WO2017047808A1 - Copolymer, photoelectric conversion element, solar battery, and solar battery module - Google Patents

Copolymer, photoelectric conversion element, solar battery, and solar battery module Download PDF

Info

Publication number
WO2017047808A1
WO2017047808A1 PCT/JP2016/077599 JP2016077599W WO2017047808A1 WO 2017047808 A1 WO2017047808 A1 WO 2017047808A1 JP 2016077599 W JP2016077599 W JP 2016077599W WO 2017047808 A1 WO2017047808 A1 WO 2017047808A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
formula
atom
copolymer
added
Prior art date
Application number
PCT/JP2016/077599
Other languages
French (fr)
Japanese (ja)
Inventor
光教 古屋
和弘 毛利
理恵子 藤田
和矢 白鳥
茂 中根
潤也 河井
Original Assignee
三菱化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱化学株式会社 filed Critical 三菱化学株式会社
Priority to JP2017540042A priority Critical patent/JP6904252B2/en
Publication of WO2017047808A1 publication Critical patent/WO2017047808A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule

Definitions

  • the present invention relates to a copolymer, a photoelectric conversion element, a solar cell, and a solar cell module.
  • ⁇ -conjugated polymers are used as semiconductor materials for organic electronic devices such as organic solar cells, organic EL elements, organic thin film transistors, and organic light emitting sensors.
  • organic electronic devices such as organic solar cells, organic EL elements, organic thin film transistors, and organic light emitting sensors.
  • organic solar cell it is desired to improve sunlight absorption efficiency, and it is important to develop a polymer that can absorb light having a long wavelength.
  • a copolymer of a donor monomer and an acceptor monomer hereinafter referred to as a copolymer
  • Patent Documents 1 to 3 describe photoelectric conversion elements using a copolymer having a naphthobisthiadiazole unit.
  • Non-Patent Documents 1 and 2 describe examples of photoelectric conversion elements using a copolymer having a naphthobisthiadiazole unit and a benzodithiophene unit.
  • the present invention solves the above-described problems, and an object thereof is to provide a photoelectric conversion element having high conversion efficiency.
  • X 1 and X 2 each independently represent an atom selected from Group 16 elements of the periodic table, one of R 1 and R 2 is a monovalent organic group and the other is a hydrogen atom or halogen.
  • An atom, one of R 3 and R 4 is a monovalent organic group and the other represents a hydrogen atom or a halogen atom, and D 1 represents a donor-like structural unit, wherein Ar 3 and Ar 4 are each Independently represents an optionally substituted aromatic group, c and d each independently represent an integer of 0 or more and 2 or less, A represents an acceptor constituent unit or a direct bond, and D2 represents (It represents a donor structural unit.
  • Ar 5 and Ar 6 each independently represent an aromatic ring optionally having a substituent
  • X 3 and X 4 each independently represent Q 1 (R 5 ) (R 6 ), Q 2 (R 7 ), a sulfur atom (S), an oxygen atom (O) or a direct bond, provided that when one of X 3 and X 4 is a direct bond, X 3 and X
  • the other group of 4 is Q 1 (R 5 ) (R 6 ), Q 2 (R 7 ), a sulfur atom (S) or an oxygen atom (O), where Q 1 is a periodic table Represents an atom selected from group 14 elements, Q 2 represents an atom selected from group 15 elements of the periodic table, and R 5 and R 6 each independently represents a hydrogen atom, a halogen atom or a monovalent organic group.
  • R 7 is a hydrogen atom
  • formula represents a halogen atom or a monovalent organic group in (V)
  • Ar 7 and Ar 8 are each independently have a substituent An aromatic ring
  • X 5 and X 6 each independently represent a group represented by Q 3 (R 8).
  • Q 3 represents an atom selected from the periodic table group 14 element
  • R 8 Represents a hydrogen atom, a halogen atom or a monovalent organic group.
  • X 7 and X 8 each independently represents an atom selected from Group 16 elements of the periodic table, and R 11 to R 14 each independently represents a hydrogen atom, a halogen atom or a monovalent atom. Represents an organic group, A represents an acceptor structural unit or a direct bond, and D2 represents a donor structural unit.
  • a in Formula (II) is a structural unit represented by Formula (VIII) or Formula (IX).
  • Ar 9 may have an aromatic hydrocarbon ring which may have a substituent, an aromatic heterocyclic ring which may have a substituent, or a substituent.
  • X 9 and X 10 each independently represents a nitrogen atom (N) or Q 4 (R 15 ), wherein Q 4 represents an atom selected from Group 14 elements of the periodic table.
  • R 15 represents a hydrogen atom, a halogen atom or a monovalent organic group, and in formula (IX), Ar 10 has an aromatic hydrocarbon ring which may have a substituent and a substituent.
  • Ar 5 and Ar 6 each independently represent an aromatic ring optionally having a substituent
  • X 3 and X 4 each independently represent Q 1 (R 5 ) (R 6 ), Q 2 (R 7 ), a sulfur atom (S), an oxygen atom (O) or a direct bond, provided that when one of X 3 and X 4 is a direct bond, X 3 and X
  • the other group of 4 is Q 1 (R 5 ) (R 6 ), Q 2 (R 7 ), a sulfur atom (S) or an oxygen atom (O), where Q 1 is a periodic table Represents an atom selected from group 14 elements, Q 2 represents an atom selected from group 15 elements of the periodic table, and R 5 and R 6 each independently represents a hydrogen atom, a halogen atom or a monovalent organic group.
  • R 7 is a hydrogen atom
  • formula represents a halogen atom or a monovalent organic group in (V)
  • Ar 7 and Ar 8 are each independently have a substituent An aromatic ring
  • X 5 and X 6 each independently represent a group represented by Q 3 (R 8).
  • Q 3 represents an atom selected from the periodic table group 14 element
  • R 8 Represents a hydrogen atom, a halogen atom or a monovalent organic group.
  • D1 is a repeating unit represented by the following formula (VI); in the formula (II), A is a repeating unit represented by the formula (X); The copolymer according to any one of [1] to [6], which is a repeating unit represented by VI).
  • R 16 and R 17 represent a hydrogen atom, a halogen atom or a monovalent organic group.
  • R 9 and R 10 are each independently a hydrogen atom or a halogen atom. Or represents a monovalent organic group.
  • R 1 and R 4 are each independently an aliphatic hydrocarbon group having 1 to 20 carbon atoms. .
  • the ratio of the number of repeating units represented by the formula (I) to the number of repeating units represented by the formula (II) is 0.1 or more and 9 or less
  • the copolymer according to any one of [1] to [9] which has a weight average molecular weight of 10,000 or more and 300,000 or less.
  • the photoelectric conversion element characterized by containing.
  • a solar cell module having the photoelectric conversion element according to [11].
  • X 1 and X 2 each independently represent an atom selected from Group 16 elements of the Periodic Table, and R 1 and R 4 each independently represent a straight chain having 9 or more carbon atoms.
  • R 2 and R 3 are each independently D1 represents a structural unit represented by formula (IV) or formula (V).
  • Ar 5 and Ar 6 each independently represent an aromatic ring optionally having a substituent.
  • X 3 and X 4 each independently represent Q 1 (R 5 ) (R 6 ), Q 2 (R 7 ), a sulfur atom (S), an oxygen atom (O) or a direct bond, provided that when one of X 3 and X 4 is a direct bond, X 3 and X
  • the other group of 4 is Q 1 (R 5 ) (R 6 ), Q 2 (R 7 ), a sulfur atom (S) or an oxygen atom (O)
  • Q 1 is group 14 of the periodic table
  • R 5 and R 6 each independently represents a hydrogen atom, a halogen atom or a monovalent organic group
  • Q 2 represents an atom selected from Group 15 elements of the periodic table
  • 7 represents a hydrogen atom, a halogen atom or a monovalent organic group.
  • Ar 7 and Ar 8 each independently represents an aromatic ring optionally having a substituent.
  • X 5 and X 6 are each represented by Q 3 (R 8 ).
  • Q 3 represents an atom selected from Group 14 elements of the periodic table, and R 8 represents a hydrogen atom, a halogen atom, or a monovalent organic group.
  • X 12 and X 13 each independently represent an atom selected from Group 16 elements of the periodic table.
  • R 9 and R 10 each independently represent a hydrogen atom, a halogen atom or a monovalent atom.
  • X 12 to X 15 each independently represents an atom selected from Group 16 elements of the periodic table.
  • R 20 to R 25 each independently represents a hydrogen atom or a halogen atom.
  • one of R 20 to R 22 is a monovalent organic group, and the remaining two groups are each independently a hydrogen atom or a halogen atom, and R 23 to R 25
  • One of the groups is a monovalent organic group, and the remaining two groups are each independently a hydrogen atom or a halogen atom.
  • a photoelectric conversion element having a pair of electrodes on a substrate and an active layer between the pair of electrodes, wherein the active layer is the copolymer according to any one of [13] to [15] Containing a photoelectric conversion element.
  • a solar cell module having the photoelectric conversion element according to [16].
  • a photoelectric conversion element having high conversion efficiency can be provided. Furthermore, according to the first aspect of the present invention, a photoelectric conversion element having high light resistance can be provided. In addition, according to the second aspect of the present invention, a photoelectric conversion element having high conversion efficiency can be provided.
  • a copolymer according to an embodiment of the present invention includes a repeating unit represented by the following formula (I) and a repeating unit represented by the following formula (II) different from the following formula (I). Unit.
  • the repeating unit represented by the formula (II) different from the formula (I) means that the repeating unit represented by the formula (II) is the same as the repeating unit represented by the formula (I). Means not.
  • the repeating unit represented by the formula (I) and the repeating unit represented by the formula (II) differ only in substituents, the repeating unit represented by the formula (I) and the formula (II) The repeating unit is different from the represented repeating unit.
  • the copolymer according to an embodiment of the present invention has a repeating unit represented by the formula (I) and a repeating unit represented by the formula (II), and the conversion efficiency of the photoelectric conversion element is improved as follows.
  • the reason can be considered. That is, when the copolymer has only the repeating unit represented by the formula (I), the solubility is low, and furthermore, only light in a specific absorption wavelength region range can be absorbed, so that it tends to be difficult to obtain high conversion efficiency. is there.
  • the copolymer has a repeating unit represented by the formula (II) in addition to the repeating unit represented by the formula (I), thereby improving the solubility and absorbing light in a wider wavelength region. In order to be possible, high conversion efficiency can be obtained.
  • the copolymer has a repeating unit represented by the formula (II) in addition to the repeating unit represented by the formula (I), and one of R 1 and R 2 is monovalent.
  • the other is a hydrogen atom or a halogen atom
  • one of R 3 and R 4 is a monovalent organic group and the other is a hydrogen atom or a halogen atom, so that the conversion efficiency can be improved even after irradiation with light.
  • the crystallinity of the copolymer and / or the rigidity of the copolymer is relaxed, and a dense film is easily obtained. It is considered that resistance to photo-oxidation in the atmosphere is improved because oxygen and moisture hardly enter the film. Further, it is considered that the progress of aggregation of the copolymer in the film can be suppressed under light irradiation.
  • one of R 1 and R 2 is a monovalent organic group and the other is a hydrogen atom or a halogen atom
  • one of R 3 and R 4 is a monovalent organic group and the other is a hydrogen atom or a halogen atom.
  • the steric hindrance in the copolymer can be suppressed, so that flatness can be easily obtained.
  • a copolymer having high light resistance can be obtained and a photoelectric conversion element having high light resistance can be provided.
  • the light resistance of the copolymer is high, it can be produced with high productivity even in a light irradiation environment when producing a photoelectric conversion element.
  • X 1 and X 2 each independently represent an atom selected from Group 16 elements of the periodic table. Specifically, oxygen atom (O), sulfur atom (S), selenium atom (Se) ) Or tellurium atom (Te). Of these, X 1 and X 2 are preferably since it shows good semiconductor properties is a sulfur atom (S).
  • one of R 1 and R 2 is a monovalent organic group and the other is a hydrogen atom or a halogen atom
  • one of R 3 and R 4 is a monovalent organic group and the other is a hydrogen atom or a halogen Represents an atom.
  • the monovalent organic group means a monovalent group having one or more carbon atoms.
  • the number of carbon atoms of the monovalent organic group is not particularly limited, but is usually 1 or more, preferably 4 or more, more preferably 6 or more, in order to improve solubility, 10 or more. On the other hand, it is preferably 30 or less, more preferably 20 or less, and particularly preferably 18 or less in order to prevent an increase in steric hindrance between adjacent structural units.
  • the monovalent organic group include, but are not limited to, a chain aliphatic hydrocarbon group, an alkoxy group, an alkylcarbonyl group, an alkoxy group in order to improve solubility and ⁇ -stackability between copolymers.
  • examples include a carbonyl group or an alkylthio group.
  • Examples of the chain aliphatic hydrocarbon group include a linear aliphatic hydrocarbon group and a branched aliphatic hydrocarbon group.
  • the number of carbon atoms constituting the aliphatic hydrocarbon group is not particularly limited, but is usually 1 or more, preferably 4 or more, and 6 or more in order to improve solubility. More preferably, it is particularly preferably 10 or more, and on the other hand, in order to prevent an increase in steric hindrance between adjacent structural units, it is preferably 30 or less, more preferably 20 or less, and 18 or less. It is particularly preferred.
  • linear aliphatic hydrocarbon group examples include a linear alkyl group, a linear alkenyl group, and a linear alkynyl group.
  • the straight-chain alkyl group is not particularly limited, but for example, n-butyl group, n-hexyl group, n-heptyl group, n-octyl group, n-decyl group, n-dodecyl group, tridecyl group, tetradecyl group , Pentadecyl group, hexadecyl group, heptadecyl group or octadecyl group.
  • the linear alkenyl group is not particularly limited, and examples thereof include a 5-hexenyl group, a 7-octenyl group, an 11-dodecenyl group, and a 12-tridecenyl group.
  • the linear alkynyl group is not particularly limited, and examples thereof include a 5-hexynyl group, a 7-octynyl group, a 9-decynyl group, and an 11-dodecynyl group.
  • Examples of the branched aliphatic hydrocarbon group include a branched alkyl group, a branched alkenyl group, and a branched alkynyl group.
  • Examples of the branched alkyl group include a branched primary alkyl group, a branched secondary alkyl group, and a branched tertiary alkyl group.
  • the branched primary alkyl group means a branched alkyl group having two hydrogen atoms bonded to a carbon atom having a free valence.
  • the branched secondary alkyl group means a branched alkyl group having one hydrogen atom bonded to a carbon atom having a free valence.
  • the branched tertiary alkyl group means a branched alkyl group having no hydrogen atom bonded to a carbon atom having a free valence.
  • the free valence refers to a substance that can form a bond with another free valence as described in the organic chemistry / biochemical nomenclature (above) (Revised 2nd edition, Nankodo, 1992).
  • the branched primary alkyl group is not particularly limited, and examples thereof include 2-ethylhexyl group, 2-butyloctyl group, 3,7-dimethyloctyl group, 2-hexyldecyl group, and 2-decyltetradecyl group. .
  • the branched secondary alkyl group is not particularly limited, and examples thereof include isopropyl group, 3-ethyl-1,5-dimethylnonyl group, and 1-propylheptyl group.
  • the branched tertiary alkyl group is not particularly limited, and examples thereof include a t-butyl group, a 1-butyl-1-ethylpentyl group, a 1-butyl-1-methylpentyl group, and a 1-ethyl-1-methylhexyl group.
  • the branched alkenyl group is not particularly limited, and examples thereof include a 2-methyl-2-propenyl group, a 3-methyl-3-butenyl group, and a 4-methyl-2-hexenyl group.
  • the branched alkynyl group is not particularly limited, and examples thereof include 1-methyl-2-propenyl group, 2-methyl-3-butenyl group, 4-methyl-2-hexenyl group and the like.
  • the alkoxy group is not particularly limited, but includes hexyloxy, decyloxy group, dodecyloxy group and the like.
  • the alkylcarbonyl group is not particularly limited, and examples thereof include a hexanoyl group, a decanoyl group, and a dodecanoyl group.
  • the alkoxycarbonyl group is not particularly limited, and examples thereof include a hexyloxycarbonyl group, a decyloxycarbonyl group, and a dodecyloxycarbonyl group.
  • the alkylthio group is not particularly limited, and examples thereof include a thiohexyl group, a thiodecyl group, and a thiododecyl group.
  • the above-mentioned chain aliphatic hydrocarbon group, alkoxy group, alkoxycarbonyl group, alkylcarbonyl group, and alkylthio group may further have a substituent.
  • the substituent is not particularly limited, and examples thereof include a chain aliphatic hydrocarbon group, an alkoxy group, an alkoxycarbonyl group, an alkylcarbonyl group, an alkylthio group, or a halogen atom.
  • the total number of carbon atoms and hetero atoms constituting the substituent is preferably 6 or less, more preferably 4 or less, and particularly preferably 2 or less.
  • R 1 and R 4 are each a monovalent organic group in order to prevent an increase in steric hindrance with adjacent naphthobisthiadiazole units and to maintain a high ⁇ stacking property to improve conversion efficiency.
  • R 2 and R 3 are preferably a hydrogen atom or a halogen atom.
  • the monovalent organic group is preferably a chain aliphatic hydrocarbon group which may have a substituent in order to improve the solubility of the copolymer. That is, a combination in which R 1 and R 4 are a chain-like aliphatic hydrocarbon group which may have a substituent, and R 2 and R 3 are a hydrogen atom or a halogen atom is preferable.
  • R 1 and R 4 are a chain aliphatic hydrocarbon group having 4 to 30 carbon atoms which may have a substituent, and R 2 and R 3 are a hydrogen atom or a halogen atom.
  • a combination is more preferred, wherein R 1 and R 4 are a linear alkyl group having 4 to 30 carbon atoms which may have a substituent, and R 2 and R 3 are a hydrogen atom or a halogen atom.
  • R 1 and R 4 are most preferably a linear alkyl group having 8 to 20 carbon atoms.
  • D1 represents a donor structural unit.
  • the donor structural unit is a structural unit having a small ionization potential and a strong tendency to donate electrons, and is an aromatic group which may have a substituent.
  • the donor structural unit D1 is a structural unit having a smaller ionization potential and electron affinity than the naphthobisthiadiazole unit in the formula (I). That is, in the present invention, the donor structural unit D1 is a structural unit having a higher HOMO energy level and a higher LUMO energy level than the naphthobisthiadiazole unit functioning as the acceptor structural unit in the formula (I). .
  • the HOMO energy level and LUMO energy level of the acceptor structural unit and the donor structural unit are measured by photoelectron yield spectroscopy (PYS), ultraviolet photoelectron spectroscopy (UPS), inverse photoelectron spectroscopy (IPES), and cyclic voltammetry. In addition to being able to estimate experimentally, it can be calculated by quantum chemical calculation such as molecular orbital method (MO method) and density half function method (DFT method). Note that, when calculating the HOMO energy level and the LUMO energy level of the acceptor structural unit and the donor structural unit, the terminal part of each structural unit is replaced with a hydrogen atom.
  • MO method molecular orbital method
  • DFT method density half function method
  • the donor structural unit D1 is preferably a structural unit represented by the following formula (IV) or the following formula (V).
  • Ar 5 and Ar 6 each independently represents an aromatic ring which may have a substituent.
  • the aromatic ring represents an aromatic hydrocarbon ring or an aromatic heterocyclic ring.
  • the aromatic hydrocarbon ring is not particularly limited, but is preferably an aromatic hydrocarbon ring having 6 to 30 carbon atoms constituting the ring.
  • monocyclic aromatic hydrocarbon rings such as benzene rings; condensed polycyclic rings such as naphthalene rings, indane rings, indene rings, phenanthrene rings, fluorene rings, anthracene rings, azulene rings, pyrene rings, and perylene rings
  • the aromatic heterocyclic ring is not particularly limited, but is preferably an aromatic heterocyclic ring having 3 to 30 atoms constituting the ring.
  • monocyclic aromatic heterocycles such as thiophene ring, furan ring, pyridine ring, pyrimidine ring, thiazole ring, oxazole ring, triazole ring; or thienothiophene ring, benzothiophene ring, benzofuran ring, benzothiazole
  • condensed polycyclic aromatic heterocycles such as a ring, a benzoxazole ring, a benzotriazole ring, and a thiadiazolopyridine ring.
  • a thiophene ring, a pyridine ring, a pyrimidine ring, a thiazole ring, a thiadiazole ring, an oxazole ring, an oxadiazole ring, or a triazole ring is preferable.
  • the substituent that the aromatic hydrocarbon ring and aromatic heterocyclic ring may have is not particularly limited, and examples thereof include a halogen atom or a monovalent organic group.
  • the carbon atom constituting the monovalent organic group is not particularly limited, but is preferably 1 or more and 30 or less.
  • Specific examples of the monovalent organic group include an aliphatic hydrocarbon group, an alkoxy group, an alkoxycarbonyl group, an alkylcarbonyl group, an alkylthio group, an aromatic hydrocarbon group, an aliphatic heterocyclic group, or an aromatic heterocyclic group. It is done.
  • X 3 and X 4 are each independently Q 1 (R 5 ) (R 6 ), Q 2 (R 7 ), sulfur atom (S), oxygen atom (O) or directly Represents a bond.
  • the other group of X 3 and X 4 is Q 1 (R 5 ) (R 6 ), Q 2 (R 7 ), a sulfur atom ( S) or an oxygen atom (O).
  • Q1 represents an atom selected from Group 14 elements of the periodic table, preferably a carbon atom (C), a silicon atom (Si), or a germanium atom (Ge).
  • Q 2 represents an atom selected from Group 15 elements of the periodic table, preferably nitrogen atom (N) or phosphorus atom (P).
  • R 5 and R 6 each represent a group bonded to Q 1 , and each independently represents a hydrogen atom, a halogen atom or a monovalent organic group.
  • R 5 and R 6 may be the same group or different groups.
  • R 7 is a group bonded to Q 2 and represents a hydrogen atom, a halogen atom or a monovalent organic group.
  • the monovalent organic group is not particularly limited, but is preferably an organic group having 1 to 30 carbon atoms.
  • preferred groups include an aliphatic hydrocarbon group which may have a substituent, an aromatic hydrocarbon group which may have a substituent, and an aliphatic complex which may have a substituent.
  • an alkylthio group which may have a substituent.
  • the aliphatic hydrocarbon group is not particularly limited, and examples thereof include a chain aliphatic hydrocarbon group or a cyclic aliphatic hydrocarbon group.
  • the chain aliphatic hydrocarbon group is not particularly limited, but preferred groups include the chain aliphatic hydrocarbon groups described in R 1 to R 4 .
  • the cyclic aliphatic hydrocarbon group is not particularly limited, but preferably has 4 or more carbon atoms, preferably 6 or more, and preferably 30 or less, and 20 or less. Is particularly preferred. Specific examples include a cyclobutyl group, a cyclohexyl group, a cyclooctyl group, and a cyclononyl group.
  • the aromatic hydrocarbon group is not particularly limited, and examples thereof include a monocyclic aromatic hydrocarbon group, a polycyclic aromatic hydrocarbon group, and a condensed polycyclic aromatic hydrocarbon group.
  • the aromatic hydrocarbon group has preferably 6 or more carbon atoms, on the other hand, preferably 30 or less, more preferably 20 or less, and particularly preferably 14 or less.
  • Specific examples include a phenyl group, a naphthyl group, an indanyl group, an indenyl group, a fluorenyl group, an anthracenyl group, and an azulenyl group. Of these, a phenyl group is preferred.
  • the aliphatic heterocyclic group is not particularly limited, but the number of atoms constituting the ring is preferably 3 or more, on the other hand, preferably 30 or less, more preferably 14 or less. It is particularly preferred that Specific examples include an oxetanyl group, a pyrrolidinyl group, a tetrahydrofuryl group, a tetrahydrothienyl group, a piperidinyl group, a tetrahydropyranyl group, and a tetrahydrothiopyranyl group.
  • the aromatic heterocyclic group is not particularly limited, and examples thereof include a monocyclic aromatic heterocyclic group, a polycyclic aromatic heterocyclic group, and a condensed polycyclic aromatic heterocyclic group.
  • the aromatic heterocyclic group is not particularly limited, but the number of atoms constituting the ring is preferably 3 or more, on the other hand, preferably 30 or less, more preferably 20 or less, It is especially preferable that it is 14 or less.
  • a thienyl group, a pyridyl group, a pyrimidyl group, a thiazolyl group, or an oxazolyl group can be given.
  • alkoxy group examples include the groups listed for R 1 to R 4 .
  • the halogen atom is not particularly limited, but includes a fluorine atom.
  • the substituent that the aliphatic hydrocarbon group, aromatic hydrocarbon group, aliphatic heterocyclic group, aromatic heterocyclic group, alkoxy group, alkoxycarbonyl group, alkylcarbonyl group, and alkylthio group may have Although there is no particular limitation, an aromatic hydrocarbon group, an aliphatic heterocyclic group, an aromatic heterocyclic group, an alkoxy group, an alkoxycarbonyl group, an alkylcarbonyl group, an alkylthio group, a halogen atom and the like can be mentioned.
  • Ar 7 and Ar 8 each independently represent an aromatic ring which may have a substituent.
  • the aromatic ring includes an aromatic hydrocarbon ring or an aromatic heterocyclic ring.
  • the substituent that the aromatic hydrocarbon ring, the aromatic heterocycle and the aromatic ring may have is not particularly limited.
  • the aromatic hydrocarbon ring and the aromatic mentioned in the above Ar 5 and Ar 6 A heterocyclic ring is mentioned, and a preferable ring is also the same.
  • X 5 and X 6 each independently represent a group represented by Q 3 (R 8 ).
  • Q 3 represents an atom selected from Group 14 elements of the periodic table, and examples thereof include a carbon atom (C), a silicon atom (Si), and a germanium atom (Ge).
  • R 8 represents a group bonded to Q 3 and represents a hydrogen atom, a halogen atom or a monovalent organic group.
  • the monovalent organic group is not particularly limited, but is preferably a group having 1 to 30 carbon atoms.
  • Specific examples of the monovalent organic group include an aliphatic hydrocarbon group which may have a substituent, an aromatic hydrocarbon group which may have a substituent, and a substituent.
  • Specific examples of these groups include the groups mentioned for the monovalent organic groups of R 5 to R 7 described above. Examples of the substituent that these groups may have include the substituents described for the monovalent organic groups of R 5 to R 7 .
  • the donor structural unit (D1) in the above formula (I) is preferably a donor structural unit represented by the above formula (V) in order to improve the conversion efficiency.
  • the donor structural unit represented by Formula (V) is the donor structural unit represented by Formula (III).
  • the donor structural unit represented by the formula (III) is preferably a donor structural unit represented by the following formula (VI).
  • X 12 and X 13 each independently represent an atom selected from Group 16 elements of the periodic table. Specific examples include an oxygen atom (O), a sulfur atom (S), a selenium atom (Se), or a tellurium atom (Te). Among these, X 12 and X 13 are each preferably a sulfur atom (S) since the copolymer exhibits good semiconductor properties.
  • R 9 and R 10 are each independently a hydrogen atom, a halogen atom or a monovalent organic group.
  • the monovalent organic group is not particularly limited, but is preferably a group having 1 to 30 carbon atoms.
  • Specific examples of the monovalent organic group include an aliphatic hydrocarbon group which may have a substituent, an alkoxy group which may have a substituent, and an alkoxycarbonyl group which may have a substituent.
  • these groups include the groups mentioned for the monovalent organic groups of R 5 to R 7 described above.
  • substituents that these groups may have include the substituents described for the monovalent organic groups of R 5 to R 7 .
  • R 9 and R 10 may be the same group or different groups.
  • R 9 and R 10 are each independently an aliphatic hydrocarbon group which may have a substituent and an aromatic hydrocarbon group which may have a substituent. Or it is preferable that it is an aromatic heterocyclic group which may have a substituent.
  • R 9 and R 10 are each independently preferably an aromatic heterocyclic group which may have a substituent.
  • the structural unit represented by the formula (III) is particularly preferably a structural unit represented by the following formula (VI).
  • R 9 and R 10 has the same meaning as R 9 and R 10 in formula (III).
  • R 9 and R 10 are each independently an aliphatic hydrocarbon group which may have a substituent and an aromatic hydrocarbon group which may have a substituent. Or it is preferable that it is an aromatic heterocyclic group which may have a substituent. Especially, in order to expand the conjugation property of an electron, it is preferable that R ⁇ 9 > and R ⁇ 10 > are each independently the aromatic heterocyclic group which may have a substituent.
  • the aromatic heterocyclic group is not particularly limited, but preferably, the aromatic heterocyclic group mentioned for R 5 to R 7 is used. Especially, in order to improve conversion efficiency, it is especially preferable that R 9 and R 10 are each a thienyl group which may have a substituent.
  • the substituent is not particularly limited, and examples thereof include monovalent organic groups. Specific examples include the substituents described for the monovalent organic groups R 5 to R 7 . Especially, it is preferable that a substituent is a C8-C20 aliphatic hydrocarbon group, and it is especially preferable that it is a C8-C20 alkyl group.
  • the copolymer according to the first aspect of the present invention has a repeating unit represented by the following formula (II) in addition to the repeating unit represented by the above formula (I).
  • Ar 3 and Ar 4 each independently represent an aromatic group which may have a substituent.
  • the aromatic group includes an aromatic hydrocarbon group or an aromatic heterocyclic group.
  • Ar 3 and Ar 4 are preferably groups having a high degree of rotational freedom with respect to adjacent structural units. If Ar 3 and Ar 4 are groups having a high degree of rotational freedom, the rigidity of the copolymer can be relaxed, so that the copolymers can be regularly arranged and the conversion efficiency can be improved.
  • Ar 3 and Ar 4 are preferably groups that do not have a three-dimensional structure, and specifically, are preferably aromatic groups in which the number of atoms constituting the aromatic ring is 14 or less, It is more preferable that the number of atoms constituting the aromatic ring is 10 or less, and in order to improve the solubility, the number of atoms constituting the aromatic ring is 8 or less. Is particularly preferred. On the other hand, the number of atoms constituting the aromatic ring is usually 3 or more, and is particularly preferably 5 or more in order to improve carrier mobility. As an aromatic hydrocarbon group, a phenyl group or a naphthyl group is mentioned, for example.
  • the aromatic heterocyclic group examples include thienyl group (thiophene), furanyl group (furan), thiazolyl group, thienothienyl group, thienofuranyl group, and thienophenyl.
  • the substituent that the aromatic group may have is not particularly limited, and examples thereof include a monovalent organic group.
  • the monovalent organic group is not particularly limited, but in order to improve the solubility of the copolymer, it is preferably a group having 6 or more carbon atoms, more preferably 10 or more, while adjacent structural units. In order to prevent the steric hindrance from increasing, it is preferably 20 or less, particularly preferably 16 or less.
  • the monovalent organic group is not particularly limited, and examples thereof include a chain-like aliphatic hydrocarbon group, an alkoxy group, an alkoxycarbonyl group, an alkylcarbonyl group, and an alkylthio group. Among these, a chain-like aliphatic group is exemplified. A group hydrocarbon group is preferred. These groups may further have a substituent.
  • the substituent is not particularly limited, and examples thereof include the groups mentioned for the monovalent organic group.
  • the monovalent organic group may have a plurality of substituents within a replaceable range. Moreover, you may have 2 or more types of substituents.
  • c and d each represent an integer of 0 or more and 2 or less.
  • c is 2
  • two groups represented by Ar 3 are linked.
  • the two groups represented by Ar 3 may be the same group or different groups.
  • d is 2
  • two groups represented by Ar 4 are linked.
  • the two groups represented by Ar 4 may be the same group or different groups. Also good.
  • both c and d are 1 in order to show the point that the solubility of the copolymer can be adjusted, the point that the crystallinity can be adjusted, and good semiconductor properties.
  • the repeating unit represented by the above formula (II) is a structural unit represented by the following formula (VII).
  • X 7 and X 8 each represent an atom selected from Group 16 elements of the periodic table, specifically, an oxygen atom (O), a sulfur atom (Si), a selenium atom (Se) or An example is a tellurium atom (Te). Especially, in order to improve a semiconductor characteristic, it is preferable that it is a sulfur atom (S).
  • R 11 to R 14 each independently represents a hydrogen atom, a halogen atom or a monovalent organic group.
  • the monovalent organic group is not particularly limited, but may have a chain-like aliphatic hydrocarbon group that may have a substituent, an alkoxy group that may have a substituent, or a substituent. Examples thereof include an alkoxycarbonyl group which may be substituted, an alkylcarbonyl group which may have a substituent, and an alkylthio group which may have a substituent. Specific examples of these groups include the groups listed for R 1 to R 4 .
  • R 11 to R 14 are preferably a hydrogen atom, a halogen atom, or a chain aliphatic hydrocarbon group. Furthermore, when A in Formula (VII) is a structural unit represented by Formula (VIII) described later or a structural unit represented by Formula (IX), each structural unit can be easily arranged on the same plane. 11 to R 14 are preferably a hydrogen atom, a halogen atom, or an aliphatic hydrocarbon group having 1 to 3 carbon atoms, and more preferably a hydrogen atom or an aliphatic hydrocarbon group having 1 to 3 carbon atoms. .
  • R 2 and R 3 in formula (I) are each a hydrogen atom, and R 1 and R 4 are monovalent organic groups
  • R 11 to R 14 are preferably a hydrogen atom, a halogen atom, or an aliphatic hydrocarbon group having 1 to 3 carbon atoms, and a hydrogen atom or an aliphatic carbon atom having 1 to 3 carbon atoms in order to maintain high rigidity. More preferably, it is a hydrogen group.
  • the aliphatic hydrocarbon group having 1 to 3 carbon atoms is preferably an alkyl group, more preferably a methyl group or an ethyl group, and still more preferably a methyl group.
  • R 11 and R 12 is a hydrogen atom
  • the other is an aliphatic hydrocarbon group having 1 to 3 carbon atoms
  • one of R 13 and R 14 is a hydrogen atom
  • the other is a carbon atom.
  • a combination in which an aliphatic hydrocarbon group having a number of 1 or more and 3 or less is more preferable, a combination in which R 11 and R 14 are an aliphatic hydrocarbon group having a carbon number of 1 to 3 and R 12 and R 13 are hydrogen atoms Is particularly preferred.
  • R 11 to R 14 are preferably a hydrogen atom or a halogen atom.
  • the halogen atom is preferably a fluorine atom.
  • D2 represents a donor structural unit in the same manner as D1 in the formula (I) and the formula (III). That is, D2 is a structural unit having a higher HOMO energy level and a higher LUMO energy level than the acceptor structural unit (A) in formula (II), and is an aromatic group that may have a substituent. is there.
  • the HOMO energy level and the LUMO energy level can be measured by the method described in the item of the donor structural unit D1.
  • the donor structural unit D2 is not particularly limited, but is preferably a structural unit represented by the above formula (IV) or a structural unit represented by the above formula (V), like the donor structural unit D1,
  • the structural unit represented by the above formula (V) is more preferred, and the structural unit represented by the above formula (VI) is particularly preferred.
  • D1 and D2 may be the same structural unit or different structural units, but in order to match the energy band gap of each unit included in the copolymer and maintain good charge separation D1 and D2 are preferably the same structural unit.
  • A represents an acceptor structural unit or a direct bond.
  • c and d in the formula (II) are 1 or 2, respectively.
  • the acceptor structural unit is a structural unit having a large electron affinity and a strong tendency to accept electrons, and examples thereof include an aromatic group which may have a substituent.
  • the acceptor structural unit A is a structural unit having a larger ionization potential and electron affinity than the donor structural unit D2.
  • the acceptor structural unit is a structural unit having a lower HOMO energy level and a lower LUMO energy level than the donor structural unit D2.
  • the HOMO energy level and the LUMO energy level can be measured by the method described in the item of the donor structural unit D1.
  • the acceptor structural unit is preferably a structural unit different from the naphthobisthiadiazole unit in the formula (I) from the viewpoint of photoelectric conversion efficiency.
  • the accepting structural unit (A) is a structural unit different from the naphthobisthiadiazole unit in the formula (I), so that the energy band gap and the absorption wavelength can be adjusted, so that the light can be efficiently reflected. This is because absorption is possible, and as a result, the conversion efficiency of the photoelectric conversion element is improved.
  • the acceptor structural unit (A) is preferably a structural unit represented by the following formula (VIII) or the following formula (IX).
  • Ar 9 is an aromatic hydrocarbon ring which may have a substituent, an aromatic heterocyclic ring which may have a substituent, or an aliphatic which may have a substituent. Represents a family heterocycle.
  • the aromatic hydrocarbon ring and the aromatic heterocyclic ring are not particularly limited, and examples thereof include the aromatic hydrocarbon ring and the aromatic heterocyclic ring mentioned above for Ar 5 and Ar 6 .
  • a thiophene ring, a pyridine ring, a pyrimidine ring, a thiazole ring, a thiadiazole ring, an oxazole ring, an oxadiazole ring, or a triazole ring is preferable.
  • the aliphatic heterocyclic ring is not particularly limited, but is preferably an aliphatic heterocyclic ring having 4 to 8 atoms constituting the ring. Specific examples include a pyrrolidine ring or a piperidine ring.
  • the substituent that the aromatic hydrocarbon ring, aromatic heterocyclic ring and aliphatic heterocyclic ring may have is not particularly limited, and examples thereof include monovalent organic groups.
  • the monovalent organic group is not particularly limited, and is an aliphatic hydrocarbon group, aromatic hydrocarbon group, aliphatic heterocyclic group, aromatic heterocyclic group, alkoxy group, alkoxycarbonyl group, alkylcarbonyl group, alkylthio group. Or a halogen atom is mentioned.
  • X 9 and X 10 each independently represent a nitrogen atom (N) or Q 4 (R 15 ).
  • Q 4 represents an atom selected from Group 14 elements of the periodic table, and among these, a carbon atom (C) is preferable.
  • R 15 represents a group bonded to Q 4 and represents a hydrogen atom, a halogen atom or a monovalent organic group.
  • the monovalent organic group is not particularly limited, and may have an aliphatic hydrocarbon group that may have a substituent, an aromatic hydrocarbon group that may have a substituent, or a substituent.
  • Specific examples include the groups described above for R 5 to R 7 .
  • Ar 10 may have an aromatic hydrocarbon ring which may have a substituent, an aromatic heterocyclic ring which may have a substituent, or a substituent. Represents an aliphatic heterocycle.
  • the aromatic hydrocarbon ring, aromatic heterocyclic ring, and aliphatic heterocyclic ring are not particularly limited. Specifically, the aromatic hydrocarbon ring, aromatic heterocyclic ring, and aliphatic heterocyclic ring mentioned in Ar 9 are Can be mentioned.
  • the substituent that the aromatic hydrocarbon ring, the aromatic heterocyclic ring and the aliphatic heterocyclic ring may have is not particularly limited, and specifically, the aromatic hydrocarbon ring exemplified in Ar 9 , Examples thereof include the same substituents as the substituents that the aromatic heterocyclic ring and the aliphatic heterocyclic ring may have.
  • X 11 represents an atom selected from Group 16 elements of the periodic table. Specifically, an oxygen atom (O), a sulfur atom (S), a selenium atom (Se) or a tellurium atom ( Te). Among these, X 11 is preferably a sulfur atom for improving semiconductor characteristics.
  • the acceptor structural unit (A) is preferably a structural unit represented by the formula (VIII), and is a structural unit represented by the following formula (X) in order to improve the conversion efficiency. It is particularly preferred.
  • R 16 and R 17 represent a hydrogen atom, a halogen atom or a monovalent organic group.
  • the monovalent organic group is not particularly limited, but may have an aliphatic hydrocarbon group that may have a substituent, an aromatic hydrocarbon group that may have a substituent, or a substituent. May be an aliphatic heterocyclic group, an aromatic heterocyclic group which may have a substituent, an alkoxy group which may have a substituent, an alkoxycarbonyl group which may have a substituent, a substituent And an alkylthio group which may have a substituent, or an alkylthio group which may have a substituent. Specific examples thereof include the groups listed for R 5 to R 7 .
  • R 16 and R 17 are preferably each independently a chain aliphatic hydrocarbon group having 1 to 20 carbon atoms or a halogen atom.
  • R 16 and R 17 are fluorine atoms in order to reinforce the packing between polymer main chains by the interaction between dipoles and to adjust the energy gap by the effect of electron withdrawing. .
  • D1 in the formula (I) is a repeating unit represented by the formula (VI)
  • a in the formula (II) is a repeating unit represented by the formula (X)
  • D2 is represented by the formula ( A combination which is a repeating unit represented by VI) is preferred.
  • the copolymer containing the repeating units represented by the formula (I) and the formula (II) according to the first aspect of the present invention is a repeating unit represented by the formula (I) and a repeating unit represented by the formula (II). May be included one by one, and either one or both may be included. Further, the copolymer according to the first aspect of the present invention is a repeating unit other than the repeating unit represented by the above formula (I) and the repeating unit represented by the above formula (II), as long as the effects of the present invention are not impaired. You may have a unit. Other repeating units are not particularly limited, and include the above-described acceptor constituent units and donor constituent units.
  • the arrangement state of the repeating unit represented by the above formula (I), the repeating unit represented by the above formula (II) and other repeating units is alternately, block Or any of random may be sufficient. That is, the copolymer according to the first aspect of the present invention may be an alternating copolymer, a block copolymer, or a random copolymer. In addition, a copolymer having an intermediate structure among these copolymers, for example, a random copolymer having a block property may be used. Also included are copolymers and dendrimers that are branched in the main chain and have three or more terminal portions.
  • a block copolymer or a random copolymer is preferable because it is easy to synthesize and regularity can be lowered, and the solubility of the copolymer is improved and the storage stability of the ink in which the copolymer is dissolved is improved. In view of this, a random copolymer is more preferable.
  • the terminal portion of the copolymer according to the first aspect of the present invention is not particularly limited, but is preferably end-gapped with an aromatic hydrocarbon ring, an aromatic heterocyclic ring, or a hydrogen atom.
  • the ratio (I / II) of the number of repeating units represented by the above formula (I) to the number of repeating units represented by the above formula (II) is not particularly limited. In order to maintain the energy band gap of the structural unit represented by formula (I), absorb in the long wavelength region, and adjust the solubility of the copolymer, it is preferably 0.1 or more, 0.2 or more More preferably, it is particularly preferably 0.3 or more.
  • the ratio of the number of repeating units represented by the above formula (I) to the number of repeating units represented by the above formula (II) adjusts the energy band gap of the polymer, widens the absorption region, and the main chain. Is preferably 9 or less, more preferably 4 or less, still more preferably 3 or less, in order to change the rotation barrier or planarity of the film and adjust the interaction between main chains. It is particularly preferred that
  • the copolymer according to the first aspect of the present invention comprises a repeating unit represented by the formula (I) and a repeating unit represented by the formula (II) and is constituted only by these repeating units. Or a polymer chain containing these repeating units and composed only of these repeating units.
  • a copolymer according to another embodiment of the present invention (a copolymer according to the second aspect) has a structural unit represented by the following formula (I).
  • X 1 and X 2 each independently represents an atom selected from Group 16 elements of the periodic table. Specific examples include an oxygen atom (O), a sulfur atom (S), a selenium atom (Se), or a tellurium atom (Te). Among these, X 1 and X 2 are each preferably a sulfur atom (S) in order to improve the semiconductor properties of the copolymer.
  • R 1 and R 4 are each independently a linear aliphatic hydrocarbon group having 9 or more carbon atoms, or the main chain having 9 or more carbon atoms, and the side chain carbon number.
  • the main chain in the branched aliphatic hydrocarbon group means a carbon chain having the maximum carbon number in the branched aliphatic hydrocarbon group.
  • the side chain means a carbon chain portion branched from the main chain.
  • the side chain carbon number of 5 or less means that when the branched aliphatic hydrocarbon group has a plurality of side chains, the carbon number of each side chain is 5 or less. .
  • R 1 and R 4 are linear aliphatic hydrocarbon groups having 9 or more carbon atoms or branched aliphatic hydrocarbon groups having 9 or more carbon atoms in the main chain, a highly soluble copolymer can be obtained. Further, in the active layer of the photoelectric conversion element, it is considered that the conversion efficiency of the photoelectric conversion element can be improved by the conjugated structure of the copolymer and the interaction between the main chains.
  • the linear aliphatic hydrocarbon group preferably has 10 or more carbon atoms, more preferably 12 or more, and more preferably 13 or more. It is particularly preferred.
  • the carbon number of the main chain of the branched aliphatic hydrocarbon group is more preferably 10 or more, further preferably 12 or more, and particularly preferably 13 or more.
  • the upper limit of the carbon number of the linear aliphatic hydrocarbon group and the main chain carbon number of the branched aliphatic hydrocarbon group is not particularly limited, but R 1 is maintained while maintaining high solubility.
  • the carbon number is It is preferably 25 or less, more preferably 20 or less, and particularly preferably 16 or less.
  • the copolymers tend to be regularly arranged in the active layer of the photoelectric conversion element, and high conversion efficiency tends to be easily obtained.
  • R 1 and / or R 4 is a branched aliphatic hydrocarbon group
  • Steric hindrance with the donor structural unit represented by D1 in the formula (I) adjacent to the ring is less likely to occur, and the planarity of the copolymer is easily obtained. Therefore, the copolymers can be easily arranged regularly in the active layer, and the conversion efficiency of the photoelectric conversion element can be improved.
  • the number of carbon atoms in the side chain is more preferably 4 or less, and even more preferably 2 or less.
  • linear aliphatic hydrocarbon group examples include a linear alkyl group, a linear alkenyl group, and a linear alkynyl group.
  • linear alkyl group examples include a decyl group, a dodecyl group, a tridecyl group, a tetradecyl group, a pentadecyl group, a hexadecyl group, and an icosyl group.
  • linear alkenyl group examples include a decenyl group, a dodecenyl group, a tridecenyl group, a tetradecenyl group, a pentadecenyl group, and a hexadecenyl group.
  • linear alkynyl group examples include a decynyl group, a dodecynyl group, a tridecynyl group, a tetradecynyl group, a pentadecynyl group, and a hexadecynyl group.
  • Examples of the branched aliphatic hydrocarbon group include a branched alkyl group, a branched alkenyl group, and a branched alkynyl group.
  • branched alkyl group examples include, for example, ethyldecyl group, ethyldodecyl group, ethylpentadecyl group, 2,6-dimethyldecyl group, 2,6-dimethyldodecyl group and the like.
  • Examples of the branched alkenyl group include, for example, ethyldecenyl group, ethyldodecenyl group, ethylpentadecenyl group, 2,6-dimethyldecenyl group, 2,6-dimethyldodecenyl group and the like.
  • Examples of the branched alkynyl group include an ethyldecynyl group, an ethyldodecynyl group, an ethylpentadecynyl group, a 2,6-dimethyldecynyl group, a 2,6-dimethyldodecynyl group, and the like.
  • the aliphatic hydrocarbon group is preferably a linear aliphatic hydrocarbon group in order to maintain the planarity of the polymer.
  • an aliphatic hydrocarbon group in which some or all of the hydrogen atoms are substituted with fluorine atoms is also regarded as an aliphatic hydrocarbon group.
  • R 2 and R 3 each independently represent a hydrogen atom or a halogen atom. If R 2 and R 3 are hydrogen atoms or halogen atoms, it is possible to suppress the occurrence of steric hindrance between the 5-membered ring having R 2 and the 5-membered ring having R 3 and the adjacent naphthobisthiadiazole unit.
  • the copolymers can be regularly arranged in the active layer of the photoelectric conversion element. Especially, it is preferable that both R ⁇ 2 > and R ⁇ 3 > are a hydrogen atom or a fluorine atom, and it is more preferable that both are hydrogen atoms.
  • D1 represents a donor structural unit.
  • the donor structural unit is a structural unit having a small ionization potential and a strong tendency to donate electrons, and is an aromatic group which may have a substituent.
  • the donor structural unit D1 is a structural unit having a smaller ionization potential and electron affinity than the naphthobisthiadiazole unit in the formula (I). That is, in the present invention, the donor structural unit D1 is a structural unit having a higher HOMO energy level and a higher LUMO energy level than the naphthobisthiadiazole unit in the formula (I).
  • the HOMO energy level and LUMO energy level of the naphthobisthiadiazole unit and donor structural unit are measured by photoelectron yield spectroscopy (PYS) measurement, ultraviolet photoelectron spectroscopy (UPS) measurement, inverse photoelectron spectroscopy (IPES) measurement, and cyclic voltammetry measurement. Etc., and can be estimated experimentally.
  • the HOMO energy level and LUMO energy level of the naphthobisthiadiazole unit and the donor constituent unit can be calculated by quantum chemical calculations such as a molecular orbital method (MO method) and a density half function method (DFT method). .
  • MO method molecular orbital method
  • DFT method density half function method
  • the donor structural unit D1 is preferably a structural unit represented by the following formula (IV) or the following formula (V).
  • Ar 5 and Ar 6 each independently represents an aromatic ring which may have a substituent.
  • the aromatic ring represents an aromatic hydrocarbon ring or an aromatic heterocyclic ring.
  • the number of carbon atoms constituting the aromatic hydrocarbon ring is preferably 6 or more and 30 or less.
  • monocyclic aromatic hydrocarbon such as benzene ring; condensed polycyclic such as naphthalene ring, indane ring, indene ring, phenanthrene ring, fluorene ring, anthracene ring, azulene ring, pyrene ring, perylene ring And aromatic hydrocarbons.
  • a benzene ring or a naphthalene ring is preferable.
  • the sum of the numbers of carbon atoms and heteroatoms constituting the aromatic heterocyclic ring is 3 or more and 30 or less.
  • the hetero atom include a nitrogen atom, an oxygen atom, and a sulfur atom.
  • Specific examples of the aromatic heterocycle include monocyclic aromatic heterocycles such as a thiophene ring, a furan ring, a pyridine ring, a pyrimidine ring, a thiazole ring, an oxazole ring, and a triazole ring; or a thienothiophene ring and a benzothiophene Examples thereof include condensed polycyclic aromatic heterocycles such as a ring, a benzofuran ring, a benzothiazole ring, a benzoxazole ring, a benzotriazole ring, and a thiadiazolopyridine ring.
  • a thiophene ring, a pyridine ring, a pyrimidine ring, a thiazole ring, a thiadiazole ring, an oxazole ring, an oxadiazole ring, or a triazole ring is preferable.
  • the substituent that the aromatic hydrocarbon ring and aromatic heterocyclic ring may have is not particularly limited, and examples thereof include a halogen atom or a monovalent organic group.
  • the number of carbon atoms in the monovalent organic group is not particularly limited, but is preferably 1 or more and 30 or less.
  • Specific examples of the monovalent organic group include an aliphatic hydrocarbon group, an alkoxy group, an alkoxycarbonyl group, an alkylcarbonyl group, an alkylthio group, an aromatic hydrocarbon group, an aliphatic heterocyclic group, or an aromatic heterocyclic group. It is done.
  • X 3 and X 4 are each independently Q 1 (R 5 ) (R 6 ), Q 2 (R 7 ), sulfur atom (S), oxygen atom (O) or directly Represents a bond.
  • the other group of X 3 and X 4 is Q 1 (R 5 ) (R 6 ), Q 2 (R 7 ), a sulfur atom ( S) or an oxygen atom (O).
  • Q 1 represents an atom selected from Group 14 elements of the periodic table, preferably a carbon atom (C), a silicon atom (Si), or a germanium atom (Ge).
  • Q 2 represents an atom selected from Group 15 elements of the periodic table, preferably a nitrogen atom (N).
  • R 5 and R 6 each represent a group bonded to Q 1 , and each independently represents a hydrogen atom, a halogen atom or a monovalent organic group. R 5 and R 6 may be the same group or different from each other.
  • R 7 is a group bonded to Q 2 and represents a hydrogen atom, a halogen atom or a monovalent organic group.
  • the monovalent organic group is not particularly limited, but is preferably a group having 1 to 30 carbon atoms.
  • Specific examples of the monovalent organic group include an aliphatic hydrocarbon group which may have a substituent, an aromatic hydrocarbon group which may have a substituent, and a substituent.
  • the aliphatic hydrocarbon group is not particularly limited, and examples thereof include a chain aliphatic hydrocarbon group or a cyclic aliphatic hydrocarbon group.
  • the number of carbon atoms of the chain aliphatic hydrocarbon group is preferably 4 or more in order to improve the solubility of the copolymer, more preferably 6 or more, while it is 30 or less in order to avoid steric hindrance. Preferably, it is preferably 20 or less.
  • chain aliphatic hydrocarbon group examples include a linear aliphatic hydrocarbon group and a branched aliphatic hydrocarbon group.
  • linear aliphatic hydrocarbon group examples include a linear alkyl group, a linear alkenyl group, and a linear alkynyl group.
  • the linear alkyl group is not particularly limited, and examples thereof include n-butyl group, n-hexyl group, n-heptyl group, n-octyl group, n-decyl group and n-dodecyl group.
  • the linear alkenyl group is not particularly limited, and examples thereof include a 5-hexenyl group, a 7-octynyl group, and an 11-dodecenyl group.
  • the linear alkynyl group is not particularly limited, and examples thereof include a 5-hexynyl group, a 7-octynyl group, a 9-decynyl group, and an 11-dodecynyl group.
  • Examples of the branched aliphatic hydrocarbon group include a branched alkyl group, a branched alkenyl group, and a branched alkynyl group.
  • Examples of the branched alkyl group include a branched primary alkyl group, a branched secondary alkyl group, and a branched tertiary alkyl group.
  • the branched primary alkyl group means a branched alkyl group having two hydrogen atoms bonded to a carbon atom having a free valence.
  • the branched secondary alkyl group means a branched alkyl group having one hydrogen atom bonded to a carbon atom having a free valence.
  • the branched tertiary alkyl group means a branched alkyl group having no hydrogen atom bonded to a carbon atom having a free valence.
  • the free valence refers to a substance that can form a bond with another free valence as described in the organic chemistry / biochemical nomenclature (above) (Revised 2nd edition, Nankodo, 1992).
  • the branched primary alkyl group is not particularly limited, and examples thereof include 2-ethylhexyl group, 2-butyloctyl group, 3,7-dimethyloctyl group, 2-hexyldecyl group, and 2-decyltetradecyl group. .
  • the branched secondary alkyl group is not particularly limited, and examples thereof include isopropyl group, 3-ethyl-1,5-dimethylnonyl group, and 1-propylheptyl group.
  • the branched tertiary alkyl group is not particularly limited, and examples thereof include a t-butyl group, a 1-butyl-1-ethylpentyl group, a 1-butyl-1-methylpentyl group, and a 1-ethyl-1-methylhexyl group.
  • the branched alkenyl group is not particularly limited, and examples thereof include a 2-methyl-2-propenyl group, a 3-methyl-3-butenyl group, and a 4-methyl-2-hexenyl group.
  • the branched alkynyl group is not particularly limited, and examples thereof include a 1-methyl-2-propynyl group, a 2-methyl-3-butynyl group, and a 4-methyl-2-hexynyl group.
  • the number of carbon atoms of the cyclic aliphatic hydrocarbon group is not particularly limited, but is preferably 4 or more, preferably 6 or more, on the other hand, preferably 30 or less, and 20 or less. Is particularly preferred. Specific examples include a cyclobutyl group, a cyclohexyl group, a cyclooctyl group, and a cyclononyl group.
  • the carbon number of the alkoxy group is not particularly limited, but is preferably 4 or more, preferably 6 or more, on the other hand, preferably 30 or less, particularly preferably 20 or less. Specific examples include hexyloxy, decyloxy group, dodecyloxy group and the like.
  • the number of carbon atoms of the alkylcarbonyl group is not particularly limited, but is preferably 4 or more, preferably 6 or more, on the other hand, preferably 30 or less, particularly preferably 20 or less. Specific examples include a hexanoyl group, a decanoyl group, and a dodecanoyl group.
  • the number of carbon atoms of the alkoxycarbonyl group is not particularly limited, but is preferably 4 or more, preferably 6 or more, on the other hand, preferably 30 or less, particularly preferably 20 or less. Specific examples include a hexyloxycarbonyl group, a decyloxycarbonyl group, a dodecyloxycarbonyl group, and the like.
  • the number of carbon atoms of the alkylthio group is not particularly limited, but is preferably 4 or more, preferably 6 or more, on the other hand, preferably 30 or less, particularly preferably 20 or less. Specific examples include a thiohexyl group, a thiodecyl group, a thiododecyl group, and the like.
  • the aromatic hydrocarbon group is not particularly limited, and examples thereof include a monocyclic aromatic hydrocarbon group, a polycyclic aromatic hydrocarbon group, and a condensed polycyclic aromatic hydrocarbon group.
  • the number of carbon atoms of the aromatic hydrocarbon group is not particularly limited, but is preferably 6 or more, preferably 30 or less, more preferably 20 or less, and 14 or less. Particularly preferred. Specific examples include a phenyl group, a naphthyl group, an indanyl group, an indenyl group, a fluorenyl group, an anthracenyl group, and an azulenyl group.
  • the aliphatic heterocyclic group is not particularly limited, but the number of atoms constituting the ring is preferably 3 or more, on the other hand, preferably 30 or less, more preferably 14 or less. It is particularly preferred that The atoms constituting the ring are not particularly limited, and examples thereof include a carbon atom, a nitrogen atom, an oxygen atom, and a sulfur atom. Specific examples include an oxetanyl group, a pyrrolidinyl group, a tetrahydrofuryl group, a tetrahydrothienyl group, a piperidinyl group, a tetrahydropyranyl group, and a tetrahydrothiopyranyl group.
  • the aromatic heterocyclic group is not particularly limited, and examples thereof include a monocyclic aromatic heterocyclic group, a polycyclic aromatic heterocyclic group, and a condensed polycyclic aromatic heterocyclic group.
  • the aromatic heterocyclic group is not particularly limited, but the number of atoms constituting the ring is preferably 3 or more, on the other hand, preferably 30 or less, more preferably 20 or less, It is especially preferable that it is 14 or less.
  • the atoms constituting the ring are not particularly limited, and examples thereof include a carbon atom, a nitrogen atom, an oxygen atom, and a sulfur atom.
  • a thienyl group, a pyridyl group, a pyrimidyl group, a thiazolyl group, or an oxazolyl group can be given.
  • the halogen atom is not particularly limited, but includes a fluorine atom.
  • an aliphatic hydrocarbon group, an alkoxy group, an alkoxycarbonyl group, an alkylcarbonyl group, and an alkylthio group, an aromatic hydrocarbon group, an aliphatic heterocyclic group, and an aromatic heterocyclic group may have Are not particularly limited, for example, aliphatic hydrocarbon groups, alkoxy groups, alkoxycarbonyl groups, alkylcarbonyl groups, and alkylthio groups, aromatic hydrocarbon groups, aliphatic heterocyclic groups, aromatic heterocyclic groups and halogens. An atom etc. are mentioned.
  • Ar 7 and Ar 8 each independently represent an aromatic ring which may have a substituent.
  • the aromatic ring includes an aromatic hydrocarbon ring or an aromatic heterocyclic ring.
  • the aromatic hydrocarbon ring and the aromatic heterocyclic ring are not particularly limited, and examples thereof include the aromatic hydrocarbon ring and the aromatic heterocyclic ring mentioned above for Ar 5 and Ar 6 , and the preferred rings are also the same. .
  • X 5 and X 6 each independently represent a group represented by Q 3 (R 8 ).
  • Q 3 represents an atom selected from Group 14 elements of the periodic table, and examples thereof include a carbon atom (C), a silicon atom (Si), and a germanium atom (Ge).
  • R 8 represents a group bonded to Q 3 and represents a hydrogen atom, a halogen atom or a monovalent organic group.
  • the monovalent organic group is not particularly limited, but is preferably an organic group having 1 to 30 carbon atoms.
  • Specific examples of the monovalent organic group include an aliphatic hydrocarbon group which may have a substituent, an alkoxy group which may have a substituent, and an alkoxycarbonyl group which may have a substituent.
  • Specific examples of these groups include the groups mentioned for the monovalent organic groups of R 5 to R 7 described above. Examples of the substituent that these groups may have include the substituents described for the monovalent organic groups of R 5 to R 7 .
  • the donor structural unit (D1) in the above formula (I) is preferably a donor structural unit represented by the above formula (V) in order to improve the conversion efficiency.
  • the donor structural unit represented by the formula (V) is a donor structural unit represented by the following formula (III).
  • X 12 and X 13 each independently represent an atom selected from Group 16 elements of the periodic table. Specific examples include an oxygen atom (O), a sulfur atom (S), a selenium atom (Se), or a tellurium atom (Te). Among these, X 12 and X 13 are each preferably a sulfur atom (S) since the copolymer exhibits good semiconductor properties.
  • R 9 and R 10 are each independently a hydrogen atom, a halogen atom or a monovalent organic group.
  • the monovalent organic group is not particularly limited, but is preferably an organic group having 1 to 30 carbon atoms.
  • Specific examples of the monovalent organic group include an aliphatic hydrocarbon group which may have a substituent, an alkoxy group which may have a substituent, and an alkoxycarbonyl group which may have a substituent.
  • these groups include the groups mentioned for the monovalent organic groups of R 5 to R 7 described above.
  • substituents that these groups may have include the substituents described for the monovalent organic groups of R 5 to R 7 .
  • R 9 and R 10 may be the same group or different groups.
  • R 9 and R 10 are each independently an aliphatic hydrocarbon group which may have a substituent and an aromatic hydrocarbon group which may have a substituent. Or it is preferable that it is an aromatic heterocyclic group which may have a substituent.
  • R 9 and R 10 are each independently preferably an aromatic heterocyclic group which may have a substituent.
  • the structural unit represented by the formula (III) is particularly preferably a structural unit represented by the following formula (XV).
  • X 12 and X 13 has the same meaning as X 12 and X 13 in formula (III).
  • X 14 and X 15 each independently represent an atom selected from Group 16 elements of the Periodic Table. That is, X 12 to X 15 each independently represent an atom selected from Group 16 elements of the periodic table. Specific examples of the atom selected from Group 16 elements of the periodic table include an oxygen atom (O), a sulfur atom (S), a selenium atom (Se), and a tellurium atom (Te).
  • X 12 to X 15 are each preferably a sulfur atom (S) since the copolymer exhibits good semiconductor properties.
  • R 20 to R 25 each represents a hydrogen atom, a halogen atom or a monovalent organic group.
  • the monovalent organic group is not particularly limited, but is preferably an organic group having 1 to 30 carbon atoms.
  • the monovalent organic group include a chain aliphatic hydrocarbon group having 1 to 30 carbon atoms which may have a substituent, and 1 to 30 carbon atoms which may have a substituent. It has the following alkoxy group, an alkoxycarbonyl group having 1 to 30 carbon atoms which may have a substituent, an alkylcarbonyl group having 1 to 30 carbon atoms which may have a substituent, or a substituent. Examples thereof include an alkylthio group having 1 to 30 carbon atoms which may be used. Specific examples of these groups include the chain aliphatic hydrocarbon groups, alkoxy groups, alkoxycarbonyl groups, alkylcarbonyl groups, and alkylthio groups mentioned above for R 5 to R 7 .
  • one of R 20 to R 22 is preferably a monovalent organic group, and the remaining two groups are preferably hydrogen atoms.
  • one of R 23 to R 25 is preferably a monovalent organic group, and the remaining two groups are preferably hydrogen atoms.
  • R 20 is preferably a monovalent organic group
  • R 21 and R 22 are preferably hydrogen atoms.
  • it is considered preferable to reduce the steric hindrance in the copolymer and maintain the planarity and the conjugated structure in order to obtain high conversion efficiency.
  • it is preferable that there are no adjacent structural units or substituents of adjacent structural units in the extending direction of R 1 and R 4 in formula (I).
  • the extending direction of the R 22, 5-membered ring adjacent to the naphthoquinone jumping steel thiadiazole units, or to the 5-membered ring has groups (R 1 or R 4) are present, R 22 is these and steric hindrance It is preferably a hydrogen atom that is difficult to cause.
  • R 20 is bonded to the 5-position of the ring
  • R 21 is bonded to the 4-position of the ring.
  • the distance between the 2-position and 5-position of the ring is It is longer than between 2nd and 4th. Therefore, when R 20 is a monovalent organic group and R 21 is a hydrogen atom, steric hindrance with the 5-membered ring adjacent to the naphthobisthiadiazole unit can be further reduced.
  • R 23 is a monovalent organic group
  • R 24 and R 25 are hydrogen atoms.
  • R 20 and R 23 are preferably branched aliphatic hydrocarbon groups for the following reasons.
  • the groups represented by R 1 and R 4 in formula (I) are limited in improving the solubility of the copolymer due to the limitation in the number of carbon atoms and the shape thereof.
  • R 20 and R 23 are branched aliphatic hydrocarbon groups, the planarity of the copolymer is maintained because steric hindrance is unlikely to occur with other rings and substituents for the above reasons. In addition, it is considered that the solubility can be improved.
  • R 20 and R 23 are branched aliphatic hydrocarbon groups
  • the solubility of the aliphatic hydrocarbon group is improved in order to improve the solubility and the interaction between the conjugated structure and the main chain.
  • the number of carbon atoms is preferably 7 or more, more preferably 12 or more, more preferably 14 or more, on the other hand, preferably 24 or less, more preferably 20 or less, 18 The following is more preferable, and 16 is most preferable.
  • the copolymer according to the second aspect of the present invention may have a repeating unit other than the repeating unit represented by the formula (I) as long as the effects of the present invention are not impaired.
  • Other repeating units are not particularly limited, and include the above-described acceptor constituent units and donor constituent units.
  • the ratio of the number of repeating units represented by the formula (I) to the total number of repeating units constituting the copolymer according to the present invention is not particularly limited, but is usually 0.02 or more, preferably 0.1 or more, more preferably Is 0.25 or more, more preferably 0.5 or more, still more preferably 0.7 or more, and the upper limit is 1.
  • the terminal portion of the copolymer according to the second aspect of the present invention is not particularly limited, but is preferably end-gapped with an aromatic hydrocarbon ring, an aromatic heterocyclic ring, or a hydrogen atom.
  • the polystyrene-converted weight average molecular weight (Mw) of the copolymer according to the first aspect of the present invention is not particularly limited, but is 10,000 or more in order to obtain a longer wavelength and high carrier mobility. Preferably, it is more preferably 30,000 or more, particularly preferably 40,000 or more. On the other hand, in order to ensure adequate solubility, it is preferably 300,000 or less, and 250,000 or less. More preferably, it is particularly preferably 245,000 or less.
  • the weight average molecular weight is preferably in this range from the viewpoint of increasing the light absorption wavelength, from the viewpoint of realizing high absorbance, from the viewpoint of realizing high carrier movement, and from the viewpoint of solubility in an organic solvent.
  • the polystyrene-converted weight average molecular weight (Mw) of the copolymer according to the second aspect of the present invention is not particularly limited, but may be 10,000 or more in order to obtain a longer wavelength and higher carrier mobility. Preferably, it is more preferably 100,000 or more, and particularly preferably 150,000 or more. On the other hand, in order to ensure adequate solubility, it is preferably 450,000 or less, and is 400,000 or less. More preferably, it is more preferably 380,000 or less.
  • the weight average molecular weight is preferably in this range from the viewpoint of increasing the light absorption wavelength, from the viewpoint of realizing high absorbance, from the viewpoint of realizing high carrier movement, and from the viewpoint of solubility in an organic solvent.
  • the polystyrene-equivalent number average molecular weight (Mn) of the copolymer according to one embodiment of the present invention is not particularly limited, but is preferably 5,000 or more in order to obtain a longer wavelength and high carrier mobility. It is more preferably 10,000 or more, particularly preferably 15,000 or more. On the other hand, in order to ensure adequate solubility, it is preferably 100,000 or less, and 80,000 or less. Is more preferable, and 60,000 or less is particularly preferable.
  • the molecular weight distribution (PDI, (weight average molecular weight / number average molecular weight (Mw / Mn))) of the copolymer according to one embodiment of the present invention is usually 1.0 or more, preferably 1.1 or more. Is more preferably 2 or more, and particularly preferably 1.3 or more. On the other hand, the molecular weight distribution of the copolymer according to the present invention is usually 50.0 or less, preferably 20.0 or less, more preferably 15.0 or less, and particularly preferably 10.0 or less. .
  • the polystyrene equivalent weight average molecular weight, number average molecular weight, and molecular weight distribution of the copolymer according to one embodiment of the present invention can be determined by gel permeation chromatography (GPC). Specifically, two Polymer Laboratories GPC columns (PLgel MIXED-B 10 ⁇ m, inner diameter 7.5 mm, length 30 cm) are connected in series as a column, and LC-10AT (manufactured by Shimadzu Corporation) as a pump, as an oven It can be measured by using CTO-10A (manufactured by Shimadzu Corporation), a differential refractive index detector (manufactured by Shimadzu Corporation: RID-10A), and a UV-vis detector (manufactured by Shimadzu Corporation: SPD-10A).
  • GPC gel permeation chromatography
  • a copolymer (1 mg) to be measured is dissolved in chloroform (200 mg), and 1 ⁇ L of the obtained solution is injected into a column. Measurement is carried out at a flow rate of 1.0 mL / min at 80 ° C. using o-dichlorobenzene as a mobile phase. LC-Solution (manufactured by Shimadzu Corporation) is used for the analysis.
  • the solubility of the copolymer according to one embodiment of the present invention is not particularly limited, but the solubility in chlorobenzene at 25 ° C. is usually 0.1% by mass or more, preferably 0.5% by mass or more, more preferably 1% by mass. On the other hand, it is usually 30% by mass or less, preferably 20% by mass. High solubility is preferable because a thicker film can be formed by coating.
  • the copolymer according to one embodiment of the present invention preferably has an appropriate interaction between molecules.
  • the interaction between molecules means that the distance between polymer chains is shortened by an interaction such as ⁇ - ⁇ stacking between molecules. The stronger the interaction, the higher the mobility and / or crystallinity, and the more suitable the semiconductor material is. That is, in a copolymer that interacts between molecules, electron transfer between molecules is likely to occur.
  • a p-type semiconductor compound in the active layer is used. It is considered that holes generated at the interface between the n-type semiconductor compound and the n-type semiconductor compound can be efficiently transported to the electrode (anode).
  • crystallinity measuring method is X-ray diffraction (XRD).
  • XRD X-ray diffraction
  • having crystallinity means that an X-ray diffraction spectrum obtained by XRD measurement has a diffraction peak.
  • Having crystallinity is considered to mean that it has a laminated structure in which molecules are arranged, and is preferable in that the active layer described later tends to be thickened.
  • XRD measurement can be performed based on a method described in a known document (X-ray crystal analysis guide (applied physics selection book 4)).
  • the hole mobility (sometimes referred to as hole mobility) of the copolymer according to one embodiment of the present invention is usually 1.0 ⁇ 10 ⁇ 7 cm 2 / Vs or more, preferably 1.0 ⁇ 10 ⁇ 6 cm 2. / Vs or more, more preferably 1.0 ⁇ 10 ⁇ 5 cm 2 / Vs or more, and particularly preferably 1.0 ⁇ 10 ⁇ 4 cm 2 / Vs or more.
  • the hole mobility of the copolymer according to the present invention is usually 1.0 ⁇ 10 4 cm 2 / Vs or less, preferably 1.0 ⁇ 10 3 cm 2 / Vs or less, and more preferably 1.0 ⁇ 10 6.
  • the copolymer according to the present invention is suitably used as a semiconductor material. Further, in order to obtain high conversion efficiency in the photoelectric conversion element, it is important to balance the mobility of the n-type semiconductor compound and the mobility of the p-type semiconductor compound.
  • the copolymer according to the present invention is used as a p-type semiconductor compound in a photoelectric conversion element, from the viewpoint of bringing the hole mobility of the copolymer according to the present invention close to the electron mobility of the n-type semiconductor compound, the copolymer according to the present invention is positive.
  • the hole mobility is preferably within this range.
  • As a method for measuring the hole mobility there is an FET method.
  • the FET method can be performed by a method described in a known document (Japanese Patent Application Laid-Open No. 2010-045186).
  • the copolymer according to one embodiment of the present invention preferably has high storage stability in a solution state.
