WO2017048094A1 - Trichlorosilane production method - Google Patents

Trichlorosilane production method Download PDF

Info

Publication number
WO2017048094A1
WO2017048094A1 PCT/KR2016/010410 KR2016010410W WO2017048094A1 WO 2017048094 A1 WO2017048094 A1 WO 2017048094A1 KR 2016010410 W KR2016010410 W KR 2016010410W WO 2017048094 A1 WO2017048094 A1 WO 2017048094A1
Authority
WO
WIPO (PCT)
Prior art keywords
trichlorosilane
reaction
metal silicon
tetrachlorosilane
silicon particles
Prior art date
Application number
PCT/KR2016/010410
Other languages
French (fr)
Korean (ko)
Inventor
김유석
김정규
유진형
장은수
이정우
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Publication of WO2017048094A1 publication Critical patent/WO2017048094A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J3/00Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
    • B01J3/02Feed or outlet devices therefor
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/021Preparation
    • C01B33/027Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/08Compounds containing halogen
    • C01B33/107Halogenated silanes

Definitions

  • the present invention relates to a method for producing trichlorosilane, and more particularly, to a method for more efficiently preparing trichlorosilane from tetrachlorosilane using a gas-liquid-solid three-phase reaction.
  • Trichlorosilane (SiHCl 3 : TCS) is a compound useful as a raw material for producing high purity polycrystalline silicon (aka polysilicon), and is used to precipitate high purity polysilicon by reacting with hydrogen at a high temperature of 1000 or more.
  • This reaction is mainly represented by the following reaction formulas (1) and (2).
  • Patent Document 1 discloses a method for producing trichlorosilane by reaction of metal silicon and hydrogen chloride in the presence of iron and aluminum-containing catalyst using a fluidized bed reaction apparatus in accordance with the following reaction formula (3). .
  • the gas produced by the reaction of metal silicon with hydrogen chloride is cooled to below -10 to condense and separate trichlorosilane, which contains other by-produced chlorosilanes in addition to trichlorosilane.
  • Trichlorosilane is separated and recovered from the condensate containing these chlorosilanes by distillation and used as a raw material for polysilicon production.
  • tetrachlorosilane (SiCl 4 : STC) separated by distillation is mainly converted into trichlorosilane (TCS) by the reaction of the following formula (4) and reused in the production of polysilicon.
  • Patent Literature 2 supplies metal silicon particles, hydrogen chloride, tetrachlorosilane, and hydrogen having a size of about 100 to 300 ⁇ m into a fluidized bed reactor filled with metal silicon particles, and trichloro by metal silicon and hydrogen chloride in the reaction vessel.
  • a method has been proposed (see FIG. 1). In the above method, since the size of the metal silicon particles gradually decreases as the reaction proceeds, the metal silicon particles need to be replenished. However, since the replenishment time is determined by looking at the temperature change of the raw material, the reaction temperature is not constant and fluctuates, and there is a problem in that the quality of the product is uneven according to the reaction time.
  • FBR fluidized bed reactor
  • Patent Document 1 Japanese Unexamined Patent Publication No.3324922
  • Patent Document 2 Japanese Unexamined Patent Publication No. 56-73617
  • the present invention seeks to provide a method for more efficiently converting chlorosilanes, particularly tetrachlorosilane, into trichlorosilane in the exhaust gas of the process for producing polysilicon from trichlorosilane.
  • a trichlorosilane production method comprising producing trichlorosilane by injecting a mixture of metal silicon particles dispersed in a liquid silane compound including tetrachlorosilane together with hydrogen or hydrogen and hydrogen chloride.
  • the tetrachlorosilane reacts in a liquid state
  • the tetrachlorosilane reacts in a gaseous state
  • the low temperature region reaction may be carried out under a pressure of 100 ° C or more and 320 ° C or less, 10 bar or more and 550 bar or less.
  • the high temperature region reaction may be carried out under a pressure of 300 ° C or more and 600 ° C or less, 10 bar or more and 550 bar or less.
  • the metal silicon particles preferably have a weight average particle diameter of about 35 microns or less.
  • the weight ratio of the metal silicon particles and the liquid silane compound may be about 1:20 to about 1: 200.
  • the liquid silane-based compound may be a byproduct of polysilicon precipitation process by trichlorosilane pyrolysis.
  • the reaction may be carried out under the condition that the weight ratio of hydrogen and tetrachlorosilane is 1:20 or more and 1: 200 or less.
  • the reaction may also be carried out under the condition that the weight ratio of hydrogen chloride and tetrachlorosilane is 1: 0 or more to 1:10 or less.
  • after the reaction may further comprise the step of separating the silicon particles remaining in the product.
  • the metal silicon particles may be exhausted in the reaction so that they do not remain in the product after the reaction.
  • the trichlorosilane prepared according to the above-described method may be used in a process of thermally decomposing polysilicon.
  • the present invention also to achieve another technical problem,
  • Silane-based compound supply means including liquid tetrachlorosilane
  • Metal silicon particle supply means for supplying and dispersing metal silicon particles in the liquid mixture
  • a tubular reactor supplied with a mixture in which metal silicon particles are dispersed and designed to alternately pass through a low temperature region and a high temperature region;
  • Hydrogen gas supply means for supplying hydrogen gas to the reactor
  • It provides a trichlorosilane manufacturing apparatus having a means for recovering trichlorosilane from the product discharged from the tubular reactor.
  • the metal silicon particles may be supplied in a form dispersed in a liquid silane compound.
  • the apparatus may be further provided with a raw material storage tank equipped with a stirrer for storing the mixed solution in which the metal silicon particles are dispersed.
  • the linear velocity of the mixed solution in which the metal silicon particles are dispersed is supplied to the tubular reactor may be adjusted to a range such that precipitation of the metal silicon particles does not occur.
  • the reaction temperature and pressure are controlled to change the tetrachlorosilane into a liquid phase or a gas phase, thereby allowing both metal silicon particles and liquid-solid or gas-solid domain reactions to achieve contact efficiency.
  • the productivity of trichlorosilane can be increased.
  • the use of a microtubular reactor rather than a fluidized bed reactor facilitates thermal control, it is possible to minimize side reactions and improve product quality and productivity.
  • FIG. 1 is a schematic diagram of a fluidized bed process according to the prior art.
  • STC tetrachlorosilane
  • TCS trichlorosilane
  • Figure 3 schematically illustrates the reaction principle of the metal silicon particles and tetrachlorosilane in the low temperature region and high temperature region.
  • FIG. 4 is a schematic flowchart of a trichlorosilane production process according to the present invention.
  • FIG. 5 schematically illustrates the reaction in the low temperature region and the high temperature region of the tubular reactor shown in FIG. 4.
  • a trichlorosilane is reacted by injecting a mixture of metal silicon particles dispersed in a liquid silane compound containing tetrachlorosilane into hydrogen or hydrogen and hydrogen chloride in a tubular reactor that alternately passes through a low temperature region and a high temperature region. It provides a method for producing trichlorosilane, characterized in that the production of rosilane.
  • the present invention is a method of generating a phase change (liquid-gas) of the liquid raw material by dividing the temperature zone into a low temperature zone and a high temperature zone in the tubular reactor in a continuous process.
  • FIG. 2 representatively shows the relationship between the boiling point and the vapor pressure of tetrachlorosilane (STC) and trichlorosilane (TCS).
  • STC tetrachlorosilane
  • TCS trichlorosilane
  • the tetrachlorosilane becomes a gas, so that the tetrachlorosilane wetted on the surface of the silicon powder is vaporized, so that the silicon powder can be in surface contact with hydrogen chloride gas or hydrogen gas, thereby increasing the reactivity of the silicon powder.
  • the reaction raw material is a state in which solid (metal silicon particles, etc.), liquid (tetrachlorosilane-containing silane compound), and gas (hydrogen or hydrogen chloride) are all mixed.
  • the liquid reaction raw material becomes a gaseous reactant or a liquid phase depending on the reaction temperature. It serves as a fluid conveyance.
  • the conversion reaction according to the present invention may be subjected to the following reaction process.
  • the liquid raw material is transferred to a wet state on the surface of the solid raw material, and trichlorosilane, which is a product, may also be present as a liquid and transported together.
  • the reaction since the whole system is a continuous tubular reactor, the reaction must proceed while the reactants are continuously transferred. If all of the reactants are gas and solid (silicon powder), the gas and solid are not transported, so to transfer silicon powder by liquefying tetrachlorosilane with relatively low vapor pressure in the gas to transport solid silicon powder. . That is, the liquid tetrachlorosilane in the low temperature region and the tetrachlorosilane in the gas phase in the high temperature region have a completely different role in the tubular reactor.
  • tetrachlorosilane (STC) moistened in the metal silicon particles is vaporized to react with other reaction gases (hydrogen or hydrogen chloride) on the metal silicon particles.
  • the low temperature region should be at least 100 ° C. and the high temperature region should be less than 600 ° C. at maximum. If the temperature difference between the high temperature region and the low temperature region is too large, a phenomenon occurs in which the temperature boundary between the two regions is widened, which may reduce the effect of each region.
  • the low temperature region and the high temperature region may vary depending on the reaction pressure inside the reaction tube. For example, if the pressure inside the reaction tube is 50 bar, the low temperature range is at least 100 ° C and less than 220 ° C, and the high temperature range is at least 260 ° C and less than 600 ° C.
  • the low temperature range is 100 ° C or more and less than 270 ° C
  • the high temperature range is 320 ° C or more and less than 600 ° C.
  • the pressure inside the reaction tube is 150 bar
  • the low temperature range is 100 ° C or more and less than 320 ° C
  • the high temperature range is 370 ° C or more and less than 600 ° C.
  • the region of the reaction temperature according to the more detailed pressure is in accordance with the vapor pressure curve of tetrachlorosilane and trichlorosilane of FIG. 2.
  • the low temperature region follows the vapor pressure curve of trichlorosilane where both the reactant tetrachlorosilane and the product trichlorosilane can be liquid, and the high temperature region follows the vapor pressure curve of tetrachlorosilane having a relatively low vapor pressure.
  • the gas-liquid-solid three-phase reaction is difficult because the contact site on the solid surface is blocked by the liquid, which induces a solid-gas reaction by adjusting the reaction conditions to increase the reaction efficiency. Can be.
  • the tetrachlorosilane used in the reaction according to the present invention is not particularly limited, but tetrachloroproduced from trichlorosilane in the process of producing polysilicon from trichlorosilane in order to facilitate the effective use of the tetrachlorosilane produced by the production process of polysilicon and the like. Silanes may be used.
  • the size of the metal silicon particles By adjusting the size of the metal silicon particles to a size of 35 microns or less, the contact area of the tetrachlorosilane and the silicon particles increases to increase the reaction site, thereby increasing the reaction rate to increase the productivity of the trichlorosilane. Since the size of the metal silicon particles gradually decreases, the silicon particles may be completely exhausted after a certain reaction time.
  • the metal silicon particle particles are used to uniformly disperse the silicon metal particles in the liquid tetrachlorosilane to prevent aggregation and precipitation and to increase the contact area between the silicon metal particles and the tetrachlorosilane.
  • the metal silicon used for the reaction is a solid particle material containing a silicon element in a metal state such as metallurgical metal silicon, silicon iron, or polysilicon. Moreover, also about an impurity, such as an iron compound contained in metal silicon, there is no restriction
  • the metal silicon particles or powders refer to particles having a weight average particle diameter of about 35 microns or less.
  • the average particle diameter of the metal silicon may be about 30 microns or less, or about 25 microns or less, or about 10 microns or less, or about 5 microns or less, and about 0.1 microns or more, or about 0.5 microns or more.
  • the mixing ratio of the metal silicon particles and the tetrachlorosilane may be about 200 parts by weight or less, or about 150 parts by weight or less, about 20 parts by weight or more, or about 50 parts by weight or more based on 1 part by weight of the metal silicon particles.
  • the amount of the metal silicon particles to be added may be appropriately selected in a range such that the distance between the metal silicon particles dispersed in the tetrachlorosilane is about 1000 nm or less, or about 500 nm or less, or about 10 nm or more or about 50 nm or more.
  • the step of separating the metal silicon of the fine powder remaining in the reaction from the reaction product by eliminating all of the metal silicon particles in the reaction and remaining.
  • hydrogen reacts with tetrachlorosilane to help form trichlorosilane.
  • the hydrogen source various industrially available hydrogens can be used, and hydrogen discharged in the process of producing polysilicon can be appropriately purified and used.
  • the weight ratio of hydrogen and tetrachlorosilane may be 1:20 to 200, preferably 1:50 to 100.
  • it may be in the range of 5 mol or less, 4 mol or less, or 3 mol or less, and 1 mol or more, with respect to 1 mol of tetrachlorosilane, but the present invention is not limited thereto. It may be set in an appropriate range depending on the type or size of the reaction device.
  • Hydrogen chloride used for the reaction with the metal silicon can be selectively added, and even if hydrogen or the like is mixed, it is used without any limitation.
  • chlorosilanes such as trichlorosilane, tetrachlorosilane, and dichlorosilane
  • this hydrogen chloride is in a dry state. Since the hydrogen chloride is dispersed in a molecular unit, it can be sufficiently distributed around the silicon nanoparticles dispersed in the liquid reactant, thereby increasing the reaction efficiency.
  • the weight ratio of hydrogen chloride and tetrachlorosilane may be 1: 0 to 10 or less, preferably 1: 0 to 5 or less.
  • the reaction apparatus uses a tubular reactor, in particular a microtubular reactor.
  • Microtubular reactors have a tube inner diameter in the range of about 10 mm or less or about 1 mm or more and a length in the range of about 10 cm or more or about 500 cm or less is preferred to ensure uniform dispersion of reactants and sufficient residence time.
  • the ratio of diameter to length of the fine tubular reactor may be 1: 10 to 5000, more preferably 1: 20 to 500.
  • reaction temperature can be set in various ways in consideration of the conditions of these two reactions.
  • the low temperature region is generally set in the range of 320 ° C or lower.
  • the temperature may be set to 300 ° C. or less, and may be set to 100 ° C. or more, or 150 ° C. or more, but is not limited thereto.
  • the selectivity of the trichlorosilane increases and the reactivity of the tetrachlorosilane also increases, so proper control of the pressure is required. It must be set at a pressure above about 10 bar, or below about 550 bar, as it must maintain a liquid phase.
  • the high temperature zone should be a condition under which each reactant, silicon powder, hydrogen, hydrogen chloride, and tetrachlorosilane (STC) react to form trichlorosilane (TCS) .
  • STC tetrachlorosilane
  • TCS trichlorosilane
  • the STC should be in the gas phase, so the reaction conditions are below STC vapor pressure. Should be. If the STC is in a liquid state, the surface of the silicon powder is wet, so hydrogen chloride cannot react with the surface of the silicon. Therefore, all liquid STC must be vaporized.
  • the apparatus according to the present invention is a continuous tubular reactor, the pressures in both the high and low temperature regions are the same unless a separate device such as a special pressure controller (for example, a back pressure regulator) is installed separately. Therefore, the only variable that can convert the phase of STC into liquid-phase phase is the temperature, so it can be divided into low-temperature (liquid) -high temperature (gas) according to the steam pressure conditions of the STC.
  • a separate device such as a special pressure controller (for example, a back pressure regulator) is installed separately. Therefore, the only variable that can convert the phase of STC into liquid-phase phase is the temperature, so it can be divided into low-temperature (liquid) -high temperature (gas) according to the steam pressure conditions of the STC.
  • the high temperature region for example, when the internal pressure of the tubular reactor is 200 bar, the temperature at which STC exhibits gas phase-liquid phase transition is about 400 ° C., so the temperature in the high temperature region will be 400 ° C. or higher, and the low
  • the high temperature region it is preferable to control the high temperature region to 450 ° C. or higher temperature and the low temperature region to 350 ° C. or lower so that the reaction temperature of the high temperature region and the low temperature region differs by a predetermined temperature or more.
  • the reaction temperature in the high temperature range is suitably about 300 ° C to about 600 ° C, more preferably about 350 ° C to 500 ° C.
  • Catalysts may be used in the process according to the invention to improve the reaction efficiency, but are not required to be used.
  • the present invention enables efficient reaction without a catalyst.
  • catalysts those known as catalyst components in the reaction of metal silicon with hydrogen chloride can be used without limitation.
  • metals such as aluminum, copper, titanium, and chlorides, such as metal of group VIII elements, such as iron, cobalt, nickel, palladium, and platinum, and its chloride, are mentioned specifically ,.
  • metal of group VIII elements such as iron, cobalt, nickel, palladium, and platinum, and its chloride.
  • the amount of the catalyst component used is not particularly limited as long as the amount of trichlorosilane is improved in production efficiency, and may be appropriately determined in consideration of the capability of the production apparatus and the like.
  • the said catalyst component can be made exist by adding in a reaction system, when the metal silicon used contains catalyst components, such as an iron compound, as an impurity, this impurity can be used effectively as a catalyst component.
  • catalyst components such as an iron compound
  • this impurity can be used effectively as a catalyst component.
  • metal silicon containing the catalyst component as an impurity, there is no problem even if the catalyst component is further added into the reaction system in order to increase the reactivity between the metal silicon and hydrogen chloride.
  • Trichlorosilane prepared from tetrachlorosilane according to the present invention can be used as a raw material for producing high purity polycrystalline silicon (aka polysilicon).
  • Trichlorosilane may be pyrolyzed at high temperature of 1000 ° C. or higher to precipitate polysilicon, as shown in the following scheme. In some cases it may be desirable to pyrolyze in the presence of hydrogen.
  • Silane-based compound supply means including liquid tetrachlorosilane
  • Metal silicon particle supply means for supplying and dispersing metal silicon particles in the liquid mixture
  • a tubular reactor supplied with a mixture in which metal silicon particles are dispersed, and designed to alternately pass through a high temperature region and a low temperature region;
  • Hydrogen gas supply means for supplying hydrogen gas to the reactor
  • a means for recovering trichlorosilane from the product exiting the tubular reactor may be provided.
  • the hydrogen gas flow rate may be adjusted by a mass flow controller (MFC).
  • MFC mass flow controller
  • Hydrogen gas discharged by the pressure of the hydrogen feed bomb is supplied to the reactor by controlling the flow rate through the MFC.
  • the hydrogen chloride gas may be regulated by MFC.
  • the hydrogen chloride gas discharged by the pressure of the hydrogen chloride bombe is dissolved in the tetrachlorosilane solution and fed to the reactor together with the tetrachlorosilane solution.
  • the tetrachlorosilane solution in which hydrogen chloride is dissolved may be stored in the raw material storage tank.
  • the raw material storage tank has a double jacket to maintain a temperature of 10 ° C. or less in consideration of the boiling point of the raw material, so that the low temperature is preferably maintained by the cooler.
  • the tank is equipped with a device capable of adding silicon powder so that the silicon powder can be injected and dispersed in a tetrachlorosilane solution.
  • the tank may be provided with a space of the partition wall to prevent outside air from flowing into the container, the space of the partition is connected to the vacuum pump, and prevents the introduction of external oxygen and moisture when the silicon powder is injected.
  • the raw material storage tank is preferably equipped with a stirrer.
  • the stirrer rotates from about 50 rpm to about 500 rpm to inhibit the precipitation of silicon particles.
  • the mixture in which the silicon particles are dispersed is continuously injected from the raw material storage tank into the tubular reactor by a pump for liquid transfer.
  • the pump for liquid transfer may have a discharge pressure of about 100 bar or more, more preferably about 200 bar or more.
  • Solid silicon powder must also be transported with the solution, and a particular type of pump (high pressure pump) is suitable, considering the reactivity of the tetrachlorosilane solution with water and oxygen.
  • the raw material injected into the tubular reactor using a high pressure pump passes through the tubular reactor which alternately passes through the low temperature region and the high temperature region.
  • the reaction temperature in the low temperature region is appropriately selected from the range of about 100 °C to about 320 °C, more preferably from about 150 °C to 300 °C.
  • the reaction temperature in the high temperature range is suitably selected in the range of about 300 ° C to about 600 ° C, more preferably about 350 ° C to 500 ° C.
  • the gaseous tetrachlorosilane (1) passes through the cooler (10) and is converted into liquid tetrachlorosilane (2).
  • Liquid tetrachlorosilane (2) is combined with hydrogen chloride (4), and hydrogen chloride is dissolved in tetrachlorosilane to form a liquid phase.
  • Metal silicon particle 6 is thrown in and mix
  • Hydrogen gas may be added to any of the steps described above.
  • the liquid tetrachlorosilane (2) may be added before or after blending with the hydrogen chloride (4) or before or after dispersing the metal silicon particles.
  • the liquid tetrachlorosilane / hydrogen chloride mixture 7 in which the metal silicon particles are dispersed is injected into the tubular reactor 30 to proceed with the reaction.
  • the mixed solution may be stored in a raw material storage tank equipped with a stirrer as described above.
  • the reactor 30 is provided with heating means (not shown) for providing an optimum reaction temperature, and can be designed to provide sufficient residence time and contact area.
  • the tubular reactor is designed to alternately pass through the low temperature region and the high temperature region.
  • the metal silicon particles (solid), tetrachlorosilane (liquid or gas), hydrogen (gas) and hydrogen chloride (gas) which are injected as reaction raw materials are solid-liquid-gas mixtures, and the liquid reaction raw materials are solid metals in the low temperature region.
  • the silicon particles are impregnated and transferred to the high temperature region. In the high temperature region, the solid phase-phase reaction may proceed while the liquid reaction raw material wetted on the surface of the metal silicon particles is vaporized. Thereafter, the liquid reaction raw material is wet again with the solid reaction raw material while being moved to the low temperature region again, and is transferred to the high temperature region to proceed with the reaction. By repeating this process, the conversion efficiency can be increased.
  • the linear velocity when the silicon-dispersed silane solution passes through the tubular reactor should be higher than the precipitation rate of silicon.
  • the precipitation rate in a tetrachlorosilane solution is about 10 mm per second, and if the solution passes through a 10 mm inner tubular reactor without precipitation, the linear velocity of the solution is at least 10 mm per second.
  • the length and inner diameter of the tubular reactor may be determined according to the size and precipitation rate of the silicon powder.
  • the metal silicon particle particles can be exhausted to the reaction, in this case, a process for separating the metal silicon particles remaining after the reaction (for example, filtering process) can be omitted.
  • the discharge 8 from the reactor 3 is in the liquid phase at the pressure inside the reactor, although it is also possible to use a pressurized or reduced pressure distillation apparatus to separate trichlorosilane and hydrogen chloride / hydrogen in the liquid reactant, but at room temperature
  • silane as a liquid and hydrogen chloride and hydrogen as a gas
  • trichlorosilane, hydrogen chloride and hydrogen which exist in a liquid state immediately after the reaction, can be easily obtained by storing the trichlorosilane in a pressure-released state.
  • the method according to the present invention proceeds using a tubular reactor in a liquid phase reaction using liquid tetrachlorosilane, and also reacts the metal silicon particles so that the reactants can be uniformly mixed, the reaction surface area is increased, and the reaction temperature is easily controlled.
  • the production efficiency can be maximized.
  • the reaction was carried out by introducing a dispersion obtained by dispersing 3 ⁇ m) in tetrachlorosilane at 1% by weight, hydrogen chloride and hydrogen at the flow rates as shown in Table 1, respectively.
  • the temperature of the low temperature zone and the high temperature zone and the pressure conditions inside the reaction tube were as follows.
  • Low temperature zone reaction temperature is 210 °C.
  • the reaction temperature in the high temperature zone was 300 ° C., and the reaction was carried out in the same manner as in Example 1-1 except that the STC was in the liquid phase even in the high temperature zone. Mol%.
  • the reaction temperature in the low temperature region was 320 ° C.
  • the reaction temperature in the high temperature region was 400 ° C.
  • the reaction was carried out in the same manner as in Example 1-1 except that the STC was brought into the gas phase even at a low temperature region with an internal pressure of 60 bar.
  • the TCS content in the resulting product was 7 mol%, but the reactant silicon was deposited in the tubular reactor, making continuous processing impossible.
  • the reaction temperature and pressure are controlled to change the tetrachlorosilane into a liquid phase or a gas phase, thereby allowing both metal silicon particles and liquid-solid or gas-solid domain reactions to achieve contact efficiency.
  • the productivity of trichlorosilane can be increased.
  • the use of a microtubular reactor rather than a fluidized bed reactor facilitates thermal control, it is possible to minimize side reactions and improve product quality and productivity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Silicon Compounds (AREA)

