WO2017048688A1 - Surveillance et commande de distribution - Google Patents

Surveillance et commande de distribution Download PDF

Info

Publication number
WO2017048688A1
WO2017048688A1 PCT/US2016/051468 US2016051468W WO2017048688A1 WO 2017048688 A1 WO2017048688 A1 WO 2017048688A1 US 2016051468 W US2016051468 W US 2016051468W WO 2017048688 A1 WO2017048688 A1 WO 2017048688A1
Authority
WO
WIPO (PCT)
Prior art keywords
viscous fluid
amount
data set
flow meter
dispenser
Prior art date
Application number
PCT/US2016/051468
Other languages
English (en)
Inventor
Joseph E. Donner
Horatio Quinones
Thomas Ratledge
Michael Gorman
Christopher L. Giusti
Alan R. Lewis
Yuriy SUHININ
Original Assignee
Nordson Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US14/855,487 external-priority patent/US9847265B2/en
Application filed by Nordson Corporation filed Critical Nordson Corporation
Priority to KR1020187010240A priority Critical patent/KR20180054679A/ko
Priority to JP2018513800A priority patent/JP2018527178A/ja
Priority to EP16770852.8A priority patent/EP3349916A1/fr
Publication of WO2017048688A1 publication Critical patent/WO2017048688A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C5/00Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work
    • B05C5/02Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work the liquid or other fluent material being discharged through an outlet orifice by pressure, e.g. from an outlet device in contact or almost in contact, with the work
    • B05C5/0225Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work the liquid or other fluent material being discharged through an outlet orifice by pressure, e.g. from an outlet device in contact or almost in contact, with the work characterised by flow controlling means, e.g. valves, located proximate the outlet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C11/00Component parts, details or accessories not specifically provided for in groups B05C1/00 - B05C9/00
    • B05C11/10Storage, supply or control of liquid or other fluent material; Recovery of excess liquid or other fluent material
    • B05C11/1002Means for controlling supply, i.e. flow or pressure, of liquid or other fluent material to the applying apparatus, e.g. valves
    • B05C11/1005Means for controlling supply, i.e. flow or pressure, of liquid or other fluent material to the applying apparatus, e.g. valves responsive to condition of liquid or other fluent material already applied to the surface, e.g. coating thickness, weight or pattern
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C11/00Component parts, details or accessories not specifically provided for in groups B05C1/00 - B05C9/00
    • B05C11/10Storage, supply or control of liquid or other fluent material; Recovery of excess liquid or other fluent material
    • B05C11/1002Means for controlling supply, i.e. flow or pressure, of liquid or other fluent material to the applying apparatus, e.g. valves
    • B05C11/1007Means for controlling supply, i.e. flow or pressure, of liquid or other fluent material to the applying apparatus, e.g. valves responsive to condition of liquid or other fluent material
    • B05C11/1013Means for controlling supply, i.e. flow or pressure, of liquid or other fluent material to the applying apparatus, e.g. valves responsive to condition of liquid or other fluent material responsive to flow or pressure of liquid or other fluent material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C11/00Component parts, details or accessories not specifically provided for in groups B05C1/00 - B05C9/00
    • B05C11/10Storage, supply or control of liquid or other fluent material; Recovery of excess liquid or other fluent material
    • B05C11/1002Means for controlling supply, i.e. flow or pressure, of liquid or other fluent material to the applying apparatus, e.g. valves
    • B05C11/1034Means for controlling supply, i.e. flow or pressure, of liquid or other fluent material to the applying apparatus, e.g. valves specially designed for conducting intermittent application of small quantities, e.g. drops, of coating material

