mode to be switched.
  • an embodiment of the present invention provides an ACM switching apparatus, including:
  • An obtaining module configured to obtain a layered quantity M of the data stream to be transmitted and a modulation mode to be switched according to the current system transmission performance when the trigger condition of the ACM handover is satisfied, where the number of layers M is less than or equal to that in the data stream to be transmitted Number of businesses;
  • mapping module configured to map service data in the data stream to be transmitted to each layer of the number of layers of M
  • a first calculation module configured to calculate a normalized power of each layer in each layer
  • the number of layers M, the modulation mode to be switched, the service data of each layer mapping, and the normalized power of each layer are used to make the transmitter according to the number of layers M, the modulation mode to be switched, and the service of each layer mapping.
  • the data and the normalized power of each layer are superimposed and transmitted on the transmitted data stream.
  • the current system transmission performance includes an MSE that currently receives the data stream
  • the obtaining module includes:
  • a first acquiring unit configured to obtain, according to a correspondence between the MSE and the modulation mode, a modulation mode corresponding to an MSE of the current received data stream;
  • a calculating unit configured to calculate a quotient of the first bit number and the second bit number, wherein the first bit number is a number of bits occupied by one symbol in a modulation mode corresponding to the MSE of the received data stream, and the second bit number is a system The number of bits occupied by one symbol in the preset reference modulation mode;
  • a determining unit configured to use the integer part of the quotient value as the hierarchical quantity M when the quotient value is less than or equal to the quantity of services in the data stream to be transmitted, and use the reference modulation mode as the modulation mode to be switched;
  • the determining unit is further configured to: when the quotient value is greater than the number of services in the data stream to be transmitted, increase the second bit number until the quotient value is less than or equal to the number of services in the data stream to be transmitted, and then obtain the layered quantity according to the quotient value.
  • the modulation mode corresponding to the number of bits obtained by increasing the number of second bits is used as the modulation mode to be switched.
  • the mapping module includes:
  • a second acquiring unit configured to acquire a transmission performance requirement value of a service in the data stream to be transmitted when the number of layers M is smaller than the number of services in the data stream to be transmitted;
  • mapping unit configured to: after the second obtaining unit acquires the transmission performance requirement value of the service, map the service data in the data stream to be transmitted to each layer of the layered quantity M according to the transmission performance requirement value of the service, so that each The layer has a service, and the difference between the transmission performance requirement values of different services in the same layer is smaller than the first preset threshold;
  • the mapping unit is further configured to: when the number of layers M is equal to the number of services in the data stream to be transmitted, map the service data in the data stream to be transmitted to each layer of the number of layers M, so that each layer has a type business.
  • the calculating module includes:
  • a first calculating unit configured to calculate an average bit error rate BER of each layer
  • a second calculating unit configured to calculate a normalized power of the layer according to an average BER of each layer, such that a sum of normalized powers of the layers is 1, and a normalized power of each layer is equal to an average BER of the layer Inverse ratio.
  • the ACM switching device further includes:
  • a first determining module configured to determine, when the difference between the first average transmission performance parameter and the second average transmission performance parameter exceeds a second preset threshold, a trigger condition that satisfies the ACM handover, where the first average transmission performance parameter is a reception Average transmission performance parameter of a layer in the data stream, second average transmission performance The parameter is the average transmission performance parameter threshold of the corresponding layer in the receiving link setting parameter.
  • the ACM switching device further includes:
  • the second determining module is configured to determine that a trigger condition that satisfies the ACM handover is determined when the number of services in the data stream to be transmitted is different from the number of services in the received data stream.
  • the ACM switching device further includes:
  • a third determining module configured to determine, when the difference between the transmission performance requirement value of the service in the data stream to be transmitted and the transmission performance value of the service in the received data stream exceeds a third preset threshold, determine a trigger condition that satisfies the ACM handover.
  • the ACM switching apparatus further includes:
  • a second calculation module configured to calculate an average transmission performance parameter of each layer in each layer
  • an update module configured to update, according to the average transmission performance parameter of each layer, a threshold value of an average transmission performance parameter of a corresponding layer in the receiving link setting parameter.
  • the second computing module is configured to calculate an average transmission performance parameter of each layer in each layer, and an average transmission performance
  • the parameters include one or more of BER, symbol error rate SER, or mean square error MSE.
  • the acquiring unit is configured to acquire, when the number of layers M is smaller than the quantity of services in the data stream to be transmitted
  • the transmission performance requirement value of the service in the transmitted data stream, and the transmission performance requirement value includes a bit error rate BER demand value or a packet loss rate PER demand value.
  • the ACM switching apparatus further includes:
  • the third calculation module is configured to calculate the MSE of the received data stream by using the following formula:
  • N i the average MSE of the i-th layer multiplied by the normalized power of the i-th layer.
  • an embodiment of the present invention provides a transmitter, including:
  • An obtaining module configured to acquire a layered quantity M when the data stream to be transmitted is superimposed and encoded, a modulation mode to be switched, service data of each hierarchical mapping, and normalized power of each layer;
  • a superposition coding module configured to perform constellation mapping according to the layer number M, the service data of each hierarchically mapped service data, and allocate normalized power of each layer to each layer to obtain superimposed coded data;
  • a transmitting module configured to perform modulation on the superposed encoded data according to a modulation mode to be switched.
  • an embodiment of the present invention provides an ACM switching apparatus, including:
  • a processor configured to perform the following operations by calling an operation instruction stored in the memory:
  • the number of layers M of the data stream to be transmitted and the modulation mode to be switched are obtained according to the current system transmission performance, and the number of layers M is less than or equal to the number of services in the data stream to be transmitted, and is to be
  • the service data in the transmit data stream is mapped into each layer of the number of layers M, and the normalized power of each layer in each layer is calculated; wherein the number of layers M, the modulation mode to be switched, and each layer map
  • the service data and the normalized power of each layer are used to cause the transmitter to superimpose and encode the data stream to be transmitted according to the number of layers M, the modulation mode to be switched, the service data of each layer mapping, and the normalized power of each layer. And launch.
  • the ACM switching apparatus when the trigger condition of the ACM handover is met, the ACM switching apparatus obtains the number of layers M of the data stream to be transmitted and the modulation mode to be switched according to the current system transmission performance, and the number of layers M is less than or equal to the to-be-transmitted.
  • the number of services in the data stream and then map the service data in the data stream to be transmitted to each layer of the layer number M, and calculate the normalized power of each layer in each layer, so that the transmitter according to the layering
  • the quantity M, the modulation mode to be switched, the service data of each hierarchical mapping, and the normalized power of each layer are superimposed and transmitted on the data stream to be transmitted.
  • the present invention provides an ACM switching method, which can obtain the number of layers M required for encoding a data stream to be transmitted, the modulation mode to be switched, and each layer according to the current transmission performance of the system when ACM switching is required.
  • the mapped service data and the normalized power of each layer enable the coding information of the data stream to be transmitted to adapt to the transmission performance of the current system, thereby maximizing the transmission bandwidth and improving the overlay coding.
  • the data transfer rate of the code can obtain the number of layers M required for encoding a data stream to be transmitted, the modulation mode to be switched, and each layer according to the current transmission performance of the system when ACM switching is required.
  • the mapped service data and the normalized power of each layer enable the coding information of the data stream to be transmitted to adapt to the transmission performance of the current system, thereby maximizing the transmission bandwidth and improving the overlay coding.
  • the data transfer rate of the code can obtain the number of layers M required for encoding a data stream to be transmitted, the modulation mode to be switched
  • FIG. 1 is a schematic diagram of transmitting and receiving data in a superposition coding technique according to an embodiment of the present invention
  • FIG. 2 is a flowchart of an ACM switching method according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of an embodiment of an ACM switching device located on a transmitting link according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of an embodiment of an ACM switching device located on a receiving link according to an embodiment of the present invention
  • FIG. 5 is another flowchart of an ACM switching method according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram showing a functional modular structure of an ACM switching device according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram showing another functional modular structure of an ACM switching apparatus according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram showing another functional modular structure of an ACM switching apparatus according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of a modular structure of a transmitter according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of a hardware structure of an ACM switching apparatus according to an embodiment of the present invention.
  • the terms “comprises” and “comprises” and “the” and “the” are intended to cover a non-exclusive inclusion, for example, a process, method, system, product, or device that comprises a series of steps or modules is not necessarily limited to Those steps or modules, but may include other steps or modules not explicitly listed or inherent to such processes, methods, products or devices, the division of the modules presented herein is merely a logical division. There may be additional divisions in the implementation of the actual application, for example, multiple modules may be combined or integrated into another system, or some features may be ignored, or not executed, and the displayed or discussed mutual coupling.
  • the coupling or communication connection may be through some interfaces, and the indirect coupling or communication connection between the modules may be electrical or the like, which is not limited herein.
  • the module or the sub-module described as the separate component may or may not be physically separated, may not be a physical module, or may not be divided into a plurality of circuit modules, and may select a part thereof according to actual needs or All modules are used to achieve the objectives of the embodiments of the present invention.
  • FIG. 1 is a schematic diagram of the principle of superposition coding. As shown in FIG. 1 , there are N services with different transmission performance requirement values in the transmission data stream of the transmission link, and these services are divided into M layers, and each layer is mapped to a standard constellation. Figure, and then the corresponding normalized power is superimposed on the constellation of each layer, modulated and transmitted, and the receiving link receives the data stream transmitted from the transmitting link, and then demodulates the received data stream. Then, successive interference cancellation (SIC) is performed, and the services in each layer in the received data stream are solved.
  • SIC successive interference cancellation
  • the transmitting link may specifically include a transmitter, a modem, and a transmitter to perform the M layer constellation mapping, the M layer power allocation, and the superimposing step shown in FIG. 1, the modem performs modulation, and the transmitter transmits the modulated data.
  • the receiving link specifically includes a receiver, a modem, and a receiver to receive data transmitted by the transmitter, the modem demodulates the received data, and the receiver performs continuous interference cancellation on the demodulated data.
  • the embodiment of the invention provides an ACM switching method, which can dynamically adjust the layered information of the data stream to be transmitted, the modulation mode, and the normalized power of each layer according to the transmission performance of the current system, thereby maximizing the system transmission rate.
  • the ACM switching module or device in the embodiment of the present invention may be specifically located in a transmitting link, or may exist in a receiving link, and may be a central processing unit (CPU) or a digital signal processing (digital signal processing). , DSP) for execution.
  • the ACM switching device can be located directly in the current transmitter or receiver.
  • the embodiments of the present invention can be applied to the superimposition coding technology, and can also be applied to other coding technologies.
  • the embodiment of the present invention is applied to the superposition coding technology as an example.
  • an ACM switching method provided in an embodiment of the present invention is performed by the foregoing ACM switching apparatus, and the method includes:
  • each service type has a corresponding transmission performance requirement.
  • the data stream to be transmitted is transmitted from the antenna through the constellation mapping and modulation of the transmitting link to form a transmitted data stream.
  • the receiving link After receiving the transmitted data stream from the antenna, the receiving link recovers the transmitted data stream by demodulation, and refers to the data stream received by the receiving link as the received data stream.
  • the ACM switching device detects the trigger condition that satisfies the ACM handover, the number of layers M of the data stream to be transmitted and the modulation mode to be switched are obtained according to the current system transmission performance, so that the number of layers is And the modulation mode is adapted to the current transmission performance of the system, the number of layers M being less than or equal to the number of services in the data stream to be transmitted.
  • the triggering conditions of the ACM switching may include the following two types:
  • the average transmission performance parameter may be one of three indicators: an average error rate BER, a symbol error rate (SER), or a Mean square error (MSE) of multiple services of the layer, or The average of any two or three of them may also be other parameters that can represent the average transmission performance of the constellation.
  • the BER, SER, and MSE when the channel conditions deteriorate, the BER, SER, and MSE also exhibit different degrees of increase. At this time, the ACM handover is initiated, and the feedback link is notified to switch the transmission link to a lower modulation mode, so that the received data stream is received. BER, SER and MSE are within the required range to ensure the quality of the communication. When the channel conditions become better, the BER, SER and MSE will also show different degrees of reduction. At this time, the ACM handover is started, and the transmission link is notified through the feedback channel to switch to a higher modulation mode, so that the BER and SER of the received data stream are received. And MSE is within the required range.
  • the change in service demand in the data stream to be transmitted is mainly reflected in the change in the number of services, or the change in the value of service transmission performance requirements. Specifically:
  • the value of the transmission performance requirement or the current service transmission performance value of the service may be a packet error rate BER of the service or a packet loss rate (PER) of the service.
  • the current transmission performance of the system may be the mean square error MSE of the current received data stream, and the MSE in the current received data stream represents the total transmission capacity and performance of the current system.
  • MSE mean square error
  • the MSE in the current received data stream represents the total transmission capacity and performance of the current system.
  • the ACM switching device calculates the MSE of the current received data stream to learn the performance of the current system, and the specific calculation manner may be:
  • N i the average MSE of the i-th layer multiplied by the normalized power of the i-th layer.
  • the modulation mode corresponding to the MSE of the received data stream is obtained according to the correspondence between the MSE and the modulation mode, and the correspondence between the MSE and the modulation mode is as follows:
  • MSE Modulation mode Number of bits per symbol 10 ⁇ 13 QPSK 2 13 ⁇ 16 8PSK 3 16 ⁇ 19 16QAM 4 19 ⁇ 22 32QAM 5 22 ⁇ 25 64QAM 6 25 ⁇ 28 128QAM 7 28 ⁇ 31 256QAM 8
  • the reference modulation mode preset with the system The comparison is made to determine whether the reference modulation mode is suitable for the modulation mode that needs to be used for the next transmitter transmission.
  • the reference modulation mode preset by the system may be a QPSK modulation mode in which one symbol occupies 2 bits, or may be another modulation mode, which is not limited herein.
  • Step 1 Calculate the quotient of the first bit number and the second bit number.
  • the first bit number is the number of bits occupied by one symbol in the modulation mode corresponding to the MSE of the received data stream
  • the second bit number is one of the reference modulation modes. The number of bits occupied by the symbol.
  • Step 2 If the quotient of the first bit number and the second bit number is exactly equal to the number of services in the data stream to be transmitted, it can be considered that the reference modulation mode is just adapted to the data of the next transmitter transmitting the data stream to be transmitted.