  • High storage stability means that it is difficult to aggregate when made into a solution. More specifically, 2 mg of the copolymer according to the present invention was placed in a 2 mL screw vial, dissolved in o-xylene to a concentration of 1.5% by mass, and then cooled to room temperature. Then, it is preferable not to gel for 5 minutes or more, and it is more preferable not to gel for 1 hour or more.
  • the impurities in the copolymer according to one embodiment of the present invention are preferably as few as possible.
  • a copolymer having a repeating unit represented by the formula (1) when synthesized, when a transition metal catalyst such as palladium or copper is used, these may remain in the copolymer. If these metal catalysts remain in the copolymer, exciton traps due to the heavy atom effect of the transition metal occur and charge transfer is inhibited. As a result, when the copolymer according to the present invention is used in a photoelectric conversion element, There is a risk of reducing the conversion efficiency.
  • the concentration of the transition metal catalyst is usually 1000 ppm or less, preferably 500 pm or less, more preferably 100 ppm or less per 1 g of copolymer. On the other hand, it is usually larger than 0 ppm and may be 1 ppm or more, or 3 ppm or more.
  • the impurities contained in the copolymer can be measured by, for example, ICP mass spectrometry.
  • ICP mass spectrometry can be carried out by a method described in a known document (“Plasma ion source mass spectrometry” (Academic Publishing Center)). Specifically, for palladium atoms and copper atoms, after the sample is wet-decomposed, Pd and Sn in the decomposition solution are obtained by a calibration curve method using an ICP mass spectrometer (ICP mass spectrometer 7500ce type manufactured by Agilent Technologies). It can be quantified.
  • the method for producing the copolymer according to the first aspect of the present invention is not particularly limited.
  • the compound represented by the following formula (XI), the compound represented by the following formula (XII), and the following formula ( XIII) and a compound represented by the following formula (XIV) can be produced by a polymerization reaction.
  • X 1 , X 2 , R 1 , R 2 , R 3 and R 4 in the above formula (XI) are respectively X 1 , X 2 , in the above formula (I) described in the copolymer according to the first embodiment, Synonymous with R 1 , R 2 , R 3 and R 4 .
  • a in the above formula (XII), Ar 3, Ar 4, c and d are as defined A, Ar 3, Ar 4, c and d of the above formula (II).
  • D1 in the above formula (XIII) has the same meaning as D1 in the above formula (I).
  • D2 in the above formula (XIV) has the same meaning as D2 in the above formula (II).
  • a copolymer is obtained by a polymerization reaction of the compound represented by the above formula (XI), the compound represented by the above formula (XII), and the compound represented by the above formula (XIII). Can be manufactured.
  • Y 1 to Y 8 in the formulas (XI) to (XIV) are active groups.
  • the active group is not particularly limited and may be arbitrarily selected depending on the type of synthesis reaction.
  • Specific active groups include, for example, halogen atoms, alkylstannyl groups, alkylsulfo groups, arylsulfo groups, arylalkylsulfo groups, boric acid ester residues, sulfonium methyl groups, phosphonium methyl groups, phosphonate methyl groups, mono Examples thereof include a halogenated methyl group, a boric acid residue (—B (OH) 2 ), a formyl group, an alkenyl group, and an alkynyl group.
  • the copolymerization reaction is not particularly limited as long as the copolymer of the present invention is obtained.
  • a Suzuki-Miyaura cross-coupling reaction method a Stille coupling reaction method, a Yamamoto coupling reaction method, a Grignard reaction method, a Heckard reaction method, and the like.
  • Examples include a reaction method, a Sonogashira reaction method, a reaction method using an oxidizing agent such as FeCl 3 , a method using an electrochemical oxidation reaction, a reaction method by decomposition of an intermediate compound having an appropriate leaving group, and the like.
  • the Suzuki-Miyaura coupling reaction method, Stille coupling reaction method, Yamamoto coupling reaction method, and Grignard reaction method are preferable in terms of easy structure control.
  • the Suzuki-Miyaura cross-coupling reaction method, the Stille coupling reaction method, and the Grignard reaction method are preferable from the viewpoint of easy availability of materials and easy reaction operation.
  • compounds represented by the above formulas (XI) to (XIV) are produced by a known Stille coupling reaction using Y 1 to Y 4 as an alkylstannyl group and Y 5 to Y 8 as a halogen atom.
  • Y 1 to Y 4 as boric acid ester residues or boric acid residues
  • Y 5 to Y 8 as halogen atoms
  • a known Suzuki-Miyaura coupling reaction and Y 1 to Y 4 as silyl
  • Examples of the group include a method of producing Y 5 to Y 8 as a halogen atom by a Hiyama coupling reaction.
  • a catalyst may be used as necessary.
  • the copolymer obtained by the polymerization reaction It is preferable to end-treat the copolymer obtained by the polymerization reaction.
  • the terminal treatment of the copolymer By performing the terminal treatment of the copolymer, the residual amount of the terminal residues (Y 1 to Y 8 described above) can be reduced.
  • the amount of active groups such as halogen atoms and alkylstannyl groups in the resulting copolymer can be reduced, so that the conversion efficiency and durability of the photoelectric conversion element are improved. Can do.
  • the method for producing the compounds represented by the above formulas (XI) to (XIV) is not particularly limited and can be produced by a known method.
  • a method for producing the compound represented by the above formula (XI) it can be produced by a known method of JP-A-2014-009163.
  • Examples of the method for producing the compounds represented by the above formulas (XI) to (XIV) include Polymer, 1990, 31, 1379-1383, Adv. Mater. , 2007, 19, 4160-4165, Macromolecules, 2010, 43, 6936-6938, Adv. Mater. , 2011, 23, 3315-3319, Angew. Chem. Int. Ed. 2012, 51, 2068-2071, J. MoI. Mater. Chem. 2011, 21, 3895-3902, J. MoI. Am. Chem. Soc. , 2011, 133, 10062-10065 or Chem. Commun. , 2011, 47, 4920, WO2013 / 180243, and the like.
  • the method for producing the copolymer according to the second aspect of the present invention is not particularly limited, and for example, by a polymerization reaction between a compound represented by the following formula (XI) and a compound represented by the following formula (XIII). Can be manufactured.
  • X 1 , X 2 , R 1 , R 2 , R 3 and R 4 in the above formula (XI) are respectively X 1 , X 2 , R in the formula (I) described in the copolymer according to the second embodiment. 1, the same meaning as R 2, R 3 and R 4.
  • D1 in the above formula (XIII) has the same meaning as D1 in the above formula (I).
  • Y 1 and Y 2 in formula (XI) and Y 5 and Y 6 in formula (XIII) each represent an active group.
  • the active group is not particularly limited and may be arbitrarily selected depending on the type of synthesis reaction.
  • Specific active groups include, for example, halogen atoms, alkylstannyl groups, alkylsulfo groups, arylsulfo groups, arylalkylsulfo groups, boric acid ester residues, sulfonium methyl groups, phosphonium methyl groups, phosphonate methyl groups, mono Examples thereof include a halogenated methyl group, a boric acid residue (—B (OH) 2 ), a formyl group, an alkenyl group, and an alkynyl group.
  • the polymerization reaction of the copolymer is not particularly limited as long as the copolymer of the present invention is obtained, and the method described in the method for producing a copolymer of the first aspect can be used.
  • Y 1 and Y 2 are alkylstannyl groups
  • Y 5 and Y 6 are halogen atoms
  • the compounds represented by the above formulas (XI) and (XIII) are produced by a known Stille coupling reaction.
  • Y 1 and Y 2 as boric acid ester residues or boric acid residues
  • Y 5 and Y 6 as halogen atoms
  • Y 1 and Y 2 as silyl Examples of the group include a method in which Y 5 and Y 6 are used as halogen atoms and are produced by a Hiyama coupling reaction.
  • a catalyst may be used as necessary.
  • the copolymer obtained by the polymerization reaction It is preferable to end-treat the copolymer obtained by the polymerization reaction.
  • the terminal treatment of the copolymer By performing the terminal treatment of the copolymer, the residual amount of the terminal residues of the copolymer (the above-mentioned Y 1 to Y 2 and Y 5 to Y 6 ) can be reduced.
  • the amount of active groups such as halogen atoms and alkylstannyl groups in the resulting copolymer can be reduced, so that the conversion efficiency and durability of the photoelectric conversion element are improved. Can do.
  • the method for producing the compounds represented by the above formulas (XI) and (XIII) is not particularly limited, and can be produced by a known method described in the method for producing a copolymer of the first aspect.
  • the copolymer according to the present invention can be used as a material for a photoelectric conversion element.
  • the active layer of the photoelectric conversion element contains the copolymer according to the present invention, so that it has high conversion efficiency and high exposure stability. It can be a photoelectric conversion element.
  • an embodiment of a photoelectric conversion element using the copolymer according to the present invention will be described.
  • the photoelectric conversion element according to the present invention has at least a base material, a pair of electrodes formed on the base material, and an active layer formed between the pair of electrodes.
  • a photoelectric conversion element according to the present invention will be described with reference to FIG.
  • one embodiment of the photoelectric conversion element according to the present invention includes a lower electrode 101, a lower buffer layer 102, an active layer 103, an upper buffer layer 104, and an upper electrode on a substrate 106.
  • 105 have a layer structure in which are sequentially formed.
  • the lower electrode means an electrode laminated on the substrate 106 side
  • the upper electrode means an electrode laminated above the lower electrode when the substrate 106 is used as the bottom.
  • the lower electrode 101 and the upper electrode 105 may be collectively referred to as a pair of electrodes.
  • the lower buffer layer 102 and the upper buffer layer 104 are not essential components, and may be provided arbitrarily, and may include only one of the lower buffer layer 102 and the upper buffer layer 104.
  • the photoelectric conversion element may optionally have another layer other than the above. Hereinafter, each component of the photoelectric conversion element will be described.
  • the photoelectric conversion element 107 is usually formed on a base material 106 that serves as a support.
  • a base material 106 that serves as a support.
  • the material of the substrate 106 includes inorganic materials such as quartz, glass, sapphire, and titania, and flexible substrates.
  • the flexible substrate include, but are not limited to, polyethylene terephthalate, polyethylene naphthalate, polyethersulfone, polyimide, nylon, polystyrene, polyvinyl alcohol, ethylene vinyl alcohol copolymer, fluororesin film, vinyl chloride.
  • polyolefin such as polyethylene
  • organic material such as cellulose, polyvinylidene chloride, aramid, polyphenylene sulfide, polyurethane, polycarbonate, polyarylate, polynorbornene, or epoxy resin
  • paper material such as paper or synthetic paper
  • stainless steel Examples thereof include composite materials such as a metal foil such as titanium or aluminum whose surface is coated or laminated in order to impart insulation.
  • the glass include soda glass, blue plate glass, and non-alkali glass. Among these, alkali-free glass is preferable in that there are few eluted ions from the glass.
  • the pair of electrodes (101, 106) has a function of collecting holes and electrons generated by light absorption. Accordingly, the pair of electrodes includes an electrode suitable for collecting holes (hereinafter sometimes referred to as an anode) and an electrode suitable for collecting electrons (hereinafter sometimes referred to as a cathode). It is preferable to use it.
  • One of the pair of electrodes preferably has translucency, and both electrodes may have translucency. Note that having translucency means that sunlight passes through 40% or more. Further, the solar light transmittance of the transparent electrode is preferably 70% or more in order to allow light to reach the active layer through the transparent electrode. The light transmittance can be measured with a normal spectrophotometer.
  • the anode is an electrode having a function of collecting holes generated by the active layer 3 absorbing light, and the cathode has a function of collecting electrons generated in the active layer 3. Electrode.
  • the upper electrode 105 is preferably a cathode.
  • the upper electrode 105 may be an anode.
  • the material for forming the lower electrode 101 and the upper electrode 105 is not particularly limited, and nickel oxide, tin oxide, indium oxide, indium tin oxide (ITO), indium-zirconium oxide (IZO), titanium oxide, indium oxide, or zinc oxide.
  • Conductive metal oxides such as gold, platinum, silver, copper, iron, tin, zinc, aluminum, indium, chromium, lithium, sodium, potassium, cesium, calcium, magnesium or cobalt, or alloys thereof .
  • the lower electrode 101 when the lower electrode 101 is an anode and the upper electrode 105 is a cathode, it is preferable to use a material having a work function larger than that of the upper electrode 105 for the lower electrode 101.
  • the lower electrode 101 when the lower electrode 101 is a cathode and the upper electrode 105 is an anode, the lower electrode 101 is preferably formed of a material having a work function smaller than that of the upper electrode 105.
  • the photoelectric conversion element includes the lower buffer layer 102 and / or the upper buffer layer 104 as described later, the lower electrode 101 and the upper buffer layer 104 are adjusted by adjusting the work function of the lower buffer layer 102 and / or the upper buffer layer 104.
  • the electrode 105 can also be formed of a material having the same work function.
  • Each of the lower electrode 101 and the upper electrode 105 may be a single layer or a stacked layer.
  • the lower electrode 101 when making the base-material 106 side into a light-receiving surface, it is preferable that the lower electrode 101 has translucency.
  • the upper electrode 105 side when the upper electrode 105 side is the light receiving surface, the lower electrode 2 may be translucent or translucent as long as the upper electrode 105 has translucency. You don't have to.
  • the film thickness of the lower electrode 101 and the upper electrode 105 is not particularly limited, but is preferably 10 nm or more, more preferably 20 nm or more, particularly 50 nm or more in order to suppress sheet resistance. On the other hand, in order to ensure high translucency, it is preferably 10 ⁇ m or less, more preferably 1 ⁇ m or less, and particularly preferably 500 nm or less.
  • the formation method of the lower electrode 101 and the upper electrode 105 is not particularly limited, and may be formed by a known method according to the material to be used.
  • a vacuum film forming method such as a vapor deposition method or a sputtering method, or a wet coating method in which an ink containing nanoparticles or a precursor is applied to form a film.
  • electrical characteristics, wetting characteristics, and the like may be improved by performing surface treatment on the lower electrode 101 and the upper electrode 105.
  • the active layer 103 is a layer that contains a p-type semiconductor compound and an n-type semiconductor compound and undergoes photoelectric conversion. Specifically, when the photoelectric conversion element 107 receives light, the light is absorbed by the active layer 103, electricity is generated at the interface between the p-type semiconductor material and the n-type semiconductor material, and the generated electricity is extracted from the anode and the cathode. It is.
  • the layer structure of the active layer 103 As the layer structure of the active layer 103, a thin film stack type in which a layer containing a p-type semiconductor compound and a layer containing an n-type semiconductor compound are stacked, or a layer in which a p-type semiconductor compound and an n-type semiconductor compound are mixed is used.
  • a bulk heterojunction type Note that the bulk heterojunction active layer may have a structure in which a layer containing a p-type semiconductor compound and / or a layer containing an n-type semiconductor compound is further stacked in addition to the mixed layer. From the viewpoint that high photoelectric conversion efficiency can be expected, a bulk heterojunction type is preferable.
  • the active layer 103 preferably contains a copolymer according to the present invention as a p-type semiconductor compound.
  • a photoelectric conversion element having high conversion efficiency can be provided.
  • the active layer 103 may contain other p-type semiconductor compounds besides the copolymer according to the present invention.
  • the other p-type semiconductor compound may be a low molecular organic compound or a high molecular compound.
  • These p-type semiconductor compounds are not particularly limited, but for example, those described in known literatures such as International Publication No. 2011-016430 or Japanese Unexamined Patent Publication No. 2012-191194 can be used.
  • the n-type semiconductor compound is not particularly limited.
  • fullerene compounds borane derivatives, thiazole derivatives, benzothiazole derivatives, benzothiadiazole derivatives, N-alkyl substituted naphthalene tetracarboxylic acid diimides, N-alkyl substituted perylene diimide derivatives or n-type polymer semiconductor materials More preferred are fullerene compounds, N-alkyl-substituted perylene diimide derivatives, N-alkyl-substituted naphthalene tetracarboxylic acid diimides or n-type polymer semiconductor compounds, and fullerene compounds are particularly preferred. These compounds are not particularly limited, but for example, those described in known literatures such as International Publication No.
  • 2011-016430 or Japanese Unexamined Patent Publication No. 2012-191194 can be used.
  • a kind of compound may be used among the above, and a mixture of a plurality of kinds of compounds may be used.
  • the thickness of the active layer 103 is not particularly limited, but is preferably 10 nm or more, more preferably 50 nm or more, and more preferably 100 nm or more in order to improve film uniformity and suppress short circuit. On the other hand, it is preferably 1 ⁇ m or less, more preferably 500 nm or less, and particularly preferably 200 nm or less in order to reduce internal resistance and improve charge diffusion.
  • the method for forming the active layer 103 is not particularly limited, but is preferably formed by a coating method because productivity is improved. Specifically, the active layer 103 is preferably formed by applying a composition for forming an active layer containing a copolymer according to the present invention.
  • any method can be used.
  • spin coating method reverse roll coating method, gravure coating method, kiss coating method, roll brush method, spray coating method, air knife coating method, wire barber coating method, pipe Examples include a doctor method, an impregnation / coating method, and a curtain coating method.
  • an active layer forming ink containing at least a copolymer according to the present invention as a p-type semiconductor compound and an active layer ink containing an n-type semiconductor compound are used, respectively, by a coating method.
  • An active layer may be formed by stacking a p-type semiconductor-containing layer and an n-type semiconductor-containing layer.
  • a bulk hetero type active layer a bulk hetero type is formed by a coating method using an active layer forming composition containing at least a copolymer according to the present invention as a p type semiconductor compound and an n type semiconductor compound. The active layer may be formed.
  • the above-mentioned composition for forming an active layer usually contains a solvent in addition to the above-mentioned compound.
  • the solvent is not particularly limited, but for example, aliphatic hydrocarbons such as hexane, heptane, octane, isooctane, nonane, tetralin or decane; toluene, xylene, mesitylene, cyclohexylbenzene, chlorobenzene or orthodichlorobenzene, etc.
  • Aromatic hydrocarbons such as cyclopentane, cyclohexane, methylcyclohexane, cycloheptane, cyclooctane, tetralin or decalin; lower alcohols such as methanol, ethanol or propanol; acetone, methyl ethyl ketone, cyclopentanone Or aliphatic ketones such as cyclohexanone; aromatic ketones such as acetophenone or propiophenone; esters such as ethyl acetate, butyl acetate or methyl lactate; Chloroform, methylene chloride, dichloroethane, halogenated hydrocarbons such as trichloroethane or trichlorethylene; ethers such as ethyl ether and tetrahydrofuran or dioxane; or an amide such as dimethylformamide or dimethylacetamide, and the like
  • one type of solvent may be used alone, or any two or more types of solvents may be used in combination at an arbitrary ratio.
  • combinations of low and high boiling solvents include non-halogen aromatic hydrocarbons and alicyclic hydrocarbons, non-halogen aromatic hydrocarbons and aromatic ketones, ethers and alicyclic carbonization.
  • Examples thereof include hydrogens, ethers and aromatic ketones, aliphatic ketones and alicyclic hydrocarbons, or aliphatic ketones and aromatic ketones.
  • Specific examples of preferred combinations include toluene and tetralin, xylene and tetralin, toluene and acetophenone, xylene and acetophenone, tetrahydrofuran and tetralin, tetrahydrofuran and acetophenone, methyl ethyl ketone and tetralin, methyl ethyl ketone and acetophenone, and the like.
  • composition for active layer formation may contain other additives other than the compounds described above as long as the effects according to the present invention are not impaired.
  • the photoelectric conversion element includes a lower buffer layer 102 between the lower electrode 101 and the active layer 103, and an upper buffer layer 104 between the upper electrode 105 and the active layer 103.
  • the lower buffer layer 102 and the upper buffer layer 104 each have a function of improving the electron extraction efficiency from the active layer 103 to the cathode or the hole extraction efficiency from the active layer 103 to the anode.
  • a buffer layer having a function of improving the electron extraction efficiency from the active layer 103 to the cathode is referred to as an electron extraction layer
  • a buffer layer having a function of improving the electron extraction efficiency from the active layer 103 to the cathode is referred to as a hole extraction layer.
  • the lower buffer layer 102 and the upper buffer layer 104 are not essential constituent members of the photoelectric conversion element according to the present invention, and may not include the lower buffer layer 102 and the upper buffer layer 104. Moreover, you may have only any one layer.
  • Either the lower buffer layer 102 or the upper buffer layer 104 may be an electron extraction layer or a hole extraction layer, but when the lower electrode 101 is a cathode and the upper electrode 105 is an anode, the lower buffer layer 102 is an electron extraction layer.
  • the upper buffer layer 104 is preferably a hole extraction layer.
  • the lower buffer layer 102 is preferably a hole extraction layer and the upper buffer layer 104 is preferably an electron extraction layer.
  • Electron extraction layer The material of the electron extraction layer is not particularly limited as long as it is a material that improves the efficiency of extracting electrons from the active layer 103 to the cathode, and examples thereof include inorganic compounds and organic compounds.
  • inorganic compounds include salts of alkali metals such as Li, Na, K or Cs; n-type semiconductor oxides such as titanium oxide (TiO x ) and zinc oxide (ZnO).
  • the alkali metal salt is preferably a fluoride salt such as LiF, NaF, KF or CsF
  • the n-type semiconductor oxide is preferably zinc oxide (ZnO).
  • organic compounds include phosphine compounds having a double bond between a phosphorus atom and a group 16 element such as triarylphosphine oxide compounds; substituents such as bathocuproin (BCP) or bathophenanthrene (Bphen) A phenanthrene compound in which the 1-position and the 10-position may be replaced by a heteroatom; a boron compound such as triarylboron; an organic such as (8-hydroxyquinolinato) aluminum (Alq 3 ) Metal oxide; Compound having 1 or 2 ring structure which may have a substituent such as oxadiazole compound or benzimidazole compound; naphthalenetetracarboxylic anhydride (NTCDA) or perylenetetracarboxylic anhydride Product (PTCDA), such as dicarboxylic acid anhydride Aromatic compounds having a condensed dicarboxylic acid structure.
  • substituents such as bathocuproin (BCP) or bathophenanthrene (Bphen
  • the film thickness of the electron extraction layer is usually 0.1 nm or more, preferably 1 nm or more, more preferably 10 nm or more. On the other hand, it is usually 400 nm or less, preferably 200 nm or less. When the film thickness of the electron extraction layer is 0.1 nm or more, it functions as a buffer material. When the film thickness of the electron extraction layer is 400 nm or less, electrons are easily extracted and the photoelectric conversion efficiency is improved. Can improve.
  • the LUMO energy level of the material of the electron extraction layer is not particularly limited, but is usually ⁇ 4.0 eV or more, preferably ⁇ 3.9 eV or more. On the other hand, it is usually ⁇ 1.9 eV or less, preferably ⁇ 2.0 eV or less. It is preferable that the LUMO energy level of the material for the electron extraction layer is ⁇ 1.9 eV or less because charge transfer can be promoted. It is preferable that the LUMO energy level of the material for the electron extraction layer is ⁇ 4.0 eV or more because reverse electron transfer to the n-type semiconductor material can be prevented.
  • the HOMO energy level of the material for the electron extraction layer is not particularly limited, but is usually ⁇ 9.0 eV or more, preferably ⁇ 8.0 eV or more. On the other hand, it is usually ⁇ 5.0 eV or less, preferably ⁇ 5.5 eV or less. It is preferable that the HOMO energy level of the material for the electron extraction layer is ⁇ 5.0 eV or less in terms of preventing movement of holes.
  • the glass transition temperature of the compound as measured by the DSC method is not particularly limited, but is not observed, or It is preferable that it is 55 degreeC or more. That the glass transition temperature is not observed by the DSC method means that there is no glass transition temperature. Specifically, the determination is made based on the presence or absence of a glass transition temperature of 400 ° C. or lower. A material in which the glass transition temperature by the DSC method is not observed is preferable in that it has high thermal stability.
  • the glass transition temperature is preferably 65 ° C. or higher, more preferably 80 ° C. or higher, more preferably 110 ° C. or higher, particularly preferably.
  • a compound having a temperature of 120 ° C. or higher is desirable.
  • the upper limit of the glass transition temperature is not particularly limited, but is usually 400 ° C. or lower, preferably 350 ° C. or lower, more preferably 300 ° C. or lower.
  • the material of an electron taking-out layer is a thing by which the glass transition temperature by DSC method is not observed below 30 degreeC or more and less than 55 degree
  • the glass transition temperature is defined as a point at which the specific heat changes in an amorphous solid, which is a temperature at which local molecular motion is started by thermal energy.
  • Tg the temperature at which the crystallization temperature
  • Tc the temperature at this time
  • Tm the melting point
  • DSC method is a measurement method of thermophysical properties (differential scanning calorimetry) defined in JIS K-0129 “General Rules for Thermal Analysis”.
  • thermophysical properties Differential scanning calorimetry
  • JIS K-0129 General Rules for Thermal Analysis.
  • the measurement can be carried out by a method described in a known document (International Publication No. 2011/016430).
  • the glass transition temperature of the compound used for the electron extraction layer is 55 ° C. or higher, the structure of this compound is difficult to change against external stress such as applied electric field, flowing current, stress due to bending or temperature change. It is preferable in terms of durability. Furthermore, since there is a tendency that the crystallization of the thin film of the compound does not proceed easily, the stability of the electron extraction layer is improved by making it difficult for the compound to change between the amorphous state and the crystalline state in the operating temperature range. Therefore, it is preferable in terms of durability. This effect becomes more prominent as the glass transition temperature of the material is higher.
  • the method of forming the electron extraction layer there is no limitation on the method of forming the electron extraction layer.
  • a material having sublimation property it can be formed by a vacuum deposition method or the like.
  • a material soluble in a solvent it can be formed by a wet coating method such as spin coating or inkjet.
  • a surfactant may be further contained in the coating solution.
  • the surfactant By using the surfactant, the occurrence of dents due to adhesion of fine bubbles or foreign matters and / or uneven coating in the drying process is suppressed.
  • Known surfactants cationic surfactants, anionic surfactants, nonionic surfactants
  • silicon-based surfactants, acetylenic diol-based surfactants, and fluorine-based surfactants are preferable.
  • surfactant only 1 type may be used and 2 or more types may be used together by arbitrary combinations and a ratio.
  • the electron extraction layer can be formed by using a vacuum film formation method such as vacuum deposition or sputtering. Especially, it is desirable to form an electron taking-out layer by vacuum vapor deposition by resistance heating. By using vacuum deposition, damage to other layers such as an active layer can be reduced.
  • the film thickness is usually 0.1 nm or more, preferably 2 nm or more, more preferably 5 nm or more, and usually 1 ⁇ m or less, preferably 100 nm or less, more preferably 50 nm or less. If the electron extraction layer is too thin, the effect of improving the electron extraction efficiency is not sufficient, and if it is too thick, the electron extraction layer tends to deteriorate the characteristics of the device by acting as a series resistance component.
  • the material for the hole extraction layer is not particularly limited as long as it is a material capable of improving the efficiency of extracting holes from the active layer 103 to the anode.
  • the material for the hole extraction layer is not particularly limited as long as it is a material capable of improving the efficiency of extracting holes from the active layer 103 to the anode.
  • polythiophene, polypyrrole, polyacetylene, triphenylenediamine, polyaniline, or the like a conductive polymer doped with sulfonic acid and / or iodine, a polythiophene derivative having a sulfonyl group as a substituent, or a conductive organic such as arylamine
  • Examples thereof include compounds, copper oxide, nickel oxide, manganese oxide, molybdenum oxide, vanadium oxide, metal oxide such as tungsten oxide, Nafion, and a p-type semiconductor described later.
  • a conductive polymer doped with sulfonic acid is preferable, and (3,4-ethylenedioxythiophene) poly (styrenesulfonic acid) (PEDOT: PSS) in which a polythiophene derivative is doped with polystyrene sulfonic acid is more preferable. It is.
  • a thin film of metal such as gold, indium, silver or palladium can also be used.
  • a thin film of metal or the like may be formed alone or in combination with the above organic material.
  • the film thickness of the hole extraction layer is usually 0.1 nm or more. On the other hand, it is usually 400 nm or less, preferably 200 nm or less. When the film thickness of the hole extraction layer is 0.1 nm or more, it functions as a buffer material. When the film thickness of the hole extraction layer is 400 nm or less, holes are easily extracted, Conversion efficiency can be improved.
  • a positive hole taking-out layer there is no restriction
  • a material having sublimation property when used, it can be formed by a vacuum deposition method or the like.
  • a material soluble in a solvent when used, it can be formed by a wet coating method such as a spin coating method or an ink jet method.
  • the precursor when used for the hole extraction layer, the precursor may be converted into a semiconductor compound after forming the layer using the precursor, similarly to the low-molecular organic semiconductor compound of the active layer.
  • PEDOT: PSS as a material of a hole taking-out layer, it is preferable to form a hole taking-out layer by the method of apply
  • the dispersion of PEDOT: PSS include CLEVIOSTM series manufactured by Heraeus, ORGACONTM series manufactured by Agfa, and the like.
  • a surfactant may be further contained in the coating solution.
  • the surfactant By using the surfactant, the occurrence of dents due to adhesion of fine bubbles or foreign matters and / or uneven coating in the drying process is suppressed.
  • Known surfactants cationic surfactants, anionic surfactants, nonionic surfactants
  • silicon-based surfactants, acetylenic diol-based surfactants, and fluorine-based surfactants are preferable.
  • surfactant only 1 type may be used and 2 or more types may be used together by arbitrary combinations and a ratio.
  • the structure of the photoelectric conversion element which concerns on this invention is not limited to said structure.
  • the photoelectric conversion element may have a tandem structure having two or more active layers 103.
  • a photoelectric conversion element 107 having the configuration shown in FIG. 1 is formed on a base 106 by a lower electrode 101, a lower buffer layer 102, an active layer 103, an upper buffer layer 104, and an upper electrode in accordance with the method described above for each layer. It can be manufactured by sequentially stacking 105.
  • annealing may be performed by heating.
  • the adhesion of each layer can be improved.
  • the heating temperature is not particularly limited, but in order to improve the adhesion of each layer, it is preferably 50 ° C. or higher, more preferably 80 ° C. or higher, while the photoelectric conversion element Is preferably 300 ° C. or less, and particularly preferably 250 ° C. or less, in order to suppress thermal decomposition of the material constituting the material.
  • the heating time is not particularly limited, but is preferably 1 minute or longer, more preferably 3 minutes or longer, on the other hand, preferably 3 hours or shorter, more preferably 1 hour or shorter.
  • the annealing treatment is preferably performed under normal pressure and in an inert gas atmosphere.
  • the heating may be performed by placing the photoelectric conversion element on a heat source such as a hot plate, or by placing the photoelectric conversion element in a heating atmosphere such as an oven.
  • the heating may be performed batchwise or continuously.
  • Each layer constituting the photoelectric conversion element according to the present invention is not particularly limited, and may be formed by a sheet-to-sheet (sheet-fed) method or a roll-to-roll method.
  • the roll-to-roll method is a method in which a flexible base material wound in a roll shape is fed out and processed intermittently or continuously until it is taken up by a take-up roll. is there. According to the roll-to-roll method, it is possible to batch-process long substrates on the order of km, so that the production method is more suitable for mass production than the sheet-to-sheet method.
  • the photoelectric conversion characteristics of the photoelectric conversion element 107 can be obtained as follows.
  • the photoelectric conversion element 107 is irradiated with light of AM1.5G by a solar simulator with an irradiation intensity of 100 mW / cm @ 2. Irradiate with and measure the current-voltage characteristics. From the obtained current-voltage curve, photoelectric conversion characteristics such as photoelectric conversion efficiency (PCE), short circuit current density (Jsc), open circuit voltage (Voc), fill factor (FF), series resistance, and shunt resistance can be obtained.
  • PCE photoelectric conversion efficiency
  • Jsc short circuit current density
  • Voc open circuit voltage
  • FF fill factor
  • series resistance series resistance
  • shunt resistance series resistance
  • the photoelectric conversion efficiency of the photoelectric conversion element according to the present invention is not particularly limited, but is usually 1% or more, preferably 1.5% or more, more preferably 2% or more. On the other hand, there is no particular limitation on the upper limit, and the higher the better.
  • the maintenance rate of photoelectric conversion efficiency before and after exposure to the atmosphere for one week is preferably 60% or more, more preferably 80% or more, and the higher the better.
  • FIG. 2 is a cross-sectional view schematically showing the configuration of a thin-film solar cell as one embodiment of the present invention.
  • the thin film solar cell 14 of this embodiment includes a weather-resistant protective film 1, an ultraviolet cut film 2, a gas barrier film 3, a getter material film 4, a sealing material 5, and a photoelectric conversion element. 6, a sealing material 7, a getter material film 8, a gas barrier film 9, and a back sheet 10 are provided in this order.
  • a thin film solar cell is normally irradiated with light from the side (downward in the figure) in which the weather-resistant protective film 1 was formed, and the photoelectric conversion element 6 generates electric power.
  • the thin-film solar cell does not need to have all of these constituent members, and each constituent member may be arbitrarily selected and provided.
  • the solar cell according to the present invention there is no particular limitation on the use of the solar cell according to the present invention, particularly the thin film solar cell 14 described above, and it can be used for any application.
  • Examples include solar cells for building materials, solar cells for automobiles, solar cells for spacecrafts, solar cells for home appliances, solar cells for mobile phones, solar cells for toys, and the like.
  • the solar cell according to the present invention may be used as it is, or for example, a solar cell may be installed on a substrate and used as a solar cell module.
  • a solar cell may be installed on a substrate and used as a solar cell module.
  • the solar cell module 13 having the thin film solar cell 14 on the base 12 can be installed and used at a place of use.
  • the substrate 12 well-known techniques can be used, for example, those described in International Publication No. 2011-016430 or Japanese Unexamined Patent Publication No. 2012-191194.
  • a solar cell panel can be produced as the solar cell module 13 by providing the thin film solar cell 14 on the surface of the plate.
  • the polystyrene equivalent weight average molecular weight (Mw) and number average molecular weight (Mn) were determined by gel permeation chromatography (GPC).
  • the molecular weight distribution (PDI) represents Mw / Mn.
  • Trimethyl (phenyl) tin (0.03 mL) and chlorobenzene (5.0 mL) were added to the reaction solution as a terminal treatment, and the mixture was heated and stirred at 110 ° C. for 1.0 hour, and further bromobenzene (1.0 mL) was added. The mixture was heated and stirred at 110 ° C. for 1.0 hour, the reaction solution was poured into methanol, and the deposited precipitate was collected by filtration.
  • the obtained solid was dissolved in chloroform, diamine silica gel (Fuji Silysia Chemical) was added, and the mixture was stirred for 1 hour at room temperature and passed through a short column of acidic silica gel. By concentrating the solution, the target copolymer 1A was obtained in a yield of 74%.
  • the resulting copolymer 1A had a weight average molecular weight Mw of 187,000 and a PDI of 4.5.
  • the obtained solid was dissolved in chloroform, diamine silica gel (Fuji Silysia Chemical) was added, and the mixture was stirred for 1 hour at room temperature and passed through a short column of acidic silica gel. By concentrating the solution, the target copolymer 4A was obtained in a yield of 84%.
  • the resulting copolymer 4A had a weight average molecular weight Mw of 54,000 and a PDI of 2.4.
  • reaction solution was diluted twice with toluene and heated and stirred at 110 ° C. for another 0.5 hours, and then trimethyl (phenyl) tin (0.03 mL) was added as a terminal treatment and stirred at 110 ° C. for 1.0 hour. Further, bromobenzene (1.00 mL) was added and stirred with heating at 110 ° C. for 1.0 hour, and the reaction solution was poured into methanol, and the deposited precipitate was collected by filtration.
  • the obtained solid was dissolved in chloroform, diamine silica gel (Fuji Silysia Chemical) was added, and the mixture was stirred for 1 hour at room temperature and passed through a short column of acidic silica gel. By concentrating the solution, the target copolymer 5A was obtained in a yield of 56%.
  • the weight average molecular weight Mw of the obtained copolymer 5A was 67,000, and PDI was 3.0.
  • the reaction solution was diluted twice with toluene and heated and stirred at 110 ° C. for another 0.5 hours, and then trimethyl (phenyl) tin (0.03 mL) was added as a terminal treatment and stirred at 110 ° C. for 1.0 hour. Further, bromobenzene (1.00 mL) was added and stirred with heating at 110 ° C. for 1.0 hour, and the reaction solution was poured into methanol, and the deposited precipitate was collected by filtration. The obtained solid was dissolved in chloroform, diamine silica gel (Fuji Silysia Chemical) was added, and the mixture was stirred for 1 hour at room temperature and passed through a short column of acidic silica gel. By concentrating the solution, the target copolymer 6A was obtained in a yield of 86%. The obtained copolymer 6A had a weight average molecular weight Mw of 47,000 and a PDI of 2.5.
  • the mixture was heated and stirred at 110 ° C. for 1.0 hour, the reaction solution was poured into methanol, and the deposited precipitate was collected by filtration. The obtained solid was dissolved in chloroform, diamine silica gel (Fuji Silysia Chemical) was added, and the mixture was stirred for 1 hour at room temperature and passed through a short column of acidic silica gel. By concentrating the solution, the target copolymer 7A was obtained with a yield of 79%. The resulting copolymer 7A had a weight average molecular weight Mw of 72,000 and a PDI of 2.7.
  • 2,2,6,6-tetramethylpiperidine (2.18 g, 15 mmol) was added to a 50 mL two-necked flask, and nitrogen substitution was performed three times. 10 mL of dry THF was added, and the mixture was cooled to ⁇ 78 ° C. with a dry ice acetone bath. n-Butyllithium (1.6M, 8.9 mL, 14.3 mmol) was added dropwise at ⁇ 78 ° C., stirred for 30 minutes, and then heated to 0 ° C. in an ice bath.
  • 2,2,6,6-tetramethylpiperidine (3.15 g, 22.3 mmol) was added to a 100 mL two-necked flask, and nitrogen substitution was performed three times. 15 mL of dry THF was added, and the mixture was cooled to ⁇ 78 ° C. with a dry ice acetone bath. n-Butyllithium (1.54M, 13.7 mL, 21.1 mmol) was added dropwise at ⁇ 78 ° C., stirred for 30 minutes, and then heated to 0 ° C. in an ice bath.
  • TMPMgCl ⁇ LiCl 1.0 M THF solution, 12 mL, 12 mmol
  • a nitrogen-substituted 50 mL two-necked flask was added to a nitrogen-substituted 50 mL two-necked flask, and 3-pentadecylthiophene (compound T9) (2.95 g, 10 mmol) and 5 mL of dry THF were added. After stirring for 2 hours, the mixture was cooled in an ice bath, and a dry THF solution of trimethyltin chloride (2.4 g, 12 mmol) was slowly added dropwise. The mixture was warmed to room temperature, stirred for 1 hour, and then quenched with water.
  • TMPMgCl ⁇ LiCl 1.0 M THF solution, 12 mL, 12 mmol
  • THF 1.0 M THF solution
  • 12 mL 12 mmol
  • 3-octadecylthiophene compound T12
  • dry THF 5 mL
  • a dry THF solution of trimethyltin chloride 2.4 g, 12 mmol
  • the resulting copolymer 12A had a weight average molecular weight Mw of 66,000 and a PDI of 2.2.
  • Trimethyl (phenyl) tin (0.03 mL) and chlorobenzene (5.0 mL) were added to the reaction solution as a terminal treatment, and the mixture was heated and stirred at 110 ° C. for 1.0 hour, and further bromobenzene (1.0 mL) was added. The mixture was heated and stirred at 110 ° C. for 1.0 hour, the reaction solution was poured into methanol, and the deposited precipitate was collected by filtration. The obtained solid was insoluble in solvents such as chloroform, toluene, orthodichlorobenzene and the like.
  • the reaction solution was poured into methanol, and the deposited precipitate was collected by filtration.
  • the obtained solid was dissolved in chloroform, diamine silica gel (Fuji Silysia Chemical) was added, and the mixture was stirred for 1 hour at room temperature and passed through a short column of acidic silica gel.
  • the target copolymer 15A was obtained in a yield of 80%.
  • the resulting copolymer 15A had a weight average molecular weight Mw of 120,000 and a PDI of 4.4.
  • the obtained solid was dissolved in chloroform, diamine silica gel (Fuji Silysia Chemical) was added, and the mixture was stirred for 1 hour at room temperature and passed through a short column of acidic silica gel. By concentrating the solution, the target copolymer 16A was obtained in a yield of 75%.
  • the weight average molecular weight Mw of the obtained copolymer 16A was 161,000, and PDI was 3.9.
  • the mixture was stirred at 100 ° C. for 1 hour and then at 110 ° C. for 1 hour.
  • Trimethyl (phenyl) tin (0.03 mL) and chlorobenzene (5.0 mL) were added to the reaction solution as a terminal treatment, and the mixture was heated and stirred at 110 ° C. for 1.0 hour, and further bromobenzene (1.0 mL) was added.
  • the mixture was heated and stirred at 110 ° C. for 1.0 hour, the reaction solution was poured into methanol, and the deposited precipitate was collected by filtration.
  • the obtained solid was dissolved in chloroform, diamine silica gel (Fuji Silysia Chemical) was added, and the mixture was stirred for 1 hour at room temperature and passed through a short column of acidic silica gel. By concentrating the solution, the target copolymer 17A was obtained with a yield of 79%.
  • the weight average molecular weight Mw of the obtained copolymer 17A was 98,000, and PDI was 3.7.
  • Trimethyl (phenyl) tin (0.03 mL) and chlorobenzene (5.0 mL) were added to the reaction solution as a terminal treatment, and the mixture was heated and stirred at 110 ° C. for 1.0 hour, and further bromobenzene (1.0 mL) was added. The mixture was heated and stirred at 110 ° C. for 1.0 hour, the reaction solution was poured into methanol, and the deposited precipitate was collected by filtration.
  • the obtained solid was dissolved in chloroform, diamine silica gel (Fuji Silysia Chemical) was added, and the mixture was stirred for 1 hour at room temperature and passed through a short column of acidic silica gel. By concentrating the solution, the target copolymer 19A was obtained in a yield of 81%.
  • the resulting copolymer 19A had a weight average molecular weight Mw of 222,000 and a PDI of 4.0.
  • Tetrakistriphenylphosphine palladium (50.0 mg, 0.04 mmol) was added, and nitrogen substitution was performed twice. 12 mL of dehydrated toluene and 3 mL of dehydrated DMF were added and stirred at 115 ° C. for 3 hours. After cooling to room temperature, toluene was distilled off. 30 mL of methanol was added and stirred, followed by filtration. The solid filtered off was washed by spraying with methanol three times and dried. The resulting orange solid was dissolved by heating in 50 mL of chloroform and purified with a short-pass silica gel column.
  • Trimethyl (phenyl) tin (0.03 mL) and chlorobenzene (5.0 mL) were added to the reaction solution as a terminal treatment, and the mixture was heated and stirred at 110 ° C. for 1.0 hour, and further bromobenzene (1.0 mL) was added. The mixture was heated and stirred at 110 ° C. for 1.0 hour, the reaction solution was poured into methanol, and the deposited precipitate was collected by filtration.
  • the obtained solid was dissolved in chloroform, diamine silica gel (Fuji Silysia Chemical) was added, and the mixture was stirred for 1 hour at room temperature and passed through a short column of acidic silica gel. By concentrating the solution, the target copolymer 20A was obtained in a yield of 83%.
  • the resulting copolymer 20A had a weight average molecular weight Mw of 200,000 and a PDI of 4.4.
  • Trimethyl (phenyl) tin (0.03 mL) and chlorobenzene (5.0 mL) were added to the reaction solution as a terminal treatment, and the mixture was heated and stirred at 110 ° C. for 1.0 hour, and further bromobenzene (1.0 mL) was added. The mixture was heated and stirred at 110 ° C. for 1.0 hour, the reaction solution was poured into methanol, and the deposited precipitate was collected by filtration.
  • the obtained solid was dissolved in chloroform, diamine silica gel (Fuji Silysia Chemical) was added, and the mixture was stirred for 1 hour at room temperature and passed through a short column of acidic silica gel. By concentrating the solution, the target copolymer 21A was obtained with a yield of 79%.
  • the weight average molecular weight Mw of the obtained copolymer 21A was 86,000, and PDI was 2.6.
  • Trimethyl (phenyl) tin (0.03 mL) and chlorobenzene (5.0 mL) were added to the reaction solution as a terminal treatment, and the mixture was heated and stirred at 110 ° C. for 1.0 hour, and further bromobenzene (1.0 mL) was added. The mixture was heated and stirred at 110 ° C. for 1.0 hour, the reaction solution was poured into methanol, and the deposited precipitate was collected by filtration.
  • the obtained solid was dissolved in chloroform, diamine silica gel (Fuji Silysia Chemical) was added, and the mixture was stirred for 1 hour at room temperature and passed through a short column of acidic silica gel. By concentrating the solution, the target copolymer 22A was obtained in a yield of 80%.
  • the resulting copolymer 22A had a weight average molecular weight Mw of 145,000 and a PDI of 4.1.
  • Example 1A Production and evaluation of photoelectric conversion element 1A> [Preparation of composition for forming active layer] Copolymer 1A obtained in Synthesis Example 1A as a p-type semiconductor compound, and a mixture of PC61BM (phenyl C61 butyric acid methyl ester) and PC71BM (phenyl C71 butyric acid methyl ester) which are fullerene compounds as an n-type semiconductor compound (Frontier Carbon Co., Ltd., nanom spectra E123) was dissolved in a mixed solvent of o-xylene and tetralin (volume ratio 9: 1) in a nitrogen atmosphere to a concentration of 3.6% by mass.
  • PC61BM phenyl C61 butyric acid methyl ester
  • PC71BM phenyl C71 butyric acid methyl ester
  • n-type semiconductor compound 1: 2.
  • This solution was stirred and mixed on a hot stirrer at a temperature of 80 ° C. for 1 hour.
  • the solution after stirring and mixing was filtered through a 1 ⁇ m polytetrafluoroethylene (PTFE) filter to prepare an active layer forming composition.
  • PTFE polytetrafluoroethylene
  • a glass substrate manufactured by Geomatic Co., Ltd.
  • ITO indium tin oxide
  • An active layer having a thickness of about 200 nm was formed. Then, it heated at 140 degreeC for 10 minute (s) on the hotplate. Next, the substrate on which the active layer was formed was taken out of the glove box, allowed to stand in the air (25 ° C., humidity 1% or less) for 3 hours under light shielding, and then brought back into the glove box.
  • a molybdenum trioxide (MoO3) film with a thickness of 1.5 nm is formed on the active layer as a hole extraction layer, and then a silver film with a thickness of 100 nm is formed as an upper electrode by resistance heating vacuum deposition.
  • a 5 mm square photoelectric conversion element was produced by sequentially forming a film.
  • the photoelectric conversion element 1A-1 thus manufactured was evaluated by measuring the current-voltage characteristics as described above, and the photoelectric conversion efficiency (PCE) was obtained.
  • Example 2A Production and Evaluation of Photoelectric Conversion Element 4A> A photoelectric conversion element 4A was produced and evaluated in the same manner as in Example 1A, except that the copolymer 4A obtained in Synthesis Example 4A was used instead of the copolymer 1A. The obtained results are shown in Table 1.
  • Example 3A Production and evaluation of photoelectric conversion element 5A> A photoelectric conversion element 5 was produced and evaluated in the same manner as in Example 1A, except that the copolymer 5A obtained in Synthesis Example 5A was used instead of the copolymer 1A. The obtained results are shown in Table 1.
  • Example 4A Production and evaluation of photoelectric conversion element 6A> A photoelectric conversion element 6A was produced and evaluated in the same manner as in Example 1A except that the copolymer 6A obtained in Synthesis Example 6A was used instead of the copolymer 1A. The obtained results are shown in Table 1.
  • Example 5A Production and evaluation of photoelectric conversion element 7A> A photoelectric conversion element 7A was produced and evaluated in the same manner as in Example 1A except that the copolymer 6A obtained in Synthesis Example 7A was used instead of the copolymer 1A. The obtained results are shown in Table 1.
  • Example 6A Production and evaluation of photoelectric conversion element 8A> A photoelectric conversion element 8A was produced and evaluated in the same manner as in Example 1A, except that the copolymer 8A obtained in Synthesis Example 8A was used instead of the copolymer 1A. The obtained results are shown in Table 1.
  • Example 7A Production and evaluation of photoelectric conversion element 9A> A photoelectric conversion element 9A was produced and evaluated in the same manner as in Example 1A, except that the copolymer 9A obtained in Synthesis Example 9A was used instead of the copolymer 1A. The obtained results are shown in Table 1.
  • Example 8A Production and evaluation of photoelectric conversion element 10A> 10 A of photoelectric conversion elements were produced and evaluated by the same method as Example 1A except having used the copolymer 10A obtained by the synthesis example 10A instead of the copolymer 1A. The obtained results are shown in Table 1.
  • Example 9A Production and evaluation of photoelectric conversion element 11A> 11 A of photoelectric conversion elements were produced and evaluated by the same method as Example 1A except having used the copolymer 11A obtained by the synthesis example 11A instead of the copolymer 1A. The obtained results are shown in Table 1.
  • Example 10A Production and evaluation of photoelectric conversion element 13A> A photoelectric conversion element 13A was produced and evaluated in the same manner as in Example 1A, except that the copolymer 13A obtained in Synthesis Example 13A was used instead of the copolymer 1A. The obtained results are shown in Table 1.
  • ⁇ Reference Example 4A Production and Evaluation of Photoelectric Conversion Element 14A> An attempt was made to produce a photoelectric conversion element 14A in the same manner as in Example 1A, except that the copolymer 14A obtained in Synthesis Example 14A was used instead of the copolymer 1A. However, the copolymer 14A was not dissolved in a solvent such as chloroform, toluene, or orthodichlorobenzene, and a photoelectric conversion element could not be produced. Therefore, evaluation of photoelectric conversion efficiency and light resistance could not be performed.
  • a solvent such as chloroform, toluene, or orthodichlorobenzene
  • Example 11A Production and evaluation of photoelectric conversion element 15A> A photoelectric conversion element 15A was produced and evaluated in the same manner as in Example 1A, except that the copolymer 15A obtained in Synthesis Example 15A was used instead of the copolymer 1A. The obtained results are shown in Table 1.
  • Example 12A Production and evaluation of photoelectric conversion element 16A> A photoelectric conversion element 16A was produced and evaluated in the same manner as in Example 1A, except that the copolymer 16A obtained in Synthesis Example 16A was used instead of the copolymer 1A. The obtained results are shown in Table 1.
  • Example 13A Production and evaluation of photoelectric conversion element 17A> A photoelectric conversion element 17A was produced and evaluated in the same manner as in Example 1A, except that the copolymer 17A obtained in Synthesis Example 17A was used instead of the copolymer 1A. The obtained results are shown in Table 1.
  • Example 14A Production and evaluation of photoelectric conversion element 18A> A photoelectric conversion element 18A was produced and evaluated in the same manner as in Example 1A, except that the copolymer 18A obtained in Synthesis Example 18A was used instead of the copolymer 1A. The obtained results are shown in Table 1.
  • Example 15A Production and evaluation of photoelectric conversion element 19A> A photoelectric conversion element 19A was produced and evaluated in the same manner as in Example 1A, except that the copolymer 19A obtained in Synthesis Example 19A was used instead of the copolymer 1A. The obtained results are shown in Table 1.
  • Example 16A Production and evaluation of photoelectric conversion element 20A> A photoelectric conversion element 20A was produced and evaluated in the same manner as in Example 1A except that the copolymer 20A obtained in Synthesis Example 20A was used instead of the copolymer 1A. The obtained results are shown in Table 1.
  • Example 17A Production and evaluation of photoelectric conversion element 21A> A photoelectric conversion element 21A was produced and evaluated in the same manner as in Example 1A, except that the copolymer 21A obtained in Synthesis Example 21A was used instead of the copolymer 1A. The obtained results are shown in Table 1.
  • Example 18A Production and evaluation of photoelectric conversion element 22A> A photoelectric conversion element 22A was produced and evaluated in the same manner as in Example 1A, except that the copolymer 22A obtained in Synthesis Example 22A was used instead of the copolymer 1A. The obtained results are shown in Table 1.
  • the copolymer according to the first embodiment has structural units represented by the formula (I) and the formula (II), and further includes substituents on the 5-membered ring in the formula (I).
  • the photoelectric conversion elements according to Examples 2A to 18A have high conversion efficiency and high light resistance as in Example 1A.
  • the reaction solution was diluted twice with toluene and heated and stirred at 110 ° C. for another 0.5 hours, and then trimethyl (phenyl) tin (0.03 mL) was added as a terminal treatment and stirred at 110 ° C. for 1.0 hour. Further, bromobenzene (1.00 mL) was added and stirred with heating at 110 ° C. for 1.0 hour, and the reaction solution was poured into methanol, and the deposited precipitate was collected by filtration. The obtained solid was dissolved in chloroform, diamine silica gel (Fuji Silysia Chemical) was added, and the mixture was stirred for 1 hour at room temperature and passed through a short column of acidic silica gel. By concentrating the solution, the target copolymer 1B was obtained in a yield of 61%. The weight average molecular weight Mw of the obtained copolymer 1B was 34,000, and PDI was 1.7.
  • the reaction solution was poured into methanol, and the deposited precipitate was collected by filtration.
  • the obtained solid was dissolved in chloroform, diamine silica gel (Fuji Silysia Chemical) was added, and the mixture was stirred at room temperature for 30 minutes and passed through a short column of acidic silica gel.
  • the target copolymer 3B was obtained in a yield of 72%.
  • the resulting copolymer 3B had a weight average molecular weight Mw of 150,000 and a PDI of 4.5.
  • the obtained solid was dissolved in chloroform, diamine silica gel (Fuji Silysia Chemical) was added, and the mixture was stirred for 1 hour at room temperature and passed through a short column of acidic silica gel. By concentrating the solution, the target copolymer 4B was obtained in a yield of 82%.
  • the resulting copolymer 4B had a weight average molecular weight Mw of 116,000 and a PDI of 4.5.
  • the reaction solution was poured into methanol, and the deposited precipitate was collected by filtration.
  • the obtained solid was dissolved in chloroform, diamine silica gel (Fuji Silysia Chemical) was added, and the mixture was stirred for 1 hour at room temperature and passed through a short column of acidic silica gel.
  • the target copolymer 5 was obtained in a yield of 83%.
  • the weight average molecular weight Mw of the obtained copolymer 5 was 119,000, and PDI was 4.2.
  • 2,2,6,6-tetramethylpiperidine (2.18 g, 15 mmol) was added to a 50 mL two-necked flask, and nitrogen substitution was performed three times. 10 mL of dry THF was added, and the mixture was cooled to ⁇ 78 ° C. with a dry ice acetone bath. n-Butyllithium (1.6M, 8.9 mL, 14.3 mmol) was added dropwise at ⁇ 78 ° C., stirred for 30 minutes, and then heated to 0 ° C. in an ice bath.
  • 3-tetradecylthiophene (compound T1) (4.3 g, 15 mmol) was added to a 500 mL four-necked flask, and nitrogen substitution was performed three times. 190 mL of dry THF was added, and the mixture was cooled to ⁇ 40 ° C. with a dry ice acetone bath. The previously prepared LiTMP was slowly added dropwise at ⁇ 40 ° C., and after the addition was further stirred for 1 hour, trimethyltin chloride (1M in THF, 15 mL, 15 mmol) was added dropwise and stirred for 30 minutes. 100 mL of distilled water was added to quench the reaction, and the aqueous layer was extracted once with hexane.
  • compound T1 3-tetradecylthiophene
  • reaction solution was diluted 2-fold with chlorobenzene and further heated and stirred at 110 ° C. for 1 hour. Then, trimethyl (phenyl) tin (0.03 mL) was added as a terminal treatment, and the mixture was heated and stirred at 110 ° C. for 1.0 hour. Bromobenzene (1.0 mL) was further added, and the mixture was stirred with heating at 110 ° C. for 1.0 hour. The reaction solution was poured into methanol, and the deposited precipitate was collected by filtration.
  • the obtained solid was dissolved in chloroform, diamine silica gel (Fuji Silysia Chemical) was added, and the mixture was stirred for 1 hour at room temperature and passed through a short column of acidic silica gel. By concentrating the solution, the target copolymer 8B was obtained in a yield of 90%.
  • the resulting copolymer 8B had a weight average molecular weight Mw of 291,000 and a PDI of 6.4.
  • reaction solution was diluted 2-fold with chlorobenzene and further heated and stirred at 110 ° C. for 1 hour. Then, trimethyl (phenyl) tin (0.03 mL) was added as a terminal treatment, and the mixture was heated and stirred at 110 ° C. for 1.0 hour. Bromobenzene (1.0 mL) was further added, and the mixture was stirred with heating at 110 ° C. for 1.0 hour. The reaction solution was poured into methanol, and the deposited precipitate was collected by filtration.
  • the obtained solid was dissolved in chloroform, diamine silica gel (Fuji Silysia Chemical) was added, and the mixture was stirred for 1 hour at room temperature and passed through a short column of acidic silica gel. By concentrating the solution, the target copolymer 9B was obtained in a yield of 85%.
  • the resulting copolymer 9B had a weight average molecular weight Mw of 261,000 and a PDI of 5.6.
  • the reaction solution was diluted twice with toluene and heated and stirred at 110 ° C. for another 0.5 hours, and then trimethyl (phenyl) tin (0.03 mL) was added as a terminal treatment and stirred at 110 ° C. for 1.0 hour. Further, bromobenzene (1.00 mL) was added and stirred with heating at 110 ° C. for 1.0 hour, and the reaction solution was poured into methanol, and the deposited precipitate was collected by filtration. The obtained solid was dissolved in chloroform, diamine silica gel (Fuji Silysia Chemical) was added, and the mixture was stirred for 1 hour at room temperature and passed through a short column of acidic silica gel. By concentrating the solution, the target copolymer 10B was obtained in a yield of 51%. The resulting copolymer 10B had a weight average molecular weight Mw of 24,000 and a PDI of 1.9.
  • reaction solution was diluted twice with toluene and heated and stirred at 110 ° C. for another 0.5 hours, and then trimethyl (phenyl) tin (0.03 mL) was added as a terminal treatment and stirred at 110 ° C. for 1.0 hour. Further, bromobenzene (1.00 mL) was added and stirred with heating at 110 ° C. for 1.0 hour, and the reaction solution was poured into methanol, and the deposited precipitate was collected by filtration.
  • the obtained solid was dissolved in chloroform, diamine silica gel (Fuji Silysia Chemical) was added, and the mixture was stirred for 1 hour at room temperature and passed through a short column of acidic silica gel.
  • the target copolymer 11B was obtained with a yield of 51% by concentrating the solution.
  • the obtained copolymer 11B had a weight average molecular weight Mw of 38,000 and a PDI of 2.3.
  • Example 1B Production and evaluation of photoelectric conversion element> [Preparation of composition for forming active layer] Copolymer 1B obtained in Synthesis Example 1B as a p-type semiconductor compound, and a mixture of PC61BM (phenyl C61 butyric acid methyl ester) and PC71BM (phenyl C71 butyric acid methyl ester) which are fullerene compounds as an n-type semiconductor compound (Frontier Carbon Corporation, nanom spectra E123) was dissolved in a mixed solvent of o-xylene and tetralin (volume ratio 9: 1) in a nitrogen atmosphere to a concentration of 3.6% by mass.
  • PC61BM phenyl C61 butyric acid methyl ester
  • PC71BM phenyl C71 butyric acid methyl ester
  • n-type semiconductor compound 1: 2.
  • This solution was stirred and mixed on a hot stirrer at a temperature of 80 ° C. for 1 hour.
  • the solution after stirring and mixing was filtered through a 1 ⁇ m polytetrafluoroethylene (PTFE) filter to prepare an active layer forming composition.
  • PTFE polytetrafluoroethylene
  • a glass substrate manufactured by Geomatic Co., Ltd.
  • ITO indium tin oxide
  • a molybdenum trioxide (MoO 3 ) film having a thickness of 1.5 nm is formed as a hole extraction layer on the active layer, and then a silver film having a thickness of 100 nm is formed as an upper electrode by resistance heating vacuum deposition. Then, a 5 mm square photoelectric conversion element was produced.
  • the photoelectric conversion element thus prepared was evaluated by measuring the current-voltage characteristics as described above, and the photoelectric conversion efficiency (PCE) when the active layer was not exposed was obtained. The obtained results are shown in Table 2.
  • Example 2B Production and Evaluation of Photoelectric Conversion Element> A photoelectric conversion element was prepared and evaluated in the same manner as in Example 1B, except that the copolymer 2 obtained in Synthesis Example 2B was used instead of the copolymer 1B. The obtained results are shown in Table 2.
  • Example 3B Production and evaluation of photoelectric conversion element> A photoelectric conversion element was produced and evaluated in the same manner as in Example 1B except that the copolymer 3B obtained in Synthesis Example 3B was used instead of the copolymer 1B. The obtained results are shown in Table 2.
  • Example 4B Production and Evaluation of Photoelectric Conversion Element> A photoelectric conversion device was prepared and evaluated in the same manner as in Example 1B, except that the copolymer 4B obtained in Synthesis Example 4B was used instead of the copolymer 1B. The obtained results are shown in Table 2.
  • Example 5B Production and evaluation of photoelectric conversion element> A photoelectric conversion element was produced and evaluated in the same manner as in Example 1B except that the copolymer 5B obtained in Synthesis Example 5B was used instead of the copolymer 1B. The obtained results are shown in Table 2.
  • Example 6B Production and evaluation of photoelectric conversion element> A photoelectric conversion element was produced and evaluated in the same manner as in Example 1B except that the copolymer 6B obtained in Synthesis Example 6B was used instead of the copolymer 1. The obtained results are shown in Table 2.
  • Example 7 Production and evaluation of photoelectric conversion element> A photoelectric conversion element was produced and evaluated in the same manner as in Example 1B except that the copolymer 7B obtained in Synthesis Example 7B was used instead of the copolymer 1B. The obtained results are shown in Table 2.
  • Example 8B Production and evaluation of photoelectric conversion element> A photoelectric conversion element was produced and evaluated in the same manner as in Example 1B except that the copolymer 8B obtained in Synthesis Example 8B was used instead of the copolymer 1B. The obtained results are shown in Table 2.
  • Example 9B Production and evaluation of photoelectric conversion element> A photoelectric conversion element was produced and evaluated in the same manner as in Example 1B except that the copolymer 9B obtained in Synthesis Example 9B was used instead of the copolymer 1B. The obtained results are shown in Table 2.
  • Example 10B Production and evaluation of photoelectric conversion element> A photoelectric conversion element was produced and evaluated in the same manner as in Example 1B, except that the copolymer 12B obtained in Synthesis Example 9B was used instead of the copolymer 1B. The obtained results are shown in Table 2.
  • C6 represents an n-hexyl group
  • C12 represents an n-dodecyl group
  • C14 represents an n-tetradecyl group
  • H represents a hydrogen atom
  • the photoelectric conversion element according to Example 1B has higher conversion efficiency than the photoelectric conversion elements according to Reference Example 1B and Reference Example 2B.
  • the R 1 and R 4 in formula (I) it can be seen that the improved conversion efficiency of the photoelectric conversion element by a specific aliphatic hydrocarbon group. Further, it can be seen that the conversion efficiency of the photoelectric conversion elements according to Examples 2B to 9B is greatly improved compared to the photoelectric conversion element according to Example 1B.
  • R 1 and R 4 in formula (I) are specific aliphatic hydrocarbon groups
  • R 21 , R 22 , R 24 and R 25 are hydrogen atoms in formula (XV)
  • R 20 And R 23 is a branched aliphatic hydrocarbon group having a specific number of carbon atoms

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Photovoltaic Devices (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

The purpose of the present invention is to provide a photoelectric conversion element having a high conversion efficiency. Provided is a copolymer comprising repeating units represented by formula (I) and repeating units represented by formula (II) which is different from formula (I).

Description

コポリマー、光電変換素子、太陽電池及び太陽電池モジュールCopolymer, photoelectric conversion element, solar cell, and solar cell module
 本発明はコポリマー、光電変換素子、太陽電池及び太陽電池モジュールに関する。 The present invention relates to a copolymer, a photoelectric conversion element, a solar cell, and a solar cell module.
 有機太陽電池、有機EL素子、有機薄膜トランジスタ、及び有機発光センサー等の有機電子デバイスの半導体材料として、π共役高分子が用いられている。特に有機太陽電池においては、太陽光の吸収効率を向上させることが望まれており、長波長の光を吸収できるポリマーの開発が重要である。吸収波長の長波長化を達成するために、ドナー性モノマーとアクセプター性モノマーの共重合体(以後、コポリマーと称す)を光電変換素子に用いた例が報告されている。 Π-conjugated polymers are used as semiconductor materials for organic electronic devices such as organic solar cells, organic EL elements, organic thin film transistors, and organic light emitting sensors. In particular, in an organic solar cell, it is desired to improve sunlight absorption efficiency, and it is important to develop a polymer that can absorb light having a long wavelength. In order to achieve a longer absorption wavelength, an example in which a copolymer of a donor monomer and an acceptor monomer (hereinafter referred to as a copolymer) is used for a photoelectric conversion element has been reported.
 具体的には、特許文献1~3には、ナフトビスチアジアゾール単位を有するコポリマーを使用した光電変換素子が記載されている。また、非特許文献1及び2には、ナフトビスチアジアゾール単位と、ベンゾジチオフェン単位を有するコポリマーを使用した光電変換素子の例が記載されている。 Specifically, Patent Documents 1 to 3 describe photoelectric conversion elements using a copolymer having a naphthobisthiadiazole unit. Non-Patent Documents 1 and 2 describe examples of photoelectric conversion elements using a copolymer having a naphthobisthiadiazole unit and a benzodithiophene unit.
中国出願公開第102060982号公報Chinese Patent Application No. 102060982 国際公開第2013/015298号パンフレットInternational Publication No. 2013/015298 Pamphlet 国際公開第2012/133793号パンフレットInternational Publication No. 2012/133793 Pamphlet
 有機薄膜太陽電池の実用化のためには、高い変換効率が求められる。しかしながら、本発明者等の検討によると、特許文献1~3及び非特許文献1、2に記載されるコポリマーを用いた有機薄膜太陽電池では、十分な変換効率が得られない場合があることが判明した。本発明は、上記課題を解決するものであり、高い変換効率を備えた光電変換素子を提供することを目的とする。 High conversion efficiency is required for practical use of organic thin-film solar cells. However, according to the study by the present inventors, the organic thin-film solar cell using the copolymers described in Patent Documents 1 to 3 and Non-Patent Documents 1 and 2 may not obtain sufficient conversion efficiency. found. The present invention solves the above-described problems, and an object thereof is to provide a photoelectric conversion element having high conversion efficiency.
 本願発明者らは上記課題を解決すべく鋭意検討した結果、特定の繰り返し単位を有するコポリマーを用いることで、上記問題が解決できることを見出し、本発明を達成するに至った。即ち、本発明の第1の態様は以下を要旨とする。
[1]下記式(I)で表わされる繰り返し単位と、前記式(I)とは異なる下記式(II)で表わされる繰り返し単位と、を有するコポリマー。
As a result of intensive studies to solve the above problems, the present inventors have found that the above problems can be solved by using a copolymer having a specific repeating unit, and have achieved the present invention. That is, the first aspect of the present invention is summarized as follows.
[1] A copolymer having a repeating unit represented by the following formula (I) and a repeating unit represented by the following formula (II) different from the formula (I).
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
(式(I)中、X1及びX2はそれぞれ独立して周期表第16族元素から選ばれる原子を表し、R1及びR2の一方が1価の有機基で他方が水素原子またはハロゲン原子であり、R3及びR4の一方が1価の有機基で他方が水素原子またはハロゲン原子を表し、D1はドナー性構成単位を表す。式(II)中、Ar3およびAr4はそれぞれ独立して、置換基を有していてもよい芳香族基を表し、c及びdはそれぞれ独立して0以上2以下の整数を表し、Aはアクセプター性構成単位又は直接結合を表し、D2はドナー性構成単位を表す。なお、式(II)において、Aが直接結合である場合、式(II)中のc及びdはそれぞれ独立して1又は2である。)
[2]前記式(I)において、RおよびR4は独立して1価の有機基であり、RおよびRは独立して水素原子またはハロゲン原子である、[1]に記載のコポリマー。
[3]前記式(I)中、D1が下記式(IV)又は下記式(V)で表わされる構成単位であることを特徴とする[1]又は[2]に記載のコポリマー。
Figure JPOXMLDOC01-appb-C000018
(In the formula (I), X 1 and X 2 each independently represent an atom selected from Group 16 elements of the periodic table, one of R 1 and R 2 is a monovalent organic group and the other is a hydrogen atom or halogen. An atom, one of R 3 and R 4 is a monovalent organic group and the other represents a hydrogen atom or a halogen atom, and D 1 represents a donor-like structural unit, wherein Ar 3 and Ar 4 are each Independently represents an optionally substituted aromatic group, c and d each independently represent an integer of 0 or more and 2 or less, A represents an acceptor constituent unit or a direct bond, and D2 represents (It represents a donor structural unit. In the formula (II), when A is a direct bond, c and d in the formula (II) are each independently 1 or 2.)
[2] In the above formula (I), R 1 and R 4 are each independently a monovalent organic group, and R 2 and R 3 are each independently a hydrogen atom or a halogen atom. Copolymer.
[3] The copolymer according to [1] or [2], wherein in the formula (I), D1 is a structural unit represented by the following formula (IV) or the following formula (V).
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
(式(IV)中、Ar5及びAr6は、それぞれ独立して、置換基を有していてもよい芳香環を表し、X3及びX4は、それぞれ独立して、Q1(R5)(R6)、Q2(R7)、硫黄原子(S)、酸素原子(O)又は直接結合を表す。ただし、X3及びX4の一方が直接結合である場合、X3及びX4のうちの他方の基は、Q1(R5)(R6)、Q2(R7)、硫黄原子(S)又は酸素原子(O)である。なお、Q1は、周期表第14族元素から選ばれる原子を表し、Q2は、周期表第15族元素から選ばれる原子を表し、R5及びR6はそれぞれ独立して、水素原子、ハロゲン原子又は1価の有機基を表し、R7は水素原子、ハロゲン原子又は1価の有機基を表す。式(V)中、Ar7及びAr8は、それぞれ独立して、置換基を有していてもよい芳香環を表し、X5及びX6はそれぞれ独立して、Q3(R8)で表わされる基を表す。なお、Q3は、周期表第14族元素から選ばれる原子を表し、R8は水素原子、ハロゲン原子又は1価の有機基を表す。
[4]前記式(II)で表わされる繰り返し単位が下記式(VII)で表わされる繰り返し単位であることを特徴とする[1]~[3]のいずれかに記載のコポリマー。
Figure JPOXMLDOC01-appb-C000020
(In formula (IV), Ar 5 and Ar 6 each independently represent an aromatic ring optionally having a substituent, and X 3 and X 4 each independently represent Q 1 (R 5 ) (R 6 ), Q 2 (R 7 ), a sulfur atom (S), an oxygen atom (O) or a direct bond, provided that when one of X 3 and X 4 is a direct bond, X 3 and X The other group of 4 is Q 1 (R 5 ) (R 6 ), Q 2 (R 7 ), a sulfur atom (S) or an oxygen atom (O), where Q 1 is a periodic table Represents an atom selected from group 14 elements, Q 2 represents an atom selected from group 15 elements of the periodic table, and R 5 and R 6 each independently represents a hydrogen atom, a halogen atom or a monovalent organic group. represents, R 7 is a hydrogen atom,. formula represents a halogen atom or a monovalent organic group in (V), Ar 7 and Ar 8 are each independently have a substituent An aromatic ring, X 5 and X 6 each independently represent a group represented by Q 3 (R 8). Incidentally, Q 3 represents an atom selected from the periodic table group 14 element, R 8 Represents a hydrogen atom, a halogen atom or a monovalent organic group.