Definitions

  • the present invention relates generally to the field of fluid dispensers that accurately dispense small amounts of viscous fluids in various forms such as dots or droplets, or lines.
  • PC printed circuit
  • viscous fluid materials i.e. those with a viscosity greater than fifty centipoise
  • Such materials include, by way of example and not by limitation, general purpose adhesives, solder paste, solder flux, solder mask, grease, oil, encapsulants, potting compounds, epoxies, die attach pastes, silicones, RTV and cyanoacrylates.
  • a fabrication process known as flip chip technology has developed, which has multiple processes that require viscous fluid dispensing. For example, a semiconductor die or flip chip is first attached to a PC board via solder balls or pads, and in this process, a viscous solder flux is applied between the flip chip and the PC board. Next, a viscous liquid epoxy is dispensed and allowed to flow and completely cover the underside of the chip. This underfill operation requires that a precise amount of the liquid epoxy be deposited along at least one side edge of the semiconductor chip.
  • a chip is bonded to a PC board.
  • a pattern of adhesive is deposited on the PC board; and the chip is placed over the adhesive with a downward pressure.
  • the adhesive pattern is designed so that the adhesive flows evenly between the bottom of the chip and the PC board and does not flow out from beneath the chip. Again, in this application, it is important that a precise amount of adhesive be deposited at exact locations on the PC board.
  • the PC board is often being carried by a conveyor past a viscous material dispenser that is mounted for two axes of motion above the PC board.
  • the moving dispenser is often of the type capable of depositing small dots or droplets of viscous material at desired locations on the PC board.
  • This type of dispenser is commonly referred to as a non-contact jetting dispenser.
  • Known viscous material dispensers have closed loop controls that are designed to hold the dot size constant during the material dispensing process.
  • Another important variable that may be controlled in the dispensing process is the total amount of viscous material to be dispensed in a particular cycle.
  • the designer of a chip specifies the total amount of viscous material, for example, epoxy in underfilling, or adhesive in bonding, that is to be used in order to provide a desired underfilling or bonding process.
  • a dispenser control In jetting, for example, for a given dot size and dispenser speed, it is known to program a dispenser control so that the dispenser dispenses a proper number of dots to dispense a specified amount of the viscous material in a desired line or pattern at the desired location.
  • Such a system is reasonably effective when the dispensing parameters remain constant.
  • the invention provides a method of controlling a non-contact jetting dispensing system to accurately dispense a viscous fluid onto a substrate in various manners.
  • the method includes directing the viscous fluid from a viscous fluid supply into a non-contact jetting dispenser.
  • the non- contact jetting dispenser has an inlet and an outlet.
  • the method further includes discharging the viscous fluid from the outlet of the non-contact jetting dispenser.
  • the non-contact jetting dispenser may be operable to start and stop the flow of the viscous fluid from the outlet onto the substrate.
  • the method further includes using an electronic flow meter device, operatively coupled in a flow path between the viscous fluid supply and the outlet, to produce electrical flow meter output signals proportional to the flow rate of the viscous fluid flowing through the flow path.
  • the electrical flow meter output signals form an output data set.
  • the method may further include comparing the output data set to a reference data set stored in a control, and at least one performing a responsive control function in a closed loop manner by adjusting a dispensing parameter. This adjusting corrects for a difference between the output data set and the reference data set.
  • a viscous fluid dispensing system for accurately dispensing a viscous fluid onto a substrate is also disclosed.
  • the system includes a viscous fluid dispenser including an inlet and an outlet.
  • the system also includes a viscous fluid supply adapted to hold the viscous fluid and coupled in fluid communication with the inlet of the viscous fluid dispenser to establish a flow path for the viscous fluid between the viscous fluid supply and the outlet of the viscous fluid dispenser.
  • the system also includes a gas flow meter device operatively coupled in the flow path to produce corresponding gas flow meter output signals corresponding to a first amount of the viscous fluid.
  • the system also includes a weigh scale configured to receive and weigh the first amount and to produce corresponding weigh scale output signals.
  • the system also includes a control operatively coupled to the gas flow meter and to the weigh scale, where the control determines a mass of the first amount using the weigh scale output signals received from the weigh scale, determines a volume of the first amount by integrating the gas flow meter output signals received from the gas flow meter device, and then determines a density of the first amount using the mass of the first amount and the volume of the first amount.
  • a control operatively coupled to the gas flow meter and to the weigh scale, where the control determines a mass of the first amount using the weigh scale output signals received from the weigh scale, determines a volume of the first amount by integrating the gas flow meter output signals received from the gas flow meter device, and then determines a density of the first amount using the mass of the first amount and the volume of the first amount.
  • a method for controlling a viscous fluid dispensing system to accurately dispense a viscous fluid onto a substrate includes directing a first amount of viscous fluid from a viscous fluid supply into a viscous fluid dispenser.
  • the viscous fluid dispenser is operable to start and stop the flow of the viscous fluid through an outlet of the viscous fluid dispenser onto a substrate.
  • the method also includes using a gas flow meter device operatively coupled in a flow path between the viscous fluid supply and the outlet to produce gas flow meter output signals proportional to the flow rate of the first amount flowing through the flow path.