Abstract

The present invention relates to a trichlorosilane production method using a gas-liquid-solid three-phase reaction, wherein trichlorosilane is produced by introducing a mixture, which has metal silicon particles dispersed in a liquid silane-based compound comprising tetrachlorosilane, together with hydrogen, or hydrogen and hydrogen chloride, into a tubular reactor, which alternately passes through a low-temperature region and a high-temperature region, and reacting same.

Description

트리클로로실란 제조방법Trichlorosilane Manufacturing Method
본 발명은 트리클로로실란 제조방법에 관한 것으로서, 보다 구체적으로는 기체-액체-고체 3상 반응을 이용하여 테트라클로로실란으로부터 트리클로로실란을 보다 효율적으로 제조할 수 있는 방법에 관한 것이다. The present invention relates to a method for producing trichlorosilane, and more particularly, to a method for more efficiently preparing trichlorosilane from tetrachlorosilane using a gas-liquid-solid three-phase reaction.
본 출원은 2015.09.15. 일자 한국 특허 출원 제10-2015-0130025호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.This application was filed on September 15, 2015. Claiming the benefit of priority based on Korean Patent Application No. 10-2015-0130025 dated, all contents disclosed in the literature of that Korean patent application are incorporated as part of this specification.
트리클로로실란(SiHCl3: TCS)은 고순도의 다결정실리콘(일명 폴리실리콘) 제조 원료로서 유용한 화합물이며, 1000 이상의 고온에서 수소와 반응하여 고순도의 폴리실리콘을 석출하는데 이용된다. 이 반응은 주로 하기 반응식 (1) 및 (2)로 나타내어진다.Trichlorosilane (SiHCl 3 : TCS) is a compound useful as a raw material for producing high purity polycrystalline silicon (aka polysilicon), and is used to precipitate high purity polysilicon by reacting with hydrogen at a high temperature of 1000 or more. This reaction is mainly represented by the following reaction formulas (1) and (2).
4SiHCl3 → Si + 3SiCl4 + 2H2 (1)4SiHCl 3 → Si + 3SiCl 4 + 2H 2 (1)
SiHCl3 + H2 Si + 3HCl (2)SiHCl 3 + H 2 Si + 3HCl (2)
상기와 같은 폴리실리콘 석출반응에 이용되는 트리클로로실란은 일반적으로 금속 실리콘과 염화수소의 반응에 의해 제조된다. 예를 들면, 특허문헌 1에는 유동층식 반응 장치를 이용하여 금속 실리콘과 염화수소를 철 및 알루미늄 함유 촉매의 존재 하에서 반응시켜 하기 반응식 (3)의 반응에 의해 트리클로로실란을 제조하는 방법이 개시되어 있다.Trichlorosilane used in the polysilicon precipitation reaction as described above is generally produced by the reaction of metal silicon and hydrogen chloride. For example, Patent Document 1 discloses a method for producing trichlorosilane by reaction of metal silicon and hydrogen chloride in the presence of iron and aluminum-containing catalyst using a fluidized bed reaction apparatus in accordance with the following reaction formula (3). .
Si + 3HCl SiHCl3 + H2 (3)Si + 3HCl SiHCl 3 + H 2 (3)
금속 실리콘과 염화수소의 반응에 의해 생성된 가스를 -10 이하로 냉각하여 트리클로로실란을 응축분리하는데, 이 응축액에는 트리클로로실란 이외에 부생된 다른 클로로실란이 포함되어 있다. 이들 클로로실란을 포함하는 응축액으로부터 트리클로로실란을 증류에 의해 분리 회수하여 폴리실리콘 제조용 원료로서 사용된다. 또한, 증류에 의해 분리된 테트라클로로실란(SiCl4: STC)은 주로 하기 식 (4) 의 반응에 의한 트리클로로실란(TCS)으로 전환되어 폴리실리콘의 제조에 재이용된다. The gas produced by the reaction of metal silicon with hydrogen chloride is cooled to below -10 to condense and separate trichlorosilane, which contains other by-produced chlorosilanes in addition to trichlorosilane. Trichlorosilane is separated and recovered from the condensate containing these chlorosilanes by distillation and used as a raw material for polysilicon production. In addition, tetrachlorosilane (SiCl 4 : STC) separated by distillation is mainly converted into trichlorosilane (TCS) by the reaction of the following formula (4) and reused in the production of polysilicon.
3SiCl4 + 2H2 + Si 4SiHCl3 (4)3SiCl 4 + 2H 2 + Si 4SiHCl 3 (4)
한편, 특허문헌 2에는 금속 실리콘 입자가 충전된 유동층 반응기 내에 100 내지 300㎛ 정도 크기의 금속 실리콘 입자, 염화수소, 테트라클로로실란 및 수소를 공급하고, 이 반응 용기 내에서 금속 실리콘과 염화수소에 의한 트리클로로실란의 생성 반응(식 (3)의 반응)과, 금속 실리콘, 테트라클로로실란 및 수소와의 반응에 의한 트리클로로실란의 생성 반응(식 (4)의 반응)을 동시에 진행시키는 트리클로로실란의 제조 방법이 제안되어 있다(도 1 참조). 상기의 방법에서는 반응이 진행될수록 금속 실리콘 입자의 크기가 점차 감소하기 때문에 금속 실리콘 입자의 보충이 필요하다. 그런데, 원료의 온도변화를 보고 보충 시기를 결정하기 때문에 반응온도가 일정하지 않고 변동하게 되어 반응시간에 따라 생성물의 품질이 불균일하다는 문제가 있다. On the other hand, Patent Literature 2 supplies metal silicon particles, hydrogen chloride, tetrachlorosilane, and hydrogen having a size of about 100 to 300 µm into a fluidized bed reactor filled with metal silicon particles, and trichloro by metal silicon and hydrogen chloride in the reaction vessel. Preparation of trichlorosilane which advances the production | generation reaction of silane (reaction of Formula (3)) and the production | generation reaction of trichlorosilane (reaction of Formula (4)) by reaction with metal silicon, tetrachlorosilane, and hydrogen simultaneously. A method has been proposed (see FIG. 1). In the above method, since the size of the metal silicon particles gradually decreases as the reaction proceeds, the metal silicon particles need to be replenished. However, since the replenishment time is determined by looking at the temperature change of the raw material, the reaction temperature is not constant and fluctuates, and there is a problem in that the quality of the product is uneven according to the reaction time.
또한 유동층 반응기(FBR)를 이용하는 기존 공정은 고상의 금속 실리콘과 액상의 테트라클로로실란이 반응하는 단순 고상-기상 반응 공정이므로 전환율 향상에 한계가 있다. In addition, the existing process using a fluidized bed reactor (FBR) is a simple solid-phase reaction process in which the solid metal silicon and the liquid tetrachlorosilane react, there is a limit in improving the conversion rate.
따라서, 트리클로로실란으로부터 폴리실리콘을 제조하는 공정의 배기가스 중 클로로실란류, 특히 테트라클로로실란을 보다 효율적으로 트리클로로실란으로 전환시켜 재이용할 수 있는 방법이 요구되고 있다. Therefore, there is a demand for a method for more efficiently converting chlorosilanes, particularly tetrachlorosilane, into trichlorosilane in the exhaust gas of the process for producing polysilicon from trichlorosilane and reused.
[특허문헌][Patent Documents]
(특허문헌 1) 일본 특허 제3324922호 공보(Patent Document 1) Japanese Unexamined Patent Publication No.3324922
(특허문헌 2) 일본 특허 공개 소56-73617호 공보(Patent Document 2) Japanese Unexamined Patent Publication No. 56-73617
본 발명은, 트리클로로실란으로부터 폴리실리콘을 제조하는 공정의 배기가스 중 클로로실란류, 특히 테트라클로로실란을 보다 효율적으로 트리클로로실란으로 전환시킬 수 있는 방법을 제공하고자 한다. The present invention seeks to provide a method for more efficiently converting chlorosilanes, particularly tetrachlorosilane, into trichlorosilane in the exhaust gas of the process for producing polysilicon from trichlorosilane.
또한 상기 방법을 구현할 수 있는 트리클로로실란 제조장치를 제공하고자 한다. In addition, to provide a trichlorosilane production apparatus that can implement the method.
본 발명은 상기 기술적 과제를 달성하기 위하여, The present invention to achieve the above technical problem,
저온 영역과 고온 영역을 교대로 통과하는 관형 반응기에, In a tubular reactor that alternately passes through the low temperature zone and the high temperature zone,
테트라클로로실란을 포함하는 액상의 실란계 화합물에 금속 실리콘 입자가 분산된 혼합물을 수소, 또는 수소 및 염화수소와 함께 주입하여 반응시킴으로써 트리클로로실란을 생성하는 것을 특징으로 하는 트리클로로실란 제조방법을 제공한다.Provided is a trichlorosilane production method comprising producing trichlorosilane by injecting a mixture of metal silicon particles dispersed in a liquid silane compound including tetrachlorosilane together with hydrogen or hydrogen and hydrogen chloride. .
상기 저온 영역에서는 상기 테트라클로로실란이 액상인 상태로 반응하도록 하고, 상기 고온 영역에서는 상기 테트라클로로실란이 기상인 상태로 반응하도록 하는 것이 바람직하다. In the low temperature region, the tetrachlorosilane reacts in a liquid state, and in the high temperature region, the tetrachlorosilane reacts in a gaseous state.
상기 저온 영역 반응은 100℃ 이상 320℃ 이하, 10 bar 이상 550 bar 이하의 압력하에서 실시될 수 있다.The low temperature region reaction may be carried out under a pressure of 100 ° C or more and 320 ° C or less, 10 bar or more and 550 bar or less.
상기 고온 영역 반응은 300℃ 이상 600℃ 이하, 10 bar 이상 550 bar 이하의 압력하에서 실시될 수 있다.The high temperature region reaction may be carried out under a pressure of 300 ° C or more and 600 ° C or less, 10 bar or more and 550 bar or less.
상기 금속 실리콘 입자는 중량평균입경이 약 35 미크론 이하인 것이 바람직하다. The metal silicon particles preferably have a weight average particle diameter of about 35 microns or less.
상기 금속 실리콘 입자와 상기 액상의 실란계 화합물의 중량비는 약 1: 20 내지 약 1: 200 일 수 있다. The weight ratio of the metal silicon particles and the liquid silane compound may be about 1:20 to about 1: 200.
상기 액상의 실란계 화합물은 트리클로로실란 열분해에 의한 폴리실리콘 석출공정의 부산물일 수 있다. The liquid silane-based compound may be a byproduct of polysilicon precipitation process by trichlorosilane pyrolysis.
상기 반응은 수소와 테트라클로로실란의 중량비는 1:20 이상 1:200 이하인 조건에서 실시될 수 있다. The reaction may be carried out under the condition that the weight ratio of hydrogen and tetrachlorosilane is 1:20 or more and 1: 200 or less.
상기 반응은 또한, 염화수소와 테트라클로로실란의 중량비가 1: 0 이상 내지 1:10 이하인 조건에서 실시될 수 있다. The reaction may also be carried out under the condition that the weight ratio of hydrogen chloride and tetrachlorosilane is 1: 0 or more to 1:10 or less.
일 구현예에 따르면, 상기 반응 후 생성물내에 잔류하는 실리콘 입자를 분리하는 단계를 더 포함할 수 있다. According to one embodiment, after the reaction may further comprise the step of separating the silicon particles remaining in the product.
다른 구현예에 따르면, 상기 금속 실리콘 입자는 반응에 소진되어 반응 후 생성물에 잔류하지 않도록 할 수 있다. According to another embodiment, the metal silicon particles may be exhausted in the reaction so that they do not remain in the product after the reaction.
전술한 방법에 따라 제조된 트리클로로실란을 열분해하여 폴리실리콘을 석출하는 공정에 이용될 수 있다. The trichlorosilane prepared according to the above-described method may be used in a process of thermally decomposing polysilicon.
본 발명은 또한 다른 기술적 과제를 달성하기 위하여, The present invention also to achieve another technical problem,
액상의 테트라클로로실란을 포함하는 실란계 화합물 공급수단;Silane-based compound supply means including liquid tetrachlorosilane;
선택적으로, 염화수소 공급수단;Optionally, hydrogen chloride supply means;
상기 각각의 공급수단으로부터 공급된 실란계 화합물과 염화수소를 혼합하여 액상 혼합물을 형성하는 장치;An apparatus for mixing a silane compound and hydrogen chloride supplied from the respective supply means to form a liquid mixture;
상기 액상 혼합물에 금속 실리콘 입자를 공급하여 분산시키기 위한 금속 실리콘 입자 공급 수단; Metal silicon particle supply means for supplying and dispersing metal silicon particles in the liquid mixture;
금속 실리콘 입자가 분산된 혼합물이 공급되며 저온영역과 고온영역을 교대로 통과하도록 설계된 관형 반응기; A tubular reactor supplied with a mixture in which metal silicon particles are dispersed and designed to alternately pass through a low temperature region and a high temperature region;
상기 반응기에 수소 가스를 공급하는 수소 가스 공급수단; 및Hydrogen gas supply means for supplying hydrogen gas to the reactor; And
상기 관형 반응기에서 배출되는 생성물로부터 트리클로로실란을 회수하기 위한 수단을 구비한, 트리클로로실란 제조장치를 제공한다. It provides a trichlorosilane manufacturing apparatus having a means for recovering trichlorosilane from the product discharged from the tubular reactor.