  • the modulation mode to be used is used as the superimposed coded modulation mode to be switched used when the data in the data stream to be transmitted is to be transmitted next time.
  • the quotient value is used as the number of layers M of the superposition coding used in the next transmitter transmission.
  • the reference modulation mode is QPSK
  • one symbol in QPSK occupies 2 bits
  • the modulation mode corresponding to MSE in the received data stream is 16QAM
  • one symbol in 16QAM occupies 4 bits
  • the number of services in the service is just 2, and the data stream to be transmitted is divided into 2 layers for superposition coding, and the modulation mode used by each layer is QPSK.
  • Step 3 If the quotient of the first bit number and the second bit number is smaller than the number of services in the data stream to be transmitted, it can be considered that the reference modulation mode is just adapted to the next time the transmitter transmits the data in the data stream to be transmitted.
  • the modulation mode to be used is used as the superimposed coded modulation mode to be used when the data in the data stream to be transmitted is to be transmitted next time, and the integer part of the quotient is used as the superimposition code of the data stream to be transmitted.
  • the number of layers M is used as the superimposed coded modulation mode to be used when the data in the data stream to be transmitted is to be transmitted next time, and the integer part of the quotient is used as the superimposition code of the data stream to be transmitted.
  • the reference modulation mode is QPSK
  • one symbol in QPSK occupies 2 bits
  • the modulation mode corresponding to MSE in the received data stream is 16QAM
  • one symbol in 16QAM occupies 4 bits
  • the data stream to be transmitted The number of services in the data is three, and the number of superimposed coding layers of the data stream to be transmitted is determined to be two, and the data stream to be transmitted is divided into two layers for superposition coding, and the modulation mode used by each layer is the reference modulation mode QPSK.
  • Step 4 If the quotient of the first bit number and the second bit number is greater than the number of services in the data stream to be transmitted, it is considered that the reference modulation mode is not adapted to the next transmitter transmitting the data in the data stream to be transmitted.
  • the modulation mode that is required to be used requires adjustment of the modulation mode based on the reference modulation mode to adapt to the modulation mode of the superimposed code used in the next transmission of data in the data stream to be transmitted.
  • the specific adjustment manner is: adding the second bit number until the quotient of the first bit number divided by the second bit number is less than or equal to the number of services in the data stream to be transmitted.
  • the adjusted quotient is taken as the number of layers M, and the modulation mode corresponding to the number of bits obtained after the increase is used as the modulation mode of the superposition coding used when the data in the data stream to be transmitted is transmitted next time.
  • the reference modulation mode is QPSK
  • one symbol in QPSK occupies 2 bits
  • the modulation mode corresponding to the MSE in the received data stream is 256QAM
  • one symbol in 256QAM occupies 8 bits
  • the number of services in the network is two.
  • the quotient value needs to be reduced by increasing the reference modulation mode, so that the quotient is equal to or smaller than the number of services, and is increased to 16QAM based on the reference modulation mode QPSK, and one symbol in 16QAM occupies 4 bits.
  • the modulation mode used is the adjusted 16QAM.
  • the number of services in the data stream to be transmitted in the embodiment of the present invention refers to the number of services in one data packet, and may not include all services in the data stream to be transmitted.
  • L higher priority services may be selected from high to low among the N different priority service types in the data packet, where L ⁇ N, to ensure that the service with high priority is preferentially transmitted.
  • the service data in the data stream to be transmitted is directly mapped into each layer of the number of layers M, so that each layer has one business.
  • the transmission performance requirement value of the service in the data stream to be transmitted is obtained, and the service data in the data stream to be transmitted is mapped to the layered quantity according to the transmission performance requirement value of the service.
  • the transmission performance requirement value of the service in the data stream to be transmitted is obtained, and the service data in the data stream to be transmitted is mapped to the layered quantity according to the transmission performance requirement value of the service.
  • the specific mapping principle is: the services of the adjacent transmission performance requirement values are allocated to the same layer. Based on the principle, each layer has one type of service, and the transmission performance requirement values of different services in the same layer are between The difference is less than the preset threshold of the system.
  • the specific method can be:
  • the services in the data stream to be transmitted are divided into M packets according to the transmission performance requirement value (BER or BER), so that the difference between the transmission performance requirement values of different services in each packet is less than a preset threshold, and M packets are grouped.
  • the service data corresponding to the services in the same group is allocated to the same layer.
  • the hierarchical quantity M and the service data on the M layers are hierarchical information when the next transmitter transmits the superimposed code when the data to be transmitted is transmitted.
  • the reference modulation mode is QPSK
  • one symbol in QPSK occupies 2 bits
  • the modulation mode corresponding to MSE in the received data stream is 16QAM
  • one symbol in 16QAM occupies 4 bits
  • the number of services in the service is 3, and the BER is 10 -6 , 10 -5 , and 10 -2 respectively .
  • the data stream to be transmitted is divided into 2 layers for superposition coding, and the principle of assigning the same layer to the same layer is used.
  • the layer allocates services corresponding to BER10 -6 and 10 -5
  • the other layer allocates services corresponding to 10 -2
  • the modulation mode used by each layer is QPSK.
  • the normalized power is assigned to each layer in the superposed coding hierarchical information.
  • the specific principle of allocating power is to allocate lower power to services with larger BER demand values in L services, and to allocate larger power to services with smaller BER demand values.
  • the specific allocation method can be:
  • the ACM switching device first obtains the average BER demand value of each layer in the superposition coding layer used for the data in the next data stream to be transmitted, and the specific calculation method of the average BER demand value is to calculate the average value of the BER of multiple services per layer. .
  • the normalized power of the layer is calculated according to the average BER demand value of each layer, so that the sum of the normalized powers of the layers is 1, and the normalized power of each layer is The average BER demand for this layer is inversely proportional.
  • the calculation method may include multiple types.
  • the general principle is to allocate lower power for layers with larger BER demand values, and to allocate larger power for layers with smaller BER demand values.
  • a specific calculation formula can be:
  • B k is the average BER of the kth layer
  • M is the number of layers
  • B i is the average BER of the i-th layer.
  • the data stream to be transmitted is divided into 1, 2, and 3 layers, and the average BER of each layer of the 1, 2, and 3 layers is A, B, and C, respectively.
  • P 1 10*Log 10 A/(10*Log 10 A+10*Log 10 B+10*Log 10 C);
  • the normalized power of the second layer is:
  • P 2 10*Log 10 B/(10*Log 10 A+10*Log 10 B+10*Log 10 C);
  • the normalized power of the third layer is:
  • P 3 10*Log 10 C/(10*Log 10 A+10*Log 10 B+10*Log 10 C).
  • the transmitter After obtaining the layer number M, the modulation mode to be switched, the service data of each layer mapping, and the normalized power of each layer, the transmitter processes the data stream according to the layer number M and the service data of each layer mapping.
  • the service data is subjected to constellation mapping, and the normalized power of each layer is allocated to each layer to obtain superimposed encoded data, and then the superimposed encoded data is modulated according to the modulation mode to be switched and then transmitted. Therefore, the layered information of the superposition coding, the modulation mode, and the normalized power of each layer at the next transmission can be adjusted in real time according to the change of the actual channel and the change of the traffic in the data stream to be transmitted.
  • the ACM switching apparatus when the trigger condition of the ACM handover is met, the ACM switching apparatus obtains the number of layers M of the data stream to be transmitted and the modulation mode to be switched according to the current system transmission performance, and the number of layers M is less than or equal to the to-be-transmitted.
  • the number of services in the data stream and then map the service data in the data stream to be transmitted to each layer of the layer number M, and calculate the normalized power of each layer in each layer, so that the transmitter according to the layering
  • the quantity M, the modulation mode to be switched, the service data of each hierarchical mapping, and the normalized power of each layer are superimposed and transmitted on the data stream to be transmitted.
  • the present invention provides an ACM switching method, which can obtain the number of layers M required for encoding a data stream to be transmitted, the modulation mode to be switched, and each layer according to the current transmission performance of the system when ACM switching is required.
  • the mapped service data and the normalized power of each layer enable the coding information of the data stream to be transmitted to adapt to the transmission performance of the current system, thereby maximizing the transmission bandwidth and improving the overlay coding.
  • the data transfer rate of the code can obtain the number of layers M required for encoding a data stream to be transmitted, the modulation mode to be switched, and each layer according to the current transmission performance of the system when ACM switching is required.
  • the mapped service data and the normalized power of each layer enable the coding information of the data stream to be transmitted to adapt to the transmission performance of the current system, thereby maximizing the transmission bandwidth and improving the overlay coding.
  • the data transfer rate of the code can obtain the number of layers M required for encoding a data stream to be transmitted, the modulation mode to be switched
  • the process of performing ACM handover not only the superposition coding layer information used in the next transmission of the transmitter in the transmission link, the modulation mode, and the normalized power of each layer are updated.
  • the average transmission performance parameter threshold of each layer in the receive link setup parameters used in "ACM Trigger Condition One" is also dynamically updated. The specific method is:
  • the average transmission performance parameter of each layer in the layer corresponding to the superposition coding layer information is calculated, and is updated according to the average transmission performance parameter of each layer.
  • the ACM switching method in the embodiment of the present invention is introduced in a specific application scenario.
  • the actual transmission BERs of the above three services are 10 -2 , 10 -6 , and 10 -4, respectively.
  • MSE is 20, 10, and 15 (dB) respectively.
  • These three services are divided into three layers. Each layer is mapped to a standard constellation. The normalized power of each layer is 0.3, 0.2, and 0.5 respectively.
  • the web browsing data service in the data stream to be transmitted becomes a download.
  • the BER demand value of the downloaded data service is 10 -1
  • the BER difference between the two exceeds the system preset of 10 -1 , indicating that the service demand in the data stream to be transmitted has changed, and ACM is required.
  • the ACM switching device detects an average BER, average SER or average MSE of a layer in the current received data stream and a corresponding BER, SER or MSE threshold in the current receiving link setting parameter. When the difference between the values exceeds the preset threshold of the system, it indicates that the current channel has changed and ACM switching is required.
  • the following describes the specific ACM handover by taking the next packet service in the data stream to be transmitted into the voice session service (BER: 10 -2 ) and the buffered video service (BER: 10 -6 ) as an example.
  • the modulation mode of the MSE is 16QAM
  • the default modulation mode preset by the system is QPSK, the number of bits occupied by one symbol is 2, the number of bits occupied by one byte of 16QAM is 4, and the quotient of 2 divided by 2 is 2, the quotient is just equal to the number of services, so the QPSK modulation scheme as the data stream to be transmitted, the number of layers is determined as 2, the data stream to be transmitted voice session service (BER: 10 -2), video service buffer (BER: 10 -6) respectively mapped to a layering.
  • the transmitter will transmit the voice session service (BER: 10 -2 ) and the buffered video service (BER: 10 -2 ) in the data stream to be transmitted according to the above hierarchical information, modulation mode, and normalized power of each layer. Perform superposition coding and transmit.
  • the average BER of each layer in the layer of the superimposed code is calculated as the BER threshold in the receiving link setting parameters to be updated, which are 10 -2 , 10 -6 , respectively.
  • the ACM switching device may be specifically located in a transmitting link in the network, or may exist in a receiving link, and the two cases are separately described below.
  • the ACM switching device exists in the transmitting link
  • the ACM switching device exists in the transmitting link, and the receiving link feeds back the average transmission performance parameter threshold (such as BER, SER or MSE threshold) of the current M layers through the feedback channel to the transmitting link.
  • the ACM switching device used in the transmitting link determines whether the ACM switching condition is met.
  • the ACM device in the transmitting link calculates the number of layers M required for superimposing coding at the next transmission, and the modulation mode to be switched.
  • the service data of each hierarchical mapping and the normalized power of each layer and then the transmitters in the transmitting link according to the number of layers M sent by the ACM device, the modulation mode to be switched, the service data of each hierarchical mapping, and The normalized power of each layer superimposes the data to be transmitted in the transmitting link and transmits it to the receiver in the receiving link, while the ACM device counts Calculate the average transmission performance parameter threshold (such as BER, SER, or MSE threshold) of each layer that needs to be updated, send it to the receiver in the receiving link, and the receiver in the receiving link demodulates accordingly Continuously cancel the interference with the SIC and update the average transmission performance parameter threshold (such as BER, SER or MSE threshold) of each layer.
  • the average transmission performance parameter threshold such as BER, SER, or MSE threshold
  • the ACM switching device exists in the transmitting link.
  • the ACM switching device exists in the receiving link, and the transmitting link transmits N services of different BER requirements to the receiving link, if the number of services to be transmitted data changes, or in the data stream to be transmitted
  • the BER (or PER) changes, or the receiving link is changed when the average transmission performance parameter of a layer in the current received data stream and the average transmission performance parameter threshold of the corresponding layer in the receiving link setting parameter are changed.
  • the ACM switching device calculates the number of layers M of the superposed coding of the data stream to be transmitted, the modulation mode to be switched, the service data of each layer mapping, and the normalized power of each layer, and then feeds back to the transmitting link through the feedback channel.
  • the transmitter in the transmitting link superimposes the service data in the transmitting link according to the received number of layers M, the modulation mode to be switched, the service data of each layered mapping, and the normalized power of each layer. And transmitting, the receiver in the receiving link performs demodulation and SIC continuous descrambling accordingly.
  • the ACM device calculates the average transmission performance parameter threshold (such as BER, SER or MSE threshold) of each layer that needs to be updated, and updates the average transmission performance parameter threshold of each layer in the receiving link setting parameter.
  • the average transmission performance parameter threshold such as BER, SER or MSE threshold
  • the above is a description of the ACM switching method on the ACM switching device side in the embodiment of the present invention.
  • the ACM switching method in the embodiment of the present invention is introduced from the perspective of the transmitter.
  • an ACM switching method provided by an embodiment of the present invention is specifically implemented by a CPU or a DSP in a transmitter or a transmitter existing in a transmitting link, and the method includes:
  • the ACM switching device obtains the number of layers M of the data stream to be transmitted and the modulation mode to be switched according to the current system transmission performance, and the number of layers M is less than or equal to the number of services in the data stream to be transmitted.
  • the service data in the data stream to be transmitted is mapped into each layer of the layer number M, and the normalized power of each layer in each layer is calculated.
  • the layering information, modulation mode, and layers of the transmitter when acquiring the data stream to be transmitted for superposition coding The normalized power may be acquired by the ACM switching device received by the transmitter when the data stream to be transmitted is superimposed and encoded, or may be obtained by the transmitter directly by the instruction, and the specific manner is not performed here. limited.
  • the transmitter performs constellation mapping according to the layered quantity M and the service data of each layered mapping, and allocates normalized power of each layer to each layer to obtain superimposed encoded data.
  • the number of layers M and the normalized power of each layer and the normalized power of each layer are obtained after the transmitter obtains the layered quantity M of the data stream to be transmitted for superposition coding, according to the number of layers M, each The hierarchically mapped service data is layered into the service data in the transmitted data stream, each layer is mapped onto a standard constellation diagram, and then the corresponding normalized power is configured for each layer of the constellation diagram and then superimposed. Superimpose the encoded data.
  • the transmitter performs modulation on the superposed encoded data according to a modulation mode to be switched.
  • the transmitter transmits the service data in the service stream to be superimposed, the superimposed coded data is modulated and transmitted.