  • the method also includes discharging the first amount from the outlet onto a weigh scale coupled to the control.
  • the weigh scale produces weigh scale output signals proportional to the mass of the first amount.
  • the method also includes performing a responsive control function in a closed loop manner by adjusting at least one dispensing parameter using the gas flow meter output signals and the weigh scale output signals.
  • the output data set may include electrical flow meter output signals, or in other embodiments the output data set includes gas flow meter output signals and weigh scale output signals.
  • the dispensing may involve various types of discrete volume outputs, such as dots, droplets or lines of the viscous fluid, or other types of outputs.
  • Fig. 1 is an elevational view of a viscous fluid dispensing system constructed according to an illustrative embodiment of the invention.
  • Fig. 2 is a flow diagram illustrating an embodiment of the steps performed by a control associated with the system shown in Fig. 1 .
  • FIG. 3 is a flow diagram illustrating another embodiment of the steps performed by a control associated with the system shown in Fig. 1 .
  • Fig. 4 is an elevational view of a viscous fluid dispensing system constructed according to another illustrative embodiment of the invention.
  • Fig. 5 is a flow diagram illustrating an embodiment of the steps performed by a control associated with the system shown in Fig. 4.
  • Fig. 1 is a schematic illustration of a viscous fluid dispensing system 10 for accurately dispensing viscous fluid and controlling a dispensing operation.
  • the system 10 includes a viscous fluid dispenser 12 with a viscous fluid inlet 14, a dispensing outlet 16 for the viscous fluid and an internal, movable valve 18 for controlling an on/off dispensing operation of viscous fluid 20 onto a substrate 22.
  • the valve 18 is movable between open and closed positions to dispense the viscous fluid 20 through the outlet 16 onto the substrate 22, for example, in discrete volumes.
  • the invention is not limited to this type of method or structure for starting and stopping the flow from a dispenser.
  • the dispenser 12 may be of any suitable type and configuration, depending on the dispensing application and needs of the user.
  • the dispenser may dispense continuous lines or other patterns of the viscous fluid 20 onto the substrate 22 or may be a jetting type dispenser that rapidly dispenses small, discrete volumes of the viscous fluid in the form of dots or droplets.
  • jetting dispensers are available from Nordson ASYMTEK, Carlsbad, CA, under the names DispenseJet® and NexJetTM.
  • the dispenser 12 may be operated, for example, pneumatically or electrically.
  • the dispenser 12 includes, or is coupled with, a solenoid valve 24 that regulates the introduction of pressurized actuation air through a line or conduit 25 in a known manner to move the valve 18 at least to the open position.
  • a solenoid valve 24 that regulates the introduction of pressurized actuation air through a line or conduit 25 in a known manner to move the valve 18 at least to the open position.
  • pressurized air would be also used to move the valve 18 to the closed position.
  • a spring may be used to move the valve 18 to the closed position.
  • the system 10 further includes a viscous fluid supply container 26 adapted to hold the viscous fluid 20, and coupled in fluid communication with the inlet 14 of the dispenser 12 to establish a flow path for the viscous fluid between the viscous fluid supply container 26 and the outlet 16 of the viscous fluid dispenser 12.
  • the supply of fluid 20 in the container 26 is pressurized with air from a suitable source 28 regulated by a pressure regulator 30.
  • a liquid flow meter 32a, or flow rate sensor device is coupled in the flow path to produce electrical flow meter output signals proportional to the flow rate of the fluid 20 flowing through the flow path when the valve 18 is in the open position.
  • the liquid flow meter 32a may be coupled directly in a fluid line or conduit 34 extending from an outlet 36 of the supply container 26 to the inlet 14 of the dispenser 12.
  • the liquid flow meter 32a is preferably a Sensirion model LG 16 - 2000 or LG 16 - 1000 liquid flow sensor, or a model SLQ - QT105 flow sensor, available from Sensirion AG, Switzerland.
  • the specific model of flow meter chosen will typically depend on the flow rates required for the application, and such factors as response time and sensitivity.
  • the liquid flow meter 32a may be incorporated directly in the dispenser 12, anywhere in the flow path upstream through the outlet 16, as shown in broken lines in Fig. 1 .
  • a gas flow meter 32b may be coupled to the pneumatic actuating side of the system.
  • the gas flow meter 32b may be coupled between the pressure regulator 30 and the inlet 38 of the container 26.
  • the gas flow meter 32b is preferably a Sensirion model SFM 3100 or SFM 4100 gas flow sensor, available from Sensirion AG, Switzerland.
  • a control 40 is operatively coupled to the electronic flow meter, either 32a or 32b, regardless of its position in the system.
  • the control 40 continuously receives and processes the electrical flow meter output signals indicative of either viscous fluid or gas flow rate data points, respectively, from the flow meter 32a or 32b and performs a responsive control function in a closed loop manner, as will be discussed further below.
  • the control 40 may be a PLC or programmable logic controller, or any other suitable computer-based control device capable of processing the signals from the liquid flow meter 32a or 32b and carrying out the functions to be discussed below.
  • the applications for the system 10, as well as the fluid materials to be dispensed may be of any desired type, including those discussed in the background above.
  • Figs. 2 and 3 illustrate different embodiments of general flow diagrams of the software to be implemented and carried out by the control 40 shown in Fig. 1 .
  • the flow meter 32a or 32b, pressure regulator 30, and any other control components associated with the dispenser 12 are initialized to start a dispensing operation.
  • the dispenser 12 begins dispensing the viscous fluid in the desired manner, as programmed and carried out by the control 40, for example, to rapidly dispense multiple dots or droplets, or a line of the fluid 20 onto the substrate 22 (Fig. 1 ).