일 구현예에 따르면, 상기 금속 실리콘 입자는 액상의 실란계 화합물에 분산된 형태로 공급되는 것일 수 있다. According to one embodiment, the metal silicon particles may be supplied in a form dispersed in a liquid silane compound.
또한, 상기 장치는 금속 실리콘 입자가 분산된 혼합 용액을 저장하기 위한 교반기가 장착된 원료 저장 탱크를 더 구비하는 것일 수 있다. In addition, the apparatus may be further provided with a raw material storage tank equipped with a stirrer for storing the mixed solution in which the metal silicon particles are dispersed.
또한 일 구현예에 따르면, 금속 실리콘 입자가 분산된 혼합 용액이 관형 반응기에 공급되는 선속도는 금속 실리콘 입자의 침전이 일어나지 않도록 하는 범위로 조절되는 것일 수 있다.In addition, according to one embodiment, the linear velocity of the mixed solution in which the metal silicon particles are dispersed is supplied to the tubular reactor may be adjusted to a range such that precipitation of the metal silicon particles does not occur.
본 발명에 따르면 관형 반응기를 이용하는 연속 공정에서 반응온도과 압력을 조절하여 테트라클로로실란을 액상 또는 기상으로 상변화 시킴으로써 금속 실리콘 입자와 액체-고체 영역 또는 기체-고체 영역 반응이 모두 가능하게 함으로써 접촉 효율이 좋아지므로 트리클로로실란의 생산성을 높일 수 있다. 또한, 유동층 반응기가 아닌 미세 관형 반응기를 이용하기 때문에 열 제어가 용이하므로 부반응을 최소화하고 생성물의 품질 및 생산성 향상을 도모할 수 있다. According to the present invention, in a continuous process using a tubular reactor, the reaction temperature and pressure are controlled to change the tetrachlorosilane into a liquid phase or a gas phase, thereby allowing both metal silicon particles and liquid-solid or gas-solid domain reactions to achieve contact efficiency. As a result, the productivity of trichlorosilane can be increased. In addition, since the use of a microtubular reactor rather than a fluidized bed reactor facilitates thermal control, it is possible to minimize side reactions and improve product quality and productivity.
도 1은 종래 기술에 따른 유동층 공정의 개략도이다. 1 is a schematic diagram of a fluidized bed process according to the prior art.
도 2는 테트라클로로실란(STC) 및 트리클로로실란(TCS)의 비점 및 증기압 관계를 나타내는 그래프이다. 2 is a graph showing the boiling point and vapor pressure relationships of tetrachlorosilane (STC) and trichlorosilane (TCS).
도 3은 저온영역과 고온영역에서 금속 실리콘 입자와 테트라클로로실란의 반응원리를 개략적으로 도시한 것이다. Figure 3 schematically illustrates the reaction principle of the metal silicon particles and tetrachlorosilane in the low temperature region and high temperature region.
도 4는 본 발명에 따른 트리클로로실란 제조공정의 개략적인 흐름도이다. 4 is a schematic flowchart of a trichlorosilane production process according to the present invention.
도 5는 도 4에 도시된 관형 반응기의 저온영역과 고온영역에서의 반응을 개략적으로 도시한 것이다. FIG. 5 schematically illustrates the reaction in the low temperature region and the high temperature region of the tubular reactor shown in FIG. 4.
본 발명은 다양한 변환을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변환, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.As the invention allows for various changes and numerous embodiments, particular embodiments will be illustrated in the drawings and described in detail in the written description. However, this is not intended to limit the present invention to specific embodiments, it should be understood to include all transformations, equivalents, and substitutes included in the spirit and scope of the present invention. In the following description of the present invention, if it is determined that the detailed description of the related known technology may obscure the gist of the present invention, the detailed description thereof will be omitted.
본 발명은 저온 영역과 고온 영역을 교대로 통과하는 관형 반응기에, 테트라클로로실란을 포함하는 액상의 실란계 화합물에 금속 실리콘 입자가 분산된 혼합물을 수소, 또는 수소 및 염화수소와 함께 주입하여 반응시킴으로써 트리클로로실란을 생성하는 것을 특징으로 하는 트리클로로실란을 제조하는 방법을 제공한다. According to the present invention, a trichlorosilane is reacted by injecting a mixture of metal silicon particles dispersed in a liquid silane compound containing tetrachlorosilane into hydrogen or hydrogen and hydrogen chloride in a tubular reactor that alternately passes through a low temperature region and a high temperature region. It provides a method for producing trichlorosilane, characterized in that the production of rosilane.
즉 본 발명은 연속 공정인 관형 반응기에서 온도영역을 저온 영역과 고온 영역으로 나누어 액상 원료의 상전환(액체-기체)이 발생하도록 하는 방식이다. That is, the present invention is a method of generating a phase change (liquid-gas) of the liquid raw material by dividing the temperature zone into a low temperature zone and a high temperature zone in the tubular reactor in a continuous process.
도 2는 대표적으로 테트라클로로실란(STC)과 트리클로로실란(TCS)의 비점 및 증기압의 관계를 나타낸다. 도 2에서 볼 수 있는 바와 같이 반응온도와 압력을 적절히 조절함으로써 테트라클로로실란을 포함하는 액상 반응원료의 상전환이 가능함을 알 수 있다. 예를 들어, 반응기의 내부 압력을 200 bar 라고 가정했을 때 400℃를 기준으로 이보다 온도가 낮으면 테트라클로로실란(STC)는 액체가 되어 실리콘 분말을 이송할 수 있게 된다. 반대로 400℃ 보다 온도가 높으면 테트라클로로실란은 기체가 되므로 실리콘 분말 표면에 젖어있던 테트라클로로실란이 기화 되므로 실리콘 분말이 염화수소 가스나 수소 가스와 표면 접촉이 가능해지므로 실리콘 분말의 반응성이 높아지게 된다.2 representatively shows the relationship between the boiling point and the vapor pressure of tetrachlorosilane (STC) and trichlorosilane (TCS). As can be seen in Figure 2 it can be seen that the phase inversion of the liquid reaction raw material containing tetrachlorosilane by appropriately adjusting the reaction temperature and pressure. For example, assuming that the internal pressure of the reactor is 200 bar, if the temperature is lower than 400 ° C., the tetrachlorosilane (STC) becomes a liquid to transfer the silicon powder. On the contrary, when the temperature is higher than 400 ° C., the tetrachlorosilane becomes a gas, so that the tetrachlorosilane wetted on the surface of the silicon powder is vaporized, so that the silicon powder can be in surface contact with hydrogen chloride gas or hydrogen gas, thereby increasing the reactivity of the silicon powder.
반응 원료는 고체(금속실리콘 입자 등), 액체(테트라클로로실란 함유 실란계 화합물), 기체(수소 또는 염화수소) 가 모두 혼합되어 있는 상태이며, 액상 반응원료는 반응온도에 따라 기상으로서 반응물이 되거나 액상으로서 유체 이송물의 역할을 한다. The reaction raw material is a state in which solid (metal silicon particles, etc.), liquid (tetrachlorosilane-containing silane compound), and gas (hydrogen or hydrogen chloride) are all mixed. The liquid reaction raw material becomes a gaseous reactant or a liquid phase depending on the reaction temperature. It serves as a fluid conveyance.
본 발명에 따른 전환반응은 다음과 같은 반응과정을 거칠 수 있다. The conversion reaction according to the present invention may be subjected to the following reaction process.
3SiCl4(l)+ 2H2 (g)+ Si (s) -> 4SiHCl3 (l) + H2 (g) + HCl(g)3SiCl 4 (l) + 2H 2 (g) + Si (s)-> 4SiHCl 3 (l) + H 2 (g) + HCl (g)
도 3은 저온 영역과 고온 영역에서의 반응 원리를 개략적으로 도시한다. 3 schematically shows the principle of reaction in the low temperature region and the high temperature region.
먼저 저온 영역에서는 고상의 원료 표면에 액상 원료가 습윤되어 있는(wet) 상태로 이송되며, 생성물인 트리클로로실란도 액상으로 존재하여 같이 이송될 수 있다.First, in the low temperature region, the liquid raw material is transferred to a wet state on the surface of the solid raw material, and trichlorosilane, which is a product, may also be present as a liquid and transported together.
본 발명에 따르면, 전체 시스템이 연속식 관형 반응기이므로 반응물은 끊임없이 이송되면서 반응이 진행되어야 한다. 반응물이 모두 기체와 고체(실리콘 분말) 상태라면 기체와 고체간의 이송이 되지 않기 때문에 고체인 실리콘 분말의 이송을 위해 기체 중에 증기압이 상대적으로 낮은 테트라클로로실란을 액화하여 실리콘 분말을 이송하도록 하고자 한 것이다. 즉 저온 영역의 액상의 테트라클로로실란과 고온 영역의 기상의 테트라클로로실란은 관형 반응기 내부에서의 역할이 완전히 달라지도록 한 것이다. According to the present invention, since the whole system is a continuous tubular reactor, the reaction must proceed while the reactants are continuously transferred. If all of the reactants are gas and solid (silicon powder), the gas and solid are not transported, so to transfer silicon powder by liquefying tetrachlorosilane with relatively low vapor pressure in the gas to transport solid silicon powder. . That is, the liquid tetrachlorosilane in the low temperature region and the tetrachlorosilane in the gas phase in the high temperature region have a completely different role in the tubular reactor.
고온 영역으로 이송된 후에는 금속 실리콘 입자에 습윤되어 있는 테트라클로로실란(STC)가 기화되어 금속 실리콘 입자 상에서 다른 반응가스(수소 또는 염화수소)와 반응하게 된다. After being transferred to the high temperature region, tetrachlorosilane (STC) moistened in the metal silicon particles is vaporized to react with other reaction gases (hydrogen or hydrogen chloride) on the metal silicon particles.
상기의 저온 영역은 최소 100℃ 이상이어야 하며, 고온 영역은 최대 600℃ 미만이어야 한다. 고온 영역과 저온 영역의 온도 차이가 너무 클 경우 두 영역 사이의 온도 경계가 넓어지는 현상이 발생하고, 이로 인해 각 영역의 효과가 저하될 수 있다. 상기의 저온 영역과 고온 영역은 반응관 내부의 반응 압력에 따라 달라질 수 있다. 예를 들어 반응관 내부의 압력이 50bar라면, 저온 영역은 100℃이상 220℃ 미만이고, 고온 영역은 260℃ 이상 600℃ 미만이 된다. 반응관 내부의 압력이 100bar라면, 저온 영역은 100℃이상 270℃ 미만이고, 고온 영역은 320℃ 이상 600℃ 미만이 된다. 반응관 내부의 압력이 150bar라면, 저온 영역은 100℃이상 320℃ 미만이고, 고온 영역은 370℃ 이상 600℃ 미만이 된다. The low temperature region should be at least 100 ° C. and the high temperature region should be less than 600 ° C. at maximum. If the temperature difference between the high temperature region and the low temperature region is too large, a phenomenon occurs in which the temperature boundary between the two regions is widened, which may reduce the effect of each region. The low temperature region and the high temperature region may vary depending on the reaction pressure inside the reaction tube. For example, if the pressure inside the reaction tube is 50 bar, the low temperature range is at least 100 ° C and less than 220 ° C, and the high temperature range is at least 260 ° C and less than 600 ° C. If the pressure inside the reaction tube is 100 bar, the low temperature range is 100 ° C or more and less than 270 ° C, and the high temperature range is 320 ° C or more and less than 600 ° C. If the pressure inside the reaction tube is 150 bar, the low temperature range is 100 ° C or more and less than 320 ° C, and the high temperature range is 370 ° C or more and less than 600 ° C.
보다 세부적인 압력에 따른 반응 온도의 영역은 도 2의 테트라클로로실란과 트리클로로실란의 증기압 곡선에 따른다. 이는 저온 영역은 반응물인 테트라클로로실란과 생성물인 트리클로로실란이 모두 액체가 될 수 있는 트리클로로실란의 증기압 곡선을 따르며, 고온 영역은 상대적으로 증기압이 낮은 테트라클로로실란의 증기압 곡선을 따르게 된다.The region of the reaction temperature according to the more detailed pressure is in accordance with the vapor pressure curve of tetrachlorosilane and trichlorosilane of FIG. 2. The low temperature region follows the vapor pressure curve of trichlorosilane where both the reactant tetrachlorosilane and the product trichlorosilane can be liquid, and the high temperature region follows the vapor pressure curve of tetrachlorosilane having a relatively low vapor pressure.
기체-액체-고체 3상 반응이 어려운 것은 고체 표면의 접촉 사이트가 액체에 의해 차단(barrier) 되어 있기 때문인데, 반응 조건을 조절하여 액체가 기화되도록 함으로써 고체-기체 반응을 유도하여 반응효율을 높일 수 있다. The gas-liquid-solid three-phase reaction is difficult because the contact site on the solid surface is blocked by the liquid, which induces a solid-gas reaction by adjusting the reaction conditions to increase the reaction efficiency. Can be.