[4] The copolymer according to any one of [1] to [3], wherein the repeating unit represented by the formula (II) is a repeating unit represented by the following formula (VII):
Figure JPOXMLDOC01-appb-C000021
(式(VII)中、X7及びX8はそれぞれ独立して、周期表第16族元素から選ばれる原子を表し、R11~R14はそれぞれ独立して水素原子、ハロゲン原子又は1価の有機基を表し、Aはアクセプター性構成単位又は直接結合を表し、D2はドナー性構成単位を表す。)
[5]前記式(II)中のAが式(VIII)又は式(IX)で表わされる構成単位である、[1]~[4]のいずれかに記載のコポリマー。
Figure JPOXMLDOC01-appb-C000021
(In the formula (VII), X 7 and X 8 each independently represents an atom selected from Group 16 elements of the periodic table, and R 11 to R 14 each independently represents a hydrogen atom, a halogen atom or a monovalent atom. Represents an organic group, A represents an acceptor structural unit or a direct bond, and D2 represents a donor structural unit.)
[5] The copolymer according to any one of [1] to [4], wherein A in Formula (II) is a structural unit represented by Formula (VIII) or Formula (IX).
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
(式(VIII)中、Ar9は、置換基を有していてもよい芳香族炭化水素環、置換基を有していてもよい芳香族複素環、又は置換基を有していてもよい脂肪族複素環を表し、X9及びX10はそれぞれ独立して、窒素原子(N)又はQ4(R15)を表す。なお、Q4は周期表第14族元素から選ばれる原子を表し、R15は、水素原子、ハロゲン原子又は1価の有機基を表す。式(IX)中、Ar10は、置換基を有していてもよい芳香族炭化水素環、置換基を有していてもよい芳香族複素環、又は置換基を有していてもよい脂肪族複素環を表し、X11は、周期表第16族元素から選ばれる原子を表す。
[6]前記式(II)中、D2が下記式(IV)又は下記式(V)で表わされる繰り返し単位である、[1]~[5]のいずれかに記載のコポリマー。
Figure JPOXMLDOC01-appb-C000023
(In Formula (VIII), Ar 9 may have an aromatic hydrocarbon ring which may have a substituent, an aromatic heterocyclic ring which may have a substituent, or a substituent. X 9 and X 10 each independently represents a nitrogen atom (N) or Q 4 (R 15 ), wherein Q 4 represents an atom selected from Group 14 elements of the periodic table. , R 15 represents a hydrogen atom, a halogen atom or a monovalent organic group, and in formula (IX), Ar 10 has an aromatic hydrocarbon ring which may have a substituent and a substituent. An aromatic heterocyclic ring which may be substituted, or an aliphatic heterocyclic ring which may have a substituent, and X 11 represents an atom selected from Group 16 elements of the periodic table.
[6] The copolymer according to any one of [1] to [5], wherein D2 in the formula (II) is a repeating unit represented by the following formula (IV) or the following formula (V).
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
(式(IV)中、Ar5及びAr6は、それぞれ独立して、置換基を有していてもよい芳香環を表し、X3及びX4は、それぞれ独立して、Q1(R5)(R6)、Q2(R7)、硫黄原子(S)、酸素原子(O)又は直接結合を表す。ただし、X3及びX4の一方が直接結合である場合、X3及びX4のうちの他方の基は、Q1(R5)(R6)、Q2(R7)、硫黄原子(S)又は酸素原子(O)である。なお、Q1は、周期表第14族元素から選ばれる原子を表し、Q2は、周期表第15族元素から選ばれる原子を表し、R5及びR6はそれぞれ独立して、水素原子、ハロゲン原子又は1価の有機基を表し、R7は水素原子、ハロゲン原子又は1価の有機基を表す。式(V)中、Ar7及びAr8は、それぞれ独立して、置換基を有していてもよい芳香環を表し、X5及びX6はそれぞれ独立して、Q3(R8)で表わされる基を表す。なお、Q3は、周期表第14族元素から選ばれる原子を表し、R8は水素原子、ハロゲン原子又は1価の有機基を表す。)
[7]前記式(I)中、D1が下記式(VI)で表わされる繰り返し単位であり、前記式(II)中、Aが式(X)で表わされる繰り返し単位であり、D2が式(VI)で表わされる繰り返し単位である、[1]~[6]のいずれかに記載のコポリマー。
Figure JPOXMLDOC01-appb-C000025
(In formula (IV), Ar 5 and Ar 6 each independently represent an aromatic ring optionally having a substituent, and X 3 and X 4 each independently represent Q 1 (R 5 ) (R 6 ), Q 2 (R 7 ), a sulfur atom (S), an oxygen atom (O) or a direct bond, provided that when one of X 3 and X 4 is a direct bond, X 3 and X The other group of 4 is Q 1 (R 5 ) (R 6 ), Q 2 (R 7 ), a sulfur atom (S) or an oxygen atom (O), where Q 1 is a periodic table Represents an atom selected from group 14 elements, Q 2 represents an atom selected from group 15 elements of the periodic table, and R 5 and R 6 each independently represents a hydrogen atom, a halogen atom or a monovalent organic group. represents, R 7 is a hydrogen atom,. formula represents a halogen atom or a monovalent organic group in (V), Ar 7 and Ar 8 are each independently have a substituent An aromatic ring, X 5 and X 6 each independently represent a group represented by Q 3 (R 8). Incidentally, Q 3 represents an atom selected from the periodic table group 14 element, R 8 Represents a hydrogen atom, a halogen atom or a monovalent organic group.)
[7] In the formula (I), D1 is a repeating unit represented by the following formula (VI); in the formula (II), A is a repeating unit represented by the formula (X); The copolymer according to any one of [1] to [6], which is a repeating unit represented by VI).
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
(式(X)中、R16及びR17は、水素原子、ハロゲン原子又は1価の有機基を表す。式(VI)中、R9及びR10はそれぞれ独立して、水素原子、ハロゲン原子又は1価の有機基を表す。)
[8]前記式(I)中、R1、R4がそれぞれ独立して、炭素数1以上20以下の脂肪族炭化水素基である、[1]~[7]のいずれかに記載のコポリマー。
[9]コポリマー中、前記式(II)で表わされる繰り返し単位数に対する前記式(I)で表わされる繰り返し単位数の比率が0.1以上9以下である、[1]~[8]のいずれかに記載のコポリマー。
[10]重量平均分子量が10,000以上300,000以下である、[1]~[9]のいずれかに記載のコポリマー。
[11]基材上に、一対の電極と、該一対の電極間に活性層と、を有する光電変換素子であって、前記活性層が[1]~[10]のいずれかに記載のコポリマーを含有することを特徴とする光電変換素子。[12][11]に記載の光電変換素子を有する太陽電池モジュール。
Figure JPOXMLDOC01-appb-C000027
(In Formula (X), R 16 and R 17 represent a hydrogen atom, a halogen atom or a monovalent organic group. In Formula (VI), R 9 and R 10 are each independently a hydrogen atom or a halogen atom. Or represents a monovalent organic group.)
[8] The copolymer according to any one of [1] to [7], wherein in formula (I), R 1 and R 4 are each independently an aliphatic hydrocarbon group having 1 to 20 carbon atoms. .
[9] In any one of [1] to [8], in the copolymer, the ratio of the number of repeating units represented by the formula (I) to the number of repeating units represented by the formula (II) is 0.1 or more and 9 or less A copolymer according to any of the above.
[10] The copolymer according to any one of [1] to [9], which has a weight average molecular weight of 10,000 or more and 300,000 or less.
[11] A photoelectric conversion element having a pair of electrodes on a substrate and an active layer between the pair of electrodes, wherein the active layer is the copolymer according to any one of [1] to [10] The photoelectric conversion element characterized by containing. [12] A solar cell module having the photoelectric conversion element according to [11].
 また、本発明は、以下の第2の態様を提供する。
[13]下記式(I)で表わされる繰り返し単位を有するコポリマー。
The present invention also provides the following second aspect.
[13] A copolymer having a repeating unit represented by the following formula (I).
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
 (式(I)中、X1及びX2はそれぞれ独立して周期表第16族元素から選ばれる原子を表し、R1及びR4はそれぞれ独立して、炭素数9以上の直鎖状の脂肪族炭化水素基、又は主鎖の炭素数が9以上であり、かつ側鎖の炭素数が5以下である分岐状の脂肪族炭化水素基を表し、R2及びR3はそれぞれ独立して、水素原子又はハロゲン原子である。D1は式(IV)又は式(V)で表される構成単位を表す。) (In Formula (I), X 1 and X 2 each independently represent an atom selected from Group 16 elements of the Periodic Table, and R 1 and R 4 each independently represent a straight chain having 9 or more carbon atoms. An aliphatic hydrocarbon group, or a branched aliphatic hydrocarbon group having 9 or more carbon atoms in the main chain and 5 or less carbon atoms in the side chain; R 2 and R 3 are each independently D1 represents a structural unit represented by formula (IV) or formula (V).
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
 (式(IV)中、Ar5及びAr6は、それぞれ独立して、置換基を有していてもよい芳香環を表す。X3及びX4は、それぞれ独立して、Q1(R5)(R6)、Q2(R7)、硫黄原子(S)、酸素原子(O)又は直接結合を表す。ただし、X3及びX4の一方が直接結合である場合、X3及びX4のうちの他方の基は、Q1(R5)(R6)、Q2(R7)、硫黄原子(S)又は酸素原子(O)である。Q1は、周期表第14族元素から選ばれる原子を表し、R5及びR6はそれぞれ独立して水素原子、ハロゲン原子又は1価の有機基を表す。Q2は、周期表第15族元素から選ばれる原子を表し、R7は水素原子、ハロゲン原子又は1価の有機基を表す。) (In formula (IV), Ar 5 and Ar 6 each independently represent an aromatic ring optionally having a substituent. X 3 and X 4 each independently represent Q 1 (R 5 ) (R 6 ), Q 2 (R 7 ), a sulfur atom (S), an oxygen atom (O) or a direct bond, provided that when one of X 3 and X 4 is a direct bond, X 3 and X The other group of 4 is Q 1 (R 5 ) (R 6 ), Q 2 (R 7 ), a sulfur atom (S) or an oxygen atom (O) Q 1 is group 14 of the periodic table R 5 and R 6 each independently represents a hydrogen atom, a halogen atom or a monovalent organic group, Q 2 represents an atom selected from Group 15 elements of the periodic table, 7 represents a hydrogen atom, a halogen atom or a monovalent organic group.)
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
 (式(V)中、Ar7及びAr8は、それぞれ独立して、置換基を有していてもよい芳香環を表す。X5及びX6は、それぞれQ3(R8)で表される基を表す。Q3は周期表第14族元素から選ばれる原子を表し、R8は水素原子、ハロゲン原子又は1価の有機基を表す。)
[14]前記式(I)中、D1は下記式(III)で表される構成単位である、[13]に記載のコポリマー。
(In the formula (V), Ar 7 and Ar 8 each independently represents an aromatic ring optionally having a substituent. X 5 and X 6 are each represented by Q 3 (R 8 ). Q 3 represents an atom selected from Group 14 elements of the periodic table, and R 8 represents a hydrogen atom, a halogen atom, or a monovalent organic group.)
[14] The copolymer according to [13], wherein D1 in the formula (I) is a structural unit represented by the following formula (III).
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
 (式(III)中、X12及びX13は、それぞれ独立して、周期表第16族元素から選ばれる原子を表す。R9及びR10はそれぞれ独立して水素原子、ハロゲン原子又は1価の有機基を表す。)
[15]前記式(III)で表される構成単位が式(XV)で表される構成単位である、[14]に記載のコポリマー。
(In formula (III), X 12 and X 13 each independently represent an atom selected from Group 16 elements of the periodic table. R 9 and R 10 each independently represent a hydrogen atom, a halogen atom or a monovalent atom. Represents an organic group of
[15] The copolymer according to [14], wherein the structural unit represented by the formula (III) is a structural unit represented by the formula (XV).
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
 (式(XV)中、X12~X15は、それぞれ独立して、周期表第16族元素から選択される原子を表す。R20~R25は、それぞれ独立して、水素原子、ハロゲン原子又は1価の有機基を表し、R20~R22のうち一つの基が1価の有機基であり、残りの2つの基はそれぞれ独立に水素原子又はハロゲン原子であり、R23~R25のうち一つの基が1価の有機基であり、残りの2つの基はそれぞれ独立に水素原子又はハロゲン原子である。)
[16]基材上に、一対の電極と、該一対の電極間に活性層と、を有する光電変換素子であって、前記活性層が[13]~[15]のいずれかに記載のコポリマーを含有する、光電変換素子。
[17][16]に記載の光電変換素子を有する太陽電池モジュール。
(In the formula (XV), X 12 to X 15 each independently represents an atom selected from Group 16 elements of the periodic table. R 20 to R 25 each independently represents a hydrogen atom or a halogen atom. Or a monovalent organic group, one of R 20 to R 22 is a monovalent organic group, and the remaining two groups are each independently a hydrogen atom or a halogen atom, and R 23 to R 25 One of the groups is a monovalent organic group, and the remaining two groups are each independently a hydrogen atom or a halogen atom.)
[16] A photoelectric conversion element having a pair of electrodes on a substrate and an active layer between the pair of electrodes, wherein the active layer is the copolymer according to any one of [13] to [15] Containing a photoelectric conversion element.
[17] A solar cell module having the photoelectric conversion element according to [16].
 本発明の第1の態様により、高い変換効率を備えた光電変換素子を提供することができる。さらに、本発明の第1の態様により、高い耐光性を備えた光電変換素子を提供することができる。また、本発明の第2の態様により、高い変換効率を備えた光電変換素子を提供することができる。 According to the first aspect of the present invention, a photoelectric conversion element having high conversion efficiency can be provided. Furthermore, according to the first aspect of the present invention, a photoelectric conversion element having high light resistance can be provided. In addition, according to the second aspect of the present invention, a photoelectric conversion element having high conversion efficiency can be provided.
本発明の一実施形態としての光電変換素子の構成を模式的に示す断面図である。It is sectional drawing which shows typically the structure of the photoelectric conversion element as one Embodiment of this invention. 本発明の一実施形態としての太陽電池の構成を模式的に示す断面図である。It is sectional drawing which shows typically the structure of the solar cell as one Embodiment of this invention. 本発明の一実施形態としての太陽電池モジュールの構成を模式的に示す断面図である。It is sectional drawing which shows typically the structure of the solar cell module as one Embodiment of this invention.
 以下に、本発明の実施の形態を詳細に説明する。以下に記載する構成要件の説明は、本発明の実施形態の一例(代表例)であり、本発明はその要旨を超えない限り、これらの内容に特定はされない。すなわち、本明細書に記載された各実施形態は、その趣旨を逸脱しない範囲内で、様々に変形することができ、かつ、実施可能な範囲内で、他の実施形態により説明された特徴と組み合わせることができる。 Hereinafter, embodiments of the present invention will be described in detail. The description of the constituent requirements described below is an example (representative example) of an embodiment of the present invention, and the present invention is not specified in these contents unless it exceeds the gist. That is, each embodiment described in the present specification can be variously modified within the scope not departing from the gist thereof, and within the feasible range, the features described by the other embodiments. Can be combined.
<1.本発明の第1の態様に係るコポリマー>
 本発明の一実施形態に係るコポリマー(第1の態様に係るコポリマー)は、下記式(I)で表わされる繰り返し単位と、下記式(I)とは異なる下記式(II)で表される繰り返し単位と、を有する。なお、本発明において、式(I)とは異なる式(II)で表される繰り返し単位とは、式(II)で表わされる繰り返し単位が式(I)で表わされる繰り返し単位と同一の繰り返し単位ではないことを意味する。すなわち、本発明において式(I)で表される繰り返し単位と式(II)で表される繰り返し単位が置換基のみ異なる場合も、式(I)で表される繰り返し単位と式(II)で表される繰り返し単位とは異なる繰り返し単位である。
<1. Copolymer according to the first aspect of the present invention>
A copolymer according to an embodiment of the present invention (a copolymer according to the first aspect) includes a repeating unit represented by the following formula (I) and a repeating unit represented by the following formula (II) different from the following formula (I). Unit. In the present invention, the repeating unit represented by the formula (II) different from the formula (I) means that the repeating unit represented by the formula (II) is the same as the repeating unit represented by the formula (I). Means not. That is, in the present invention, even when the repeating unit represented by the formula (I) and the repeating unit represented by the formula (II) differ only in substituents, the repeating unit represented by the formula (I) and the formula (II) The repeating unit is different from the represented repeating unit.
 なお、本発明の一実施形態に係るコポリマーが、式(I)で表わされる繰り返し単位と、式(II)で表わされる繰り返し単位とを有することにより光電変換素子の変換効率が向上することは下記の理由が考えられる。すなわち、コポリマーが式(I)で表わされる繰り返し単位のみを有する場合、溶解性が低く、さらには特定の吸収波長領域範囲の光しか吸収できないために、高い変換効率を得ることが困難な傾向がある。一方で、コポリマーが式(I)で表わされる繰り返し単位に加えて、式(II)で表わされる繰り返し単位を有することにより、溶解性が向上するとともに、より広い波長領域の光を吸収することが可能になるために高い変換効率を得ることができる。 In addition, the copolymer according to an embodiment of the present invention has a repeating unit represented by the formula (I) and a repeating unit represented by the formula (II), and the conversion efficiency of the photoelectric conversion element is improved as follows. The reason can be considered. That is, when the copolymer has only the repeating unit represented by the formula (I), the solubility is low, and furthermore, only light in a specific absorption wavelength region range can be absorbed, so that it tends to be difficult to obtain high conversion efficiency. is there. On the other hand, the copolymer has a repeating unit represented by the formula (II) in addition to the repeating unit represented by the formula (I), thereby improving the solubility and absorbing light in a wider wavelength region. In order to be possible, high conversion efficiency can be obtained.
 また、有機薄膜太陽電池は、太陽光に晒される環境下での使用が想定されるために、有機薄膜太陽電池の実用化のためには変換効率の向上のみならず、耐光性の向上が望まれる。しかしながら、本発明者等の検討によると、式(I)で表される繰り返し単位を有するコポリマーを用いた光電変換素子であっても、R~Rの組み合わせや、さらに含まれる繰り返し単位によっては、光が照射されると、素子が劣化してしまい、変換効率が低下してしまう可能性があることが判明した。これは主に、光電変換素子を構成する上記コポリマーが光により劣化してしまうためであると考えられる。本発明の第1の態様のコポリマーは、コポリマーが式(I)で表わされる繰り返し単位に加えて、式(II)で表わされる繰り返し単位を有すること、かつR1及びR2の一方が1価の有機基で他方が水素原子またはハロゲン原子であり、R3及びR4の一方が1価の有機基で他方が水素原子またはハロゲン原子であることにより、光が照射された後でも、変換効率が低下しにくく、高い耐光性を有する光電変換素子を提供することができる。このメカニズムは明らかではないが以下の理由が考えられる。式(I)で表わされる繰り返し単位に加えて、式(II)で表わされる繰り返し単位を加えることで、コポリマーの結晶性及び/又はコポリマーの剛直性が緩和され、緻密な膜となり易く、その結果、酸素や水分が膜中に入り込みにくくなるために大気下における光酸化に対する耐性が向上するものと考えられる。また、光照射下において、膜中のコポリマーの凝集の進行を抑制することができるものと考えられる。さらに、R1及びR2の一方が1価の有機基で他方が水素原子またはハロゲン原子であり、R3及びR4の一方が1価の有機基で他方が水素原子またはハロゲン原子であることにより、コポリマー中の立体障害が抑えられるために平面性を取りやすくなる。以上の理由により、耐光性の高いコポリマーが得られ、耐光性の高い光電変換素子を提供できるものと考えられる。さらには、コポリマーの耐光性が高いために、光電変換素子を製造する際において、光照射環境下においても、生産性高く製造することができる。 In addition, since organic thin-film solar cells are expected to be used in environments exposed to sunlight, it is desirable to improve not only conversion efficiency but also light resistance for practical use of organic thin-film solar cells. It is. However, according to the study by the present inventors, even a photoelectric conversion element using a copolymer having a repeating unit represented by the formula (I) depends on the combination of R 1 to R 4 and the repeating unit contained therein. It has been found that when light is irradiated, the element deteriorates and conversion efficiency may decrease. This is presumably because the copolymer constituting the photoelectric conversion element is deteriorated by light. In the copolymer of the first aspect of the present invention, the copolymer has a repeating unit represented by the formula (II) in addition to the repeating unit represented by the formula (I), and one of R 1 and R 2 is monovalent. The other is a hydrogen atom or a halogen atom, one of R 3 and R 4 is a monovalent organic group and the other is a hydrogen atom or a halogen atom, so that the conversion efficiency can be improved even after irradiation with light. Can be provided, and a photoelectric conversion element having high light resistance can be provided. Although this mechanism is not clear, the following reasons can be considered. By adding the repeating unit represented by the formula (II) in addition to the repeating unit represented by the formula (I), the crystallinity of the copolymer and / or the rigidity of the copolymer is relaxed, and a dense film is easily obtained. It is considered that resistance to photo-oxidation in the atmosphere is improved because oxygen and moisture hardly enter the film. Further, it is considered that the progress of aggregation of the copolymer in the film can be suppressed under light irradiation. Furthermore, one of R 1 and R 2 is a monovalent organic group and the other is a hydrogen atom or a halogen atom, one of R 3 and R 4 is a monovalent organic group and the other is a hydrogen atom or a halogen atom. Therefore, the steric hindrance in the copolymer can be suppressed, so that flatness can be easily obtained. For the above reasons, it is considered that a copolymer having high light resistance can be obtained and a photoelectric conversion element having high light resistance can be provided. Furthermore, since the light resistance of the copolymer is high, it can be produced with high productivity even in a light irradiation environment when producing a photoelectric conversion element.
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
 式(I)中、X1及びX2はそれぞれ独立して周期表第16族元素から選ばれる原子を表し、具体的には、酸素原子(O)、硫黄原子(S)、セレン原子(Se)又はテルル原子(Te)が挙げられる。なかでも、X1及びX2は、良好な半導体特性を示すことから硫黄原子(S)であることが好ましい。 In formula (I), X 1 and X 2 each independently represent an atom selected from Group 16 elements of the periodic table. Specifically, oxygen atom (O), sulfur atom (S), selenium atom (Se) ) Or tellurium atom (Te). Of these, X 1 and X 2 are preferably since it shows good semiconductor properties is a sulfur atom (S).
 式(I)中、R1及びR2の一方が1価の有機基で他方が水素原子またはハロゲン原子であり、R3及びR4の一方が1価の有機基で他方が水素原子またはハロゲン原子を表す。なお、本発明において1価の有機基とは、1以上の炭素原子を有する1価の基を意味する。1価の有機基の炭素数は特段の制限はないが、通常、1以上であり、溶解性を向上させるために4以上であることが好ましく、6以上であることがさらに好ましく、10以上であることが特に好ましく、一方、隣り合う構成単位との立体障害が大きくなるのを防ぐために、30以下であることが好ましく、20以下であることがより好ましく、18以下であることが特に好ましい。 In the formula (I), one of R 1 and R 2 is a monovalent organic group and the other is a hydrogen atom or a halogen atom, one of R 3 and R 4 is a monovalent organic group and the other is a hydrogen atom or a halogen Represents an atom. In the present invention, the monovalent organic group means a monovalent group having one or more carbon atoms. The number of carbon atoms of the monovalent organic group is not particularly limited, but is usually 1 or more, preferably 4 or more, more preferably 6 or more, in order to improve solubility, 10 or more. On the other hand, it is preferably 30 or less, more preferably 20 or less, and particularly preferably 18 or less in order to prevent an increase in steric hindrance between adjacent structural units.
 1価の有機基の具体例としては、特段の制限はないが、溶解性とコポリマー間のπスタック性を向上させるために、鎖状の脂肪族炭化水素基、アルコキシ基、アルキルカルボニル基、アルコキシカルボニル基、又はアルキルチオ基が挙げられる。 Specific examples of the monovalent organic group include, but are not limited to, a chain aliphatic hydrocarbon group, an alkoxy group, an alkylcarbonyl group, an alkoxy group in order to improve solubility and π-stackability between copolymers. Examples include a carbonyl group or an alkylthio group.
 鎖状の脂肪族炭化水素基は、直鎖状の脂肪族炭化水素基、又は分岐状の脂肪族炭化水素基が挙げられる。なお、脂肪族炭化水素基を構成する炭素原子の数に特段の制限はないが、通常、1以上であり、溶解性を向上させるために4以上であることが好ましく、6以上であることがさらに好ましく、10以上であることが特に好ましく、一方、隣り合う構成単位との立体障害が大きくなるのを防ぐために、30以下であることが好ましく、20以下であることがより好ましく、18以下であることが特に好ましい。 Examples of the chain aliphatic hydrocarbon group include a linear aliphatic hydrocarbon group and a branched aliphatic hydrocarbon group. The number of carbon atoms constituting the aliphatic hydrocarbon group is not particularly limited, but is usually 1 or more, preferably 4 or more, and 6 or more in order to improve solubility. More preferably, it is particularly preferably 10 or more, and on the other hand, in order to prevent an increase in steric hindrance between adjacent structural units, it is preferably 30 or less, more preferably 20 or less, and 18 or less. It is particularly preferred.
 直鎖状の脂肪族炭化水素基は、直鎖アルキル基、直鎖アルケニル基、又は直鎖アルキニル基が挙げられる。 Examples of the linear aliphatic hydrocarbon group include a linear alkyl group, a linear alkenyl group, and a linear alkynyl group.
 直鎖アルキル基は、特段の制限はないが、例えば、n-ブチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-デシル基、n-ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基又はオクタデシル基が挙げられる。 The straight-chain alkyl group is not particularly limited, but for example, n-butyl group, n-hexyl group, n-heptyl group, n-octyl group, n-decyl group, n-dodecyl group, tridecyl group, tetradecyl group , Pentadecyl group, hexadecyl group, heptadecyl group or octadecyl group.
 直鎖アルケニル基は、特段の制限はないが、例えば、5-ヘキセニル基、7-オクテニル基、11-ドデセニル基、又は12-トリデセニル基が挙げられる。 The linear alkenyl group is not particularly limited, and examples thereof include a 5-hexenyl group, a 7-octenyl group, an 11-dodecenyl group, and a 12-tridecenyl group.
 直鎖アルキニル基は、特段の制限はないが、5-ヘキシニル基、7-オクチニル基、9-デシニル基、又は11-ドデシニル基が挙げられる。 The linear alkynyl group is not particularly limited, and examples thereof include a 5-hexynyl group, a 7-octynyl group, a 9-decynyl group, and an 11-dodecynyl group.
 分岐状の脂肪族炭化水素基は、分岐アルキル基、分岐アルケニル基、又は分岐アルキニル基が挙げられる。 Examples of the branched aliphatic hydrocarbon group include a branched alkyl group, a branched alkenyl group, and a branched alkynyl group.
 分岐アルキル基は、分岐1級アルキル基、分岐2級アルキル基又は分岐3級アルキル基が挙げられる。分岐1級アルキル基とは、遊離原子価を有する炭素原子に結合する水素原子が2つである分岐アルキル基を意味する。分岐2級アルキル基とは、遊離原子価を有する炭素原子に結合する水素原子が1つである分岐アルキル基を意味する。また分岐3級アルキル基とは、遊離原子価を有する炭素原子に結合する水素原子が無い分岐アルキル基を意味する。ここで、遊離原子価とは、有機化学・生化学命名法(上)(改訂第2版、南江堂、1992年発行)に記載のとおり、他の遊離原子価と結合を形成できるものをいう。 Examples of the branched alkyl group include a branched primary alkyl group, a branched secondary alkyl group, and a branched tertiary alkyl group. The branched primary alkyl group means a branched alkyl group having two hydrogen atoms bonded to a carbon atom having a free valence. The branched secondary alkyl group means a branched alkyl group having one hydrogen atom bonded to a carbon atom having a free valence. The branched tertiary alkyl group means a branched alkyl group having no hydrogen atom bonded to a carbon atom having a free valence. Here, the free valence refers to a substance that can form a bond with another free valence as described in the organic chemistry / biochemical nomenclature (above) (Revised 2nd edition, Nankodo, 1992).
 分岐1級アルキル基は、特段の制限はないが、例えば、2-エチルヘキシル基2-ブチルオクチル基、3,7-ジメチルオクチル基、2-ヘキシルデシル基、又は2-デシルテトラデシル基が挙げられる。 The branched primary alkyl group is not particularly limited, and examples thereof include 2-ethylhexyl group, 2-butyloctyl group, 3,7-dimethyloctyl group, 2-hexyldecyl group, and 2-decyltetradecyl group. .
 分岐2級アルキル基は、特段の制限はないが、例えば、イソプロピル基、3-エチル-1,5-ジメチルノニル基又は1-プロピルヘプチル基が挙げられる。 The branched secondary alkyl group is not particularly limited, and examples thereof include isopropyl group, 3-ethyl-1,5-dimethylnonyl group, and 1-propylheptyl group.
 分岐3級アルキル基は、特段の制限はないが、例えば、t-ブチル基、1-ブチル-1-エチルペンチル基、1-ブチル-1-メチルペンチル基、1-エチル-1-メチルヘキシル基、1-メチル-1-プロピルペンチル基、1-エチル-1-メチルプロピル基又は1,1,2,2-テトラメチルプロピル基が挙げられる。 The branched tertiary alkyl group is not particularly limited, and examples thereof include a t-butyl group, a 1-butyl-1-ethylpentyl group, a 1-butyl-1-methylpentyl group, and a 1-ethyl-1-methylhexyl group. 1-methyl-1-propylpentyl group, 1-ethyl-1-methylpropyl group or 1,1,2,2-tetramethylpropyl group.
 分岐アルケニル基は、特段の制限はないが、例えば、2-メチル-2-プロペニル基、3-メチル-3-ブテニル基、4-メチル-2-ヘキセニル基が挙げられる。 The branched alkenyl group is not particularly limited, and examples thereof include a 2-methyl-2-propenyl group, a 3-methyl-3-butenyl group, and a 4-methyl-2-hexenyl group.
 分岐アルキニル基は、特段の制限はないが、例えば、1-メチル-2-プロペニル基、2-メチル-3-ブテニル基、4-メチル-2-ヘキセニル基等が挙げられる。 The branched alkynyl group is not particularly limited, and examples thereof include 1-methyl-2-propenyl group, 2-methyl-3-butenyl group, 4-methyl-2-hexenyl group and the like.
 アルコキシ基は、特段の制限はないが、ヘキシルオキシ、デシルオキシ基、ドデシルオキシ基等が挙げられる。 The alkoxy group is not particularly limited, but includes hexyloxy, decyloxy group, dodecyloxy group and the like.
 アルキルカルボニル基は、特段の制限はないが、ヘキサノイル基、デカノイル基、ドデカノイル基等が挙げられる。 The alkylcarbonyl group is not particularly limited, and examples thereof include a hexanoyl group, a decanoyl group, and a dodecanoyl group.
 アルコキシカルボニル基は、特段の制限はないが、ヘキシルオキシカルボニル基、デシルオキシカルボニル基、ドデシルオキシカルボニル基等が挙げられる。 The alkoxycarbonyl group is not particularly limited, and examples thereof include a hexyloxycarbonyl group, a decyloxycarbonyl group, and a dodecyloxycarbonyl group.
 アルキルチオ基は、特段の制限はないが、チオへキシル基、チオデシル基、チオドデシル基等が挙げられる。 The alkylthio group is not particularly limited, and examples thereof include a thiohexyl group, a thiodecyl group, and a thiododecyl group.
 なお、上述の、鎖状の脂肪族炭化水素基、アルコキシ基、アルコキシカルボニル基、アルキルカルボニル基、及びアルキルチオ基はさらに置換基を有していてもよい。当該置換基は、特段の制限はないが、鎖状の脂肪族炭化水素基、アルコキシ基、アルコキシカルボニル基、アルキルカルボニル基、アルキルチオ基又はハロゲン原子が挙げられる。なお、当該置換基を構成する炭素原子及びヘテロ原子の総数は、6以下であることが好ましく、4以下であることが好ましく、2以下であることが特に好ましい。また、2種以上の置換基を有していてもよい。 The above-mentioned chain aliphatic hydrocarbon group, alkoxy group, alkoxycarbonyl group, alkylcarbonyl group, and alkylthio group may further have a substituent. The substituent is not particularly limited, and examples thereof include a chain aliphatic hydrocarbon group, an alkoxy group, an alkoxycarbonyl group, an alkylcarbonyl group, an alkylthio group, or a halogen atom. In addition, the total number of carbon atoms and hetero atoms constituting the substituent is preferably 6 or less, more preferably 4 or less, and particularly preferably 2 or less. Moreover, you may have 2 or more types of substituents.
 これらのなかでも、隣り合うナフトビスチアジアゾール単位との立体障害が大きくなるのを防ぎ、高いπスタック性を維持して変換効率を向上させるために、R及びR4がそれぞれ1価の有機基であり、R及びRが水素原子またはハロゲン原子であることが好ましい。また、1価の有機基は、コポリマーの溶解性を向上させるために置換基を有していてもよい鎖状の脂肪族炭化水素基であることが好ましい。すなわち、R及びR4が置換基を有していてもよい鎖状の脂肪族炭化水素基であり、かつR及びRが水素原子またはハロゲン原子である組み合わせが好ましい。なかでも、R及びR4が置換基を有していてもよい炭素数4以上30以下の鎖状の脂肪族炭化水素基であり、かつR及びRが水素原子またはハロゲン原子である組み合わせがさらに好ましく、R及びR4が置換基を有していてもよい炭素数4以上30以下の直鎖アルキル基であり、かつR及びRが水素原子またはハロゲン原子である組み合わせが特に好ましく、R及びR4が炭素数8以上20以下の直鎖アルキル基であることが最も好ましい。 Among these, R 1 and R 4 are each a monovalent organic group in order to prevent an increase in steric hindrance with adjacent naphthobisthiadiazole units and to maintain a high π stacking property to improve conversion efficiency. And R 2 and R 3 are preferably a hydrogen atom or a halogen atom. The monovalent organic group is preferably a chain aliphatic hydrocarbon group which may have a substituent in order to improve the solubility of the copolymer. That is, a combination in which R 1 and R 4 are a chain-like aliphatic hydrocarbon group which may have a substituent, and R 2 and R 3 are a hydrogen atom or a halogen atom is preferable. Among them, R 1 and R 4 are a chain aliphatic hydrocarbon group having 4 to 30 carbon atoms which may have a substituent, and R 2 and R 3 are a hydrogen atom or a halogen atom. A combination is more preferred, wherein R 1 and R 4 are a linear alkyl group having 4 to 30 carbon atoms which may have a substituent, and R 2 and R 3 are a hydrogen atom or a halogen atom. Particularly preferably, R 1 and R 4 are most preferably a linear alkyl group having 8 to 20 carbon atoms.
 式(I)中、D1は、ドナー性構成単位を表す。なお、ドナー性構成単位とは、イオン化ポテンシャルが小さく電子を供与する傾向の強い構成単位であり、置換基を有していてもよい芳香族基である。具体的に、ドナー性構成単位D1は、前記式(I)中のナフトビスチアジアゾール単位よりもイオン化ポテンシャル及び電子親和力が小さい構成単位である。すなわち、本発明において、ドナー性構成単位D1は、前記式(I)中のアクセプター性構成単位として機能するナフトビスチアジアゾール単位よりも高いHOMOエネルギー準位及び高いLUMOエネルギー準位を有する構成単位である。なお、アクセプター性構成単位及びドナー性構成単位のHOMOエネルギー準位及びLUMOエネルギー準位は光電子収量分光(PYS)測定、紫外光電子分光(UPS)測定、逆光電子分光(IPES)測定及びサイクリックボルタンメトリー測定等により実験的に見積もることができる他、分子軌道法(MO法)及び密度半関数法(DFT法)等の量子化学計算により算出することができる。なお、アクセプター性構成単位及びドナー性構成単位のHOMOエネルギー準位及びLUMOエネルギー準位を算出する際は、それぞれの構成単位の末端部分を水素原子で置換させて算出することとする。 In formula (I), D1 represents a donor structural unit. The donor structural unit is a structural unit having a small ionization potential and a strong tendency to donate electrons, and is an aromatic group which may have a substituent. Specifically, the donor structural unit D1 is a structural unit having a smaller ionization potential and electron affinity than the naphthobisthiadiazole unit in the formula (I). That is, in the present invention, the donor structural unit D1 is a structural unit having a higher HOMO energy level and a higher LUMO energy level than the naphthobisthiadiazole unit functioning as the acceptor structural unit in the formula (I). . The HOMO energy level and LUMO energy level of the acceptor structural unit and the donor structural unit are measured by photoelectron yield spectroscopy (PYS), ultraviolet photoelectron spectroscopy (UPS), inverse photoelectron spectroscopy (IPES), and cyclic voltammetry. In addition to being able to estimate experimentally, it can be calculated by quantum chemical calculation such as molecular orbital method (MO method) and density half function method (DFT method). Note that, when calculating the HOMO energy level and the LUMO energy level of the acceptor structural unit and the donor structural unit, the terminal part of each structural unit is replaced with a hydrogen atom.
 なかでも、コポリマーの剛直性を緩和し、コポリマーどうしを規則正しく配列させるために、ドナー性構成単位D1はそれぞれ下記式(IV)又は下記式(V)で表わされる構成単位であることが好ましい。 Among them, in order to alleviate the rigidity of the copolymer and regularly arrange the copolymers, the donor structural unit D1 is preferably a structural unit represented by the following formula (IV) or the following formula (V).
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
 式(IV)中、Ar5およびAr6は、それぞれ独立して、置換基を有していてもよい芳香環を表す。芳香環は、芳香族炭化水素環又は芳香族複素環を表す。 In formula (IV), Ar 5 and Ar 6 each independently represents an aromatic ring which may have a substituent. The aromatic ring represents an aromatic hydrocarbon ring or an aromatic heterocyclic ring.
 芳香族炭化水素環は、特段の制限はないが、環を構成する炭素数が6以上30以下の芳香族炭化水素環が好ましい。具体的には、ベンゼン環等の単環式の芳香族炭化水素環;ナフタレン環、インダン環、インデン環、フェナントレン環、フルオレン環、アントラセン環、アズレン環、ピレン環、ペリレン環等の縮合多環式の芳香族炭化水素環が挙げられる。なかでも、ベンゼン環又はナフタレン環が好ましい。 The aromatic hydrocarbon ring is not particularly limited, but is preferably an aromatic hydrocarbon ring having 6 to 30 carbon atoms constituting the ring. Specifically, monocyclic aromatic hydrocarbon rings such as benzene rings; condensed polycyclic rings such as naphthalene rings, indane rings, indene rings, phenanthrene rings, fluorene rings, anthracene rings, azulene rings, pyrene rings, and perylene rings An aromatic hydrocarbon ring of the formula Of these, a benzene ring or a naphthalene ring is preferable.
 芳香族複素環は、特段の制限はないが、環を構成する原子の数が3以上30以下の芳香族複素環が好ましい。具体的には、チオフェン環、フラン環、ピリジン環、ピリミジン環、チアゾール環、オキサゾール環、トリアゾール環等の単環式の芳香族複素環;又はチエノチオフェン環、ベンゾチオフェン環、ベンゾフラン環、ベンゾチアゾール環、ベンゾオキサゾール環、ベンゾトリアゾール環、チアジアゾロピリジン環等の縮合多環式の芳香族複素環が挙げられる。なかでも、チオフェン環、ピリジン環、ピリミジン環、チアゾール環、チアジアゾール環、オキサゾール環、オキサジアゾール環又はトリアゾール環が好ましい。 The aromatic heterocyclic ring is not particularly limited, but is preferably an aromatic heterocyclic ring having 3 to 30 atoms constituting the ring. Specifically, monocyclic aromatic heterocycles such as thiophene ring, furan ring, pyridine ring, pyrimidine ring, thiazole ring, oxazole ring, triazole ring; or thienothiophene ring, benzothiophene ring, benzofuran ring, benzothiazole Examples thereof include condensed polycyclic aromatic heterocycles such as a ring, a benzoxazole ring, a benzotriazole ring, and a thiadiazolopyridine ring. Among these, a thiophene ring, a pyridine ring, a pyrimidine ring, a thiazole ring, a thiadiazole ring, an oxazole ring, an oxadiazole ring, or a triazole ring is preferable.
 芳香族炭化水素環及び芳香族複素環が有していてもよい置換基は特段の制限はなく、ハロゲン原子又は1価の有機基が挙げられる。1価の有機基を構成する炭素原子は、特段の制限はないが、1以上30以下であることが好ましい。1価の有機基の具体例としては、脂肪族炭化水素基、アルコキシ基、アルコキシカルボニル基、アルキルカルボニル基、アルキルチオ基、芳香族炭化水素基、脂肪族複素環基又は芳香族複素環基が挙げられる。 The substituent that the aromatic hydrocarbon ring and aromatic heterocyclic ring may have is not particularly limited, and examples thereof include a halogen atom or a monovalent organic group. The carbon atom constituting the monovalent organic group is not particularly limited, but is preferably 1 or more and 30 or less. Specific examples of the monovalent organic group include an aliphatic hydrocarbon group, an alkoxy group, an alkoxycarbonyl group, an alkylcarbonyl group, an alkylthio group, an aromatic hydrocarbon group, an aliphatic heterocyclic group, or an aromatic heterocyclic group. It is done.
 上記式(IV)中、X3及びX4は、それぞれ独立して、Q1(R5)(R6)、Q2(R7)、硫黄原子(S)、酸素原子(O)又は直接結合を表す。ただし、X3及びX4の一方が直接結合である場合、X3及びX4のうちの他方の基は、Q1(R5)(R6)、Q2(R7)、硫黄原子(S)又は酸素原子(O)である。なお、Q1は、周期表第14族元素から選ばれる原子を表し、好ましくは炭素原子(C)、珪素原子(Si)、又はゲルマニウム原子(Ge)である。Q2は、周期表第15族元素から選ばれる原子を表し、好ましくは窒素原子(N)又はリン原子(P)が挙げられる。 In the above formula (IV), X 3 and X 4 are each independently Q 1 (R 5 ) (R 6 ), Q 2 (R 7 ), sulfur atom (S), oxygen atom (O) or directly Represents a bond. However, when one of X 3 and X 4 is a direct bond, the other group of X 3 and X 4 is Q 1 (R 5 ) (R 6 ), Q 2 (R 7 ), a sulfur atom ( S) or an oxygen atom (O). Q1 represents an atom selected from Group 14 elements of the periodic table, preferably a carbon atom (C), a silicon atom (Si), or a germanium atom (Ge). Q 2 represents an atom selected from Group 15 elements of the periodic table, preferably nitrogen atom (N) or phosphorus atom (P).
 R5及びR6は、それぞれQ1に結合している基を表し、それぞれ独立して、水素原子、ハロゲン原子又は1価の有機基を表す。なお、R5及びR6は、同じ基であってもよいし、互いに異なる基であってもよい。また、R7は、Q2に結合している基であり、水素原子、ハロゲン原子又は1価の有機基を表す。 R 5 and R 6 each represent a group bonded to Q 1 , and each independently represents a hydrogen atom, a halogen atom or a monovalent organic group. R 5 and R 6 may be the same group or different groups. R 7 is a group bonded to Q 2 and represents a hydrogen atom, a halogen atom or a monovalent organic group.
 1価の有機基は特段の制限はないが、炭素原子の数が1以上30以下の有機基であることが好ましい。なかでも、好ましい基としては、置換基を有していてもよい脂肪族炭化水素基、置換基を有していてもよい芳香族炭化水素基、置換基を有していてもよい脂肪族複素環基、置換基を有していてもよい芳香族複素環基、置換基を有していてもよいアルコキシ基、置換基を有していてもよいアルコキシカルボニル基、置換基を有していてもよいアルキルカルボニル基、置換基を有していてもよいアルキルチオ基が挙げられる。 The monovalent organic group is not particularly limited, but is preferably an organic group having 1 to 30 carbon atoms. Among these, preferred groups include an aliphatic hydrocarbon group which may have a substituent, an aromatic hydrocarbon group which may have a substituent, and an aliphatic complex which may have a substituent. A ring group, an aromatic heterocyclic group which may have a substituent, an alkoxy group which may have a substituent, an alkoxycarbonyl group which may have a substituent, and a substituent; And an alkylthio group which may have a substituent.
 脂肪族炭化水素基は、特段の制限はないが、鎖状の脂肪族炭化水素基又は環状の脂肪族炭化水素基が挙げられる。鎖状の脂肪族炭化水素基は、特段の制限はないが、好ましい基として、R1~R4で説明した鎖状の脂肪族炭化水素基が挙げられる。 The aliphatic hydrocarbon group is not particularly limited, and examples thereof include a chain aliphatic hydrocarbon group or a cyclic aliphatic hydrocarbon group. The chain aliphatic hydrocarbon group is not particularly limited, but preferred groups include the chain aliphatic hydrocarbon groups described in R 1 to R 4 .
 環状の脂肪族炭化水素基は、特段の制限はないが、炭素数が4以上であることが好ましく、6以上であることが好ましく、一方、30以下であることが好ましく、20以下であることが特に好ましい。具体的には、シクロブチル基、シクロへキシル基、シクロオクチル基、シクロノニル基等が挙げられる。 The cyclic aliphatic hydrocarbon group is not particularly limited, but preferably has 4 or more carbon atoms, preferably 6 or more, and preferably 30 or less, and 20 or less. Is particularly preferred. Specific examples include a cyclobutyl group, a cyclohexyl group, a cyclooctyl group, and a cyclononyl group.
 芳香族炭化水素基は、特段の制限はないが、単環式の芳香族炭化水素基、多環式の芳香族炭化水素基、又は縮合多環式の芳香族炭化水素基が挙げられる。芳香族炭化水素基が有する炭素数は、6以上であることが好ましく、一方、30以下であることが好ましく、20以下であることがさらに好ましく、14以下であることが特に好ましい。具体的には、フェニル基、ナフチル基、インダニル基、インデニル基、フルオレニル基、アントラセニル基又はアズレニル基等が挙げられる。なかでも、フェニル基が好ましい。 The aromatic hydrocarbon group is not particularly limited, and examples thereof include a monocyclic aromatic hydrocarbon group, a polycyclic aromatic hydrocarbon group, and a condensed polycyclic aromatic hydrocarbon group. The aromatic hydrocarbon group has preferably 6 or more carbon atoms, on the other hand, preferably 30 or less, more preferably 20 or less, and particularly preferably 14 or less. Specific examples include a phenyl group, a naphthyl group, an indanyl group, an indenyl group, a fluorenyl group, an anthracenyl group, and an azulenyl group. Of these, a phenyl group is preferred.
 脂肪族複素環基は、特段の制限はないが、環を構成する原子の数が3以上であることが好ましく、一方、30以下であることが好ましく、14以下であることがより好ましく、10以下であることが特に好ましい。具体的には、オキセタニル基、ピロリジニル基、テトラヒドロフリル基、テトラヒドロチエニル基、ピペリジニル基、テトラヒドロピラニル基又はテトラヒドロチオピラニル基が挙げられる。 The aliphatic heterocyclic group is not particularly limited, but the number of atoms constituting the ring is preferably 3 or more, on the other hand, preferably 30 or less, more preferably 14 or less. It is particularly preferred that Specific examples include an oxetanyl group, a pyrrolidinyl group, a tetrahydrofuryl group, a tetrahydrothienyl group, a piperidinyl group, a tetrahydropyranyl group, and a tetrahydrothiopyranyl group.
 芳香族複素環基は、特段の制限はなく、単環式の芳香族複素環基、多環式の芳香族複素環基又は縮合多環式の芳香族複素環基が挙げられる。なお、芳香族複素環基は特段の制限はないが、環を構成する原子の数が3以上であることが好ましく、一方、30以下であることが好ましく、20以下であることがより好ましく、14以下であることが特に好ましい。具体的には、チエニル基、フラニル基、ピリジル基、ピロリル基、イミダゾリル基、ピリミジル基、チアゾリル基、オキサゾリル基、イソオキサゾリル基、イソチアゾリル基、ピラゾリル基、トリアゾリル基、ベンゾチオフェニル基、ベンゾフラニル基、ベンゾチアゾリル基、ベンゾオキサゾリル基又はベンゾトリアゾリル基が挙げられる。これらの中でも、チエニル基、ピリジル基、ピリミジル基、チアゾリル基又はオキサゾリル基が挙げられる。 The aromatic heterocyclic group is not particularly limited, and examples thereof include a monocyclic aromatic heterocyclic group, a polycyclic aromatic heterocyclic group, and a condensed polycyclic aromatic heterocyclic group. The aromatic heterocyclic group is not particularly limited, but the number of atoms constituting the ring is preferably 3 or more, on the other hand, preferably 30 or less, more preferably 20 or less, It is especially preferable that it is 14 or less. Specifically, thienyl, furanyl, pyridyl, pyrrolyl, imidazolyl, pyrimidyl, thiazolyl, oxazolyl, isoxazolyl, isothiazolyl, pyrazolyl, triazolyl, benzothiophenyl, benzofuranyl, benzothiazolyl Group, benzoxazolyl group or benzotriazolyl group. Among these, a thienyl group, a pyridyl group, a pyrimidyl group, a thiazolyl group, or an oxazolyl group can be given.
 アルコキシ基、アルコキシカルボニル基、アルキルカルボニル基、アルキルチオ基の好ましい基としては、R1~R4で挙げた基が挙げられる。 Preferred examples of the alkoxy group, alkoxycarbonyl group, alkylcarbonyl group, and alkylthio group include the groups listed for R 1 to R 4 .
 ハロゲン原子は、特段の制限はないが、フッ素原子が挙げられる。 The halogen atom is not particularly limited, but includes a fluorine atom.
 なお、脂肪族炭化水素基、芳香族炭化水素基、脂肪族複素環基、芳香族複素環基、アルコキシ基、アルコキシカルボニル基、アルキルカルボニル基、及びアルキルチオ基が有していてもよい置換基は、特段の制限はないが、芳香族炭化水素基、脂肪族複素環基、芳香族複素環基、アルコキシ基、アルコキシカルボニル基、アルキルカルボニル基、アルキルチオ基及びハロゲン原子等が挙げられる。 The substituent that the aliphatic hydrocarbon group, aromatic hydrocarbon group, aliphatic heterocyclic group, aromatic heterocyclic group, alkoxy group, alkoxycarbonyl group, alkylcarbonyl group, and alkylthio group may have Although there is no particular limitation, an aromatic hydrocarbon group, an aliphatic heterocyclic group, an aromatic heterocyclic group, an alkoxy group, an alkoxycarbonyl group, an alkylcarbonyl group, an alkylthio group, a halogen atom and the like can be mentioned.
 以下に、式(IV)で表わされる構成単位の具体例を示す。なお、式(IV)で表わされる構成単位は以下の構成単位に限定されるわけではない。 Specific examples of the structural unit represented by the formula (IV) are shown below. In addition, the structural unit represented by Formula (IV) is not necessarily limited to the following structural units.
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
 式(V)中、Ar7及びAr8は、それぞれ独立して、置換基を有していてもよい芳香環を表す。芳香環は、芳香族炭化水素環又は芳香族複素環が挙げられる。芳香族炭化水素環、芳香族複素環及び芳香環が有していてもよい置換基は、特段の制限はなく、例えば、上述のAr5及びAr6で挙げた芳香族炭化水素環及び芳香族複素環が挙げられ、好ましい環も同様である。 In formula (V), Ar 7 and Ar 8 each independently represent an aromatic ring which may have a substituent. The aromatic ring includes an aromatic hydrocarbon ring or an aromatic heterocyclic ring. The substituent that the aromatic hydrocarbon ring, the aromatic heterocycle and the aromatic ring may have is not particularly limited. For example, the aromatic hydrocarbon ring and the aromatic mentioned in the above Ar 5 and Ar 6 A heterocyclic ring is mentioned, and a preferable ring is also the same.
 上記式(V)中、X5及びX6はそれぞれ独立して、Q3(R8)で表わされる基を表す。Q3は、周期表第14族元素から選ばれる原子を表し、炭素原子(C)、珪素原子(Si)又はゲルマニウム原子(Ge)が挙げられる。 In the above formula (V), X 5 and X 6 each independently represent a group represented by Q 3 (R 8 ). Q 3 represents an atom selected from Group 14 elements of the periodic table, and examples thereof include a carbon atom (C), a silicon atom (Si), and a germanium atom (Ge).
 R8は、Q3に結合した基を表し、水素原子、ハロゲン原子又は1価の有機基を表す。1価の有機基は特段の制限はないが、炭素数が1以上30以下の基であることが好ましい。1価の有機基の具体例としては、置換基を有していてもよい脂肪族炭化水素基、置換基を有していてもよい芳香族炭化水素基、置換基を有していてもよい脂肪族複素環基、置換基を有していてもよい芳香族複素環基、置換基を有していてもよいアルコキシ基、置換基を有していてもよいアルコキシカルボニル基、置換基を有していてもよいアルキルカルボニル基、又は置換基を有していてもよいアルキルチオ基が挙げられる。これらの具体的な基は上述のR5~R7の1価の有機基で挙げた基が挙げられる。また、これらの基が有していてもよい置換基もR5~R7の1価の有機基において説明した置換基が挙げられる。 R 8 represents a group bonded to Q 3 and represents a hydrogen atom, a halogen atom or a monovalent organic group. The monovalent organic group is not particularly limited, but is preferably a group having 1 to 30 carbon atoms. Specific examples of the monovalent organic group include an aliphatic hydrocarbon group which may have a substituent, an aromatic hydrocarbon group which may have a substituent, and a substituent. An aliphatic heterocyclic group, an aromatic heterocyclic group which may have a substituent, an alkoxy group which may have a substituent, an alkoxycarbonyl group which may have a substituent, and a substituent An alkylcarbonyl group which may be substituted, or an alkylthio group which may have a substituent. Specific examples of these groups include the groups mentioned for the monovalent organic groups of R 5 to R 7 described above. Examples of the substituent that these groups may have include the substituents described for the monovalent organic groups of R 5 to R 7 .
 以下に、式(V)で表わされる構成単位の具体例を示す。なお、式(V)で表わされる構成単位は以下の構成単位に限定されるわけではない。 Specific examples of the structural unit represented by the formula (V) are shown below. In addition, the structural unit represented by Formula (V) is not necessarily limited to the following structural units.
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
 これらのなかでも、上記式(I)中のドナー性構成単位(D1)は、変換効率向上のために、上記式(V)で表わされるドナー性構成単位であることが好ましい。なかでも、より高い変換効率を得るために式(V)で表わされるドナー性構成単位は式(III)で表わされるドナー性構成単位であることが好ましい。より高い変換効率を得るために、式(III)で表わされるドナー性構成単位は下記式(VI)で表わされるドナー性構成単位であることが好ましい。 Among these, the donor structural unit (D1) in the above formula (I) is preferably a donor structural unit represented by the above formula (V) in order to improve the conversion efficiency. Especially, in order to obtain higher conversion efficiency, it is preferable that the donor structural unit represented by Formula (V) is the donor structural unit represented by Formula (III). In order to obtain higher conversion efficiency, the donor structural unit represented by the formula (III) is preferably a donor structural unit represented by the following formula (VI).
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
 式(III)中、X12及びX13は、それぞれ独立して、周期表第16族元素から選択される原子を表す。具体的には、酸素原子(O)、硫黄原子(S)、セレン原子(Se)又はテルル原子(Te)が挙げられる。なかでも、X12及びX13は、コポリマーが良好な半導体特性を示すことからそれぞれ硫黄原子(S)であることが好ましい。 In formula (III), X 12 and X 13 each independently represent an atom selected from Group 16 elements of the periodic table. Specific examples include an oxygen atom (O), a sulfur atom (S), a selenium atom (Se), or a tellurium atom (Te). Among these, X 12 and X 13 are each preferably a sulfur atom (S) since the copolymer exhibits good semiconductor properties.
 式(III)中、R9及びR10はそれぞれ独立して、水素原子、ハロゲン原子又は1価の有機基が挙げられる。1価の有機基は特段の制限はないが、炭素数が1以上30以下の基であることが好ましい。1価の有機基の具体例としては、置換基を有していてもよい脂肪族炭化水素基、置換基を有していてもよいアルコキシ基、置換基を有していてもよいアルコキシカルボニル基、置換基を有していてもよいアルキルカルボニル基、置換基を有していてもよいアルキルチオ基、置換基を有していてもよい芳香族炭化水素基、置換基を有していてもよい脂肪族複素環基、又は置換基を有していてもよい芳香族複素環基が挙げられる。これらの具体的な基は上述のR5~R7の1価の有機基で挙げた基が挙げられる。また、これらの基が有していてもよい置換基もR5~R7の1価の有機基において説明した置換基が挙げられる。なお、R9及びR10は同じ基であってもよいし、異なる基であってもよい。 In formula (III), R 9 and R 10 are each independently a hydrogen atom, a halogen atom or a monovalent organic group. The monovalent organic group is not particularly limited, but is preferably a group having 1 to 30 carbon atoms. Specific examples of the monovalent organic group include an aliphatic hydrocarbon group which may have a substituent, an alkoxy group which may have a substituent, and an alkoxycarbonyl group which may have a substituent. , An optionally substituted alkylcarbonyl group, an optionally substituted alkylthio group, an optionally substituted aromatic hydrocarbon group, and optionally having a substituent. Examples thereof include an aliphatic heterocyclic group or an aromatic heterocyclic group which may have a substituent. Specific examples of these groups include the groups mentioned for the monovalent organic groups of R 5 to R 7 described above. Examples of the substituent that these groups may have include the substituents described for the monovalent organic groups of R 5 to R 7 . R 9 and R 10 may be the same group or different groups.
 なかでも、溶解性を向上させるために、R9及びR10はそれぞれ独立して置換基を有していてもよい脂肪族炭化水素基、置換基を有していてもよい芳香族炭化水素基又は置換基を有していてもよい芳香族複素環基であることが好ましい。これらのなかでも、電子の共役性を拡張するために、R9及びR10はそれぞれ独立して、置換基を有していてもよい芳香族複素環基であることが好ましい。 Among them, in order to improve solubility, R 9 and R 10 are each independently an aliphatic hydrocarbon group which may have a substituent and an aromatic hydrocarbon group which may have a substituent. Or it is preferable that it is an aromatic heterocyclic group which may have a substituent. Among these, in order to extend the electron conjugation property, R 9 and R 10 are each independently preferably an aromatic heterocyclic group which may have a substituent.
 式(III)で表される構成単位は下記式(VI)で表される構成単位であることが特に好ましい。 The structural unit represented by the formula (III) is particularly preferably a structural unit represented by the following formula (VI).
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
 式(VI)中、R9及びR10は、式(III)中のR9及びR10と同義である。 Wherein (VI), R 9 and R 10 has the same meaning as R 9 and R 10 in formula (III).
 なかでも、溶解性を向上させるために、R9及びR10はそれぞれ独立して置換基を有していてもよい脂肪族炭化水素基、置換基を有していてもよい芳香族炭化水素基又は置換基を有していてもよい芳香族複素環基であることが好ましい。なかでも、電子の共役性を拡張するために、R9及びR10はそれぞれ独立して、置換基を有していてもよい芳香族複素環基であることが好ましい。芳香族複素環基は、特段の制限はないが、好ましくは、R5~R7で挙げた芳香族複素環基が挙げられる。なかでも、変換効率を向上させるために、R9及びR10はそれぞれ置換基を有していてもよいチエニル基であることが特に好ましい。なお、置換基は、特段の制限はなく、1価の有機基があげられる。具体的には、R5~R7の1価の有機基において説明した置換基が挙げられる。なかでも、置換基は、炭素数8以上20以下の脂肪族炭化水素基であることが好ましく、炭素数8以上20以下のアルキル基であることが特に好ましい。 Among them, in order to improve solubility, R 9 and R 10 are each independently an aliphatic hydrocarbon group which may have a substituent and an aromatic hydrocarbon group which may have a substituent. Or it is preferable that it is an aromatic heterocyclic group which may have a substituent. Especially, in order to expand the conjugation property of an electron, it is preferable that R < 9 > and R < 10 > are each independently the aromatic heterocyclic group which may have a substituent. The aromatic heterocyclic group is not particularly limited, but preferably, the aromatic heterocyclic group mentioned for R 5 to R 7 is used. Especially, in order to improve conversion efficiency, it is especially preferable that R 9 and R 10 are each a thienyl group which may have a substituent. The substituent is not particularly limited, and examples thereof include monovalent organic groups. Specific examples include the substituents described for the monovalent organic groups R 5 to R 7 . Especially, it is preferable that a substituent is a C8-C20 aliphatic hydrocarbon group, and it is especially preferable that it is a C8-C20 alkyl group.
 上述の通り、本発明の第1の態様に係るコポリマーは、上記式(I)で表わされる繰り返し単位に加えて、下記式(II)で表わされる繰り返し単位を有する。 As described above, the copolymer according to the first aspect of the present invention has a repeating unit represented by the following formula (II) in addition to the repeating unit represented by the above formula (I).
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
 上記式(II)中、Ar3およびAr4はそれぞれ独立して、置換基を有していてもよい芳香族基を表す。芳香族基は、芳香族炭化水素基又は芳香族複素環基が挙げられる。なお、これらの中でも、Ar3およびAr4は、隣り合う構成単位に対して回転自由度の高い基であることが好ましい。Ar3およびAr4が回転自由度の高い基であれば、コポリマーの剛直性を緩和することができるためにコポリマーどうしを規則正しく配列させることができ、変換効率を向上させることができる。この理由から、Ar3およびAr4は立体構造が大きすぎない基であることが好ましく、具体的には、芳香環を構成する原子の数が14以下である芳香族基であることが好ましく、芳香環を構成する原子の数が10以下である芳香族基であることがさらに好ましく、溶解性を向上させるために、芳香環を構成する原子の数が8以下である芳香族基であることが特に好ましい。一方、芳香環を構成する原子の数は、通常、3以上であり、キャリア移動度を向上させるために、5以上であることが特に好ましい。芳香族炭化水素基としては、例えば、フェニル基又はナフチル基が挙げられる。また、芳香族複素環基としては、例えば、チエニル基(チオフェン)、フラニル基(フラン)、チアゾリル基、チエノチエニル基、チエノフラニル基又はチエノフェニルが挙げられる。また、芳香族基が有していてもよい置換基は特段の制限はなく、1価の有機基が挙げられる。1価の有機基は特段の制限はないが、コポリマーの溶解性を向上させる場合は、炭素数が6以上の基であることが好ましく10以上であることがさらに好ましく、一方、隣り合う構成単位との立体障害が大きくなるのを防ぐために、20以下であることが好ましく、16以下であることが特に好ましい。 In the above formula (II), Ar 3 and Ar 4 each independently represent an aromatic group which may have a substituent. The aromatic group includes an aromatic hydrocarbon group or an aromatic heterocyclic group. Of these, Ar 3 and Ar 4 are preferably groups having a high degree of rotational freedom with respect to adjacent structural units. If Ar 3 and Ar 4 are groups having a high degree of rotational freedom, the rigidity of the copolymer can be relaxed, so that the copolymers can be regularly arranged and the conversion efficiency can be improved. For this reason, Ar 3 and Ar 4 are preferably groups that do not have a three-dimensional structure, and specifically, are preferably aromatic groups in which the number of atoms constituting the aromatic ring is 14 or less, It is more preferable that the number of atoms constituting the aromatic ring is 10 or less, and in order to improve the solubility, the number of atoms constituting the aromatic ring is 8 or less. Is particularly preferred. On the other hand, the number of atoms constituting the aromatic ring is usually 3 or more, and is particularly preferably 5 or more in order to improve carrier mobility. As an aromatic hydrocarbon group, a phenyl group or a naphthyl group is mentioned, for example. Examples of the aromatic heterocyclic group include thienyl group (thiophene), furanyl group (furan), thiazolyl group, thienothienyl group, thienofuranyl group, and thienophenyl. Further, the substituent that the aromatic group may have is not particularly limited, and examples thereof include a monovalent organic group. The monovalent organic group is not particularly limited, but in order to improve the solubility of the copolymer, it is preferably a group having 6 or more carbon atoms, more preferably 10 or more, while adjacent structural units. In order to prevent the steric hindrance from increasing, it is preferably 20 or less, particularly preferably 16 or less.
 1価の有機基は、特段の制限はないが、例えば、鎖状の脂肪族炭化水素基、アルコキシ基、アルコキシカルボニル基、アルキルカルボニル基、アルキルチオ基が挙げられ、これらのなかでも鎖状の脂肪族炭化水素基であることが好ましい。なお、これらの基はさらに置換基を有していてもよい。当該置換基は特段の制限はなく、当該1価の有機基で挙げた基が挙げられる。なお、上記の1価の有機基は、置換可能な範囲で複数の置換基を有していてもよい。また、2種以上の置換基を有していてもよい。 The monovalent organic group is not particularly limited, and examples thereof include a chain-like aliphatic hydrocarbon group, an alkoxy group, an alkoxycarbonyl group, an alkylcarbonyl group, and an alkylthio group. Among these, a chain-like aliphatic group is exemplified. A group hydrocarbon group is preferred. These groups may further have a substituent. The substituent is not particularly limited, and examples thereof include the groups mentioned for the monovalent organic group. In addition, the monovalent organic group may have a plurality of substituents within a replaceable range. Moreover, you may have 2 or more types of substituents.
 上記式(II)中、c及びdは、それぞれ0以上2以下の整数を表す。なお、cが2の場合、2つのAr3で表わされる基が連結することになるが、この場合、2つのAr3で表わされる基は同じ基であってもよいし異なる基であってもよい。同様に、dが2の場合、2つのAr4で表わされる基が連結することになるが、この場合、2つのAr4で表わされる基は同じ基であってもよいし異なる基であってもよい。なお、これらの中でも、コポリマーの溶解性が調整可能な点と結晶性を調整可能な点と良好な半導体特性を示すために、c及びdはいずれも1であることが好ましい。 In the above formula (II), c and d each represent an integer of 0 or more and 2 or less. When c is 2, two groups represented by Ar 3 are linked. In this case, the two groups represented by Ar 3 may be the same group or different groups. Good. Similarly, when d is 2, two groups represented by Ar 4 are linked. In this case, the two groups represented by Ar 4 may be the same group or different groups. Also good. Among these, it is preferable that both c and d are 1 in order to show the point that the solubility of the copolymer can be adjusted, the point that the crystallinity can be adjusted, and good semiconductor properties.
 これらのなかでも、上記式(II)で表わされる繰り返し単位は、下記式(VII)で表わされる構成単位であることが好ましい。 Among these, it is preferable that the repeating unit represented by the above formula (II) is a structural unit represented by the following formula (VII).
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000042
 式(VII)中、X7及びX8は、それぞれ周期表第16族元素から選ばれる原子を表し、具体的には、酸素原子(O)、硫黄原子(Si)、セレン原子(Se)又はテルル原子(Te)が挙げられる。なかでも、半導体特性を向上させるために、硫黄原子(S)であることが好ましい。 In the formula (VII), X 7 and X 8 each represent an atom selected from Group 16 elements of the periodic table, specifically, an oxygen atom (O), a sulfur atom (Si), a selenium atom (Se) or An example is a tellurium atom (Te). Especially, in order to improve a semiconductor characteristic, it is preferable that it is a sulfur atom (S).
 式(VII)中、R11~R14はそれぞれ独立して、水素原子、ハロゲン原子又は1価の有機基を表す。1価の有機基は特段の制限はないが、置換基を有していてもよい鎖状の脂肪族炭化水素基、置換基を有していてもよいアルコキシ基、置換基を有していてもよいアルコキシカルボニル基、置換基を有していてもよいアルキルカルボニル基又は置換基を有していてもよいアルキルチオ基が挙げられる。これらの基の具体例としては、R1~R4で挙げた基が挙げられる。これらのなかでも、半導体特性の低下を防ぐために、R11~R14は、水素原子、ハロゲン原子又は鎖状の脂肪族炭化水素基であることが好ましい。さらに、式(VII)中のAが後述する式(VIII)で表わされる構成単位又は式(IX)で表わされる構成単位である場合、各構成単位が同一平面上に配列しやすくなることからR11~R14は水素原子、ハロゲン原子又は炭素数1以上3以下の脂肪族炭化水素基であることが好ましく、水素原子又は炭素数1以上3以下の脂肪族炭化水素基であることがより好ましい。また、式(II)におけるAが直接結合ではなく、式(I)におけるR2及びR3がそれぞれ水素原子であり、R1及びR4が1価の有機基である場合も、コポリマーの適度な剛直性を保つためにR11~R14は水素原子、ハロゲン原子又は炭素数1以上3以下の脂肪族炭化水素基であることが好ましく、水素原子又は炭素数1以上3以下の脂肪族炭化水素基であることがより好ましい。なお、炭素数1以上3以下の脂肪族炭化水素基としては、好ましくはアルキル基、より好ましくはメチル基又はエチル基、さらに好ましくはメチル基が挙げられる。
 これらの場合、R11及びR12の一方が水素原子であり、他方が炭素数1以上3以下の脂肪族炭化水素基であり、R13及びR14の一方が水素原子であり、他方が炭素数1以上3以下の脂肪族炭化水素基である組み合わせがさらに好ましく、R11及びR14が炭素数1以上3以下の脂肪族炭化水素基であり、R12及びR13が水素原子である組み合わせが特に好ましい。また、Aが直接結合である場合、R11~R14は水素原子又はハロゲン原子であることが好ましい。ハロゲン原子としてはフッ素原子であることが好ましい。
In formula (VII), R 11 to R 14 each independently represents a hydrogen atom, a halogen atom or a monovalent organic group. The monovalent organic group is not particularly limited, but may have a chain-like aliphatic hydrocarbon group that may have a substituent, an alkoxy group that may have a substituent, or a substituent. Examples thereof include an alkoxycarbonyl group which may be substituted, an alkylcarbonyl group which may have a substituent, and an alkylthio group which may have a substituent. Specific examples of these groups include the groups listed for R 1 to R 4 . Among these, in order to prevent deterioration of semiconductor characteristics, R 11 to R 14 are preferably a hydrogen atom, a halogen atom, or a chain aliphatic hydrocarbon group. Furthermore, when A in Formula (VII) is a structural unit represented by Formula (VIII) described later or a structural unit represented by Formula (IX), each structural unit can be easily arranged on the same plane. 11 to R 14 are preferably a hydrogen atom, a halogen atom, or an aliphatic hydrocarbon group having 1 to 3 carbon atoms, and more preferably a hydrogen atom or an aliphatic hydrocarbon group having 1 to 3 carbon atoms. . Further, when A in formula (II) is not a direct bond, R 2 and R 3 in formula (I) are each a hydrogen atom, and R 1 and R 4 are monovalent organic groups, R 11 to R 14 are preferably a hydrogen atom, a halogen atom, or an aliphatic hydrocarbon group having 1 to 3 carbon atoms, and a hydrogen atom or an aliphatic carbon atom having 1 to 3 carbon atoms in order to maintain high rigidity. More preferably, it is a hydrogen group. The aliphatic hydrocarbon group having 1 to 3 carbon atoms is preferably an alkyl group, more preferably a methyl group or an ethyl group, and still more preferably a methyl group.
In these cases, one of R 11 and R 12 is a hydrogen atom, the other is an aliphatic hydrocarbon group having 1 to 3 carbon atoms, one of R 13 and R 14 is a hydrogen atom, and the other is a carbon atom. A combination in which an aliphatic hydrocarbon group having a number of 1 or more and 3 or less is more preferable, a combination in which R 11 and R 14 are an aliphatic hydrocarbon group having a carbon number of 1 to 3 and R 12 and R 13 are hydrogen atoms Is particularly preferred. When A is a direct bond, R 11 to R 14 are preferably a hydrogen atom or a halogen atom. The halogen atom is preferably a fluorine atom.
 式(II)及び式(VII)中、D2は、上記式(I)及び上記式(III)中のD1と同様に、ドナー性構成単位を表す。すなわち、D2は式(II)中のアクセプター性構成単位(A)よりも高いHOMOエネルギー準位及び高いLUMOエネルギー準位を有する構成単位であり、置換基を有していてもよい芳香族基である。HOMOエネルギー準位及びLUMOエネルギー準位はドナー性構成単位D1の項目で挙げた方法により測定することができる。 In the formula (II) and the formula (VII), D2 represents a donor structural unit in the same manner as D1 in the formula (I) and the formula (III). That is, D2 is a structural unit having a higher HOMO energy level and a higher LUMO energy level than the acceptor structural unit (A) in formula (II), and is an aromatic group that may have a substituent. is there. The HOMO energy level and the LUMO energy level can be measured by the method described in the item of the donor structural unit D1.