  • step 54 viscous fluid or gas flow data points (signals) are collected by the control 40 from the flow meter 32a or 32b.
  • This data is processed in step 54, in one or more manners, to be discussed further below.
  • the processing in step 54 can involve a comparison of the gathered data set to a stored reference data set or other analysis.
  • the control 40 determines whether the flow rate of the viscous fluid is within tolerance. If the flow rate is within tolerance, the process returns to step 52 and continues the dispensing operation. If the flow rate is not within tolerance, the dispense parameters are adjusted accordingly at step 58. The control 40 then continues to carry out the dispensing operation and the control functions in a closed loop manner.
  • the control 40 may, for example, compare the output data from the flow meter 32a or 32b to stored reference data.
  • the output data from the flow meter 32a or 32b may be a data set.
  • the data set may be plotted graphically as flow rate vs. time.
  • a curve or wave form may be generated by the control 40.
  • a generally square wave may be created, in which the signal peaks while the dispenser valve 18 is open and then rapidly falls off when the valve is closed.
  • the wave or curve generated by the flow signal data output from the flow meter 32a or 32b will resemble a sawtooth pattern along the curve indicating the rapid on and off or open and closed conditions of the valve 18 as the fluid material 20 is rapidly jetted as dots from the dispenser outlet 16.
  • the analysis performed by the control 40 may compare the wave form generated by data (signals) from the flow meter 32a or 32b to a reference wave form which represents a more ideal flow pattern. If the two wave forms or curves being compared are dissimilar, the control 40 makes adjustments to the system 10.
  • control 40 compares a current or real time data set which is based on signals from the flow meter 32a or 32b, and representative of viscous fluid or gas flow, and compares that real time data set to an analogous reference data set of viscous fluid or gas flow. Based on detecting discrepancies between the two data sets that are being compared, the control is programmed to then make adjustments to various process parameters of the system 10. It is not necessary that the data set actually be assembled as a wave form by the control 40. In the case of a continuous dispense operation having a dispense cycle in which the valve 18 is continuously open to dispense, for example, a line of viscous fluid 20, the wave form may be even more square-shaped.
  • the analysis performed upon gathering the signals/data from the flow meter 32a or 32b may involve various processes and/or algorithms.
  • One process may involve comparing the average of the peaks in the detected wave form with a reference or ideal wave form stored in the control 40.
  • Another method can involve determining the area underneath the wave form (i.e., integrate under the curve) and comparing that area with reference data.
  • a data set representing proper flow during the dispensing, or jetting can be stored as a reference data set, and then compared to the real time data set from the flow meter 32a or 32b. If the real time data set varies from the reference data set, then corrections can be made to dispensing, or jetting.
  • Alterations to the system may include, for example, changing the air pressure to the syringe or container 26 that supplies the fluid 20, adjusting the time when the dispenser is dispensing viscous fluid 20, the temperature of the dispenser 12, rate of dispensing the viscous fluid 20 (the firing rate), or the number of dots dispensed in a particular pattern.
  • Corrections can be made very quickly, such as within a response time of 40 milliseconds. For example, there is typically on the order of 100 milliseconds between two consecutive dispenses and this time may be used to adjust or correct the amount of viscous fluid 20 dispensed without affecting process time. Consequently, corrections can be made between the end of one dispense or jetting operation and the beginning of the next dispense or jetting operation. This very short response time compares to several minutes which may be required to dispense fluid material 20 on a weigh scale, weigh the fluid material 20, calculate flow, etc. as per prior calibration procedures. [0025]
  • the system 10 can also be used to detect one or more air bubbles that discharge through the outlet 16.
  • the flow meter 32a or 32b will detect a momentary increase in the flow rate as the air bubble passes through the dispenser outlet 16.
  • This momentary increase in the flow rate if detected by the control 40 based on signals from the flow meter 32a or 32b, may be used to indicate the problem to the operator, such as through an alarm, signal light, or other indicator on a control or computer screen.
  • the operator may then inspect the substrates 22 for any quality issues and perform any necessary maintenance of the system 10.
  • the system 10 may also be used to detect a clogged or semi-clogged condition associated with the dispenser 12 and, most likely, associated with the nozzle or outlet 16 of the dispenser 12. In this case, the flow meter 32a or 32b will detect either no flow or significantly reduced flow.
  • the signals from the flow meter 32a or 32b may be used by the control 40 to indicate the condition to the operator, such as by use of an alarm sound, light or other indicator such as on a computer or control screen. This will allow the operator to shut the system down for maintenance purposes. Quick shut down of the system 10 due to a problem such as air bubbles or clogged conditions will minimize product waste and increase yield.
  • the flow meter 32a or 32b, pressure regulator 30 and any other control components associated with the dispenser 12 are initialized to start a dispensing operation.
  • the dispenser 12 begins dispensing the viscous fluid 20 in the desired manner, as programmed and carried out by the control 40, for example, to rapidly dispense multiple dots or droplets, or a line of the fluid 20 onto the substrate 22.
  • viscous fluid or gas flow data points are collected by the control 40 from the flow meter 32a or 32b. These signals may include electronic flow meter device signals. This data may be processed in step 64, in one or more manners, to be discussed further below.