  • the transmitter acquires the number of layers M when the data stream to be transmitted is superimposed and encoded, the modulation mode to be switched, the service data of each hierarchical mapping, and the normalized power of each layer, according to the layering.
  • the quantity M, the modulation mode to be switched, the service data of each hierarchical mapping, and the normalized power of each layer are superimposed and encoded by the service data corresponding to the service type in the data stream to be transmitted, and then the superimposed coded data is obtained, and then the coded data is superimposed and encoded.
  • the data is transmitted.
  • each layered power and modulation mode can change in real time following the changed service of the transmission, thereby adapting the system transmission capacity according to system performance changes, avoiding service interruption or wasting bandwidth. phenomenon.
  • the above is an introduction to the ACM switching method.
  • the ACM switching device in the embodiment of the present invention is introduced from the perspective of functional modularization.
  • the ACM switching apparatus 6 in the embodiment of the present invention includes:
  • the obtaining module 601 is configured to obtain, according to the current system transmission performance, a layered quantity M of the data stream to be transmitted and a modulation mode to be switched according to the current system transmission performance, where the number of layers M is less than or equal to the data stream to be transmitted. Number of businesses;
  • the mapping module 602 is configured to map the service data in the data stream to be transmitted to the number of layers of M. In each layer;
  • a first calculating module 603, configured to calculate normalized power of each layer in each layer
  • the number of layers M, the modulation mode to be switched, the service data of each layer mapping, and the normalized power of each layer are used to make the transmitter according to the number of layers M, the modulation mode to be switched, and the service of each layer mapping.
  • the data and the normalized power of each layer are superimposed and transmitted on the transmitted data stream.
  • the obtaining module 601 obtains the number of layers M of the data stream to be transmitted and the modulation mode to be switched according to the current system transmission performance, and the number of layers M is less than or equal to the to-be-transmitted.
  • the number of services in the data stream the mapping module 602 then maps the service data in the data stream to be transmitted to each layer of the layer number M, and the calculation module 603 calculates the normalized power of each layer in each layer.
  • the transmitter is caused to superimpose and transmit the data stream to be transmitted according to the number of layers M, the modulation mode to be switched, the service data of each hierarchical mapping, and the normalized power of each layer.
  • the present invention provides an ACM switching method, which can obtain the number of layers M required for encoding a data stream to be transmitted, the modulation mode to be switched, and each layer according to the current transmission performance of the system when ACM switching is required.
  • the mapped service data and the normalized power of each layer enable the coding information of the data stream to be transmitted to adapt to the transmission performance of the current system, thereby maximizing the transmission bandwidth and improving the data transmission rate of the superimposed code.
  • the ACM switching apparatus 7 in the embodiment of the present invention includes:
  • the obtaining module 701 is configured to obtain, according to the current system transmission performance, a layered quantity M of the data stream to be transmitted and a modulation mode to be switched according to the current system transmission performance, where the number of layers M is less than or equal to the data stream to be transmitted. Number of businesses;
  • the mapping module 702 is configured to map the service data in the data stream to be transmitted into each layer of the number of layers M;
  • a calculation module 703 configured to calculate normalized power of each layer in each layer
  • the number of layers M, the modulation mode to be switched, the service data of each layer mapping, and the normalized power of each layer are used to make the transmitter according to the number of layers M, the modulation mode to be switched, and the service of each layer mapping.
  • the data and the normalized power of each layer are superimposed and transmitted on the transmitted data stream.
  • the obtaining module 701 includes:
  • the first obtaining unit 7011 is configured to obtain, according to a correspondence between the MSE and the modulation mode, a modulation mode corresponding to an MSE of the currently received data stream;
  • the calculating unit 7012 is configured to calculate a quotient of the first bit number and the second bit number, where the first bit number is the number of bits occupied by one symbol in the modulation mode corresponding to the MSE of the received data stream, and the second bit number is The number of bits occupied by one symbol in the reference modulation mode preset by the system;
  • the determining unit 7013 is configured to: when the quotient value is less than or equal to the quantity of services in the data stream to be transmitted, use the integer part of the quotient value as the layered quantity M, and use the reference modulation mode as the modulation mode to be switched;
  • the determining unit 7013 is further configured to: when the quotient value is greater than the number of services in the data stream to be transmitted, increase the second bit number until the quotient value is less than or equal to the number of services in the data stream to be transmitted, and then obtain the number of layers according to the quotient value.
  • M a modulation mode corresponding to the number of bits obtained by increasing the number of second bits is used as a modulation mode to be switched.
  • mapping module 702 includes:
  • the second obtaining unit 7021 is configured to obtain, when the number of layers M is smaller than the number of services in the data stream to be transmitted, the transmission performance requirement value of the service in the data stream to be transmitted;
  • the mapping unit 7022 is configured to: after the second obtaining unit acquires the transmission performance requirement value of the service, map the service data in the data stream to be transmitted to each layer of the layered quantity M according to the transmission performance requirement value of the service, so that Each layer has a service, and the difference between the transmission performance requirement values of different services in the same layer is smaller than the first preset threshold;
  • the mapping unit 7022 is further configured to: when the number of layers M is equal to the number of services in the data stream to be transmitted, map the service data in the data stream to be transmitted into each layer of the number of layers M, so that each layer has one Kind of business.
  • the first calculating module 703 includes:
  • a first calculating unit 7031 configured to calculate an average bit error rate BER of each layer
  • the second calculating unit 7032 is configured to calculate the normalized power of the layer according to the average BER of each layer, so that the sum of the normalized powers of the layers is 1, and the normalized power of each layer and the average BER of the layer In inverse proportion.
  • the ACM switching device 7 further includes:
  • the third calculating module 704 is configured to calculate the MSE of the received data stream by using the following formula:
  • N i the average MSE of the i-th layer multiplied by the normalized power of the i-th layer.
  • the ACM switching apparatus 7 can obtain the service data of the superposition coding layer number M, the modulation mode, and the mapping on each layer used by the transmitter in the transmitting link for the next transmission by specific operation processing.
  • the normalized power of the layer improves the achievability of the solution.
  • the ACM switching apparatus 8 in the embodiment of the present invention includes:
  • the obtaining module 801 is configured to obtain, according to the current system transmission performance, a layered quantity M of the data stream to be transmitted and a modulation mode to be switched according to the current system transmission performance, where the number of layers M is less than or equal to the data stream to be transmitted. Number of businesses;
  • mapping module 802 configured to map service data in the data stream to be transmitted into each layer of the number of layers of M;
  • a calculation module 803 configured to calculate normalized power of each layer in each layer
  • the number of layers M, the modulation mode to be switched, the service data of each layer mapping, and the normalized power of each layer are used to make the transmitter according to the number of layers M, the modulation mode to be switched, and the service of each layer mapping.
  • the data and the normalized power of each layer are superimposed and transmitted on the transmitted data stream.
  • the ACM switching device 8 further includes:
  • the first determining module 804 is configured to determine, when the difference between the first average transmission performance parameter and the second average transmission performance parameter exceeds the first preset threshold, a trigger condition that satisfies the ACM handover, where the first average transmission performance parameter is Receiving an average transmission performance parameter of a layer in the data stream, and the second average transmission performance parameter is an average transmission performance parameter threshold of a corresponding layer in the receiving link setting parameter.
  • the average transmission performance parameter includes one or more of BER, symbol error rate SER or MSE.
  • a second calculation module 805, configured to calculate average transmission performance parameters of each layer in the hierarchical information
  • the updating module 806 is configured to update an average transmission performance parameter threshold of the layer in the receiving link setting parameter according to an average transmission performance parameter of each layer.
  • the triggering condition of the ACM switching is determined by the first determining module 804, and the average transmission performance of the receiving link is dynamically adjusted by the second calculating module 805 and the updating module 806.
  • the parameter threshold value enables the real-time update of the transmission performance parameter threshold used in the trigger condition at the next ACM switching, thereby improving the achievability of the solution.
  • the ACM switching device further includes:
  • the second determining module is configured to determine that a trigger condition that satisfies the ACM handover is determined when the number of services in the data stream to be transmitted is different from the number of services in the received data stream.
  • the third determining module is configured to determine, when the difference between the transmission performance requirement value of the service in the data stream to be transmitted and the transmission performance value of the service in the received data stream exceeds the second threshold, determine a trigger condition that satisfies the ACM handover.
  • the ACM switching device is described above, and a transmitter 9 associated with the ACM switching device is described below, including:
  • the obtaining module 901 is configured to obtain the number of layers M when the data stream to be transmitted is superimposed and encoded, the modulation mode to be switched, the service data of each hierarchical mapping, and the normalized power of each layer;
  • the superposition coding module 902 is configured to perform constellation mapping on the service data in the data stream to be transmitted according to the hierarchical quantity M and the service data of each hierarchical mapping, and allocate normalized power of each layer to each layer to obtain superimposed encoded data. ;
  • the transmitting module 903 is configured to perform modulation on the superposed encoded data according to a modulation mode to be switched.
  • the acquiring module 901 of the transmitter 9 acquires the number of layers M when the data stream to be transmitted is superimposed and encoded, the modulation mode to be switched, the service data of each hierarchical mapping, and the normalized power of each layer.
  • the superimposition coding module 902 performs superposition coding on the service data corresponding to the service type in the to-be-transmitted data stream according to the hierarchical quantity M, the modulation mode to be switched, the service data of each hierarchical mapping, and the normalized power of each layer.
  • the encoded data is superimposed, and then the transmitting module 903 transmits the superimposed encoded data.
  • each layered power and modulation mode can change in real time following the changed service of the transmission, thereby adapting the system transmission capacity according to system performance changes, avoiding service interruption or wasting bandwidth. phenomenon.
  • the ACM switching device and the transmitter are introduced from the perspective of functional modularization.
  • the ACM switching device in the embodiment of the present invention is introduced from the perspective of hardware processing.
  • the ACM switching apparatus 10 in the embodiment of the present invention may be specifically located in the transmitting link, and may also be located in the receiving link, and may also be located in other physical hardware devices, which is not limited herein.
  • the ACM switching device When the ACM switching device is located in the transmitting link, it may be located in the transmitter entity of the prior art.
  • the ACM switching device When the ACM switching device is located in the receiving link, it may be located in the receiver entity of the prior art, which is not limited herein. .
  • the ACM switching device in the embodiment of the present invention is described below by taking an ACM switching device in the transmitter as an example.
  • FIG. 10 is another schematic structural diagram of an ACM switching apparatus 10 according to an embodiment of the present invention.
  • the ACM switching device 10 may include at least one network interface or other communication interface, at least one receiver 1001, at least one transmitter 1002, at least one processor 1003, and a memory 1004 to enable connection communication between the devices through at least one network
  • the interface (which may be wired or wireless) implements a communication connection between the system gateway and at least one other network element.
  • the memory 1004 can include a read only memory and a random access memory, and provides instructions and data to the processor 1003.
  • a portion of the memory 1004 can also include, possibly including, a high speed random access memory (RAM), and possibly a non- Un-volatile memory.
  • RAM high speed random access memory
  • the memory 1004 stores the following elements, executable modules or data structures, or a subset thereof, or an extended set thereof:
  • Operation instructions include various operation instructions for implementing various operations.
  • Operating system Includes a variety of system programs for implementing various basic services and handling hardware-based tasks.
  • the processor 1003 performs the following operations by calling an operation instruction stored in the memory 1004 (the operation instruction can be stored in the operating system):
  • the number of layers M of the data stream to be transmitted and the modulation mode to be switched are obtained according to the current system transmission performance, and the number of layers M is less than or equal to the number of services in the data stream to be transmitted, and is to be
  • the service data in the transmitted data stream is mapped into each layer of the number of layers M, and the normalized power of each layer in each layer is calculated, so that the transmitter 1002 according to the number of layers M, the modulation mode to be switched , each hierarchically mapped business data and the normalized power of each layer
  • the service data in the transmitted data stream is superimposed and transmitted.
  • the processor 1003 may further perform the following steps:
  • the integer part of the quotient value is taken as the layered quantity M, and the reference modulation mode is used as the modulation mode to be switched;
  • the quotient value is greater than the number of services in the data stream to be transmitted, increase the second bit number until the quotient value is less than or equal to the number of services in the data stream to be transmitted, and then obtain the layered quantity M according to the quotient value, and increase the second number.
  • the modulation mode corresponding to the number of bits obtained after the number of bits is used as the modulation mode to be switched.
  • the processor 1003 may further perform the following steps:
  • the service data in the data stream to be transmitted is mapped to each layer of the layered number M according to the transmission performance requirement value of the service, so that each layer has one type of service, and between the transmission performance requirement values of different services in the same layer The difference is less than the first threshold;
  • mapping the service data in the data stream to be transmitted to each layer of the number of layers M includes:
  • the service data in the data stream to be transmitted is mapped into each layer of the layer number M, so that each layer has a service.
  • the processor 1003 may further perform the following steps:
  • the normalized power of the layer is calculated according to the average BER of each layer such that the sum of the normalized powers of the layers is 1, and the normalized power of each layer is inversely proportional to the average BER of the layer.
  • the processor 1003 may further perform the following steps:
  • the trigger condition of the ACM handover is satisfied, and the first average transmission performance parameter is a layer in the received data stream.
  • Average transmission performance parameter, the second average transmission performance parameter is the receiving link setting parameter The average transmission performance parameter threshold of the corresponding layer in the number.
  • the processor 1003 may further perform the following steps:
  • the trigger condition of the ACM handover is satisfied.
  • the processor 1003 may further perform the following steps:
  • the trigger condition of the ACM handover is satisfied.
  • the processor 1003 may further perform the following steps:
  • the average transmission performance parameter threshold of the layer in the receiving link setting parameter is updated according to the average transmission performance parameter of each layer.
  • the processor 1003 may further perform the following steps:
  • the MSE of the received data stream is calculated by the following formula:
  • N i the average MSE of the i-th layer multiplied by the normalized power of the i-th layer.
  • the disclosed system, apparatus, and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated as The components displayed by the unit may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the technical solution of the present invention which is essential or contributes to the prior art, or all or part of the technical solution, may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例公开了一种ACM切换方法、ACM切换装置及发射器,用于提高叠加编码的数据传输速率。本发明实施例方法包括:当满足ACM切换的触发条件时,ACM切换装置根据当前的系统传输性能获得待发射数据流的分层数量M和待切换的调制模式,分层数量M小于或等于待发射数据流中的业务数量,再将待发射数据流中的业务数据映射到分层数量为M的各个分层中,计算各个分层中每一层的归一化功率,使得发射器根据分层数量M、待切换的调制模式、各个分层映射的业务数据和各层的归一化功率对待发射数据流进行叠加编码并发射。因此本发明实施例提供了一种ACM切换方法,使得待发射数据流的编码信息能适配系统的当前传输性能,从而能够提高叠加编码的数据传输速率。