 ドナー性構成単位D2は特段の制限はないが、ドナー性構成単位D1と同様に、上記式(IV)で表わされる構成単位又は上記式(V)で表わされる構成単位であることが好ましく、中でも、上記式(V)で表わされる構成単位であることがさらに好ましく、上記式(VI)で表わされる構成単位であることが特に好ましい。なお、D1及びD2はそれぞれ同じ構成単位であってもよいし、異なる構成単位であってもよいが、コポリマーに含まれる各ユニットのエネルギーバンドギャップを一致させ、良好な電荷分離を維持するためにD1及びD2は同じ構成単位であることが好ましい。 The donor structural unit D2 is not particularly limited, but is preferably a structural unit represented by the above formula (IV) or a structural unit represented by the above formula (V), like the donor structural unit D1, The structural unit represented by the above formula (V) is more preferred, and the structural unit represented by the above formula (VI) is particularly preferred. D1 and D2 may be the same structural unit or different structural units, but in order to match the energy band gap of each unit included in the copolymer and maintain good charge separation D1 and D2 are preferably the same structural unit.
 上記式(II)及び(VII)中、Aはアクセプター性構成単位又は直接結合を表す。なお、式(II)において、Aが直接結合である場合、式(II)中のc及びdはそれぞれ1又は2である。Aが直接結合の場合、c及びdが1又は2であることにより、-(Ar-(Ar-がアクセプター性構成単位として機能することになる。本発明において、アクセプター性構成単位とは電子親和力が大きく電子を受容する傾向の強い構成単位であり、置換基を有していてもよい芳香族基が挙げられる。具体的に、アクセプター性構成単位Aはドナー性構成単位D2よりもイオン化ポテンシャル及び電子親和力が大きい構成単位である。すなわち、本発明において、アクセプター性構成単位とは、ドナー性構成単位D2よりも低いHOMOエネルギー準位及び低いLUMOエネルギー準位を有する構成単位である。なお、HOMOエネルギー準位及びLUMOエネルギー準位はドナー性構成単位D1の項目で挙げた方法により測定することができる。 In the above formulas (II) and (VII), A represents an acceptor structural unit or a direct bond. In the formula (II), when A is a direct bond, c and d in the formula (II) are 1 or 2, respectively. When A is a direct bond, when c and d are 1 or 2,-(Ar 3 ) c- (Ar 4 ) d- functions as an acceptor constituent unit. In the present invention, the acceptor structural unit is a structural unit having a large electron affinity and a strong tendency to accept electrons, and examples thereof include an aromatic group which may have a substituent. Specifically, the acceptor structural unit A is a structural unit having a larger ionization potential and electron affinity than the donor structural unit D2. That is, in the present invention, the acceptor structural unit is a structural unit having a lower HOMO energy level and a lower LUMO energy level than the donor structural unit D2. The HOMO energy level and the LUMO energy level can be measured by the method described in the item of the donor structural unit D1.
 なかでも、アクセプター性構成単位は、光電変換効率の観点から式(I)中のナフトビスチアジアゾール単位とは異なる構成単位であることが好ましい。この理由としては、アクセプター性構成単位(A)が式(I)中のナフトビスチアジアゾール単位と異なる構成単位であることにより、エネルギーバンドギャップ及び吸収波長の調整が可能となるために効率的に光吸収が可能となり、その結果、光電変換素子の変換効率が向上するためである。 Among them, the acceptor structural unit is preferably a structural unit different from the naphthobisthiadiazole unit in the formula (I) from the viewpoint of photoelectric conversion efficiency. This is because the accepting structural unit (A) is a structural unit different from the naphthobisthiadiazole unit in the formula (I), so that the energy band gap and the absorption wavelength can be adjusted, so that the light can be efficiently reflected. This is because absorption is possible, and as a result, the conversion efficiency of the photoelectric conversion element is improved.
 これらのなかでも、アクセプター性構成単位(A)は、下記式(VIII)又は下記式(IX)で表わされる構成単位であることが好ましい。 Among these, the acceptor structural unit (A) is preferably a structural unit represented by the following formula (VIII) or the following formula (IX).
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000044
 式(VIII)中、Ar9は、置換基を有していてもよい芳香族炭化水素環、置換基を有していてもよい芳香族複素環、又は置換基を有していてもよい脂肪族複素環を表す。 In the formula (VIII), Ar 9 is an aromatic hydrocarbon ring which may have a substituent, an aromatic heterocyclic ring which may have a substituent, or an aliphatic which may have a substituent. Represents a family heterocycle.
 芳香族炭化水素環及び芳香族複素環は、特段の制限はなく、上述のAr及びArで挙げた芳香族炭化水素環及び芳香族複素環が挙げられる。なかでも、チオフェン環、ピリジン環、ピリミジン環、チアゾール環、チアジアゾール環、オキサゾール環、オキサジアゾール環又はトリアゾール環が好ましい。 The aromatic hydrocarbon ring and the aromatic heterocyclic ring are not particularly limited, and examples thereof include the aromatic hydrocarbon ring and the aromatic heterocyclic ring mentioned above for Ar 5 and Ar 6 . Among these, a thiophene ring, a pyridine ring, a pyrimidine ring, a thiazole ring, a thiadiazole ring, an oxazole ring, an oxadiazole ring, or a triazole ring is preferable.
 脂肪族複素環は、特段の制限はないが、環を構成する原子の数が、4以上8以下である脂肪族複素環であることが好ましい。具体的には、ピロリジン環又はピペリジン環が挙げられる。 The aliphatic heterocyclic ring is not particularly limited, but is preferably an aliphatic heterocyclic ring having 4 to 8 atoms constituting the ring. Specific examples include a pyrrolidine ring or a piperidine ring.
 芳香族炭化水素環、芳香族複素環及び脂肪族複素環が有していてもよい置換基は、特段の制限はなく、1価の有機基が挙げられる。1価の有機基は、特段の制限はなく、脂肪族炭化水素基、芳香族炭化水素基、脂肪族複素環基、芳香族複素環基、アルコキシ基、アルコキシカルボニル基、アルキルカルボニル基、アルキルチオ基又はハロゲン原子が挙げられる。 The substituent that the aromatic hydrocarbon ring, aromatic heterocyclic ring and aliphatic heterocyclic ring may have is not particularly limited, and examples thereof include monovalent organic groups. The monovalent organic group is not particularly limited, and is an aliphatic hydrocarbon group, aromatic hydrocarbon group, aliphatic heterocyclic group, aromatic heterocyclic group, alkoxy group, alkoxycarbonyl group, alkylcarbonyl group, alkylthio group. Or a halogen atom is mentioned.
 上記式(VIII)中、X9及びX10はそれぞれ独立して、窒素原子(N)又はQ4(R15)を表す。Q4は周期表第14族元素から選ばれる原子を表し、なかでも、炭素原子(C)であることが好ましい。また、R15は、Q4に結合した基を表し、水素原子、ハロゲン原子又は1価の有機基を表す。1価の有機基は、特段の制限はなく、置換基を有していてもよい脂肪族炭化水素基、置換基を有していてもよい芳香族炭化水素基、置換基を有していてもよい脂肪族複素環基、置換基を有していてもよい芳香族複素環基、置換基を有していてもよいアルコキシ基、置換基を有していてもよいアルコキシカルボニル基、置換基を有していてもよいアルキルカルボニル基、又は置換基を有していてもよいアルキルチオ基が挙げられる。具体的には、上述のR5~R7で挙げた基が挙げられる。 In the above formula (VIII), X 9 and X 10 each independently represent a nitrogen atom (N) or Q 4 (R 15 ). Q 4 represents an atom selected from Group 14 elements of the periodic table, and among these, a carbon atom (C) is preferable. R 15 represents a group bonded to Q 4 and represents a hydrogen atom, a halogen atom or a monovalent organic group. The monovalent organic group is not particularly limited, and may have an aliphatic hydrocarbon group that may have a substituent, an aromatic hydrocarbon group that may have a substituent, or a substituent. May be an aliphatic heterocyclic group, an aromatic heterocyclic group which may have a substituent, an alkoxy group which may have a substituent, an alkoxycarbonyl group which may have a substituent, a substituent And an alkylthio group which may have a substituent, or an alkylthio group which may have a substituent. Specific examples include the groups described above for R 5 to R 7 .
 以下に式(VIII)で表わされる構成単位の例を示す。なお、式(VIII)で表わされる構成単位は、以下に限定されるわけではない。 Examples of structural units represented by the formula (VIII) are shown below. Note that the structural unit represented by the formula (VIII) is not limited to the following.
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000045
 上記式(IX)中、Ar10は、置換基を有していてもよい芳香族炭化水素環、置換基を有していてもよい芳香族複素環、又は置換基を有していてもよい脂肪族複素環を表す。芳香族炭化水素環、芳香族複素環、及び脂肪族複素環は特段の制限はないが、具体的には、Ar9において挙げた芳香族炭化水素環、芳香族複素環及び脂肪族複素環が挙げられる。なお、芳香族炭化水素環、芳香族複素環及び脂肪族複素環が有していてもよい置換基は、特段の制限はなく、具体的には、Ar9で挙げた芳香族炭化水素環、芳香族複素環及び脂肪族複素環が有していてもよい置換基と同様の置換基が挙げられる。 In the above formula (IX), Ar 10 may have an aromatic hydrocarbon ring which may have a substituent, an aromatic heterocyclic ring which may have a substituent, or a substituent. Represents an aliphatic heterocycle. The aromatic hydrocarbon ring, aromatic heterocyclic ring, and aliphatic heterocyclic ring are not particularly limited. Specifically, the aromatic hydrocarbon ring, aromatic heterocyclic ring, and aliphatic heterocyclic ring mentioned in Ar 9 are Can be mentioned. The substituent that the aromatic hydrocarbon ring, the aromatic heterocyclic ring and the aliphatic heterocyclic ring may have is not particularly limited, and specifically, the aromatic hydrocarbon ring exemplified in Ar 9 , Examples thereof include the same substituents as the substituents that the aromatic heterocyclic ring and the aliphatic heterocyclic ring may have.
 上記式(IX)中、X11は、周期表第16族元素から選ばれる原子を表し、具体的には、酸素原子(O)、硫黄原子(S)、セレン原子(Se)又はテルル原子(Te)が挙げられる。なかでも、半導体特性の向上のために、X11は硫黄原子であることが好ましい。 In the above formula (IX), X 11 represents an atom selected from Group 16 elements of the periodic table. Specifically, an oxygen atom (O), a sulfur atom (S), a selenium atom (Se) or a tellurium atom ( Te). Among these, X 11 is preferably a sulfur atom for improving semiconductor characteristics.
 以下に式(IX)で表わされる構成単位の例を示す。なお、式(IX)で表わされる構成単位は以下に限定されるわけではない。 Examples of structural units represented by the formula (IX) are shown below. Note that the structural unit represented by the formula (IX) is not limited to the following.
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000046
 これらのなかでも、アクセプター性構成単位(A)は、式(VIII)で表わされる構成単位であることが好ましく、変換効率を向上させるためには、下記式(X)で表わされる構成単位であることが特に好ましい。 Among these, the acceptor structural unit (A) is preferably a structural unit represented by the formula (VIII), and is a structural unit represented by the following formula (X) in order to improve the conversion efficiency. It is particularly preferred.
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000047
 上記式(X)中、R16及びR17は、水素原子、ハロゲン原子又は1価の有機基を表す。1価の有機基は特段の制限はないが、置換基を有していてもよい脂肪族炭化水素基、置換基を有していてもよい芳香族炭化水素基、置換基を有していてもよい脂肪族複素環基、置換基を有していてもよい芳香族複素環基、置換基を有していてもよいアルコキシ基、置換基を有していてもよいアルコキシカルボニル基、置換基を有していてもよいアルキルカルボニル基、又は置換基を有していてもよいアルキルチオ基が挙げられる。なお、これらの具体例としては、R5~R7で挙げた基が挙げられる。これらのなかでも、R16及びR17はそれぞれ独立して、炭素数1以上20以下の鎖状の脂肪族炭化水素基又はハロゲン原子であることが好ましい。なかでも、双極子間相互作用によりポリマー主鎖間のパッキングが強化されることと電子吸引性の効果によりエネルギーギャップを調整するために、R16及びR17は共にフッ素原子であることが特に好ましい。 In the above formula (X), R 16 and R 17 represent a hydrogen atom, a halogen atom or a monovalent organic group. The monovalent organic group is not particularly limited, but may have an aliphatic hydrocarbon group that may have a substituent, an aromatic hydrocarbon group that may have a substituent, or a substituent. May be an aliphatic heterocyclic group, an aromatic heterocyclic group which may have a substituent, an alkoxy group which may have a substituent, an alkoxycarbonyl group which may have a substituent, a substituent And an alkylthio group which may have a substituent, or an alkylthio group which may have a substituent. Specific examples thereof include the groups listed for R 5 to R 7 . Among these, R 16 and R 17 are preferably each independently a chain aliphatic hydrocarbon group having 1 to 20 carbon atoms or a halogen atom. In particular, it is particularly preferable that both R 16 and R 17 are fluorine atoms in order to reinforce the packing between polymer main chains by the interaction between dipoles and to adjust the energy gap by the effect of electron withdrawing. .
 なお、上記の中でも、式(I)中のD1が式(VI)で表わされる繰り返し単位であり、式(II)中のAが式(X)で表わされる繰り返し単位であり、D2が式(VI)で表わされる繰り返し単位である組み合わせが好ましい。 Among the above, D1 in the formula (I) is a repeating unit represented by the formula (VI), A in the formula (II) is a repeating unit represented by the formula (X), and D2 is represented by the formula ( A combination which is a repeating unit represented by VI) is preferred.
 本発明の第1の態様に係る式(I)及び式(II)で表される繰り返し単位を含むコポリマーは、式(I)で表される繰り返し単位及び式(II)で表される繰り返し単位を、それぞれ1つずつ含んでもよく、いずれか一方又は両方を2種以上含んでいてもよい。
 また、本発明の第1の態様に係るコポリマーは、本発明の効果を損なわない範囲で、上記式(I)で表わされる繰り返し単位及び上記式(II)で表わされる繰り返し単位以外の他の繰り返し単位を有していてもよい。他の繰り返し単位としては、特段の制限はないが、上述のアクセプター性構成単位及びドナー性構成単位等が挙げられる。
The copolymer containing the repeating units represented by the formula (I) and the formula (II) according to the first aspect of the present invention is a repeating unit represented by the formula (I) and a repeating unit represented by the formula (II). May be included one by one, and either one or both may be included.
Further, the copolymer according to the first aspect of the present invention is a repeating unit other than the repeating unit represented by the above formula (I) and the repeating unit represented by the above formula (II), as long as the effects of the present invention are not impaired. You may have a unit. Other repeating units are not particularly limited, and include the above-described acceptor constituent units and donor constituent units.
 本発明の第1の態様に係るコポリマーの、上記式(I)で表される繰り返し単位と、上記式(II)で表される繰り返し単位及びその他の繰り返し単位との配列状態は、交互、ブロック又はランダムのいずれでもよい。すなわち、本発明の第1の態様に係るコポリマーは、交互コポリマー、ブロックコポリマー又はランダムコポリマーのいずれでもよい。また、これらのコポリマーのうち中間的な構造を有するコポリマー、例えばブロック性を帯びたランダムコポリマーであってもよい。また、主鎖に枝分かれがあり末端部が3つ以上あるコポリマー、及びデンドリマーも含まれる。なかでも、合成が容易であり、規則性がより低下しうる点で、ブロックコポリマー又はランダムコポリマーであることが好ましく、コポリマーの溶解性が向上しかつコポリマーを溶解させたインクの保存安定性が向上しうる点で、ランダムコポリマーであることがより好ましい。 In the copolymer according to the first aspect of the present invention, the arrangement state of the repeating unit represented by the above formula (I), the repeating unit represented by the above formula (II) and other repeating units is alternately, block Or any of random may be sufficient. That is, the copolymer according to the first aspect of the present invention may be an alternating copolymer, a block copolymer, or a random copolymer. In addition, a copolymer having an intermediate structure among these copolymers, for example, a random copolymer having a block property may be used. Also included are copolymers and dendrimers that are branched in the main chain and have three or more terminal portions. Among these, a block copolymer or a random copolymer is preferable because it is easy to synthesize and regularity can be lowered, and the solubility of the copolymer is improved and the storage stability of the ink in which the copolymer is dissolved is improved. In view of this, a random copolymer is more preferable.
 本発明の第1の態様に係るコポリマーの末端部分は、特段の制限はないが、芳香族炭化水素環、芳香族複素環、又は水素原子でエンドギャップされていることが好ましい。 The terminal portion of the copolymer according to the first aspect of the present invention is not particularly limited, but is preferably end-gapped with an aromatic hydrocarbon ring, an aromatic heterocyclic ring, or a hydrogen atom.
 本発明の第1の態様に係るコポリマー中、上記式(II)で表わされる繰り返し単位数に対する上記式(I)で表わされる繰り返し単位数の比率(I/II)は、特段の制限はないが、式(I)で表わされる構成単位のエネルギーバンドギャップを維持し、長波長領域で吸光することと、コポリマーの溶解性を調整するために0.1以上であることが好ましく、0.2以上であることがさらに好ましく、0.3以上であることが特に好ましい。一方で、上記式(II)で表わされる繰り返し単位の数に対する上記式(I)で表わされる繰り返し単位の数の比率は、ポリマーのエネルギーバンドギャップを調整し、吸収領域を広げること、及び主鎖の回転障壁や平面性を変化させ、主鎖間相互作用を調整するために、9以下であることが好ましく、4以下であることがより好ましく、3以下でありことがさらに好ましく、2.3以下であることが特に好ましい。 In the copolymer according to the first aspect of the present invention, the ratio (I / II) of the number of repeating units represented by the above formula (I) to the number of repeating units represented by the above formula (II) is not particularly limited. In order to maintain the energy band gap of the structural unit represented by formula (I), absorb in the long wavelength region, and adjust the solubility of the copolymer, it is preferably 0.1 or more, 0.2 or more More preferably, it is particularly preferably 0.3 or more. On the other hand, the ratio of the number of repeating units represented by the above formula (I) to the number of repeating units represented by the above formula (II) adjusts the energy band gap of the polymer, widens the absorption region, and the main chain. Is preferably 9 or less, more preferably 4 or less, still more preferably 3 or less, in order to change the rotation barrier or planarity of the film and adjust the interaction between main chains. It is particularly preferred that
 本発明の第1の態様に係るコポリマー中、本発明の第1の態様に係るコポリマーを構成する全繰り返し単位数に対する上記式(I)で表わされる繰り返し単位及び上記式(II)で表わされる繰り返し単位の総数の比率(式(I)で表される繰り返し単位及び式(II)で表される繰り返し単位数の総数が、コポリマーを構成する全構成単位数に占める比率)は、特段の制限はないが、良好な半導体特性を得るために、0.1以上であることが好ましく、0.3以上であることがさらに好ましく、0.5以上であることが特に好ましい。一方、上限は1である。 Among the copolymers according to the first aspect of the present invention, the repeating unit represented by the above formula (I) and the repeating represented by the above formula (II) with respect to the total number of repeating units constituting the copolymer according to the first aspect of the present invention. The ratio of the total number of units (the ratio of the total number of repeating units represented by formula (I) and the number of repeating units represented by formula (II) to the total number of structural units constituting the copolymer) is not limited. However, in order to obtain good semiconductor characteristics, it is preferably 0.1 or more, more preferably 0.3 or more, and particularly preferably 0.5 or more. On the other hand, the upper limit is 1.
 特に好ましくは、本発明の第1の態様に係るコポリマーは、式(I)で表される繰り返し単位及び式(II)で表される繰り返し単位を含みかつこれらの繰り返し単位のみで構成されるか、又はこれらの繰り返し単位を含みかつこれらの繰り返し単位のみで構成されるポリマー鎖を含む。 Particularly preferably, the copolymer according to the first aspect of the present invention comprises a repeating unit represented by the formula (I) and a repeating unit represented by the formula (II) and is constituted only by these repeating units. Or a polymer chain containing these repeating units and composed only of these repeating units.
<1-2.本発明の第2の態様に係るコポリマー>
 本発明の他の一実施形態に係るコポリマー(第2の態様に係るコポリマー)は、下記式(I)で表わされる構成単位を有する。
<1-2. Copolymer according to Second Aspect of the Present Invention>
A copolymer according to another embodiment of the present invention (a copolymer according to the second aspect) has a structural unit represented by the following formula (I).
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000048
 式(I)中、X1及びX2はそれぞれ独立して周期表第16族元素から選ばれる原子を表す。具体的には、酸素原子(O)、硫黄原子(S)、セレン原子(Se)又はテルル原子(Te)が挙げられる。なかでも、X1及びX2は、コポリマーの半導体特性を向上させるためにそれぞれ硫黄原子(S)であることが好ましい。 In formula (I), X 1 and X 2 each independently represents an atom selected from Group 16 elements of the periodic table. Specific examples include an oxygen atom (O), a sulfur atom (S), a selenium atom (Se), or a tellurium atom (Te). Among these, X 1 and X 2 are each preferably a sulfur atom (S) in order to improve the semiconductor properties of the copolymer.
 式(I)中、R1及びR4はそれぞれ独立して、炭素数9以上の直鎖状の脂肪族炭化水素基、又は主鎖の炭素数が9以上であり、かつ側鎖の炭素数が5以下である分岐状の脂肪族炭化水素基を表す。なお、本発明において、分岐状の脂肪族炭化水素基における主鎖とは、分岐状の脂肪族炭化水素基において炭素数が最大となる炭素鎖を意味する。また、側鎖とは主鎖から枝分かれしている炭素鎖部分を意味する。また、本発明において、側鎖の炭素数が5以下とは、分岐状の脂肪族炭化水素基が複数の側鎖を有する場合、それぞれの側鎖の炭素数が5以下であることを意味する。
 R1及びR4が炭素数9以上の直鎖状の脂肪族炭化水素基又は主鎖の炭素数が9以上の分岐状の脂肪族炭化水素基であることにより、溶解性の高いコポリマーが得られやすくなり、さらには、光電変換素子の活性層において、コポリマーの共役構造や主鎖間での相互作用により、光電変換素子の変換効率を向上させることができると考えられる。なお、ポリマーの溶解性及び相互作用をより高めるために、直鎖状の脂肪族炭化水素基の炭素数は10以上であることがより好ましく、12以上であることがさらに好ましく、13以上であることが特に好ましい。同様に、分岐状の脂肪族炭化水素基の主鎖の炭素数は10以上であることがより好ましく、12以上であることがさらに好ましく、13以上であることが特に好ましい。
In the formula (I), R 1 and R 4 are each independently a linear aliphatic hydrocarbon group having 9 or more carbon atoms, or the main chain having 9 or more carbon atoms, and the side chain carbon number. Represents a branched aliphatic hydrocarbon group having 5 or less. In the present invention, the main chain in the branched aliphatic hydrocarbon group means a carbon chain having the maximum carbon number in the branched aliphatic hydrocarbon group. The side chain means a carbon chain portion branched from the main chain. In the present invention, the side chain carbon number of 5 or less means that when the branched aliphatic hydrocarbon group has a plurality of side chains, the carbon number of each side chain is 5 or less. .
When R 1 and R 4 are linear aliphatic hydrocarbon groups having 9 or more carbon atoms or branched aliphatic hydrocarbon groups having 9 or more carbon atoms in the main chain, a highly soluble copolymer can be obtained. Further, in the active layer of the photoelectric conversion element, it is considered that the conversion efficiency of the photoelectric conversion element can be improved by the conjugated structure of the copolymer and the interaction between the main chains. In order to further improve the solubility and interaction of the polymer, the linear aliphatic hydrocarbon group preferably has 10 or more carbon atoms, more preferably 12 or more, and more preferably 13 or more. It is particularly preferred. Similarly, the carbon number of the main chain of the branched aliphatic hydrocarbon group is more preferably 10 or more, further preferably 12 or more, and particularly preferably 13 or more.
 一方、直鎖状の脂肪族炭化水素基の炭素数及び分岐状の脂肪族炭化水素基の主鎖の炭素数の上限は、特段の制限はないが、高い溶解性を維持しつつ、R1及びR4を有する5員環と隣り合う式(I)中のD1で表されるドナー性構成単位との立体障害が発生しにくくして、コポリマーの平面性を保つために、該炭素数は25以下であることが好ましく、20以下であることがさらに好ましく、16以下であることが特に好ましい。なお、コポリマーの平面性が保たれることにより、光電変換素子の活性層中でコポリマーどうしが規則正しく配列しやすくなり、高い変換効率が得られやすくなる傾向がある。 On the other hand, the upper limit of the carbon number of the linear aliphatic hydrocarbon group and the main chain carbon number of the branched aliphatic hydrocarbon group is not particularly limited, but R 1 is maintained while maintaining high solubility. In order to prevent steric hindrance between the 5-membered ring having R 4 and the adjacent donor unit represented by D1 in the formula (I), and to maintain the planarity of the copolymer, the carbon number is It is preferably 25 or less, more preferably 20 or less, and particularly preferably 16 or less. In addition, when the planarity of the copolymer is maintained, the copolymers tend to be regularly arranged in the active layer of the photoelectric conversion element, and high conversion efficiency tends to be easily obtained.
 また、R1及び/又はR4が分岐状の脂肪族炭化水素基である場合、側鎖の炭素数を5以下とすることにより、式(I)において、R1及びR4を有する5員環と隣り合う式(I)中のD1で表されるドナー性構成単位との立体障害が発生しにくくなり、コポリマーの平面性が得られやすくなる。そのため、活性層中でコポリマーどうしが規則正しく配列しやすくなり、光電変換素子の変換効率を向上させることができる。なお、該ドナー性構成単位との立体障害をより低減するためには、側鎖の炭素数は4以下であることがより好ましく、2以下であることがさらに好ましい。 In addition, when R 1 and / or R 4 is a branched aliphatic hydrocarbon group, a 5-membered group having R 1 and R 4 in the formula (I) by reducing the number of carbons in the side chain to 5 or less. Steric hindrance with the donor structural unit represented by D1 in the formula (I) adjacent to the ring is less likely to occur, and the planarity of the copolymer is easily obtained. Therefore, the copolymers can be easily arranged regularly in the active layer, and the conversion efficiency of the photoelectric conversion element can be improved. In order to further reduce the steric hindrance with the donor structural unit, the number of carbon atoms in the side chain is more preferably 4 or less, and even more preferably 2 or less.
 直鎖状の脂肪族炭化水素基は、直鎖アルキル基、直鎖アルケニル基又は直鎖アルキニル基が挙げられる。 Examples of the linear aliphatic hydrocarbon group include a linear alkyl group, a linear alkenyl group, and a linear alkynyl group.
 具体的な直鎖アルキル基の例としては、例えば、デシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、イコシル基等が挙げられる。 Specific examples of the linear alkyl group include a decyl group, a dodecyl group, a tridecyl group, a tetradecyl group, a pentadecyl group, a hexadecyl group, and an icosyl group.
 具体的な直鎖アルケニル基の例としては、例えば、デセニル基、ドデセニル基、トリデセニル基、テトラデセニル基、ペンタデセニル基、ヘキサデセニル基等が挙げられる。 Specific examples of the linear alkenyl group include a decenyl group, a dodecenyl group, a tridecenyl group, a tetradecenyl group, a pentadecenyl group, and a hexadecenyl group.
 具体的な直鎖アルキニル基の例としては、例えば、デシニル基、ドデシニル基、トリデシニル基、テトラデシニル基、ペンタデシニル基、ヘキサデシニル基等が挙げられる。 Specific examples of the linear alkynyl group include a decynyl group, a dodecynyl group, a tridecynyl group, a tetradecynyl group, a pentadecynyl group, and a hexadecynyl group.
 分岐状の脂肪族炭化水素基は、分岐アルキル基、分岐アルケニル基又は分岐アルキニル基が挙げられる。 Examples of the branched aliphatic hydrocarbon group include a branched alkyl group, a branched alkenyl group, and a branched alkynyl group.
 分岐アルキル基の例としては、例えば、エチルデシル基、エチルドデシル基、エチルペンタデシル基、2,6-ジメチルデシル基、2,6-ジメチルドデシル基等が挙げられる。 Examples of the branched alkyl group include, for example, ethyldecyl group, ethyldodecyl group, ethylpentadecyl group, 2,6-dimethyldecyl group, 2,6-dimethyldodecyl group and the like.
 分岐アルケニル基の例としては、例えば、エチルデセニル基、エチルドデセニル基、エチルペンタデセニル基、2,6-ジメチルデセニル基、2,6-ジメチルドデセニル基等が挙げられる。 Examples of the branched alkenyl group include, for example, ethyldecenyl group, ethyldodecenyl group, ethylpentadecenyl group, 2,6-dimethyldecenyl group, 2,6-dimethyldodecenyl group and the like.
 分岐アルキニル基の例としては、例えば、エチルデシニル基、エチルドデシニル基、エチルペンタデシニル基、2,6-ジメチルデシニル基、2,6-ジメチルドデシニル基等が挙げられる。 Examples of the branched alkynyl group include an ethyldecynyl group, an ethyldodecynyl group, an ethylpentadecynyl group, a 2,6-dimethyldecynyl group, a 2,6-dimethyldodecynyl group, and the like.
 なお、これらの中でも、ポリマーの平面性を維持するために脂肪族炭化水素基は、直鎖状の脂肪族炭化水素基であることが好ましい。 Of these, the aliphatic hydrocarbon group is preferably a linear aliphatic hydrocarbon group in order to maintain the planarity of the polymer.
 なお、脂肪族炭化水素基が有する、一部又は全ての水素原子は、フッ素原子により置換されていてもよい。なお、本発明において、一部又は全ての水素原子がフッ素原子により置換された脂肪族炭化水素基も脂肪族炭化水素基とみなす。 Note that some or all of the hydrogen atoms of the aliphatic hydrocarbon group may be substituted with fluorine atoms. In the present invention, an aliphatic hydrocarbon group in which some or all of the hydrogen atoms are substituted with fluorine atoms is also regarded as an aliphatic hydrocarbon group.
 式(I)中、R2及びR3はそれぞれ独立して、水素原子又はハロゲン原子を表す。R2及びR3が水素原子又はハロゲン原子であれば、R2を有する5員環及びR3を有する5員環と隣り合うナフトビスチアジアゾール単位との立体障害の発生を抑えることができるために、光電変換素子の活性層中においてコポリマーどうしを規則正しく配列させることができる。なかでも、R2及びR3はともに水素原子又はフッ素原子であることが好ましく、ともに水素原子であることがより好ましい。 In formula (I), R 2 and R 3 each independently represent a hydrogen atom or a halogen atom. If R 2 and R 3 are hydrogen atoms or halogen atoms, it is possible to suppress the occurrence of steric hindrance between the 5-membered ring having R 2 and the 5-membered ring having R 3 and the adjacent naphthobisthiadiazole unit. The copolymers can be regularly arranged in the active layer of the photoelectric conversion element. Especially, it is preferable that both R < 2 > and R < 3 > are a hydrogen atom or a fluorine atom, and it is more preferable that both are hydrogen atoms.
 式(I)中、D1は、ドナー性構成単位を表す。なお、ドナー性構成単位とは、イオン化ポテンシャルが小さく電子を供与する傾向の強い構成単位であり、置換基を有していてもよい芳香族基である。具体的に、ドナー性構成単位D1は、式(I)中のナフトビスチアジアゾール単位よりもイオン化ポテンシャル及び電子親和力が小さい構成単位である。すなわち、本発明において、ドナー性構成単位D1は、式(I)中のナフトビスチアジアゾール単位よりも高いHOMOエネルギー準位及び高いLUMOエネルギー準位を有する構成単位である。なお、ナフトビスチアジアゾール単位及びドナー性構成単位のHOMOエネルギー準位及びLUMOエネルギー準位は光電子収量分光(PYS)測定、紫外光電子分光(UPS)測定、逆光電子分光(IPES)測定及びサイクリックボルタンメトリー測定等により実験的に見積もることができる。また、ナフトビスチアジアゾール単位及びドナー性構成単位のHOMOエネルギー準位及びLUMOエネルギー準位は、分子軌道法(MO法)及び密度半関数法(DFT法)等の量子化学計算により算出することができる。なお、ナフトビスチアジアゾール単位及びドナー性構成単位のHOMOエネルギー準位及びLUMOエネルギー準位を算出する際は、それぞれの構成単位の末端部分を水素原子で置換させて算出することとする。 In formula (I), D1 represents a donor structural unit. The donor structural unit is a structural unit having a small ionization potential and a strong tendency to donate electrons, and is an aromatic group which may have a substituent. Specifically, the donor structural unit D1 is a structural unit having a smaller ionization potential and electron affinity than the naphthobisthiadiazole unit in the formula (I). That is, in the present invention, the donor structural unit D1 is a structural unit having a higher HOMO energy level and a higher LUMO energy level than the naphthobisthiadiazole unit in the formula (I). In addition, the HOMO energy level and LUMO energy level of the naphthobisthiadiazole unit and donor structural unit are measured by photoelectron yield spectroscopy (PYS) measurement, ultraviolet photoelectron spectroscopy (UPS) measurement, inverse photoelectron spectroscopy (IPES) measurement, and cyclic voltammetry measurement. Etc., and can be estimated experimentally. Further, the HOMO energy level and LUMO energy level of the naphthobisthiadiazole unit and the donor constituent unit can be calculated by quantum chemical calculations such as a molecular orbital method (MO method) and a density half function method (DFT method). . When calculating the HOMO energy level and the LUMO energy level of the naphthobisthiadiazole unit and the donor structural unit, the terminal part of each structural unit is replaced with a hydrogen atom.
 なかでも、コポリマーの剛直性を緩和し、コポリマーどうしを規則正しく配列させるために、ドナー性構成単位D1はそれぞれ下記式(IV)又は下記式(V)で表わされる構成単位であることが好ましい。 Among them, in order to alleviate the rigidity of the copolymer and regularly arrange the copolymers, the donor structural unit D1 is preferably a structural unit represented by the following formula (IV) or the following formula (V).
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000050
 式(IV)中、Ar5及びAr6は、それぞれ独立して、置換基を有していてもよい芳香環を表す。芳香環は、芳香族炭化水素環又は芳香族複素環を表す。 In formula (IV), Ar 5 and Ar 6 each independently represents an aromatic ring which may have a substituent. The aromatic ring represents an aromatic hydrocarbon ring or an aromatic heterocyclic ring.
 芳香族炭化水素環を構成する炭素数は6以上30以下であることが好ましい。具体的には、ベンゼン環等の単環式の芳香族炭化水素;ナフタレン環、インダン環、インデン環、フェナントレン環、フルオレン環、アントラセン環、アズレン環、ピレン環、ペリレン環等の縮合多環式の芳香族炭化水素が挙げられる。なかでも、ベンゼン環又はナフタレン環が好ましい。 The number of carbon atoms constituting the aromatic hydrocarbon ring is preferably 6 or more and 30 or less. Specifically, monocyclic aromatic hydrocarbon such as benzene ring; condensed polycyclic such as naphthalene ring, indane ring, indene ring, phenanthrene ring, fluorene ring, anthracene ring, azulene ring, pyrene ring, perylene ring And aromatic hydrocarbons. Of these, a benzene ring or a naphthalene ring is preferable.
 芳香族複素環の環を構成する炭素原子及びヘテロ原子の数の和は3以上30以下であることが好ましい。ヘテロ原子としては、例えば、窒素原子、酸素原子、硫黄原子等が挙げられる。芳香族複素環としては、具体的には、チオフェン環、フラン環、ピリジン環、ピリミジン環、チアゾール環、オキサゾール環、トリアゾール環等の単環式の芳香族複素環;又はチエノチオフェン環、ベンゾチオフェン環、ベンゾフラン環、ベンゾチアゾール環、ベンゾオキサゾール環、ベンゾトリアゾール環、チアジアゾロピリジン環等の縮合多環式の芳香族複素環が挙げられる。なかでも、チオフェン環、ピリジン環、ピリミジン環、チアゾール環、チアジアゾール環、オキサゾール環、オキサジアゾール環又はトリアゾール環が好ましい。 It is preferable that the sum of the numbers of carbon atoms and heteroatoms constituting the aromatic heterocyclic ring is 3 or more and 30 or less. Examples of the hetero atom include a nitrogen atom, an oxygen atom, and a sulfur atom. Specific examples of the aromatic heterocycle include monocyclic aromatic heterocycles such as a thiophene ring, a furan ring, a pyridine ring, a pyrimidine ring, a thiazole ring, an oxazole ring, and a triazole ring; or a thienothiophene ring and a benzothiophene Examples thereof include condensed polycyclic aromatic heterocycles such as a ring, a benzofuran ring, a benzothiazole ring, a benzoxazole ring, a benzotriazole ring, and a thiadiazolopyridine ring. Among these, a thiophene ring, a pyridine ring, a pyrimidine ring, a thiazole ring, a thiadiazole ring, an oxazole ring, an oxadiazole ring, or a triazole ring is preferable.
 芳香族炭化水素環及び芳香族複素環が有していてもよい置換基は特段の制限はなく、ハロゲン原子又は1価の有機基が挙げられる。1価の有機基の炭素原子の数は、特段の制限はないが、1以上30以下であることが好ましい。1価の有機基の具体例としては、脂肪族炭化水素基、アルコキシ基、アルコキシカルボニル基、アルキルカルボニル基、アルキルチオ基、芳香族炭化水素基、脂肪族複素環基又は芳香族複素環基が挙げられる。 The substituent that the aromatic hydrocarbon ring and aromatic heterocyclic ring may have is not particularly limited, and examples thereof include a halogen atom or a monovalent organic group. The number of carbon atoms in the monovalent organic group is not particularly limited, but is preferably 1 or more and 30 or less. Specific examples of the monovalent organic group include an aliphatic hydrocarbon group, an alkoxy group, an alkoxycarbonyl group, an alkylcarbonyl group, an alkylthio group, an aromatic hydrocarbon group, an aliphatic heterocyclic group, or an aromatic heterocyclic group. It is done.
 上記式(IV)中、X3及びX4は、それぞれ独立して、Q1(R5)(R6)、Q2(R7)、硫黄原子(S)、酸素原子(O)又は直接結合を表す。ただし、X3及びX4の一方が直接結合である場合、X3及びX4のうちの他方の基は、Q1(R5)(R6)、Q2(R7)、硫黄原子(S)又は酸素原子(O)である。なお、Q1は、周期表第14族元素から選ばれる原子を表し、好ましくは炭素原子(C)、珪素原子(Si)、又はゲルマニウム原子(Ge)である。Q2は、周期表第15族元素から選ばれる原子を表し、好ましくは窒素原子(N)が挙げられる。 In the above formula (IV), X 3 and X 4 are each independently Q 1 (R 5 ) (R 6 ), Q 2 (R 7 ), sulfur atom (S), oxygen atom (O) or directly Represents a bond. However, when one of X 3 and X 4 is a direct bond, the other group of X 3 and X 4 is Q 1 (R 5 ) (R 6 ), Q 2 (R 7 ), a sulfur atom ( S) or an oxygen atom (O). Q 1 represents an atom selected from Group 14 elements of the periodic table, preferably a carbon atom (C), a silicon atom (Si), or a germanium atom (Ge). Q 2 represents an atom selected from Group 15 elements of the periodic table, preferably a nitrogen atom (N).
 R5及びR6は、それぞれQ1に結合している基を表し、それぞれ独立して、水素原子、ハロゲン原子又は1価の有機基を表す。R5及びR6は、同じ基であってもよいし、互いに異なる基であってもよい。R7は、Q2に結合している基であり、水素原子、ハロゲン原子又は1価の有機基を表す。 R 5 and R 6 each represent a group bonded to Q 1 , and each independently represents a hydrogen atom, a halogen atom or a monovalent organic group. R 5 and R 6 may be the same group or different from each other. R 7 is a group bonded to Q 2 and represents a hydrogen atom, a halogen atom or a monovalent organic group.
 1価の有機基は特段の制限はないが、1以上30以下の炭素数を有する基であることが好ましい。1価の有機基の具体例としては、置換基を有していてもよい脂肪族炭化水素基、置換基を有していてもよい芳香族炭化水素基、置換基を有していてもよい脂肪族複素環基、置換基を有していてもよい芳香族複素環基、置換基を有していてもよいアルコキシ基、置換基を有していてもよいアルコキシカルボニル基、置換基を有していてもよいアルキルカルボニル基、又は置換基を有していてもよいアルキルチオ基又はハロゲン原子が挙げられる。 The monovalent organic group is not particularly limited, but is preferably a group having 1 to 30 carbon atoms. Specific examples of the monovalent organic group include an aliphatic hydrocarbon group which may have a substituent, an aromatic hydrocarbon group which may have a substituent, and a substituent. An aliphatic heterocyclic group, an aromatic heterocyclic group which may have a substituent, an alkoxy group which may have a substituent, an alkoxycarbonyl group which may have a substituent, and a substituent An alkylcarbonyl group which may be substituted, an alkylthio group which may have a substituent, or a halogen atom.
 脂肪族炭化水素基は、特段の制限はないが、鎖状の脂肪族炭化水素基又は環状の脂肪族炭化水素基が挙げられる。 The aliphatic hydrocarbon group is not particularly limited, and examples thereof include a chain aliphatic hydrocarbon group or a cyclic aliphatic hydrocarbon group.
 鎖状の脂肪族炭化水素基の炭素数は、コポリマーの溶解性を向上させるために4以上であることが好ましく、6以上であることがさらに好ましく、一方、立体障害を避けるために30以下であることが好ましく、20以下であることがさらに好ましい。 The number of carbon atoms of the chain aliphatic hydrocarbon group is preferably 4 or more in order to improve the solubility of the copolymer, more preferably 6 or more, while it is 30 or less in order to avoid steric hindrance. Preferably, it is preferably 20 or less.
 鎖状の脂肪族炭化水素基は、直鎖状の脂肪族炭化水素基又は分岐状の脂肪族炭化水素基が挙げられる。 Examples of the chain aliphatic hydrocarbon group include a linear aliphatic hydrocarbon group and a branched aliphatic hydrocarbon group.
 直鎖状の脂肪族炭化水素基は直鎖アルキル基、直鎖アルケニル基又は直鎖アルキニル基が挙げられる。 Examples of the linear aliphatic hydrocarbon group include a linear alkyl group, a linear alkenyl group, and a linear alkynyl group.
 直鎖アルキル基は、特段の制限はないが、例えば、n-ブチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-デシル基又はn-ドデシル基が挙げられる。 The linear alkyl group is not particularly limited, and examples thereof include n-butyl group, n-hexyl group, n-heptyl group, n-octyl group, n-decyl group and n-dodecyl group.
 直鎖アルケニル基は、特段の制限はないが、例えば、5-ヘキセニル基、7-オクチニル基又は11-ドデセニル基が挙げられる。 The linear alkenyl group is not particularly limited, and examples thereof include a 5-hexenyl group, a 7-octynyl group, and an 11-dodecenyl group.
 直鎖アルキニル基は、特段の制限はないが、例えば、5-ヘキシニル基、7-オクチニル基、9-デシニル基又は11-ドデシニル基が挙げられる。 The linear alkynyl group is not particularly limited, and examples thereof include a 5-hexynyl group, a 7-octynyl group, a 9-decynyl group, and an 11-dodecynyl group.
 分岐状の脂肪族炭化水素基は、分岐アルキル基、分岐アルケニル基又は分岐アルキニル基が挙げられる。 Examples of the branched aliphatic hydrocarbon group include a branched alkyl group, a branched alkenyl group, and a branched alkynyl group.
 分岐アルキル基は、分岐1級アルキル基、分岐2級アルキル基又は分岐3級アルキル基が挙げられる。分岐1級アルキル基とは、遊離原子価を有する炭素原子に結合する水素原子が2つである分岐アルキル基を意味する。分岐2級アルキル基とは、遊離原子価を有する炭素原子に結合する水素原子が1つである分岐アルキル基を意味する。また分岐3級アルキル基とは、遊離原子価を有する炭素原子に結合する水素原子が無い分岐アルキル基を意味する。ここで、遊離原子価とは、有機化学・生化学命名法(上)(改訂第2版、南江堂、1992年発行)に記載のとおり、他の遊離原子価と結合を形成できるものをいう。 Examples of the branched alkyl group include a branched primary alkyl group, a branched secondary alkyl group, and a branched tertiary alkyl group. The branched primary alkyl group means a branched alkyl group having two hydrogen atoms bonded to a carbon atom having a free valence. The branched secondary alkyl group means a branched alkyl group having one hydrogen atom bonded to a carbon atom having a free valence. The branched tertiary alkyl group means a branched alkyl group having no hydrogen atom bonded to a carbon atom having a free valence. Here, the free valence refers to a substance that can form a bond with another free valence as described in the organic chemistry / biochemical nomenclature (above) (Revised 2nd edition, Nankodo, 1992).
 分岐1級アルキル基は、特段の制限はないが、例えば、2-エチルヘキシル基2-ブチルオクチル基、3,7-ジメチルオクチル基、2-ヘキシルデシル基、又は2-デシルテトラデシル基が挙げられる。 The branched primary alkyl group is not particularly limited, and examples thereof include 2-ethylhexyl group, 2-butyloctyl group, 3,7-dimethyloctyl group, 2-hexyldecyl group, and 2-decyltetradecyl group. .
 分岐2級アルキル基は、特段の制限はないが、例えば、イソプロピル基、3-エチル-1,5-ジメチルノニル基又は1-プロピルヘプチル基が挙げられる。 The branched secondary alkyl group is not particularly limited, and examples thereof include isopropyl group, 3-ethyl-1,5-dimethylnonyl group, and 1-propylheptyl group.
 分岐3級アルキル基は、特段の制限はないが、例えば、t-ブチル基、1-ブチル-1-エチルペンチル基、1-ブチル-1-メチルペンチル基、1-エチル-1-メチルヘキシル基、1-メチル-1-プロピルペンチル基、1-エチル-1-メチルプロピル基又は1,1,2,2-テトラメチルプロピル基が挙げられる。 The branched tertiary alkyl group is not particularly limited, and examples thereof include a t-butyl group, a 1-butyl-1-ethylpentyl group, a 1-butyl-1-methylpentyl group, and a 1-ethyl-1-methylhexyl group. 1-methyl-1-propylpentyl group, 1-ethyl-1-methylpropyl group or 1,1,2,2-tetramethylpropyl group.
 分岐アルケニル基は、特段の制限はないが、例えば、2-メチル-2-プロペニル基、3-メチル-3-ブテニル基、4-メチル-2-ヘキセニル基が挙げられる。 The branched alkenyl group is not particularly limited, and examples thereof include a 2-methyl-2-propenyl group, a 3-methyl-3-butenyl group, and a 4-methyl-2-hexenyl group.
 分岐アルキニル基は、特段の制限はないが、例えば、1-メチル-2-プロピニル基、2-メチル-3-ブチニル基、4-メチル-2-ヘキシニル基等が挙げられる。 The branched alkynyl group is not particularly limited, and examples thereof include a 1-methyl-2-propynyl group, a 2-methyl-3-butynyl group, and a 4-methyl-2-hexynyl group.
 環状の脂肪族炭化水素基の炭素数は、特段の制限はないが、4以上であることが好ましく、6以上であることが好ましく、一方、30以下であることが好ましく、20以下であることが特に好ましい。具体的には、シクロブチル基、シクロへキシル基、シクロオクチル基、シクロノニル基等が挙げられる。 The number of carbon atoms of the cyclic aliphatic hydrocarbon group is not particularly limited, but is preferably 4 or more, preferably 6 or more, on the other hand, preferably 30 or less, and 20 or less. Is particularly preferred. Specific examples include a cyclobutyl group, a cyclohexyl group, a cyclooctyl group, and a cyclononyl group.
 アルコキシ基の炭素数は、特段の制限はないが、4以上であることが好ましく、6以上であることが好ましく、一方、30以下であることが好ましく、20以下であることが特に好ましい。具体的には、ヘキシルオキシ、デシルオキシ基、ドデシルオキシ基等が挙げられる。 The carbon number of the alkoxy group is not particularly limited, but is preferably 4 or more, preferably 6 or more, on the other hand, preferably 30 or less, particularly preferably 20 or less. Specific examples include hexyloxy, decyloxy group, dodecyloxy group and the like.
 アルキルカルボニル基の炭素数は、特段の制限はないが、4以上であることが好ましく、6以上であることが好ましく、一方、30以下であることが好ましく、20以下であることが特に好ましい。具体的には、ヘキサノイル基、デカノイル基、ドデカノイル基等が挙げられる。 The number of carbon atoms of the alkylcarbonyl group is not particularly limited, but is preferably 4 or more, preferably 6 or more, on the other hand, preferably 30 or less, particularly preferably 20 or less. Specific examples include a hexanoyl group, a decanoyl group, and a dodecanoyl group.
 アルコキシカルボニル基の炭素数は、特段の制限はないが、4以上であることが好ましく、6以上であることが好ましく、一方、30以下であることが好ましく、20以下であることが特に好ましい。具体的には、ヘキシルオキシカルボニル基、デシルオキシカルボニル基、ドデシルオキシカルボニル基等が挙げられる。 The number of carbon atoms of the alkoxycarbonyl group is not particularly limited, but is preferably 4 or more, preferably 6 or more, on the other hand, preferably 30 or less, particularly preferably 20 or less. Specific examples include a hexyloxycarbonyl group, a decyloxycarbonyl group, a dodecyloxycarbonyl group, and the like.
 アルキルチオ基の炭素数は、特段の制限はないが、4以上であることが好ましく、6以上であることが好ましく、一方、30以下であることが好ましく、20以下であることが特に好ましい。具体的には、チオへキシル基、チオデシル基、チオドデシル基等が挙げられる。 The number of carbon atoms of the alkylthio group is not particularly limited, but is preferably 4 or more, preferably 6 or more, on the other hand, preferably 30 or less, particularly preferably 20 or less. Specific examples include a thiohexyl group, a thiodecyl group, a thiododecyl group, and the like.
 芳香族炭化水素基は、特段の制限はないが、単環式の芳香族炭化水素基、多環式の芳香族炭化水素基、又は縮合多環式の芳香族炭化水素基が挙げられる。芳香族炭化水素基の炭素数は、特段の制限はないが、6以上であることが好ましく、一方、30以下であることが好ましく、20以下であることがさらに好ましく、14以下であることが特に好ましい。具体的には、フェニル基、ナフチル基、インダニル基、インデニル基、フルオレニル基、アントラセニル基又はアズレニル基等が挙げられる。 The aromatic hydrocarbon group is not particularly limited, and examples thereof include a monocyclic aromatic hydrocarbon group, a polycyclic aromatic hydrocarbon group, and a condensed polycyclic aromatic hydrocarbon group. The number of carbon atoms of the aromatic hydrocarbon group is not particularly limited, but is preferably 6 or more, preferably 30 or less, more preferably 20 or less, and 14 or less. Particularly preferred. Specific examples include a phenyl group, a naphthyl group, an indanyl group, an indenyl group, a fluorenyl group, an anthracenyl group, and an azulenyl group.
 脂肪族複素環基は、特段の制限はないが、環を構成する原子の数が3以上であることが好ましく、一方、30以下であることが好ましく、14以下であることがより好ましく、10以下であることが特に好ましい。環を構成する原子としては、特段の制限はないが、炭素原子、窒素原子、酸素原子、硫黄原子等が挙げられる。具体的には、オキセタニル基、ピロリジニル基、テトラヒドロフリル基、テトラヒドロチエニル基、ピペリジニル基、テトラヒドロピラニル基又はテトラヒドロチオピラニル基が挙げられる。 The aliphatic heterocyclic group is not particularly limited, but the number of atoms constituting the ring is preferably 3 or more, on the other hand, preferably 30 or less, more preferably 14 or less. It is particularly preferred that The atoms constituting the ring are not particularly limited, and examples thereof include a carbon atom, a nitrogen atom, an oxygen atom, and a sulfur atom. Specific examples include an oxetanyl group, a pyrrolidinyl group, a tetrahydrofuryl group, a tetrahydrothienyl group, a piperidinyl group, a tetrahydropyranyl group, and a tetrahydrothiopyranyl group.
 芳香族複素環基は、特段の制限はなく、単環式の芳香族複素環基、多環式の芳香族複素環基又は縮合多環式の芳香族複素環基が挙げられる。なお、芳香族複素環基は特段の制限はないが、環を構成する原子の数が3以上であることが好ましく、一方、30以下であることが好ましく、20以下であることがより好ましく、14以下であることが特に好ましい。環を構成する原子としては、特段の制限はないが、炭素原子、窒素原子、酸素原子、硫黄原子等が挙げられる。具体的には、チエニル基、フラニル基、ピリジル基、ピロリル基、イミダゾリル基、ピリミジル基、チアゾリル基、オキサゾリル基、イソオキサゾリル基、イソチアゾリル基、ピラゾリル基、トリアゾリル基、ベンゾチオフェニル基、ベンゾフラニル基、ベンゾチアゾリル基、ベンゾオキサゾリル基又はベンゾトリアゾリル基が挙げられる。これらの中でも、チエニル基、ピリジル基、ピリミジル基、チアゾリル基又はオキサゾリル基が挙げられる。 The aromatic heterocyclic group is not particularly limited, and examples thereof include a monocyclic aromatic heterocyclic group, a polycyclic aromatic heterocyclic group, and a condensed polycyclic aromatic heterocyclic group. The aromatic heterocyclic group is not particularly limited, but the number of atoms constituting the ring is preferably 3 or more, on the other hand, preferably 30 or less, more preferably 20 or less, It is especially preferable that it is 14 or less. The atoms constituting the ring are not particularly limited, and examples thereof include a carbon atom, a nitrogen atom, an oxygen atom, and a sulfur atom. Specifically, thienyl, furanyl, pyridyl, pyrrolyl, imidazolyl, pyrimidyl, thiazolyl, oxazolyl, isoxazolyl, isothiazolyl, pyrazolyl, triazolyl, benzothiophenyl, benzofuranyl, benzothiazolyl Group, benzoxazolyl group or benzotriazolyl group. Among these, a thienyl group, a pyridyl group, a pyrimidyl group, a thiazolyl group, or an oxazolyl group can be given.
 ハロゲン原子は、特段の制限はないが、フッ素原子が挙げられる。 The halogen atom is not particularly limited, but includes a fluorine atom.
 なお、脂肪族炭化水素基、アルコキシ基、アルコキシカルボニル基、アルキルカルボニル基、及びアルキルチオ基、芳香族炭化水素基、脂肪族複素環基及び芳香族複素環基、が有していてもよい置換基は、特段の制限はなく、例えば、脂肪族炭化水素基、アルコキシ基、アルコキシカルボニル基、アルキルカルボニル基、及びアルキルチオ基、芳香族炭化水素基、脂肪族複素環基、芳香族複素環基及びハロゲン原子等が挙げられる。 In addition, an aliphatic hydrocarbon group, an alkoxy group, an alkoxycarbonyl group, an alkylcarbonyl group, and an alkylthio group, an aromatic hydrocarbon group, an aliphatic heterocyclic group, and an aromatic heterocyclic group may have Are not particularly limited, for example, aliphatic hydrocarbon groups, alkoxy groups, alkoxycarbonyl groups, alkylcarbonyl groups, and alkylthio groups, aromatic hydrocarbon groups, aliphatic heterocyclic groups, aromatic heterocyclic groups and halogens. An atom etc. are mentioned.
 以下に、式(IV)で表わされる構成単位の具体例を示す。なお、式(IV)で表わされる構成単位は以下の構成単位に限定されるわけではない。 Specific examples of the structural unit represented by the formula (IV) are shown below. In addition, the structural unit represented by Formula (IV) is not necessarily limited to the following structural units.
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000051
 式(V)中、Ar7及びAr8は、それぞれ独立して、置換基を有していてもよい芳香環を表す。芳香環は、芳香族炭化水素環又は芳香族複素環が挙げられる。芳香族炭化水素環及び芳香族複素環は、特段の制限はなく、例えば、上述のAr5及びAr6で挙げた芳香族炭化水素環及び芳香族複素環が挙げられ、好ましい環も同様である。 In formula (V), Ar 7 and Ar 8 each independently represent an aromatic ring which may have a substituent. The aromatic ring includes an aromatic hydrocarbon ring or an aromatic heterocyclic ring. The aromatic hydrocarbon ring and the aromatic heterocyclic ring are not particularly limited, and examples thereof include the aromatic hydrocarbon ring and the aromatic heterocyclic ring mentioned above for Ar 5 and Ar 6 , and the preferred rings are also the same. .
 上記式(V)中、X5及びX6はそれぞれ独立して、Q3(R8)で表わされる基を表す。Q3は、周期表第14族元素から選ばれる原子を表し、炭素原子(C)、珪素原子(Si)又はゲルマニウム原子(Ge)が挙げられる。 In the above formula (V), X 5 and X 6 each independently represent a group represented by Q 3 (R 8 ). Q 3 represents an atom selected from Group 14 elements of the periodic table, and examples thereof include a carbon atom (C), a silicon atom (Si), and a germanium atom (Ge).
 R8は、Q3に結合した基を表し、水素原子、ハロゲン原子又は1価の有機基を表す。1価の有機基は特段の制限はないが、炭素数が1以上30以下である有機基であることが好ましい。1価の有機基の具体例としては、置換基を有していてもよい脂肪族炭化水素基、置換基を有していてもよいアルコキシ基、置換基を有していてもよいアルコキシカルボニル基、置換基を有していてもよいアルキルカルボニル基、置換基を有していてもよいアルキルチオ基、置換基を有していてもよい芳香族炭化水素基、置換基を有していてもよい脂肪族複素環基、又は置換基を有していてもよい芳香族複素環基が挙げられる。これらの具体的な基は上述のR5~R7の1価の有機基で挙げた基が挙げられる。また、これらの基が有していてもよい置換基もR5~R7の1価の有機基において説明した置換基が挙げられる。 R 8 represents a group bonded to Q 3 and represents a hydrogen atom, a halogen atom or a monovalent organic group. The monovalent organic group is not particularly limited, but is preferably an organic group having 1 to 30 carbon atoms. Specific examples of the monovalent organic group include an aliphatic hydrocarbon group which may have a substituent, an alkoxy group which may have a substituent, and an alkoxycarbonyl group which may have a substituent. , An optionally substituted alkylcarbonyl group, an optionally substituted alkylthio group, an optionally substituted aromatic hydrocarbon group, and optionally having a substituent. Examples thereof include an aliphatic heterocyclic group or an aromatic heterocyclic group which may have a substituent. Specific examples of these groups include the groups mentioned for the monovalent organic groups of R 5 to R 7 described above. Examples of the substituent that these groups may have include the substituents described for the monovalent organic groups of R 5 to R 7 .
 以下に、式(V)で表わされる構成単位の具体例を示す。なお、式(V)で表わされる構成単位は以下の構成単位に限定されるわけではない。 Specific examples of the structural unit represented by the formula (V) are shown below. In addition, the structural unit represented by Formula (V) is not necessarily limited to the following structural units.
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000052
 これらのなかでも、上記式(I)中のドナー性構成単位(D1)は、変換効率向上のために、上記式(V)で表わされるドナー性構成単位であることが好ましい。なかでも、より高い変換効率を得るために式(V)で表わされるドナー性構成単位は下記式(III)で表わされるドナー性構成単位であることが好ましい。 Among these, the donor structural unit (D1) in the above formula (I) is preferably a donor structural unit represented by the above formula (V) in order to improve the conversion efficiency. Especially, in order to obtain higher conversion efficiency, it is preferable that the donor structural unit represented by the formula (V) is a donor structural unit represented by the following formula (III).
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000053
 式(III)中、X12及びX13は、それぞれ独立して、周期表第16族元素から選択される原子を表す。具体的には、酸素原子(O)、硫黄原子(S)、セレン原子(Se)又はテルル原子(Te)が挙げられる。なかでも、X12及びX13は、コポリマーが良好な半導体特性を示すことからそれぞれ硫黄原子(S)であることが好ましい。 In formula (III), X 12 and X 13 each independently represent an atom selected from Group 16 elements of the periodic table. Specific examples include an oxygen atom (O), a sulfur atom (S), a selenium atom (Se), or a tellurium atom (Te). Among these, X 12 and X 13 are each preferably a sulfur atom (S) since the copolymer exhibits good semiconductor properties.
 式(III)中、R9及びR10はそれぞれ独立して、水素原子、ハロゲン原子又は1価の有機基が挙げられる。1価の有機基は特段の制限はないが、炭素数1以上30以下の有機基であることが好ましい。1価の有機基の具体例としては、置換基を有していてもよい脂肪族炭化水素基、置換基を有していてもよいアルコキシ基、置換基を有していてもよいアルコキシカルボニル基、置換基を有していてもよいアルキルカルボニル基、置換基を有していてもよいアルキルチオ基、置換基を有していてもよい芳香族炭化水素基、置換基を有していてもよい脂肪族複素環基、又は置換基を有していてもよい芳香族複素環基が挙げられる。これらの具体的な基は上述のR5~R7の1価の有機基で挙げた基が挙げられる。また、これらの基が有していてもよい置換基もR5~R7の1価の有機基において説明した置換基が挙げられる。なお、R9及びR10は同じ基であってもよいし、異なる基であってもよい。 In formula (III), R 9 and R 10 are each independently a hydrogen atom, a halogen atom or a monovalent organic group. The monovalent organic group is not particularly limited, but is preferably an organic group having 1 to 30 carbon atoms. Specific examples of the monovalent organic group include an aliphatic hydrocarbon group which may have a substituent, an alkoxy group which may have a substituent, and an alkoxycarbonyl group which may have a substituent. , An optionally substituted alkylcarbonyl group, an optionally substituted alkylthio group, an optionally substituted aromatic hydrocarbon group, and optionally having a substituent. Examples thereof include an aliphatic heterocyclic group or an aromatic heterocyclic group which may have a substituent. Specific examples of these groups include the groups mentioned for the monovalent organic groups of R 5 to R 7 described above. Examples of the substituent that these groups may have include the substituents described for the monovalent organic groups of R 5 to R 7 . R 9 and R 10 may be the same group or different groups.
 なかでも、溶解性を向上させるために、R9及びR10はそれぞれ独立して置換基を有していてもよい脂肪族炭化水素基、置換基を有していてもよい芳香族炭化水素基又は置換基を有していてもよい芳香族複素環基であることが好ましい。 Among them, in order to improve solubility, R 9 and R 10 are each independently an aliphatic hydrocarbon group which may have a substituent and an aromatic hydrocarbon group which may have a substituent. Or it is preferable that it is an aromatic heterocyclic group which may have a substituent.
 これらのなかでも、電子の共役性を拡張するために、R9及びR10はそれぞれ独立して、置換基を有していてもよい芳香族複素環基であることが好ましい。なかでも、式(III)で表される構成単位は下記式(XV)で表される構成単位であることが特に好ましい。 Among these, in order to extend the electron conjugation property, R 9 and R 10 are each independently preferably an aromatic heterocyclic group which may have a substituent. Among these, the structural unit represented by the formula (III) is particularly preferably a structural unit represented by the following formula (XV).
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000054
 式(XV)中、X12及びX13は、式(III)中のX12及びX13と同義である。また、X14及びX15は、それぞれ独立して、周期表第16族元素から選ばれる原子を表す。すなわち、X12~X15はそれぞれ独立して、周期表第16族元素から選ばれる原子を表す。周期表第16族元素から選ばれる原子は、具体的には、酸素原子(O)、硫黄原子(S)、セレン原子(Se)又はテルル原子(Te)が挙げられる。なかでも、X12~X15は、コポリマーが良好な半導体特性を示すことからそれぞれ硫黄原子(S)であることが好ましい。 Wherein (XV), X 12 and X 13 has the same meaning as X 12 and X 13 in formula (III). X 14 and X 15 each independently represent an atom selected from Group 16 elements of the Periodic Table. That is, X 12 to X 15 each independently represent an atom selected from Group 16 elements of the periodic table. Specific examples of the atom selected from Group 16 elements of the periodic table include an oxygen atom (O), a sulfur atom (S), a selenium atom (Se), and a tellurium atom (Te). Among these, X 12 to X 15 are each preferably a sulfur atom (S) since the copolymer exhibits good semiconductor properties.
 R20~R25はそれぞれ水素原子、ハロゲン原子又は1価の有機基を表す。 R 20 to R 25 each represents a hydrogen atom, a halogen atom or a monovalent organic group.
 1価の有機基は特段の制限はないが、炭素数が1以上30以下の有機基であることが好ましい。1価の有機基の具体例としては、置換基を有していてもよい炭素数1以上30以下の鎖状の脂肪族炭化水素基、置換基を有していてもよい炭素数1以上30以下のアルコキシ基、置換基を有していてもよい炭素数1以上30以下のアルコキシカルボニル基、置換基を有していてもよい炭素数1以上30以下のアルキルカルボニル基、又は置換基を有していてもよい炭素数1以上30以下のアルキルチオ基が挙げられる。これらの具体的な基は、上述のR5~R7で挙げた鎖状の脂肪族炭化水素基、アルコキシ基、アルコキシカルボニル基、アルキルカルボニル基、又はアルキルチオ基が挙げられる。 The monovalent organic group is not particularly limited, but is preferably an organic group having 1 to 30 carbon atoms. Specific examples of the monovalent organic group include a chain aliphatic hydrocarbon group having 1 to 30 carbon atoms which may have a substituent, and 1 to 30 carbon atoms which may have a substituent. It has the following alkoxy group, an alkoxycarbonyl group having 1 to 30 carbon atoms which may have a substituent, an alkylcarbonyl group having 1 to 30 carbon atoms which may have a substituent, or a substituent. Examples thereof include an alkylthio group having 1 to 30 carbon atoms which may be used. Specific examples of these groups include the chain aliphatic hydrocarbon groups, alkoxy groups, alkoxycarbonyl groups, alkylcarbonyl groups, and alkylthio groups mentioned above for R 5 to R 7 .
 これらのなかでも、立体障害を低減するために、R20~R22のうち一つの基が1価の有機基であり、残りの2つの基は水素原子であることが好ましい。同様に、R23~R25のうち一つの基が1価の有機基であり、残りの2つの基が水素原子であることが好ましい。 Among these, in order to reduce steric hindrance, one of R 20 to R 22 is preferably a monovalent organic group, and the remaining two groups are preferably hydrogen atoms. Similarly, one of R 23 to R 25 is preferably a monovalent organic group, and the remaining two groups are preferably hydrogen atoms.
 なかでも、下記の理由により、R20が1価の有機基であり、R21及びR22が水素原子であることが好ましい。本発明者等の検討によると、高い変換効率を得るには、コポリマー中の立体障害を低減し、平面性や共役構造を維持することが好ましいと考えられる。そのため、式(I)におけるR1及びR4の伸長方向には、隣り合う構成単位や隣り合う構成単位が有する置換基が存在しないことが好ましい。ここで、R22の伸長方向には、ナフトビスチアジアゾール単位に隣接する5員環、又は該5員環が有する基(R1又はR4)が存在するため、R22はこれらと立体障害を起こしにくい水素原子であることが好ましい。また、R20~R22を有する5員環において、R20は当該環の5位に結合しており、R21は当該環の4位に結合している。ここで、当該環はX14で表されるように周期表第16族元素から選ばれる原子を有しているために、当該環の2位の及び5位の間の距離は、当該環の2位及び4位の間よりも長くなっている。そのため、R20が1価の有機基であり、R21が水素原子であれば、ナフトビスチアジアゾール単位に隣接する5員環との立体障害をより低減することができる。 Among these, for the following reasons, R 20 is preferably a monovalent organic group, and R 21 and R 22 are preferably hydrogen atoms. According to the study by the present inventors, it is considered preferable to reduce the steric hindrance in the copolymer and maintain the planarity and the conjugated structure in order to obtain high conversion efficiency. For this reason, it is preferable that there are no adjacent structural units or substituents of adjacent structural units in the extending direction of R 1 and R 4 in formula (I). Here, the extending direction of the R 22, 5-membered ring adjacent to the naphthoquinone jumping steel thiadiazole units, or to the 5-membered ring has groups (R 1 or R 4) are present, R 22 is these and steric hindrance It is preferably a hydrogen atom that is difficult to cause. In the 5-membered ring having R 20 to R 22 , R 20 is bonded to the 5-position of the ring, and R 21 is bonded to the 4-position of the ring. Here, since the ring has an atom selected from Group 16 elements of the periodic table as represented by X 14 , the distance between the 2-position and 5-position of the ring is It is longer than between 2nd and 4th. Therefore, when R 20 is a monovalent organic group and R 21 is a hydrogen atom, steric hindrance with the 5-membered ring adjacent to the naphthobisthiadiazole unit can be further reduced.
 同様の理由により、R23が1価の有機基であり、R24及びR25が水素原子であることが好ましい。 For the same reason, it is preferable that R 23 is a monovalent organic group, and R 24 and R 25 are hydrogen atoms.
 この場合、下記の理由により、R20及びR23は分岐状の脂肪族炭化水素基であることが好ましい。式(I)のR1及びR4で表される基は炭素数及びその形状に制限があるためにコポリマーの溶解性を向上させるには制限がある。一方で、R20及びR23が分岐状の脂肪族炭化水素基であっても、上記の理由により、他の環や置換基等と立体障害が発生しにくいために、コポリマーの平面性を維持するとともに、溶解性を向上させることができると考えられる。 In this case, R 20 and R 23 are preferably branched aliphatic hydrocarbon groups for the following reasons. The groups represented by R 1 and R 4 in formula (I) are limited in improving the solubility of the copolymer due to the limitation in the number of carbon atoms and the shape thereof. On the other hand, even if R 20 and R 23 are branched aliphatic hydrocarbon groups, the planarity of the copolymer is maintained because steric hindrance is unlikely to occur with other rings and substituents for the above reasons. In addition, it is considered that the solubility can be improved.
 なかでも、R20及びR23が分岐状の脂肪族炭化水素基である場合、溶解性を向上するとともに、共役構造や主鎖間での相互作用向上のために、該脂肪族炭化水素基の炭素数は、7以上であることが好ましく、12以上であることがさらに好ましく、14以上であることがより好ましく、一方、24以下であることが好ましく、20以下であることがさら好ましく、18以下であることがより好ましく、16であることが最も好ましい。 In particular, when R 20 and R 23 are branched aliphatic hydrocarbon groups, the solubility of the aliphatic hydrocarbon group is improved in order to improve the solubility and the interaction between the conjugated structure and the main chain. The number of carbon atoms is preferably 7 or more, more preferably 12 or more, more preferably 14 or more, on the other hand, preferably 24 or less, more preferably 20 or less, 18 The following is more preferable, and 16 is most preferable.
 本発明の第2の態様に係るコポリマーは、本発明の効果を損なわない限りにおいて、式(I)で表わされる繰り返し単位以外の繰り返し単位を有していてもよい。他の繰り返し単位としては、特段の制限はないが、上述のアクセプター性構成単位及びドナー性構成単位等が挙げられる。本発明に係るコポリマーを構成する全繰り返し単位数に対する式(I)で表される繰り返し単位数の比率は、特段の制限は無いが、通常0.02以上、好ましくは0.1以上、より好ましくは0.25以上、より好ましくは0.5以上、さらに好ましくは0.7以上であり、上限は1である。 The copolymer according to the second aspect of the present invention may have a repeating unit other than the repeating unit represented by the formula (I) as long as the effects of the present invention are not impaired. Other repeating units are not particularly limited, and include the above-described acceptor constituent units and donor constituent units. The ratio of the number of repeating units represented by the formula (I) to the total number of repeating units constituting the copolymer according to the present invention is not particularly limited, but is usually 0.02 or more, preferably 0.1 or more, more preferably Is 0.25 or more, more preferably 0.5 or more, still more preferably 0.7 or more, and the upper limit is 1.
 本発明の第2の態様に係るコポリマーの末端部分は、特段の制限はないが、芳香族炭化水素環、芳香族複素環、又は水素原子でエンドギャップされていることが好ましい。 The terminal portion of the copolymer according to the second aspect of the present invention is not particularly limited, but is preferably end-gapped with an aromatic hydrocarbon ring, an aromatic heterocyclic ring, or a hydrogen atom.