  • the processing in step 64 may involve integrating the viscous fluid or gas flow meter data to determine the volume of an amount of viscous fluid 20 passing through the flow meter 32a or 32b.
  • integrating the flow meter data with respect to time produces the volume of a first amount of viscous fluid 20.
  • the volume of the output data set may then be compared against a reference volume of the reference data set.
  • the mass of the first amount of viscous fluid 20 may be determined using reference data, where the mass corresponds to a particular volume of a viscous fluid 20 flowing through the flow meter 32a or 32b. These reference values may be stored in the control 40.
  • the volume in the form of data or signals
  • the combined mass and volume in the form of signals or data
  • the control 40 may determine whether the value (for example, a volume/mass value) is within an acceptable tolerance. If the value is within the acceptable tolerance, the viscous fluid is dispensed and the dispensing process proceeds. Alternatively, if the value is not within the acceptable tolerance, one or more dispensing parameters may be adjusted. Further, the user may be warned, as discussed in more detail below.
  • Adjusting the dispensing parameters may include, for example, adjusting the flow rate of the viscous fluid 20 flowing through and being dispensed through the outlet 16 of the dispenser 12, adjusting the dispensing time to be either shorter or longer, adjusting the frequency at which viscous fluid is dispensed through the outlet onto the substrate by increasing the number of dispensing operations over a given period of time, adjusting the number of discrete dots or droplets using multiple doses of viscous fluid 20, and adjusting the speed of the relative motion between the dispenser 12 and the substrate.
  • Each of these dispensing parameters may be adjusted singularly or in combination with the other dispensing parameters to correct for the difference between the output data set and the reference data set.
  • Adjusting the flow rate flowing through and being dispensed through the outlet 16 of the dispenser 12 may include, for example, adjusting the viscosity of the fluid 20 by adjusting the temperature of the viscous fluid 20.
  • the temperature of the viscous fluid 20 may be adjusted using a heater (not shown).
  • the heater may be configured to increase and decrease the temperature of the viscous fluid 20 being dispensed by dispenser 12. Further, the heater may be electrically coupled with the control 40, with the control 40 being configured to manipulate the heater.
  • Adjusting the speed of the relative motion between the dispenser 12 and the substrate may be performed in the following manner.
  • the system 10 may permit the relative speed between the nozzle 48 and the substrate 22 to be automatically optimized as a function of the viscous fluid dispensing characteristics and a specified total volume of material to be used on the substrate 22.
  • the system 10 may optimize the positions at which respective dots are to be dispensed as a function of the relative speed between the outlet 16 of the dispenser 12 and the substrate 22.
  • comparing the output data set to a reference data set may include using the output data set to determine a speed of relative motion between the dispenser 12 and the substrate 22 which results in a target amount of viscous fluid 20 being discharged onto the substrate 22.
  • the speed of relative motion may be determined by first determining the amount of viscous fluid 20 in the form of a total number of dots required to substantially equal the target amount is determined. This may be determined by computing an average per dot volume of the output data set. Additionally, the distance between each of the total number of dots required to distribute the dots or droplets is determined. Additionally, a rate at which the total number of dots or droplets are to be dispensed from the dispenser 12 is determined. This is the rate at which the total number of dots or droplets are to be dispensed and the distance between each of the dots in the total number of dots or droplets. This rate may then be utilized to adjust the speed of the relative motion between the dispenser 12 and the substrate 22 to discharge a target amount of viscous fluid 20 onto the substrate 22.
  • Fig. 4 is a schematic illustration of a viscous fluid dispensing system 100 for accurately dispensing viscous fluid 20 and controlling a dispensing operation.
  • the system 100 of Fig. 4 is similar to the system 10 of Fig. 1 , but additionally includes a weigh scale 72 electrically coupled to the control 40.
  • the weigh scale 72 may include a calibration surface 73 for receiving viscous fluid 20.
  • the weigh scale 72 is configured to receive and weigh an amount of the viscous fluid 20 deposited on the calibration surface 73 and to produce weigh scale output signals proportional to the mass of the amount of viscous fluid 20.
  • the weigh scale 72 enables small amounts of viscous fluids 20 in various forms such as dots or droplets, or lines to be accurately weighed.
  • the viscous fluid 20 may be deposited or jetted depending on the desired application.
  • the control 40 is also operatively coupled to either a liquid flow meter 32a or a gas flow meter 32b.
  • a weigh scale 72 and a gas flow meter 32b provides different benefits than using a weigh scale 72 and a liquid flow meter 32a.
  • Using both a weigh scale 72 and a gas flow meter 32b allow for the density of the viscous fluid 20 to be determined, which solves the problems associated with only using either a weigh scale 72 or a gas flow meter 32b coupled to the control 40.
  • a weigh scale 72 allows the mass to be determined, however, to obtain the mass from the weigh scale 72, the dispensing operation stops. This decreases the throughput of the viscous fluid dispenser 12, which of course is undesirable.
  • “mass” is intended to include any measurement of mass including, for example, mass, mass flow rate, and weight as discussed below.
  • the gas flow meter 32b produces gas flow meter output signals proportional to the flow rate of a second amount of the viscous fluid flowing through the flow path and dispensed through the outlet 36. This allows the control 40 to use the density of the first amount and the volume of the second amount to estimate the mass of the second amount. This allows for more accurate dispensing of the viscous fluid 20. Using the historic data regarding the first and second amounts allows the system 10 to adjust dispensing parameters in real time.