이하에서는 각 반응물에 대해 보다 구체적으로 살펴본다. Hereinafter, each reactant will be described in more detail.
테트라클로로실란Tetrachlorosilane
본 발명에 따른 반응에 이용하는 테트라클로로실란으로서는 특별히 제한되는 것은 아니지만, 폴리실리콘 등의 제조 과정에서 부생되는 테트라클로로실란의 유효 이용을 도모하기 위해 트리클로로실란으로부터 폴리실리콘의 제조 과정에서 부생되는 테트라클로로실란이 사용될 수 있다. The tetrachlorosilane used in the reaction according to the present invention is not particularly limited, but tetrachloroproduced from trichlorosilane in the process of producing polysilicon from trichlorosilane in order to facilitate the effective use of the tetrachlorosilane produced by the production process of polysilicon and the like. Silanes may be used.
금속 실리콘 입자Metal silicon particles
금속 실리콘 입자의 크기를 35 미크론 이하의 크기로 조절함으로써 테트라클로로실란과 실리콘 입자의 접촉 면적이 증가하여 반응 사이트가 증대되므로 반응속도가 증가하여 트리클로로실란의 생산성을 높일 수 있고. 금속 실리콘 입자의 크기가 점차 감소하므로 일정 반응 시간이 경과한 후 실리콘 입자는 완전히 소진될 수 있다. By adjusting the size of the metal silicon particles to a size of 35 microns or less, the contact area of the tetrachlorosilane and the silicon particles increases to increase the reaction site, thereby increasing the reaction rate to increase the productivity of the trichlorosilane. Since the size of the metal silicon particles gradually decreases, the silicon particles may be completely exhausted after a certain reaction time.
본 발명에서는 실리콘 금속 입자가 액상의 테트라클로로실란에 균일하게 분산되도록 하여 응집 및 침전을 방지하고, 실리콘 금속 입자와 테트라클로로실란의 접촉 면적을 증대시키기 위하여 금속 실리콘 입자 입자를 사용한다. In the present invention, the metal silicon particle particles are used to uniformly disperse the silicon metal particles in the liquid tetrachlorosilane to prevent aggregation and precipitation and to increase the contact area between the silicon metal particles and the tetrachlorosilane.
상기 반응에 이용하는 금속 실리콘은 야금제 금속 실리콘이나 규소철, 또는 폴리실리콘 등의 금속상태의 규소 원소를 포함하는 고체 입자 물질이다. 또한, 금속 규소에 포함되는 철 화합물 등의 불순물에 대해서도, 그 성분이나 함유량에 있어서 특별히 제한은 없다. 다만, 본 발명에서 금속 실리콘 입자 또는 분말은 중량평균입경 약 35 미크론 이하의 입자를 지칭하기로 한다. 금속 실리콘의 평균 입경은 약 30 미크론 이하, 또는 약 25 미크론 이하, 또는 약 10 미크론 이하, 또는 약 5 미크론 이하일 수 있고, 약 0.1 미크론 이상, 또는 약 0.5 미크론 이상일 수 있다. The metal silicon used for the reaction is a solid particle material containing a silicon element in a metal state such as metallurgical metal silicon, silicon iron, or polysilicon. Moreover, also about an impurity, such as an iron compound contained in metal silicon, there is no restriction | limiting in particular in the component and content. However, in the present invention, the metal silicon particles or powders refer to particles having a weight average particle diameter of about 35 microns or less. The average particle diameter of the metal silicon may be about 30 microns or less, or about 25 microns or less, or about 10 microns or less, or about 5 microns or less, and about 0.1 microns or more, or about 0.5 microns or more.
금속 실리콘 입자와 테트라클로로실란의 혼합비율은 금속 실리콘 입자 1 중량부 대비 약 200 중량부 이하, 또는 약 150 중량부 이하이거나, 약 20중량부 이상, 또는 약 50 중량부 이상 일 수 있다. The mixing ratio of the metal silicon particles and the tetrachlorosilane may be about 200 parts by weight or less, or about 150 parts by weight or less, about 20 parts by weight or more, or about 50 parts by weight or more based on 1 part by weight of the metal silicon particles.
금속 실리콘 입자의 투입량은 테트라클로로실란에 분산된 금속 실리콘 입자간 거리가 약 1000nm 이하, 또는 약 500 nm 이하가 되도록 하거나, 약 10 nm 이상 또는 약 50 nm 이상이 되도록 하는 범위에서 적절히 선택할 수 있다. The amount of the metal silicon particles to be added may be appropriately selected in a range such that the distance between the metal silicon particles dispersed in the tetrachlorosilane is about 1000 nm or less, or about 500 nm or less, or about 10 nm or more or about 50 nm or more.
바람직하게는, 금속 실리콘 입자가 반응에 모두 이용되어 잔류하지 않도록 함으로써 반응에 이용되고 남은 미분의 금속 실리콘을 반응결과물로부터 분리하는 공정을 생략할 수 있다. Preferably, the step of separating the metal silicon of the fine powder remaining in the reaction from the reaction product by eliminating all of the metal silicon particles in the reaction and remaining.
수소Hydrogen
본 발명에 따른 반응에서 수소는 테트라클로로실란과 반응하여 트리클로로실란을 형성하는데 도움을 준다. 수소원으로는 공업적으로 입수할 수 있는 여러 가지 수소를 사용할 수 있고, 폴리실리콘의 제조 과정에서 배출되는 수소 등을 적절하게 정제하여 사용할 수도 있다.In the reaction according to the invention hydrogen reacts with tetrachlorosilane to help form trichlorosilane. As the hydrogen source, various industrially available hydrogens can be used, and hydrogen discharged in the process of producing polysilicon can be appropriately purified and used.
수소와 테트라클로로실란의 중량비는 1:20 내지 200 일 수 있으며, 바람직하게는 1: 50 내지 100일 수 있다. The weight ratio of hydrogen and tetrachlorosilane may be 1:20 to 200, preferably 1:50 to 100.
또는, 테트라클로로실란 1몰에 대하여 수소 5몰 이하, 또는 4몰 이하, 또는 3몰 이하의 범위로 할 수 있으며, 또한 1몰 이상이 되도록 할 수 있으나 이에 한정되는 것은 아니며, 그 공급 속도는 이용하는 반응 장치의 종류나 크기에 따라 적절한 범위로 설정할 수 있다. Or, it may be in the range of 5 mol or less, 4 mol or less, or 3 mol or less, and 1 mol or more, with respect to 1 mol of tetrachlorosilane, but the present invention is not limited thereto. It may be set in an appropriate range depending on the type or size of the reaction device.
염화수소Hydrogen chloride
금속 실리콘과의 반응에 사용되는 염화수소는 선택적으로 첨가될 수 있으며, 수소 등이 혼입되어 있어도 아무런 제한없이 사용된다. 그러나, 일반적으로 트리클로로실란, 테트라클로로실란, 디클로로실란 등의 클로로실란은 가수분해성이 높기 때문에 수분과 반응하게 된다. 이로 인해, 염화수소에 수분이 포함되어 있으면, 생성된 트리클로로실란의 수율을 낮출 우려가 있다. 따라서, 이 염화수소는 건조 상태에 있는 것이 바람직하다. 염화수소는 분자 단위로 분산되므로 액상 반응물에 분산된 실리콘 나노 입자 주변에 충분하게 분포될 수 있어 반응 효율이 증대된다. Hydrogen chloride used for the reaction with the metal silicon can be selectively added, and even if hydrogen or the like is mixed, it is used without any limitation. However, chlorosilanes, such as trichlorosilane, tetrachlorosilane, and dichlorosilane, generally react with water because of their high hydrolyzability. For this reason, when water contains hydrogen chloride, there exists a possibility that the yield of the produced trichlorosilane may be reduced. Therefore, it is preferable that this hydrogen chloride is in a dry state. Since the hydrogen chloride is dispersed in a molecular unit, it can be sufficiently distributed around the silicon nanoparticles dispersed in the liquid reactant, thereby increasing the reaction efficiency.
염화수소와 테트라클로로실란의 중량비는 1: 0 내지 10 이하일 수 있으며, 바람직하게는 1: 0 내지 5 이하일 수 있다.The weight ratio of hydrogen chloride and tetrachlorosilane may be 1: 0 to 10 or less, preferably 1: 0 to 5 or less.
또는, 테트라클로로실란 1몰에 대하여 염화수소 약 1몰 이하, 또는 약 0.8 몰 이하, 또는 약 0.5 몰 이하일 수 있으며, 또한 약 0.1 몰 이상, 또는 약 0.2 몰 이상일 수 있으나 이에 한정되지 않으며, 각각의 공급 속도와 함께, 반응 장치의 종류나 크기에 따라 적절한 범위로 설정할 수 있다. Or about 1 mole or less, or about 0.8 mole or less, or about 0.5 mole or less per mole of tetrachlorosilane, and may also be about 0.1 mole or more, or about 0.2 mole or more, but is not limited thereto. Along with the speed, it can be set in an appropriate range depending on the type and size of the reaction apparatus.
반응기Reactor
본 발명에 따른 반응은 액상으로 진행되기 때문에, 반응 장치는 관형 반응기, 특히 미세 관형 반응기를 이용하는 것이 바람직하다. 미세 관형 반응기는 관 내경이 약 10 mm 이하 또는 약 1 mm 이상의 범위이고, 길이가 약 10 cm 이상 또는 약 500 cm 이하의 범위에 속하는 것이 반응물의 균일한 분산과 충분한 체류 시간을 확보하기에 바람직하다. 미세 관형 반응기의 직경대 길이의 비는 1: 10 내지 5000, 더 바람직하게는 1: 20 내지 500 일 수 있다. Since the reaction according to the invention proceeds in the liquid phase, it is preferable that the reaction apparatus uses a tubular reactor, in particular a microtubular reactor. Microtubular reactors have a tube inner diameter in the range of about 10 mm or less or about 1 mm or more and a length in the range of about 10 cm or more or about 500 cm or less is preferred to ensure uniform dispersion of reactants and sufficient residence time. . The ratio of diameter to length of the fine tubular reactor may be 1: 10 to 5000, more preferably 1: 20 to 500.
반응 온도는, 제조 장치의 재질이나 능력 등을 감안하여 적절하게 결정하면 되지만, 반응 온도가 필요 이상으로 높으면, 트리클로로실란의 선택률이 저하하고 테트라클로로실란이나 디클로로실란 등의 트리클로로실란 이외의 클로로실란 부산물의 양이 많아진다. 또한, 직접 염화 반응(Direct chlorination: Si + 3HCl → SiHCl3 + H2)은 발열 반응이다. 동일한 반응기 내에서 테트라클로로실란이 수소와 반응하여 트리클로로실란이 발생하는 반응은 흡열반응이다. 따라서 이 두 반응의 조건을 감안하여 반응 온도는 다양하게 설정될 수 있다. What is necessary is just to determine reaction temperature suitably in consideration of the material, capability, etc. of a manufacturing apparatus, but when reaction temperature is higher than necessary, the selectivity of trichlorosilane will fall, and chloro other than trichlorosilane, such as tetrachlorosilane and dichlorosilane, The amount of silane by-products increases. In addition, direct chlorination (Si + 3HCl → SiHCl 3 + H 2 ) is an exothermic reaction. In the same reactor, the reaction of tetrachlorosilane with hydrogen to generate trichlorosilane is an endothermic reaction. Therefore, the reaction temperature can be set in various ways in consideration of the conditions of these two reactions.
특히 본 발명에서는 액상 반응원료의 상전환을 유도하여야 하므로, 관형 반응기가 고온 영역과 저온 영역을 교대로 통과하도록 하는 것이 중요하다. In particular, in the present invention, it is important to induce a phase inversion of the liquid reaction raw material, so that the tubular reactor alternately passes through the high temperature region and the low temperature region.
저온영역은 일반적으로 320℃ 이하의 범위로 설정된다. 바람직하게는 300℃ 이하의 온도로 설정될 수 있고, 100℃ 이상, 또는 150℃ 이상의 온도로 설정될 수 있으나 이에 한정되지 않는다. 반응기의 압력이 증가할수록 트리클로로실란의 선택률이 증가하며 테트라클로로실란의 반응성도 증가하기 때문에 압력에 대한 적절한 조절이 필요하다. 액상을 유지하여야 하므로 약 10 bar 이상, 또는 약 550 bar 이하의 압력에서 설정된다. The low temperature region is generally set in the range of 320 ° C or lower. Preferably, the temperature may be set to 300 ° C. or less, and may be set to 100 ° C. or more, or 150 ° C. or more, but is not limited thereto. As the pressure in the reactor increases, the selectivity of the trichlorosilane increases and the reactivity of the tetrachlorosilane also increases, so proper control of the pressure is required. It must be set at a pressure above about 10 bar, or below about 550 bar, as it must maintain a liquid phase.
고온영역은 각각의 반응물, 실리콘 분말, 수소, 염화수소, 테트라클로로실란(STC)이 반응하여 트리클로로실란(TCS)을 생성하는 조건이어야 하며, 이때 STC는 기상이 되어야 하므로 반응 조건이 STC 증기압 이하가 되어야 한다. STC가 액체 상태라면 실리콘 분말 표면 젖어 있는 상태이므로 염화수소가 실리콘 표면과 반응할 수 없기 때문이다. 따라서 액체 상태의 STC를 모두 기화하여야 한다. The high temperature zone should be a condition under which each reactant, silicon powder, hydrogen, hydrogen chloride, and tetrachlorosilane (STC) react to form trichlorosilane (TCS) .In this case, the STC should be in the gas phase, so the reaction conditions are below STC vapor pressure. Should be. If the STC is in a liquid state, the surface of the silicon powder is wet, so hydrogen chloride cannot react with the surface of the silicon. Therefore, all liquid STC must be vaporized.