 本発明の第1の態様に係るコポリマーのポリスチレン換算の重量平均分子量(Mw)は、特段の制限はないが、長波長化及び高いキャリア移動度を得るために、10,000以上であることが好ましく、30,000以上であることがさらに好ましく、40,000以上であることが特に好ましく、一方、適切に溶解性を担保するために300,000以下であることが好ましく、250,000以下であることがさらに好ましく、245,000以下であることが特に好ましい。光吸収波長を長波長化するという観点、高い吸光度を実現するという観点、高いキャリア移動を実現できるという観点、及び有機溶媒への溶解度の観点から、重量平均分子量がこの範囲にあることが好ましい。 The polystyrene-converted weight average molecular weight (Mw) of the copolymer according to the first aspect of the present invention is not particularly limited, but is 10,000 or more in order to obtain a longer wavelength and high carrier mobility. Preferably, it is more preferably 30,000 or more, particularly preferably 40,000 or more. On the other hand, in order to ensure adequate solubility, it is preferably 300,000 or less, and 250,000 or less. More preferably, it is particularly preferably 245,000 or less. The weight average molecular weight is preferably in this range from the viewpoint of increasing the light absorption wavelength, from the viewpoint of realizing high absorbance, from the viewpoint of realizing high carrier movement, and from the viewpoint of solubility in an organic solvent.
 本発明の第2の態様に係るコポリマーのポリスチレン換算の重量平均分子量(Mw)は、特段の制限はないが、長波長化及び高いキャリア移動度を得るために、10,000以上であることが好ましく、100,000以上であることがさらに好ましく、150,000以上であることが特に好ましく、一方、適切に溶解性を担保するために450,000以下であることが好ましく、400,000以下であることがさらに好ましく、380,000以下であることが特に好ましい。光吸収波長を長波長化するという観点、高い吸光度を実現するという観点、高いキャリア移動を実現できるという観点、及び有機溶媒への溶解度の観点から、重量平均分子量がこの範囲にあることが好ましい。 The polystyrene-converted weight average molecular weight (Mw) of the copolymer according to the second aspect of the present invention is not particularly limited, but may be 10,000 or more in order to obtain a longer wavelength and higher carrier mobility. Preferably, it is more preferably 100,000 or more, and particularly preferably 150,000 or more. On the other hand, in order to ensure adequate solubility, it is preferably 450,000 or less, and is 400,000 or less. More preferably, it is more preferably 380,000 or less. The weight average molecular weight is preferably in this range from the viewpoint of increasing the light absorption wavelength, from the viewpoint of realizing high absorbance, from the viewpoint of realizing high carrier movement, and from the viewpoint of solubility in an organic solvent.
 本発明の一態様に係るコポリマーのポリスチレン換算の数平均分子量(Mn)は、特段の制限はないが、長波長化及び高いキャリア移動度を得るために、5,000以上であることが好ましく、10,000以上であることがさらに好ましく、15,000以上であることが特に好ましく、一方、適切に溶解性を担保するために100,000以下であることが好ましく、80,000以下であることがさらに好ましく、60,000以下であることが特に好ましい。 The polystyrene-equivalent number average molecular weight (Mn) of the copolymer according to one embodiment of the present invention is not particularly limited, but is preferably 5,000 or more in order to obtain a longer wavelength and high carrier mobility. It is more preferably 10,000 or more, particularly preferably 15,000 or more. On the other hand, in order to ensure adequate solubility, it is preferably 100,000 or less, and 80,000 or less. Is more preferable, and 60,000 or less is particularly preferable.
 本発明の一態様に係るコポリマーの分子量分布(PDI,(重量平均分子量/数平均分子量(Mw/Mn)))は、通常1.0以上であり、1.1以上であることが好ましく、1.2以上であることがさらに好ましく、1.3以上であることが特に好ましい。一方、本発明に係るコポリマーの分子量分布は通常50.0以下であり、20.0以下であることが好ましく、15.0以下であることがさらに好ましく、10.0以下であることが特に好ましい。 The molecular weight distribution (PDI, (weight average molecular weight / number average molecular weight (Mw / Mn))) of the copolymer according to one embodiment of the present invention is usually 1.0 or more, preferably 1.1 or more. Is more preferably 2 or more, and particularly preferably 1.3 or more. On the other hand, the molecular weight distribution of the copolymer according to the present invention is usually 50.0 or less, preferably 20.0 or less, more preferably 15.0 or less, and particularly preferably 10.0 or less. .
 本発明の一態様に係るコポリマーのポリスチレン換算の重量平均分子量、数平均分子量、及び分子量分布は、ゲル浸透クロマトグラフィー(GPC)により求めることができる。具体的には、カラムとして、PolymerLaboratories GPC用カラム(PLgel MIXED-B 10μm 内径7.5mm,長さ30cm)を2本直列に繋げて用い、ポンプとしてLC-10AT(島津製作所社製)、オーブンとしてCTO-10A(島津製作所社製)、検出器として示差屈折率検出器(島津製作所製:RID-10A)、及びUV-vis検出器(島津製作所製:SPD-10A)を用いることにより測定できる。測定方法としては、測定対象のコポリマー(1mg)をクロロホルム(200mg)に溶解させ、得られた溶液1μLをカラムに注入する。移動相としてo-ジクロロベンゼンを用い、80℃にて、1.0mL/minの流速で測定を行う。解析にはLC-Solution(島津製作所製)を用いる。 The polystyrene equivalent weight average molecular weight, number average molecular weight, and molecular weight distribution of the copolymer according to one embodiment of the present invention can be determined by gel permeation chromatography (GPC). Specifically, two Polymer Laboratories GPC columns (PLgel MIXED-B 10 μm, inner diameter 7.5 mm, length 30 cm) are connected in series as a column, and LC-10AT (manufactured by Shimadzu Corporation) as a pump, as an oven It can be measured by using CTO-10A (manufactured by Shimadzu Corporation), a differential refractive index detector (manufactured by Shimadzu Corporation: RID-10A), and a UV-vis detector (manufactured by Shimadzu Corporation: SPD-10A). As a measuring method, a copolymer (1 mg) to be measured is dissolved in chloroform (200 mg), and 1 μL of the obtained solution is injected into a column. Measurement is carried out at a flow rate of 1.0 mL / min at 80 ° C. using o-dichlorobenzene as a mobile phase. LC-Solution (manufactured by Shimadzu Corporation) is used for the analysis.
 本発明の一態様に係るコポリマーの溶解度は、特に限定は無いが、好ましくは25℃におけるクロロベンゼンに対する溶解度が通常0.1質量%以上、好ましくは0.5質量%以上、さらに好ましくは1質量%以上であり、一方、通常30質量%以下、好ましくは20質量%である。溶解性が高いことは、塗布によりより厚い膜を成膜できるために好ましい。 The solubility of the copolymer according to one embodiment of the present invention is not particularly limited, but the solubility in chlorobenzene at 25 ° C. is usually 0.1% by mass or more, preferably 0.5% by mass or more, more preferably 1% by mass. On the other hand, it is usually 30% by mass or less, preferably 20% by mass. High solubility is preferable because a thicker film can be formed by coating.
 本発明の一態様に係るコポリマーは、分子間で適度な相互作用が起こることが好ましい。本明細書において、分子間で相互作用するということは、分子間でのπ-πスタッキング等の相互作用によってポリマー鎖間の距離が短くなることを意味する。相互作用が強いほど、高い移動度及び/又は結晶性を示す傾向があるため、半導体材料として好適であるものと考えられる。すなわち、分子間で相互作用するコポリマーにおいては分子間での電子移動が起こりやすいため、例えば光電変換素子において活性層中に本発明に係るコポリマーを用いた場合に、活性層内のp型半導体化合物とn型半導体化合物との界面で生成した正孔(ホール)を効率よく電極(アノード)へ輸送できると考えられる。 The copolymer according to one embodiment of the present invention preferably has an appropriate interaction between molecules. In the present specification, the interaction between molecules means that the distance between polymer chains is shortened by an interaction such as π-π stacking between molecules. The stronger the interaction, the higher the mobility and / or crystallinity, and the more suitable the semiconductor material is. That is, in a copolymer that interacts between molecules, electron transfer between molecules is likely to occur. For example, when the copolymer according to the present invention is used in an active layer in a photoelectric conversion element, a p-type semiconductor compound in the active layer is used. It is considered that holes generated at the interface between the n-type semiconductor compound and the n-type semiconductor compound can be efficiently transported to the electrode (anode).
 結晶性の測定方法としてはX線回折法(XRD)が挙げられる。本明細書において結晶性を有するとは、XRD測定により得られたX線回折スペクトルが回折ピークを有することを意味する。結晶性を有することは、分子同士が配列した積層構造を有することを意味すると考えられ、後述する活性層を厚膜化できる傾向がある点で好ましい。XRD測定は公知文献(X線結晶解析の手引き(応用物理学選書4))に記載の方法に基づいて行うことができる。 An example of the crystallinity measuring method is X-ray diffraction (XRD). In this specification, having crystallinity means that an X-ray diffraction spectrum obtained by XRD measurement has a diffraction peak. Having crystallinity is considered to mean that it has a laminated structure in which molecules are arranged, and is preferable in that the active layer described later tends to be thickened. XRD measurement can be performed based on a method described in a known document (X-ray crystal analysis guide (applied physics selection book 4)).
 本発明の一態様に係るコポリマーの正孔移動度(ホール移動度と記す場合がある)は、通常1.0×10-7cm2/Vs以上、好ましくは1.0×10-6cm2/Vs以上、より好ましくは1.0×10-5cm2/Vs以上、特に好ましくは1.0×10-4cm2/Vs以上である。一方、本発明に係るコポリマーの正孔移動度は通常1.0×104cm2/Vs以下、好ましくは1.0×103cm2/Vs以下であり、より好ましくは1.0×102cm2/Vs以下であり、特に好ましくは1.0×10cm2/Vs以下である。正孔移動度がこの範囲にあることにより、本発明に係るコポリマーは半導体材料として好適に用いられる。また、光電変換素子において高い変換効率を得るためには、n型半導体化合物の移動度と、p型半導体化合物の移動度とのバランスが重要である。本発明に係るコポリマーを光電変換素子においてp型半導体化合物として用いる場合、本発明に係るコポリマーの正孔移動度とn型半導体化合物の電子移動度とを近づける観点から、本発明に係るコポリマーの正孔移動度がこの範囲にあることが好ましい。正孔移動度の測定方法としてはFET法が挙げられる。FET法は公知文献(日本国特開2010-045186号公報)に記載の方法により行うことができる。 The hole mobility (sometimes referred to as hole mobility) of the copolymer according to one embodiment of the present invention is usually 1.0 × 10 −7 cm 2 / Vs or more, preferably 1.0 × 10 −6 cm 2. / Vs or more, more preferably 1.0 × 10 −5 cm 2 / Vs or more, and particularly preferably 1.0 × 10 −4 cm 2 / Vs or more. On the other hand, the hole mobility of the copolymer according to the present invention is usually 1.0 × 10 4 cm 2 / Vs or less, preferably 1.0 × 10 3 cm 2 / Vs or less, and more preferably 1.0 × 10 6. 2 cm 2 / Vs or less, particularly preferably 1.0 × 10 cm 2 / Vs or less. When the hole mobility is in this range, the copolymer according to the present invention is suitably used as a semiconductor material. Further, in order to obtain high conversion efficiency in the photoelectric conversion element, it is important to balance the mobility of the n-type semiconductor compound and the mobility of the p-type semiconductor compound. When the copolymer according to the present invention is used as a p-type semiconductor compound in a photoelectric conversion element, from the viewpoint of bringing the hole mobility of the copolymer according to the present invention close to the electron mobility of the n-type semiconductor compound, the copolymer according to the present invention is positive. The hole mobility is preferably within this range. As a method for measuring the hole mobility, there is an FET method. The FET method can be performed by a method described in a known document (Japanese Patent Application Laid-Open No. 2010-045186).
 本発明の一態様に係るコポリマーは溶液状態での保存安定性が高いことが好ましい。保存安定性が高いとは、溶液とした時に凝集しにくいことを意味する。より具体的には、本発明に係るコポリマー2mgを2mLのスクリューバイアルに入れ、1.5質量%の濃度になるようにo-キシレンに加熱溶解させてから室温まで冷却した際に、冷却を開始してから5分間以上ゲル化しないことが好ましく、1時間以上ゲル化しないことがより好ましい。 The copolymer according to one embodiment of the present invention preferably has high storage stability in a solution state. High storage stability means that it is difficult to aggregate when made into a solution. More specifically, 2 mg of the copolymer according to the present invention was placed in a 2 mL screw vial, dissolved in o-xylene to a concentration of 1.5% by mass, and then cooled to room temperature. Then, it is preferable not to gel for 5 minutes or more, and it is more preferable not to gel for 1 hour or more.
 本発明の一態様に係るコポリマー中の不純物は極力少ないほうが好ましい。特に、式(1)で表される繰り返し単位を有するコポリマーを合成する際に、パラジウム、銅等の遷移金属触媒を用いた場合、これらがコポリマー中に残存する場合がありうる。これらの金属触媒がコポリマー中に残存していると遷移金属の重原子効果による励起子トラップが生じるために電荷移動が阻害され、結果として本発明に係るコポリマーを光電変換素子に用いた際に光電変換効率を低下させるおそれがある。そのため、遷移金属触媒の濃度は、コポリマー1gあたり、通常1000ppm以下、好ましくは500pm以下、より好ましくは100ppm以下である。一方、通常0ppmより大きく、1ppm以上であってもよく、3ppm以上であってもよい。 The impurities in the copolymer according to one embodiment of the present invention are preferably as few as possible. In particular, when a copolymer having a repeating unit represented by the formula (1) is synthesized, when a transition metal catalyst such as palladium or copper is used, these may remain in the copolymer. If these metal catalysts remain in the copolymer, exciton traps due to the heavy atom effect of the transition metal occur and charge transfer is inhibited. As a result, when the copolymer according to the present invention is used in a photoelectric conversion element, There is a risk of reducing the conversion efficiency. Therefore, the concentration of the transition metal catalyst is usually 1000 ppm or less, preferably 500 pm or less, more preferably 100 ppm or less per 1 g of copolymer. On the other hand, it is usually larger than 0 ppm and may be 1 ppm or more, or 3 ppm or more.
 なお、コポリマー中に含有される不純物は、例えば、ICP質量分析法により測定することができる。ICP質量分析法は、公知文献(「プラズマイオン源質量分析」(学会出版センター))に記載されている方法により実施できる。具体的には、パラジウム原子及び銅原子については、試料を湿式分解後、分解液中のPd,SnをICP質量分析装置(Agilent Technologies社製 ICP質量分析装置 7500ce型)を用いて検量線法により定量することができる。 The impurities contained in the copolymer can be measured by, for example, ICP mass spectrometry. ICP mass spectrometry can be carried out by a method described in a known document (“Plasma ion source mass spectrometry” (Academic Publishing Center)). Specifically, for palladium atoms and copper atoms, after the sample is wet-decomposed, Pd and Sn in the decomposition solution are obtained by a calibration curve method using an ICP mass spectrometer (ICP mass spectrometer 7500ce type manufactured by Agilent Technologies). It can be quantified.
<2-1.本発明の第1の態様に係るコポリマーの製造方法>
 本発明の第1の態様に係るコポリマーの製造方法は、特段の限定はなく、例えば、下記式(XI)で表される化合物と、下記式(XII)で表される化合物と、下記式(XIII)で表される化合物と、下記式(XIV)で表される化合物との重合反応により製造することができる。
<2-1. Method for producing copolymer according to first aspect of the present invention>
The method for producing the copolymer according to the first aspect of the present invention is not particularly limited. For example, the compound represented by the following formula (XI), the compound represented by the following formula (XII), and the following formula ( XIII) and a compound represented by the following formula (XIV) can be produced by a polymerization reaction.
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000058
 上記式(XI)中のX1、X2、R1、R2、R3及びR4は、それぞれ第1の態様に係るコポリマーにおいて説明した上記式(I)中のX1、X2、R1、R2、R3及びR4と同義である。上記式(XII)中のA、Ar3、Ar4、c及びdは上記式(II)中のA、Ar3、Ar4、c及びdと同義である。上記式(XIII)中のD1は、上記式(I)中のD1と同義である。上記式(XIV)中のD2は上記式(II)中のD2と同義である。なお、D1及びD2が同じ構成単位である場合、上記式(XI)で表わされる化合物と、上記式(XII)で表わされる化合物と、上記式(XIII)で表わされる化合物との重合反応によりコポリマーを製造することができる。 X 1 , X 2 , R 1 , R 2 , R 3 and R 4 in the above formula (XI) are respectively X 1 , X 2 , in the above formula (I) described in the copolymer according to the first embodiment, Synonymous with R 1 , R 2 , R 3 and R 4 . A in the above formula (XII), Ar 3, Ar 4, c and d are as defined A, Ar 3, Ar 4, c and d of the above formula (II). D1 in the above formula (XIII) has the same meaning as D1 in the above formula (I). D2 in the above formula (XIV) has the same meaning as D2 in the above formula (II). In the case where D1 and D2 are the same structural unit, a copolymer is obtained by a polymerization reaction of the compound represented by the above formula (XI), the compound represented by the above formula (XII), and the compound represented by the above formula (XIII). Can be manufactured.
 式(XI)~式(XIV)中のY~Y8は活性基である。活性基は特段の制限はなく、合成反応の種類により任意で選択すればよい。具体的な活性基としては、例えば、ハロゲン原子、アルキルスタニル基、アルキルスルホ基、アリールスルホ基、アリールアルキルスルホ基、ホウ酸エステル残基、スルホニウムメチル基、ホスホニウムメチル基、ホスホネートメチル基、モノハロゲン化メチル基、ホウ酸残基(-B(OH)2)、ホルミル基、アルケニル基又はアルキニル基等が挙げられる。 Y 1 to Y 8 in the formulas (XI) to (XIV) are active groups. The active group is not particularly limited and may be arbitrarily selected depending on the type of synthesis reaction. Specific active groups include, for example, halogen atoms, alkylstannyl groups, alkylsulfo groups, arylsulfo groups, arylalkylsulfo groups, boric acid ester residues, sulfonium methyl groups, phosphonium methyl groups, phosphonate methyl groups, mono Examples thereof include a halogenated methyl group, a boric acid residue (—B (OH) 2 ), a formyl group, an alkenyl group, and an alkynyl group.
 コポリマーの重合反応は、本発明のコポリマーが得られる限りにおいて、特段の制限はなく、例えば、Suzuki-Miyauraクロスカップリング反応方法、Stilleカップリング反応方法、Yamamotoカップリング反応方法、Grignard反応方法、ヘック反応方法、園頭反応方法、FeCl3などの酸化剤を用いる反応方法、電気化学的な酸化反応を用いる方法、適当な脱離基を有する中間体化合物の分解による反応方法などが挙げられる。これらの中でも、Suzuki-Miyauraカップリング反応方法、Stilleカップリング反応方法、Yamamotoカップリング反応方法、Grignard反応方法が、構造制御がしやすい点で好ましい。特に、Suzuki-Miyauraクロスカップリング反応方法、Stilleカップリング反応方法、Grignard反応方法が、材料の入手しやすさ、反応操作の簡便さの点からも好ましい。これらの反応は、「クロスカップリング-基礎と産業応用-(CMC出版)」、「有機合成のための遷移金属触媒反応(辻二郎著:有機合成化学協会編)」、「有機合成のための触媒反応103(檜山為次郎:東京化学同人)」などの公知文献の記載の方法に従って行うことができる。 The copolymerization reaction is not particularly limited as long as the copolymer of the present invention is obtained. For example, a Suzuki-Miyaura cross-coupling reaction method, a Stille coupling reaction method, a Yamamoto coupling reaction method, a Grignard reaction method, a Heckard reaction method, and the like. Examples include a reaction method, a Sonogashira reaction method, a reaction method using an oxidizing agent such as FeCl 3 , a method using an electrochemical oxidation reaction, a reaction method by decomposition of an intermediate compound having an appropriate leaving group, and the like. Among these, the Suzuki-Miyaura coupling reaction method, Stille coupling reaction method, Yamamoto coupling reaction method, and Grignard reaction method are preferable in terms of easy structure control. In particular, the Suzuki-Miyaura cross-coupling reaction method, the Stille coupling reaction method, and the Grignard reaction method are preferable from the viewpoint of easy availability of materials and easy reaction operation. These reactions include "cross coupling-basics and industrial applications-(CMC Publishing)", "transition metal catalyzed reactions for organic synthesis (written by Jiro Jiro: edited by the Society of Synthetic Organic Chemistry)", "for organic synthesis" The reaction can be carried out according to a method described in known literature such as “catalytic reaction 103 (Teijiro Hatakeyama: Tokyo Kagaku Dojin)”.
 より具体的には、Y~Y4をアルキルスタニル基として、Y5~Y8をハロゲン原子として、上記式(XI)~(XIV)で表わされる化合物を公知のStilleカップリング反応により製造する方法、Y~Y4をホウ酸エステル残基又はホウ酸残基として、Y5~Y8をハロゲン原子として公知のSuzuki-Miyauraカップリング反応により製造する方法、Y~Y4をシリル基として、Y5~Y8をハロゲン原子としてHiyamaカップリング反応により製造する方法が挙げられる。 More specifically, compounds represented by the above formulas (XI) to (XIV) are produced by a known Stille coupling reaction using Y 1 to Y 4 as an alkylstannyl group and Y 5 to Y 8 as a halogen atom. Y 1 to Y 4 as boric acid ester residues or boric acid residues, Y 5 to Y 8 as halogen atoms, and a known Suzuki-Miyaura coupling reaction, and Y 1 to Y 4 as silyl Examples of the group include a method of producing Y 5 to Y 8 as a halogen atom by a Hiyama coupling reaction.
 なお、重合反応において、必要に応じて、触媒を使用してもよい。 In the polymerization reaction, a catalyst may be used as necessary.
 重合反応により得られたコポリマーの末端処理を行うことが好ましい。コポリマーの末端処理を行うことにより、コポリマーの末端残基(上述のY1~Y8)の残存量を減らすことができる。このような末端処理を行うことにより、得られるコポリマー中に、ハロゲン原子、アルキルスタニル基等の活性基の量を減らすことができるために、光電変換素子の変換効率及び耐久性を向上させることができる。 It is preferable to end-treat the copolymer obtained by the polymerization reaction. By performing the terminal treatment of the copolymer, the residual amount of the terminal residues (Y 1 to Y 8 described above) can be reduced. By performing such terminal treatment, the amount of active groups such as halogen atoms and alkylstannyl groups in the resulting copolymer can be reduced, so that the conversion efficiency and durability of the photoelectric conversion element are improved. Can do.
 上記式(XI)~(XIV)で表わされる化合物を製造する方法は、特段の制限はなく、公知の方法により製造することができる。例えば、上記式(XI)で表わされる化合物を製造する方法としては、公知の特開2014-009163の方法により製造することができる。また、上記式(XI)~(XIV)で表わされる化合物を製造する方法としては、例えば、Polymer, 1990,31,1379-1383、Adv.Mater.,2007,19,4160-4165、Macromolecules,2010,43,6936-6938、Adv.Mater.,2011,23,3315-3319、Angew.Chem.Int.Ed.,2012,51,2068-2071、J.Mater.Chem.,2011,21,3895-3902、J.Am.Chem.Soc.,2011,133,10062-10065またはChem.Commun.,2011,47,4920、WO2013/180243等を参考にして製造することができる。 The method for producing the compounds represented by the above formulas (XI) to (XIV) is not particularly limited and can be produced by a known method. For example, as a method for producing the compound represented by the above formula (XI), it can be produced by a known method of JP-A-2014-009163. Examples of the method for producing the compounds represented by the above formulas (XI) to (XIV) include Polymer, 1990, 31, 1379-1383, Adv. Mater. , 2007, 19, 4160-4165, Macromolecules, 2010, 43, 6936-6938, Adv. Mater. , 2011, 23, 3315-3319, Angew. Chem. Int. Ed. 2012, 51, 2068-2071, J. MoI. Mater. Chem. 2011, 21, 3895-3902, J. MoI. Am. Chem. Soc. , 2011, 133, 10062-10065 or Chem. Commun. , 2011, 47, 4920, WO2013 / 180243, and the like.
<2-2.本発明の第2の態様に係るコポリマーの製造方法>
 本発明の第2の態様に係るコポリマーの製造方法は、特段の限定はなく、例えば、下記式(XI)で表される化合物と、下記式(XIII)で表される化合物との重合反応により製造することができる。
<2-2. Method for Producing Copolymer According to Second Aspect of the Present Invention>
The method for producing the copolymer according to the second aspect of the present invention is not particularly limited, and for example, by a polymerization reaction between a compound represented by the following formula (XI) and a compound represented by the following formula (XIII). Can be manufactured.
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000060
 上記式(XI)中のX1、X2、R1、R2、R3及びR4はそれぞれ、第2の態様に係るコポリマーにおいて説明した式(I)中のX1、X2、R1、R2、R3及びR4と同義である。上記式(XIII)中のD1は、上記式(I)中のD1と同義である。 X 1 , X 2 , R 1 , R 2 , R 3 and R 4 in the above formula (XI) are respectively X 1 , X 2 , R in the formula (I) described in the copolymer according to the second embodiment. 1, the same meaning as R 2, R 3 and R 4. D1 in the above formula (XIII) has the same meaning as D1 in the above formula (I).
 式(XI)中のY1及びY2、並びに式(XIII)中のY5及びY6はそれぞれ活性基を表す。活性基は特段の制限はなく、合成反応の種類により任意で選択すればよい。具体的な活性基としては、例えば、ハロゲン原子、アルキルスタニル基、アルキルスルホ基、アリールスルホ基、アリールアルキルスルホ基、ホウ酸エステル残基、スルホニウムメチル基、ホスホニウムメチル基、ホスホネートメチル基、モノハロゲン化メチル基、ホウ酸残基(-B(OH)2)、ホルミル基、アルケニル基又はアルキニル基等が挙げられる。 Y 1 and Y 2 in formula (XI) and Y 5 and Y 6 in formula (XIII) each represent an active group. The active group is not particularly limited and may be arbitrarily selected depending on the type of synthesis reaction. Specific active groups include, for example, halogen atoms, alkylstannyl groups, alkylsulfo groups, arylsulfo groups, arylalkylsulfo groups, boric acid ester residues, sulfonium methyl groups, phosphonium methyl groups, phosphonate methyl groups, mono Examples thereof include a halogenated methyl group, a boric acid residue (—B (OH) 2 ), a formyl group, an alkenyl group, and an alkynyl group.
 コポリマーの重合反応は、本発明のコポリマーが得られる限りにおいて、特段の制限はなく、第1の態様のコポリマーの製造方法で説明した方法を用いることができる。 The polymerization reaction of the copolymer is not particularly limited as long as the copolymer of the present invention is obtained, and the method described in the method for producing a copolymer of the first aspect can be used.
 より具体的には、Y1及びY2をアルキルスタニル基として、Y5及びY6をハロゲン原子として、上記式(XI)及び(XIII)で表わされる化合物を公知のStilleカップリング反応により製造する方法、Y1及びY2をホウ酸エステル残基又はホウ酸残基として、Y5及びY6をハロゲン原子として公知のSuzuki-Miyauraカップリング反応により製造する方法、Y1及びY2をシリル基として、Y5及びY6をハロゲン原子としてHiyamaカップリング反応により製造する方法が挙げられる。 More specifically, Y 1 and Y 2 are alkylstannyl groups, Y 5 and Y 6 are halogen atoms, and the compounds represented by the above formulas (XI) and (XIII) are produced by a known Stille coupling reaction. Y 1 and Y 2 as boric acid ester residues or boric acid residues, Y 5 and Y 6 as halogen atoms, and production by a known Suzuki-Miyaura coupling reaction, Y 1 and Y 2 as silyl Examples of the group include a method in which Y 5 and Y 6 are used as halogen atoms and are produced by a Hiyama coupling reaction.
 なお、重合反応において、必要に応じて、触媒を使用してもよい。 In the polymerization reaction, a catalyst may be used as necessary.
 重合反応により得られたコポリマーの末端処理を行うことが好ましい。コポリマーの末端処理を行うことにより、コポリマーの末端残基(上述のY1~Y2、Y5~Y6)の残存量を減らすことができる。このような末端処理を行うことにより、得られるコポリマー中に、ハロゲン原子、アルキルスタニル基等の活性基の量を減らすことができるために、光電変換素子の変換効率及び耐久性を向上させることができる。 It is preferable to end-treat the copolymer obtained by the polymerization reaction. By performing the terminal treatment of the copolymer, the residual amount of the terminal residues of the copolymer (the above-mentioned Y 1 to Y 2 and Y 5 to Y 6 ) can be reduced. By performing such terminal treatment, the amount of active groups such as halogen atoms and alkylstannyl groups in the resulting copolymer can be reduced, so that the conversion efficiency and durability of the photoelectric conversion element are improved. Can do.
 上記式(XI)及び(XIII)で表わされる化合物を製造する方法は、特段の制限はなく、第1の態様のコポリマーの製造方法で説明した公知の方法により製造することができる。 The method for producing the compounds represented by the above formulas (XI) and (XIII) is not particularly limited, and can be produced by a known method described in the method for producing a copolymer of the first aspect.
<3.光電変換素子>
 本発明に係るコポリマーは光電変換素子の材料として用いることができ、具体的には、光電変換素子の活性層が本発明に係るコポリマーを含有することで、高い変換効率及び高い露光安定性を兼ね備えた光電変換素子となり得る。以下、本発明に係るコポリマーを用いた光電変換素子の一実施形態について説明する。
<3. Photoelectric conversion element>
The copolymer according to the present invention can be used as a material for a photoelectric conversion element. Specifically, the active layer of the photoelectric conversion element contains the copolymer according to the present invention, so that it has high conversion efficiency and high exposure stability. It can be a photoelectric conversion element. Hereinafter, an embodiment of a photoelectric conversion element using the copolymer according to the present invention will be described.
 本発明に係る光電変換素子は、少なくとも、基材と、基材上に形成された一対の電極と、一対の電極間に形成された活性層と、を有する。以下、図1を参照して、本発明に係る光電変換素子の一実施形態について説明する。 The photoelectric conversion element according to the present invention has at least a base material, a pair of electrodes formed on the base material, and an active layer formed between the pair of electrodes. Hereinafter, an embodiment of a photoelectric conversion element according to the present invention will be described with reference to FIG.
 図1に示すように、本発明に係る光電変換素子の一実施形態は、基材106上に、下部電極101と、下部バッファ層102と、活性層103と、上部バッファ層104と、上部電極105と、が順次形成された層構造を有する。本発明において、下部電極とは、基材106側に積層される電極を意味し、上部電極とは、基材106をボトムとした際に、下部電極よりも上部に積層される電極を意味する。なお、本発明において、下部電極101及び上部電極105を合わせて一対の電極と称す場合がある。また、下部バッファ層102及び上部バッファ層104は、必須の構成ではなく、任意で設ければよく、下部バッファ層102及び上部バッファ層104のうち一方のみを有していてもよい。また、光電変換素子は、上記以外の別の層を任意で有していてもよい。以下、光電変換素子の各構成部材について説明する。 As shown in FIG. 1, one embodiment of the photoelectric conversion element according to the present invention includes a lower electrode 101, a lower buffer layer 102, an active layer 103, an upper buffer layer 104, and an upper electrode on a substrate 106. 105 have a layer structure in which are sequentially formed. In the present invention, the lower electrode means an electrode laminated on the substrate 106 side, and the upper electrode means an electrode laminated above the lower electrode when the substrate 106 is used as the bottom. . In the present invention, the lower electrode 101 and the upper electrode 105 may be collectively referred to as a pair of electrodes. In addition, the lower buffer layer 102 and the upper buffer layer 104 are not essential components, and may be provided arbitrarily, and may include only one of the lower buffer layer 102 and the upper buffer layer 104. Moreover, the photoelectric conversion element may optionally have another layer other than the above. Hereinafter, each component of the photoelectric conversion element will be described.
<3-1.基材106>
 光電変換素子107は、通常は支持体となる基材106に形成される。基材106の材料に特段の制限は無い。基材106の材料の好適な例としては、石英、ガラス、サファイア又はチタニア等の無機材料、及びフレキシブル基材等が挙げられる。フレキシブル基材の具体例としては、限定されるわけではないが、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリエーテルスルホン、ポリイミド、ナイロン、ポリスチレン、ポリビニルアルコール、エチレンビニルアルコール共重合体、フッ素樹脂フィルム、塩化ビニル又はポリエチレン等のポリオレフィン;セルロース、ポリ塩化ビニリデン、アラミド、ポリフェニレンスルフィド、ポリウレタン、ポリカーボネート、ポリアリレート、ポリノルボルネン又はエポキシ樹脂等の有機材料(樹脂基材);紙又は合成紙等の紙材料;ステンレス、チタン又はアルミニウム等の金属箔に、絶縁性を付与するために表面をコート又はラミネートしたもの等の複合材料が挙げられる。ガラスとしてはソーダガラス、青板ガラス又は無アルカリガラス等が挙げられる。ガラスからの溶出イオンが少ない点で、これらの中でも無アルカリガラスが好ましい。
<3-1. Substrate 106>
The photoelectric conversion element 107 is usually formed on a base material 106 that serves as a support. There is no particular limitation on the material of the substrate 106. Preferable examples of the material of the substrate 106 include inorganic materials such as quartz, glass, sapphire, and titania, and flexible substrates. Specific examples of the flexible substrate include, but are not limited to, polyethylene terephthalate, polyethylene naphthalate, polyethersulfone, polyimide, nylon, polystyrene, polyvinyl alcohol, ethylene vinyl alcohol copolymer, fluororesin film, vinyl chloride. Or polyolefin such as polyethylene; organic material (resin substrate) such as cellulose, polyvinylidene chloride, aramid, polyphenylene sulfide, polyurethane, polycarbonate, polyarylate, polynorbornene, or epoxy resin; paper material such as paper or synthetic paper; stainless steel, Examples thereof include composite materials such as a metal foil such as titanium or aluminum whose surface is coated or laminated in order to impart insulation. Examples of the glass include soda glass, blue plate glass, and non-alkali glass. Among these, alkali-free glass is preferable in that there are few eluted ions from the glass.
 基材106の形状、構成等については特段の制限はなく、周知技術を参考にすることができる。例えば、国際公開第2011/016430号又は日本国特開2012-191194号公報に記載のものを採用することができる。 There are no particular restrictions on the shape, configuration, etc. of the substrate 106, and well-known techniques can be referred to. For example, those described in International Publication No. 2011/016430 or Japanese Patent Application Laid-Open No. 2012-191194 can be employed.
<3-2.一対の電極(下部電極101及び上部電極105)>
 一対の電極(101、106)は、光吸収により生じた正孔及び電子を捕集する機能を有する。したがって一対の電極には、正孔の捕集に適した電極(以下、アノードと記載する場合もある)と、電子の捕集に適した電極(以下、カソードと記載する場合もある)とを用いることが好ましい。一対の電極は、いずれか一方が透光性を有していることが好ましく、両方の電極が透光性を有していてもよい。なお、透光性を有するとは、太陽光が40%以上透過することを指す。また、透明電極の太陽光線透過率は70%以上であることが、透明電極を透過させて活性層に光を到達させるために好ましい。光の透過率は、通常の分光光度計で測定できる。
<3-2. Pair of electrodes (lower electrode 101 and upper electrode 105)>
The pair of electrodes (101, 106) has a function of collecting holes and electrons generated by light absorption. Accordingly, the pair of electrodes includes an electrode suitable for collecting holes (hereinafter sometimes referred to as an anode) and an electrode suitable for collecting electrons (hereinafter sometimes referred to as a cathode). It is preferable to use it. One of the pair of electrodes preferably has translucency, and both electrodes may have translucency. Note that having translucency means that sunlight passes through 40% or more. Further, the solar light transmittance of the transparent electrode is preferably 70% or more in order to allow light to reach the active layer through the transparent electrode. The light transmittance can be measured with a normal spectrophotometer.
 アノードとは、活性層3が光を吸収することにより発生した正孔を捕集するための機能を有する電極であり、カソードとは、活性層3中で発生した電子を捕集する機能を有する電極である。下部電極101がアノードとする場合、上部電極105はカソードとすることが好ましく、下部電極101をカソードとする場合、上部電極105をアノードとすればよい。 The anode is an electrode having a function of collecting holes generated by the active layer 3 absorbing light, and the cathode has a function of collecting electrons generated in the active layer 3. Electrode. When the lower electrode 101 is an anode, the upper electrode 105 is preferably a cathode. When the lower electrode 101 is a cathode, the upper electrode 105 may be an anode.
 下部電極101及び上部電極105の形成材料は特段の制限はなく、酸化ニッケル、酸化スズ、酸化インジウム、酸化インジウムスズ(ITO)、インジウム-ジルコニウム酸化物(IZO)、酸化チタン、酸化インジウム又は酸化亜鉛等の導電性金属酸化物;金、白金、銀、銅、鉄、スズ、亜鉛、アルミニウム、インジウム、クロム、リチウム、ナトリウム、カリウム、セシウム、カルシウム又はマグネシウム又はコバルト等の金属あるいはその合金が挙げられる。 The material for forming the lower electrode 101 and the upper electrode 105 is not particularly limited, and nickel oxide, tin oxide, indium oxide, indium tin oxide (ITO), indium-zirconium oxide (IZO), titanium oxide, indium oxide, or zinc oxide. Conductive metal oxides such as gold, platinum, silver, copper, iron, tin, zinc, aluminum, indium, chromium, lithium, sodium, potassium, cesium, calcium, magnesium or cobalt, or alloys thereof .
 上記の材料のなかでも、下部電極101をアノードとし、上部電極105をカソードとする場合、下部電極101は上部電極105よりも仕事関数の大きい材料を使用することが好ましい。一方、下部電極101をカソードとし、上部電極105をアノードとする場合、下部電極101は上部電極105よりも仕事関数の小さい材料により形成することが好ましい。なお、後述するように光電変換素子が下部バッファ層102及び/又は上部バッファ層104を有する場合、下部バッファ層102及び/又は上部バッファ層104の仕事関数を調整することにより、下部電極101及び上部電極105は同じ仕事関数を有する材料により形成することもできる。 Among the above materials, when the lower electrode 101 is an anode and the upper electrode 105 is a cathode, it is preferable to use a material having a work function larger than that of the upper electrode 105 for the lower electrode 101. On the other hand, when the lower electrode 101 is a cathode and the upper electrode 105 is an anode, the lower electrode 101 is preferably formed of a material having a work function smaller than that of the upper electrode 105. Note that when the photoelectric conversion element includes the lower buffer layer 102 and / or the upper buffer layer 104 as described later, the lower electrode 101 and the upper buffer layer 104 are adjusted by adjusting the work function of the lower buffer layer 102 and / or the upper buffer layer 104. The electrode 105 can also be formed of a material having the same work function.
 下部電極101及び上部電極105はそれぞれ、単層であってもよいし積層であってもよい。 Each of the lower electrode 101 and the upper electrode 105 may be a single layer or a stacked layer.
 なお、基材106側を受光面とする場合、下部電極101は透光性を有することが好ましい。一方で、上部電極105側を受光面とする場合は、上部電極105が透光性を有していれば、下部電極2は透光性を有していてもよいし、透光性を有していなくてもよい。 In addition, when making the base-material 106 side into a light-receiving surface, it is preferable that the lower electrode 101 has translucency. On the other hand, when the upper electrode 105 side is the light receiving surface, the lower electrode 2 may be translucent or translucent as long as the upper electrode 105 has translucency. You don't have to.
 下部電極101及び上部電極105の膜厚は、特段の制限は無いが、シート抵抗を抑えるために、10nm以上であることが好ましく、20nm以上であることがさらに好ましく、50nm以上であることが特に好ましく、一方、高い透光性を担保するために10μm以下であることが好ましく、1μm以下であることがさらに好ましく、500nm以下であることが特に好ましい。 The film thickness of the lower electrode 101 and the upper electrode 105 is not particularly limited, but is preferably 10 nm or more, more preferably 20 nm or more, particularly 50 nm or more in order to suppress sheet resistance. On the other hand, in order to ensure high translucency, it is preferably 10 μm or less, more preferably 1 μm or less, and particularly preferably 500 nm or less.
 下部電極101及び上部電極105の形成方法は、特段の制限はなく、使用する材料に合わせて公知の方法により形成すればよい。例えば、蒸着法、スパッタ法等の真空成膜方法、又はナノ粒子や前駆体を含有するインクを塗布して成膜する湿式塗布法等が挙げられる。なお、下部電極101及び上部電極105に対して表面処理を行うことにより、電気特性や濡れ特性等を改良してもよい。 The formation method of the lower electrode 101 and the upper electrode 105 is not particularly limited, and may be formed by a known method according to the material to be used. For example, a vacuum film forming method such as a vapor deposition method or a sputtering method, or a wet coating method in which an ink containing nanoparticles or a precursor is applied to form a film. Note that electrical characteristics, wetting characteristics, and the like may be improved by performing surface treatment on the lower electrode 101 and the upper electrode 105.
<3-3.活性層103>
 活性層103はp型半導体化合物とn型半導体化合物とを含有し、光電変換が行われる層である。具体的には、光電変換素子107が光を受けると、光が活性層103に吸収され、p型半導体材料とn型半導体材料の界面で電気が発生し、発生した電気がアノード及びカソードから取り出される。
<3-3. Active layer 103>
The active layer 103 is a layer that contains a p-type semiconductor compound and an n-type semiconductor compound and undergoes photoelectric conversion. Specifically, when the photoelectric conversion element 107 receives light, the light is absorbed by the active layer 103, electricity is generated at the interface between the p-type semiconductor material and the n-type semiconductor material, and the generated electricity is extracted from the anode and the cathode. It is.
 活性層103の層構成としては、p型半導体化合物を含有する層とn型半導体化合物を含有する層とが積層された薄膜積層型、又はp型半導体化合物とn型半導体化合物が混合した層を有するバルクヘテロ接合型が挙げられる。なお、バルクヘテロ接合型の活性層は、該混合層の他にp型半導体化合物を含有する層及び/又はn型半導体化合物を含有する層と、がさらに積層された構造であってもよい。なお、高い光電変換効率が期待できるという観点からはバルクヘテロ接合型であることが好ましい。 As the layer structure of the active layer 103, a thin film stack type in which a layer containing a p-type semiconductor compound and a layer containing an n-type semiconductor compound are stacked, or a layer in which a p-type semiconductor compound and an n-type semiconductor compound are mixed is used. A bulk heterojunction type. Note that the bulk heterojunction active layer may have a structure in which a layer containing a p-type semiconductor compound and / or a layer containing an n-type semiconductor compound is further stacked in addition to the mixed layer. From the viewpoint that high photoelectric conversion efficiency can be expected, a bulk heterojunction type is preferable.
 活性層103は、p型半導体化合物として、本発明に係るコポリマーを含有することが好ましい。活性層103が本発明に係るコポリマーを含有することで、高い変換効率を備えた光電変換素子の提供が可能となる。 The active layer 103 preferably contains a copolymer according to the present invention as a p-type semiconductor compound. When the active layer 103 contains the copolymer according to the present invention, a photoelectric conversion element having high conversion efficiency can be provided.
 活性層103は、本発明に係るコポリマー以外にも、他のp型半導体化合物を含んでいてもよい。他のp型半導体化合物としては、低分子有機化合物であっても高分子化合物であってもよい。これらのp型半導体化合物として特段の制限はないが、例えば、国際公開第2011/016430号又は日本国特開2012-191194号公報等の公知文献に記載のものを使用することができる。 The active layer 103 may contain other p-type semiconductor compounds besides the copolymer according to the present invention. The other p-type semiconductor compound may be a low molecular organic compound or a high molecular compound. These p-type semiconductor compounds are not particularly limited, but for example, those described in known literatures such as International Publication No. 2011-016430 or Japanese Unexamined Patent Publication No. 2012-191194 can be used.
 n型半導体化合物としては、特段の制限はないが、例えば、フラーレン;フラーレン誘導体;8-ヒドロキシキノリンアルミニウムに代表されるキノリノール誘導体金属錯体;ナフタレンテトラカルボン酸ジイミド又はペリレンテトラカルボン酸ジイミド等の縮合環テトラカルボン酸ジイミド類;ペリレンジイミド誘導体、ターピリジン金属錯体、トロポロン金属錯体、フラボノール金属錯体、ペリノン誘導体、ベンズイミダゾール誘導体、ベンズオキサゾール誘導体、チアゾール誘導体、ベンズチアゾール誘導体、ベンゾチアジアゾール誘導体、オキサジアゾール誘導体、チアジアゾール誘導体、トリアゾール誘導体、アルダジン誘導体、ビススチリル誘導体、ピラジン誘導体、フェナントロリン誘導体、キノキサリン誘導体、ベンゾキノリン誘導体、ビピリジン誘導体、ボラン誘導体;アントラセン、ピレン、ナフタセン又はペンタセン等の縮合多環芳香族炭化水素の全フッ化物;単層カーボンナノチューブ、n型ポリマー(n型高分子半導体材料)等が挙げられる。 The n-type semiconductor compound is not particularly limited. For example, fullerene; fullerene derivative; quinolinol derivative metal complex represented by 8-hydroxyquinoline aluminum; condensed ring such as naphthalenetetracarboxylic acid diimide or perylenetetracarboxylic acid diimide Tetracarboxylic acid diimides; perylene diimide derivatives, terpyridine metal complexes, tropolone metal complexes, flavonol metal complexes, perinone derivatives, benzimidazole derivatives, benzoxazole derivatives, thiazole derivatives, benzthiazole derivatives, benzothiadiazole derivatives, oxadiazole derivatives, thiadiazoles Derivatives, triazole derivatives, aldazine derivatives, bisstyryl derivatives, pyrazine derivatives, phenanthroline derivatives, quinoxaline derivatives, benzox Phosphorus derivatives, bipyridine derivatives, borane derivatives; total fluorides of condensed polycyclic aromatic hydrocarbons such as anthracene, pyrene, naphthacene or pentacene; single-walled carbon nanotubes, n-type polymers (n-type polymer semiconductor materials), etc. .
 これらのなかでも、フラーレン化合物、ボラン誘導体、チアゾール誘導体、ベンゾチアゾール誘導体、ベンゾチアジアゾール誘導体、N-アルキル置換されたナフタレンテトラカルボン酸ジイミド、N-アルキル置換されたペリレンジイミド誘導体又はn型高分子半導体材料が好ましく、フラーレン化合物、N-アルキル置換されたペリレンジイミド誘導体、N-アルキル置換されたナフタレンテトラカルボン酸ジイミド又はn型高分子半導体化合物がより好ましく、フラーレン化合物が特に好ましい。これらの化合物としては、特段の制限はないが、例えば、国際公開第2011/016430号又は日本国特開2012-191194号公報等の公知文献に記載のものを使用することができる。なお、上記のうち一種の化合物を用いてもよいし、複数種の化合物の混合物を用いてもよい。これらの中でも、特に60PCBM、70PCBM又はこれらの混合物を用いることが好ましい。 Among these, fullerene compounds, borane derivatives, thiazole derivatives, benzothiazole derivatives, benzothiadiazole derivatives, N-alkyl substituted naphthalene tetracarboxylic acid diimides, N-alkyl substituted perylene diimide derivatives or n-type polymer semiconductor materials More preferred are fullerene compounds, N-alkyl-substituted perylene diimide derivatives, N-alkyl-substituted naphthalene tetracarboxylic acid diimides or n-type polymer semiconductor compounds, and fullerene compounds are particularly preferred. These compounds are not particularly limited, but for example, those described in known literatures such as International Publication No. 2011-016430 or Japanese Unexamined Patent Publication No. 2012-191194 can be used. In addition, a kind of compound may be used among the above, and a mixture of a plurality of kinds of compounds may be used. Among these, it is particularly preferable to use 60 PCBM, 70 PCBM or a mixture thereof.
 活性層103の膜厚は特段の制限はないが、膜の均一性を高め短絡を抑制するために、10nm以上であることが好ましく、50nm以上であることがさらに好ましく、100nm以上であることが特に好ましく、一方、内部抵抗を小さくし、電荷の拡散を良好にするために1μm以下であることが好ましく、500nm以下であることがさらに好ましく
、200nm以下であることが特に好ましい。
The thickness of the active layer 103 is not particularly limited, but is preferably 10 nm or more, more preferably 50 nm or more, and more preferably 100 nm or more in order to improve film uniformity and suppress short circuit. On the other hand, it is preferably 1 μm or less, more preferably 500 nm or less, and particularly preferably 200 nm or less in order to reduce internal resistance and improve charge diffusion.
 活性層103の作成方法としては、特段に制限はないが、生産性が向上することから、塗布法により形成することが好ましい。具体的には、本発明に係るコポリマーを含む活性層形成用組成物を塗布して活性層103を形成することが好ましい。 The method for forming the active layer 103 is not particularly limited, but is preferably formed by a coating method because productivity is improved. Specifically, the active layer 103 is preferably formed by applying a composition for forming an active layer containing a copolymer according to the present invention.
 塗布法としては、任意の方法を用いることができ、例えば、スピンコート法、リバースロールコート法、グラビアコート法、キスコート法、ロールブラッシュ法、スプレーコート法、エアナイフコート法、ワイヤーバーバーコート法、パイプドクター法、含浸・コート法、カーテンコート法等が挙げられる。 As the coating method, any method can be used. For example, spin coating method, reverse roll coating method, gravure coating method, kiss coating method, roll brush method, spray coating method, air knife coating method, wire barber coating method, pipe Examples include a doctor method, an impregnation / coating method, and a curtain coating method.
 積層型の活性層を形成する場合、少なくともp型半導体化合物として本発明に係るコポリマーを含有する活性層形成用インクと、n型半導体化合物を含有する活性層用インクを用いて、それぞれ塗布法によりp型半導体含有層とn型半導体含有層とを積層して活性層を形成すればよい。一方で、バルクヘテロ型の活性層を形成する場合は、少なくともp型半導体化合物として本発明に係るコポリマーと、n型半導体化合物とを含有する活性層形成用組成物を用いて、塗布法によりバルクヘテロ型の活性層を形成すればよい。 When forming a laminated type active layer, an active layer forming ink containing at least a copolymer according to the present invention as a p-type semiconductor compound and an active layer ink containing an n-type semiconductor compound are used, respectively, by a coating method. An active layer may be formed by stacking a p-type semiconductor-containing layer and an n-type semiconductor-containing layer. On the other hand, when forming a bulk hetero type active layer, a bulk hetero type is formed by a coating method using an active layer forming composition containing at least a copolymer according to the present invention as a p type semiconductor compound and an n type semiconductor compound. The active layer may be formed.
 上述の活性層形成用組成物は、上述の化合物以外に通常、溶媒を含む。溶媒としては、特段の制限はないが、例えば、ヘキサン、ヘプタン、オクタン、イソオクタン、ノナン、テトラリン若しくはデカン等の脂肪族炭化水素類;トルエン、キシレン、メシチレン、シクロヘキシルベンゼン、クロロベンゼン若しくはオルトジクロロベンゼン等の芳香族炭化水素類;シクロペンタン、シクロヘキサン、メチルシクロヘキサン、シクロヘプタン、シクロオクタン、テトラリン若しくはデカリン等の脂環式炭化水素類;メタノール、エタノール若しくはプロパノール等の低級アルコール類;アセトン、メチルエチルケトン、シクロペンタノン若しくはシクロヘキサノン等の脂肪族ケトン類;アセトフェノン若しくはプロピオフェノン等の芳香族ケトン類;酢酸エチル、酢酸ブチル若しくは乳酸メチル等のエステル類;クロロホルム、塩化メチレン、ジクロロエタン、トリクロロエタン若しくはトリクロロエチレン等のハロゲン炭化水素類;エチルエーテル、テトラヒドロフラン若しくはジオキサン等のエーテル類;又は、ジメチルホルムアミド若しくはジメチルアセトアミド等のアミド類等が挙げられる。 The above-mentioned composition for forming an active layer usually contains a solvent in addition to the above-mentioned compound. The solvent is not particularly limited, but for example, aliphatic hydrocarbons such as hexane, heptane, octane, isooctane, nonane, tetralin or decane; toluene, xylene, mesitylene, cyclohexylbenzene, chlorobenzene or orthodichlorobenzene, etc. Aromatic hydrocarbons; cycloaliphatic hydrocarbons such as cyclopentane, cyclohexane, methylcyclohexane, cycloheptane, cyclooctane, tetralin or decalin; lower alcohols such as methanol, ethanol or propanol; acetone, methyl ethyl ketone, cyclopentanone Or aliphatic ketones such as cyclohexanone; aromatic ketones such as acetophenone or propiophenone; esters such as ethyl acetate, butyl acetate or methyl lactate; Chloroform, methylene chloride, dichloroethane, halogenated hydrocarbons such as trichloroethane or trichlorethylene; ethers such as ethyl ether and tetrahydrofuran or dioxane; or an amide such as dimethylformamide or dimethylacetamide, and the like.
 溶媒は1種の溶媒を単独で用いてもよいし、任意の2種以上の溶媒を任意の比率で併用してもよい。2種以上の溶媒を併用する場合、沸点が60℃以上150℃以下である低沸点溶媒と、沸点が180℃以上250℃以下である高沸点溶媒とを組み合わせることが好ましい。低沸点溶媒と高沸点溶媒との組み合わせの例としては、非ハロゲン芳香族炭化水素類と脂環式炭化水素類、非ハロゲン芳香族炭化水素類と芳香族ケトン類、エーテル類と脂環式炭化水素類、エーテル類と芳香族ケトン類、脂肪族ケトン類と脂環式炭化水素類、又は脂肪族ケトン類と芳香族ケトン類、等が挙げられる。好ましい組み合わせの具体例としては、トルエンとテトラリン、キシレンとテトラリン、トルエンとアセトフェノン、キシレンとアセトフェノン、テトラヒドロフランとテトラリン、テトラヒドロフランとアセトフェノン、メチルエチルケトンとテトラリン、メチルエチルケトンとアセトフェノン、等が挙げられる。 As the solvent, one type of solvent may be used alone, or any two or more types of solvents may be used in combination at an arbitrary ratio. When two or more kinds of solvents are used in combination, it is preferable to combine a low boiling point solvent having a boiling point of 60 ° C. or higher and 150 ° C. or lower and a high boiling point solvent having a boiling point of 180 ° C. or higher and 250 ° C. or lower. Examples of combinations of low and high boiling solvents include non-halogen aromatic hydrocarbons and alicyclic hydrocarbons, non-halogen aromatic hydrocarbons and aromatic ketones, ethers and alicyclic carbonization. Examples thereof include hydrogens, ethers and aromatic ketones, aliphatic ketones and alicyclic hydrocarbons, or aliphatic ketones and aromatic ketones. Specific examples of preferred combinations include toluene and tetralin, xylene and tetralin, toluene and acetophenone, xylene and acetophenone, tetrahydrofuran and tetralin, tetrahydrofuran and acetophenone, methyl ethyl ketone and tetralin, methyl ethyl ketone and acetophenone, and the like.
 なお、活性層形成用組成物は上述した化合物以外にも、本発明に係る効果を損なわない限りにおいて、他の添加剤等を含んでいてもよい。 In addition, the composition for active layer formation may contain other additives other than the compounds described above as long as the effects according to the present invention are not impaired.
<3-4.下部バッファ層102及び上部バッファ層104>
 本発明の一実施形態に係る光電変換素子は、下部電極101と活性層103との間に下部バッファ層102と、上部電極105と活性層103との間に上部バッファ層104と、を有する。下部バッファ層102及び上部バッファ層104は、それぞれ、活性層103からカソードへの電子取り出し効率又は活性層103からアノードへの正孔取り出し効率を向上させる機能を有する。なお、活性層103からカソードへの電子取り出し効率を向上させる機能を有するバッファ層を電子取り出し層、活性層103からカソードへの電子取り出し効率を向上させる機能を有するバッファ層を正孔取り出し層という。なお、上述の通り、下部バッファ層102及び上部バッファ層104は、本発明に係る光電変換素子の必須の構成部材ではなく、下部バッファ層102及び上部バッファ層104を有していなくてもよい。また、どちらか一方の層のみを有していてもよい。
<3-4. Lower Buffer Layer 102 and Upper Buffer Layer 104>
The photoelectric conversion element according to an embodiment of the present invention includes a lower buffer layer 102 between the lower electrode 101 and the active layer 103, and an upper buffer layer 104 between the upper electrode 105 and the active layer 103. The lower buffer layer 102 and the upper buffer layer 104 each have a function of improving the electron extraction efficiency from the active layer 103 to the cathode or the hole extraction efficiency from the active layer 103 to the anode. Note that a buffer layer having a function of improving the electron extraction efficiency from the active layer 103 to the cathode is referred to as an electron extraction layer, and a buffer layer having a function of improving the electron extraction efficiency from the active layer 103 to the cathode is referred to as a hole extraction layer. As described above, the lower buffer layer 102 and the upper buffer layer 104 are not essential constituent members of the photoelectric conversion element according to the present invention, and may not include the lower buffer layer 102 and the upper buffer layer 104. Moreover, you may have only any one layer.
 下部バッファ層102及び上部バッファ層104は、どちらが電子取り出し層でも、正孔取り出し層でもよいが、下部電極101をカソードとし、上部電極105をアノードとする場合、下部バッファ層102は電子取り出し層であり、上部バッファ層104は正孔取り出し層であることが好ましい。一方、下部電極101がアノードで、上部電極105がカソードの場合、下部バッファ層102は正孔取り出し層であり、上部バッファ層104は電子取り出し層であることが好ましい。 Either the lower buffer layer 102 or the upper buffer layer 104 may be an electron extraction layer or a hole extraction layer, but when the lower electrode 101 is a cathode and the upper electrode 105 is an anode, the lower buffer layer 102 is an electron extraction layer. The upper buffer layer 104 is preferably a hole extraction layer. On the other hand, when the lower electrode 101 is an anode and the upper electrode 105 is a cathode, the lower buffer layer 102 is preferably a hole extraction layer and the upper buffer layer 104 is preferably an electron extraction layer.
<3-4-1.電子取り出し層>
 電子取り出し層の材料は、活性層103からカソードへ電子の取り出し効率を向上させる材料であれば特段の制限はないが、無機化合物又は有機化合物が挙げられる。
<3-4-1. Electron extraction layer>
The material of the electron extraction layer is not particularly limited as long as it is a material that improves the efficiency of extracting electrons from the active layer 103 to the cathode, and examples thereof include inorganic compounds and organic compounds.
 無機化合物の例としては、Li、Na、K又はCs等のアルカリ金属の塩;酸化チタン(TiO)や酸化亜鉛(ZnO)のようなn型半導体酸化物等が挙げられる。なかでも、アルカリ金属の塩としては、LiF、NaF、KF又はCsFのようなフッ化物塩が好ましく、n型半導体酸化物としては、酸化亜鉛(ZnO)が好ましい。このような材料の動作機構は不明であるが、Al等で構成されるカソードと組み合わされた際にカソードの仕事関数を小さくし、太陽電池素子内部に印加される電圧を上げる事が考えられる。 Examples of inorganic compounds include salts of alkali metals such as Li, Na, K or Cs; n-type semiconductor oxides such as titanium oxide (TiO x ) and zinc oxide (ZnO). Among them, the alkali metal salt is preferably a fluoride salt such as LiF, NaF, KF or CsF, and the n-type semiconductor oxide is preferably zinc oxide (ZnO). Although the operation mechanism of such a material is unknown, it is conceivable to reduce the work function of the cathode when combined with a cathode made of Al or the like and increase the voltage applied to the solar cell element.
 有機化合物の例としては、例えば、トリアリールホスフィンオキシド化合物のようなリン原子と第16族元素との二重結合を有するホスフィン化合物;バソキュプロイン(BCP)又はバソフェナントレン(Bphen)のような、置換基を有してもよく、1位及び10位がヘテロ原子で置き換えられていてもよいフェナントレン化合物;トリアリールホウ素のようなホウ素化合物;(8-ヒドロキシキノリナト)アルミニウム(Alq)のような有機金属酸化物;オキサジアゾール化合物又はベンゾイミダゾール化合物のような、置換基を有していてもよい1又は2の環構造を有する化合物;ナフタレンテトラカルボン酸無水物(NTCDA)又はペリレンテトラカルボン酸無水物(PTCDA)のような、ジカルボン酸無水物のような縮合ジカルボン酸構造を有する芳香族化合物等が挙げられる。 Examples of organic compounds include phosphine compounds having a double bond between a phosphorus atom and a group 16 element such as triarylphosphine oxide compounds; substituents such as bathocuproin (BCP) or bathophenanthrene (Bphen) A phenanthrene compound in which the 1-position and the 10-position may be replaced by a heteroatom; a boron compound such as triarylboron; an organic such as (8-hydroxyquinolinato) aluminum (Alq 3 ) Metal oxide; Compound having 1 or 2 ring structure which may have a substituent such as oxadiazole compound or benzimidazole compound; naphthalenetetracarboxylic anhydride (NTCDA) or perylenetetracarboxylic anhydride Product (PTCDA), such as dicarboxylic acid anhydride Aromatic compounds having a condensed dicarboxylic acid structure.
 電子取り出し層の膜厚は、通常0.1nm以上、好ましくは1nm以上、より好ましくは10nm以上である。一方、通常400nm以下、好ましくは200nm以下である。電子取り出し層の膜厚が0.1nm以上であることでバッファ材料としての機能を果たすことになり、電子取り出し層の膜厚が400nm以下であることで、電子が取り出しやすくなり、光電変換効率が向上しうる。 The film thickness of the electron extraction layer is usually 0.1 nm or more, preferably 1 nm or more, more preferably 10 nm or more. On the other hand, it is usually 400 nm or less, preferably 200 nm or less. When the film thickness of the electron extraction layer is 0.1 nm or more, it functions as a buffer material. When the film thickness of the electron extraction layer is 400 nm or less, electrons are easily extracted and the photoelectric conversion efficiency is improved. Can improve.
 電子取り出し層の材料のLUMOエネルギー準位は、特に限定は無いが、通常-4.0eV以上、好ましくは-3.9eV以上である。一方、通常-1.9eV以下、好ましくは-2.0eV以下である。電子取り出し層の材料のLUMOエネルギー準位が-1.9eV以下であることは、電荷移動が促進されうる点で好ましい。電子取り出し層の材料のLUMOエネルギー準位が-4.0eV以上であることは、n型半導体材料への逆電子移動が防がれうる点で好ましい。 The LUMO energy level of the material of the electron extraction layer is not particularly limited, but is usually −4.0 eV or more, preferably −3.9 eV or more. On the other hand, it is usually −1.9 eV or less, preferably −2.0 eV or less. It is preferable that the LUMO energy level of the material for the electron extraction layer is −1.9 eV or less because charge transfer can be promoted. It is preferable that the LUMO energy level of the material for the electron extraction layer is −4.0 eV or more because reverse electron transfer to the n-type semiconductor material can be prevented.
 電子取り出し層の材料のHOMOエネルギー準位は、特に限定は無いが、通常-9.0eV以上、好ましくは-8.0eV以上である。一方、通常-5.0eV以下、好ましくは-5.5eV以下である。電子取り出し層の材料のHOMOエネルギー準位が-5.0eV以下であることは、正孔が移動してくることを阻止しうる点で好ましい。 The HOMO energy level of the material for the electron extraction layer is not particularly limited, but is usually −9.0 eV or more, preferably −8.0 eV or more. On the other hand, it is usually −5.0 eV or less, preferably −5.5 eV or less. It is preferable that the HOMO energy level of the material for the electron extraction layer is −5.0 eV or less in terms of preventing movement of holes.
 電子取り出し層の材料のLUMOエネルギー準位及びHOMOエネルギー準位の算出方法としては、サイクリックボルタモグラム測定法が挙げられる。例えば、公知文献(国際公開第2011/016430号)に記載の方法を参考にして実施することができる。 As a method for calculating the LUMO energy level and the HOMO energy level of the material of the electron extraction layer, there is a cyclic voltammogram measurement method. For example, it can implement with reference to the method as described in well-known literature (International Publication 2011/016430).
 電子取り出し層の材料が有機化合物である場合、DSC法により測定した場合のこの化合物のガラス転移温度(以下、Tgと記載する場合もある)は、特段の制限はないが、観測されないか、又は55℃以上であることが好ましい。DSC法によりガラス転移温度が観測されないとは、ガラス転移温度がないことを意味する。具体的には400℃以下のガラス転移温度の有無により判別する。DSC法によるガラス転移温度が観測されない材料は、熱的に高い安定性を有している点で好ましい。 When the material of the electron extraction layer is an organic compound, the glass transition temperature of the compound as measured by the DSC method (hereinafter sometimes referred to as Tg) is not particularly limited, but is not observed, or It is preferable that it is 55 degreeC or more. That the glass transition temperature is not observed by the DSC method means that there is no glass transition temperature. Specifically, the determination is made based on the presence or absence of a glass transition temperature of 400 ° C. or lower. A material in which the glass transition temperature by the DSC method is not observed is preferable in that it has high thermal stability.
 また、DSC法により測定した場合のガラス転移温度が55℃以上である化合物の中でも、ガラス転移温度が、好ましくは65℃以上、より好ましくは80℃以上、さらに好ましくは110℃以上、特に好ましくは120℃以上である化合物が望ましい。一方、ガラス転移温度の上限は特に限定はないが、通常400℃以下、好ましくは350℃以下、より好ましくは300℃以下である。また、電子取り出し層の材料は、DSC法によるガラス転移温度が30℃以上55度未満に観測されないものであることが好ましい。 Among the compounds having a glass transition temperature of 55 ° C. or higher as measured by the DSC method, the glass transition temperature is preferably 65 ° C. or higher, more preferably 80 ° C. or higher, more preferably 110 ° C. or higher, particularly preferably. A compound having a temperature of 120 ° C. or higher is desirable. On the other hand, the upper limit of the glass transition temperature is not particularly limited, but is usually 400 ° C. or lower, preferably 350 ° C. or lower, more preferably 300 ° C. or lower. Moreover, it is preferable that the material of an electron taking-out layer is a thing by which the glass transition temperature by DSC method is not observed below 30 degreeC or more and less than 55 degree | times.
 本明細書におけるガラス転移温度とは、アモルファス状態の固体において、熱エネルギーにより局所的な分子運動が開始される温度とされており、比熱が変化する点として定義される。Tgよりさらに温度が上がると、固体構造が変化して結晶化が起こる(この時の温度を結晶化温度(Tc)とする)。さらに温度が上がると、融点(Tm)で融解し液体状態に変化することが一般的である。但し、高温で分子が分解したり、昇華したりして、これらの相転移が見られないこともある。 In the present specification, the glass transition temperature is defined as a point at which the specific heat changes in an amorphous solid, which is a temperature at which local molecular motion is started by thermal energy. When the temperature rises further than Tg, the solid structure changes and crystallization occurs (the temperature at this time is defined as the crystallization temperature (Tc)). When the temperature rises further, it generally melts at the melting point (Tm) and changes to a liquid state. However, these phase transitions may not be observed due to molecular decomposition or sublimation at high temperatures.
 DSC法とは、JIS K-0129“熱分析通則”に定義された熱物性の測定法(示差走査熱量測定法)である。ガラス転移温度をより明確に決める為には、一度ガラス転移点以上の温度に加熱したサンプルを急冷した後に測定することが望ましい。例えば、公知文献(国際公開第2011/016430号)に記載の方法により、測定を実施することができる。 DSC method is a measurement method of thermophysical properties (differential scanning calorimetry) defined in JIS K-0129 “General Rules for Thermal Analysis”. In order to determine the glass transition temperature more clearly, it is desirable to measure after rapidly cooling a sample once heated to a temperature higher than the glass transition temperature. For example, the measurement can be carried out by a method described in a known document (International Publication No. 2011/016430).
 電子取り出し層に用いられる化合物のガラス転移温度が55℃以上である場合、この化合物は、印加される電場、流れる電流、曲げや温度変化による応力等の外部ストレスに対して構造が変化しにくいため、耐久性の面で好ましい。さらに、化合物の薄膜の結晶化が進みにくい傾向も有すことから、使用温度範囲においてこの化合物がアモルファス状態と結晶状態との間で変化しにくくなることにより、電子取り出し層としての安定性が良くなるため、耐久性の面で好ましい。この効果は、材料のガラス転移温度が高ければ高いほど、より顕著に表れる。 When the glass transition temperature of the compound used for the electron extraction layer is 55 ° C. or higher, the structure of this compound is difficult to change against external stress such as applied electric field, flowing current, stress due to bending or temperature change. It is preferable in terms of durability. Furthermore, since there is a tendency that the crystallization of the thin film of the compound does not proceed easily, the stability of the electron extraction layer is improved by making it difficult for the compound to change between the amorphous state and the crystalline state in the operating temperature range. Therefore, it is preferable in terms of durability. This effect becomes more prominent as the glass transition temperature of the material is higher.
 電子取り出し層の形成方法に制限はない。例えば、昇華性を有する材料を用いる場合は真空蒸着法等により形成することができる。また、例えば、溶媒に可溶な材料を用いる場合は、スピンコートやインクジェット等の湿式塗布法等により形成することができる。 There is no limitation on the method of forming the electron extraction layer. For example, when a material having sublimation property is used, it can be formed by a vacuum deposition method or the like. For example, when a material soluble in a solvent is used, it can be formed by a wet coating method such as spin coating or inkjet.
 塗布法により電子取り出し層を形成する場合は、塗布液にさらに界面活性剤を含有させてもよい。界面活性剤の使用により、微小な泡若しくは異物等の付着による凹み及び/又は乾燥工程での塗布むら等の発生が抑制される。界面活性剤としては、公知の界面活性剤(カチオン系界面活性剤、アニオン系界面活性剤、ノニオン系界面活性剤)を用いることができる。なかでも、ケイ素系界面活性剤、アセチレンジオール系界面活性剤又はフッ素系界面活性剤が好ましい。なお、界面活性剤としては1種のみを用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
 具体的には、例えばアルカリ金属塩を電子取り出し層の材料として用いる場合、真空蒸着、スパッタ等の真空成膜方法を用いて電子取り出し層を成膜することが可能である。なかでも、抵抗加熱による真空蒸着によって、電子取り出し層を形成するのが望ましい。真空蒸着を用いることにより、活性層等の他の層へのダメージを小さくすることができる。
When the electron extraction layer is formed by a coating method, a surfactant may be further contained in the coating solution. By using the surfactant, the occurrence of dents due to adhesion of fine bubbles or foreign matters and / or uneven coating in the drying process is suppressed. Known surfactants (cationic surfactants, anionic surfactants, nonionic surfactants) can be used as the surfactant. Of these, silicon-based surfactants, acetylenic diol-based surfactants, and fluorine-based surfactants are preferable. In addition, as surfactant, only 1 type may be used and 2 or more types may be used together by arbitrary combinations and a ratio.
Specifically, for example, when an alkali metal salt is used as a material for the electron extraction layer, the electron extraction layer can be formed by using a vacuum film formation method such as vacuum deposition or sputtering. Especially, it is desirable to form an electron taking-out layer by vacuum vapor deposition by resistance heating. By using vacuum deposition, damage to other layers such as an active layer can be reduced.
 一方、n型半導体の金属酸化物については、例えば、酸化亜鉛ZnOを電子取り出し層の材料として用いる場合には、スパッタ法等の真空成膜方法を用いることもできるが、塗布法を用いて電子取り出し層を成膜することが望ましい。例えば、Sol-Gel Science、C.J.Brinker,G.W.Scherer著、Academic Press(1990)に記載のゾルゲル法に従って、酸化亜鉛で構成される電子取り出し層を形成できる。この場合の膜厚は、通常0.1nm以上、好ましくは2nm以上、より好ましくは5nm以上であり、通常1μm以下、好ましくは100nm以下、より好ましくは50nm以下である。電子取り出し層が薄すぎると、電子の取り出し効率を向上させる効果が十分でなくなり、厚すぎると、電子取り出し層が直列抵抗成分として作用することにより素子の特性を損なう傾向がある。 On the other hand, for metal oxides of n-type semiconductors, for example, when zinc oxide ZnO is used as the material for the electron extraction layer, a vacuum film formation method such as sputtering can be used. It is desirable to form the extraction layer. For example, Sol-Gel Science, C.I. J. et al. Brinker, G.M. W. According to the sol-gel method described by Scherer, Academic Press (1990), an electron extraction layer composed of zinc oxide can be formed. In this case, the film thickness is usually 0.1 nm or more, preferably 2 nm or more, more preferably 5 nm or more, and usually 1 μm or less, preferably 100 nm or less, more preferably 50 nm or less. If the electron extraction layer is too thin, the effect of improving the electron extraction efficiency is not sufficient, and if it is too thick, the electron extraction layer tends to deteriorate the characteristics of the device by acting as a series resistance component.