Description

一种ACM切换方法、ACM切换装置及发射器 技术领域
本发明涉及无线通信领域,尤其涉及的是一种ACM切换方法、ACM切换装置及发射器。
背景技术
叠加编码(Superposition Coding,SC)是根据多用户不同的信道质量等级,将信道质量差的用户数据分配给基本星座图,将信道质量好的用户数据分配给附加星座图。其中基本星座图的功率较大,传输性能较好,附加星座图的功率较小,传输性能较差。将用户数据在传输过程中叠加合成,可以实现多用户间较均匀的误码率和最大化的传输容量。
长期演进(Long time evolution,LTE)业务承载不同类型的业务,不同类型的业务具有不同的传输性能需求。比如:语音会话的误码率(Bit error rate,BER)要求是10-2;而缓冲视频的误码率要求是10-6。利用叠加编码技术,发射器将待发射数据流中不同传输性能需求的业务分成M层,每一层映射到一个标准的星座图上,再进行叠加编码并发射。
而在现有的叠加编码中,由于每个分层的功率和调制模式均是固定的,导致适应性差,容易出现业务中断或浪费带宽的现象。
发明内容
本发明提供了一种自动编码调制(Automatic coding and modulation,ACM)切换方法、ACM切换装置及发射器,能够提高叠加编码的数据传输速率。
第一方面,本发明实施例提供了一种自动编码调制ACM切换方法,包括:
当满足ACM切换的触发条件时,根据当前的系统传输性能获得待发射数据流的分层数量M和待切换的调制模式,分层数量M小于或等于待发射数据流中的业务数量;
将待发射数据流中的业务数据映射到分层数量为M的各个分层中;
计算各个分层中每一层的归一化功率;
其中分层数量M、待切换的调制模式、各个分层映射的业务数据和各层的归一化功率用于使得发射器按照分层数量M、待切换的调制模式、各个分层映射的业务数据以及各层的归一化功率对待发射数据流进行叠加编码并发射。
结合第一方面,在第一方面的第一种可能的实现方式中,当前的系统传输性能包括当前接收数据流的MSE,所述根据当前的系统传输性能获得待发射数据流的分层数量M和待切换的调制模式包括:
根据MSE与调制模式的对应关系得到与当前接收数据流的MSE对应的调制模式;
计算第一比特数与第二比特数的商值,第一比特数为接收数据流的MSE对应的调制模式中一个符号所占的比特数,第二比特数为系统预设的基准调制模式中一个符号所占的比特数;
若商值小于或等于待发射数据流中的业务数量,则将商值的整数部分作为分层数量M,将基准调制模式作为待切换的调制模式;
若商值大于待发射数据流中的业务数量,则增大第二比特数直到商值小于或等于待发射数据流中的业务数量,再根据商值得到分层数量M,将增大第二比特数后得到的比特数对应的调制模式作为待切换的调制模式。
结合第一方面,在第一方面的第二种可能的实现方式中,当分层数量M小于待发射数据流中的业务数量时,将待发射数据流中的业务数据映射到分层数量为M的各个分层中包括:
获取待发射数据流中业务的传输性能需求值;
按照业务的传输性能需求值将待发射数据流中的业务数据映射到分层数量为M的各个分层中,使得每层有一种业务,且同一分层中不同业务的传输性能需求值之间的差值小于第一阈值;
当分层数量M等于待发射数据流中的业务数量时,将待发射数据流中的业务数据映射到分层数量为M的各个分层中包括:
将待发射数据流中的业务数据映射到分层数量为M的各个分层中,以使得每层有一种业务。
结合第一方面,在第一方面的第三种可能的实现方式中,计算各个分层中 每一层的归一化功率包括:
计算各层的平均误码率BER;
按照各层的平均BER计算该层的归一化功率,使得各层的归一化功率之和为1,且各层的归一化功率与该层的平均BER成反比。
结合第一方面、第一方面的第一种可能的实现方式至第一方面的第三种可能的实现方式中任意一种可能的实现方式,在第一方面的第四种可能的实现方式中,满足ACM切换的触发条件具体包括:
当第一平均传输性能参数与第二平均传输性能参数之间的差值超过第二预设阈值时,满足ACM切换的触发条件,第一平均传输性能参数为接收数据流中的某个层的平均传输性能参数,第二平均传输性能参数为接收链路设置参数中对应层的平均传输性能参数门限值。
结合第一方面、第一方面的第一种可能的实现方式至第一方面的第三种可能的实现方式中任意一种可能的实现方式,在第一方面的第五种可能的实现方式中,满足ACM切换的触发条件,具体包括:
当待发射数据流中的业务数量与接收数据流中的业务数量不相同时,满足ACM切换的触发条件。
结合第一方面、第一方面的第一种可能的实现方式至第一方面的第三种可能的实现方式中任意一种可能的实现方式,在第一方面的第六种可能的实现方式中,满足ACM切换的触发条件,具体包括:
当待发射数据流中的业务的传输性能需求值与接收数据流中业务的传输性能值的差值超过第三阈值时,满足ACM切换的触发条件。
结合第一方面的第四种可能的实现方式,在第一方面的第七种可能的实现方式中,该方法还包括:
计算各个分层中每层的平均传输性能参数;
按照各个分层的平均传输性能参数更新接收链路设置参数中的对应层的平均传输性能参数的门限值。
结合第一方面的第七种可能的实现方式,在第一方面的第八种可能的实现方式中,平均传输性能参数包括BER、误符号率SER或均方误差MSE中的其中一种或多种。
结合第一方面的第二种可能的实现方式,在第一方面的第九种可能的实现方式中,传输性能需求值包括误码率BER需求值或丢包率PER需求值。
结合第一方面的第一种可能的实现方式,在第一方面的第十种可能的实现方式中,该方法还包括:
通过如下公式计算接收数据流的MSE:
Figure PCTCN2015090124-appb-000001
M为分层数量,Ni=第i层的平均MSE乘以第i层的归一化功率。
第二方面,本发明实施例提供了一种ACM切换方法,包括:
发射器获取待发射数据流进行叠加编码时的分层数量M、待切换的调制模式、各个分层映射的业务数据以及各个分层的归一化功率;
发射器根据分层数量M、各个分层映射的业务数据对待发射数据流中的业务数据进行星座图映射,给各层分配各个分层的归一化功率以得到叠加编码数据;
发射器对叠加编码数据按照待切换的调制模式进行调制后进行发射。
第三方面,本发明实施例提供了一种ACM切换装置,包括:
获取模块,用于当满足ACM切换的触发条件时,根据当前的系统传输性能获得待发射数据流的分层数量M和待切换的调制模式,分层数量M小于或等于待发射数据流中的业务数量;
映射模块,用于将待发射数据流中的业务数据映射到分层数量为M的各个分层中;
第一计算模块,用于计算各个分层中每一层的归一化功率;
其中分层数量M、待切换的调制模式、各个分层映射的业务数据和各层的归一化功率用于使得发射器按照分层数量M、待切换的调制模式、各个分层映射的业务数据以及各层的归一化功率对待发射数据流进行叠加编码并发射。
结合第三方面,在第三方面的第一种可能的实现方式中,当前的系统传输性能包括当前接收数据流的MSE,获取模块包括:
第一获取单元,用于根据MSE与调制模式的对应关系得到与当前接收数据流的MSE对应的调制模式;
计算单元,用于计算第一比特数与第二比特数的商值,其中,第一比特数为接收数据流的MSE对应的调制模式中一个符号所占的比特数,第二比特数为系统预设的基准调制模式中一个符号所占的比特数;
确定单元,用于当商值小于或等于待发射数据流中的业务数量时,将商值的整数部分作为分层数量M,将该基准调制模式作为待切换的调制模式;
确定单元,还用于当商值大于待发射数据流中的业务数量时,增大第二比特数直到商值小于或等于待发射数据流中的业务数量,再根据商值得到分层数量M,将增大第二比特数后得到的比特数对应的调制模式作为待切换的调制模式。
结合第三方面,在第三方面的第二种可能的实现方式中,映射模块包括:
第二获取单元,用于当分层数量M小于待发射数据流中的业务数量时,获取待发射数据流中业务的传输性能需求值;
映射单元,用于在第二获取单元获取业务的传输性能需求值后,按照业务的传输性能需求值将待发射数据流中的业务数据映射到分层数量为M的各个分层中,使得每层有一种业务,且同一分层中不同业务的传输性能需求值之间的差值小于第一预设阈值;
映射单元,还用于当分层数量M等于待发射数据流中的业务数量时,将待发射数据流中的业务数据映射到分层数量为M的各个分层中,以使得每层有一种业务。
结合第三方面,在第三方面的第三种可能的实现方式中,计算模块包括:
第一计算单元,用于计算各层的平均误码率BER;
第二计算单元,用于按照各层的平均BER计算该层的归一化功率,使得各层的归一化功率之和为1,且各层的归一化功率与该层的平均BER成反比。
结合第三方面、第三方面的第一种可能的实现方式至第三方面的第三种可能的实现方式中任意一种可能的实现方式,在第三方面的第四种可能的实现方式中,ACM切换装置还包括:
第一确定模块,用于当第一平均传输性能参数与第二平均传输性能参数之间的差值超过第二预设阈值时,确定满足ACM切换的触发条件,第一平均传输性能参数为接收数据流中的某个层的平均传输性能参数,第二平均传输性能 参数为接收链路设置参数中对应层的平均传输性能参数门限值。
结合第三方面、第三方面的第一种可能的实现方式至第三方面的第三种可能的实现方式中任意一种可能的实现方式,在第三方面的第五种可能的实现方式中,ACM切换装置还包括:
第二确定模块,用于当待发射数据流中的业务数量与接收数据流中的业务数量不相同时,确定满足ACM切换的触发条件。
结合第三方面、第三方面的第一种可能的实现方式至第三方面的第三种可能的实现方式中任意一种可能的实现方式,在第三方面的第六种可能的实现方式中,ACM切换装置还包括:
第三确定模块,用于当待发射数据流中的业务的传输性能需求值与接收数据流中业务的传输性能值的差值超过第三预设阈值时,确定满足ACM切换的触发条件。
结合第三方面的第四种可能的实现方式,在第三方面的第七种可能的实现方式中,ACM切换装置还包括:
第二计算模块,用于计算各个分层中每层的平均传输性能参数;
更新模块,用于按照各个分层的平均传输性能参数更新接收链路设置参数中的对应层的平均传输性能参数的门限值。
结合第三方面的第七种可能的实现方式,在第三方面的第八种可能的实现方式中,第二计算模块,用于计算各个分层中每层的平均传输性能参数,平均传输性能参数包括BER、误符号率SER或均方误差MSE中的其中一种或多种。
结合第三方面的第二种可能的实现方式,在第三方面的第九种可能的实现方式中,获取单元,用于当分层数量M小于待发射数据流中的业务数量时,获取待发射数据流中业务的传输性能需求值,传输性能需求值包括误码率BER需求值或丢包率PER需求值。
结合第三方面的第一种可能的实现方式,在第三方面的第十种可能的实现方式中,ACM切换装置还包括:
第三计算模块,用于通过如下公式计算接收数据流的MSE:
Figure PCTCN2015090124-appb-000002
M为分层数量,Ni=第i层的平均MSE乘以第i层的归一化功率。
第四方面,本发明实施例提供了一种发射器,其特征在于,包括:
获取模块,用于获取待发射数据流进行叠加编码时的分层数量M、待切换的调制模式、各个分层映射的业务数据以及各个分层的归一化功率;
叠加编码模块,用于根据分层数量M、各个分层映射的业务数据对待发射数据流中的业务数据进行星座图映射,给各层分配各个分层的归一化功率以得到叠加编码数据;
发射模块,用于对叠加编码数据按照待切换的调制模式进行调制后进行发射。
第五方面,本发明实施例提供了一种ACM切换装置,包括:
处理器以及存储器,所述处理器,用于通过调用存储器存储的操作指令,执行如下操作:
当满足ACM切换的触发条件时,根据当前的系统传输性能获得待发射数据流的分层数量M和待切换的调制模式,分层数量M小于或等于待发射数据流中的业务数量,将待发射数据流中的业务数据映射到分层数量为M的各个分层中,计算各个分层中每一层的归一化功率;其中分层数量M、待切换的调制模式、各个分层映射的业务数据和各层的归一化功率用于使得发射器按照分层数量M、待切换的调制模式、各个分层映射的业务数据以及各层的归一化功率对待发射数据流进行叠加编码并发射。
从以上技术方案可以看出,本发明实施例的方案具有如下有益效果:
本发明实施例中,当满足ACM切换的触发条件时,ACM切换装置根据当前的系统传输性能获得待发射数据流的分层数量M和待切换的调制模式,分层数量M小于或等于待发射数据流中的业务数量,再将待发射数据流中的业务数据映射到分层数量为M的各个分层中,计算各个分层中每一层的归一化功率,使得发射器根据分层数量M、待切换的调制模式、各个分层映射的业务数据和各层的归一化功率对待发射数据流进行叠加编码并发射。因此本发明提供了一种ACM切换方法,能够在需要进行ACM切换时,根据系统的当前传输性能获得待发射数据流在编码时所需要的分层数量M,待切换的调制模式、各个分层映射的业务数据以及各层的归一化功率,使得待发射数据流的编码信息能适配当前系统的传输性能,从而实现最大化传输带宽,提高叠加编 码的数据传输速率。
附图说明
图1为本发明实施例中的叠加编码技术中发射和接收数据的示意图;
图2为本发明实施例中ACM切换方法的一种流程图;
图3为本发明实施例中ACM切换装置位于发射链路的实施例示意图;
图4为本发明实施例中ACM切换装置位于接收链路的实施例示意图;
图5为本发明实施例中ACM切换方法的另一种流程图;
图6为本发明实施例中ACM切换装置的一种功能模块化结构示意图;
图7为本发明实施例中ACM切换装置的另一种功能模块化结构示意图;
图8为本发明实施例中ACM切换装置的另一种功能模块化结构示意图;
图9为本发明实施例中发射器的一种模块化结构示意图;
图10为本发明实施例中ACM切换装置的一种硬件结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例,基于本发明中的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或模块的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或模块,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或模块,本文中所出现的模块的划分,仅仅是一种逻辑上的划分,实际应用中实现时可以有另外的划分方式,例如多个模块可以结合成或集成在另一个系统中,或一些特征可以忽略,或不执行,另外,所显示的或讨论的相互之间的耦合或直接 耦合或通信连接可以是通过一些接口,模块之间的间接耦合或通信连接可以是电性或其他类似的形式,本文中均不作限定。并且,作为分离部件说明的模块或子模块可以是也可以不是物理上的分离,可以是也可以不是物理模块,或者可以分不到多个电路模块中,可以根据实际的需要选择其中的部分或全部模块来实现本发明实施例方案的目的。
本发明实施例的叠加编码是基于标准星座图进行的叠加,可以对待发射数据流中N个不同传输性能需求值的业务进行分层传输。图1为叠加编码的原理示意图,如图1所示,发射链路的发射数据流中有N个不同传输性能需求值的业务,将这些业务分成M层,每一层映射到一个标准的星座图,然后对每个层的星座图配置相应的归一化功率后叠加,经过调制后发射出去,接收链路接收到从发射链路中发射的数据流后,对接收的数据流进行解调,之后进行连续干扰消除(Successive interference cancellation,SIC),并解出接收数据流中各分层中的业务。其中,发射链路中具体可以包括发射器,调制解调器,发射器执行图1所示的M层星座图映射、M层功率分配、叠加的步骤,调制解调器进行调制,发射器对调制后的数据进行发射;接收链路中具体包括接收器,调制解调器,接收器接收发射器发射的数据,调制解调器对接收的数据进行解调,接收器再对解调后的数据进行连续干扰消除。
本发明实施例提供了一种ACM切换方法,可以根据当前系统的传输性能动态调整待发射数据流的分层信息,调制模式,以及每层的归一化功率,从而最大化系统传输速率,下面结合图示进行详细说明。
本发明实施例中的ACM切换模块或装置具体可以存在于发射链路中,也可以存在于接收链路中,可以由中央处理器(Central Processing Unit,CPU)或数字信号处理器(digital signal processing,DSP)进行执行。在实际应用中,ACM切换装置可以直接位于目前的发射器或接收器中。