본 발명에 따른 장치는 연속식 관형 반응기 이므로 특수한 압력 제어장치(예를 들면 후단 압력제어장치: Back Pressure Regulator) 같은 장치를 별도로 설치하지 않는 한 고온 영역과 저온 영역의 압력은 모두 동일하게 된다. 따라서 STC를 액상-기상으로 상전환 할 수 있는 변수는 온도뿐이므로 STC의 증기압 조건에 따라 저온영역(액상)-고온영역(기상)으로 나뉠 수 있다. 고온 영역의 경우 예를 들면, 관형 반응기의 내부 압력이 200bar일 경우 STC가 기상-액상의 상전환이 나타나는 온도는 약 400℃ 이므로, 고온 영역의 온도는 400℃ 이상일 것이며, 저온 영역은 400℃ 이하가 될 것이다. 정확한 상 구분을 위해 고온 영역과 저온 영역의 반응 온도가 일정 온도 이상 차이가 나도록, 예를 들면, 고온 영역은 450℃ 이상, 저온 영역은 350℃ 이하로 제어하는 것이 바람직하다. 그러나 두 영역의 온도 차이가 너무 크게 발생하면 온도 제어가 어려워질 뿐만 아니라 장비의 내구성에도 영향이 있을 것이므로, 반응성 뿐만 아니라 모든 제반 조건을 고려한 온도 설정이 필요하다. 예를 들어 고온영역의 반응온도는 약 300℃에서 약 600℃가 적당하며, 약 350℃에서 500℃가 더 바람직하다.Since the apparatus according to the present invention is a continuous tubular reactor, the pressures in both the high and low temperature regions are the same unless a separate device such as a special pressure controller (for example, a back pressure regulator) is installed separately. Therefore, the only variable that can convert the phase of STC into liquid-phase phase is the temperature, so it can be divided into low-temperature (liquid) -high temperature (gas) according to the steam pressure conditions of the STC. In the case of the high temperature region, for example, when the internal pressure of the tubular reactor is 200 bar, the temperature at which STC exhibits gas phase-liquid phase transition is about 400 ° C., so the temperature in the high temperature region will be 400 ° C. or higher, and the low temperature region will be 400 ° C. or lower. Will be. For accurate phase separation, it is preferable to control the high temperature region to 450 ° C. or higher temperature and the low temperature region to 350 ° C. or lower so that the reaction temperature of the high temperature region and the low temperature region differs by a predetermined temperature or more. However, if the temperature difference between the two areas is too large, not only temperature control will be difficult, but also the durability of the equipment will be affected. Therefore, it is necessary to set the temperature considering all the conditions as well as the reactivity. For example, the reaction temperature in the high temperature range is suitably about 300 ° C to about 600 ° C, more preferably about 350 ° C to 500 ° C.
반응촉매Reaction catalyst
본 발명에 따른 방법에서 반응 효율을 향상시키기 위하여 촉매를 이용할 수도 있지만 반드시 사용해야 하는 것은 아니다. 본 발명은 촉매 없이도 효율적인 반응이 가능하다. Catalysts may be used in the process according to the invention to improve the reaction efficiency, but are not required to be used. The present invention enables efficient reaction without a catalyst.
촉매로는 금속 실리콘과 염화수소의 반응에서의 촉매 성분으로서 공지된 것을 제한없이 이용할 수 있다. 이러한 촉매 성분으로서 구체적으로는 철, 코발트, 니켈, 팔라듐, 백금 등의 제VIII족 원소의 금속이나 그의 염화물 등, 알루미늄, 구리, 티탄 등의 금속이나 염화물을 들 수 있다. 이들 촉매는 단독으로 이용하는 것도, 또는 복수의 촉매를 조합하여 이용하는 것도 가능하다. 상기 촉매 성분의 사용량은 트리클로로실란을 제조 효율을 향상시키는 양이면 특별히 제한되지 않으며, 제조 장치의 능력 등을 감안하여 적절하게 결정하면 된다. As the catalyst, those known as catalyst components in the reaction of metal silicon with hydrogen chloride can be used without limitation. As such a catalyst component, metals, such as aluminum, copper, titanium, and chlorides, such as metal of group VIII elements, such as iron, cobalt, nickel, palladium, and platinum, and its chloride, are mentioned specifically ,. These catalysts can be used alone or in combination of a plurality of catalysts. The amount of the catalyst component used is not particularly limited as long as the amount of trichlorosilane is improved in production efficiency, and may be appropriately determined in consideration of the capability of the production apparatus and the like.
또한, 상기의 촉매 성분은 반응계 내에 첨가함으로써 존재시킬 수도 있지만, 사용하는 금속 실리콘에 불순물로서 철 화합물 등의 촉매 성분이 포함되어 있는 경우에는, 이 불순물을 촉매 성분으로서 유효하게 이용할 수 있다. 물론, 촉매 성분을 불순물로서 함유하는 금속 실리콘을 사용하는 경우에도, 금속 실리콘과 염화수소의 반응성을 높이기 위하여 촉매 성분을 반응계 내에 더 첨가하여도 전혀 문제는 없다.In addition, although the said catalyst component can be made exist by adding in a reaction system, when the metal silicon used contains catalyst components, such as an iron compound, as an impurity, this impurity can be used effectively as a catalyst component. Of course, even in the case of using metal silicon containing the catalyst component as an impurity, there is no problem even if the catalyst component is further added into the reaction system in order to increase the reactivity between the metal silicon and hydrogen chloride.
폴리실리콘Polysilicon 제조 Produce
본 발명에 따라 테트라클로로실란으로부터 제조된 트리클로로실란은 고순도의 다결정실리콘(일명 폴리실리콘) 제조 원료로 사용될 수 있다. 트리클로로실란은 하기 반응식에 나타낸 바와 같이, 1000℃ 이상의 고온에서 열분해 되어 폴리실리콘으로 석출될 있다. 경우에 따라서는 수소 존재 하에 열분해 하는 것이 바람직할 수 있다. Trichlorosilane prepared from tetrachlorosilane according to the present invention can be used as a raw material for producing high purity polycrystalline silicon (aka polysilicon). Trichlorosilane may be pyrolyzed at high temperature of 1000 ° C. or higher to precipitate polysilicon, as shown in the following scheme. In some cases it may be desirable to pyrolyze in the presence of hydrogen.
4SiHCl3 → Si + 3SiCl4 + 2H2 (1)4SiHCl 3 → Si + 3 SiCl 4 + 2H 2 (1)
SiHCl3 + H2 Si + 3HCl (2)SiHCl 3 + H 2 Si + 3 HCl (2)
트리클로로실란을 이용한 폴리실리콘 석출 반응은 당업계에 널리 알려져 있으며, 따라서 구체적인 공정 조건에 대한 설명은 생략한다. Polysilicon precipitation reaction using trichlorosilane is well known in the art, and thus description of specific process conditions is omitted.
본 발명에 따른 트리클로로실란 제조장치는 Trichlorosilane production apparatus according to the present invention
액상의 테트라클로로실란을 포함하는 실란계 화합물 공급수단;Silane-based compound supply means including liquid tetrachlorosilane;
선택적으로, 염화수소 공급수단;Optionally, hydrogen chloride supply means;
상기 각각의 공급수단으로부터 공급된 실란계 화합물과 염화수소를 혼합하여 액상 혼합물을 형성하는 장치;An apparatus for mixing a silane compound and hydrogen chloride supplied from the respective supply means to form a liquid mixture;
상기 액상 혼합물에 금속 실리콘 입자를 공급하여 분산시키기 위한 금속 실리콘 입자 공급 수단; Metal silicon particle supply means for supplying and dispersing metal silicon particles in the liquid mixture;
금속 실리콘 입자가 분산된 혼합물이 공급되며, 고온 영역과 저온 영역을 교대로 통과하도록 설계된 관형 반응기; A tubular reactor supplied with a mixture in which metal silicon particles are dispersed, and designed to alternately pass through a high temperature region and a low temperature region;
상기 반응기에 수소 가스를 공급하는 수소 가스 공급수단; 및Hydrogen gas supply means for supplying hydrogen gas to the reactor; And
상기 관형 반응기에서 배출되는 생성물로부터 트리클로로실란을 회수하기 위한 수단을 구비할 수 있다. A means for recovering trichlorosilane from the product exiting the tubular reactor may be provided.
보다 구체적으로 설명하면, 수소가스 공급수단에서는 수소 가스 유량이 MFC(Mass Flow Controller)에 의해 조절될 수 있다. 수소 원료 봄베의 압력에 의해 배출된 수소 가스는 MFC를 지나면서 유량이 제어되어 반응기로 공급이 된다. More specifically, in the hydrogen gas supply means, the hydrogen gas flow rate may be adjusted by a mass flow controller (MFC). Hydrogen gas discharged by the pressure of the hydrogen feed bomb is supplied to the reactor by controlling the flow rate through the MFC.
염화수소 공급수단에서는 염화수소 가스가 MFC에 의해 유량이 조절될 수 있다. 염화수소 봄베의 압력에 의해 배출된 염화수소 가스는 테트라클로로실란 용액에 용해되어 테트라클로로실란 용액과 함께 반응기로 공급된다. In the hydrogen chloride supply means, the hydrogen chloride gas may be regulated by MFC. The hydrogen chloride gas discharged by the pressure of the hydrogen chloride bombe is dissolved in the tetrachlorosilane solution and fed to the reactor together with the tetrachlorosilane solution.
일 구현예에 따르면, 염화수소가 용해되어 있는 테트라클로로실란 용액은 원료 저장 탱크에 보관할 수 있다. According to one embodiment, the tetrachlorosilane solution in which hydrogen chloride is dissolved may be stored in the raw material storage tank.
원료 저장 탱크는 원료의 끓는점을 고려하여 10℃ 이하의 온도를 유지하도록 2중 쟈켓으로 되어 있어 냉각기에 의해 저온이 유지되는 것이 바람직하다. The raw material storage tank has a double jacket to maintain a temperature of 10 ° C. or less in consideration of the boiling point of the raw material, so that the low temperature is preferably maintained by the cooler.
상기 탱크 상부에는 실리콘 분말을 첨가할 수 있는 장치가 장착되어 있어 실리콘 분말을 주입하여 테트라클로로실란 용액에 분산시킬 수 있다. The tank is equipped with a device capable of adding silicon powder so that the silicon powder can be injected and dispersed in a tetrachlorosilane solution.
탱크에는 외부 공기가 용기 내부로 유입되는 것을 방지하기 위해 격벽의 공간이 설치되어 있을 수 있고, 격벽의 공간은 진공 펌프와 연결되어 있으며, 실리콘 분말 주입시 외부 산소 및 수분의 유입을 방지한다.The tank may be provided with a space of the partition wall to prevent outside air from flowing into the container, the space of the partition is connected to the vacuum pump, and prevents the introduction of external oxygen and moisture when the silicon powder is injected.
실리콘 입자의 균일한 분산 상태를 유지하기 위해 원료 저장 탱크에는 교반기가 장착되어 있는 것이 바람직하다. 약 50rpm 에서 약 500rpm으로 교반기가 회전하며 실리콘 입자가 침전하는 것을 억제한다. In order to maintain a uniform dispersion state of the silicon particles, the raw material storage tank is preferably equipped with a stirrer. The stirrer rotates from about 50 rpm to about 500 rpm to inhibit the precipitation of silicon particles.
이러한 원료 저장 탱크가 2개 혹은 그 이상 있을 수 있으며, 첫 번째 탱크에 저장된 원료를 소진할 경우 두 번째 탱크에서 연속적으로 주입할 수 있도록 배관이 연결되어 있다. There may be two or more of these raw material storage tanks, and the pipes are connected so that when the raw material stored in the first tank is exhausted, the second tank can be continuously injected.
실리콘 입자가 분산된 혼합물은 원료 저장탱크로부터 액체 이송용 펌프에 의해 관형 반응기에 연속적으로 주입된다. 액체 이송용 펌프는 토출 압력이 약 100bar 이상, 보다 바람직하게는 약 200bar 이상일 수 있다. 고체의 실리콘 분말도 용액과 함께 이송되어야 하며, 테트라클로로실란 용액의 수분과 산소와의 반응성을 고려하여 특정한 방식의 펌프(고압용 펌프)가 적당하다. The mixture in which the silicon particles are dispersed is continuously injected from the raw material storage tank into the tubular reactor by a pump for liquid transfer. The pump for liquid transfer may have a discharge pressure of about 100 bar or more, more preferably about 200 bar or more. Solid silicon powder must also be transported with the solution, and a particular type of pump (high pressure pump) is suitable, considering the reactivity of the tetrachlorosilane solution with water and oxygen.
고압용 펌프를 이용하여 관형 반응기에 주입된 원료는 저온영역과 고온영역을 교대로 통과하는 관형 반응기를 지나면서 반응이 일어난다. 이때 저온영역의 반응 온도는 약 100℃에서 약 320℃의 범위에서 선택하는 것이 적당하며, 약 150℃에서 300℃가 더 바람직하다. 고온영역의 반응온도는 약 300℃에서 약 600℃의 범위에서 선택하는 것이 적당하며, 약 350℃에서 500℃가 더 바람직하다.The raw material injected into the tubular reactor using a high pressure pump passes through the tubular reactor which alternately passes through the low temperature region and the high temperature region. At this time, the reaction temperature in the low temperature region is appropriately selected from the range of about 100 ℃ to about 320 ℃, more preferably from about 150 ℃ to 300 ℃. The reaction temperature in the high temperature range is suitably selected in the range of about 300 ° C to about 600 ° C, more preferably about 350 ° C to 500 ° C.