<3-4-2.正孔取り出し層>
 正孔取り出し層の材料に特に限定は無く、活性層103からアノードへの正孔の取り出し効率を向上させることが可能な材料であれば特に限定されない。具体的には、ポリチオフェン、ポリピロール、ポリアセチレン、トリフェニレンジアミン又はポリアニリン等に、スルホン酸及び/又はヨウ素等がドーピングされた導電性ポリマー、スルホニル基を置換基に有するポリチオフェン誘導体、アリールアミン等の導電性有機化合物、酸化銅、酸化ニッケル、酸化マンガン、酸化モリブデン、酸化バナジウム又は酸化タングステン等の金属酸化物、ナフィオン、後述のp型半導体等が挙げられる。その中でも好ましくは、スルホン酸をドーピングした導電性ポリマーであり、より好ましくは、ポリチオフェン誘導体にポリスチレンスルホン酸をドーピングした(3,4-エチレンジオキシチオフェン)ポリ(スチレンスルホン酸)(PEDOT:PSS)である。また、金、インジウム、銀又はパラジウム等の金属等の薄膜も使用することができる。金属等の薄膜は、単独で形成してもよいし、上記の有機材料と組み合わせて用いることもできる。
<3-4-2. Hole extraction layer>
The material for the hole extraction layer is not particularly limited as long as it is a material capable of improving the efficiency of extracting holes from the active layer 103 to the anode. Specifically, polythiophene, polypyrrole, polyacetylene, triphenylenediamine, polyaniline, or the like, a conductive polymer doped with sulfonic acid and / or iodine, a polythiophene derivative having a sulfonyl group as a substituent, or a conductive organic such as arylamine Examples thereof include compounds, copper oxide, nickel oxide, manganese oxide, molybdenum oxide, vanadium oxide, metal oxide such as tungsten oxide, Nafion, and a p-type semiconductor described later. Among them, a conductive polymer doped with sulfonic acid is preferable, and (3,4-ethylenedioxythiophene) poly (styrenesulfonic acid) (PEDOT: PSS) in which a polythiophene derivative is doped with polystyrene sulfonic acid is more preferable. It is. A thin film of metal such as gold, indium, silver or palladium can also be used. A thin film of metal or the like may be formed alone or in combination with the above organic material.
 正孔取り出し層の膜厚は、通常0.1nm以上である。一方、通常400nm以下、好ましくは200nm以下である。正孔取り出し層の膜厚が0.1nm以上であることでバッファ材料としての機能を果たすことになり、正孔取り出し層の膜厚が400nm以下であることで、正孔が取り出し易くなり、光電変換効率が向上しうる。 The film thickness of the hole extraction layer is usually 0.1 nm or more. On the other hand, it is usually 400 nm or less, preferably 200 nm or less. When the film thickness of the hole extraction layer is 0.1 nm or more, it functions as a buffer material. When the film thickness of the hole extraction layer is 400 nm or less, holes are easily extracted, Conversion efficiency can be improved.
 正孔取り出し層の形成方法に制限はない。例えば、昇華性を有する材料を用いる場合は真空蒸着法等により形成することができる。また、例えば、溶媒に可溶な材料を用いる場合は、スピンコート法やインクジェット法等の湿式塗布法等により形成することができる。正孔取り出し層に半導体材料を用いる場合は、活性層の低分子有機半導体化合物と同様に、前駆体を用いて層を形成した後に前駆体を半導体化合物に変換してもよい。
 なかでも、正孔取り出し層の材料としてPEDOT:PSSを用いる場合、分散液を塗布する方法によって正孔取り出し層を形成することが好ましい。PEDOT:PSSの分散液としては、ヘレウス社製のCLEVIOSTMシリーズや、アグファ社製のORGACONTMシリーズ等が挙げられる。
There is no restriction | limiting in the formation method of a positive hole taking-out layer. For example, when a material having sublimation property is used, it can be formed by a vacuum deposition method or the like. For example, when a material soluble in a solvent is used, it can be formed by a wet coating method such as a spin coating method or an ink jet method. When a semiconductor material is used for the hole extraction layer, the precursor may be converted into a semiconductor compound after forming the layer using the precursor, similarly to the low-molecular organic semiconductor compound of the active layer.
Especially, when using PEDOT: PSS as a material of a hole taking-out layer, it is preferable to form a hole taking-out layer by the method of apply | coating a dispersion liquid. Examples of the dispersion of PEDOT: PSS include CLEVIOSTM series manufactured by Heraeus, ORGACONTM series manufactured by Agfa, and the like.
 塗布法により正孔取り出し層を形成する場合は、塗布液にさらに界面活性剤を含有させてもよい。界面活性剤の使用により、微小な泡若しくは異物等の付着による凹み及び/又は乾燥工程での塗布むら等の発生が抑制される。界面活性剤としては、公知の界面活性剤(カチオン系界面活性剤、アニオン系界面活性剤、ノニオン系界面活性剤)を用いることができる。なかでも、ケイ素系界面活性剤、アセチレンジオール系界面活性剤又はフッ素系界面活性剤が好ましい。なお、界面活性剤としては1種のみを用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。 When the hole extraction layer is formed by a coating method, a surfactant may be further contained in the coating solution. By using the surfactant, the occurrence of dents due to adhesion of fine bubbles or foreign matters and / or uneven coating in the drying process is suppressed. Known surfactants (cationic surfactants, anionic surfactants, nonionic surfactants) can be used as the surfactant. Of these, silicon-based surfactants, acetylenic diol-based surfactants, and fluorine-based surfactants are preferable. In addition, as surfactant, only 1 type may be used and 2 or more types may be used together by arbitrary combinations and a ratio.
 以上、本発明の一実施形態に係る光電変換素子の例について説明したが、本発明に係る光電変換素子の構造は上記の構造に限定されない。例えば、光電変換素子が活性層103を2層以上有するタンデム型の構造を有していてもよい。 As mentioned above, although the example of the photoelectric conversion element which concerns on one Embodiment of this invention was demonstrated, the structure of the photoelectric conversion element which concerns on this invention is not limited to said structure. For example, the photoelectric conversion element may have a tandem structure having two or more active layers 103.
<3-5.光電変換素子の製造方法>
 図1に示される構成を有する光電変換素子107は、各層について説明した上述の方法に従い、基材106上に、下部電極101、下部バッファ層102、活性層103、上部バッファ層104、及び上部電極105を順次積層することにより作製することができる。
<3-5. Manufacturing method of photoelectric conversion element>
A photoelectric conversion element 107 having the configuration shown in FIG. 1 is formed on a base 106 by a lower electrode 101, a lower buffer layer 102, an active layer 103, an upper buffer layer 104, and an upper electrode in accordance with the method described above for each layer. It can be manufactured by sequentially stacking 105.
 下部電極101及び/又は上部電極105を積層した後に、加熱によりアニール処理を行ってもよい。アニール処理を行うことにより各層の密着性を向上させることができる。アニール処理を行う場合、加熱温度は特段の制限はないが、各層の密着性を向上させるために、50℃以上であることが好ましく、80℃以上であることがさらに好ましく、一方、光電変換素子を構成する材料が熱分解するのを抑制するために、300℃以下であることが好ましく、250℃以下であることが特に好ましい。 After laminating the lower electrode 101 and / or the upper electrode 105, annealing may be performed by heating. By performing the annealing treatment, the adhesion of each layer can be improved. When performing the annealing treatment, the heating temperature is not particularly limited, but in order to improve the adhesion of each layer, it is preferably 50 ° C. or higher, more preferably 80 ° C. or higher, while the photoelectric conversion element Is preferably 300 ° C. or less, and particularly preferably 250 ° C. or less, in order to suppress thermal decomposition of the material constituting the material.
 加熱時間は、特段の制限はないが、1分以上であることが好ましく、3分以上であることがさらに好ましく、一方、3時間以下であることが好ましく、1時間以下であることがさらに好ましい。また、アニール処理は、常圧下、かつ不活性ガス雰囲気中で実施することが好ましい。 The heating time is not particularly limited, but is preferably 1 minute or longer, more preferably 3 minutes or longer, on the other hand, preferably 3 hours or shorter, more preferably 1 hour or shorter. . The annealing treatment is preferably performed under normal pressure and in an inert gas atmosphere.
 加熱は、ホットプレート等の熱源に光電変換素子を載せて行ってもよいし、オーブン等の加熱雰囲気中に光電変換素子を入れて行ってもよい。また、加熱はバッチ式で行っても連続方式で行ってもよい。 The heating may be performed by placing the photoelectric conversion element on a heat source such as a hot plate, or by placing the photoelectric conversion element in a heating atmosphere such as an oven. The heating may be performed batchwise or continuously.
 本発明に係る光電変換素子を構成する各層は、特段の制限はなく、シート・ツー・シート(枚葉)方式で形成してもよいし、ロール・ツー・ロール方式で形成してもよい。 Each layer constituting the photoelectric conversion element according to the present invention is not particularly limited, and may be formed by a sheet-to-sheet (sheet-fed) method or a roll-to-roll method.
 ロール・ツー・ロール方式とは、ロール状に巻かれたフレキシブルな基材を繰り出して、間欠的、或いは連続的に搬送しながら、巻き取りロールにより巻き取られるまでの間に加工を行う方式である。ロール・ツー・ロール方式によれば、kmオーダの長尺基板を一括処理することが可能であるため、シート・ツー・シート方式に比べて量産化に適した生産方式である。 The roll-to-roll method is a method in which a flexible base material wound in a roll shape is fed out and processed intermittently or continuously until it is taken up by a take-up roll. is there. According to the roll-to-roll method, it is possible to batch-process long substrates on the order of km, so that the production method is more suitable for mass production than the sheet-to-sheet method.
<3-6.光電変換特性>
 光電変換素子107の光電変換特性は次のようにして求めることができる。光電変換素子107にソーラシュミレーターでAM1.5G条件の光を照射強度100mW/cm2
で照射して、電流-電圧特性を測定する。得られた電流-電圧曲線から、光電変換効率(PCE)、短絡電流密度(Jsc)、開放電圧(Voc)、フィルファクター(FF)、直列抵抗、シャント抵抗といった光電変換特性を求めることができる。
<3-6. Photoelectric conversion characteristics>
The photoelectric conversion characteristics of the photoelectric conversion element 107 can be obtained as follows. The photoelectric conversion element 107 is irradiated with light of AM1.5G by a solar simulator with an irradiation intensity of 100 mW / cm @ 2.
Irradiate with and measure the current-voltage characteristics. From the obtained current-voltage curve, photoelectric conversion characteristics such as photoelectric conversion efficiency (PCE), short circuit current density (Jsc), open circuit voltage (Voc), fill factor (FF), series resistance, and shunt resistance can be obtained.
 本発明に係る光電変換素子の光電変換効率は、特段の制限はないが、通常1%以上、好ましくは1.5%以上、より好ましくは2%以上である。一方、上限に特段の制限はなく、高ければ高いほどよい。 The photoelectric conversion efficiency of the photoelectric conversion element according to the present invention is not particularly limited, but is usually 1% or more, preferably 1.5% or more, more preferably 2% or more. On the other hand, there is no particular limitation on the upper limit, and the higher the better.
 また、光電変換素子の耐久性を測定する方法としては、光電変換素子を大気暴露する前後での、光電変換効率の維持率を求める方法が挙げられる。
 (維持率)=(大気暴露N時間後の光電変換効率)/(大気暴露直前の光電変換効率)
Moreover, as a method for measuring the durability of the photoelectric conversion element, a method for obtaining a maintenance ratio of the photoelectric conversion efficiency before and after exposing the photoelectric conversion element to the atmosphere can be mentioned.
(Maintenance rate) = (Photoelectric conversion efficiency after N hours of atmospheric exposure) / (Photoelectric conversion efficiency immediately before atmospheric exposure)
 光電変換素子を実用化するには、製造が簡便かつ安価であること以外に、高い光電変換効率及び高い耐久性を有することが重要である。この観点から、1週間大気暴露する前後での光電変換効率の維持率は、60%以上が好ましく、80%以上がより好ましく、高ければ高いほどよい。 In order to put a photoelectric conversion element into practical use, it is important to have high photoelectric conversion efficiency and high durability in addition to simple and inexpensive manufacture. From this viewpoint, the maintenance rate of photoelectric conversion efficiency before and after exposure to the atmosphere for one week is preferably 60% or more, more preferably 80% or more, and the higher the better.
<4.太陽電池>
 上述の実施形態に係る光電変換素子は、太陽電池、なかでも薄膜太陽電池の太陽電池素子として使用されることが好ましい。図2は、本発明の一実施形態としての薄膜太陽電池の構成を模式的に示す断面図である。図2に示すように、本実施形態の薄膜太陽電池14は、耐候性保護フィルム1と、紫外線カットフィルム2と、ガスバリアフィルム3と、ゲッター材フィルム4と、封止材5と、光電変換素子6と、封止材7と、ゲッター材フィルム8と、ガスバリアフィルム9と、バックシート10とをこの順に備える。そして、薄膜太陽電池は、通常、耐候性保護フィルム1が形成された側(図中下方)から光が照射されて、光電変換素子6が発電する。なお、薄膜太陽電池は、これらの構成部材を全て有する必要はなく、各構成部材を任意で選択して設ければよい。
<4. Solar cell>
The photoelectric conversion element according to the above-described embodiment is preferably used as a solar cell, particularly a solar cell element of a thin film solar cell. FIG. 2 is a cross-sectional view schematically showing the configuration of a thin-film solar cell as one embodiment of the present invention. As shown in FIG. 2, the thin film solar cell 14 of this embodiment includes a weather-resistant protective film 1, an ultraviolet cut film 2, a gas barrier film 3, a getter material film 4, a sealing material 5, and a photoelectric conversion element. 6, a sealing material 7, a getter material film 8, a gas barrier film 9, and a back sheet 10 are provided in this order. And a thin film solar cell is normally irradiated with light from the side (downward in the figure) in which the weather-resistant protective film 1 was formed, and the photoelectric conversion element 6 generates electric power. Note that the thin-film solar cell does not need to have all of these constituent members, and each constituent member may be arbitrarily selected and provided.
 薄膜太陽電池を構成するこれらの構成部材及びその製造方法について特段の制限はなく、周知技術を用いることができる。例えば、国際公開第2011/016430号又は日本国特開2012-191194号公報等の公知文献に記載のものを使用することができる。 There are no particular restrictions on these constituent members constituting the thin-film solar cell and the manufacturing method thereof, and well-known techniques can be used. For example, those described in known documents such as International Publication No. 2011/016430 or Japanese Patent Application Laid-Open No. 2012-191194 can be used.
 本発明に係る太陽電池、特に上述した薄膜太陽電池14の用途に特段の制限はなく、任意の用途に用いることができる。例えば、建材用太陽電池、自動車用太陽電池、宇宙機用太陽電池、家電用太陽電池、携帯電話用太陽電池又は玩具用太陽電池等が挙げられる。 There is no particular limitation on the use of the solar cell according to the present invention, particularly the thin film solar cell 14 described above, and it can be used for any application. Examples include solar cells for building materials, solar cells for automobiles, solar cells for spacecrafts, solar cells for home appliances, solar cells for mobile phones, solar cells for toys, and the like.
 本発明に係る太陽電池、特に薄膜太陽電池はそのまま用いてもよいし、例えば基材上に太陽電池を設置して太陽電池モジュールとして用いてもよい。例えば、図3に示すように、基材12上に薄膜太陽電池14を備えた太陽電池モジュール13として、使用場所に設置して用いることができる。基材12については、周知技術を用いることができ、例えば、国際公開第2011/016430号又は日本国特開2012-191194号公報等に記載のものを用いることができる。例えば、基材12として建材用板材を使用する場合、この板材の表面に薄膜太陽電池14を設けることにより、太陽電池モジュール13として太陽電池パネルを作製することができる。 The solar cell according to the present invention, particularly a thin-film solar cell, may be used as it is, or for example, a solar cell may be installed on a substrate and used as a solar cell module. For example, as shown in FIG. 3, the solar cell module 13 having the thin film solar cell 14 on the base 12 can be installed and used at a place of use. For the substrate 12, well-known techniques can be used, for example, those described in International Publication No. 2011-016430 or Japanese Unexamined Patent Publication No. 2012-191194. For example, when a building material plate is used as the substrate 12, a solar cell panel can be produced as the solar cell module 13 by providing the thin film solar cell 14 on the surface of the plate.
 以下に、実施例により本発明の実施形態を説明するが、本発明はその要旨を超えない限り、これらに限定されるものではない。
 なお、本実施例に記載の項目は以下の方法によって測定した。
Hereinafter, embodiments of the present invention will be described by way of examples. However, the present invention is not limited to these examples as long as the gist thereof is not exceeded.
The items described in the examples were measured by the following methods.
[重量平均分子量及び数平均分子量の測定方法]
 ポリスチレン換算の重量平均分子量(Mw)及び数平均分子量(Mn)は、ゲル浸透クロマトグラフィ(GPC)より求めた。なお、分子量分布(PDI)は、Mw/Mnを表す。
[Method for measuring weight average molecular weight and number average molecular weight]
The polystyrene equivalent weight average molecular weight (Mw) and number average molecular weight (Mn) were determined by gel permeation chromatography (GPC). The molecular weight distribution (PDI) represents Mw / Mn.
 ゲル浸透クロマトグラフィ(GPC)測定は以下の条件で行った。
 カラム:PolymerLaboratories GPC用カラム(PLgel MIXED-B 10μm 内径7.5mm,長さ30cm)2本直列に接続して使用
 ポンプ:LC-10AT(島津製作所社製)
 オーブン:CTO-10A(島津製作所社製)
検出器:示差屈折率検出器(島津製作所社製,RID-10A)及びUV-vis検出器(島津製作所社製,RID-10A)及びUV-vis検出
器(島津製作所社製,SPD-10A)
 サンプル:試料1mgをオルトジクロロベンゼン(200mg)に溶解させた液1μL
 移動相:オルトジクロロベンゼン 
 流速:1.0mL/min
 温度:80℃
 解析:LC-Solution(島津製作所社製)
Gel permeation chromatography (GPC) measurement was performed under the following conditions.
Column: PolymerLaboratories GPC column (PLgel MIXED-B 10 μm, inner diameter 7.5 mm, length 30 cm), connected in series Pump: LC-10AT (manufactured by Shimadzu Corporation)
Oven: CTO-10A (manufactured by Shimadzu Corporation)
Detector: Differential refractive index detector (manufactured by Shimadzu Corporation, RID-10A) and UV-vis detector (manufactured by Shimadzu Corporation, RID-10A) and UV-vis detector (manufactured by Shimadzu Corporation, SPD-10A)
Sample: 1 μL of 1 mg sample dissolved in orthodichlorobenzene (200 mg)
Mobile phase: orthodichlorobenzene
Flow rate: 1.0 mL / min
Temperature: 80 ° C
Analysis: LC-Solution (manufactured by Shimadzu Corporation)
<合成例1A:コポリマー1Aの合成> <Synthesis Example 1A: Synthesis of Copolymer 1A>
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000061
 窒素雰囲気下、50mL二口ナスフラスコに、モノマーとして、米国特許出願公開2012/0227812号に記載の方法を参考にして得られた3,7-ジ(2-ブロモ-3-ドデシルチオフェン-5-イル)-ナフト[1,2-c:5,6-c]ビス[1,2,5]チアジアゾール(化合物A1)(29.8mg,0.033mmol)、特表2014-501032号公報を参考にして得られた4,7-ビス-(5-ブロモ-チオフェン-2-イル)-5,6-ジフルオロ-ベンゾ[1,2,5]チアジアゾール(化合物A2)(16.3mg,0.033mmol)、及び特表2014-501032号公報に記載の方法を参考にして得られた4,8-ビス-[5-(2-ヘキシルデシル)-チオフェン-2-イル]-2,6-ビス(トリメチルスタニル)-ベンゾ[1,2-b:4,5-b’]ジチオフェン(化合物D1)(74.5mg,0.066mmol)を入れ、さらにトリス(ジベンジリデンアセトン)ジパラジウムクロロホルム錯体(2.7mg,4.0mol%)、トリス(2-メチルフェニル)ホスフィン(6.4mg,32mol%)、クロロベンゼン(5.0mL)を入れ、100℃で1時間、続いて110℃で1時間攪拌した。反応液に、末端処理として、トリメチル(フェニル)スズ(0.03mL)およびクロロベンゼン(5.0mL)を加えて110℃で1.0時間加熱攪拌し、さらにブロモベンゼン(1.0mL)を加えて110℃で1.0時間加熱攪拌して、反応溶液をメタノール中に注ぎ、析出した沈殿をろ取した。得られた固体をクロロホルムに溶解させ、ジアミンシリカゲル(Fujiシリシア化学製)を加えて1時間室温で攪拌し、酸性シリカゲルのショートカラムを通した。溶液を濃縮することで、目的とするコポリマー1Aを、収率74%で得た。得られたコポリマー1Aの重量平均分子量Mwは187,000であり、PDIは4.5であった。 Under a nitrogen atmosphere, 3,7-di (2-bromo-3-dodecylthiophene-5-5) obtained by referring to a method described in US Patent Application Publication No. 2012/0227812 as a monomer in a 50 mL two-necked eggplant flask. Yl) -naphtho [1,2-c: 5,6-c] bis [1,2,5] thiadiazole (Compound A1) (29.8 mg, 0.033 mmol), with reference to JP-T-2014-501032 4,7-bis- (5-bromo-thiophen-2-yl) -5,6-difluoro-benzo [1,2,5] thiadiazole (Compound A2) (16.3 mg, 0.033 mmol) And 4,8-bis- [5- (2-hexyldecyl) -thiophen-2-yl] -2,6-bi, which was obtained by referring to the method described in JP-T-2014-501032 (Trimethylstannyl) -benzo [1,2-b: 4,5-b ′] dithiophene (Compound D1) (74.5 mg, 0.066 mmol) was added, and tris (dibenzylideneacetone) dipalladium chloroform complex ( 2.7 mg, 4.0 mol%), tris (2-methylphenyl) phosphine (6.4 mg, 32 mol%) and chlorobenzene (5.0 mL) were added, and the mixture was stirred at 100 ° C. for 1 hour and then at 110 ° C. for 1 hour. did. Trimethyl (phenyl) tin (0.03 mL) and chlorobenzene (5.0 mL) were added to the reaction solution as a terminal treatment, and the mixture was heated and stirred at 110 ° C. for 1.0 hour, and further bromobenzene (1.0 mL) was added. The mixture was heated and stirred at 110 ° C. for 1.0 hour, the reaction solution was poured into methanol, and the deposited precipitate was collected by filtration. The obtained solid was dissolved in chloroform, diamine silica gel (Fuji Silysia Chemical) was added, and the mixture was stirred for 1 hour at room temperature and passed through a short column of acidic silica gel. By concentrating the solution, the target copolymer 1A was obtained in a yield of 74%. The resulting copolymer 1A had a weight average molecular weight Mw of 187,000 and a PDI of 4.5.
<合成例2A:コポリマー2Aの合成> <Synthesis Example 2A: Synthesis of Copolymer 2A>
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000062
 窒素雰囲気下、50mL二口ナスフラスコに、モノマーとして、米国特許出願公開2012/0227812号に記載の方法を参考にして得られた3,7-ジ(2-ブロモ-3-ドデシルチオフェン-5-イル)-ナフト[1,2-c:5,6-c]ビス[1,2,5]チアジアゾール(化合物A1)(59.6mg,0.066mmol)、及び特表2014-501032号公報に記載の方法を参考にして得られた4,8-ビス-[5-(2-ヘキシルデシル)-チオフェン-2-イル]-2,6-ビス(トリメチルスタニル)-ベンゾ[1,2-b:4,5-b’]ジチオフェン(化合物D1)(74.5mg,0.066mmol)を入れ、さらにテトラキス(トリフェニルホスフィン)パラジウム(0)(2.3mg,3.00mol%)、トリフェニルホスフィン含有不均一系パラジウム錯体触媒Pd-EnCatTPP30(Aldrich社製,3.0mg,1.53mol%)、トルエン(4.0mL)、及びN,N-ジメチルホルムアミド(1.0mL)を入れ、100℃で1時間、続いて110℃で2時間攪拌した。反応液をトルエンで2倍に希釈して110℃でさらに0.5時間加熱攪拌した後、末端処理として、トリメチル(フェニル)スズ(0.03mL)を加えて110℃で1.0時間加熱攪拌し、さらにブロモベンゼン(1.00mL)を加えて110℃で1.0時間加熱攪拌して、反応溶液をメタノール中に注ぎ、析出した沈殿をろ取した。得られた固体をクロロホルムに溶解させ、ジアミンシリカゲル(Fujiシリシア化学製)を加えて1時間室温で攪拌し、酸性シリカゲルのショートカラムを通した。溶液を濃縮することで、目的とするコポリマー2Aを、収率87%で得た。得られたコポリマー2Aの重量平均分子量Mwは52,000であり、PDIは2.2であった。 Under a nitrogen atmosphere, 3,7-di (2-bromo-3-dodecylthiophene-5-5) obtained by referring to a method described in US Patent Application Publication No. 2012/0227812 as a monomer in a 50 mL two-necked eggplant flask. Yl) -naphtho [1,2-c: 5,6-c] bis [1,2,5] thiadiazole (Compound A1) (59.6 mg, 0.066 mmol) and described in JP-T-2014-501032 4,8-bis- [5- (2-hexyldecyl) -thiophen-2-yl] -2,6-bis (trimethylstannyl) -benzo [1,2-b] obtained by referring to the method of : 4,5-b ′] dithiophene (Compound D1) (74.5 mg, 0.066 mmol) was added, and tetrakis (triphenylphosphine) palladium (0) (2.3 mg, 3.00). ol%), triphenylphosphine-containing heterogeneous palladium complex catalyst Pd-EnCatTPP30 (Aldrich, 3.0 mg, 1.53 mol%), toluene (4.0 mL), and N, N-dimethylformamide (1.0 mL) ) And stirred at 100 ° C. for 1 hour and then at 110 ° C. for 2 hours. The reaction solution was diluted twice with toluene and heated and stirred at 110 ° C. for another 0.5 hours, and then trimethyl (phenyl) tin (0.03 mL) was added as a terminal treatment and stirred at 110 ° C. for 1.0 hour. Further, bromobenzene (1.00 mL) was added and stirred with heating at 110 ° C. for 1.0 hour, and the reaction solution was poured into methanol, and the deposited precipitate was collected by filtration. The obtained solid was dissolved in chloroform, diamine silica gel (Fuji Silysia Chemical) was added, and the mixture was stirred for 1 hour at room temperature and passed through a short column of acidic silica gel. By concentrating the solution, the target copolymer 2A was obtained in a yield of 87%. The obtained copolymer 2A had a weight average molecular weight Mw of 52,000 and a PDI of 2.2.
<合成例3A:コポリマー3Aの合成> <Synthesis Example 3A: Synthesis of Copolymer 3A>
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000063
 窒素雰囲気下、50mL二口ナスフラスコに、モノマーとして、特表2014-501032号公報を参考にして得られた4,7-ビス-(5-ブロモ-チオフェン-2-イル)-5,6-ジフルオロ-ベンゾ[1,2,5]チアジアゾール(化合物A2)(32.6mg,0.066mmol)、及び特表2014-501032号公報に記載の方法を参考にして得られた4,8-ビス-[5-(2-ヘキシルデシル)-チオフェン-2-イル]-2,6-ビス(トリメチルスタニル)-ベンゾ[1,2-b:4,5-b’]ジチオフェン(化合物D1)(74.5mg,0.066mmol)を入れ、さらにトリス(ジベンジリデンアセトン)ジパラジウムクロロホルム錯体(2.73mg,4.00mol%)、トリス(2-メチルフェニル)ホスフィン(3.21mg,16.00mol%)、クロロベンゼン(5.0mL)を入れ、100℃で1時間、続いて110℃で2時間攪拌した。反応液をクロロベンゼンで2倍に希釈して110℃でさらに0.5時間加熱攪拌した後、末端処理として、トリメチル(フェニル)スズ(0.03mL)を加えて110℃で1.0時間加熱攪拌し、さらにブロモベンゼン(1.00mL)を加えて110℃で1.0時間加熱攪拌して、反応溶液をメタノール中に注ぎ、析出した沈殿をろ取した。得られた固体をクロロホルムに溶解させ、ジアミンシリカゲル(Fujiシリシア化学製)を加えて1時間室温で攪拌し、酸性シリカゲルのショートカラムを通した。溶液を濃縮することで、目的とするコポリマー3Aを、収率56%で得た。得られたコポリマー3Aの重量平均分子量Mwは199,000であり、PDIは4.1であった。 4,7-bis- (5-bromo-thiophen-2-yl) -5,6-- obtained as a monomer in a 50 mL two-necked eggplant flask under a nitrogen atmosphere with reference to JP-T-2014-501032 Difluoro-benzo [1,2,5] thiadiazole (compound A2) (32.6 mg, 0.066 mmol) and 4,8-bis- obtained by referring to the method described in JP-T-2014-501032 [5- (2-Hexyldecyl) -thiophen-2-yl] -2,6-bis (trimethylstannyl) -benzo [1,2-b: 4,5-b ′] dithiophene (Compound D1) (74 0.5 mg, 0.066 mmol), tris (dibenzylideneacetone) dipalladium chloroform complex (2.73 mg, 4.00 mol%), tris (2-methyl Eniru) phosphine (3.21mg, 16.00mol%), was placed chlorobenzene (5.0 mL), 1 hour at 100 ° C., followed by stirring for 2 hours at 110 ° C.. After diluting the reaction solution with chlorobenzene twice and heating and stirring at 110 ° C. for another 0.5 hours, as a terminal treatment, trimethyl (phenyl) tin (0.03 mL) was added and heating and stirring at 110 ° C. for 1.0 hour. Further, bromobenzene (1.00 mL) was added and stirred with heating at 110 ° C. for 1.0 hour, and the reaction solution was poured into methanol, and the deposited precipitate was collected by filtration. The obtained solid was dissolved in chloroform, diamine silica gel (Fuji Silysia Chemical) was added, and the mixture was stirred for 1 hour at room temperature and passed through a short column of acidic silica gel. By concentrating the solution, the target copolymer 3A was obtained in a yield of 56%. The obtained copolymer 3A had a weight average molecular weight Mw of 199,000 and a PDI of 4.1.
<合成例4A:コポリマー4Aの合成> <Synthesis Example 4A: Synthesis of Copolymer 4A>
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000064
 窒素雰囲気下、50mL二口ナスフラスコに、モノマーとして、米国特許出願公開2012/0227812号に記載の方法を参考にして得られた3,7-ジ(2-ブロモ-3-ドデシルチオフェン-5-イル)-ナフト[1,2-c:5,6-c]ビス[1,2,5]チアジアゾール(化合物A1)(29.8mg,0.033mmol)、公知文献(Chem.Mater.,2008,20,4045-4050)を参考にして得られた4,7-ビス-(5-ブロモ-チオフェン-2-イル)-ベンゾ[1,2,5]チアジアゾール(化合物A3)(15.1mg,0.033mmol)、及び特表2014-501032号公報に記載の方法を参考にして得られた4,8-ビス-[5-(2-ヘキシルデシル)-チオフェン-2-イル]-2,6-ビス(トリメチルスタニル)-ベンゾ[1,2-b:4,5-b’]ジチオフェン(化合物D1)(74.5mg,0.066mmol)を入れ、さらにテトラキス(トリフェニルホスフィン)パラジウム(0)(2.3mg,3.00mol%)、トリフェニルホスフィン含有不均一系パラジウム錯体触媒Pd-EnCatTPP30(Aldrich社製,3.0mg,1.53mol%)、トルエン(4.0mL)、及びN,N-ジメチルホルムアミド(1.0mL)を入れ、100℃で1時間、続いて110℃で2時間攪拌した。反応液をトルエンで2倍に希釈して110℃でさらに0.5時間加熱攪拌した後、末端処理として、トリメチル(フェニル)スズ(0.03mL)を加えて110℃で1.0時間加熱攪拌し、さらにブロモベンゼン(1.00mL)を加えて110℃で1.0時間加熱攪拌して、反応溶液をメタノール中に注ぎ、析出した沈殿をろ取した。得られた固体をクロロホルムに溶解させ、ジアミンシリカゲル(Fujiシリシア化学製)を加えて1時間室温で攪拌し、酸性シリカゲルのショートカラムを通した。溶液を濃縮することで、目的とするコポリマー4Aを、収率84%で得た。得られたコポリマー4Aの重量平均分子量Mwは54,000であり、PDIは2.4であった。 Under a nitrogen atmosphere, 3,7-di (2-bromo-3-dodecylthiophene-5-5) obtained by referring to a method described in US Patent Application Publication No. 2012/0227812 as a monomer in a 50 mL two-necked eggplant flask. Yl) -naphtho [1,2-c: 5,6-c] bis [1,2,5] thiadiazole (compound A1) (29.8 mg, 0.033 mmol), known literature (Chem. Mater., 2008, 20, 4045-4050), 4,7-bis- (5-bromo-thiophen-2-yl) -benzo [1,2,5] thiadiazole (Compound A3) (15.1 mg, 0 0.033 mmol) and 4,8-bis- [5- (2-hexyldecyl) -thiophene-2-] obtained by referring to the method described in JP-T-2014-501032 L] -2,6-bis (trimethylstannyl) -benzo [1,2-b: 4,5-b ′] dithiophene (compound D1) (74.5 mg, 0.066 mmol) was added, and tetrakis (tri Phenylphosphine) palladium (0) (2.3 mg, 3.00 mol%), triphenylphosphine-containing heterogeneous palladium complex catalyst Pd-EnCatTPP30 (manufactured by Aldrich, 3.0 mg, 1.53 mol%), toluene (4. 0 mL) and N, N-dimethylformamide (1.0 mL) were added, and the mixture was stirred at 100 ° C. for 1 hour and then at 110 ° C. for 2 hours. The reaction solution was diluted twice with toluene and heated and stirred at 110 ° C. for another 0.5 hours, and then trimethyl (phenyl) tin (0.03 mL) was added as a terminal treatment and stirred at 110 ° C. for 1.0 hour. Further, bromobenzene (1.00 mL) was added and stirred with heating at 110 ° C. for 1.0 hour, and the reaction solution was poured into methanol, and the deposited precipitate was collected by filtration. The obtained solid was dissolved in chloroform, diamine silica gel (Fuji Silysia Chemical) was added, and the mixture was stirred for 1 hour at room temperature and passed through a short column of acidic silica gel. By concentrating the solution, the target copolymer 4A was obtained in a yield of 84%. The resulting copolymer 4A had a weight average molecular weight Mw of 54,000 and a PDI of 2.4.
<合成例5A:コポリマー5Aの合成> <Synthesis Example 5A: Synthesis of Copolymer 5A>
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000065
 窒素雰囲気下、50mL二口ナスフラスコに、モノマーとして、米国特許出願公開2012/0227812号に記載の方法を参考にして得られた3,7-ジ(2-ブロモ-3-ドデシルチオフェン-5-イル)-ナフト[1,2-c:5,6-c]ビス[1,2,5]チアジアゾール(化合物A1)(17.9mg,0.020mmol)、特表2014-501032号公報を参考にして得られた4,7-ビス-(5-ブロモ-チオフェン-2-イル)-5,6-ジフルオロ-ベンゾ[1,2,5]チアジアゾール(化合物A2)(22.8mg,0.046mmol)、及び特表2014-501032号公報に記載の方法を参考にして得られた4,8-ビス-[5-(2-ヘキシルデシル)-チオフェン-2-イル]-2,6-ビス(トリメチルスタニル)-ベンゾ[1,2-b:4,5-b’]ジチオフェン(化合物D1)(74.5mg,0.066mmol)を入れ、さらにテトラキス(トリフェニルホスフィン)パラジウム(0)(2.3mg,3.00mol%)、トリフェニルホスフィン含有不均一系パラジウム錯体触媒Pd-EnCatTPP30(Aldrich社製,3.0mg,1.53mol%)、トルエン(4.0mL)、及びN,N-ジメチルホルムアミド(1.0mL)を入れ、100℃で1時間、続いて110℃で2時間攪拌した。反応液をトルエンで2倍に希釈して110℃でさらに0.5時間加熱攪拌した後、末端処理として、トリメチル(フェニル)スズ(0.03mL)を加えて110℃で1.0時間加熱攪拌し、さらにブロモベンゼン(1.00mL)を加えて110℃で1.0時間加熱攪拌して、反応溶液をメタノール中に注ぎ、析出した沈殿をろ取した。得られた固体をクロロホルムに溶解させ、ジアミンシリカゲル(Fujiシリシア化学製)を加えて1時間室温で攪拌し、酸性シリカゲルのショートカラムを通した。溶液を濃縮することで、目的とするコポリマー5Aを、収率56%で得た。得られたコポリマー5Aの重量平均分子量Mwは67,000であり、PDIは3.0であった。 Under a nitrogen atmosphere, 3,7-di (2-bromo-3-dodecylthiophene-5-5) obtained by referring to a method described in US Patent Application Publication No. 2012/0227812 as a monomer in a 50 mL two-necked eggplant flask. Yl) -naphtho [1,2-c: 5,6-c] bis [1,2,5] thiadiazole (Compound A1) (17.9 mg, 0.020 mmol), referring to JP-T-2014-501032 4,7-bis- (5-bromo-thiophen-2-yl) -5,6-difluoro-benzo [1,2,5] thiadiazole (Compound A2) (22.8 mg, 0.046 mmol) And 4,8-bis- [5- (2-hexyldecyl) -thiophen-2-yl] -2,6-bi, which was obtained by referring to the method described in JP-T-2014-501032 (Trimethylstannyl) -benzo [1,2-b: 4,5-b ′] dithiophene (Compound D1) (74.5 mg, 0.066 mmol) was added, and tetrakis (triphenylphosphine) palladium (0) ( 2.3 mg, 3.00 mol%), triphenylphosphine-containing heterogeneous palladium complex catalyst Pd-EnCatTPP30 (Aldrich, 3.0 mg, 1.53 mol%), toluene (4.0 mL), and N, N- Dimethylformamide (1.0 mL) was added, and the mixture was stirred at 100 ° C. for 1 hour and then at 110 ° C. for 2 hours. The reaction solution was diluted twice with toluene and heated and stirred at 110 ° C. for another 0.5 hours, and then trimethyl (phenyl) tin (0.03 mL) was added as a terminal treatment and stirred at 110 ° C. for 1.0 hour. Further, bromobenzene (1.00 mL) was added and stirred with heating at 110 ° C. for 1.0 hour, and the reaction solution was poured into methanol, and the deposited precipitate was collected by filtration. The obtained solid was dissolved in chloroform, diamine silica gel (Fuji Silysia Chemical) was added, and the mixture was stirred for 1 hour at room temperature and passed through a short column of acidic silica gel. By concentrating the solution, the target copolymer 5A was obtained in a yield of 56%. The weight average molecular weight Mw of the obtained copolymer 5A was 67,000, and PDI was 3.0.
<合成例6A:コポリマー6Aの合成> <Synthesis Example 6A: Synthesis of Copolymer 6A>
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000066
 窒素雰囲気下、50mL二口ナスフラスコに、モノマーとして、米国特許出願公開2012/0227812号に記載の方法を参考にして得られた3,7-ジ(2-ブロモ-3-ドデシルチオフェン-5-イル)-ナフト[1,2-c:5,6-c]ビス[1,2,5]チアジアゾール(化合物A1)(29.8mg,0.033mmol)、特表2014-501032号公報を参考にして得られた4,7-ビス-(5-ブロモ-チオフェン-2-イル)-5,6-ジフルオロ-ベンゾ[1,2,5]チアジアゾール(化合物A2)(16.3mg,0.033mmol)、特表2014-501032号公報に記載の方法を参考にして得られた4,8-ビス-[5-(2-ヘキシルデシル)-チオフェン-2-イル]-2,6-ビス(トリメチルスタニル)-ベンゾ[1,2-b:4,5-b’]ジチオフェン(化合物D1)(37.3mg,0.033mmol)を入れ、及び公知文献(ACS Macro Lett.,2013,2,605-608)に記載の方法を参考にして得られた4,8-ビス-[5-(2-ブチルオクチル)-チオフェン-2-イル]-2,6-ビス(トリメチルスタニル)-ベンゾ[1,2-b:4,5-b’]ジチオフェン(化合物D2)(33.6mg,0.033mmol)を入れさらにテトラキス(トリフェニルホスフィン)パラジウム(0)(2.3mg,3.00mol%)、トリフェニルホスフィン含有不均一系パラジウム錯体触媒Pd-EnCatTPP30(Aldrich社製,3.0mg,1.53mol%)、トルエン(4.0mL)、及びN,N-ジメチルホルムアミド(1.0mL)を入れ、100℃で1時間、続いて110℃で2時間攪拌した。反応液をトルエンで2倍に希釈して110℃でさらに0.5時間加熱攪拌した後、末端処理として、トリメチル(フェニル)スズ(0.03mL)を加えて110℃で1.0時間加熱攪拌し、さらにブロモベンゼン(1.00mL)を加えて110℃で1.0時間加熱攪拌して、反応溶液をメタノール中に注ぎ、析出した沈殿をろ取した。得られた固体をクロロホルムに溶解させ、ジアミンシリカゲル(Fujiシリシア化学製)を加えて1時間室温で攪拌し、酸性シリカゲルのショートカラムを通した。溶液を濃縮することで、目的とするコポリマー6Aを、収率86%で得た。得られたコポリマー6Aの重量平均分子量Mwは47,000であり、PDIは2.5であった。 Under a nitrogen atmosphere, 3,7-di (2-bromo-3-dodecylthiophene-5-5) obtained by referring to a method described in US Patent Application Publication No. 2012/0227812 as a monomer in a 50 mL two-necked eggplant flask. Yl) -naphtho [1,2-c: 5,6-c] bis [1,2,5] thiadiazole (Compound A1) (29.8 mg, 0.033 mmol), with reference to JP-T-2014-501032 4,7-bis- (5-bromo-thiophen-2-yl) -5,6-difluoro-benzo [1,2,5] thiadiazole (Compound A2) (16.3 mg, 0.033 mmol) 4,8-bis- [5- (2-hexyldecyl) -thiophen-2-yl] -2,6-bis () obtained by referring to the method described in JP-T-2014-501032 Limethylstannyl) -benzo [1,2-b: 4,5-b ′] dithiophene (Compound D1) (37.3 mg, 0.033 mmol) was added, and known literature (ACS Macro Lett., 2013, 2,605-) 608) 4,8-bis- [5- (2-butyloctyl) -thiophen-2-yl] -2,6-bis (trimethylstannyl) -benzo [1 , 2-b: 4,5-b ′] dithiophene (compound D2) (33.6 mg, 0.033 mmol) was added, and tetrakis (triphenylphosphine) palladium (0) (2.3 mg, 3.00 mol%) Triphenylphosphine-containing heterogeneous palladium complex catalyst Pd-EnCatTPP30 (manufactured by Aldrich, 3.0 mg, 1.53 mol%), Ene (4.0 mL), and N, placed N- dimethylformamide (1.0 mL), 1 hour at 100 ° C., followed by stirring for 2 hours at 110 ° C.. The reaction solution was diluted twice with toluene and heated and stirred at 110 ° C. for another 0.5 hours, and then trimethyl (phenyl) tin (0.03 mL) was added as a terminal treatment and stirred at 110 ° C. for 1.0 hour. Further, bromobenzene (1.00 mL) was added and stirred with heating at 110 ° C. for 1.0 hour, and the reaction solution was poured into methanol, and the deposited precipitate was collected by filtration. The obtained solid was dissolved in chloroform, diamine silica gel (Fuji Silysia Chemical) was added, and the mixture was stirred for 1 hour at room temperature and passed through a short column of acidic silica gel. By concentrating the solution, the target copolymer 6A was obtained in a yield of 86%. The obtained copolymer 6A had a weight average molecular weight Mw of 47,000 and a PDI of 2.5.
<合成例7A:コポリマー7Aの合成>
Figure JPOXMLDOC01-appb-C000067
<Synthesis Example 7A: Synthesis of Copolymer 7A>
Figure JPOXMLDOC01-appb-C000067
 窒素雰囲気下、50mL二口ナスフラスコに、モノマーとして、米国特許出願公開2012/0227812号に記載の方法を参考にして得られた3,7-ジ(2-ブロモ-3-ドデシルチオフェン-5-イル)-ナフト[1,2-c:5,6-c]ビス[1,2,5]チアジアゾール(化合物A1)(29.8mg,0.033mmol)、特表2014-501032号公報を参考にして得られた4,7-ビス-(5-ブロモ-チオフェン-2-イル)-5,6-ジフルオロ-ベンゾ[1,2,5]チアジアゾール(化合物A2)(16.3mg,0.033mmol)、及び特表2014-501032号公報に記載の方法を参考にして得られた4,8-ビス-[5-(2-ヘキシルデシル)-チオフェン-2-イル]-2,6-ビス(トリメチルスタニル)-ベンゾ[1,2-b:4,5-b’]ジチオフェン(化合物D1)(74.5mg,0.066mmol)を入れ、さらにテトラキス(トリフェニルホスフィン)パラジウム(2.3mg,3.0mol%)、トリフェニルホスフィン含有不均一系パラジウム錯体触媒Pd-EnCatTPP30(Aldrich社より購入,3.0mg,3mol%)、トルエン(4.0mL)、及びN,N-ジメチルホルムアミド(1.0mL)を入れ、100℃で1時間、続いて110℃で1時間攪拌した。反応液に、末端処理として、トリメチル(フェニル)スズ(0.03mL)およびクロロベンゼン(5.0mL)を加えて110℃で1.0時間加熱攪拌し、さらにブロモベンゼン(1.0mL)を加えて110℃で1.0時間加熱攪拌して、反応溶液をメタノール中に注ぎ、析出した沈殿をろ取した。得られた固体をクロロホルムに溶解させ、ジアミンシリカゲル(Fujiシリシア化学製)を加えて1時間室温で攪拌し、酸性シリカゲルのショートカラムを通した。溶液を濃縮することで、目的とするコポリマー7Aを、収率79%で得た。得られたコポリマー7Aの重量平均分子量Mwは72,000であり、PDIは2.7であった。 Under a nitrogen atmosphere, 3,7-di (2-bromo-3-dodecylthiophene-5-5) obtained by referring to a method described in US Patent Application Publication No. 2012/0227812 as a monomer in a 50 mL two-necked eggplant flask. Yl) -naphtho [1,2-c: 5,6-c] bis [1,2,5] thiadiazole (Compound A1) (29.8 mg, 0.033 mmol), with reference to JP-T-2014-501032 4,7-bis- (5-bromo-thiophen-2-yl) -5,6-difluoro-benzo [1,2,5] thiadiazole (Compound A2) (16.3 mg, 0.033 mmol) And 4,8-bis- [5- (2-hexyldecyl) -thiophen-2-yl] -2,6-bi, which was obtained by referring to the method described in JP-T-2014-501032 (Trimethylstannyl) -benzo [1,2-b: 4,5-b ′] dithiophene (Compound D1) (74.5 mg, 0.066 mmol) was added, and tetrakis (triphenylphosphine) palladium (2.3 mg) was added. , 3.0 mol%), triphenylphosphine-containing heterogeneous palladium complex catalyst Pd-EnCatTPP30 (purchased from Aldrich, 3.0 mg, 3 mol%), toluene (4.0 mL), and N, N-dimethylformamide (1 0.0 mL) and stirred at 100 ° C. for 1 hour and then at 110 ° C. for 1 hour. Trimethyl (phenyl) tin (0.03 mL) and chlorobenzene (5.0 mL) were added to the reaction solution as a terminal treatment, and the mixture was heated and stirred at 110 ° C. for 1.0 hour, and further bromobenzene (1.0 mL) was added. The mixture was heated and stirred at 110 ° C. for 1.0 hour, the reaction solution was poured into methanol, and the deposited precipitate was collected by filtration. The obtained solid was dissolved in chloroform, diamine silica gel (Fuji Silysia Chemical) was added, and the mixture was stirred for 1 hour at room temperature and passed through a short column of acidic silica gel. By concentrating the solution, the target copolymer 7A was obtained with a yield of 79%. The resulting copolymer 7A had a weight average molecular weight Mw of 72,000 and a PDI of 2.7.
<合成例8A:コポリマー8Aの合成>
[合成例:4-テトラデシル-2-トリメチルスタニルチオフェン(化合物T2)の合成]
<Synthesis Example 8A: Synthesis of Copolymer 8A>
[Synthesis Example: Synthesis of 4-tetradecyl-2-trimethylstannylthiophene (Compound T2)]
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000068
 50mL二口フラスコに2,2,6,6-テトラメチルピペリジン(2.18g,15mmol)を加え、窒素置換を3回行った。乾燥THF10mLを加え、ドライアイスアセトンバスで-78℃に冷却した。n-ブチルリチウム(1.6M,8.9mL,14.3mmol)を-78℃で滴下し、30分撹拌した後、氷浴で0℃まで昇温した。一方で、500mL4つ口フラスコに3-テトラデシルチオフェン(化合物T1)(4.3g,15mmol)を加え、窒素置換を3回行った。乾燥THF190mLを加え、ドライアイスアセトンバスで-40℃に冷却した。先に調整したLiTMPを-40 ℃でゆっくり滴下し、滴下終了後にさらに1時間撹拌した後、トリメチルスズクロリド(1M in THF 15mL,15mmol)を滴下し、30分撹拌した。蒸留水100mLを加え反応をクエンチし、水層をヘキサンで1回抽出した。有機層を水で3回洗浄し、無水硫酸ナトリウムで乾燥した。溶媒をエバポレータで留去し、減圧下(オイルポンプ)40℃で乾燥させることで4-テトラデシル-2-トリメチルスタニルチオフェン(化合物T2)を得た。プロトンNMRの結果、スズ体の純度は70%であった。 2,2,6,6-tetramethylpiperidine (2.18 g, 15 mmol) was added to a 50 mL two-necked flask, and nitrogen substitution was performed three times. 10 mL of dry THF was added, and the mixture was cooled to −78 ° C. with a dry ice acetone bath. n-Butyllithium (1.6M, 8.9 mL, 14.3 mmol) was added dropwise at −78 ° C., stirred for 30 minutes, and then heated to 0 ° C. in an ice bath. On the other hand, 3-tetradecylthiophene (Compound T1) (4.3 g, 15 mmol) was added to a 500 mL four-necked flask, and nitrogen substitution was performed three times. 190 mL of dry THF was added, and the mixture was cooled to −40 ° C. with a dry ice acetone bath. The previously prepared LiTMP was slowly added dropwise at −40 ° C., and after stirring, the mixture was further stirred for 1 hour, and then trimethyltin chloride (1M in THF, 15 mL, 15 mmol) was added dropwise and stirred for 30 minutes. 100 mL of distilled water was added to quench the reaction, and the aqueous layer was extracted once with hexane. The organic layer was washed 3 times with water and dried over anhydrous sodium sulfate. The solvent was distilled off with an evaporator and dried under reduced pressure (oil pump) at 40 ° C. to obtain 4-tetradecyl-2-trimethylstannylthiophene (Compound T2). As a result of proton NMR, the purity of the tin body was 70%.
[合成例:3,7-ジ(3-テトラデシルチオフェン-5-イル)-ナフト[1,2-c:5,6-c]ビス[1,2,5]チアジアゾール(化合物T4)の合成] [Synthesis Example: Synthesis of 3,7-di (3-tetradecylthiophen-5-yl) -naphtho [1,2-c: 5,6-c] bis [1,2,5] thiadiazole (Compound T4) ]
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000069
50mL二口フラスコに4-テトラデシル-2-トリメチルスタニルチオフェン(化合物T2)(2.37g(P.70%)3.75mmol)、3,7-ジブロモ-ナフト[1,2-c:5,6-c]ビス[1,2,5]チアジアゾール(化合物T3)(603mg,1.5mmol)を加え、窒素置換を3回行った。テトラキストリフェニルホスフィンパラジウム(34.9mg, 0.02mmol)を加え、窒素置換を2回行った。脱水トルエン70mL、脱水DMF7mLを加え115℃で3時間撹拌した。室温まで冷却後トルエンを留去した。酢酸エチルを20mL加えて撹拌し、濾別した。濾別した固体を酢酸エチルで3回ふりかけ洗浄して乾燥させた。得られた橙色固体をクロロホルム300mLに加熱溶解し、ショートパスのシリカゲルカラムで精製した。溶媒を留去し、減圧下乾燥させることで3,7-ジ(3-テトラデシルチオフェン-5-イル)-ナフト[1,2-c:5,6-c]ビス[1,2,5]チアジアゾール(化合物T4)を1.13g 、収率94%で得た。 In a 50 mL two-necked flask, 4-tetradecyl-2-trimethylstannylthiophene (Compound T2) (2.37 g (P.70%) 3.75 mmol), 3,7-dibromo-naphtho [1,2-c: 5, 6-c] bis [1,2,5] thiadiazole (Compound T3) (603 mg, 1.5 mmol) was added, and nitrogen substitution was performed three times. Tetrakistriphenylphosphine palladium (34.9 mg, 0.02 mmol) was added, and nitrogen substitution was performed twice. 70 mL of dehydrated toluene and 7 mL of dehydrated DMF were added and stirred at 115 ° C. for 3 hours. After cooling to room temperature, toluene was distilled off. 20 mL of ethyl acetate was added and stirred, followed by filtration. The filtered solid was washed with ethyl acetate 3 times and dried. The resulting orange solid was dissolved by heating in 300 mL of chloroform and purified by a short pass silica gel column. The solvent was distilled off and dried under reduced pressure to obtain 3,7-di (3-tetradecylthiophen-5-yl) -naphtho [1,2-c: 5,6-c] bis [1,2,5 ] 1.13 g of thiadiazole (compound T4) was obtained with a yield of 94%.
[合成例:3,7-ジ(2-ブロモ-3-テトラデシルチオフェン-5-イル)-ナフト[1,2-c:5,6-c]ビス[1,2,5]チアジアゾール(化合物A4)の合成] [Synthesis Example: 3,7-di (2-bromo-3-tetradecylthiophen-5-yl) -naphtho [1,2-c: 5,6-c] bis [1,2,5] thiadiazole (compound Synthesis of A4)
Figure JPOXMLDOC01-appb-C000070
Figure JPOXMLDOC01-appb-C000070
 2Lナスフラスコに3,7-ジ(3-テトラデシルチオフェン-5-イル)-ナフト[1,2-c:5,6-c]ビス[1,2,5]チアジアゾール(化合物T4)(1.13g,1.42mmol)を入れ、 クロロホルム1000mLを加えドライヤを用いて加熱撹拌した。室温まで冷却し、フラスコをアルミホイルで遮光した後、臭素(493mg,3.09mmol)のクロロホルム溶液を室温で素早く滴下した。室温で1時間撹拌した後、溶媒を9割留去した。得られた赤色スラリー液を減圧濾過し、クロロホルムで3回ふりかけ洗浄した。減圧下50℃で乾燥させることで3,7-ジ(2-ブロモ-3-テトラデシルチオフェン-5-イル)-ナフト[1,2-c:5,6-c]ビス[1,2,5]チアジアゾール(化合物A4)を1.34g、収率98%で得た。 In a 2 L eggplant flask, 3,7-di (3-tetradecylthiophen-5-yl) -naphtho [1,2-c: 5,6-c] bis [1,2,5] thiadiazole (Compound T4) (1 .13 g, 1.42 mmol) was added, 1000 mL of chloroform was added, and the mixture was heated and stirred using a dryer. After cooling to room temperature and shielding the flask from light with aluminum foil, a chloroform solution of bromine (493 mg, 3.09 mmol) was quickly added dropwise at room temperature. After stirring at room temperature for 1 hour, 90% of the solvent was distilled off. The obtained red slurry was filtered under reduced pressure and washed by sprinkling with chloroform three times. By drying at 50 ° C. under reduced pressure, 3,7-di (2-bromo-3-tetradecylthiophen-5-yl) -naphtho [1,2-c: 5,6-c] bis [1,2, 5] 1.34 g of thiadiazole (Compound A4) was obtained with a yield of 98%.
[合成例:コポリマー8Aの合成] [Synthesis Example: Synthesis of Copolymer 8A]
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000071
 窒素雰囲気下、50mL二口ナスフラスコに、モノマーとして、上述の方法で得られた3,7-ジ(2-ブロモ-3-テトラデシルチオフェン-5-イル)-ナフト[1,2-c:5,6-c]ビス[1,2,5]チアジアゾール(化合物A4)(31.6mg,0.033mmol)、特表2014-501032号公報を参考にして得られた4,7-ビス-(5-ブロモ-チオフェン-2-イル)-5,6-ジフルオロ-ベンゾ[1,2,5]チアジアゾール(化合物A2)(16.3mg,0.033mmol)、及び特表2014-501032号公報に記載の方法を参考にして得られた4,8-ビス-[5-(2-ヘキシルデシル)-チオフェン-2-イル]-2,6-ビス(トリメチルスタニル)-ベンゾ[1,2-b:4,5-b’]ジチオフェン(化合物D1)(74.5mg,0.066mmol)を入れ、さらにトリス(ジベンジリデンアセトン)ジパラジウムクロロホルム錯体(2.7mg,4.0mol%)、トリス(2-メチルフェニル)ホスフィン(3.2mg,16mol%)、クロロベンゼン(5.0mL)を入れ、100℃で1時間、続いて110℃で1時間攪拌した。反応液に、末端処理として、トリメチル(フェニル)スズ(0.03mL)およびクロロベンゼン(5.0mL)を加えて110℃で1.0時間加熱攪拌し、さらにブロモベンゼン(1.0mL)を加えて110℃で1.0時間加熱攪拌して、反応溶液をメタノール中に注ぎ、析出した沈殿をろ取した。得られた固体をクロロホルムに溶解させ、ジアミンシリカゲル(Fujiシリシア化学製)を加えて1時間室温で攪拌し、酸性シリカゲルのショートカラムを通した。溶液を濃縮することで、目的とするコポリマー8Aを、収率77%で得た。得られたコポリマー8Aの重量平均分子量Mwは162,000であり、PDIは4.2であった。 In a 50 mL two-necked eggplant flask under a nitrogen atmosphere, 3,7-di (2-bromo-3-tetradecylthiophen-5-yl) -naphtho [1,2-c: obtained by the above method as a monomer was used. 5,6-c] bis [1,2,5] thiadiazole (compound A4) (31.6 mg, 0.033 mmol), 4,7-bis- ( 5-Bromo-thiophen-2-yl) -5,6-difluoro-benzo [1,2,5] thiadiazole (Compound A2) (16.3 mg, 0.033 mmol) and described in JP-T-2014-501032 4,8-bis- [5- (2-hexyldecyl) -thiophen-2-yl] -2,6-bis (trimethylstannyl) -benzo [1,2-b] obtained by referring to the method of : 4, -B ′] dithiophene (compound D1) (74.5 mg, 0.066 mmol) was added, and tris (dibenzylideneacetone) dipalladium chloroform complex (2.7 mg, 4.0 mol%), tris (2-methylphenyl) Phosphine (3.2 mg, 16 mol%) and chlorobenzene (5.0 mL) were added, and the mixture was stirred at 100 ° C. for 1 hour and then at 110 ° C. for 1 hour. Trimethyl (phenyl) tin (0.03 mL) and chlorobenzene (5.0 mL) were added to the reaction solution as a terminal treatment, and the mixture was heated and stirred at 110 ° C. for 1.0 hour, and further bromobenzene (1.0 mL) was added. The mixture was heated and stirred at 110 ° C. for 1.0 hour, the reaction solution was poured into methanol, and the deposited precipitate was collected by filtration. The obtained solid was dissolved in chloroform, diamine silica gel (Fuji Silysia Chemical) was added, and the mixture was stirred for 1 hour at room temperature and passed through a short column of acidic silica gel. By concentrating the solution, the target copolymer 8A was obtained in a yield of 77%. The resulting copolymer 8A had a weight average molecular weight Mw of 162,000 and a PDI of 4.2.
<合成例9A:コポリマー9Aの合成>
[合成例:4-デシル-2-トリメチルスタニルチオフェン(化合物T6)の合成]
<Synthesis Example 9A: Synthesis of Copolymer 9A>
[Synthesis Example: Synthesis of 4-decyl-2-trimethylstannylthiophene (Compound T6)]
Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000072
 100mL二口フラスコに2,2,6,6-テトラメチルピペリジン(3.15g,22.3mmol)を加え、窒素置換を3回行った。乾燥THF15mLを加え、ドライアイスアセトンバスで-78℃に冷却した。n-ブチルリチウム(1.54M,13.7mL,21.1mmol)を-78℃で滴下し、30分撹拌した後、氷浴で0℃まで昇温した。一方で、500mL4つ口フラスコに3-デシルチオフェン(化合物T5)(5g,22.3mmol)を加え、窒素置換を3回行った。乾燥THF250mLを加え、ドライアイスアセトンバスで-30℃に冷却した。先に調整したLiTMPを-30 ℃でゆっくり滴下し、滴下終了後にさらに45分撹拌した後、トリメチルスズクロリド(4.45g,22.3mmol)のTHF溶液を滴下し、45分撹拌した。蒸留水100mLを加え反応をクエンチし、水層をヘキサンで1回抽出した。有機層を水で3回洗浄し、無水硫酸ナトリウムで乾燥した。溶媒をエバポレータで留去し、減圧下(オイルポンプ)40℃で乾燥させることで4-デシル-2-トリメチルスタニルチオフェン(化合物T6)を得た。プロトンNMRの結果、スズ体の純度は86.9%であった。 2,2,6,6-tetramethylpiperidine (3.15 g, 22.3 mmol) was added to a 100 mL two-necked flask, and nitrogen substitution was performed three times. 15 mL of dry THF was added, and the mixture was cooled to −78 ° C. with a dry ice acetone bath. n-Butyllithium (1.54M, 13.7 mL, 21.1 mmol) was added dropwise at −78 ° C., stirred for 30 minutes, and then heated to 0 ° C. in an ice bath. On the other hand, 3-decylthiophene (Compound T5) (5 g, 22.3 mmol) was added to a 500 mL four-necked flask, and nitrogen substitution was performed three times. 250 mL of dry THF was added, and the mixture was cooled to −30 ° C. with a dry ice acetone bath. The previously prepared LiTMP was slowly added dropwise at −30 ° C., and the mixture was further stirred for 45 minutes, and then a THF solution of trimethyltin chloride (4.45 g, 22.3 mmol) was added dropwise and stirred for 45 minutes. 100 mL of distilled water was added to quench the reaction, and the aqueous layer was extracted once with hexane. The organic layer was washed 3 times with water and dried over anhydrous sodium sulfate. The solvent was distilled off with an evaporator and dried under reduced pressure (oil pump) at 40 ° C. to obtain 4-decyl-2-trimethylstannylthiophene (Compound T6). As a result of proton NMR, the purity of the tin body was 86.9%.
[合成例:3,7-ジ(3-デシルチオフェン-5-イル)-ナフト[1,2-c:5,6-c]ビス[1,2,5]チアジアゾール(化合物T7)の合成] [Synthesis Example: Synthesis of 3,7-di (3-decylthiophen-5-yl) -naphtho [1,2-c: 5,6-c] bis [1,2,5] thiadiazole (Compound T7)]
Figure JPOXMLDOC01-appb-C000073
Figure JPOXMLDOC01-appb-C000073
 100mL二口フラスコに4-デシル-2-トリメチルスタニルチオフェン(化合物T6)(1.14g(P.86.9%)2.5mmol)、3,7-ジブロモ-ナフト[1,2-c:5,6-c]ビス[1,2,5]チアジアゾール(化合物T3)(403mg,1mmol)を加え、窒素置換を3回行った。 テトラキストリフェニルホスフィンパラジウム(23.1mg, 0.02mmol)を加え、窒素置換を2回行った。脱水トルエン45mL、脱水DMF4.5mLを加え115℃で3時間撹拌した。室温まで冷却後、酢酸エチルを20mL加えて撹拌し、濾別した。濾別した固体を酢酸エチルで3回ふりかけ洗浄して乾燥させた。得られた橙色固体をクロロホルム200mLに加熱溶解し、ショートパスのシリカゲルカラムで精製した。溶媒を留去し、減圧下乾燥させることで3,7-ジ(3-デシルチオフェン-5-イル)-ナフト[1,2-c:5,6-c]ビス[1,2,5]チアジアゾール(化合物T7)を得た。そのまま次工程へ用いた。 In a 100 mL two-necked flask, 4-decyl-2-trimethylstannylthiophene (Compound T6) (1.14 g (P.86.9%) 2.5 mmol), 3,7-dibromo-naphtho [1,2-c: 5,6-c] bis [1,2,5] thiadiazole (Compound T3) (403 mg, 1 mmol) was added, and nitrogen substitution was performed three times. Tetrakistriphenylphosphine palladium (23.1 mg, 0.02 mmol) was added, and nitrogen substitution was performed twice. 45 mL of dehydrated toluene and 4.5 mL of dehydrated DMF were added and stirred at 115 ° C. for 3 hours. After cooling to room temperature, 20 mL of ethyl acetate was added and stirred, followed by filtration. The filtered solid was washed with ethyl acetate 3 times and dried. The resulting orange solid was dissolved by heating in 200 mL of chloroform and purified by a short-pass silica gel column. The solvent was distilled off and dried under reduced pressure to obtain 3,7-di (3-decylthiophen-5-yl) -naphtho [1,2-c: 5,6-c] bis [1,2,5] Thiadiazole (Compound T7) was obtained. Used as is in the next step.
[合成例:3,7-ジ(2-ブロモ-3-デシルチオフェン-5-イル)-ナフト[1,2-c:5,6-c]ビス[1,2,5]チアジアゾール(化合物A5)の合成] [Synthesis Example: 3,7-di (2-bromo-3-decylthiophen-5-yl) -naphtho [1,2-c: 5,6-c] bis [1,2,5] thiadiazole (Compound A5 )
Figure JPOXMLDOC01-appb-C000074
Figure JPOXMLDOC01-appb-C000074
 1Lナスフラスコに3,7-ジ(3-デシルチオフェン-5-イル)-ナフト[1,2-c:5,6-c]ビス[1,2,5]チアジアゾール(化合物T7)を入れ、クロロホルム500mLを加えドライヤを用いて加熱撹拌した。室温まで冷却し、フラスコをアルミホイルで遮光した後、臭素(450mg,2.8mmol)のクロロホルム溶液を室温で素早く滴下した。室温で1時間撹拌した後、溶媒を9割留去した。得られた赤色スラリー液を減圧濾過し、クロロホルムで3回ふりかけ洗浄した。減圧下50℃で乾燥させることで3,7-ジ(2-ブロモ-3-デシルチオフェン-5-イル)-ナフト[1,2-c:5,6-c]ビス[1,2,5]チアジアゾール(化合物A5)を717mg、収率84%(2段階)で得た。 Into a 1 L eggplant flask was placed 3,7-di (3-decylthiophen-5-yl) -naphtho [1,2-c: 5,6-c] bis [1,2,5] thiadiazole (Compound T7). Chloroform 500mL was added and it heat-stirred using the dryer. After cooling to room temperature and shielding the flask from light with aluminum foil, a chloroform solution of bromine (450 mg, 2.8 mmol) was quickly added dropwise at room temperature. After stirring at room temperature for 1 hour, 90% of the solvent was distilled off. The obtained red slurry was filtered under reduced pressure and washed by sprinkling with chloroform three times. By drying at 50 ° C. under reduced pressure, 3,7-di (2-bromo-3-decylthiophen-5-yl) -naphtho [1,2-c: 5,6-c] bis [1,2,5 717 mg of thiadiazole (Compound A5) was obtained in a yield of 84% (two steps).
[合成例:コポリマー9Aの合成] [Synthesis Example: Synthesis of Copolymer 9A]
Figure JPOXMLDOC01-appb-C000075
Figure JPOXMLDOC01-appb-C000075
 窒素雰囲気下、50mL二口ナスフラスコに、モノマーとして、上述の方法で得られた3,7-ジ(2-ブロモ-3-デシルチオフェン-5-イル)-ナフト[1,2-c:5,6-c]ビス[1,2,5]チアジアゾール(化合物A5)(27.4mg,0.032mmol)、特表2014-501032号公報を参考にして得られた4,7-ビス-(5-ブロモ-チオフェン-2-イル)-5,6-ジフルオロ-ベンゾ[1,2,5]チアジアゾール(化合物A2)(16.0mg,0.032mmol)、及び特表2014-501032号公報に記載の方法を参考にして得られた4,8-ビス-[5-(2-ヘキシルデシル)-チオフェン-2-イル]-2,6-ビス(トリメチルスタニル)-ベンゾ[1,2-b:4,5-b’]ジチオフェン(化合物D1)(74.5mg,0.066mmol)を入れ、さらにトリス(ジベンジリデンアセトン)ジパラジウムクロロホルム錯体(2.7mg,4.0mol%)、トリス(2-メチルフェニル)ホスフィン(3.2mg,16mol%)、クロロベンゼン(5.0mL)を入れ、100℃で1時間、続いて110℃で1時間攪拌した。反応液に、末端処理として、トリメチル(フェニル)スズ(0.03mL)およびクロロベンゼン(5.0mL)を加えて110℃で1.0時間加熱攪拌し、さらにブロモベンゼン(1.0mL)を加えて110℃で1.0時間加熱攪拌して、反応溶液をメタノール中に注ぎ、析出した沈殿をろ取した。得られた固体をクロロホルムに溶解させ、ジアミンシリカゲル(Fujiシリシア化学製)を加えて1時間室温で攪拌し、酸性シリカゲルのショートカラムを通した。溶液を濃縮することで、目的とするコポリマー9Aを、収率77%で得た。得られたコポリマー9Aの重量平均分子量Mwは162,000であり、PDIは5.9であった。 In a 50 mL two-necked eggplant flask under a nitrogen atmosphere, 3,7-di (2-bromo-3-decylthiophen-5-yl) -naphtho [1,2-c: 5 obtained by the above method as a monomer was used. , 6-c] bis [1,2,5] thiadiazole (Compound A5) (27.4 mg, 0.032 mmol), 4,7-bis- (5 obtained with reference to JP-T-2014-501032 -Bromo-thiophen-2-yl) -5,6-difluoro-benzo [1,2,5] thiadiazole (Compound A2) (16.0 mg, 0.032 mmol), and JP-A-2014-501032 4,8-bis- [5- (2-hexyldecyl) -thiophen-2-yl] -2,6-bis (trimethylstannyl) -benzo [1,2-b: obtained by referring to the method: 4,5-b Dithiophene (Compound D1) (74.5 mg, 0.066 mmol) was added, and tris (dibenzylideneacetone) dipalladium chloroform complex (2.7 mg, 4.0 mol%), tris (2-methylphenyl) phosphine (3 0.2 mg, 16 mol%) and chlorobenzene (5.0 mL) were added, and the mixture was stirred at 100 ° C. for 1 hour and then at 110 ° C. for 1 hour. Trimethyl (phenyl) tin (0.03 mL) and chlorobenzene (5.0 mL) were added to the reaction solution as a terminal treatment, and the mixture was heated and stirred at 110 ° C. for 1.0 hour, and further bromobenzene (1.0 mL) was added. The mixture was heated and stirred at 110 ° C. for 1.0 hour, the reaction solution was poured into methanol, and the deposited precipitate was collected by filtration. The obtained solid was dissolved in chloroform, diamine silica gel (Fuji Silysia Chemical) was added, and the mixture was stirred for 1 hour at room temperature and passed through a short column of acidic silica gel. By concentrating the solution, the target copolymer 9A was obtained in a yield of 77%. The weight average molecular weight Mw of the obtained copolymer 9A was 162,000, and PDI was 5.9.