本发明实施例可以应用于叠加编码技术中,也可以应用于其他的编码技术中,本发明实施例以应用于叠加编码技术中为例进行介绍。
结合图2,本发明实施例中提供的一种ACM切换方法,由上述的ACM切换装置执行,该方法包括:
201、当满足ACM切换的触发条件时,根据当前的系统传输性能获得待发射数据流的分层数量M和待切换的调制模式;
在物理层的发射数据链路中,待发射数据流中有多种不同的业务类型,例如:语音会话业务、视频业务等,且每种业务类型有相应的传输性能需求。
待发射数据流经过发射链路的星座映射和调制后从天线发射出去,形成发射数据流。接收链路从天线接收到发射数据流后,经过解调恢复该发射数据流,将接收链路接收的数据流称为接收数据流。
在发射或接收数据的过程中,当ACM切换装置检测到满足ACM切换的触发条件时,根据当前的系统传输性能获得待发射数据流的分层数量M和待切换的调制模式,使得分层数量和调制模式与系统的当前传输性能相适配,该分层数量M小于或等于待发射数据流中的业务数量。下面对可能的实现方式进行详细说明。
可选的,在一种具体的实施中,ACM切换的触发条件可以包括以下两种:
一、第一种ACM触发条件
比较接收链路的接收数据流中当前某个层的平均传输性能参数与当前接收链路设置参数设置的对应层的平均传输性能参数门限值,当二者之差超过了系统预设阈值,则说明信道的传输性能发生了变化,此时,启动ACM切换。
具体的,平均传输性能参数可以是该层多个业务的平均误码率BER、误符号率(Symbol error rate,SER)或均方误差(Mean square error,MSE)三个指标中的一个,或其中任意两个或三个的平均值,还可以是其他能代表星座图的平均传输性能的参数。
具体的,当信道条件恶化时,BER、SER和MSE也会表现出不同程度的增大,此时启动ACM切换,通过反馈信道通知发射链路切换成较低的调制模式,使接收数据流的BER、SER和MSE在要求的范围内,从而保证通信的质量。当信道条件变好时,BER、SER和MSE也会表现出不同程度的降低,此时启动ACM切换,通过反馈信道通知发射链路切换成较高的调制模式,使得接收数据流的BER、SER和MSE在要求的范围内。
二、第二种ACM触发条件
当待发射数据流中有业务需求动态变化时,确定满足ACM切换的触发条 件。
待发射数据流中的业务需求变化主要表现在业务的数量的变化,或业务传输性能需求值的变化。具体为:
当待发射数据流中的业务数量与接收数据流中的业务数量不相同时,确定满足ACM切换的触发条件;或,当待发射数据流中业务的传输性能需求值与当前接收数据流中业务的传输性能值不相同时,确定满足ACM切换的触发条件。
其中,业务的传输性能需求值或当前的业务传输性能值可以是业务的误码率BER或业务的丢包率(Packet Loss Rate,PER)。
可选的,在一种具体的实施中,系统的当前传输性能可以是当前接收数据流的均方误差MSE,当前接收数据流中的MSE代表了当前系统的总的传输容量和性能。作为另一个实施例,下面介绍ACM切换过程中计算得到下一次发射时的叠加编码分层数量M以及待切换的调制模式的具体方法。
当满足ACM切换的触发条件时,ACM切换装置计算当前接收数据流的MSE以获知当前系统的性能,具体的计算方式可以:
当前接收数据流的
Figure PCTCN2015090124-appb-000003
其中,M为分层数量,Ni=第i层的平均MSE乘以第i层的归一化功率。
在获知接收数据流的MSE之后,根据MSE与调制模式的对应关系得到与接收数据流的MSE对应的调制模式,MSE与调制模式的对应关系表1如下:
表1
MSE(dB) 调制模式 每个符号的比特数
10~13 QPSK 2
13~16 8PSK 3
16~19 16QAM 4
19~22 32QAM 5
22~25 64QAM 6
25~28 128QAM 7
28~31 256QAM 8
在得到接收数据流的MSE对应的调制模式后,与系统预置的基准调制模 式进行比对,判断基准调制模式是否适合于下一次发射器发射时需要使用的调制模式。
其中,系统预置的基准调制模式可以是一个符号占用2个比特(bit)的QPSK调制模式,也可以是其他的调制模式,具体此处不做限定。
比对的具体方式为:
步骤1:计算第一比特数与第二比特数的商值,第一比特数为接收数据流的MSE对应的调制模式中一个符号所占的比特数,第二比特数为基准调制模式中一个符号所占的比特数。
步骤2:若第一比特数与第二比特数的商值刚好等于待发射数据流中的业务的数量,则可以认为基准调制模式刚好适配于下一次发射器发射待发射数据流中的数据时需要使用的调制模式,则将该基准调制模式作为下一次发射待发射数据流中的数据时使用的叠加编码的待切换调制模式。同时,将该商值作为下一次发射器发射时使用的叠加编码的分层数量M。
例如:基准调制模式为QPSK,QPSK中一个符号占用2bit,接收数据流中的MSE对应的调制模式为16QAM,16QAM中一个符号占用4bit,则商值为4bit/2bit=2,若待发射数据流中的业务数量刚好为2,则将待发射数据流分成2层进行叠加编码,每层使用的调制模式为QPSK。
步骤3:若第一比特数与第二比特数的商值小于待发射数据流中的业务的数量,则可以认为基准调制模式刚好适配于下一次发射器发射待发射数据流中的数据时需要使用的调制模式,则将该基准调制模式作为下一次发射待发射数据流中的数据时使用的叠加编码的待切换调制模式,将该商值的整数部分作为待发射数据流叠加编码的分层数量M。
例如:基准调制模式为QPSK,QPSK中一个符号占用2bit,接收数据流中的MSE对应的调制模式为16QAM,16QAM中一个符号占用4bit,则商值为4bit/2bit=2,若待发射数据流中的业务数量为3个,则确定待发射数据流的叠加编码分层数量为2,将待发射数据流分成2层进行叠加编码,每层使用的调制模式为基准调制模式QPSK。
步骤4:若第一比特数与第二比特数的商值大于待发射数据流中的业务的数量,则认为基准调制模式不适配于下一次发射器发射待发射数据流中的数据 时需要使用的调制模式,需要在基准调制模式的基础上调整调制模式以适配于下一次发射待发射数据流中的数据时使用的叠加编码的调制模式。
具体的调整方式为:增加第二比特数直到第一比特数除以第二比特数的商值小于或等于待发射数据流中业务的数量。
调整后,将调整后的商值作为分层数量M,将增加后得到的比特数对应的调制模式作为下一次发射待发射数据流中的数据时使用的叠加编码的调制模式。
例如:基准调制模式为QPSK,QPSK中一个符号占用2bit,接收数据流中的MSE对应的调制模式为256QAM,256QAM中一个符号占用8bit,则商值为8bit/2bit=4,若待发射数据流中的业务数量为2个,此时,需要通过提高基准调制模式来降低商值,使得商值等于或小于业务数量,在基准调制模式QPSK的基础上提高到16QAM,16QAM中一个符号占用4bit,调整后的商值为8bit/4bit=2,刚好等于发射数据流中的业务数量2,此时,采用的调制模式为调整后的16QAM。
需要说明的是,本发明实施例中的待发射数据流中的业务的数量是指一个数据包中的业务的数量,可以不包括待发射数据流中的所有业务。例如,可以从数据包中N个不同优先级的业务类型中由高到低选择L个优先级较高的业务,其中L≤N,以保证优先级高的业务优先发射。
202、将待发射数据流中的业务数据映射到分层数量为M的各个分层中;
当步骤201中确定的分层数量M等于待发射数据流中的业务数量时,直接将待发射数据流中的业务数据映射到分层数量为M的各个分层中,以使得每层有一种业务。
当分层数量M小于待发射数据流中的业务数量时,获取待发射数据流中业务的传输性能需求值,按照业务的传输性能需求值将待发射数据流中的业务数据映射到分层数量为M的各个分层中。
具体的映射原则为:将相邻的传输性能需求值的业务分配到同一个分层上,基于该原则,使得每层有一种业务,且同一分层中不同业务的传输性能需求值之间的差值小于系统预设的阈值,具体的方法可以为:
1、将待发射数据流中的业务对应的业务数据分配到M个分层上,以使得 每层上有一种业务类型,再将剩余未分配的业务对应的业务数据分配到已分配了业务类型的分层上,使得同一分层上不同的业务的传输性能需求值(BER或BER)之间的差值小于预设阈值,具体可以是使得不同业务BER之间的差值小于预设阈值,或使得不同业务PER之间的差值小于预设阈值。
2、将待发射数据流中的业务按照传输性能需求值(BER或BER)分成M个分组,使得每个分组中不同业务的传输性能需求值之间差值小于预设阈值,将M个分组的同一个分组中的业务对应的业务数据分配到同一个分层上。
需要说明的是,以上两种分配方法只是进行举例说明,具体还可以是其他的映射方法,具体此处不做限定。
该分层数量M以及M个分层上的业务数据为下一次发射器发射待发射数据时的叠加编码时的分层信息。
例如:基准调制模式为QPSK,QPSK中一个符号占用2bit,接收数据流中的MSE对应的调制模式为16QAM,16QAM中一个符号占用4bit,则商值为4bit/2bit=2,若待发射数据流中的业务数量为3个,BER分别为10-6,10-5,10-2,则将待发射数据流分成2层进行叠加编码,按照相邻的BER分配到同一层的原则,其中一层分配BER10-6和10-5对应的业务,另一层分配10-2对应的业务,每层使用的调制模式为QPSK。
203、计算各个分层中每一层的归一化功率。
在得到待发射数据流的叠加编码的分层信息以及调制模式后,再给叠加编码分层信息中的各层分配归一化功率。
分配功率的具体的原则为对L个业务中BER需求值较大的业务分配较低的功率,对BER需求值较小的的业务分配较大的功率。
具体分配方法可以为:
ACM切换装置先获取下一次待发射数据流中的数据使用的叠加编码分层中各层的平均BER需求值,平均BER需求值的具体计算方式为计算每层的多个业务的BER的平均值。
在获取各层的平均BER需求值后,按照各层的平均BER需求值计算该层的归一化功率,的使得各层的归一化功率之和为1,各层的归一化功率与该层的平均BER需求值成反比。
计算的方式可以包括多种,总的原则为BER需求值均值较大的层分配较低的功率,BER需求值均值较小的层分配较大的功率。
具体的一种计算公式可以为:
第k层的归一化功率
Figure PCTCN2015090124-appb-000004
其中,Bk为第k层的平均BER,M为层数,Bi为第i层的平均BER。
例如:假设待发射数据流被分成1,2,3层,第1,2,3层的各层的平均BER分别为A,B,C。
则第1层的归一化功率为:
P1=10*Log10A/(10*Log10A+10*Log10B+10*Log10C);
第2层的归一化功率为:
P2=10*Log10B/(10*Log10A+10*Log10B+10*Log10C);
第3层的归一化功率为:
P3=10*Log10C/(10*Log10A+10*Log10B+10*Log10C)。
在得到分层数量M、待切换的调制模式、各个分层映射的业务数据和各层的归一化功率后,发射器根据分层数量M、各个分层映射的业务数据对待发射数据流中的业务数据进行星座图映射,给各层分配各个分层的归一化功率以得到叠加编码数据,再对叠加编码数据按照待切换的调制模式进行调制后进行发射。因此,可以根据实际信道的变化,及待发射数据流中的业务的变化来实时调整下一次发射时的叠加编码的分层信息、调制模式及各层的归一化功率。
本发明实施例中,当满足ACM切换的触发条件时,ACM切换装置根据当前的系统传输性能获得待发射数据流的分层数量M和待切换的调制模式,分层数量M小于或等于待发射数据流中的业务数量,再将待发射数据流中的业务数据映射到分层数量为M的各个分层中,计算各个分层中每一层的归一化功率,使得发射器根据分层数量M、待切换的调制模式、各个分层映射的业务数据和各层的归一化功率对待发射数据流进行叠加编码并发射。因此本发明提供了一种ACM切换方法,能够在需要进行ACM切换时,根据系统的当前传输性能获得待发射数据流在编码时所需要的分层数量M,待切换的调制模式、各个分层映射的业务数据以及各层的归一化功率,使得待发射数据流的编码信息能适配当前系统的传输性能,从而实现最大化传输带宽,提高叠加编 码的数据传输速率。
进一步,作为可选的实施例,在进行ACM切换的过程中,不仅会更新发射链路中的发射器下一次发射时使用的叠加编码分层信息、调制模式以及各层的归一化功率,还会动态更新“ACM触发条件一”中使用的接收链路设置参数中的各层的平均传输性能参数门限值。具体方法为:
在ACM切换装置确定了发射器下一次发射时使用的叠加编码分层信息后,计算该叠加编码分层信息对应的分层中各层的平均传输性能参数,按照各层的平均传输性能参数更新接收链路设置参数中的该层的传输性能参数门限值,以动态的调整接收链路的传输性能参数门限值,使得下一次ACM切换时的触发条件中使用的平均传输性能参数门限值进行实时更新。
下面以一具体的应用场景对本发明实施例中的ACM切换方法进行介绍。
若当前接收链路的接收数据包的中包含三个业务,语音会话业务、缓冲视频业务,网页浏览数据业务,以上三种业务的实际传输BER分别是10-2、10-6、10-4,MSE分别为20、10、15(dB),这三种业务分成了三层,每一层映射到一个标准星座图上,每一层的归一化功率分别为:0.3、0.2、0.5。
此时,待发射数据流中下一个传输数据包中的业务若发生了变化,由三个业务变成了两个业务,说明待发射数据流中的业务需求发生了变化,需要进行ACM切换;
或者,待发射数据流中其中一种业务的BER需求值与当前接收数据流中BER值之间的差值超过预设阈值时,例如:待发射数据流中的网页浏览数据业务变成了下载数据业务,下载数据业务的BER需求值是10-1,两者之间的BER差值超过了系统预设的10-1,则说明待发射数据流中的业务需求发生了变化,需要进行ACM切换;
或者,在接收链路接收数据时,ACM切换装置检测到当前接收数据流中某个层的平均BER、平均SER或平均MSE与当前接收链路设置参数中的相应的BER、SER或MSE门限值之间的差值超过系统的预设阈值时,则说明当前的信道发生了变化,需要进行ACM切换。
下面以待发射数据流中的下一个数据包业务变为语音会话业务(BER:10-2)、缓冲视频业务(BER:10-6)为例,对具体的ACM切换进行说明。
根据当前接收数据流中的MSE计算当前的系统性能参考值:
MSE=0.6*20+0.3*10+0.1*12=16.2dB;
根据表1中的MSE与调制模式的换算关系,得到该MSE的调制模式为16QAM;
系统预设的基准调制模式为QPSK,一个符号占用的比特数为2,16QAM一个字节占用的比特数为4,4除以2的商值为2,该商值刚好与业务数量相等,所以将QPSK作为待发射数据流的调制模式,确定分层数为2,将待发射数据流中的语音会话业务(BER:10-2)、缓冲视频业务(BER:10-6)分别映射到其中的一个分层。
之后,计算每一层的归一化功率为:
第1层:P1=10*Log1010-2/(10*Log10-2+10*Log1010-6)=0.25;
第2层:P2=10*Log1010-6/(10*Log1010-2+10*Log1010-6)=0.75;
之后,发射器按照上述的分层信息、调制模式、每一层的归一化功率将待发射数据流中的语音会话业务(BER:10-2)、缓冲视频业务(BER:10-2)进行叠加编码并发射。
之后,计算叠加编码的分层中每一层的平均BER作为需要更新的接收链路设置参数中的BER门限值,分别为10-2、10-6
在实际应用中,ACM切换装置具体可以存在于网络中的发射链路中,也可以存在于接收链路中,下面对这两种情况进行分别说明。
一、ACM切换装置存在于发射链路中;
如图3所示,ACM切换装置存在于发射链路中,接收链路通过反馈信道反馈当前M个层的平均传输性能参数门限值(例如BER、SER或MSE门限值)至发射链路,用于发射链路中的ACM切换装置判断是否满足ACM切换条件。ACM切换装置根据图2所示的实施例中的ACM切换条件判断需要进行ACM切换时,由发射链路中的ACM装置计算下一次发射时叠加编码需要的分层数量M、待切换的调制模式、各个分层映射的业务数据和各层的归一化功率,再由发射链路中的发射器根据ACM装置发送的分层数量M、待切换的调制模式、各个分层映射的业务数据和各层的归一化功率对发射链路中的待发射业务数据进行叠加编码并发射给接收链路中的接收器,同时ACM装置计 算需要更新的各层的平均传输性能参数门限值(例如BER、SER或MSE门限值),将其发送至接收链路中的接收器,接收链路中的接收器据此进行解调和SIC连续消扰,并更新各层的平均传输性能参数门限值(例如BER、SER或MSE门限值)。