  • Fig. 5 illustrates a general flow diagram of the software to be implemented and carried out by the control 40.
  • Fig. 5 may utilize both a weigh scale 72 and a gas flow meter 32b to obtain the density or specific gravity of the dispensed fluid.
  • the gas flow meter 32b, pressure regulator 30 and any other control components associated with the dispenser 12 are initialized to start a dispensing operation.
  • dispenser 12 begins dispensing the viscous fluid 20 in the desired manner. This includes a first amount of the viscous fluid 20 being dispensed into weigh scale 72, gathering the gas flow meter output data and gathering the weigh scale output data. As a result, the mass of the first amount may be determined using the weigh scale output signals.
  • the volume of the first amount may be determined, potentially simultaneously, using the gas flow meter output signals.
  • This data may be processed in step 78, in one or more manners, to be discussed further below.
  • the processing in step 78 may involve integrating the gas flow meter data to determine the volume of a first amount of viscous fluid 20 passing through the gas flow meter 32b. Integrating the viscous fluid or gas flow meter data with respect to time produces the volume of a first amount of viscous fluid 20.
  • the density (equaling mass divided by volume) may be determined by generally dividing the mass obtained using the weigh scale 72 by the volume obtained using the gas flow meter 32b. Specific gravity may also be determined using density. Specific gravity is the ratio of the density of the viscous fluid 20 (as discussed above) to the density of a reference substance, generally water, at a particular temperature. If desired, the mass and volume of the first amount of viscous fluid 20 may be determined on a per dot, per droplet, or per line basis. In other words, the density may be determined using multiple dots or droplets, or lines of viscous fluid 20, or alternatively, the density may be determined using a single dot, a single droplet, or a single line of viscous fluid 20.
  • the control 40 determines whether the density of the viscous fluid 20 is within an acceptable tolerance of predetermined values. If the density is within the acceptable tolerance, the process may utilize a conversion factor (such as inverse density equaling volume/mass) to ensure greater operational precision.
  • the acceptable tolerance may be determined using a reference data set stored in the control 40 or by other acceptable methods. If the density is not within an acceptable tolerance, the user is warned.
  • the control 40 may provide a suitable indication to an operator, such as an alarm sound or light indicator, or an indication on a screen or monitor associated with the control. In addition to or in place of an indication to an operator, at least one dispensing parameter may be adjusted as previously discussed. While density is shown and described in relation to Fig. 5, specific gravity may also be determined and adjusted as desired.
  • the control 40 may use the density of the first amount and the volume of the second amount to determine an estimated mass of the second amount. Having an estimated mass of the second amount, the control 40 can adjust one or more dispensing parameters, as discussed above, for further amounts of the viscous fluid dispensed through the outlet. As a result, the viscous fluid dispensing system 10 can continually use the density and volume of previous amounts to estimate the mass and continually improve the dispensing operation. This allows all volume measurements to be taken using the gas flow meter, while obtaining the density from the gas flow meter 32b and the weigh scale 72 to compute the mass without stopping production and to make adjustments to the process.
  • the control may be operatively coupled to both the weigh scale 72 and the liquid flow meter 32a.
  • the control may be operatively coupled to both the weigh scale 72 and the liquid flow meter 32a.
  • using both a weigh scale 72 and a liquid flow meter 32a allows for the liquid flow meter 32a to be quickly and precisely calibrated. While the weigh scale 72 is first quickly and precisely calibrated by placing an object of a known weight on the calibration surface 73 of the weigh scale 72, the process to calibrate a liquid flow meter 32a is much more difficult. However, dispensing an amount of viscous fluid 20 through the liquid flow meter 32a and onto the calibration surface 73 of the weigh scale 72, allows for a quick and precise calibration of the liquid flow meter 32a.
  • the system 10, 100 may be used for on- the-fly adjustments to the dispense parameters and on-the-fly detection purposes as discussed above, while a manufacturing process involving the dispense operation is underway. That is, the routine depicted in Figs. 2, 3, and 5 may be in continuous use during the manufacturing process such that dispense parameters are adjusted during manufacturing to increase
  • the routine of Fig. 5 includes determining density prior to full-scale dispensing as discussed above.
  • the systems 10, 100 may also be used with a calibration station in which the dispenser 12 is taken off-line to a calibration station and the routine shown in Figs. 2, 3, and 5 is performed at the calibration station as opposed to being performed on-the-fly during the manufacturing process. Even this use of the systems 10, 100 at a calibration station have advantages. For example, less fluid material 20 will be used than in typical calibration stations using weigh scales and the calibration and adjustment process will be faster and potentially more accurate. Certain fluid materials, such as flux, are volatile and the solvents associated with these fluids will evaporate when exposed at atmosphere. Thus, if a weigh scale process takes enough time to allow evaporation, the results will be less accurate.
  • the flow data is collected by the control 40 in an amount of time that approaches real time. Evaporation of solvents associated with the fluid is not a factor in this metrology. Also envisioned as off-line is where dispenser 12, still coupled to the system 10, 100, dispenses viscous fluid 20 onto a calibration surface 73 of a weigh scale 72 located adjacent or otherwise near the substrate.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Coating Apparatus (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