<合成例10A:コポリマー10Aの合成>
[合成例:3-ペンタデシルチオフェン(化合物T9)の合成]
<Synthesis Example 10A: Synthesis of Copolymer 10A>
[Synthesis Example: Synthesis of 3-pentadecylthiophene (Compound T9)]
Figure JPOXMLDOC01-appb-C000076
Figure JPOXMLDOC01-appb-C000076
 500mL4つ口フラスコに[1,3-ビス(ジフェニルホスフィノ)プロパン]ジクロロニッケル(542mg,1mmol)を加え、窒素置換を3回おこなった。乾燥ジエチルエーテル100mLを加え、ペンタデシルマグネシウムブロミドのTHF溶液(0.4M,5mL,2mmol)を室温でゆっくり滴下した。その後、3-ブロモチオフェン(化合物T8)(16.3g,100mmol)を加えた。ペンタデシルマグネシウムブロミドのTHF溶液(0.4M,245mL,98mmol)を滴下し、さらに2時間撹拌した。1N塩酸20mLを加え反応をクエンチし、水層をヘキサンで1回抽出した。有機層を水で1回、飽和塩化ナトリウム水溶液で1回洗浄し、無水硫酸ナトリウムで乾燥した。溶媒をエバポレータで留去し、ショートパスのシリカゲルカラムにより原点成分を除去した。減圧下(オイルポンプ)100℃でアルキル残渣を除去し、3-ペンタデシルチオフェン(化合物T9)を26.7g、収率90%で得た。 [1,3-bis (diphenylphosphino) propane] dichloronickel (542 mg, 1 mmol) was added to a 500 mL four-necked flask, and nitrogen substitution was performed three times. 100 mL of dry diethyl ether was added, and a THF solution (0.4 M, 5 mL, 2 mmol) of pentadecylmagnesium bromide was slowly added dropwise at room temperature. Thereafter, 3-bromothiophene (Compound T8) (16.3 g, 100 mmol) was added. A solution of pentadecylmagnesium bromide in THF (0.4M, 245 mL, 98 mmol) was added dropwise, and the mixture was further stirred for 2 hours. The reaction was quenched by adding 20 mL of 1N hydrochloric acid, and the aqueous layer was extracted once with hexane. The organic layer was washed once with water and once with a saturated aqueous sodium chloride solution, and dried over anhydrous sodium sulfate. The solvent was distilled off with an evaporator, and the origin component was removed with a short-pass silica gel column. The alkyl residue was removed under reduced pressure (oil pump) at 100 ° C. to obtain 26.7 g of 3-pentadecylthiophene (Compound T9) in a yield of 90%.
[合成例:4-ペンタデシル-2-トリメチルスタニルチオフェン(化合物T10)の合成] [Synthesis Example: Synthesis of 4-pentadecyl-2-trimethylstannylthiophene (Compound T10)]
Figure JPOXMLDOC01-appb-C000077
Figure JPOXMLDOC01-appb-C000077
 窒素置換した50mL二口フラスコにTMPMgCl・LiCl(1.0M THF溶液,12mL,12mmol)を加え、3-ペンタデシルチオフェン(化合物T9)(2.95g,10mmol)、乾燥THF5mLを加えた。2時間撹拌した後、氷浴で冷却し、トリメチルスズクロリド(2.4g,12mmol)の乾燥THF溶液をゆっくり滴下した。室温まで昇温し、1時間撹拌した後、水でクエンチした。水層をヘキサンで1回抽出し、有機層を水で3回洗浄し、無水硫酸ナトリウムで乾燥した。溶媒をエバポレータで留去し、減圧下(オイルポンプ)50℃で乾燥させた。リサイクル分取GPCで精製することで4-ペンタデシル-2-トリメチルスタニルチオフェン(化合物T10)を得た。プロトンNMRの結果、スズ体の純度は90%であった。 TMPMgCl·LiCl (1.0 M THF solution, 12 mL, 12 mmol) was added to a nitrogen-substituted 50 mL two-necked flask, and 3-pentadecylthiophene (compound T9) (2.95 g, 10 mmol) and 5 mL of dry THF were added. After stirring for 2 hours, the mixture was cooled in an ice bath, and a dry THF solution of trimethyltin chloride (2.4 g, 12 mmol) was slowly added dropwise. The mixture was warmed to room temperature, stirred for 1 hour, and then quenched with water. The aqueous layer was extracted once with hexane, and the organic layer was washed 3 times with water and dried over anhydrous sodium sulfate. The solvent was distilled off with an evaporator and dried at 50 ° C. under reduced pressure (oil pump). Purification by recycle preparative GPC gave 4-pentadecyl-2-trimethylstannylthiophene (Compound T10). As a result of proton NMR, the purity of the tin body was 90%.
[合成例:3,7-ジ(3-ペンタデシルチオフェン-5-イル)-ナフト[1,2-c:5,6-c]ビス[1,2,5]チアジアゾール(化合物T11)の合成] [Synthesis Example: Synthesis of 3,7-di (3-pentadecylthiophen-5-yl) -naphtho [1,2-c: 5,6-c] bis [1,2,5] thiadiazole (Compound T11) ]
Figure JPOXMLDOC01-appb-C000078
Figure JPOXMLDOC01-appb-C000078
100mL二口フラスコに4-ペンタデシル-2-トリメチルスタニルチオフェン(化合物T10)(656mg(P.90%),1.29mmol)、3,7-ジブロモ-ナフト[1,2-c:5,6-c]ビス[1,2,5]チアジアゾール(化合物T3)(200mg,0.497mmol)を加え、窒素置換を3回行った。 テトラキストリフェニルホスフィンパラジウム(11.5mg, 0.01mmol)を加え、窒素置換を2回行った。脱水トルエン20mL、脱水DMF2mLを加え115℃で3時間撹拌した。室温まで冷却後、酢酸エチルを10mL加えて撹拌し、濾別した。濾別した固体を酢酸エチルで3回ふりかけ洗浄して乾燥させた。得られた橙色固体をクロロホルム200mLに加熱溶解し、ショートパスのシリカゲルカラムで精製した。溶媒を留去し、減圧下乾燥させることで3,7-ジ(3-ペンタデシルチオフェン-5-イル)-ナフト[1,2-c:5,6-c]ビス[1,2,5]チアジアゾール(化合物T11)を410mg、収率99%で得た。 In a 100 mL two-necked flask, 4-pentadecyl-2-trimethylstannylthiophene (Compound T10) (656 mg (P. 90%), 1.29 mmol), 3,7-dibromo-naphtho [1,2-c: 5,6 -C] Bis [1,2,5] thiadiazole (Compound T3) (200 mg, 0.497 mmol) was added, and nitrogen substitution was performed three times. Tetrakistriphenylphosphine palladium (11.5 mg, 0.01 mmol) was added, and nitrogen substitution was performed twice. 20 mL of dehydrated toluene and 2 mL of dehydrated DMF were added and stirred at 115 ° C. for 3 hours. After cooling to room temperature, 10 mL of ethyl acetate was added and stirred, followed by filtration. The filtered solid was washed with ethyl acetate 3 times and dried. The resulting orange solid was dissolved by heating in 200 mL of chloroform and purified by a short-pass silica gel column. The solvent was distilled off and dried under reduced pressure to obtain 3,7-di (3-pentadecylthiophen-5-yl) -naphtho [1,2-c: 5,6-c] bis [1,2,5 ] 410 mg of thiadiazole (compound T11) was obtained with a yield of 99%.
[合成例:3,7-ジ(2-ブロモ-3-ペンタデシルチオフェン-5-イル)-ナフト[1,2-c:5,6-c]ビス[1,2,5]チアジアゾール(化合物A6)の合成] [Synthesis Example: 3,7-di (2-bromo-3-pentadecylthiophen-5-yl) -naphtho [1,2-c: 5,6-c] bis [1,2,5] thiadiazole (compound Synthesis of A6)
Figure JPOXMLDOC01-appb-C000079
Figure JPOXMLDOC01-appb-C000079
 1Lナスフラスコに3,7-ジ(3-ペンタデシルチオフェン-5-イル)-ナフト[1,2-c:5,6-c]ビス[1,2,5]チアジアゾール(化合物T11)(410mg,0.497mmol)を入れ、クロロホルム400mLを加えドライヤを用いて加熱撹拌した。室温まで冷却し、フラスコをアルミホイルで遮光した後、臭素(238mg,1.49mmol)のクロロホルム溶液を室温で素早く滴下した。室温で1時間撹拌した後、溶媒を9割留去した。得られた赤色スラリー液を減圧濾過し、クロロホルムで3回ふりかけ洗浄した。減圧下50℃で乾燥させることで3,7-ジ(2-ブロモ-3-ペンタデシルチオフェン-5-イル)-ナフト[1,2-c:5,6-c]ビス[1,2,5]チアジアゾール(化合物A6)を485mg、収率99%で得た。 In a 1 L eggplant flask, 3,7-di (3-pentadecylthiophen-5-yl) -naphtho [1,2-c: 5,6-c] bis [1,2,5] thiadiazole (Compound T11) (410 mg) , 0.497 mmol), 400 mL of chloroform was added, and the mixture was heated and stirred using a dryer. After cooling to room temperature and shielding the flask from light with aluminum foil, a chloroform solution of bromine (238 mg, 1.49 mmol) was quickly added dropwise at room temperature. After stirring at room temperature for 1 hour, 90% of the solvent was distilled off. The obtained red slurry was filtered under reduced pressure and washed by sprinkling with chloroform three times. By drying at 50 ° C. under reduced pressure, 3,7-di (2-bromo-3-pentadecylthiophen-5-yl) -naphtho [1,2-c: 5,6-c] bis [1,2, 5] 485 mg of thiadiazole (compound A6) was obtained in a yield of 99%.
[合成例:コポリマー10Aの合成] [Synthesis Example: Synthesis of Copolymer 10A]
Figure JPOXMLDOC01-appb-C000080
Figure JPOXMLDOC01-appb-C000080
 窒素雰囲気下、50mL二口ナスフラスコに、モノマーとして、上述の方法で得られた3,7-ジ(2-ブロモ-3-ペンタデシルチオフェン-5-イル)-ナフト[1,2-c:5,6-c]ビス[1,2,5]チアジアゾール(化合物A6)(32.6mg,0.033mmol)、特表2014-501032号公報を参考にして得られた4,7-ビス-(5-ブロモ-チオフェン-2-イル)-5,6-ジフルオロ-ベンゾ[1,2,5]チアジアゾール(化合物A2)(16.3mg,0.033mmol)、及び特表2014-501032号公報に記載の方法を参考にして得られた4,8-ビス-[5-(2-ヘキシルデシル)-チオフェン-2-イル]-2,6-ビス(トリメチルスタニル)-ベンゾ[1,2-b:4,5-b’]ジチオフェン(化合物D1)(74.5mg,0.066mmol)を入れ、さらにトリス(ジベンジリデンアセトン)ジパラジウムクロロホルム錯体(2.7mg,4.0mol%)、トリス(2-メチルフェニル)ホスフィン(3.2mg,16mol%)、クロロベンゼン(5.0mL)を入れ、100℃で1時間、続いて110℃で1時間攪拌した。反応液に、末端処理として、トリメチル(フェニル)スズ(0.03mL)およびクロロベンゼン(5.0mL)を加えて110℃で1.0時間加熱攪拌し、さらにブロモベンゼン(1.0mL)を加えて110℃で1.0時間加熱攪拌して、反応溶液をメタノール中に注ぎ、析出した沈殿をろ取した。得られた固体をクロロホルムに溶解させ、ジアミンシリカゲル(Fujiシリシア化学製)を加えて1時間室温で攪拌し、酸性シリカゲルのショートカラムを通した。溶液を濃縮することで、目的とするコポリマー10Aを、収率75%で得た。得られたコポリマー10Aの重量平均分子量Mwは244,000であり、PDIは4.8であった。 In a 50 mL two-necked eggplant flask under a nitrogen atmosphere, 3,7-di (2-bromo-3-pentadecylthiophen-5-yl) -naphtho [1,2-c: obtained by the above method as a monomer was used. 5,6-c] bis [1,2,5] thiadiazole (Compound A6) (32.6 mg, 0.033 mmol), 4,7-bis- ( 5-Bromo-thiophen-2-yl) -5,6-difluoro-benzo [1,2,5] thiadiazole (Compound A2) (16.3 mg, 0.033 mmol) and described in JP-T-2014-501032 4,8-bis- [5- (2-hexyldecyl) -thiophen-2-yl] -2,6-bis (trimethylstannyl) -benzo [1,2-b] obtained by referring to the method of : 4, -B ′] dithiophene (compound D1) (74.5 mg, 0.066 mmol) was added, and tris (dibenzylideneacetone) dipalladium chloroform complex (2.7 mg, 4.0 mol%), tris (2-methylphenyl) Phosphine (3.2 mg, 16 mol%) and chlorobenzene (5.0 mL) were added, and the mixture was stirred at 100 ° C. for 1 hour and then at 110 ° C. for 1 hour. Trimethyl (phenyl) tin (0.03 mL) and chlorobenzene (5.0 mL) were added to the reaction solution as a terminal treatment, and the mixture was heated and stirred at 110 ° C. for 1.0 hour, and further bromobenzene (1.0 mL) was added. The mixture was heated and stirred at 110 ° C. for 1.0 hour, the reaction solution was poured into methanol, and the deposited precipitate was collected by filtration. The obtained solid was dissolved in chloroform, diamine silica gel (Fuji Silysia Chemical) was added, and the mixture was stirred for 1 hour at room temperature and passed through a short column of acidic silica gel. By concentrating the solution, the target copolymer 10A was obtained in a yield of 75%. The resulting copolymer 10A had a weight average molecular weight Mw of 244,000 and a PDI of 4.8.
<合成例11A:コポリマー11Aの合成>
[合成例:4-オクタデシル-2-トリメチルスタニルチオフェン(化合物T13)の合成]
<Synthesis Example 11A: Synthesis of Copolymer 11A>
[Synthesis Example: Synthesis of 4-octadecyl-2-trimethylstannylthiophene (Compound T13)]
Figure JPOXMLDOC01-appb-C000081
Figure JPOXMLDOC01-appb-C000081
 窒素置換した50mL二口フラスコにTMPMgCl・LiCl(1.0M THF溶液,12mL,12mmol)を加え、3-オクタデシルチオフェン(化合物T12)(3.35g,10mmol)の乾燥THF(5mL)溶液を室温で加えた。2時間撹拌した後、氷浴で冷却し、トリメチルスズクロリド(2.4g,12mmol)の乾燥THF溶液をゆっくり滴下した。室温まで昇温し、1時間撹拌した後、水でクエンチした。水層をヘキサンで1回抽出し、有機層を水で3回洗浄し、無水硫酸ナトリウムで乾燥した。溶媒をエバポレータで留去し、減圧下(オイルポンプ)50℃で乾燥させた。リサイクル分取GPCで精製することで4-オクタデシル-2-トリメチルスタニルチオフェン(化合物T13)を得た。プロトンNMRの結果、スズ体の純度は68%であった。 TMPMgCl·LiCl (1.0 M THF solution, 12 mL, 12 mmol) was added to a nitrogen-substituted 50 mL two-necked flask, and 3-octadecylthiophene (compound T12) (3.35 g, 10 mmol) in dry THF (5 mL) was added at room temperature. added. After stirring for 2 hours, the mixture was cooled in an ice bath, and a dry THF solution of trimethyltin chloride (2.4 g, 12 mmol) was slowly added dropwise. The mixture was warmed to room temperature, stirred for 1 hour, and then quenched with water. The aqueous layer was extracted once with hexane, and the organic layer was washed 3 times with water and dried over anhydrous sodium sulfate. The solvent was distilled off with an evaporator and dried at 50 ° C. under reduced pressure (oil pump). Purification by recycle preparative GPC gave 4-octadecyl-2-trimethylstannylthiophene (compound T13). As a result of proton NMR, the purity of the tin body was 68%.
[合成例:3,7-ジ(3-オクタデシルチオフェン-5-イル)-ナフト[1,2-c:5,6-c]ビス[1,2,5]チアジアゾール(化合物T14)の合成] [Synthesis Example: Synthesis of 3,7-di (3-octadecylthiophen-5-yl) -naphtho [1,2-c: 5,6-c] bis [1,2,5] thiadiazole (Compound T14)]
Figure JPOXMLDOC01-appb-C000082
Figure JPOXMLDOC01-appb-C000082
 100mL二口フラスコに4-オクタデシル-2-トリメチルスタニルチオフェン(化合物T13)(988mg(P.68%),1.32mmol)、3,7-ジブロモ-ナフト[1,2-c:5,6-c]ビス[1,2,5]チアジアゾール(化合物T3)(200mg,0.497mmol)を加え、窒素置換を3回行った。 テトラキストリフェニルホスフィンパラジウム(11.5mg, 0.01mmol)を加え、窒素置換を2回行った。脱水トルエン20mL、脱水DMF2mLを加え115℃で3時間撹拌した。室温まで冷却後、酢酸エチルを10mL加えて撹拌し、濾別した。濾別した固体を酢酸エチルで3回ふりかけ洗浄して乾燥させた。得られた橙色固体をクロロホルム200mLに加熱溶解し、ショートパスのシリカゲルカラムで精製した。溶媒を留去し、減圧下乾燥させることで3,7-ジ(3-オクタデシルチオフェン-5-イル)-ナフト[1,2-c:5,6-c]ビス[1,2,5]チアジアゾール(化合物T14)を440mg、収率97%で得た。 In a 100 mL two-necked flask, 4-octadecyl-2-trimethylstannylthiophene (Compound T13) (988 mg (P.68%), 1.32 mmol), 3,7-dibromo-naphtho [1,2-c: 5,6 -C] Bis [1,2,5] thiadiazole (Compound T3) (200 mg, 0.497 mmol) was added, and nitrogen substitution was performed three times. Tetrakistriphenylphosphine palladium (11.5 mg, 0.01 mmol) was added, and nitrogen substitution was performed twice. 20 mL of dehydrated toluene and 2 mL of dehydrated DMF were added and stirred at 115 ° C. for 3 hours. After cooling to room temperature, 10 mL of ethyl acetate was added and stirred, followed by filtration. The filtered solid was washed with ethyl acetate 3 times and dried. The resulting orange solid was dissolved by heating in 200 mL of chloroform and purified by a short-pass silica gel column. The solvent was distilled off and dried under reduced pressure to obtain 3,7-di (3-octadecylthiophen-5-yl) -naphtho [1,2-c: 5,6-c] bis [1,2,5] 440 mg of thiadiazole (compound T14) was obtained in a yield of 97%.
[合成例:3,7-ジ(2-ブロモ-3-オクタデシルチオフェン-5-イル)-ナフト[1,2-c:5,6-c]ビス[1,2,5]チアジアゾール(化合物A7)の合成] [Synthesis Example: 3,7-di (2-bromo-3-octadecylthiophen-5-yl) -naphtho [1,2-c: 5,6-c] bis [1,2,5] thiadiazole (Compound A7 )
Figure JPOXMLDOC01-appb-C000083
Figure JPOXMLDOC01-appb-C000083
 1Lナスフラスコに3,7-ジ(3-オクタデシルチオフェン-5-イル)-ナフト[1,2-c:5,6-c]ビス[1,2,5]チアジアゾール(化合物T14)(444mg,0.486mmol)を入れ、 クロロホルム500mLを加えドライヤを用いて加熱撹拌した。室温まで冷却し、フラスコをアルミホイルで遮光した後、臭素(408mg,2.55mmol)のクロロホルム溶液を室温で素早く滴下した。室温で1時間撹拌した後、溶媒を9割留去した。得られた赤色スラリー液を減圧濾過し、クロロホルムで3回ふりかけ洗浄した。減圧下50℃で乾燥させることで3,7-ジ(2-ブロモ-3-オクタデシルチオフェン-5-イル)-ナフト[1,2-c:5,6-c]ビス[1,2,5]チアジアゾール(化合物A7)を494mg、収率95%で得た。 In a 1 L eggplant flask, 3,7-di (3-octadecylthiophen-5-yl) -naphtho [1,2-c: 5,6-c] bis [1,2,5] thiadiazole (Compound T14) (444 mg, 0.486 mmol) was added, 500 mL of chloroform was added, and the mixture was heated and stirred using a dryer. After cooling to room temperature and shielding the flask from light with aluminum foil, a chloroform solution of bromine (408 mg, 2.55 mmol) was quickly added dropwise at room temperature. After stirring at room temperature for 1 hour, 90% of the solvent was distilled off. The obtained red slurry was filtered under reduced pressure and washed by sprinkling with chloroform three times. By drying at 50 ° C. under reduced pressure, 3,7-di (2-bromo-3-octadecylthiophen-5-yl) -naphtho [1,2-c: 5,6-c] bis [1,2,5 494 mg, 95% yield of thiadiazole (Compound A7) was obtained.
[合成例:コポリマー11Aの合成] [Synthesis Example: Synthesis of Copolymer 11A]
Figure JPOXMLDOC01-appb-C000084
Figure JPOXMLDOC01-appb-C000084
 窒素雰囲気下、50mL二口ナスフラスコに、モノマーとして、上述の方法で得られた3,7-ジ(2-ブロモ-3-オクタデシルチオフェン-5-イル)-ナフト[1,2-c:5,6-c]ビス[1,2,5]チアジアゾール(化合物A7)(35.4mg,0.033mmol)、特表2014-501032号公報を参考にして得られた4,7-ビス-(5-ブロモ-チオフェン-2-イル)-5,6-ジフルオロ-ベンゾ[1,2,5]チアジアゾール(化合物A2)(16.3mg,0.033mmol)、及び特表2014-501032号公報に記載の方法を参考にして得られた4,8-ビス-[5-(2-ヘキシルデシル)-チオフェン-2-イル]-2,6-ビス(トリメチルスタニル)-ベンゾ[1,2-b:4,5-b’]ジチオフェン(化合物D1)(74.5mg,0.066mmol)を入れ、さらにトリス(ジベンジリデンアセトン)ジパラジウムクロロホルム錯体(2.7mg,4.0mol%)、トリス(2-メチルフェニル)ホスフィン(3.2mg,16mol%)、クロロベンゼン(5.0mL)を入れ、100℃で1時間、続いて110℃で1時間攪拌した。反応液に、末端処理として、トリメチル(フェニル)スズ(0.03mL)およびクロロベンゼン(5.0mL)を加えて110℃で1.0時間加熱攪拌し、さらにブロモベンゼン(1.0mL)を加えて110℃で1.0時間加熱攪拌して、反応溶液をメタノール中に注ぎ、析出した沈殿をろ取した。得られた固体をクロロホルムに溶解させ、ジアミンシリカゲル(Fujiシリシア化学製)を加えて1時間室温で攪拌し、酸性シリカゲルのショートカラムを通した。溶液を濃縮することで、目的とするコポリマー11Aを、収率75%で得た。得られたコポリマー11Aの重量平均分子量Mwは149,000であり、PDIは4.4であった。 In a 50 mL two-necked eggplant flask under a nitrogen atmosphere, 3,7-di (2-bromo-3-octadecylthiophen-5-yl) -naphtho [1,2-c: 5 obtained by the above method as a monomer was used. , 6-c] bis [1,2,5] thiadiazole (Compound A7) (35.4 mg, 0.033 mmol), 4,7-bis- (5 obtained with reference to JP-T-2014-501032 -Bromo-thiophen-2-yl) -5,6-difluoro-benzo [1,2,5] thiadiazole (Compound A2) (16.3 mg, 0.033 mmol) and described in JP-T-2014-501032 4,8-bis- [5- (2-hexyldecyl) -thiophen-2-yl] -2,6-bis (trimethylstannyl) -benzo [1,2-b: obtained by referring to the method: 4, -B ′] dithiophene (compound D1) (74.5 mg, 0.066 mmol) was added, and tris (dibenzylideneacetone) dipalladium chloroform complex (2.7 mg, 4.0 mol%), tris (2-methylphenyl) Phosphine (3.2 mg, 16 mol%) and chlorobenzene (5.0 mL) were added, and the mixture was stirred at 100 ° C. for 1 hour and then at 110 ° C. for 1 hour. Trimethyl (phenyl) tin (0.03 mL) and chlorobenzene (5.0 mL) were added to the reaction solution as a terminal treatment, and the mixture was heated and stirred at 110 ° C. for 1.0 hour, and further bromobenzene (1.0 mL) was added. The mixture was heated and stirred at 110 ° C. for 1.0 hour, the reaction solution was poured into methanol, and the deposited precipitate was collected by filtration. The obtained solid was dissolved in chloroform, diamine silica gel (Fuji Silysia Chemical) was added, and the mixture was stirred for 1 hour at room temperature and passed through a short column of acidic silica gel. By concentrating the solution, the target copolymer 11A was obtained in a yield of 75%. The resulting copolymer 11A had a weight average molecular weight Mw of 149,000 and a PDI of 4.4.
<合成例12A:コポリマー12Aの合成>
[合成例:3,4-ジドデシルチオフェン(化合物T16)の合成]
<Synthesis Example 12A: Synthesis of Copolymer 12A>
[Synthesis Example: Synthesis of 3,4-didodecylthiophene (Compound T16)]
Figure JPOXMLDOC01-appb-C000085
Figure JPOXMLDOC01-appb-C000085
 500mL二口ナスフラスコに、3,4-ジブロモチオフェン(化合物T15)(5.09g,20.7mmol)、[1,3-ビス(ジフェニルホスフィノ)プロパン]ジクロロニッケル(224mg,0.41mmol)を加え窒素置換を3回おこなった。乾燥ジエチルエーテル200mLを加え0℃に冷却した。ドデシルマグネシウムブロミドのTHF溶液(1.0M,45.5mL,45.5mmol)をゆっくり加え、滴下終了後、還流するまで昇温し10時間撹拌した。再度0℃まで冷却し、塩酸水を加えクエンチした。水層をヘキサンで1回抽出し、有機層を水で2回洗浄した。無水硫酸ナトリウムで乾燥後、溶媒を留去した。ヘキサンを展開液に用いたショートパスのシリカゲルカラムクロマトグラフィーで原点成分を除いた。溶媒留去後、減圧下で低沸点成分を除くことで3,4-ジドデシルチオフェン(化合物T16)を8.5g、収率97%で得た。 In a 500 mL two-necked eggplant flask, 3,4-dibromothiophene (Compound T15) (5.09 g, 20.7 mmol), [1,3-bis (diphenylphosphino) propane] dichloronickel (224 mg, 0.41 mmol) were added. In addition, nitrogen substitution was performed three times. 200 mL of dry diethyl ether was added and cooled to 0 ° C. A THF solution (1.0 M, 45.5 mL, 45.5 mmol) of dodecylmagnesium bromide was slowly added. After completion of the dropwise addition, the mixture was heated to reflux and stirred for 10 hours. The mixture was cooled again to 0 ° C. and quenched by adding aqueous hydrochloric acid. The aqueous layer was extracted once with hexane, and the organic layer was washed twice with water. After drying over anhydrous sodium sulfate, the solvent was distilled off. The origin component was removed by short-pass silica gel column chromatography using hexane as a developing solution. After distilling off the solvent, low-boiling components were removed under reduced pressure to obtain 8.5 g of 3,4-didodecylthiophene (Compound T16) in a yield of 97%.
[合成例:3,4-ジドデシル-2-トリメチルスタニルチオフェン(化合物T17)の合成] [Synthesis Example: Synthesis of 3,4-didodecyl-2-trimethylstannylthiophene (Compound T17)]
Figure JPOXMLDOC01-appb-C000086
Figure JPOXMLDOC01-appb-C000086
 100mL二口ナスフラスコに、3,4-ジドデシルチオフェン(化合物T16)(4.2g,9.98mmol)を加え窒素置換を3回おこなった。乾燥THF20mLを加え、氷浴で冷却した。n-ブチルリチウム(1.6M,6.3mL,10mmol)を0℃で滴下し、1時間30分撹拌した後、トリメチルスズクロリド(2g,10mmol)の乾燥THF溶液をゆっくり滴下した。水を加えクエンチし、水層をヘキサンで1回抽出し、有機層を水で3回洗浄した。無水硫酸ナトリウムで乾燥後、溶媒を留去した。減圧下(オイルポンプ)40℃で乾燥させることで3,4-ジドデシル-2-トリメチルスタニルチオフェン(化合物T17)を5.5g、収率94%で得た。 3,4-Didodecylthiophene (Compound T16) (4.2 g, 9.98 mmol) was added to a 100 mL two-necked eggplant flask, and nitrogen substitution was performed three times. 20 mL of dry THF was added and cooled in an ice bath. n-Butyllithium (1.6M, 6.3 mL, 10 mmol) was added dropwise at 0 ° C. and stirred for 1 hour 30 minutes, and then a dry THF solution of trimethyltin chloride (2 g, 10 mmol) was slowly added dropwise. Water was added to quench, the aqueous layer was extracted once with hexane, and the organic layer was washed three times with water. After drying over anhydrous sodium sulfate, the solvent was distilled off. By drying at 40 ° C. under reduced pressure (oil pump), 5.5 g of 3,4-didodecyl-2-trimethylstannylthiophene (Compound T17) was obtained with a yield of 94%.
[合成例:3,7-ジ(3,4-ジドデシルチオフェン-5-イル)-ナフト[1,2-c:5,6-c]ビス[1,2,5]チアジアゾール(化合物T18)の合成] [Synthesis Example: 3,7-di (3,4-didodecylthiophen-5-yl) -naphtho [1,2-c: 5,6-c] bis [1,2,5] thiadiazole (Compound T18) Synthesis]
Figure JPOXMLDOC01-appb-C000087
Figure JPOXMLDOC01-appb-C000087
 100mL二口ナスフラスコに、3,4-ジドデシル-2-トリメチルスタニルチオフェン(化合物T17)(1.46g,2.5mmol)、3,7-ジブロモ-ナフト[1,2-c:5,6-c]ビス[1,2,5]チアジアゾール(化合物T3)(403mg,1.0mmol)、ジクロロビス[ジ-t-ブチル(p-ジメチルアミノフェニル)ホスフィノ]パラジウム(14.4mg,0.02mmol)を加え窒素置換を3回おこなった。乾燥トルエン16mL、乾燥DMF4mLを加え100℃で8時間撹拌した。室温まで冷却し、メタノールを入れて冷却した。析出した固体を濾過して減圧下で乾燥させた。クロロホルムを展開液に用いたショートパスのシリカゲルカラムクロマトグラフィーで原点成分を除いた。クロロホルムを展開溶媒に用いたリサイクル分取GPCにより精製し、3,7-ジ(3,4-ジドデシルチオフェン-5-イル)-ナフト[1,2-c:5,6-c]ビス[1,2,5]チアジアゾール(化合物T18)を568mg,収率52%で得た。 In a 100 mL two-necked eggplant flask, 3,4-didodecyl-2-trimethylstannylthiophene (compound T17) (1.46 g, 2.5 mmol), 3,7-dibromo-naphtho [1,2-c: 5,6 -C] bis [1,2,5] thiadiazole (compound T3) (403 mg, 1.0 mmol), dichlorobis [di-t-butyl (p-dimethylaminophenyl) phosphino] palladium (14.4 mg, 0.02 mmol) And nitrogen substitution was performed 3 times. 16 mL of dry toluene and 4 mL of dry DMF were added and stirred at 100 ° C. for 8 hours. It cooled to room temperature and put methanol and cooled. The precipitated solid was filtered and dried under reduced pressure. The origin component was removed by short-pass silica gel column chromatography using chloroform as a developing solution. Purified by recycle preparative GPC using chloroform as a developing solvent, and 3,7-di (3,4-didodecylthiophen-5-yl) -naphtho [1,2-c: 5,6-c] bis [ 568 mg, 52% yield of 1,2,5] thiadiazole (compound T18).
[合成例:3,7-ジ(2-ブロモ-3,4-ジドデシルチオフェン-5-イル)-ナフト[1,2-c:5,6-c]ビス[1,2,5]チアジアゾール(化合物A8)の合成] [Synthesis Example: 3,7-di (2-bromo-3,4-didodecylthiophen-5-yl) -naphtho [1,2-c: 5,6-c] bis [1,2,5] thiadiazole (Synthesis of Compound A8)
Figure JPOXMLDOC01-appb-C000088
Figure JPOXMLDOC01-appb-C000088
 3,7-ジ(3,4-ジドデシルチオフェン-5-イル)-ナフト[1,2-c:5,6-c’]ビス[1,2,5]チアジアゾール(化合物T18)(568mg,0.525mmol)にオルトジクロロベンゼン14mLを加え90℃に加熱した。N-ブロモスクシンイミド(186mg,1.04mmol)、酢酸1.0mLを加え、1時間撹拌した。室温まで冷却し、メタノールを加えて超音波洗浄した。析出した固体を濾別し、減圧下50℃で乾燥させることで3,7-ジ(2-ブロモ-3,4-ジドデシルチオフェン-5-イル)-ナフト[1,2-c:5,6-c]ビス[1,2,5]チアジアゾール(化合物A8)を613mg、収率94%で得た。 3,7-di (3,4-didodecylthiophen-5-yl) -naphtho [1,2-c: 5,6-c ′] bis [1,2,5] thiadiazole (Compound T18) (568 mg, 0.525 mmol) was added with 14 mL of orthodichlorobenzene and heated to 90 ° C. N-bromosuccinimide (186 mg, 1.04 mmol) and 1.0 mL of acetic acid were added and stirred for 1 hour. After cooling to room temperature, methanol was added and ultrasonic cleaning was performed. The precipitated solid was filtered off and dried at 50 ° C. under reduced pressure to give 3,7-di (2-bromo-3,4-didodecylthiophen-5-yl) -naphtho [1,2-c: 5, 613 mg of 6-c] bis [1,2,5] thiadiazole (Compound A8) was obtained with a yield of 94%.
[合成例:コポリマー12Aの合成] [Synthesis Example: Synthesis of Copolymer 12A]
Figure JPOXMLDOC01-appb-C000089
Figure JPOXMLDOC01-appb-C000089
 窒素雰囲気下、50mL二口ナスフラスコに、モノマーとして、上述の方法で得られた3,7-ジ(2-ブロモ-3,4-ジドデシルチオフェン-5-イル)-ナフト[1,2-c:5,6-c]ビス[1,2,5]チアジアゾール(化合物A8)(39.3mg,0.032mmol)、特表2014-501032号公報を参考にして得られた4,7-ビス-(5-ブロモ-チオフェン-2-イル)-5,6-ジフルオロ-ベンゾ[1,2,5]チアジアゾール(化合物A2)(15.7mg,0.032mmol)、及び特表2014-501032号公報に記載の方法を参考にして得られた4,8-ビス-[5-(2-ヘキシルデシル)-チオフェン-2-イル]-2,6-ビス(トリメチルスタニル)-ベンゾ[1,2-b:4,5-b’]ジチオフェン(化合物D1)(74.5mg,0.066mmol)を入れ、さらにトリス(ジベンジリデンアセトン)ジパラジウムクロロホルム錯体(2.7mg,4.0mol%)、トリス(2-メチルフェニル)ホスフィン(3.2mg,16mol%)、クロロベンゼン(5.0mL)を入れ、100℃で1時間、続いて110℃で1時間攪拌した。反応液に、末端処理として、トリメチル(フェニル)スズ(0.03mL)およびクロロベンゼン(5.0mL)を加えて110℃で1.0時間加熱攪拌し、さらにブロモベンゼン(1.0mL)を加えて110℃で1.0時間加熱攪拌して、反応溶液をメタノール中に注ぎ、析出した沈殿をろ取した。得られた固体をクロロホルムに溶解させ、ジアミンシリカゲル(Fujiシリシア化学製)を加えて1時間室温で攪拌し、酸性シリカゲルのショートカラムを通した。溶液を濃縮することで、目的とするコポリマー12Aを、収率73%で得た。得られたコポリマー12Aの重量平均分子量Mwは66,000であり、PDIは2.2であった。 In a 50 mL two-necked eggplant flask under a nitrogen atmosphere, 3,7-di (2-bromo-3,4-didodecylthiophen-5-yl) -naphtho [1,2- c: 5,6-c] bis [1,2,5] thiadiazole (Compound A8) (39.3 mg, 0.032 mmol), 4,7-bis obtained with reference to JP-T-2014-501032 -(5-Bromo-thiophen-2-yl) -5,6-difluoro-benzo [1,2,5] thiadiazole (Compound A2) (15.7 mg, 0.032 mmol), and JP-T-2014-501032 4,8-bis- [5- (2-hexyldecyl) -thiophen-2-yl] -2,6-bis (trimethylstannyl) -benzo [1,2] obtained by referring to the method described in 1. -B: 4 5-b ′] dithiophene (compound D1) (74.5 mg, 0.066 mmol) was added, and further tris (dibenzylideneacetone) dipalladium chloroform complex (2.7 mg, 4.0 mol%), tris (2-methylphenyl) ) Phosphine (3.2 mg, 16 mol%) and chlorobenzene (5.0 mL) were added, and the mixture was stirred at 100 ° C. for 1 hour and then at 110 ° C. for 1 hour. Trimethyl (phenyl) tin (0.03 mL) and chlorobenzene (5.0 mL) were added to the reaction solution as a terminal treatment, and the mixture was heated and stirred at 110 ° C. for 1.0 hour, and further bromobenzene (1.0 mL) was added. The mixture was heated and stirred at 110 ° C. for 1.0 hour, the reaction solution was poured into methanol, and the deposited precipitate was collected by filtration. The obtained solid was dissolved in chloroform, diamine silica gel (Fuji Silysia Chemical) was added, and the mixture was stirred for 1 hour at room temperature and passed through a short column of acidic silica gel. By concentrating the solution, the target copolymer 12A was obtained in a yield of 73%. The resulting copolymer 12A had a weight average molecular weight Mw of 66,000 and a PDI of 2.2.
<合成例13A:コポリマー13Aの合成>
[合成例:3-ドデシル-2-ブロモチオフェン(化合物T20)の合成]
<Synthesis Example 13A: Synthesis of Copolymer 13A>
[Synthesis Example: Synthesis of 3-dodecyl-2-bromothiophene (Compound T20)]
Figure JPOXMLDOC01-appb-C000090
Figure JPOXMLDOC01-appb-C000090
 200mL二口ナスフラスコに、3-ドデシルチオフェン(化合物T19)(10.5g,39.8mmol)、クロロホルム50mL、酢酸50mLを加えた。氷浴で冷却し、フラスコをアルミホイルで遮光した後、NBS(6.38g,35.8mmol)を少量づつ加えた。TLCで原料が消失したのを確認し、氷を入れてクエンチした。水層をヘキサンで1回抽出した。有機層を水で3回、飽和食塩水で3回洗浄し、無水硫酸ナトリウムで乾燥した。溶媒をエバポレータで留去し、粗生成物をシリカゲルカラムクロマトグラフィーにより精製することで3-ドデシル-2-ブロモチオフェン(化合物T20)を12.7g、収率96%で得た。 3-Dodecylthiophene (Compound T19) (10.5 g, 39.8 mmol), chloroform (50 mL) and acetic acid (50 mL) were added to a 200 mL two-necked eggplant flask. After cooling in an ice bath and shielding the flask from light with aluminum foil, NBS (6.38 g, 35.8 mmol) was added in small portions. After confirming disappearance of the raw material by TLC, ice was added to quench. The aqueous layer was extracted once with hexane. The organic layer was washed 3 times with water and 3 times with saturated brine, and dried over anhydrous sodium sulfate. The solvent was removed by an evaporator, and the crude product was purified by silica gel column chromatography to obtain 12.7 g of 3-dodecyl-2-bromothiophene (Compound T20) in a yield of 96%.
[合成例:3-ドデシル-2-トリメチルスタニルチオフェン(化合物T21)の合成] [Synthesis Example: Synthesis of 3-dodecyl-2-trimethylstannylthiophene (Compound T21)]
Figure JPOXMLDOC01-appb-C000091
Figure JPOXMLDOC01-appb-C000091
 300mL二口ナスフラスコに、3-ブロモ-2-ドデシルチオフェン(化合物T20)(12.6g,38mmol)を加え窒素置換を3回おこなった。乾燥THF115mLを加え0℃に冷却した。イソプロピルマグネシウムクロリドリチウムクロライド錯体(1.18M,35mL, 41.3mmol)を加えた。室温まで昇温し、1時間撹拌した。再度0℃まで冷却し、トリメチルスズクロリド(1.0M in THF 42mL,42mmol)を加え、1時間撹拌した。水を入れてクエンチし、水層をヘキサンで3回抽出した。有機層を水で3回、飽和食塩水で1回洗浄した。無水硫酸ナトリウムで乾燥し、溶媒を留去することで3-ドデシル-2-トリメチルスタニルチオフェン(化合物T21)を16.2g、得た。プロトンNMRの結果、スズ体の純度は80%であった。 3-Bromo-2-dodecylthiophene (Compound T20) (12.6 g, 38 mmol) was added to a 300 mL two-necked eggplant flask, and nitrogen substitution was performed three times. 115 mL of dry THF was added and cooled to 0 ° C. Isopropylmagnesium chloride lithium chloride complex (1.18M, 35 mL, 41.3 mmol) was added. The mixture was warmed to room temperature and stirred for 1 hour. The mixture was cooled again to 0 ° C., trimethyltin chloride (1.0 M in THF, 42 mL, 42 mmol) was added, and the mixture was stirred for 1 hour. Quench with water and extract the aqueous layer three times with hexane. The organic layer was washed 3 times with water and once with saturated brine. After drying over anhydrous sodium sulfate, the solvent was distilled off to obtain 16.2 g of 3-dodecyl-2-trimethylstannylthiophene (Compound T21). As a result of proton NMR, the purity of the tin body was 80%.
[合成例:3,7-ジ(3-ドデシルチオフェン-2-イル)-ナフト[1,2-c:5,6-c]ビス[1,2,5]チアジアゾール(化合物T22)の合成] [Synthesis Example: Synthesis of 3,7-di (3-dodecylthiophen-2-yl) -naphtho [1,2-c: 5,6-c] bis [1,2,5] thiadiazole (Compound T22)
Figure JPOXMLDOC01-appb-C000092
Figure JPOXMLDOC01-appb-C000092
 100mL二口ナスフラスコに、3-ドデシル-2-トリメチルスタニルチオフェン(化合物T21)(969mg,1.87mmol)、3,7-ジブロモ-ナフト[1,2-c:5,6-c]ビス[1,2,5]チアジアゾール(化合物T3)(300mg,0.746mmol)、ジクロロビス[ジ-t-ブチル(p-ジメチルアミノフェニル)ホスフィノ]パラジウム(10.6mg,0.015mmol)を加え窒素置換を3回おこなった。乾燥トルエン24mL、乾燥DMF6mLを加え100℃で6時間撹拌した。室温まで冷却し、メタノールを入れて超音波にかけた。濾過して減圧下で乾燥させた。クロロホルムを展開溶媒に用いたショートパスのシリカゲルカラムクロマトグラフィーにより原点成分を除去し、酢酸エチルで再沈殿することで3,7-ジ(3-ドデシルチオフェン-2-イル)-ナフト[1,2-c:5,6-c]ビス[1,2,5]チアジアゾール(化合物T22)を532mg、収率82%で得た。 In a 100 mL two-necked eggplant flask, 3-dodecyl-2-trimethylstannylthiophene (Compound T21) (969 mg, 1.87 mmol), 3,7-dibromo-naphtho [1,2-c: 5,6-c] bis [1,2,5] thiadiazole (Compound T3) (300 mg, 0.746 mmol) and dichlorobis [di-t-butyl (p-dimethylaminophenyl) phosphino] palladium (10.6 mg, 0.015 mmol) were added to replace nitrogen. Was performed three times. 24 mL of dry toluene and 6 mL of dry DMF were added and stirred at 100 ° C. for 6 hours. After cooling to room temperature, methanol was added and sonicated. Filter and dry under reduced pressure. The origin component was removed by short-pass silica gel column chromatography using chloroform as a developing solvent, and reprecipitation with ethyl acetate was performed, whereby 3,7-di (3-dodecylthiophen-2-yl) -naphtho [1,2 -C: 5,6-c] bis [1,2,5] thiadiazole (Compound T22) was obtained in 532 mg in a yield of 82%.
[合成例:3,7-ジ(2-ブロモ-4-ドデシルチオフェン-5-イル)-ナフト[1,2-c:5,6-c]ビス[1,2,5]チアジアゾール(化合物A9)の合成] [Synthesis Example: 3,7-di (2-bromo-4-dodecylthiophen-5-yl) -naphtho [1,2-c: 5,6-c] bis [1,2,5] thiadiazole (Compound A9 )
Figure JPOXMLDOC01-appb-C000093
Figure JPOXMLDOC01-appb-C000093
 3,7-ジ(3-ドデシルチオフェン-2-イル)-ナフト[1,2-c:5,6-c]ビス[1,2,5]チアジアゾール(化合物T22)(74.5mg,0.1mmol)にオルトジクロロベンゼン5mLを加え90℃に加熱した。N-ブロモスクシンイミド(41.6mg,0.23mmol)、酢酸0.5mLを加え、4時間撹拌した。室温まで冷却し、メタノールを加えて濾過した。得られた固体を減圧下50℃で乾燥させることで3,7-ジ(2-ブロモ-4-ドデシルチオフェン-5-イル)-ナフト[1,2-c:5,6-c]ビス[1,2,5]チアジアゾール(化合物A9)を73.6mg、収率81%で得た。 3,7-di (3-dodecylthiophen-2-yl) -naphtho [1,2-c: 5,6-c] bis [1,2,5] thiadiazole (Compound T22) (74.5 mg, 0. 1 mmol) was added with 5 mL of orthodichlorobenzene and heated to 90 ° C. N-bromosuccinimide (41.6 mg, 0.23 mmol) and acetic acid 0.5 mL were added and stirred for 4 hours. Cool to room temperature, add methanol and filter. The obtained solid was dried at 50 ° C. under reduced pressure to give 3,7-di (2-bromo-4-dodecylthiophen-5-yl) -naphtho [1,2-c: 5,6-c] bis [ 1,2,5] thiadiazole (Compound A9) was obtained in 73.6 mg in a yield of 81%.
[合成例:コポリマー13Aの合成] [Synthesis Example: Synthesis of Copolymer 13A]
Figure JPOXMLDOC01-appb-C000094
Figure JPOXMLDOC01-appb-C000094
 窒素雰囲気下、50mL二口ナスフラスコに、モノマーとして、上述の方法で得られた3,7-ジ(2-ブロモ-4-ドデシルチオフェン-5-イル)-ナフト[1,2-c:5,6-c]ビス[1,2,5]チアジアゾール(化合物A9)(28.6mg,0.032mmol)、特表2014-501032号公報を参考にして得られた4,7-ビス-(5-ブロモ-チオフェン-2-イル)-5,6-ジフルオロ-ベンゾ[1,2,5]チアジアゾール(化合物A2)(15.7mg,0.032mmol)、及び特表2014-501032号公報に記載の方法を参考にして得られた4,8-ビス-[5-(2-ヘキシルデシル)-チオフェン-2-イル]-2,6-ビス(トリメチルスタニル)-ベンゾ[1,2-b:4,5-b’]ジチオフェン(化合物D1)(74.5mg,0.066mmol)を入れ、さらにトリス(ジベンジリデンアセトン)ジパラジウムクロロホルム錯体(2.7mg,4.0mol%)、トリス(2-メチルフェニル)ホスフィン(3.2mg,16mol%)、クロロベンゼン(5.0mL)を入れ、100℃で1時間、続いて110℃で1時間攪拌した。反応液に、末端処理として、トリメチル(フェニル)スズ(0.03mL)およびクロロベンゼン(5.0mL)を加えて110℃で1.0時間加熱攪拌し、さらにブロモベンゼン(1.0mL)を加えて110℃で1.0時間加熱攪拌して、反応溶液をメタノール中に注ぎ、析出した沈殿をろ取した。得られた固体をクロロホルムに溶解させ、ジアミンシリカゲル(Fujiシリシア化学製)を加えて1時間室温で攪拌し、酸性シリカゲルのショートカラムを通した。溶液を濃縮することで、目的とするコポリマー13Aを、収率51%で得た。得られたコポリマー13Aの重量平均分子量Mwは124,000であり、PDIは4.5であった。 In a 50 mL two-necked eggplant flask under a nitrogen atmosphere, 3,7-di (2-bromo-4-dodecylthiophen-5-yl) -naphtho [1,2-c: 5 obtained by the above method as a monomer was used. , 6-c] bis [1,2,5] thiadiazole (Compound A9) (28.6 mg, 0.032 mmol), 4,7-bis- (5 obtained with reference to JP-T-2014-501032 -Bromo-thiophen-2-yl) -5,6-difluoro-benzo [1,2,5] thiadiazole (Compound A2) (15.7 mg, 0.032 mmol), and JP-A-2014-501032 4,8-bis- [5- (2-hexyldecyl) -thiophen-2-yl] -2,6-bis (trimethylstannyl) -benzo [1,2-b: obtained by referring to the method: 4,5- '] Dithiophene (Compound D1) (74.5 mg, 0.066 mmol) was added, and tris (dibenzylideneacetone) dipalladium chloroform complex (2.7 mg, 4.0 mol%), tris (2-methylphenyl) phosphine ( 3.2 mg, 16 mol%) and chlorobenzene (5.0 mL) were added, and the mixture was stirred at 100 ° C. for 1 hour and then at 110 ° C. for 1 hour. Trimethyl (phenyl) tin (0.03 mL) and chlorobenzene (5.0 mL) were added to the reaction solution as a terminal treatment, and the mixture was heated and stirred at 110 ° C. for 1.0 hour, and further bromobenzene (1.0 mL) was added. The mixture was heated and stirred at 110 ° C. for 1.0 hour, the reaction solution was poured into methanol, and the deposited precipitate was collected by filtration. The obtained solid was dissolved in chloroform, diamine silica gel (Fuji Silysia Chemical) was added, and the mixture was stirred for 1 hour at room temperature and passed through a short column of acidic silica gel. By concentrating the solution, the target copolymer 13A was obtained in a yield of 51%. The resulting copolymer 13A had a weight average molecular weight Mw of 124,000 and a PDI of 4.5.
<合成例14A:コポリマー14Aの合成>
 [合成例:5-トリメチルシリル-2-トリメチルスタニルチオフェン(化合物T24)の合成]
<Synthesis Example 14A: Synthesis of Copolymer 14A>
[Synthesis Example: Synthesis of 5-trimethylsilyl-2-trimethylstannylthiophene (Compound T24)]
Figure JPOXMLDOC01-appb-C000095
Figure JPOXMLDOC01-appb-C000095
 100mL二口フラスコに2-トリメチルシリルチオフェン(化合物T23)(1.57g,10mmol)を加え、窒素置換を3回行った。乾燥THF30mLを加え、ドライアイスアセトンバスで-78℃に冷却した。 LDA(1.13M,7.9mL,9mmol)を-78℃で滴下し、1時間撹拌した後、トリメチルスズクロリド(1.79g,9mmol)を加え、1時間撹拌した。蒸留水を加え反応をクエンチし、水層をヘキサンで1回抽出した。有機層を水で3回洗浄し、無水硫酸ナトリウムで乾燥した。溶媒をエバポレータで留去し、減圧下(オイルポンプ)乾燥させることで5-トリメチルシリル-2-トリメチルスタニルチオフェン(化合物T24)2.3gを得た。プロトンNMRの結果、スズ体の純度は90%であった。 2-Trimethylsilylthiophene (Compound T23) (1.57 g, 10 mmol) was added to a 100 mL two-necked flask, and nitrogen substitution was performed three times. 30 mL of dry THF was added, and the mixture was cooled to −78 ° C. with a dry ice acetone bath. LDA (1.13M, 7.9 mL, 9 mmol) was added dropwise at −78 ° C. and stirred for 1 hour, and then trimethyltin chloride (1.79 g, 9 mmol) was added and stirred for 1 hour. Distilled water was added to quench the reaction, and the aqueous layer was extracted once with hexane. The organic layer was washed 3 times with water and dried over anhydrous sodium sulfate. The solvent was distilled off with an evaporator and dried under reduced pressure (oil pump) to obtain 2.3 g of 5-trimethylsilyl-2-trimethylstannylthiophene (Compound T24). As a result of proton NMR, the purity of the tin body was 90%.
[合成例:3,7-ジ(5-トリメチルシリルチオフェン-2-イル)-ナフト[1,2-c:5,6-c]ビス[1,2,5]チアジアゾール(化合物T25)の合成] [Synthesis Example: Synthesis of 3,7-di (5-trimethylsilylthiophen-2-yl) -naphtho [1,2-c: 5,6-c] bis [1,2,5] thiadiazole (Compound T25)]
Figure JPOXMLDOC01-appb-C000096
Figure JPOXMLDOC01-appb-C000096
 100mL二口フラスコに5-トリメチルシリル-2-トリメチルスタニルチオフェン(化合物T24)(886mg(P.90%)2.5mmol)、3,7-ジブロモ-ナフト[1,2-c:5,6-c]ビス[1,2,5]チアジアゾール(化合物T3)(402mg,1.0mmol)を加え、窒素置換を3回行った。 テトラキストリフェニルホスフィンパラジウム(23.1mg,0.02mmol)を加え、窒素置換を2回行った。脱水トルエン50mL、脱水DMF5mLを加え115℃で7時間撹拌した。室温まで冷却後トルエンを留去した。メタノールを加えて撹拌し、濾別した。得られた橙色固体をクロロホルム250mLに加熱溶解し、ショートパスのシリカゲルカラムクロマトグラフィーで精製した。溶媒を留去し、減圧下乾燥させることで3,7-ジ(5-トリメチルシリルチオフェン-2-イル)-ナフト[1,2-c:5,6-c]ビス[1,2,5]チアジアゾール(化合物T25)を528mg 、収率95%で得た。 In a 100 mL two-necked flask, 5-trimethylsilyl-2-trimethylstannylthiophene (Compound T24) (886 mg (P. 90%) 2.5 mmol), 3,7-dibromo-naphtho [1,2-c: 5,6- c] Bis [1,2,5] thiadiazole (Compound T3) (402 mg, 1.0 mmol) was added, and nitrogen substitution was performed three times. Tetrakistriphenylphosphine palladium (23.1 mg, 0.02 mmol) was added, and nitrogen substitution was performed twice. 50 mL of dehydrated toluene and 5 mL of dehydrated DMF were added and stirred at 115 ° C. for 7 hours. After cooling to room temperature, toluene was distilled off. Methanol was added and stirred and filtered off. The obtained orange solid was dissolved by heating in 250 mL of chloroform, and purified by silica gel column chromatography with a short path. The solvent was distilled off and dried under reduced pressure to obtain 3,7-di (5-trimethylsilylthiophen-2-yl) -naphtho [1,2-c: 5,6-c] bis [1,2,5] Thiadiazole (Compound T25) was obtained in a yield of 528 mg and a yield of 95%.
[合成例:3,7-ジ(2-ブロモチオフェン-5-イル)-ナフト[1,2-c:5,6-c]ビス[1,2,5]チアジアゾール(化合物A10)の合成] [Synthesis Example: Synthesis of 3,7-di (2-bromothiophen-5-yl) -naphtho [1,2-c: 5,6-c] bis [1,2,5] thiadiazole (Compound A10)]
Figure JPOXMLDOC01-appb-C000097
Figure JPOXMLDOC01-appb-C000097
 2Lナスフラスコに3,7-ジ(5-トリメチルシリルチオフェン-2-イル)-ナフト[1,2-c:5,6-c]ビス[1,2,5]チアジアゾール(化合物T25)(528mg,0.95mmol)を入れ、クロロホルム1000mLを加えドライヤを用いて加熱撹拌した。室温まで冷却し、フラスコをアルミホイルで遮光した後、臭素(323mg,2.02mmol)のクロロホルム溶液を室温で素早く滴下した。室温で1時間撹拌した後、溶媒を9割留去した。得られた赤色スラリー液を減圧濾過し、クロロホルムで3回ふりかけ洗浄した。減圧下50℃で乾燥させることで3,7-ジ(2-ブロモチオフェン-5-イル)-ナフト[1,2-c:5,6-c]ビス[1,2,5]チアジアゾール(化合物A10)を540mg、収率100%で得た。 In a 2 L eggplant flask, 3,7-di (5-trimethylsilylthiophen-2-yl) -naphtho [1,2-c: 5,6-c] bis [1,2,5] thiadiazole (Compound T25) (528 mg, 0.95 mmol) was added, 1000 mL of chloroform was added, and the mixture was heated and stirred using a dryer. After cooling to room temperature and shielding the flask from light with aluminum foil, a chloroform solution of bromine (323 mg, 2.02 mmol) was quickly added dropwise at room temperature. After stirring at room temperature for 1 hour, 90% of the solvent was distilled off. The obtained red slurry was filtered under reduced pressure and washed by sprinkling with chloroform three times. 3,7-di (2-bromothiophen-5-yl) -naphtho [1,2-c: 5,6-c] bis [1,2,5] thiadiazole (compound) by drying at 50 ° C. under reduced pressure 540 mg of A10) was obtained with a yield of 100%.
[合成例:コポリマー14Aの合成] [Synthesis Example: Synthesis of Copolymer 14A]
Figure JPOXMLDOC01-appb-C000098
Figure JPOXMLDOC01-appb-C000098
 窒素雰囲気下、50mL二口ナスフラスコに、モノマーとして、上述の方法で得られた3,7-ジ(2-ブロモ-チオフェン-5-イル)-ナフト[1,2-c:5,6-c]ビス[1,2,5]チアジアゾール(化合物A10)(17.6mg,0.031mmol)、特表2014-501032号公報を参考にして得られた4,7-ビス-(5-ブロモ-チオフェン-2-イル)-5,6-ジフルオロ-ベンゾ[1,2,5]チアジアゾール(化合物A2)(15.3mg,0.031mmol)、及び特表2014-501032号公報に記載の方法を参考にして得られた4,8-ビス-[5-(2-ヘキシルデシル)-チオフェン-2-イル]-2,6-ビス(トリメチルスタニル)-ベンゾ[1,2-b:4,5-b’]ジチオフェン(化合物D1)(74.5mg,0.066mmol)を入れ、さらにトリス(ジベンジリデンアセトン)ジパラジウムクロロホルム錯体(2.7mg,4.0mol%)、トリス(2-メチルフェニル)ホスフィン(3.2mg,16mol%)、クロロベンゼン(5.0mL)を入れ、100℃で1時間、続いて110℃で1時間攪拌した。反応液に、末端処理として、トリメチル(フェニル)スズ(0.03mL)およびクロロベンゼン(5.0mL)を加えて110℃で1.0時間加熱攪拌し、さらにブロモベンゼン(1.0mL)を加えて110℃で1.0時間加熱攪拌して、反応溶液をメタノール中に注ぎ、析出した沈殿をろ取した。得られた固体はクロロホルム、トルエン、オルトジクロロベンゼン等の溶媒に対し不溶であった。 In a 50 mL two-necked eggplant flask under a nitrogen atmosphere, 3,7-di (2-bromo-thiophen-5-yl) -naphtho [1,2-c: 5,6- c] Bis [1,2,5] thiadiazole (Compound A10) (17.6 mg, 0.031 mmol), 4,7-bis- (5-bromo-) obtained with reference to JP-T-2014-501032 Reference is made to thiophen-2-yl) -5,6-difluoro-benzo [1,2,5] thiadiazole (compound A2) (15.3 mg, 0.031 mmol) and the method described in JP-T-2014-501032. 4,8-bis- [5- (2-hexyldecyl) -thiophen-2-yl] -2,6-bis (trimethylstannyl) -benzo [1,2-b: 4,5 -B '] Fen (compound D1) (74.5 mg, 0.066 mmol) was added, and tris (dibenzylideneacetone) dipalladium chloroform complex (2.7 mg, 4.0 mol%), tris (2-methylphenyl) phosphine (3. 2 mg, 16 mol%) and chlorobenzene (5.0 mL) were added, and the mixture was stirred at 100 ° C. for 1 hour and then at 110 ° C. for 1 hour. Trimethyl (phenyl) tin (0.03 mL) and chlorobenzene (5.0 mL) were added to the reaction solution as a terminal treatment, and the mixture was heated and stirred at 110 ° C. for 1.0 hour, and further bromobenzene (1.0 mL) was added. The mixture was heated and stirred at 110 ° C. for 1.0 hour, the reaction solution was poured into methanol, and the deposited precipitate was collected by filtration. The obtained solid was insoluble in solvents such as chloroform, toluene, orthodichlorobenzene and the like.
<合成例15A:コポリマー15Aの合成> <Synthesis Example 15A: Synthesis of Copolymer 15A>
Figure JPOXMLDOC01-appb-C000099
Figure JPOXMLDOC01-appb-C000099
 窒素雰囲気下、50mL二口ナスフラスコに、モノマーとして、米国特許出願公開2012/0227812号に記載の方法を参考にして得られた3,7-ジ(2-ブロモ-3-ドデシルチオフェン-5-イル)-ナフト[1,2-c:5,6-c]ビス[1,2,5]チアジアゾール(化合物A1)(29.8mg,0.033mmol)、公知文献(Materials Chemistry, 2011,21,13247-13255)を参考にして得られた4,7-ビス-(5-ブロモ-チオフェン-2-イル)-[1,2,5]チアジアゾロ[3,4-c]ピリジン(化合物A11)(15.2mg,0.033mmol)、及び特表2014-501032号公報に記載の方法を参考にして得られた4,8-ビス-[5-(2-ヘキシルデシル)-チオフェン-2-イル]-2,6-ビス(トリメチルスタニル)-ベンゾ[1,2-b:4,5-b’]ジチオフェン(化合物D1)(74.5mg,0.066mmol)を入れ、さらにトリス(ジベンジリデンアセトン)ジパラジウムクロロホルム錯体(2.7mg,4.0mol%)、トリス(2-メチルフェニル)ホスフィン(3.2mg,16mol%)、クロロベンゼン(5.0mL)を入れ、100℃で1時間、続いて110℃で1時間攪拌した。反応液に、末端処理として、トリメチル(フェニル)スズ(0.03mL)およびクロロベンゼン(5.0mL)を加えて110℃で1.0時間加熱攪拌し、さらにブロモベンゼン(1.0mL)を加えて110℃で1.0時間加熱攪拌して、反応溶液をメタノール中に注ぎ、析出した沈殿をろ取した。得られた固体をクロロホルムに溶解させ、ジアミンシリカゲル(Fujiシリシア化学製)を加えて1時間室温で攪拌し、酸性シリカゲルのショートカラムを通した。溶液を濃縮することで、目的とするコポリマー15Aを、収率80%で得た。得られたコポリマー15Aの重量平均分子量Mwは120,000であり、PDIは4.4であった。 Under a nitrogen atmosphere, 3,7-di (2-bromo-3-dodecylthiophene-5-5) obtained by referring to a method described in US Patent Application Publication No. 2012/0227812 as a monomer in a 50 mL two-necked eggplant flask. Yl) -naphtho [1,2-c: 5,6-c] bis [1,2,5] thiadiazole (compound A1) (29.8 mg, 0.033 mmol), known literature (Materials Chemistry, 2011, 21, 13,247-13255) obtained with reference to 4,7-bis- (5-bromo-thiophen-2-yl)-[1,2,5] thiadiazolo [3,4-c] pyridine (compound A11) ( 15.8 mg, 0.033 mmol), and 4,8-bis- [5- (5- -Hexyldecyl) -thiophen-2-yl] -2,6-bis (trimethylstannyl) -benzo [1,2-b: 4,5-b ′] dithiophene (compound D1) (74.5 mg, 0. 066 mmol), tris (dibenzylideneacetone) dipalladium chloroform complex (2.7 mg, 4.0 mol%), tris (2-methylphenyl) phosphine (3.2 mg, 16 mol%), chlorobenzene (5.0 mL) And stirred at 100 ° C. for 1 hour and then at 110 ° C. for 1 hour. Trimethyl (phenyl) tin (0.03 mL) and chlorobenzene (5.0 mL) were added to the reaction solution as a terminal treatment, and the mixture was heated and stirred at 110 ° C. for 1.0 hour, and further bromobenzene (1.0 mL) was added. The mixture was heated and stirred at 110 ° C. for 1.0 hour, the reaction solution was poured into methanol, and the deposited precipitate was collected by filtration. The obtained solid was dissolved in chloroform, diamine silica gel (Fuji Silysia Chemical) was added, and the mixture was stirred for 1 hour at room temperature and passed through a short column of acidic silica gel. By concentrating the solution, the target copolymer 15A was obtained in a yield of 80%. The resulting copolymer 15A had a weight average molecular weight Mw of 120,000 and a PDI of 4.4.
<合成例16A:コポリマー16Aの合成> <Synthesis Example 16A: Synthesis of Copolymer 16A>
Figure JPOXMLDOC01-appb-C000100
Figure JPOXMLDOC01-appb-C000100
 窒素雰囲気下、50mL二口ナスフラスコに、モノマーとして、米国特許出願公開2012/0227812号に記載の方法を参考にして得られた3,7-ジ(2-ブロモ-3-テトラデシルチオフェン-5-イル)-ナフト[1,2-c:5,6-c]ビス[1,2,5]チアジアゾール(化合物A4)(44.5mg,0.046mmol)、非特許公知文献(Chem.Mater.2014,26,4214-4220)記載の方法で得られた5,5’-ジブロモー3,3’-ジフルオロー2,2’-ビチオフェン(化合物A12)(7.2mg,0.020mmol)、及び特表2014-501032号公報に記載の方法を参考にして得られた4,8-ビス-[5-(2-ヘキシルデシル)-チオフェン-2-イル]-2,6-ビス(トリメチルスタニル)-ベンゾ[1,2-b:4,5-b’]ジチオフェン(化合物D1)(76.3mg,0.068mmol)を入れ、さらにトリス(ジベンジリデンアセトン)ジパラジウムクロロホルム錯体(2.8mg,4.0mol%)、トリス(2-メチルフェニル)ホスフィン(6.6mg,32mol%)、クロロベンゼン(5.0mL)を入れ、100℃で1時間、続いて110℃で1時間攪拌した。反応液に、末端処理として、トリメチル(フェニル)スズ(0.03mL)およびクロロベンゼン(2.5mL)を加えて110℃で1.0時間加熱攪拌し、さらにブロモベンゼン(1.0mL)を加えて110℃で1.0時間加熱攪拌して、反応溶液をメタノール中に注ぎ、析出した沈殿をろ取した。得られた固体をクロロホルムに溶解させ、ジアミンシリカゲル(Fujiシリシア化学製)を加えて1時間室温で攪拌し、酸性シリカゲルのショートカラムを通した。溶液を濃縮することで、目的とするコポリマー16Aを、収率75%で得た。得られたコポリマー16Aの重量平均分子量Mwは161,000であり、PDIは3.9であった。 Under a nitrogen atmosphere, 3,7-di (2-bromo-3-tetradecylthiophene-5 obtained by referring to a method described in US Patent Application Publication No. 2012/0227812 as a monomer in a 50 mL two-necked eggplant flask -Yl) -naphtho [1,2-c: 5,6-c] bis [1,2,5] thiadiazole (compound A4) (44.5 mg, 0.046 mmol), non-patent literature (Chem. Mater. 5,5′-dibromo-3,3′-difluoro-2,2′-bithiophene (Compound A12) (7.2 mg, 0.020 mmol) obtained by the method described in Japanese Patent No. 2014, 26, 4214-4220), and a special table 4,8-bis- [5- (2-hexyldecyl) -thiophen-2-yl] -2,6 obtained by referring to the method described in JP2014-501032A Bis (trimethylstannyl) -benzo [1,2-b: 4,5-b ′] dithiophene (compound D1) (76.3 mg, 0.068 mmol) was added, and tris (dibenzylideneacetone) dipalladium chloroform complex was added. (2.8 mg, 4.0 mol%), tris (2-methylphenyl) phosphine (6.6 mg, 32 mol%) and chlorobenzene (5.0 mL) were added, and the mixture was 100 ° C. for 1 hour, followed by 110 ° C. for 1 hour. Stir. Trimethyl (phenyl) tin (0.03 mL) and chlorobenzene (2.5 mL) were added to the reaction solution as a terminal treatment, heated and stirred at 110 ° C. for 1.0 hour, and further bromobenzene (1.0 mL) was added. The mixture was heated and stirred at 110 ° C. for 1.0 hour, the reaction solution was poured into methanol, and the deposited precipitate was collected by filtration. The obtained solid was dissolved in chloroform, diamine silica gel (Fuji Silysia Chemical) was added, and the mixture was stirred for 1 hour at room temperature and passed through a short column of acidic silica gel. By concentrating the solution, the target copolymer 16A was obtained in a yield of 75%. The weight average molecular weight Mw of the obtained copolymer 16A was 161,000, and PDI was 3.9.
<合成例17A:コポリマー17Aの合成>
Figure JPOXMLDOC01-appb-C000101
<Synthesis Example 17A: Synthesis of Copolymer 17A>
Figure JPOXMLDOC01-appb-C000101
 窒素雰囲気下、50mL二口ナスフラスコに、モノマーとして、米国特許出願公開2012/0227812号に記載の方法を参考にして得られた3,7-ジ(2-ブロモ-3-ドデシルチオフェン-5-イル)-ナフト[1,2-c:5,6-c]ビス[1,2,5]チアジアゾール(化合物A1)(29.2mg,0.032mmol)、公知文献(Materials Chemistry C, 2015,3,8916-8925)を参考にして得られた2,2’-ビス-(5-ブロモ-チオフェン-2-イル)-2,5-ジフルオロ-1,4-フェニレン(化合物A13)(14.1mg,0.032mmol)、及び特表2014-501032号公報に記載の方法を参考にして得られた4,8-ビス-[5-(2-ヘキシルデシル)-チオフェン-2-イル]-2,6-ビス(トリメチルスタニル)-ベンゾ[1,2-b:4,5-b’]ジチオフェン(化合物D1)(74.5mg,0.066mmol)を入れ、さらにトリス(ジベンジリデンアセトン)ジパラジウムクロロホルム錯体(2.7mg,4.0mol%)、トリス(2-メチルフェニル)ホスフィン(3.2mg,16mol%)、クロロベンゼン(5.0mL)を入れ、100℃で1時間、続いて110℃で1時間攪拌した。反応液に、末端処理として、トリメチル(フェニル)スズ(0.03mL)およびクロロベンゼン(5.0mL)を加えて110℃で1.0時間加熱攪拌し、さらにブロモベンゼン(1.0mL)を加えて110℃で1.0時間加熱攪拌して、反応溶液をメタノール中に注ぎ、析出した沈殿をろ取した。得られた固体をクロロホルムに溶解させ、ジアミンシリカゲル(Fujiシリシア化学製)を加えて1時間室温で攪拌し、酸性シリカゲルのショートカラムを通した。溶液を濃縮することで、目的とするコポリマー17Aを、収率79%で得た。得られたコポリマー17Aの重量平均分子量Mwは98,000であり、PDIは3.7であった。 Under a nitrogen atmosphere, 3,7-di (2-bromo-3-dodecylthiophene-5-5) obtained by referring to a method described in US Patent Application Publication No. 2012/0227812 as a monomer in a 50 mL two-necked eggplant flask. Yl) -naphtho [1,2-c: 5,6-c] bis [1,2,5] thiadiazole (compound A1) (29.2 mg, 0.032 mmol), known literature (Materials Chemistry C, 2015, 3 , 8916-8925), 2,2′-bis- (5-bromo-thiophen-2-yl) -2,5-difluoro-1,4-phenylene (Compound A13) (14.1 mg) , 0.032 mmol) and 4,8-bis- [5- (2-hexyl) obtained by referring to the method described in JP-T-2014-501032 Decyl) -thiophen-2-yl] -2,6-bis (trimethylstannyl) -benzo [1,2-b: 4,5-b ′] dithiophene (compound D1) (74.5 mg, 0.066 mmol) And tris (dibenzylideneacetone) dipalladium chloroform complex (2.7 mg, 4.0 mol%), tris (2-methylphenyl) phosphine (3.2 mg, 16 mol%), and chlorobenzene (5.0 mL). The mixture was stirred at 100 ° C. for 1 hour and then at 110 ° C. for 1 hour. Trimethyl (phenyl) tin (0.03 mL) and chlorobenzene (5.0 mL) were added to the reaction solution as a terminal treatment, and the mixture was heated and stirred at 110 ° C. for 1.0 hour, and further bromobenzene (1.0 mL) was added. The mixture was heated and stirred at 110 ° C. for 1.0 hour, the reaction solution was poured into methanol, and the deposited precipitate was collected by filtration. The obtained solid was dissolved in chloroform, diamine silica gel (Fuji Silysia Chemical) was added, and the mixture was stirred for 1 hour at room temperature and passed through a short column of acidic silica gel. By concentrating the solution, the target copolymer 17A was obtained with a yield of 79%. The weight average molecular weight Mw of the obtained copolymer 17A was 98,000, and PDI was 3.7.