二、ACM切换装置存在于发射链路中。
如图4所示,ACM切换装置存在于接收链路中,发射链路发射N个不同BER需求的业务至接收链路,若待发射数据流的业务的数量发生变化,或待发射数据流中的BER(或PER)发生变化,或者,待当前接收数据流中某一层的平均传输性能参数与接收链路设置参数中对应层的平均传输性能参数门限值发生变化时,由接收链路中的ACM切换装置计算待发射数据流的叠加编码的分层数量M、待切换的调制模式、各个分层映射的业务数据和各层的归一化功率,然后通过反馈信道反馈至发射链路,再由发射链路中的发射器根据接收的分层数量M、待切换的调制模式、各个分层映射的业务数据和各层的归一化功率对发射链路中的业务数据进行叠加编码并发射,接收链路中的接收器据此进行解调和SIC连续消扰。
同时,ACM装置计算需要更新的各层的平均传输性能参数门限值(例如BER、SER或MSE门限值),更新接收链路设置参数中的各层的平均传输性能参数门限值。
以上是对本发明实施例中的ACM切换装置侧的ACM切换方法进行介绍,下面从发射器的角度对本发明实施例中的ACM切换方法进行介绍。
结合图5,本发明实施例提供的一种ACM切换方法,具体由存在于发射链路中的发射器或发射机中的CPU或DSP执行,该方法包括:
501、发射器获取待发射数据流进行叠加编码时的分层数量M、待切换的调制模式、各个分层映射的业务数据以及各个分层的归一化功率;
当满足ACM切换的触发条件时,ACM切换装置根据当前的系统传输性能获得待发射数据流的分层数量M和待切换的调制模式,分层数量M小于或等于待发射数据流中的业务数量,将待发射数据流中的业务数据映射到分层数量为M的各个分层中,计算各个分层中每一层的归一化功率。
发射器获取待发射数据流进行叠加编码时的分层信息、调制模式以及各层 的归一化功率,获取的方式可以是发射器接收的ACM切换装置发送的待发射数据流叠加编码时的信息,也可以是由发射器直接通过指令获取的该信息,具体方式此处不做限定。
502、发射器根据分层数量M、各个分层映射的业务数据对待发射数据流中的业务数据进行星座图映射,给各层分配各个分层的归一化功率以得到叠加编码数据;
发射器在获取到待发射数据流进行叠加编码时的分层数量M、待切换的调制模式、各个分层映射的业务数据以及各个分层的归一化功率后,根据分层数量M、各个分层映射的业务数据对待发射数据流中的业务数据进行分层,将每一层映射到一个标准的星座图上,然后对每个层的星座图配置相应的归一化功率后进行叠加得到叠加编码后的数据。
503、发射器对叠加编码数据按照待切换的调制模式进行调制后进行发射。
在发射器对待发射业务流中的业务数据进行叠加编码后,将叠加编码后的数据经过调制后进行发射。
本发明实施例中,发射器获取待发射数据流进行叠加编码时的分层数量M、待切换的调制模式、各个分层映射的业务数据以及各个分层的归一化功率,根据该分层数量M、待切换的调制模式、各个分层映射的业务数据以及各个分层的归一化功率对待发射数据流中的业务类型对应的业务数据进行叠加编码得到叠加编码数据,然后将叠加编码后的数据进行发射。使得在发射器进行叠加编码的过程中,每个分层的功率和调制模式能实时跟随传输的业务变化而变化,从而根据系统性能变化而适配系统传输容量,避免出现业务中断或浪费带宽的现象。
以上是对ACM切换方法进行的介绍,下面从功能模块化的角度对本发明实施例中的ACM切换装置进行介绍。
结合图6,本发明实施例中的ACM切换装置6包括:
获取模块601,用于当满足ACM切换的触发条件时,根据当前的系统传输性能获得待发射数据流的分层数量M和待切换的调制模式,分层数量M小于或等于待发射数据流中的业务数量;
映射模块602,用于将待发射数据流中的业务数据映射到分层数量为M的 各个分层中;
第一计算模块603,用于计算各个分层中每一层的归一化功率;
其中分层数量M、待切换的调制模式、各个分层映射的业务数据和各层的归一化功率用于使得发射器按照分层数量M、待切换的调制模式、各个分层映射的业务数据以及各层的归一化功率对待发射数据流进行叠加编码并发射。
本发明实施例ACM切换装置6的各模块之间的交互过程可以参阅前述图2所示实施例中的交互过程,具体此处不再赘述。
本发明实施例中,当满足ACM切换的触发条件时,获取模块601根据当前的系统传输性能获得待发射数据流的分层数量M和待切换的调制模式,分层数量M小于或等于待发射数据流中的业务数量,映射模块602再将待发射数据流中的业务数据映射到分层数量为M的各个分层中,计算模块603计算各个分层中每一层的归一化功率,使得发射器根据分层数量M、待切换的调制模式、各个分层映射的业务数据和各层的归一化功率对待发射数据流进行叠加编码并发射。因此本发明提供了一种ACM切换方法,能够在需要进行ACM切换时,根据系统的当前传输性能获得待发射数据流在编码时所需要的分层数量M,待切换的调制模式、各个分层映射的业务数据以及各层的归一化功率,使得待发射数据流的编码信息能适配当前系统的传输性能,从而实现最大化传输带宽,提高叠加编码的数据传输速率。
结合图7,本发明实施例中的ACM切换装置7包括:
获取模块701,用于当满足ACM切换的触发条件时,根据当前的系统传输性能获得待发射数据流的分层数量M和待切换的调制模式,分层数量M小于或等于待发射数据流中的业务数量;
映射模块702,用于将待发射数据流中的业务数据映射到分层数量为M的各个分层中;
计算模块703,用于计算各个分层中每一层的归一化功率;
其中分层数量M、待切换的调制模式、各个分层映射的业务数据和各层的归一化功率用于使得发射器按照分层数量M、待切换的调制模式、各个分层映射的业务数据以及各层的归一化功率对待发射数据流进行叠加编码并发射。
其中,获取模块701包括:
第一获取单元7011,用于根据MSE与调制模式的对应关系得到与当前接收数据流的MSE对应的调制模式;
计算单元7012,用于计算第一比特数与第二比特数的商值,其中,第一比特数为接收数据流的MSE对应的调制模式中一个符号所占的比特数,第二比特数为系统预设的基准调制模式中一个符号所占的比特数;
确定单元7013,用于当商值小于或等于待发射数据流中的业务数量时,将商值的整数部分作为分层数量M,将该基准调制模式作为待切换的调制模式;
确定单元7013,还用于当商值大于待发射数据流中的业务数量时,增大第二比特数直到商值小于或等于待发射数据流中的业务数量,再根据商值得到分层数量M,将增大第二比特数后得到的比特数对应的调制模式作为待切换的调制模式。
另外,映射模块702包括:
第二获取单元7021,用于当分层数量M小于待发射数据流中的业务数量时,获取待发射数据流中业务的传输性能需求值;
映射单元7022,用于在第二获取单元获取业务的传输性能需求值后,按照业务的传输性能需求值将待发射数据流中的业务数据映射到分层数量为M的各个分层中,使得每层有一种业务,且同一分层中不同业务的传输性能需求值之间的差值小于第一预设阈值;
映射单元7022,还用于当分层数量M等于待发射数据流中的业务数量时,将待发射数据流中的业务数据映射到分层数量为M的各个分层中,以使得每层有一种业务。
另外,第一计算模块703包括:
第一计算单元7031,用于计算各层的平均误码率BER;
第二计算单元7032,用于按照各层的平均BER计算该层的归一化功率,使得各层的归一化功率之和为1,且各层的归一化功率与该层的平均BER成反比。
另外,ACM切换装置7还包括:
第三计算模块704,用于通过如下公式计算接收数据流的MSE:
Figure PCTCN2015090124-appb-000005
其中M为分层数量,Ni=第i层的平均MSE乘以第i层的归一化功率。
本发明实施例ACM切换装置7的各模块之间的交互过程可以参阅前述图2所示实施例中的交互过程,具体此处不再赘述。
本发明实施例中,ACM切换装置7可以通过具体的运算处理得到发射链路中的发射器下一次发射时使用的叠加编码分层数量M、调制模式、各分层上映射的业务数据,各层的归一化功率,提高了方案的可实现性。
结合图8,本发明实施例中的ACM切换装置8包括:
获取模块801,用于当满足ACM切换的触发条件时,根据当前的系统传输性能获得待发射数据流的分层数量M和待切换的调制模式,分层数量M小于或等于待发射数据流中的业务数量;
映射模块802,用于将待发射数据流中的业务数据映射到分层数量为M的各个分层中;
计算模块803,用于计算各个分层中每一层的归一化功率;
其中分层数量M、待切换的调制模式、各个分层映射的业务数据和各层的归一化功率用于使得发射器按照分层数量M、待切换的调制模式、各个分层映射的业务数据以及各层的归一化功率对待发射数据流进行叠加编码并发射。
该ACM切换装置8还包括:
第一确定模块804,用于当第一平均传输性能参数与第二平均传输性能参数之间的差值超过第一预设阈值时,确定满足ACM切换的触发条件,第一平均传输性能参数为接收数据流中的某个层的平均传输性能参数,第二平均传输性能参数为接收链路设置参数中对应层的平均传输性能参数门限值。
其中,平均传输性能参数包括BER、误符号率SER或MSE中的一种或多种。
第二计算模块805,用于计算分层信息中各层的平均传输性能参数;
更新模块806,用于按照各层的平均传输性能参数更新接收链路设置参数中的该层的平均传输性能参数门限值。
本发明实施例中,通过第一确定模块804确定ACM切换的触发条件,并且通过第二计算模块805和更新模块806动态的调整接收链路的平均传输性能 参数门限值,能使得下一次ACM切换时的触发条件中使用的传输性能参数门限值进行实时更新,从而提高了方案的可实现性。
进一步,作为另一个实施例,该ACM切换装置还包括:
第二确定模块,用于当待发射数据流中的业务数量与接收数据流中的业务数量不相同时,确定满足ACM切换的触发条件。
第三确定模块,用于当待发射数据流中业务的传输性能需求值与接收数据流中业务的传输性能值的差值超过第二阈值时,确定满足ACM切换的触发条件。
上面介绍了ACM切换装置,下面介绍与ACM切换装置相关联的一种发射器9,包括:
获取模块901,用于获取待发射数据流进行叠加编码时的分层数量M、待切换的调制模式、各个分层映射的业务数据以及各个分层的归一化功率;
叠加编码模块902,用于根据分层数量M、各个分层映射的业务数据对待发射数据流中的业务数据进行星座图映射,给各层分配各个分层的归一化功率以得到叠加编码数据;
发射模块903,用于对叠加编码数据按照待切换的调制模式进行调制后进行发射。
本发明实施例发射器9的各模块之间的交互过程可以参阅前述图6所示实施例中的交互过程,具体此处不再赘述。
本发明实施例中,发射器9的获取模块901获取待发射数据流进行叠加编码时的分层数量M、待切换的调制模式、各个分层映射的业务数据以及各个分层的归一化功率,叠加编码模块902根据该分层数量M、待切换的调制模式、各个分层映射的业务数据以及各个分层的归一化功率对待发射数据流中的业务类型对应的业务数据进行叠加编码得到叠加编码数据,然后发射模块903将叠加编码后的数据进行发射。使得在发射器进行叠加编码的过程中,每个分层的功率和调制模式能实时跟随传输的业务变化而变化,从而根据系统性能变化而适配系统传输容量,避免出现业务中断或浪费带宽的现象。
上面是从功能模块化角度对ACM切换装置和发射器进行了介绍,下面从硬件处理的角度对本发明实施例中的ACM切换装置进行介绍。
需要说明的是,本发明实施例中的ACM切换装置10具体可以存在于发射链路中,也可以存在于接收链路中,还可以位于其他实体硬件设备中,具体此处不做限定。当ACM切换装置位于发射链路中时,可以位于现有技术的发射器实体中,当ACM切换装置位于接收链路中时,可以位于现有技术的接收器实体中,具体此处不做限定。
下面以ACM切换装置位于发射器中为例,对本发明实施例中的ACM切换装置进行介绍。
图10是本发明实施例ACM切换装置10的另一结构示意图。ACM切换装置10可包括至少一个网络接口或者其它通信接口、至少一个接收器1001、至少一个发射器1002、至少一个处理器1003和存储器1004,以实现这些装置之间的连接通信,通过至少一个网络接口(可以是有线或者无线)实现该系统网关与至少一个其它网元之间的通信连接。
存储器1004可以包括只读存储器和随机存取存储器,并向处理器1003提供指令和数据,存储器1004的一部分还可以包括可能包含高速随机存取存储器(RAM,Random Access Memory),也可能还包括非不稳定的存储器(non-volatile memory)。
存储器1004存储了如下的元素,可执行模块或者数据结构,或者它们的子集,或者它们的扩展集:
操作指令:包括各种操作指令,用于实现各种操作。
操作系统:包括各种系统程序,用于实现各种基础业务以及处理基于硬件的任务。
在本发明实施例中,处理器1003通过调用存储器1004存储的操作指令(该操作指令可存储在操作系统中),执行如下操作:
当满足ACM切换的触发条件时,根据当前的系统传输性能获得待发射数据流的分层数量M和待切换的调制模式,分层数量M小于或等于待发射数据流中的业务数量,将待发射数据流中的业务数据映射到分层数量为M的各个分层中,计算各个分层中每一层的归一化功率,以使得发射器1002根据分层数量M、待切换的调制模式、各个分层映射的业务数据和各层的归一化功率 对待发射数据流中的业务数据进行叠加编码并发射。
在一些实施方式中,上述处理器1003还可以执行以下步骤:
根据MSE与调制模式的对应关系得到与当前接收数据流的MSE对应的调制模式;
计算第一比特数与第二比特数的商值,第一比特数为接收数据流的MSE对应的调制模式中一个符号所占的比特数,第二比特数为系统预设的基准调制模式中一个符号所占的比特数;
若商值小于或等于待发射数据流中的业务数量,则将商值的整数部分作为分层数量M,将基准调制模式作为待切换的调制模式;
若商值大于待发射数据流中的业务数量,则增大第二比特数直到商值小于或等于待发射数据流中的业务数量,再根据商值得到分层数量M,将增大第二比特数后得到的比特数对应的调制模式作为待切换的调制模式。
在一些实施方式中,上述处理器1003还可以执行以下步骤:
获取待发射数据流中业务的传输性能需求值;
按照业务的传输性能需求值将待发射数据流中的业务数据映射到分层数量为M的各个分层中,使得每层有一种业务,且同一分层中不同业务的传输性能需求值之间的差值小于第一阈值;
当分层数量M等于待发射数据流中的业务数量时,将待发射数据流中的业务数据映射到分层数量为M的各个分层中包括:
将待发射数据流中的业务数据映射到分层数量为M的各个分层中,以使得每层有一种业务。
在一些实施方式中,上述处理器1003还可以执行以下步骤:
计算各层的平均误码率BER;
按照各层的平均BER计算该层的归一化功率,使得各层的归一化功率之和为1,且各层的归一化功率与该层的平均BER成反比。
在一些实施方式中,上述处理器1003还可以执行以下步骤:
当第一平均传输性能参数与第二平均传输性能参数之间的差值超过第一预设阈值时,满足ACM切换的触发条件,第一平均传输性能参数为接收数据流中的某个层的平均传输性能参数,第二平均传输性能参数为接收链路设置参 数中对应层的平均传输性能参数门限值。
在一些实施方式中,上述处理器1003还可以执行以下步骤:
当待发射数据流中的业务数量与接收数据流中的业务数量不相同时,满足ACM切换的触发条件。
在一些实施方式中,上述处理器1003还可以执行以下步骤:
当待发射数据流中的业务的传输性能需求值与接收数据流中业务的传输性能值的差值超过第二阈值时,满足ACM切换的触发条件。
在一些实施方式中,上述处理器1003还可以执行以下步骤:
计算分层信息中各层的平均传输性能参数;
按照各层的平均传输性能参数更新接收链路设置参数中的该层的平均传输性能参数门限值。
在一些实施方式中,上述处理器1003还可以执行以下步骤:
通过如下公式计算接收数据流的MSE:
Figure PCTCN2015090124-appb-000006
M为分层数量,Ni=第i层的平均MSE乘以第i层的归一化功率。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为 单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (24)