L'invention concerne des procédés et des systèmes (10) permettant de distribuer avec précision un fluide visqueux sur un substrat. Selon un mode de réalisation, un procédé comprend l'utilisation d'un dispositif débitmètre électronique (32a, 32b) pour produire des signaux de sortie de débitmètre électriques et la réalisation d'une fonction de commande sensible à la manière d'une boucle fermée en réglant au moins un paramètre de distribution pour corriger une différence entre un ensemble de données de sortie et un ensemble de données de référence. Selon un autre mode de réalisation, un système (10) comprend une commande couplée de manière fonctionnelle à un dispositif débitmètre de gaz (32a, 32b) et à une balance (72) permettant de déterminer une densité d'une quantité de matière visqueuse.
PCT/US2016/051468 2015-09-16 2016-09-13 Surveillance et commande de distribution WO2017048688A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020187010240A KR20180054679A (ko) 2015-09-16 2016-09-13 디스펜스 모니터링 및 제어
JP2018513800A JP2018527178A (ja) 2015-09-16 2016-09-13 ディスペンスのモニタリング及び制御
EP16770852.8A EP3349916A1 (fr) 2015-09-16 2016-09-13 Surveillance et commande de distribution

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/855,487 2015-09-16
US14/855,487 US9847265B2 (en) 2012-11-21 2015-09-16 Flow metering for dispense monitoring and control