반응이 종료된 생성물은 관형 반응기의 10℃ 이하로 냉각된 후단부를 지나면서 모두 액체 상태가 되어 포집 장치에 회수된다. 이 때 미반응 수소와 염화수소 가스 및 염소 가스는 포집 장치에 의해 액체와 분리되며, 액체는 다른 이송 장치를 통해 다른 저장 용기로 이송된다.After the reaction is completed, all of the products pass through the rear end of the tubular reactor cooled to 10 ° C. or lower, and are recovered in the collecting device. At this time, unreacted hydrogen, hydrogen chloride gas, and chlorine gas are separated from the liquid by a collecting device, and the liquid is transferred to another storage container through another conveying device.
이하에서는 도면을 참조하여 본 발명의 방법에 따른 일 실시예를 보다 구체적으로 설명한다. Hereinafter, an embodiment according to the method of the present invention will be described in detail with reference to the drawings.
도 4 및 도 5는 본 발명의 일 구현예에 따른 장치를 개략적으로 도시한다. 4 and 5 schematically show an apparatus according to an embodiment of the invention.
도 4에 도시된 바와 같이, 기상의 테트라클로로실란(1)은 냉각기(10)를 통과하여 액상의 테트라클로로실란(2)으로 전환된다. 액상의 테트라클로로실란(2)은 염화수소(4)와 함께 배합되고, 염화수소는 테트라클로로실란에 용해되어 액상을 형성한다. 여기에 금속 실리콘 입자(6)가 투입되어 배합된다. 금속 실리콘 입자와 배합되기 전에 필요에 따라 펌프(20)에 의해 가압될 수 있지만 이에 한정되지 않는다. As shown in FIG. 4, the gaseous tetrachlorosilane (1) passes through the cooler (10) and is converted into liquid tetrachlorosilane (2). Liquid tetrachlorosilane (2) is combined with hydrogen chloride (4), and hydrogen chloride is dissolved in tetrachlorosilane to form a liquid phase. Metal silicon particle 6 is thrown in and mix | blended here. It may be pressurized by the pump 20 as needed before blending with the metallic silicon particles, but is not limited thereto.
수소가스는 전술한 단계 중 임의의 단계에 첨가될 수 있다. 예를 들면, 액상의 테트라클로로실란(2)을 염화수소(4)와 배합하기 전 또는 후, 또는 금속 실리콘 입자 분산 전 또는 후에 첨가할 수 있다. Hydrogen gas may be added to any of the steps described above. For example, the liquid tetrachlorosilane (2) may be added before or after blending with the hydrogen chloride (4) or before or after dispersing the metal silicon particles.
금속실리콘 입자가 분산된 액상의 테트라클로로실란/염화수소 혼합액(7)은 관형 반응기(30)에 주입되어 반응이 진행된다. 상기 혼합액은 도면에는 도시하지 않았지만 앞서 설명한 바와 같이 교반기가 장착된 원료 저장 탱크에 보관되어 있을 수 있다. 반응기(30)에는 최적의 반응 온도를 제공하기 위한 가열수단(도시하지 않음)이 구비되며, 충분한 체류시간과 접촉면적을 제공할 수 있도록 설계될 수 있다. The liquid tetrachlorosilane / hydrogen chloride mixture 7 in which the metal silicon particles are dispersed is injected into the tubular reactor 30 to proceed with the reaction. Although not shown in the drawings, the mixed solution may be stored in a raw material storage tank equipped with a stirrer as described above. The reactor 30 is provided with heating means (not shown) for providing an optimum reaction temperature, and can be designed to provide sufficient residence time and contact area.
도 5에 도시된 바와 같이, 관형 반응기는 저온 영역과 고온영역을 교대로 통과하도록 설계되어 있다. As shown in FIG. 5, the tubular reactor is designed to alternately pass through the low temperature region and the high temperature region.
반응 원료로서 주입되는 금속실리콘 입자(고체), 테트라클로로실란(액체 또는 기체), 수소(기체) 및 염화수소(기체)는 고체-액체-기체 혼합물이며, 저온영역에서 액상의 반응원료가 고상의 금속 실리콘 입자를 함침한 상태로 고온영역으로 이송된다. 고온영역에서는 금속 실리콘 입자 표면에 습윤된 액상 반응원료가 기화하면서 고상-기상간 반응이 진행될 수 있다. 이후 다시 저온 영역으로 이동하면서 다시 액상 반응원료가 고상 반응원료에 습윤되고, 다시 고온 영역으로 이송되어 반응이 진행된다. 이와 같은 과정이 반복됨으로써 전환효율이 증대될 수 있다. The metal silicon particles (solid), tetrachlorosilane (liquid or gas), hydrogen (gas) and hydrogen chloride (gas) which are injected as reaction raw materials are solid-liquid-gas mixtures, and the liquid reaction raw materials are solid metals in the low temperature region. The silicon particles are impregnated and transferred to the high temperature region. In the high temperature region, the solid phase-phase reaction may proceed while the liquid reaction raw material wetted on the surface of the metal silicon particles is vaporized. Thereafter, the liquid reaction raw material is wet again with the solid reaction raw material while being moved to the low temperature region again, and is transferred to the high temperature region to proceed with the reaction. By repeating this process, the conversion efficiency can be increased.
또한, 테트라클로로실란에 분산된 실리콘 입자는 밀도가 높기 때문에 침전하게 된다. 따라서 실리콘이 분산된 실란 용액이 관형 반응기를 지날 때의 선속도는 실리콘의 침전 속도보다 높아야 한다. 예를 들어 10 ㎛ 실리콘 입자의 경우를 예로 들면 테트라클로로실란 용액에서의 침전속도는 초당 약 10 mm 이며, 이 용액이 내경 10 mm 의 관형 반응기를 침전 없이 지나가려면 용액의 선속도는 최소 초당 10 mm 이상이어야 한다. 따라서 관형 반응기의 길이 및 내경은 실리콘 분말의 크기와 침전 속도에 따라 결정될 수 있다. In addition, silicon particles dispersed in tetrachlorosilane are precipitated because of their high density. Therefore, the linear velocity when the silicon-dispersed silane solution passes through the tubular reactor should be higher than the precipitation rate of silicon. For example, in the case of 10 μm silicon particles, for example, the precipitation rate in a tetrachlorosilane solution is about 10 mm per second, and if the solution passes through a 10 mm inner tubular reactor without precipitation, the linear velocity of the solution is at least 10 mm per second. Should be at least Therefore, the length and inner diameter of the tubular reactor may be determined according to the size and precipitation rate of the silicon powder.
바람직한 구현예에 따르면, 금속 실리콘 입자 입자는 반응에 모두 소진 되도록 할 수 있으며, 이 경우 반응 후 잔류하는 금속 실리콘 입자를 분리하기 위한 공정(예를 들면 필터링 공정)이 생략될 수 있다. According to a preferred embodiment, the metal silicon particle particles can be exhausted to the reaction, in this case, a process for separating the metal silicon particles remaining after the reaction (for example, filtering process) can be omitted.
반응기(3)로부터의 배출물(8)은 반응기 내부의 압력으로 액상으로 존재하며, 액상 반응물 중의 트리클로로실란과 염화수소/수소를 분리하기 위하여 가압 또는 감압 증류 장치를 이용하는 것도 가능하지만, 상온에서 트리클로로실란은 액체이고 염화수소와 수소는 기체인 성질을 이용하여, 반응 직후 액체 상태로 존재하는 트리클로로실란, 염화수소, 수소는 압력이 해제된 상태에서 보관함으로써 액상의 트리클로로실란을 용이하게 얻을 수 있다. The discharge 8 from the reactor 3 is in the liquid phase at the pressure inside the reactor, although it is also possible to use a pressurized or reduced pressure distillation apparatus to separate trichlorosilane and hydrogen chloride / hydrogen in the liquid reactant, but at room temperature By using silane as a liquid and hydrogen chloride and hydrogen as a gas, trichlorosilane, hydrogen chloride and hydrogen, which exist in a liquid state immediately after the reaction, can be easily obtained by storing the trichlorosilane in a pressure-released state.
본 발명에 따른 방법은 액상의 테트라클로로실란을 이용하여 액상 반응으로 관형 반응기를 이용하여 진행하며, 또한 금속 실리콘 입자를 반응시키므로 반응물이 균일하게 혼합될 수 있고 반응표면적이 증대되며 반응 온도 제어가 용이하여 생산 효율이 극대화될 수 있다. The method according to the present invention proceeds using a tubular reactor in a liquid phase reaction using liquid tetrachlorosilane, and also reacts the metal silicon particles so that the reactants can be uniformly mixed, the reaction surface area is increased, and the reaction temperature is easily controlled. The production efficiency can be maximized.
이하에서는 본 발명의 구체적인 실시예를 설명한다. 하지만 하기 실시예는 본 발명의 일 구현예에 불과하며 본 발명의 범위가 이에 한정되는 것은 아니다. Hereinafter, specific embodiments of the present invention will be described. However, the following examples are merely one embodiment of the present invention and the scope of the present invention is not limited thereto.
실시예Example 1 One
내경 4 mm, 길이 300 mm의 SUS316제 반응관이 4 개 연결된 미세관형 반응관을 350℃의 반응온도로 내압을160 bar로 유지하면서, 금속 실리콘(순도 98%, 평균입경 3㎛)을 1 중량%로 테트라클로로실란에 분산시킨 분산액, 염화수소 및 수소를 각각 표 1에 나타낸 것과 같은 유량으로 도입하여 반응을 실시하였다. 저온영역과 고온영역의 온도 및 반응관 내부 압력 조건은 다음과 같았다. Metallic silicon (purity 98%, average particle diameter) while maintaining the internal pressure at 160 bar at a reaction temperature of 350 ° C. The reaction was carried out by introducing a dispersion obtained by dispersing 3 µm) in tetrachlorosilane at 1% by weight, hydrogen chloride and hydrogen at the flow rates as shown in Table 1, respectively. The temperature of the low temperature zone and the high temperature zone and the pressure conditions inside the reaction tube were as follows.
저온영역: 260℃, 100barLow temperature range: 260 ℃, 100bar
고온영역: 360℃, 100bar High temperature range: 360 ℃, 100bar
실시예Example 원료량(g/min)Raw material amount (g / min) 생성물 조성(몰%)Product composition (mol%) 잔류금속실리콘(g)Residual Metal Silicon (g)
STCSTC HClHCl H2 H 2 SiSi TCSTCS STCSTC HClHCl
1-11-1 14.914.9 0.150.15 0.10.1 0.150.15 1616 4747 3737 0.0450.045
1-21-2 11.211.2 0.150.15 0.10.1 0.150.15 66 7878 1616 0.1210.121
1-31-3 14.914.9 0.150.15 0.10.1 0.30.3 2121 4141 3838 0.2760.276
1-41-4 14.914.9 00 0.10.1 0.150.15 55 8181 1414 0.0860.086
실시예Example 2 2
저온영역 반응온도를 210℃. 고온영역 반응온도는 300℃ 로 하였으며, 반응관 내부압력을 80bar 로 하여 고온영역에서도 STC가 액상이 되도록 한 것을 제외하고는 실시예 1-1과 동일한 방법으로 반응을 실시한 결과 생성물 중 TCS 함량은 5 몰% 이었다.Low temperature zone reaction temperature is 210 ℃. The reaction temperature in the high temperature zone was 300 ° C., and the reaction was carried out in the same manner as in Example 1-1 except that the STC was in the liquid phase even in the high temperature zone. Mol%.
비교예Comparative example 1  One
저온영역 반응온도는 320℃, 고온영역 반응온도는 400℃ 였으며, 반응관 내부압력을 60bar 로 하여 저온영역에서도 STC가 기상이 되도록 한 것을 제외하고는 실시예 1-1 과 동일한 방법으로 반응을 실시한 결과 생성물 중 TCS 함량은 7 몰% 이었으나 반응물인 실리콘이 관형 반응기 내에 적체되어 연속적인 공정이 불가능하였다. The reaction temperature in the low temperature region was 320 ° C., the reaction temperature in the high temperature region was 400 ° C. The reaction was carried out in the same manner as in Example 1-1 except that the STC was brought into the gas phase even at a low temperature region with an internal pressure of 60 bar. The TCS content in the resulting product was 7 mol%, but the reactant silicon was deposited in the tubular reactor, making continuous processing impossible.
본 발명에 따르면 관형 반응기를 이용하는 연속 공정에서 반응온도과 압력을 조절하여 테트라클로로실란을 액상 또는 기상으로 상변화 시킴으로써 금속 실리콘 입자와 액체-고체 영역 또는 기체-고체 영역 반응이 모두 가능하게 함으로써 접촉 효율이 좋아지므로 트리클로로실란의 생산성을 높일 수 있다. 또한, 유동층 반응기가 아닌 미세 관형 반응기를 이용하기 때문에 열 제어가 용이하므로 부반응을 최소화하고 생성물의 품질 및 생산성 향상을 도모할 수 있다. According to the present invention, in a continuous process using a tubular reactor, the reaction temperature and pressure are controlled to change the tetrachlorosilane into a liquid phase or a gas phase, thereby allowing both metal silicon particles and liquid-solid or gas-solid domain reactions to achieve contact efficiency. As a result, the productivity of trichlorosilane can be increased. In addition, since the use of a microtubular reactor rather than a fluidized bed reactor facilitates thermal control, it is possible to minimize side reactions and improve product quality and productivity.