  1. 一种自动编码调制ACM切换方法,其特征在于,包括:
    当满足ACM切换的触发条件时,根据当前的系统传输性能获得待发射数据流的分层数量M和待切换的调制模式,所述分层数量M小于或等于所述待发射数据流中的业务数量;
    将所述待发射数据流中的业务数据映射到所述分层数量为M的各个分层中;
    计算所述各个分层中每一层的归一化功率;
    其中所述分层数量M、所述待切换的调制模式、所述各个分层映射的业务数据和所述各层的归一化功率用于使得发射器按照所述分层数量M、所述待切换的调制模式、所述各个分层映射的业务数据以及各层的归一化功率对所述待发射数据流进行叠加编码并发射。
  2. 根据权利要求1所述的方法,其特征在于:
    所述当前的系统传输性能包括当前接收数据流的MSE;
    所述根据当前的系统传输性能获得待发射数据流的分层数量M和待切换的调制模式包括:
    根据MSE与调制模式的对应关系得到与所述当前接收数据流的MSE对应的调制模式;
    计算第一比特数与第二比特数的商值,所述第一比特数为所述接收数据流的MSE对应的调制模式中一个符号所占的比特数,所述第二比特数为系统预设的基准调制模式中一个符号所占的比特数;
    若所述商值小于或等于所述待发射数据流中的业务数量,则将所述商值的整数部分作为所述分层数量M,将所述基准调制模式作为所述待切换的调制模式;
    若所述商值大于所述待发射数据流中的业务数量,则增大所述第二比特数以调整所述商值,直到所述商值小于或等于所述待发射数据流中的业务数量,再将调整后的商值作为所述分层数量M,将增大所述第二比特数后得到的比特数对应的调制模式作为所述待切换的调制模式。
  3. 根据权利要求1所述的方法,其特征在于:
    当所述分层数量M小于所述待发射数据流中的业务数量时,所述将所述待发射数据流中的业务数据映射到所述分层数量为M的各个分层中包括:
    获取所述待发射数据流中业务的传输性能需求值;
    按照所述业务的传输性能需求值将所述待发射数据流中的业务数据映射到所述分层数量为M的各个分层中,使得每层有一种业务,且同一分层中不同业务的传输性能需求值之间的差值小于第一阈值;
    当所述分层数量M等于所述待发射数据流中的业务数量时,所述将所述待发射数据流中的业务数据映射到所述分层数量为M的各个分层中包括:
    将所述待发射数据流中的业务数据映射到所述分层数量为M的各个分层中,以使得每层有一种业务。
  4. 根据权利要求1所述的方法,其特征在于,所述计算所述各个分层中每一层的归一化功率包括:
    计算所述各层的平均误码率BER;
    按照所述各层的平均BER计算该层的归一化功率,使得各层的归一化功率之和为1,且所述各层的归一化功率与该层的平均BER成反比。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述满足ACM切换的触发条件,具体包括:
    当第一平均传输性能参数与第二平均传输性能参数之间的差值超过第二预设阈值时,满足ACM切换的触发条件,所述第一平均传输性能参数为所述接收数据流中的某个层的平均传输性能参数,所述第二平均传输性能参数为接收链路设置参数中对应层的平均传输性能参数门限值。
  6. 根据权利要求1至4中任一项所述的方法,其特征在于,所述满足ACM切换的触发条件,具体包括:
    当所述待发射数据流中的业务数量与所述接收数据流中的业务数量不相同时,满足ACM切换的触发条件。
  7. 根据权利要求1至4中任一项所述的方法,其特征在于,所述满足ACM切换的触发条件,具体包括:
    当所述待发射数据流中的业务的传输性能需求值与所述接收数据流中业务的传输性能值的差值超过第三阈值时,满足ACM切换的触发条件。
  8. 根据权利要求5所述的方法,其特征在于,所述方法还包括:
    计算所述各个分层中每层的平均传输性能参数;
    按照所述各个分层的平均传输性能参数更新所述接收链路设置参数中的对应层的平均传输性能参数的门限值。
  9. 根据权利要求8所述的方法,其特征在于:
    所述平均传输性能参数包括BER、误符号率SER或均方误差MSE中的其中一种或多种。
  10. 根据权利要求3所述的方法,其特征在于:
    所述传输性能需求值包括误码率BER需求值或丢包率PER需求值。
  11. 根据权利要求2所述的方法,其特征在于,所述方法还包括:
    通过如下公式计算所述接收数据流的MSE:
    Figure PCTCN2015090124-appb-100001
    所述M为所述分层数量,所述Ni=第i层的平均MSE乘以第i层的归一化功率。
  12. 一种ACM切换方法,其特征在于,包括:
    发射器获取待发射数据流进行叠加编码时的分层数量M、待切换的调制模式、各个分层映射的业务数据以及各个分层的归一化功率;
    所述发射器根据所述分层数量M、各个分层映射的业务数据对所述待发射数据流中的业务数据进行星座图映射,给各层分配所述各个分层的归一化功率以得到叠加编码数据;
    所述发射器对所述叠加编码数据按照所述待切换的调制模式进行调制后进行发射。
  13. 一种ACM切换装置,其特征在于,包括:
    获取模块,用于当满足ACM切换的触发条件时,根据当前的系统传输性能获得待发射数据流的分层数量M和待切换的调制模式,所述分层数量M小于或等于所述待发射数据流中的业务数量;
    映射模块,用于将所述待发射数据流中的业务数据映射到所述分层数量为M的各个分层中;
    第一计算模块,用于计算所述各个分层中每一层的归一化功率;
    其中所述分层数量M、所述待切换的调制模式、所述各个分层映射的业 务数据和所述各层的归一化功率用于使得发射器按照所述分层数量M、所述待切换的调制模式、所述各个分层映射的业务数据以及各层的归一化功率对所述待发射数据流进行叠加编码并发射。
  14. 根据权利要求13所述的ACM切换装置,其特征在于:
    所述当前的系统传输性能包括当前接收数据流的MSE;
    所述获取模块包括:
    第一获取单元,用于根据MSE与调制模式的对应关系得到与所述当前接收数据流的MSE对应的调制模式;
    计算单元,用于计算第一比特数与第二比特数的商值,所述第一比特数为所述接收数据流的MSE对应的调制模式中一个符号所占的比特数,所述第二比特数为系统预设的基准调制模式中一个符号所占的比特数;
    确定单元,用于当所述商值小于或等于所述待发射数据流中的业务数量时,将所述商值的整数部分作为所述分层数量M,将所述基准调制模式作为所述待切换的调制模式;
    所述确定单元,还用于当所述商值大于所述待发射数据流中的业务数量时,增大所述第二比特数以调整所述商值,直到所述商值小于或等于所述待发射数据流中的业务数量,再将调整后的商值作为所述分层数量M,将增大所述第二比特数后得到的比特数对应的调制模式作为所述待切换的调制模式。
  15. 根据权利要求13所述的ACM切换装置,其特征在于,所述映射模块包括:
    第二获取单元,用于当所述分层数量M小于所述待发射数据流中的业务数量时,获取所述待发射数据流中业务的传输性能需求值;
    映射单元,用于在所述第二获取单元获取所述传输性能需求值后,按照所述业务的传输性能需求值将所述待发射数据流中的业务数据映射到所述分层数量为M的各个分层中,使得每层有一种业务,且同一分层中不同业务的传输性能需求值之间的差值小于第一预设阈值;
    所述映射单元,还用于当所述分层数量M等于所述待发射数据流中的业务数量时,将所述待发射数据流中的业务数据映射到所述分层数量为M的各个分层中,以使得每层有一种业务。
  16. 根据权利要求13所述的ACM切换装置,其特征在于,所述第一计算模块包括:
    第一计算单元,用于计算所述各层的平均误码率BER;
    第二计算单元,用于按照所述各层的平均BER计算该层的归一化功率,使得各层的归一化功率之和为1,且所述各层的归一化功率与该层的平均BER成反比。
  17. 根据权利要求13至16中任一项所述的ACM切换装置,其特征在于,所述ACM切换装置还包括:
    第一确定模块,用于当第一平均传输性能参数与第二平均传输性能参数之间的差值超过第二预设阈值时,确定满足ACM切换的触发条件,所述第一平均传输性能参数为所述接收数据流中的某个层的平均传输性能参数,所述第二平均传输性能参数为接收链路设置参数中对应层的平均传输性能参数门限值。
  18. 根据权利要求13至16中任一项所述的ACM切换装置,其特征在于,所述ACM切换装置还包括:
    第二确定模块,用于当所述待发射数据流中的业务数量与所述接收数据流中的业务数量不相同时,确定满足ACM切换的触发条件。
  19. 根据权利要求13至16中任一项所述的ACM切换装置,其特征在于,所述ACM切换装置还包括:
    第三确定模块,用于当所述待发射数据流中的业务的传输性能需求值与所述接收数据流中业务的传输性能值的差值超过第三预设阈值时,确定满足ACM切换的触发条件。
  20. 根据权利要求17所述的ACM切换装置,其特征在于,所述ACM切换装置还包括:
    第二计算模块,用于计算所述各个分层中每层的平均传输性能参数;
    更新模块,用于按照所述各个分层的平均传输性能参数更新所述接收链路设置参数中的对应层的平均传输性能参数的门限值。
  21. 根据权利要求20所述的ACM切换装置,其特征在于:
    所述第二计算模块,用于计算所述各个分层中每层的平均传输性能参数,所述平均传输性能参数包括BER、误符号率SER或均方误差MSE中的其中一 种或多种。
  22. 根据权利要求15所述的ACM切换装置,其特征在于:
    所述获取单元,用于当所述分层数量M小于所述待发射数据流中的业务数量时,获取所述待发射数据流中业务的传输性能需求值,所述传输性能需求值包括误码率BER需求值或丢包率PER需求值。
  23. 根据权利要求14所述的ACM切换装置,其特征在于,所述ACM切换装置还包括:
    第三计算模块,用于通过如下公式计算所述接收数据流的MSE:
    Figure PCTCN2015090124-appb-100002
    所述M为所述分层数量,所述Ni=第i层的平均MSE乘以第i层的归一化功率。
  24. 一种发射器,其特征在于,包括:
    获取模块,用于获取待发射数据流进行叠加编码时的分层数量M、待切换的调制模式、各个分层映射的业务数据以及各个分层的归一化功率;
    叠加编码模块,用于根据所述分层数量M、各个分层映射的业务数据对所述待发射数据流中的业务数据进行星座图映射,给各层分配所述各个分层的归一化功率以得到叠加编码数据;
    发射模块,用于对所述叠加编码数据按照所述待切换的调制模式进行调制后进行发射。
PCT/CN2015/090124 2015-09-21 2015-09-21 一种acm切换方法、acm切换装置及发射器 WO2017049431A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2015/090124 WO2017049431A1 (zh) 2015-09-21 2015-09-21 一种acm切换方法、acm切换装置及发射器
CN201580083503.2A CN108141429B (zh) 2015-09-21 2015-09-21 一种acm切换方法、acm切换装置及发射器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/090124 WO2017049431A1 (zh) 2015-09-21 2015-09-21 一种acm切换方法、acm切换装置及发射器