Publications (1)

Publication Number Publication Date
WO2017048688A1 true WO2017048688A1 (fr) 2017-03-23

Family

ID=56997568

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2016/051468 WO2017048688A1 (fr) 2015-09-16 2016-09-13 Surveillance et commande de distribution

Country Status (4)

Country Link
EP (1) EP3349916A1 (fr)
JP (1) JP2018527178A (fr)
KR (1) KR20180054679A (fr)
WO (1) WO2017048688A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019156772A1 (fr) * 2018-02-08 2019-08-15 Nordson Corporation Procédés d'étalonnage de flux et de revêtement d'un substrat
WO2019172138A1 (fr) * 2018-03-08 2019-09-12 日本電産株式会社 Système d'application d'agent liquide

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230043616A (ko) 2021-09-24 2023-03-31 한국표준과학연구원 비연속식 유량 측정을 위한 열식 질량 유량계
KR20230137114A (ko) * 2022-03-21 2023-10-04 한국표준과학연구원 적외선 흡수 스펙트럼을 이용한 토출량 측정 센서 및 이를 포함하는 연속식 유량 측정 시스템
JP7492993B2 (ja) 2022-07-21 2024-05-30 株式会社Screenホールディングス 制御パラメータ調整方法、プログラムおよび記録媒体
JP7492992B2 (ja) 2022-07-21 2024-05-30 株式会社Screenホールディングス 塗布方法、プログラムおよび記録媒体

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020014496A1 (en) * 1996-11-20 2002-02-07 Cline David J. Method and apparatus for accurately dispensing liquids and solids
US6579563B1 (en) * 2000-10-27 2003-06-17 Nordson Corporation Fluid dispenser with fluid weight monitor
US20120175386A1 (en) * 2009-04-09 2012-07-12 Illinois Tool Works Inc. Magnetic drive for dispensing apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020014496A1 (en) * 1996-11-20 2002-02-07 Cline David J. Method and apparatus for accurately dispensing liquids and solids
US6579563B1 (en) * 2000-10-27 2003-06-17 Nordson Corporation Fluid dispenser with fluid weight monitor
US20120175386A1 (en) * 2009-04-09 2012-07-12 Illinois Tool Works Inc. Magnetic drive for dispensing apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019156772A1 (fr) * 2018-02-08 2019-08-15 Nordson Corporation Procédés d'étalonnage de flux et de revêtement d'un substrat
CN111670075A (zh) * 2018-02-08 2020-09-15 诺信公司 用于校准流量和用于涂覆基板的方法
US11185879B2 (en) 2018-02-08 2021-11-30 Nordson Corporation Systems and methods for calibrating flow and for coating a substrate
WO2019172138A1 (fr) * 2018-03-08 2019-09-12 日本電産株式会社 Système d'application d'agent liquide

Also Published As

Publication number Publication date
EP3349916A1 (fr) 2018-07-25
KR20180054679A (ko) 2018-05-24
JP2018527178A (ja) 2018-09-20

Similar Documents

Publication Publication Date Title
US9847265B2 (en) Flow metering for dispense monitoring and control
US9393586B2 (en) Dispenser and method of dispensing and controlling with a flow meter
WO2017048688A1 (fr) Surveillance et commande de distribution
US10076765B2 (en) Dispenser and method of dispensing and controlling with a flow meter
US6173864B1 (en) Viscous material dispensing system and method with feedback control
KR101454351B1 (ko) 기판에 액체 코팅 물질을 도포하는 시스템 및 방법
US6814810B2 (en) Apparatus for calibrating a dispensing system
EP2688685B1 (fr) Procédé et appareil permettant d'étalonner des dépôts distribués
US11185879B2 (en) Systems and methods for calibrating flow and for coating a substrate
CN104275277B (zh) 粘性材料涂覆调校方法
CN110665747A (zh) 一种飞行点胶校准的方法
US20190240688A1 (en) Systems and methods for calibrating flow and for coating a substrate
TWI550258B (zh) 即時監控材料供給裝置
TWM520659U (zh) 即時監控材料供給裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16770852

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2018513800

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187010240

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2016770852

Country of ref document: EP