Claims (16)

  1. 저온 영역과 고온 영역을 교대로 통과하는 관형 반응기에, In a tubular reactor that alternately passes through the low temperature zone and the high temperature zone,
    테트라클로로실란을 포함하는 액상의 실란계 화합물에 금속 실리콘 입자가 분산된 혼합물을 수소, 또는 수소 및 염화수소와 함께 주입하여 반응시킴으로써 트리클로로실란을 생성하는 것을 특징으로 하는 트리클로로실란 제조방법.A trichlorosilane production method comprising producing trichlorosilane by injecting a mixture of metal silicon particles dispersed in a liquid silane compound including tetrachlorosilane together with hydrogen or hydrogen and hydrogen chloride.
  2. 제1항에 있어서, The method of claim 1,
    상기 저온 영역에서는 상기 테트라클로로실란이 액상인 상태로 반응하도록 하고, 상기 고온 영역에서는 상기 테트라클로로실란이 기상인 상태로 반응하도록 하는 것인, 트리클로로실란 제조하는 방법The tetrachlorosilane reacts in a liquid state in the low temperature region, and the tetrachlorosilane reacts in a gaseous state in the high temperature region.
  3. 제1항에 있어서, The method of claim 1,
    상기 저온 영역 반응은 100℃ 이상 320℃ 이하, 10 bar 이상 550 bar 이하의 압력하에서 실시되는 것인, 트리클로로실란 제조방법. The low temperature region reaction is carried out under a pressure of 100 ° C or more and 320 ° C or less, 10 bar or more and 550 bar or less, trichlorosilane production method.
  4. 제1항에 있어서, The method of claim 1,
    상기 고온 영역 반응은 300℃ 이상 600℃ 이하, 10 bar 이상 550 bar 이하의 압력하에서 실시되는 것인, 트리클로로실란 제조방법.The high temperature zone reaction is carried out under a pressure of 300 ° C or more and 600 ° C or less, 10 bar or more and 550 bar or less, trichlorosilane production method.
  5. 제1항에 있어서, The method of claim 1,
    상기 금속 실리콘 입자는 중량평균입경이 35 미크론 이하인, 트리클로로실란 제조방법. The metal silicon particles have a weight average particle diameter of less than 35 microns, trichlorosilane manufacturing method.
  6. 제1항에 있어서,The method of claim 1,
    상기 금속 실리콘 입자와 상기 액상의 실란계 화합물의 중량비는 1: 20 내지 1:200 인, 트리클로로실란 제조방법. The weight ratio of the metal silicon particles and the liquid silane compound is 1: 20 to 1: 200, trichlorosilane production method.
  7. 제1항에 있어서, The method of claim 1,
    상기 액상의 실란계 화합물은 트리클로로실란 열분해에 의한 폴리실리콘 석출공정의 부산물인 것인, 트리클로로실란 제조 방법.The liquid silane-based compound is a trichlorosilane production method that is a by-product of the polysilicon precipitation process by trichlorosilane pyrolysis.
  8. 제1항에 있어서, The method of claim 1,
    수소와 테트라클로로실란의 중량비는 1:20 내지 200인 것인, 트리클로로실란 제조 방법. The weight ratio of hydrogen and tetrachlorosilane is 1:20 to 200, trichlorosilane manufacturing method.
  9. 제1항에 있어서, The method of claim 1,
    염화수소와 테트라클로로실란의 중량비가 1: 0 내지 10 인 것인, 트리클로로실란 제조 방법. The weight ratio of hydrogen chloride and tetrachlorosilane is 1: 0 to 10, trichlorosilane production method.
  10. 제1항에 있어서, The method of claim 1,
    상기 반응 후 생성물 내에 잔류하는 실리콘 입자를 분리하는 단계를 더 포함하는, 트리클로로실란 제조 방법. Separating the silicon particles remaining in the product after the reaction, trichlorosilane production method.
  11. 제1항에 있어서, The method of claim 1,
    상기 금속 실리콘 입자는 반응에 소진되어 반응 후 생성물에 잔류하지 않는 것을 특징으로 하는, 트리클로로실란 제조 방법.The metal silicon particles are exhausted in the reaction, characterized in that do not remain in the product after the reaction, trichlorosilane production method.
  12. 제1항 내지 제11항 중 어느 한 항에 의해 제조된 트리클로로실란을 열분해하여 폴리실리콘을 석출하는 공정을 포함하는 폴리실리콘 제조방법. A method for producing polysilicon comprising the step of pyrolyzing trichlorosilane prepared by any one of claims 1 to 11 to precipitate polysilicon.
  13. 액상의 테트라클로로실란을 포함하는 실란계 화합물 공급수단;Silane-based compound supply means including liquid tetrachlorosilane;
    선택적으로, 염화수소 공급수단;Optionally, hydrogen chloride supply means;
    상기 각각의 공급수단으로부터 공급된 실란계 화합물과 염화수소를 혼합하여 액상 혼합물을 형성하는 장치;An apparatus for mixing a silane compound and hydrogen chloride supplied from the respective supply means to form a liquid mixture;
    상기 액상 혼합물에 금속 실리콘 입자를 공급하여 분산시키기 위한 금속 실리콘 입자 공급 수단; Metal silicon particle supply means for supplying and dispersing metal silicon particles in the liquid mixture;
    금속 실리콘 입자가 분산된 혼합물이 공급되며 저온영역과 고온영역을 통과하는 교대로 통과하도록 설계된 관형 반응기; A tubular reactor supplied with a mixture in which the metal silicon particles are dispersed and designed to pass alternately through the low temperature region and the high temperature region;
    상기 반응기에 수소 가스를 공급하는 수소 가스 공급수단; 및Hydrogen gas supply means for supplying hydrogen gas to the reactor; And
    상기 관형 반응기에서 배출되는 생성물로부터 트리클로로실란을 회수하기 위한 수단을 구비한, 트리클로로실란 제조장치. Trichlorosilane production apparatus having a means for recovering trichlorosilane from the product discharged from the tubular reactor.
  14. 제13항에 있어서, The method of claim 13,
    상기 금속 실리콘 입자는 액상의 실란계 화합물에 분산된 형태로 공급되는 것인, 트리클로로실란 제조장치.The metal silicon particles are supplied in the form of dispersed in a liquid silane compound, trichlorosilane manufacturing apparatus.
  15. 제13항에 있어서, The method of claim 13,
    상기 금속 실리콘 입자가 분산된 혼합 용액을 저장하기 위한 교반기가 장착된 원료 저장 탱크를 더 구비하는 것인, 트리클로로실란 제조장치.It further comprises a raw material storage tank equipped with a stirrer for storing the mixed solution in which the metal silicon particles are dispersed, trichlorosilane manufacturing apparatus.
  16. 제13항에 있어서, The method of claim 13,
    금속 실리콘 입자가 분산된 혼합 용액이 관형 반응기에 공급되는 선속도는 금속 실리콘 입자의 침전이 일어나지 않도록 하는 범위로 조절되는 것인, 트리클로로실란 제조장치. The linear velocity at which the mixed solution in which the metal silicon particles are dispersed is supplied to the tubular reactor is adjusted to a range such that precipitation of the metal silicon particles does not occur, the trichlorosilane manufacturing apparatus.
PCT/KR2016/010410 2015-09-15 2016-09-19 Trichlorosilane production method WO2017048094A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150130025A KR102009929B1 (en) 2015-09-15 2015-09-15 Process for producing trichlorosilane
KR10-2015-0130025 2015-09-15