Publications (1)

Publication Number Publication Date
WO2017049431A1 true WO2017049431A1 (zh) 2017-03-30

Family

ID=58385568

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/090124 WO2017049431A1 (zh) 2015-09-21 2015-09-21 一种acm切换方法、acm切换装置及发射器

Country Status (2)

Country Link
CN (1) CN108141429B (zh)
WO (1) WO2017049431A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101444060A (zh) * 2006-02-01 2009-05-27 Lg电子株式会社 在无线通信系统中使用叠加调制来发送和接收数据的方法
CN104022850A (zh) * 2014-06-20 2014-09-03 太原科技大学 基于信道特性的自适应分层视频传输方法
CN104780024A (zh) * 2015-04-14 2015-07-15 电子科技大学 一种多输入多输出系统中的多流空移键控调制及解调方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8085819B2 (en) * 2006-04-24 2011-12-27 Qualcomm Incorporated Superposition coding in a wireless communication system
WO2010012108A1 (en) * 2008-07-31 2010-02-04 Pin-Han Ho System and method for cooperative coded data multicast
CN101562781B (zh) * 2009-05-19 2011-09-14 华中科技大学 一种基于调制的自适应喷泉码多播传输系统
CN104540208A (zh) * 2014-12-29 2015-04-22 东北大学 基于物理层网络编码的速率功率自适应方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101444060A (zh) * 2006-02-01 2009-05-27 Lg电子株式会社 在无线通信系统中使用叠加调制来发送和接收数据的方法
CN104022850A (zh) * 2014-06-20 2014-09-03 太原科技大学 基于信道特性的自适应分层视频传输方法
CN104780024A (zh) * 2015-04-14 2015-07-15 电子科技大学 一种多输入多输出系统中的多流空移键控调制及解调方法

Also Published As

Publication number Publication date
CN108141429B (zh) 2020-06-26
CN108141429A (zh) 2018-06-08

Similar Documents

Publication Publication Date Title
US9054839B2 (en) Integrated multi-datastream transmission technology
JP5265557B2 (ja) 無線通信における制御チャネルシグナリング
JP6450777B2 (ja) 信号伝送方法及び装置
KR20170106376A (ko) 무선 근거리 통신망에서의 soma를 사용하는 시스템 및 방법
NO20111586L (no) Fremgangsmate og apparat for kontroll og styring av et kommunikasjonssystem
US11632222B2 (en) Telecommunications apparatus and methods
CN105191441A (zh) 一种信道功率分配优先级的确定方法和设备
WO2011079849A1 (en) Adaptive scheduling data transmission based on the transmission power and the number of physical resource blocks
US10080227B2 (en) Apparatus and method for transmitting data signals in wireless communication system
CN107979824B (zh) 一种无线网络虚拟化场景下的d2d多播资源分配方法
WO2019238131A1 (zh) 一种确定传输块大小的方法、传输方法及装置
WO2018196696A1 (zh) 一种通信方法和装置
WO2012151971A1 (zh) 具有跳频功能的资源位置分配方法及装置
WO2003073670A1 (fr) Dispositif de communication utilise dans un amrc
JP2010114891A (ja) スケーラブルビデオ伝送処理方法及び装置
US20040022267A1 (en) Adaptive bandwidth efficient intelligent multimedia networks toward future generation wireless gigabit LANS
CN104284375A (zh) 一种无线网络速率自适应调节的方法
CN103079073A (zh) 正交频分多址接入系统中面向可伸缩视频的资源分配方法
JP5474217B2 (ja) マルチキャリア通信の方法
WO2018171742A1 (zh) 无线通信的方法和装置
CN110166953A (zh) 一种非正交多址网络中可伸缩视频多播传输方法
US8606280B2 (en) Apparatus and method for allocating resources based on error vector magnitude (EVM) in a broadband wireless communication system
CN106793138B (zh) 基站、用户设备及多用户设备下行数据的传输、接收方法
WO2017049431A1 (zh) 一种acm切换方法、acm切换装置及发射器
CN111010254A (zh) 一种通信、mcs的接收、通知方法及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15904319

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15904319

Country of ref document: EP

Kind code of ref document: A1