Publications (1)

Publication Number Publication Date
WO2017048094A1 true WO2017048094A1 (en) 2017-03-23

Family

ID=58289093

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/010410 WO2017048094A1 (en) 2015-09-15 2016-09-19 Trichlorosilane production method

Country Status (2)

Country Link
KR (1) KR102009929B1 (en)
WO (1) WO2017048094A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130008529A (en) * 2010-02-18 2013-01-22 가부시끼가이샤 도꾸야마 Production method for trichlorosilane
KR20130105160A (en) * 2012-03-16 2013-09-25 한국화학연구원 Manufacturing method for trichlorosilane from silicon tetrachloride and trickle bed reactor for the method
KR20130138357A (en) * 2010-10-22 2013-12-18 엠이엠씨 일렉트로닉 머티리얼즈, 인크. Production of polycrystalline silicon in substantially closed-loop processes and systems
KR20140136985A (en) * 2012-03-14 2014-12-01 센트로섬 포토볼타익스 유에스에이, 인크. Trichlorosilane production
KR20150037681A (en) * 2013-09-30 2015-04-08 주식회사 엘지화학 Process for producing trichlorosilane
KR20150088026A (en) * 2014-01-23 2015-07-31 한국화학연구원 Method for modifying surface of metal siliside, method for producing trichlorosilane using surface modified metal siliside and apparatus for producing the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5673617A (en) 1979-11-17 1981-06-18 Osaka Titanium Seizo Kk Manufacture of trichlorosilane
JP3324922B2 (en) 1995-12-22 2002-09-17 株式会社トクヤマ Method for producing silicon trichloride

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130008529A (en) * 2010-02-18 2013-01-22 가부시끼가이샤 도꾸야마 Production method for trichlorosilane
KR20130138357A (en) * 2010-10-22 2013-12-18 엠이엠씨 일렉트로닉 머티리얼즈, 인크. Production of polycrystalline silicon in substantially closed-loop processes and systems
KR20140136985A (en) * 2012-03-14 2014-12-01 센트로섬 포토볼타익스 유에스에이, 인크. Trichlorosilane production
KR20130105160A (en) * 2012-03-16 2013-09-25 한국화학연구원 Manufacturing method for trichlorosilane from silicon tetrachloride and trickle bed reactor for the method
KR20150037681A (en) * 2013-09-30 2015-04-08 주식회사 엘지화학 Process for producing trichlorosilane
KR20150088026A (en) * 2014-01-23 2015-07-31 한국화학연구원 Method for modifying surface of metal siliside, method for producing trichlorosilane using surface modified metal siliside and apparatus for producing the same

Also Published As

Publication number Publication date
KR102009929B1 (en) 2019-08-12
KR20170032553A (en) 2017-03-23

Similar Documents

Publication Publication Date Title
TWI448429B (en) Method for producing trichlorosilane, apparatus for producing trichlorosilane and method for producing polycrystal silicon
TWI602780B (en) Process for workup of chlorosilanes or chlorosilane mixtures contaminated with carbon compounds
EP0133209A2 (en) Trichlorosilane production process and equipment
EP2154110B1 (en) Process for producing trichlorosilane
JP4778504B2 (en) Method for producing silicon
KR101644239B1 (en) Process for producing trichlorosilane
TWI436946B (en) Method for producing polycrystal silicon and polycrystal silicon production equipment
WO2008065838A1 (en) Process for producing trichlorosilane and apparatus for producing trichlorosilane
KR20120127414A (en) "closed loop" method for producing trichlorosilane from metallurgical silicon
WO2015160160A1 (en) Apparatus and method for continuously preparing silicon nitride with improved particle size uniformity
WO2017018772A1 (en) High order silane selectivity adjustment method and high order silane production method using same
KR101948332B1 (en) Production of polycrystalline silicon in substantially closed-loop processes and systems
WO2017048094A1 (en) Trichlorosilane production method
WO2015047043A1 (en) Method for producing trichlorosilane
WO2016052841A1 (en) Poly-silicon manufacturing apparatus and method using high-efficiency hybrid horizontal reactor
US20140124706A1 (en) Process for preparing chlorosilanes by means of high-boiling chlorosilanes or chlorosilane-containing mixtures
WO2010050241A1 (en) Process for production of trichlorosilane and method for use thereof
WO2015111885A1 (en) Method for surface-modifying metal silicide, and method and apparatus for preparing trichlorosilane using surface-modified metal silicide
KR20160102807A (en) Dispersion of silicon metal powder and process for producing chlorosilane using same
KR101754457B1 (en) Dispersion of silicon metal powder and process for producing chlorosilane using same
JPH0297415A (en) Method for increasing amount of silicon tetrachloride in reaction of hydrogen chloride or mixture of hydrogen chloride and chlorine with metal silicon-containing substance
KR20160144541A (en) Method for producing trichlorosilane
KR20170001411A (en) Apparatus and process for producing trichlorosilane
KR20160069380A (en) Dispersion of silicon metal powder and process for producing chlorosilane using same
KR20110051624A (en) Method for producing high purity trichlorosilane for poly-silicon using chlorine gas or hydrogen chloride

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16846915

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16846915

Country of ref document: EP

Kind code of ref document: A1