<合成例18A:コポリマー18Aの合成> <Synthesis Example 18A: Synthesis of Copolymer 18A>
Figure JPOXMLDOC01-appb-C000102
Figure JPOXMLDOC01-appb-C000102
 窒素雰囲気下、50mL二口ナスフラスコに、モノマーとして、米国特許出願公開2012/0227812号に記載の方法を参考にして得られた3,7-ジ(2-ブロモ-3-ドデシルチオフェン-5-イル)-ナフト[1,2-c:5,6-c]ビス[1,2,5]チアジアゾール(化合物A1)(29.2mg,0.032mmol)、特表2014-501032号公報を参考にして得られた4,7-ビス-(5-ブロモ-チオフェン-2-イル)-5,6-ジフルオロ-ベンゾ[1,2,5]チアジアゾール(化合物A2)(8.0mg,0.016mmol)、公知文献(Materials Chemistry C, 2015,3,8916-8925)を参考にして得られた2,2’-ビス-(5-ブロモ-チオフェン-2-イル)-2,5-ジフルオロ-1,4-フェニレン(化合物A13)(7.1mg,0.016mmol)、及び特表2014-501032号公報に記載の方法を参考にして得られた4,8-ビス-[5-(2-ヘキシルデシル)-チオフェン-2-イル]-2,6-ビス(トリメチルスタニル)-ベンゾ[1,2-b:4,5-b’]ジチオフェン(化合物D1)(74.5mg,0.066mmol)を入れ、さらにトリス(ジベンジリデンアセトン)ジパラジウムクロロホルム錯体(2.7mg,4.0mol%)、トリス(2-メチルフェニル)ホスフィン(3.2mg,16mol%)、クロロベンゼン(5.0mL)を入れ、100℃で1時間、続いて110℃で1時間攪拌した。反応液に、末端処理として、トリメチル(フェニル)スズ(0.03mL)およびクロロベンゼン(5.0mL)を加えて110℃で1.0時間加熱攪拌し、さらにブロモベンゼン(1.0mL)を加えて110℃で1.0時間加熱攪拌して、反応溶液をメタノール中に注ぎ、析出した沈殿をろ取した。得られた固体をクロロホルムに溶解させ、ジアミンシリカゲル(Fujiシリシア化学製)を加えて1時間室温で攪拌し、酸性シリカゲルのショートカラムを通した。溶液を濃縮することで、目的とするコポリマー18Aを、収率78%で得た。得られたコポリマー18Aの重量平均分子量Mwは116,000であり、PDIは4.5であった。 Under a nitrogen atmosphere, 3,7-di (2-bromo-3-dodecylthiophene-5-5) obtained by referring to a method described in US Patent Application Publication No. 2012/0227812 as a monomer in a 50 mL two-necked eggplant flask. Yl) -naphtho [1,2-c: 5,6-c] bis [1,2,5] thiadiazole (compound A1) (29.2 mg, 0.032 mmol), with reference to JP-T-2014-501032. 4,7-bis- (5-bromo-thiophen-2-yl) -5,6-difluoro-benzo [1,2,5] thiadiazole (Compound A2) (8.0 mg, 0.016 mmol) 2,2′-bis- (5-bromo-thiophene) obtained by referring to known literature (Materials Chemistry C, 2015, 3, 8916-8925). -2-yl) -2,5-difluoro-1,4-phenylene (Compound A13) (7.1 mg, 0.016 mmol) and the method described in JP-T-2014-501032 4,8-bis- [5- (2-hexyldecyl) -thiophen-2-yl] -2,6-bis (trimethylstannyl) -benzo [1,2-b: 4,5-b ′] dithiophene (Compound D1) (74.5 mg, 0.066 mmol) was added, and further tris (dibenzylideneacetone) dipalladium chloroform complex (2.7 mg, 4.0 mol%), tris (2-methylphenyl) phosphine (3.2 mg) , 16 mol%) and chlorobenzene (5.0 mL) were added, and the mixture was stirred at 100 ° C. for 1 hour and then at 110 ° C. for 1 hour. Trimethyl (phenyl) tin (0.03 mL) and chlorobenzene (5.0 mL) were added to the reaction solution as a terminal treatment, and the mixture was heated and stirred at 110 ° C. for 1.0 hour, and further bromobenzene (1.0 mL) was added. The mixture was heated and stirred at 110 ° C. for 1.0 hour, the reaction solution was poured into methanol, and the deposited precipitate was collected by filtration. The obtained solid was dissolved in chloroform, diamine silica gel (Fuji Silysia Chemical) was added, and the mixture was stirred for 1 hour at room temperature and passed through a short column of acidic silica gel. By concentrating the solution, the target copolymer 18A was obtained in a yield of 78%. The resulting copolymer 18A had a weight average molecular weight Mw of 116,000 and a PDI of 4.5.
<合成例19A:コポリマー19Aの合成>
[合成例:4,7-ビス(3-ドデシル[2,2’-ビチオフェン]-5-イル)-5,6-ジフルオロ-ベンゾ[1,2,5]チアジアゾール(化合物T28)の合成]
<Synthesis Example 19A: Synthesis of Copolymer 19A>
[Synthesis Example: Synthesis of 4,7-bis (3-dodecyl [2,2′-bithiophene] -5-yl) -5,6-difluoro-benzo [1,2,5] thiadiazole (Compound T28)]
Figure JPOXMLDOC01-appb-C000103
Figure JPOXMLDOC01-appb-C000103
 50mL二口フラスコに2-トリブチルスタニルチオフェン(化合物T27)(0.73g,1.96mmol)、特表2014-501032号公報を参考にして得られた4,7-ビス(5-ブロモ-4-ドデシルチオフェン-2-イル)-5,6-ジフルオロ-ベンゾ[1,2,5]チアジアゾール(化合物T28)(0.65g,0.78mmol)を加え、窒素置換を3回行った。テトラキストリフェニルホスフィンパラジウム(37.5mg,0.03mmol)を加え、窒素置換を2回行った。脱水トルエン8mL、脱水DMF2mLを加え115℃で3時間撹拌した。室温まで冷却後トルエンを留去した。メタノールを20mL加えて撹拌し、濾別した。濾別した固体をメタノールで3回ふりかけ洗浄して乾燥させた。得られた橙色固体をクロロホルム50mLに加熱溶解し、ショートパスのシリカゲルカラムで精製した。溶媒を留去し、減圧下乾燥させることで4,7-ビス(3-ドデシル[2,2’-ビチオフェン]-5-イル)-5,6-ジフルオロ-ベンゾ[1,2,5]チアジアゾール(化合物T29)を0.55g 、収率84%で得た。 2-Tributylstannylthiophene (Compound T27) (0.73 g, 1.96 mmol), 4,7-bis (5-bromo-4 -Dodecylthiophen-2-yl) -5,6-difluoro-benzo [1,2,5] thiadiazole (Compound T28) (0.65 g, 0.78 mmol) was added, and nitrogen substitution was performed three times. Tetrakistriphenylphosphine palladium (37.5 mg, 0.03 mmol) was added, and nitrogen substitution was performed twice. 8 mL of dehydrated toluene and 2 mL of dehydrated DMF were added and stirred at 115 ° C. for 3 hours. After cooling to room temperature, toluene was distilled off. 20 mL of methanol was added and stirred, followed by filtration. The solid filtered off was washed by spraying with methanol three times and dried. The resulting orange solid was dissolved by heating in 50 mL of chloroform and purified with a short-pass silica gel column. The solvent was distilled off and dried under reduced pressure to give 4,7-bis (3-dodecyl [2,2′-bithiophen] -5-yl) -5,6-difluoro-benzo [1,2,5] thiadiazole (Compound T29) was obtained in an amount of 0.55 g and a yield of 84%.
[合成例:4,7-ビス(5’-ブロモ-3-ドデシル[2,2’-ビチオフェン]-5-イル)-5,6-ジフルオロ-ベンゾ[1,2,5]チアジアゾール(化合物A14)の合成] [Synthesis Example: 4,7-bis (5′-bromo-3-dodecyl [2,2′-bithiophen] -5-yl) -5,6-difluoro-benzo [1,2,5] thiadiazole (Compound A14 )
Figure JPOXMLDOC01-appb-C000104
Figure JPOXMLDOC01-appb-C000104
 2Lナスフラスコに4,7-ビス(3-ドデシル[2,2’-ビチオフェン]-5-イル)-5,6-ジフルオロ-ベンゾ[1,2,5]チアジアゾール(化合物T29)(0.55g,0.66mmol)を入れ、 クロロホルム10.5mL、酢酸3.5mLを加え撹拌した。N-ブロモスクシンイミド(234mg,1.31mmol)を加え、75℃で3時間加熱撹拌した。室温まで冷却後、メタノールを20mL加えて撹拌し、濾別した。濾別した固体をメタノールで3回ふりかけ洗浄して乾燥させた。減圧下50℃で乾燥させることで4,7-ビス(5’-ブロモ-3-ドデシル[2,2’-ビチオフェン]-5-イル)-5,6-ジフルオロ-ベンゾ[1,2,5]チアジアゾール(化合物A14)を0.61g、収率93%で得た。 In a 2 L eggplant flask, 4,7-bis (3-dodecyl [2,2′-bithiophene] -5-yl) -5,6-difluoro-benzo [1,2,5] thiadiazole (Compound T29) (0.55 g) , 0.66 mmol) was added, and 10.5 mL of chloroform and 3.5 mL of acetic acid were added and stirred. N-bromosuccinimide (234 mg, 1.31 mmol) was added, and the mixture was stirred with heating at 75 ° C. for 3 hr. After cooling to room temperature, 20 mL of methanol was added and stirred, followed by filtration. The solid filtered off was washed by spraying with methanol three times and dried. By drying at 50 ° C. under reduced pressure, 4,7-bis (5′-bromo-3-dodecyl [2,2′-bithiophen] -5-yl) -5,6-difluoro-benzo [1,2,5 ] 0.61 g of thiadiazole (compound A14) was obtained with a yield of 93%.
[合成例:コポリマー19Aの合成] [Synthesis Example: Synthesis of Copolymer 19A]
Figure JPOXMLDOC01-appb-C000105
Figure JPOXMLDOC01-appb-C000105
 窒素雰囲気下、50mL二口ナスフラスコに、モノマーとして、米国特許出願公開2012/0227812号に記載の方法を参考にして得られた3,7-ジ(2-ブロモ-3-ドデシルチオフェン-5-イル)-ナフト[1,2-c:5,6-c]ビス[1,2,5]チアジアゾール(化合物A1)(29.8mg,0.033mmol)、上述の方法で得られた4,7-ビス(5’-ブロモ-3-ドデシル[2,2’-ビチオフェン]-5-イル)-5,6-ジフルオロ-ベンゾ[1,2,5]チアジアゾール(化合物A14)(32.8mg,0.033mmol)、及び特表2014-501032号公報に記載の方法を参考にして得られた4,8-ビス-[5-(2-ヘキシルデシル)-チオフェン-2-イル]-2,6-ビス(トリメチルスタニル)-ベンゾ[1,2-b:4,5-b’]ジチオフェン(化合物D1)(74.5mg,0.066mmol)を入れ、さらにトリス(ジベンジリデンアセトン)ジパラジウムクロロホルム錯体(2.7mg,4.0mol%)、トリス(2-メチルフェニル)ホスフィン(3.2mg,16mol%)、クロロベンゼン(5.0mL)を入れ、100℃で1時間、続いて110℃で1時間攪拌した。反応液に、末端処理として、トリメチル(フェニル)スズ(0.03mL)およびクロロベンゼン(5.0mL)を加えて110℃で1.0時間加熱攪拌し、さらにブロモベンゼン(1.0mL)を加えて110℃で1.0時間加熱攪拌して、反応溶液をメタノール中に注ぎ、析出した沈殿をろ取した。得られた固体をクロロホルムに溶解させ、ジアミンシリカゲル(Fujiシリシア化学製)を加えて1時間室温で攪拌し、酸性シリカゲルのショートカラムを通した。溶液を濃縮することで、目的とするコポリマー19Aを、収率81%で得た。得られたコポリマー19Aの重量平均分子量Mwは222,000であり、PDIは4.0であった。 Under a nitrogen atmosphere, 3,7-di (2-bromo-3-dodecylthiophene-5-5) obtained by referring to a method described in US Patent Application Publication No. 2012/0227812 as a monomer in a 50 mL two-necked eggplant flask. Yl) -naphtho [1,2-c: 5,6-c] bis [1,2,5] thiadiazole (compound A1) (29.8 mg, 0.033 mmol), 4,7 obtained by the method described above -Bis (5′-bromo-3-dodecyl [2,2′-bithiophene] -5-yl) -5,6-difluoro-benzo [1,2,5] thiadiazole (Compound A14) (32.8 mg, 0 0.033 mmol), and 4,8-bis- [5- (2-hexyldecyl) -thiophen-2-yl] -2,6-- obtained by referring to the method described in JP-T-2014-501032 Screw Trimethylstannyl) -benzo [1,2-b: 4,5-b ′] dithiophene (Compound D1) (74.5 mg, 0.066 mmol) was added, and tris (dibenzylideneacetone) dipalladium chloroform complex (2 0.7 mg, 4.0 mol%), tris (2-methylphenyl) phosphine (3.2 mg, 16 mol%), and chlorobenzene (5.0 mL) were added, and the mixture was stirred at 100 ° C. for 1 hour and then at 110 ° C. for 1 hour. . Trimethyl (phenyl) tin (0.03 mL) and chlorobenzene (5.0 mL) were added to the reaction solution as a terminal treatment, and the mixture was heated and stirred at 110 ° C. for 1.0 hour, and further bromobenzene (1.0 mL) was added. The mixture was heated and stirred at 110 ° C. for 1.0 hour, the reaction solution was poured into methanol, and the deposited precipitate was collected by filtration. The obtained solid was dissolved in chloroform, diamine silica gel (Fuji Silysia Chemical) was added, and the mixture was stirred for 1 hour at room temperature and passed through a short column of acidic silica gel. By concentrating the solution, the target copolymer 19A was obtained in a yield of 81%. The resulting copolymer 19A had a weight average molecular weight Mw of 222,000 and a PDI of 4.0.
<合成例20A:コポリマー20Aの合成>
[合成例:4,7-ビス(4’-ドデシル[2,2’-ビチオフェン]-5-イル)-5,6-ジフルオロ-ベンゾ[1,2,5]チアジアゾール(化合物T31)の合成]
<Synthesis Example 20A: Synthesis of Copolymer 20A>
[Synthesis Example: Synthesis of 4,7-bis (4′-dodecyl [2,2′-bithiophene] -5-yl) -5,6-difluoro-benzo [1,2,5] thiadiazole (Compound T31)]
Figure JPOXMLDOC01-appb-C000106
Figure JPOXMLDOC01-appb-C000106
 50mL二口フラスコに米国特許出願公開2012/0227812号に記載の方法を参考にして得られた2-トリメチルスタニル-4-ドデシルチオフェン(化合物T30)(1.50g,3.61mmol)、特表2014-501032号公報を参考にして得られた4,7-ビス-(5-ブロモ-チオフェン-2-イル)-5,6-ジフルオロ-ベンゾ[1,2,5]チアジアゾール(化合物A2)(0.71g,1.44mmol)を加え、窒素置換を3回行った。 テトラキストリフェニルホスフィンパラジウム(50.0mg, 0.04mmol)を加え、窒素置換を2回行った。脱水トルエン12mL、脱水DMF3mLを加え115℃で3時間撹拌した。室温まで冷却後トルエンを留去した。メタノールを30mL加えて撹拌し、濾別した。濾別した固体をメタノールで3回ふりかけ洗浄して乾燥させた。得られた橙色固体をクロロホルム50mLに加熱溶解し、ショートパスのシリカゲルカラムで精製した。溶媒を留去し、減圧下乾燥させることで4,7-ビス(4’-ドデシル[2,2’-ビチオフェン]-5-イル)-5,6-ジフルオロ-ベンゾ[1,2,5]チアジアゾール(化合物T31)を0.98g 、収率82%で得た。 2-Trimethylstannyl-4-dodecylthiophene (compound T30) (1.50 g, 3.61 mmol) obtained by referring to a method described in US Patent Application Publication No. 2012/0227812 in a 50 mL two-necked flask, special table 4,7-bis- (5-bromo-thiophen-2-yl) -5,6-difluoro-benzo [1,2,5] thiadiazole (compound A2) obtained by referring to JP 2014-501032 A 0.71 g, 1.44 mmol) was added, and nitrogen substitution was performed three times. Tetrakistriphenylphosphine palladium (50.0 mg, 0.04 mmol) was added, and nitrogen substitution was performed twice. 12 mL of dehydrated toluene and 3 mL of dehydrated DMF were added and stirred at 115 ° C. for 3 hours. After cooling to room temperature, toluene was distilled off. 30 mL of methanol was added and stirred, followed by filtration. The solid filtered off was washed by spraying with methanol three times and dried. The resulting orange solid was dissolved by heating in 50 mL of chloroform and purified with a short-pass silica gel column. The solvent was distilled off and the residue was dried under reduced pressure to give 4,7-bis (4′-dodecyl [2,2′-bithiophen] -5-yl) -5,6-difluoro-benzo [1,2,5] 0.98 g of thiadiazole (compound T31) was obtained in a yield of 82%.
[合成例:4,7-ビス(5’-ブロモ-4’-ドデシル[2,2’-ビチオフェン]-5-イル)-5,6-ジフルオロ-ベンゾ[1,2,5]チアジアゾール(化合物A15)の合成] [Synthesis Example: 4,7-bis (5′-bromo-4′-dodecyl [2,2′-bithiophene] -5-yl) -5,6-difluoro-benzo [1,2,5] thiadiazole (compound Synthesis of A15)]
Figure JPOXMLDOC01-appb-C000107
Figure JPOXMLDOC01-appb-C000107
2Lナスフラスコに4,7-ビス(4’-ドデシル[2,2’-ビチオフェン]-5-イル)-5,6-ジフルオロ-ベンゾ[1,2,5]チアジアゾール(化合物T31)(0.63g,0.76mmol)を入れ、 クロロホルム12.0mL、酢酸4.0mLを加え撹拌した。N-ブロモスクシンイミド(283mg,1.52mmol)を加え、75℃で3時間加熱撹拌した。室温まで冷却後、メタノールを20mL加えて撹拌し、濾別した。濾別した固体をメタノールで3回ふりかけ洗浄して乾燥させた。減圧下50℃で乾燥させることで4,7-ビス(5’-ブロモ-4’-ドデシル[2,2’-ビチオフェン]-5-イル)-5,6-ジフルオロ-ベンゾ[1,2,5]チアジアゾール(化合物A15)を0.72g、収率95%で得た。  In a 2 L eggplant flask, 4,7-bis (4′-dodecyl [2,2′-bithiophen] -5-yl) -5,6-difluoro-benzo [1,2,5] thiadiazole (Compound T31) (0. 63 g, 0.76 mmol) was added, and 12.0 mL of chloroform and 4.0 mL of acetic acid were added and stirred. N-bromosuccinimide (283 mg, 1.52 mmol) was added, and the mixture was stirred with heating at 75 ° C. for 3 hr. After cooling to room temperature, 20 mL of methanol was added and stirred, followed by filtration. The solid filtered off was washed by spraying with methanol three times and dried. By drying at 50 ° C. under reduced pressure, 4,7-bis (5′-bromo-4′-dodecyl [2,2′-bithiophen] -5-yl) -5,6-difluoro-benzo [1,2, 5] 0.72 g of thiadiazole (Compound A15) was obtained with a yield of 95%. *
[合成例:コポリマー20Aの合成] [Synthesis Example: Synthesis of Copolymer 20A]
Figure JPOXMLDOC01-appb-C000108
Figure JPOXMLDOC01-appb-C000108
 窒素雰囲気下、50mL二口ナスフラスコに、モノマーとして、米国特許出願公開2012/0227812号に記載の方法を参考にして得られた3,7-ジ(2-ブロモ-3-ドデシルチオフェン-5-イル)-ナフト[1,2-c:5,6-c]ビス[1,2,5]チアジアゾール(化合物A1)(29.8mg,0.033mmol)、上述の方法で得られた4,7-ビス(5’-ブロモ-4’-ドデシル[2,2’-ビチオフェン]-5-イル)-5,6-ジフルオロ-ベンゾ[1,2,5]チアジアゾール(化合物A15)(32.8mg,0.033mmol)、及び特表2014-501032号公報に記載の方法を参考にして得られた4,8-ビス-[5-(2-ヘキシルデシル)-チオフェン-2-イル]-2,6-ビス(トリメチルスタニル)-ベンゾ[1,2-b:4,5-b’]ジチオフェン(化合物D1)(74.5mg,0.066mmol)を入れ、さらにトリス(ジベンジリデンアセトン)ジパラジウムクロロホルム錯体(2.7mg,4.0mol%)、トリス(2-メチルフェニル)ホスフィン(3.2mg,16mol%)、クロロベンゼン(5.0mL)を入れ、100℃で1時間、続いて110℃で1時間攪拌した。反応液に、末端処理として、トリメチル(フェニル)スズ(0.03mL)およびクロロベンゼン(5.0mL)を加えて110℃で1.0時間加熱攪拌し、さらにブロモベンゼン(1.0mL)を加えて110℃で1.0時間加熱攪拌して、反応溶液をメタノール中に注ぎ、析出した沈殿をろ取した。得られた固体をクロロホルムに溶解させ、ジアミンシリカゲル(Fujiシリシア化学製)を加えて1時間室温で攪拌し、酸性シリカゲルのショートカラムを通した。溶液を濃縮することで、目的とするコポリマー20Aを、収率83%で得た。得られたコポリマー20Aの重量平均分子量Mwは200,000であり、PDIは4.4であった。 Under a nitrogen atmosphere, 3,7-di (2-bromo-3-dodecylthiophene-5-5) obtained by referring to a method described in US Patent Application Publication No. 2012/0227812 as a monomer in a 50 mL two-necked eggplant flask. Yl) -naphtho [1,2-c: 5,6-c] bis [1,2,5] thiadiazole (compound A1) (29.8 mg, 0.033 mmol), 4,7 obtained by the method described above -Bis (5'-bromo-4'-dodecyl [2,2'-bithiophene] -5-yl) -5,6-difluoro-benzo [1,2,5] thiadiazole (Compound A15) (32.8 mg, 0.08 mmol) and 4,8-bis- [5- (2-hexyldecyl) -thiophen-2-yl] -2,6 obtained by referring to the method described in JP-T-2014-501032 -Bi (Trimethylstannyl) -benzo [1,2-b: 4,5-b ′] dithiophene (Compound D1) (74.5 mg, 0.066 mmol) was added, and tris (dibenzylideneacetone) dipalladium chloroform complex ( 2.7 mg, 4.0 mol%), tris (2-methylphenyl) phosphine (3.2 mg, 16 mol%) and chlorobenzene (5.0 mL) were added, and the mixture was stirred at 100 ° C. for 1 hour and then at 110 ° C. for 1 hour. did. Trimethyl (phenyl) tin (0.03 mL) and chlorobenzene (5.0 mL) were added to the reaction solution as a terminal treatment, and the mixture was heated and stirred at 110 ° C. for 1.0 hour, and further bromobenzene (1.0 mL) was added. The mixture was heated and stirred at 110 ° C. for 1.0 hour, the reaction solution was poured into methanol, and the deposited precipitate was collected by filtration. The obtained solid was dissolved in chloroform, diamine silica gel (Fuji Silysia Chemical) was added, and the mixture was stirred for 1 hour at room temperature and passed through a short column of acidic silica gel. By concentrating the solution, the target copolymer 20A was obtained in a yield of 83%. The resulting copolymer 20A had a weight average molecular weight Mw of 200,000 and a PDI of 4.4.
<合成例21A:コポリマー21Aの合成> <Synthesis Example 21A: Synthesis of Copolymer 21A>
Figure JPOXMLDOC01-appb-C000109
Figure JPOXMLDOC01-appb-C000109
 窒素雰囲気下、50mL二口ナスフラスコに、モノマーとして、米国特許出願公開2012/0227812号に記載の方法を参考にして得られた3,7-ジ(2-ブロモ-3-ドデシルチオフェン-5-イル)-ナフト[1,2-c:5,6-c]ビス[1,2,5]チアジアゾール(化合物A1)(40.0mg,0.044mmol)、上述の方法で得られた4,7-ビス(5’-ブロモ-3-ドデシル[2,2’-ビチオフェン]-5-イル)-5,6-ジフルオロ-ベンゾ[1,2,5]チアジアゾール(化合物A14)(18.9mg,0.019mmol)、及び特表2014-501032号公報に記載の方法を参考にして得られた4,8-ビス-[5-(2-ヘキシルデシル)-チオフェン-2-イル]-2,6-ビス(トリメチルスタニル)-ベンゾ[1,2-b:4,5-b’]ジチオフェン(化合物D1)(74.5mg,0.066mmol)を入れ、さらにトリス(ジベンジリデンアセトン)ジパラジウムクロロホルム錯体(2.7mg,4.0mol%)、トリス(2-メチルフェニル)ホスフィン(3.2mg,16mol%)、クロロベンゼン(5.0mL)を入れ、100℃で1時間、続いて110℃で1時間攪拌した。反応液に、末端処理として、トリメチル(フェニル)スズ(0.03mL)およびクロロベンゼン(5.0mL)を加えて110℃で1.0時間加熱攪拌し、さらにブロモベンゼン(1.0mL)を加えて110℃で1.0時間加熱攪拌して、反応溶液をメタノール中に注ぎ、析出した沈殿をろ取した。得られた固体をクロロホルムに溶解させ、ジアミンシリカゲル(Fujiシリシア化学製)を加えて1時間室温で攪拌し、酸性シリカゲルのショートカラムを通した。溶液を濃縮することで、目的とするコポリマー21Aを、収率79%で得た。得られたコポリマー21Aの重量平均分子量Mwは86,000であり、PDIは2.6であった。 Under a nitrogen atmosphere, 3,7-di (2-bromo-3-dodecylthiophene-5-5) obtained by referring to a method described in US Patent Application Publication No. 2012/0227812 as a monomer in a 50 mL two-necked eggplant flask. Yl) -naphtho [1,2-c: 5,6-c] bis [1,2,5] thiadiazole (compound A1) (40.0 mg, 0.044 mmol), 4,7 obtained by the method described above -Bis (5′-bromo-3-dodecyl [2,2′-bithiophene] -5-yl) -5,6-difluoro-benzo [1,2,5] thiadiazole (Compound A14) (18.9 mg, 0 0,19 mmol) and 4,8-bis- [5- (2-hexyldecyl) -thiophen-2-yl] -2,6-- obtained by referring to the method described in JP-T-2014-501032 Screw Trimethylstannyl) -benzo [1,2-b: 4,5-b ′] dithiophene (Compound D1) (74.5 mg, 0.066 mmol) was added, and tris (dibenzylideneacetone) dipalladium chloroform complex (2 0.7 mg, 4.0 mol%), tris (2-methylphenyl) phosphine (3.2 mg, 16 mol%), and chlorobenzene (5.0 mL) were added, and the mixture was stirred at 100 ° C. for 1 hour and then at 110 ° C. for 1 hour. . Trimethyl (phenyl) tin (0.03 mL) and chlorobenzene (5.0 mL) were added to the reaction solution as a terminal treatment, and the mixture was heated and stirred at 110 ° C. for 1.0 hour, and further bromobenzene (1.0 mL) was added. The mixture was heated and stirred at 110 ° C. for 1.0 hour, the reaction solution was poured into methanol, and the deposited precipitate was collected by filtration. The obtained solid was dissolved in chloroform, diamine silica gel (Fuji Silysia Chemical) was added, and the mixture was stirred for 1 hour at room temperature and passed through a short column of acidic silica gel. By concentrating the solution, the target copolymer 21A was obtained with a yield of 79%. The weight average molecular weight Mw of the obtained copolymer 21A was 86,000, and PDI was 2.6.
<合成例22A:コポリマー22Aの合成> <Synthesis Example 22A: Synthesis of Copolymer 22A>
Figure JPOXMLDOC01-appb-C000110
Figure JPOXMLDOC01-appb-C000110
 窒素雰囲気下、50mL二口ナスフラスコに、モノマーとして、米国特許出願公開2012/0227812号に記載の方法を参考にして得られた3,7-ジ(2-ブロモ-3-ドデシルチオフェン-5-イル)-ナフト[1,2-c:5,6-c]ビス[1,2,5]チアジアゾール(化合物A1)(40.0mg,0.044mmol)、上述の方法で得られた4,7-ビス(5’-ブロモ-4’-ドデシル[2,2’-ビチオフェン]-5-イル)-5,6-ジフルオロ-ベンゾ[1,2,5]チアジアゾール(化合物A15)(18.9mg,0.019mmol)、及び特表2014-501032号公報に記載の方法を参考にして得られた4,8-ビス-[5-(2-ヘキシルデシル)-チオフェン-2-イル]-2,6-ビス(トリメチルスタニル)-ベンゾ[1,2-b:4,5-b’]ジチオフェン(化合物D1)(74.5mg,0.066mmol)を入れ、さらにトリス(ジベンジリデンアセトン)ジパラジウムクロロホルム錯体(2.7mg,4.0mol%)、トリス(2-メチルフェニル)ホスフィン(3.2mg,16mol%)、クロロベンゼン(5.0mL)を入れ、100℃で1時間、続いて110℃で1時間攪拌した。反応液に、末端処理として、トリメチル(フェニル)スズ(0.03mL)およびクロロベンゼン(5.0mL)を加えて110℃で1.0時間加熱攪拌し、さらにブロモベンゼン(1.0mL)を加えて110℃で1.0時間加熱攪拌して、反応溶液をメタノール中に注ぎ、析出した沈殿をろ取した。得られた固体をクロロホルムに溶解させ、ジアミンシリカゲル(Fujiシリシア化学製)を加えて1時間室温で攪拌し、酸性シリカゲルのショートカラムを通した。溶液を濃縮することで、目的とするコポリマー22Aを、収率80%で得た。得られたコポリマー22Aの重量平均分子量Mwは145,000であり、PDIは4.1であった。 Under a nitrogen atmosphere, 3,7-di (2-bromo-3-dodecylthiophene-5-5) obtained by referring to a method described in US Patent Application Publication No. 2012/0227812 as a monomer in a 50 mL two-necked eggplant flask. Yl) -naphtho [1,2-c: 5,6-c] bis [1,2,5] thiadiazole (compound A1) (40.0 mg, 0.044 mmol), 4,7 obtained by the method described above -Bis (5′-bromo-4′-dodecyl [2,2′-bithiophene] -5-yl) -5,6-difluoro-benzo [1,2,5] thiadiazole (Compound A15) (18.9 mg, 0.018 mmol) and 4,8-bis- [5- (2-hexyldecyl) -thiophen-2-yl] -2,6 obtained with reference to the method described in JP-T-2014-501032 -Bi (Trimethylstannyl) -benzo [1,2-b: 4,5-b ′] dithiophene (Compound D1) (74.5 mg, 0.066 mmol) was added, and tris (dibenzylideneacetone) dipalladium chloroform complex ( 2.7 mg, 4.0 mol%), tris (2-methylphenyl) phosphine (3.2 mg, 16 mol%) and chlorobenzene (5.0 mL) were added, and the mixture was stirred at 100 ° C. for 1 hour and then at 110 ° C. for 1 hour. did. Trimethyl (phenyl) tin (0.03 mL) and chlorobenzene (5.0 mL) were added to the reaction solution as a terminal treatment, and the mixture was heated and stirred at 110 ° C. for 1.0 hour, and further bromobenzene (1.0 mL) was added. The mixture was heated and stirred at 110 ° C. for 1.0 hour, the reaction solution was poured into methanol, and the deposited precipitate was collected by filtration. The obtained solid was dissolved in chloroform, diamine silica gel (Fuji Silysia Chemical) was added, and the mixture was stirred for 1 hour at room temperature and passed through a short column of acidic silica gel. By concentrating the solution, the target copolymer 22A was obtained in a yield of 80%. The resulting copolymer 22A had a weight average molecular weight Mw of 145,000 and a PDI of 4.1.
<実施例1A:光電変換素子1Aの作製及び評価>
[活性層形成用組成物の作製]
 p型半導体化合物として合成例1Aで得られたコポリマー1A、及びn型半導体化合物としてフラーレン化合物であるPC61BM(フェニルC61酪酸メチルエステル)とPC71BM(フェニルC71酪酸メチルエステル)との混合物(フロンティアカーボン社,nanom spectra E123)を3.6質量%の濃度となるように窒素雰囲気中でo-キシレンとテトラリンとの混合溶媒(体積比9:1)に溶解させた。なお、p型半導体化合物とn型半導体化合物の質量比は、p型半導体化合物:n型半導体化合物=1:2とした。この溶液をホットスターラー上で80℃の温度にて1時間攪拌混合した。攪拌混合後の溶液を1μmのポリテトラフルオロエチレン(PTFE)フィルターで濾過することにより、活性層形成用組成物を作製した。
<Example 1A: Production and evaluation of photoelectric conversion element 1A>
[Preparation of composition for forming active layer]
Copolymer 1A obtained in Synthesis Example 1A as a p-type semiconductor compound, and a mixture of PC61BM (phenyl C61 butyric acid methyl ester) and PC71BM (phenyl C71 butyric acid methyl ester) which are fullerene compounds as an n-type semiconductor compound (Frontier Carbon Co., Ltd., nanom spectra E123) was dissolved in a mixed solvent of o-xylene and tetralin (volume ratio 9: 1) in a nitrogen atmosphere to a concentration of 3.6% by mass. Note that the mass ratio of the p-type semiconductor compound to the n-type semiconductor compound was p-type semiconductor compound: n-type semiconductor compound = 1: 2. This solution was stirred and mixed on a hot stirrer at a temperature of 80 ° C. for 1 hour. The solution after stirring and mixing was filtered through a 1 μm polytetrafluoroethylene (PTFE) filter to prepare an active layer forming composition.
 インジウム・スズ酸化物(ITO)透明導電膜がパターニングされたガラス基板(ジオマテック社製)を、アセトンによる超音波洗浄、ついでイソプロパノールによる超音波洗浄の後、窒素ブローでの乾燥およびUV―オゾン処理を行った。 A glass substrate (manufactured by Geomatic Co., Ltd.) patterned with an indium tin oxide (ITO) transparent conductive film is subjected to ultrasonic cleaning with acetone, followed by ultrasonic cleaning with isopropanol, followed by drying with nitrogen blow and UV-ozone treatment. went.
 次に、酢酸亜鉛(II)二水和物(和光純薬社)を濃度105mg/mLになるように2-メトキシエタノール(Aldrich社)とエタノールアミン(Aldrich社)の混合溶媒(体積比100:3)に溶解した溶液(約0.1mL)を3000rpmの速度にてスピンコートし、UV―オゾン処理した後、200℃のオーブンで15分間加熱することで、電子取り出し層を形成した。
 電子取り出し層を成膜した基板をグローブボックスに持ち込み、窒素雰囲気下150℃で3分間加熱処理し、冷却後に上述の通り作製した活性層塗布用組成物(0.12mL)をスピンコートすることにより約200nmの膜厚の活性層を形成した。その後、ホットプレート上にて140℃で10分間加熱した。次に、活性層を成膜した基板をグローブボックスから取り出し、遮光下、大気中(25℃、湿度1%以下)に3時間静置した後、グローブボックス中に再度持ち込んだ。
Next, a mixed solvent of 2-methoxyethanol (Aldrich) and ethanolamine (Aldrich) at a concentration of 105 mg / mL of zinc (II) acetate dihydrate (Wako Pure Chemical Industries) (volume ratio 100: The solution (about 0.1 mL) dissolved in 3) was spin-coated at a speed of 3000 rpm, subjected to UV-ozone treatment, and then heated in an oven at 200 ° C. for 15 minutes to form an electron extraction layer.
By bringing the substrate on which the electron extraction layer is formed into a glove box, heat-treating at 150 ° C. for 3 minutes in a nitrogen atmosphere, and spin-coating the active layer coating composition (0.12 mL) prepared as described above after cooling. An active layer having a thickness of about 200 nm was formed. Then, it heated at 140 degreeC for 10 minute (s) on the hotplate. Next, the substrate on which the active layer was formed was taken out of the glove box, allowed to stand in the air (25 ° C., humidity 1% or less) for 3 hours under light shielding, and then brought back into the glove box.
 次に、活性層上に、正孔取り出し層として厚さ1.5nmの三酸化モリブデン(MoO3)膜を形成し、その後、上部電極として厚さ100nmの銀膜を、抵抗加熱型真空蒸着法により順次成膜して、5mm角の光電変換素子を作製した。このように作製した光電変換素子1A-1を、上述のように電流-電圧特性を測定することにより評価し、光電変換効率(PCE)を求めた。 Next, a molybdenum trioxide (MoO3) film with a thickness of 1.5 nm is formed on the active layer as a hole extraction layer, and then a silver film with a thickness of 100 nm is formed as an upper electrode by resistance heating vacuum deposition. A 5 mm square photoelectric conversion element was produced by sequentially forming a film. The photoelectric conversion element 1A-1 thus manufactured was evaluated by measuring the current-voltage characteristics as described above, and the photoelectric conversion efficiency (PCE) was obtained.
 また、活性層まで成膜した基板をグローブボックスから取り出した後、遮光下、大気中(25℃、湿度1%以下)で3時間静置する代わりに、蛍光灯の照射下、大気中(25℃、湿度1%以下)で3時間静置した以外は、光電変換素子1A-1と同様の方法で光電変換素子1A-2を作製した。このように得られた光電変換素子の1A-2変換効率を求め、活性層が露光されていない(遮光)光電変換素子1A-1の変換効率に対する維持率(光電変換素子1A-2の変換効率/光電変換素子1A-1の変換効率)を耐光性として算出した。得られた結果を表1に示す。 In addition, after taking out the substrate on which the active layer has been formed from the glove box, instead of leaving it in the atmosphere (25 ° C., humidity 1% or less) for 3 hours under light shielding, in the atmosphere (25 A photoelectric conversion element 1A-2 was produced in the same manner as the photoelectric conversion element 1A-1, except that the film was allowed to stand at 3 ° C. and a humidity of 1% or less for 3 hours. The 1A-2 conversion efficiency of the photoelectric conversion element thus obtained is obtained, and the maintenance ratio with respect to the conversion efficiency of the photoelectric conversion element 1A-1 in which the active layer is not exposed (light-shielded) (the conversion efficiency of the photoelectric conversion element 1A-2) / Conversion efficiency of photoelectric conversion element 1A-1) was calculated as light resistance. The obtained results are shown in Table 1.
<参考例1A:光電変換素子2Aの作製及び評価>
 コポリマー1Aの代わりに合成例2Aにより得られたコポリマー2Aを用いた以外は、実施例1Aと同様の方法で光電変換素子2Aを作製し、評価を行った。得られた結果を表1に示す。
<Reference Example 1A: Production and Evaluation of Photoelectric Conversion Element 2A>
A photoelectric conversion element 2A was prepared and evaluated in the same manner as in Example 1A, except that the copolymer 2A obtained in Synthesis Example 2A was used instead of the copolymer 1A. The obtained results are shown in Table 1.
<参考例2A:光電変換素子3Aの作製及び評価>
 コポリマー1Aの代わりに合成例3Aにより得られたコポリマー3Aを用いた以外は、実施例1Aと同様の方法で光電変換素子3Aを作製し、評価を行った。得られた結果を表1に示す。
<Reference Example 2A: Production and Evaluation of Photoelectric Conversion Element 3A>
A photoelectric conversion element 3A was produced and evaluated in the same manner as in Example 1A, except that the copolymer 3A obtained in Synthesis Example 3A was used instead of the copolymer 1A. The obtained results are shown in Table 1.
<実施例2A:光電変換素子4Aの作製及び評価>
 コポリマー1Aの代わりに合成例4Aにより得られたコポリマー4Aを用いた以外は、実施例1Aと同様の方法で光電変換素子4Aを作製し、評価を行った。得られた結果を表1に示す。
<Example 2A: Production and Evaluation of Photoelectric Conversion Element 4A>
A photoelectric conversion element 4A was produced and evaluated in the same manner as in Example 1A, except that the copolymer 4A obtained in Synthesis Example 4A was used instead of the copolymer 1A. The obtained results are shown in Table 1.
<実施例3A:光電変換素子5Aの作製及び評価>
 コポリマー1Aの代わりに合成例5Aにより得られたコポリマー5Aを用いた以外は、実施例1Aと同様の方法で光電変換素子5を作製し、評価を行った。得られた結果を表1に示す。
<Example 3A: Production and evaluation of photoelectric conversion element 5A>
A photoelectric conversion element 5 was produced and evaluated in the same manner as in Example 1A, except that the copolymer 5A obtained in Synthesis Example 5A was used instead of the copolymer 1A. The obtained results are shown in Table 1.
<実施例4A:光電変換素子6Aの作製及び評価>
 コポリマー1Aの代わりに合成例6Aにより得られたコポリマー6Aを用いた以外は、実施例1Aと同様の方法で光電変換素子6Aを作製し、評価を行った。得られた結果を表1に示す。
<Example 4A: Production and evaluation of photoelectric conversion element 6A>
A photoelectric conversion element 6A was produced and evaluated in the same manner as in Example 1A except that the copolymer 6A obtained in Synthesis Example 6A was used instead of the copolymer 1A. The obtained results are shown in Table 1.
<実施例5A:光電変換素子7Aの作製及び評価>
 コポリマー1Aの代わりに合成例7Aにより得られたコポリマー6Aを用いた以外は、実施例1Aと同様の方法で光電変換素子7Aを作製し、評価を行った。得られた結果を表1に示す。
<Example 5A: Production and evaluation of photoelectric conversion element 7A>
A photoelectric conversion element 7A was produced and evaluated in the same manner as in Example 1A except that the copolymer 6A obtained in Synthesis Example 7A was used instead of the copolymer 1A. The obtained results are shown in Table 1.
<実施例6A:光電変換素子8Aの作製及び評価>
 コポリマー1Aの代わりに合成例8Aにより得られたコポリマー8Aを用いた以外は、実施例1Aと同様の方法で光電変換素子8Aを作製し、評価を行った。得られた結果を表1に示す。
<Example 6A: Production and evaluation of photoelectric conversion element 8A>
A photoelectric conversion element 8A was produced and evaluated in the same manner as in Example 1A, except that the copolymer 8A obtained in Synthesis Example 8A was used instead of the copolymer 1A. The obtained results are shown in Table 1.
<実施例7A:光電変換素子9Aの作製及び評価>
 コポリマー1Aの代わりに合成例9Aにより得られたコポリマー9Aを用いた以外は、実施例1Aと同様の方法で光電変換素子9Aを作製し、評価を行った。得られた結果を表1に示す。
<Example 7A: Production and evaluation of photoelectric conversion element 9A>
A photoelectric conversion element 9A was produced and evaluated in the same manner as in Example 1A, except that the copolymer 9A obtained in Synthesis Example 9A was used instead of the copolymer 1A. The obtained results are shown in Table 1.
<実施例8A:光電変換素子10Aの作製及び評価>
 コポリマー1Aの代わりに合成例10Aにより得られたコポリマー10Aを用いた以外は、実施例1Aと同様の方法で光電変換素子10Aを作製し、評価を行った。得られた結果を表1に示す。
<Example 8A: Production and evaluation of photoelectric conversion element 10A>
10 A of photoelectric conversion elements were produced and evaluated by the same method as Example 1A except having used the copolymer 10A obtained by the synthesis example 10A instead of the copolymer 1A. The obtained results are shown in Table 1.
<実施例9A:光電変換素子11Aの作製及び評価>
 コポリマー1Aの代わりに合成例11Aにより得られたコポリマー11Aを用いた以外は、実施例1Aと同様の方法で光電変換素子11Aを作製し、評価を行った。得られた結果を表1に示す。
<Example 9A: Production and evaluation of photoelectric conversion element 11A>
11 A of photoelectric conversion elements were produced and evaluated by the same method as Example 1A except having used the copolymer 11A obtained by the synthesis example 11A instead of the copolymer 1A. The obtained results are shown in Table 1.
<参考例3A:光電変換素子12Aの作製及び評価>
 コポリマー1Aの代わりに合成例12Aにより得られたコポリマー12Aを用いた以外は、実施例1Aと同様の方法で光電変換素子12Aを作製し、評価を行った。得られた結果を表1に示す。
<Reference Example 3A: Production and Evaluation of Photoelectric Conversion Element 12A>
A photoelectric conversion element 12A was produced and evaluated in the same manner as in Example 1A, except that the copolymer 12A obtained in Synthesis Example 12A was used instead of the copolymer 1A. The obtained results are shown in Table 1.
<実施例10A:光電変換素子13Aの作製及び評価>
 コポリマー1Aの代わりに合成例13Aにより得られたコポリマー13Aを用いた以外は、実施例1Aと同様の方法で光電変換素子13Aを作製し、評価を行った。得られた結果を表1に示す。
<Example 10A: Production and evaluation of photoelectric conversion element 13A>
A photoelectric conversion element 13A was produced and evaluated in the same manner as in Example 1A, except that the copolymer 13A obtained in Synthesis Example 13A was used instead of the copolymer 1A. The obtained results are shown in Table 1.
<参考例4A:光電変換素子14Aの作製及び評価>
 コポリマー1Aの代わりに合成例14Aにより得られたコポリマー14Aを用いた以外は、実施例1Aと同様の方法で光電変換素子14Aを作製することを試みた。しかしながら、コポリマー14Aはクロロホルム、トルエン、オルトジクロロベンゼン等の溶媒に溶解せず、光電変換素子を製造することができなかった。そのため、光電変換効率と耐光性の評価は行えなかった。
<Reference Example 4A: Production and Evaluation of Photoelectric Conversion Element 14A>
An attempt was made to produce a photoelectric conversion element 14A in the same manner as in Example 1A, except that the copolymer 14A obtained in Synthesis Example 14A was used instead of the copolymer 1A. However, the copolymer 14A was not dissolved in a solvent such as chloroform, toluene, or orthodichlorobenzene, and a photoelectric conversion element could not be produced. Therefore, evaluation of photoelectric conversion efficiency and light resistance could not be performed.
<実施例11A:光電変換素子15Aの作製及び評価>
 コポリマー1Aの代わりに合成例15Aにより得られたコポリマー15Aを用いた以外は、実施例1Aと同様の方法で光電変換素子15Aを作製し、評価を行った。得られた結果を表1に示す。
<Example 11A: Production and evaluation of photoelectric conversion element 15A>
A photoelectric conversion element 15A was produced and evaluated in the same manner as in Example 1A, except that the copolymer 15A obtained in Synthesis Example 15A was used instead of the copolymer 1A. The obtained results are shown in Table 1.
<実施例12A:光電変換素子16Aの作製及び評価>
 コポリマー1Aの代わりに合成例16Aにより得られたコポリマー16Aを用いた以外は、実施例1Aと同様の方法で光電変換素子16Aを作製し、評価を行った。得られた結果を表1に示す。
<Example 12A: Production and evaluation of photoelectric conversion element 16A>
A photoelectric conversion element 16A was produced and evaluated in the same manner as in Example 1A, except that the copolymer 16A obtained in Synthesis Example 16A was used instead of the copolymer 1A. The obtained results are shown in Table 1.
<実施例13A:光電変換素子17Aの作製及び評価>
 コポリマー1Aの代わりに合成例17Aにより得られたコポリマー17Aを用いた以外は、実施例1Aと同様の方法で光電変換素子17Aを作製し、評価を行った。得られた結果を表1に示す。
<Example 13A: Production and evaluation of photoelectric conversion element 17A>
A photoelectric conversion element 17A was produced and evaluated in the same manner as in Example 1A, except that the copolymer 17A obtained in Synthesis Example 17A was used instead of the copolymer 1A. The obtained results are shown in Table 1.
<実施例14A:光電変換素子18Aの作製及び評価>
 コポリマー1Aの代わりに合成例18Aにより得られたコポリマー18Aを用いた以外は、実施例1Aと同様の方法で光電変換素子18Aを作製し、評価を行った。得られた結果を表1に示す。
<Example 14A: Production and evaluation of photoelectric conversion element 18A>
A photoelectric conversion element 18A was produced and evaluated in the same manner as in Example 1A, except that the copolymer 18A obtained in Synthesis Example 18A was used instead of the copolymer 1A. The obtained results are shown in Table 1.
<実施例15A:光電変換素子19Aの作製及び評価>
 コポリマー1Aの代わりに合成例19Aにより得られたコポリマー19Aを用いた以外は、実施例1Aと同様の方法で光電変換素子19Aを作製し、評価を行った。得られた結果を表1に示す。
<Example 15A: Production and evaluation of photoelectric conversion element 19A>
A photoelectric conversion element 19A was produced and evaluated in the same manner as in Example 1A, except that the copolymer 19A obtained in Synthesis Example 19A was used instead of the copolymer 1A. The obtained results are shown in Table 1.
<実施例16A:光電変換素子20Aの作製及び評価>
 コポリマー1Aの代わりに合成例20Aにより得られたコポリマー20Aを用いた以外は、実施例1Aと同様の方法で光電変換素子20Aを作製し、評価を行った。得られた結果を表1に示す。
<Example 16A: Production and evaluation of photoelectric conversion element 20A>
A photoelectric conversion element 20A was produced and evaluated in the same manner as in Example 1A except that the copolymer 20A obtained in Synthesis Example 20A was used instead of the copolymer 1A. The obtained results are shown in Table 1.
<実施例17A:光電変換素子21Aの作製及び評価>
 コポリマー1Aの代わりに合成例21Aにより得られたコポリマー21Aを用いた以外は、実施例1Aと同様の方法で光電変換素子21Aを作製し、評価を行った。得られた結果を表1に示す。
<Example 17A: Production and evaluation of photoelectric conversion element 21A>
A photoelectric conversion element 21A was produced and evaluated in the same manner as in Example 1A, except that the copolymer 21A obtained in Synthesis Example 21A was used instead of the copolymer 1A. The obtained results are shown in Table 1.
<実施例18A:光電変換素子22Aの作製及び評価>
 コポリマー1Aの代わりに合成例22Aにより得られたコポリマー22Aを用いた以外は、実施例1Aと同様の方法で光電変換素子22Aを作製し、評価を行った。得られた結果を表1に示す。
<Example 18A: Production and evaluation of photoelectric conversion element 22A>
A photoelectric conversion element 22A was produced and evaluated in the same manner as in Example 1A, except that the copolymer 22A obtained in Synthesis Example 22A was used instead of the copolymer 1A. The obtained results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000111
Figure JPOXMLDOC01-appb-T000111
 表1の結果から、参考例1A及び参考例2Aにより得られた光電変換素子の変換効率は、それぞれ5.75%、0.76%であったのに対して、参考例1Aのコポリマー2の構成単位と、参考例2Aのコポリマー3の構成単位の両方の構成単位を有するコポリマー1を用いた実施例1Aに係る光電変換素子の変換効率は、8.76%となっており、2つの繰り返し単位を用いることで大幅に変換効率が向上していることが確認できる。さらに、参考例1A及び参考例2Aにより得られた光電変換素子の維持率が、それぞれ、79%、54%であったのに対して、実施例1Aにより得られた光電変換素子の維持率は96%となっており、変換効率のみならず、耐光性も向上していることが確認できる。 From the results in Table 1, the conversion efficiencies of the photoelectric conversion elements obtained in Reference Example 1A and Reference Example 2A were 5.75% and 0.76%, respectively, whereas that of copolymer 2 of Reference Example 1A was The conversion efficiency of the photoelectric conversion element according to Example 1A using the copolymer 1 having both the structural unit and the structural unit of the copolymer 3 of Reference Example 2A is 8.76%, which is two repetitions. It can be confirmed that the conversion efficiency is greatly improved by using the unit. Furthermore, while the maintenance rates of the photoelectric conversion elements obtained in Reference Example 1A and Reference Example 2A were 79% and 54%, respectively, the maintenance rates of the photoelectric conversion elements obtained in Example 1A were It can be confirmed that not only the conversion efficiency but also the light resistance is improved.
 また、式(I)で表わされるR~Rがいずれも水素原子であるコポリマー14Aはクロロホルム、トルエン、オルトジクロロベンゼン等の溶媒に溶解しなかったために光電変換素子を製造することができず、さらには、R~Rがいずれも1価の有機基であったコポリマー12Aを用いた参考例3Aに係る光電変換素子の変換効率が5.39%であり、露光耐性は57%であったのに対して、R~Rの基を本発明に従って選択したコポリマー1A及びコポリマー13Aを用いた実施例1A及び実施例10Aに係る光電変換素子の変換効率はいずれも高い値となった。この結果から、第1の実施態様に係るコポリマーのように、式(I)及び式(II)で表わされる構成単位を有し、さらには、式(I)における5員環上の置換基の位置を調整することにより、高い変換効率及び高い耐光性が得られることが確認できる。また、実施例2A~18Aに係る光電変換素子も実施例1Aと同様に高い変換効率及び高い耐光性を有していることが分かる。 Moreover, since the copolymer 14A in which R 1 to R 4 represented by the formula (I) are all hydrogen atoms was not dissolved in a solvent such as chloroform, toluene, or orthodichlorobenzene, a photoelectric conversion element could not be produced. Furthermore, the conversion efficiency of the photoelectric conversion device according to Reference Example 3A using the copolymer 12A in which R 1 to R 4 are all monovalent organic groups is 5.39%, and the exposure resistance is 57%. In contrast, the conversion efficiencies of the photoelectric conversion elements according to Example 1A and Example 10A using the copolymer 1A and the copolymer 13A in which the groups R 1 to R 4 are selected according to the present invention are both high. It was. From this result, as in the copolymer according to the first embodiment, it has structural units represented by the formula (I) and the formula (II), and further includes substituents on the 5-membered ring in the formula (I). By adjusting the position, it can be confirmed that high conversion efficiency and high light resistance can be obtained. It can also be seen that the photoelectric conversion elements according to Examples 2A to 18A have high conversion efficiency and high light resistance as in Example 1A.
<合成例1B:コポリマー1Bの合成> <Synthesis Example 1B: Synthesis of Copolymer 1B>
Figure JPOXMLDOC01-appb-C000112
Figure JPOXMLDOC01-appb-C000112
 窒素雰囲気下、50mL二口ナスフラスコに、モノマーとして、米国特許出願公開第2012/0227812号公報に記載の方法を参考にして得られた3,7-ジ(2-ブロモ-3-ドデシルチオフェン-5-イル)-ナフト[1,2-c:5,6-c]ビス[1,2,5]チアジアゾール(化合物A1)(60.0mg,0.066mmol)、公知文献(J.Am.Chem.Soc.,2011,133,9638-9641)に記載の方法を参考にして得られた4,8-ビス-[(4,5-ジヘキシル)-チオフェン-2-イル]-2,6-ビス(トリメチルスタニル)-ベンゾ[1,2-b:4,5-b’]ジチオフェン(化合物B1)(69.0mg,0.068mmol)を入れ、さらにテトラキス(トリフェニルホスフィン)パラジウム(0)(2.8mg,3.00mol%)、トリフェニルホスフィン含有不均一系パラジウム錯体触媒Pd-EnCatTPP30(Aldrich社製,3.6mg,1.53mol%)、トルエン(4.8mL)、及びN,N-ジメチルホルムアミド(1.2mL)を入れ、100℃で1時間、続いて110℃で2時間攪拌した。反応液をトルエンで2倍に希釈して110℃でさらに0.5時間加熱攪拌した後、末端処理として、トリメチル(フェニル)スズ(0.03mL)を加えて110℃で1.0時間加熱攪拌し、さらにブロモベンゼン(1.00mL)を加えて110℃で1.0時間加熱攪拌して、反応溶液をメタノール中に注ぎ、析出した沈殿をろ取した。得られた固体をクロロホルムに溶解させ、ジアミンシリカゲル(Fujiシリシア化学製)を加えて1時間室温で攪拌し、酸性シリカゲルのショートカラムを通した。溶液を濃縮することで、目的とするコポリマー1Bを、収率61%で得た。得られたコポリマー1Bの重量平均分子量Mwは34,000であり、PDIは1.7であった。 Under a nitrogen atmosphere, 3,7-di (2-bromo-3-dodecylthiophene-) obtained in a 50 mL two-necked eggplant flask as a monomer with reference to the method described in US Patent Application Publication No. 2012/0227812 5-yl) -naphtho [1,2-c: 5,6-c] bis [1,2,5] thiadiazole (compound A1) (60.0 mg, 0.066 mmol), known literature (J. Am. Chem) Soc., 2011, 133, 9638-9641) 4,8-bis-[(4,5-dihexyl) -thiophen-2-yl] -2,6-bis obtained by referring to the method described in Soc. (Trimethylstannyl) -benzo [1,2-b: 4,5-b ′] dithiophene (Compound B1) (69.0 mg, 0.068 mmol) was added, and tetrakis (triphenylphosphine) was added. N) palladium (0) (2.8 mg, 3.00 mol%), triphenylphosphine-containing heterogeneous palladium complex catalyst Pd-EnCatTPP30 (manufactured by Aldrich, 3.6 mg, 1.53 mol%), toluene (4.8 mL) ) And N, N-dimethylformamide (1.2 mL), and the mixture was stirred at 100 ° C. for 1 hour and then at 110 ° C. for 2 hours. The reaction solution was diluted twice with toluene and heated and stirred at 110 ° C. for another 0.5 hours, and then trimethyl (phenyl) tin (0.03 mL) was added as a terminal treatment and stirred at 110 ° C. for 1.0 hour. Further, bromobenzene (1.00 mL) was added and stirred with heating at 110 ° C. for 1.0 hour, and the reaction solution was poured into methanol, and the deposited precipitate was collected by filtration. The obtained solid was dissolved in chloroform, diamine silica gel (Fuji Silysia Chemical) was added, and the mixture was stirred for 1 hour at room temperature and passed through a short column of acidic silica gel. By concentrating the solution, the target copolymer 1B was obtained in a yield of 61%. The weight average molecular weight Mw of the obtained copolymer 1B was 34,000, and PDI was 1.7.
<合成例2B:コポリマー2Bの合成> <Synthesis Example 2B: Synthesis of Copolymer 2B>
Figure JPOXMLDOC01-appb-C000113
Figure JPOXMLDOC01-appb-C000113
 窒素雰囲気下、50mL二口ナスフラスコに、モノマーとして、米国特許出願公開第2012/0227812号公報に記載の方法を参考にして得られた3,7-ジ(2-ブロモ-3-ドデシルチオフェン-5-イル)-ナフト[1,2-c:5,6-c]ビス[1,2,5]チアジアゾール(化合物A1)(60.0mg,0.066mmol)、公知文献(ACS Macro Lett.,2013,2,605-608)に記載の方法を参考にして得られた4,8-ビス-[5-(2-ブチルオクチル)-チオフェン-2-イル]-2,6-ビス(トリメチルスタニル)-ベンゾ[1,2-b:4,5-b’]ジチオフェン(化合物D2)(68.0mg,0.067mmol)を入れ、さらにテトラキス(トリフェニルホスフィン)パラジウム(0)(2.3mg,3.00mol%)、トリフェニルホスフィン含有不均一系パラジウム錯体触媒Pd-EnCatTPP30(Aldrich社製,3.0mg,1.53mol%)、トルエン(4.0mL)、及びN,N-ジメチルホルムアミド(1.0mL)を入れ、100℃で1時間、続いて110℃で2時間攪拌した。反応液をトルエンで2倍に希釈して110℃でさらに0.5時間加熱攪拌した後、末端処理として、トリメチル(フェニル)スズ(0.03mL)を加えて110℃で1.0時間加熱攪拌し、さらにブロモベンゼン(1.00mL)を加えて110℃で1.0時間加熱攪拌して、反応溶液をメタノール中に注ぎ、析出した沈殿をろ取した。得られた固体をクロロホルムに溶解させ、ジアミンシリカゲル(Fujiシリシア化学製)を加えて1時間室温で攪拌し、酸性シリカゲルのショートカラムを通した。溶液を濃縮することで、目的とするコポリマー2を、収率76%で得た。得られたコポリマー2の重量平均分子量Mwは42,000であり、PDIは2.4であった。 Under a nitrogen atmosphere, 3,7-di (2-bromo-3-dodecylthiophene-) obtained in a 50 mL two-necked eggplant flask as a monomer with reference to the method described in US Patent Application Publication No. 2012/0227812 5-yl) -naphtho [1,2-c: 5,6-c] bis [1,2,5] thiadiazole (compound A1) (60.0 mg, 0.066 mmol), known literature (ACS Macro Lett., 2013, 2, 605-608) 4,8-bis- [5- (2-butyloctyl) -thiophen-2-yl] -2,6-bis (trimethyl ester) obtained by referring to the method described in Nyl) -benzo [1,2-b: 4,5-b ′] dithiophene (Compound D2) (68.0 mg, 0.067 mmol) was added, and tetrakis (triphenylphosphite) was added. ) Palladium (0) (2.3 mg, 3.00 mol%), triphenylphosphine-containing heterogeneous palladium complex catalyst Pd-EnCatTPP30 (Aldrich, 3.0 mg, 1.53 mol%), toluene (4.0 mL) And N, N-dimethylformamide (1.0 mL) were added, and the mixture was stirred at 100 ° C. for 1 hour and then at 110 ° C. for 2 hours. The reaction solution was diluted twice with toluene and heated and stirred at 110 ° C. for another 0.5 hours, and then trimethyl (phenyl) tin (0.03 mL) was added as a terminal treatment and stirred at 110 ° C. for 1.0 hour. Further, bromobenzene (1.00 mL) was added and stirred with heating at 110 ° C. for 1.0 hour, and the reaction solution was poured into methanol, and the deposited precipitate was collected by filtration. The obtained solid was dissolved in chloroform, diamine silica gel (Fuji Silysia Chemical) was added, and the mixture was stirred for 1 hour at room temperature and passed through a short column of acidic silica gel. By concentrating the solution, the target copolymer 2 was obtained in a yield of 76%. The weight average molecular weight Mw of the obtained copolymer 2 was 42,000, and PDI was 2.4.
<合成例3B:コポリマー3Bの合成> <Synthesis Example 3B: Synthesis of Copolymer 3B>
Figure JPOXMLDOC01-appb-C000114
Figure JPOXMLDOC01-appb-C000114
 窒素雰囲気下、50mL二口ナスフラスコに、モノマーとして、米国特許出願公開第2012/0227812号公報に記載の方法を参考にして得られた3,7-ジ(2-ブロモ-3-ドデシルチオフェン-5-イル)-ナフト[1,2-c:5,6-c]ビス[1,2,5]チアジアゾール(化合物A1)(60.0mg,0.066mmol)、特許5698371に記載の方法を参考にして得られた4,8-ビス-[5-(2-ヘキシルデシル)-チオフェン-2-イル]-2,6-ビス(トリメチルスタニル)-ベンゾ[1,2-b:4,5-b’]ジチオフェン(化合物D1)(74.7mg,0.067mmol)を入れ、さらにトリス(ジベンジリデンアセトン)ジパラジウムクロロホルム錯体(2.7mg,4.00mol%)、トリス(2-メチルフェニル)ホスフィン(6.4mg,32.00mol%)、クロロベンゼン(5.0mL)を入れ、45℃から105℃まで5分おきに昇温させ、1時間後に115℃に昇温した。さらに3時間後に130℃まで昇温し、2.5時間撹拌した。反応液をクロロベンゼンで2倍に希釈して末端処理として、トリメチル(フェニル)スズ(0.03mL)を加えて130℃で1.5時間加熱攪拌し、さらにブロモベンゼン(1.00mL)を加えて130℃で2.0時間加熱攪拌した。反応溶液をメタノール中に注ぎ、析出した沈殿をろ取した。得られた固体をクロロホルムに溶解させ、ジアミンシリカゲル(Fujiシリシア化学製)を加えて30分室温で攪拌し、酸性シリカゲルのショートカラムを通した。溶液を濃縮することで、目的とするコポリマー3Bを、収率72%で得た。得られたコポリマー3Bの重量平均分子量Mwは150,000であり、PDIは4.5であった。 Under a nitrogen atmosphere, 3,7-di (2-bromo-3-dodecylthiophene-) obtained in a 50 mL two-necked eggplant flask as a monomer with reference to the method described in US Patent Application Publication No. 2012/0227812 5-yl) -naphtho [1,2-c: 5,6-c] bis [1,2,5] thiadiazole (Compound A1) (60.0 mg, 0.066 mmol), see the method described in Patent 5698371 4,8-bis- [5- (2-hexyldecyl) -thiophen-2-yl] -2,6-bis (trimethylstannyl) -benzo [1,2-b: 4,5 -B ′] dithiophene (compound D1) (74.7 mg, 0.067 mmol) was added, and tris (dibenzylideneacetone) dipalladium chloroform complex (2.7 mg, 4.00 mo) was added. %), Tris (2-methylphenyl) phosphine (6.4 mg, 32.00 mol%), and chlorobenzene (5.0 mL), the temperature was raised from 45 ° C. to 105 ° C. every 5 minutes, and 115 ° C. after 1 hour. The temperature was raised to. After further 3 hours, the temperature was raised to 130 ° C. and stirred for 2.5 hours. The reaction solution was diluted twice with chlorobenzene, and as a terminal treatment, trimethyl (phenyl) tin (0.03 mL) was added, and the mixture was heated and stirred at 130 ° C. for 1.5 hours, and further bromobenzene (1.00 mL) was added. The mixture was heated and stirred at 130 ° C. for 2.0 hours. The reaction solution was poured into methanol, and the deposited precipitate was collected by filtration. The obtained solid was dissolved in chloroform, diamine silica gel (Fuji Silysia Chemical) was added, and the mixture was stirred at room temperature for 30 minutes and passed through a short column of acidic silica gel. By concentrating the solution, the target copolymer 3B was obtained in a yield of 72%. The resulting copolymer 3B had a weight average molecular weight Mw of 150,000 and a PDI of 4.5.
<合成例4B:コポリマー4Bの合成> <Synthesis Example 4B: Synthesis of Copolymer 4B>
Figure JPOXMLDOC01-appb-C000115
Figure JPOXMLDOC01-appb-C000115
 窒素雰囲気下、50mL二口ナスフラスコに、モノマーとして、米国特許出願公開第2012/0227812号公報に記載の方法を参考にして得られた3,7-ジ(2-ブロモ-3-ドデシルチオフェン-5-イル)-ナフト[1,2-c:5,6-c]ビス[1,2,5]チアジアゾール(化合物A1)(59.6mg,0.066mmol)、特許5698371に記載の方法を参考にして得られた4,8-ビス-[5-(2-ヘキシルデシル)-チオフェン-2-イル]-2,6-ビス(トリメチルスタニル)-ベンゾ[1,2-b:4,5-b’]ジチオフェン(化合物D1)(37.3mg,0.033mmol)を入れ、及び(Macromolecules,2011,44,7207-7219)に記載の方法を参考にして得られた4,8-ビス-[(2-ヘキシルデシル)オキシ]-2,6-ビス(トリメチルスタニル)-ベンゾ[1,2-b:4,5-b’]ジチオフェン(化合物B4)(32.9mg,0.033mmol)を入れ、さらにトリス(ジベンジリデンアセトン)ジパラジウムクロロホルム錯体(2.73mg,4.00mol%)、トリス(2-メチルフェニル)ホスフィン(3.21mg,16.00mol%)、クロロベンゼン(5.0mL)を入れ、100℃で1時間、続いて110℃で2時間攪拌した。反応液をトルエンで2倍に希釈して110℃でさらに0.5時間加熱攪拌した後、末端処理として、トリメチル(フェニル)スズ(0.03mL)を加えて110℃で1.0時間加熱攪拌し、さらにブロモベンゼン(1.00mL)を加えて110℃で1.0時間加熱攪拌して、反応溶液をメタノール中に注ぎ、析出した沈殿をろ取した。得られた固体をクロロホルムに溶解させ、ジアミンシリカゲル(Fujiシリシア化学製)を加えて1時間室温で攪拌し、酸性シリカゲルのショートカラムを通した。溶液を濃縮することで、目的とするコポリマー4Bを、収率82%で得た。得られたコポリマー4Bの重量平均分子量Mwは116,000であり、PDIは4.5であった。 Under a nitrogen atmosphere, 3,7-di (2-bromo-3-dodecylthiophene-) obtained in a 50 mL two-necked eggplant flask as a monomer with reference to the method described in US Patent Application Publication No. 2012/0227812 5-yl) -naphtho [1,2-c: 5,6-c] bis [1,2,5] thiadiazole (Compound A1) (59.6 mg, 0.066 mmol), see the method described in Japanese Patent No. 5698371 4,8-bis- [5- (2-hexyldecyl) -thiophen-2-yl] -2,6-bis (trimethylstannyl) -benzo [1,2-b: 4,5 -B ′] dithiophene (compound D1) (37.3 mg, 0.033 mmol) was added, and referring to the method described in (Macromolecules, 2011, 44, 7207-7219) 4,8-bis-[(2-hexyldecyl) oxy] -2,6-bis (trimethylstannyl) -benzo [1,2-b: 4,5-b ′] dithiophene (Compound B4) ) (32.9 mg, 0.033 mmol), tris (dibenzylideneacetone) dipalladium chloroform complex (2.73 mg, 4.00 mol%), tris (2-methylphenyl) phosphine (3.21 mg, 16.3 mmol). 00 mol%) and chlorobenzene (5.0 mL) were added, and the mixture was stirred at 100 ° C. for 1 hour and then at 110 ° C. for 2 hours. The reaction solution was diluted twice with toluene and heated and stirred at 110 ° C. for another 0.5 hours, and then trimethyl (phenyl) tin (0.03 mL) was added as a terminal treatment and stirred at 110 ° C. for 1.0 hour. Further, bromobenzene (1.00 mL) was added and stirred with heating at 110 ° C. for 1.0 hour, and the reaction solution was poured into methanol, and the deposited precipitate was collected by filtration. The obtained solid was dissolved in chloroform, diamine silica gel (Fuji Silysia Chemical) was added, and the mixture was stirred for 1 hour at room temperature and passed through a short column of acidic silica gel. By concentrating the solution, the target copolymer 4B was obtained in a yield of 82%. The resulting copolymer 4B had a weight average molecular weight Mw of 116,000 and a PDI of 4.5.
<合成例5B:コポリマー5Bの合成> <Synthesis Example 5B: Synthesis of Copolymer 5B>
Figure JPOXMLDOC01-appb-C000116
Figure JPOXMLDOC01-appb-C000116
 窒素雰囲気下、50mL二口ナスフラスコに、モノマーとして、米国特許出願公開第2012/0227812号公報に記載の方法を参考にして得られた3,7-ジ(2-ブロモ-3-ドデシルチオフェン-5-イル)-ナフト[1,2-c:5,6-c]ビス[1,2,5]チアジアゾール(化合物A1)(58.6mg,0.065mmol)、公知文献(ACS Macro Lett.,2013,2,605-608)に記載の方法を参考にして得られた4,8-ビス-[5-(2-オクチルドデシル)-チオフェン-2-イル]-2,6-ビス(トリメチルスタニル)-ベンゾ[1,2-b:4,5-b’]ジチオフェン(化合物B5)(80.5mg,0.065mmol)を入れ、さらにトリス(ジベンジリデンアセトン)ジパラジウムクロロホルム錯体(2.7mg,4.00mol%)、トリス(2-メチルフェニル)ホスフィン(6.3mg,32.00mol%)、クロロベンゼン(5.0mL)を入れ、100℃で1時間、続いて110℃で2時間攪拌した。反応液をクロロベンゼンで2倍に希釈して110℃でさらに1時間加熱攪拌した後、末端処理として、トリメチル(フェニル)スズ(0.03mL)を加えて110℃で1.0時間加熱攪拌し、さらにブロモベンゼン(1.0mL)を加えて110℃で1.0時間加熱攪拌して、反応溶液をメタノール中に注ぎ、析出した沈殿をろ取した。得られた固体をクロロホルムに溶解させ、ジアミンシリカゲル(Fujiシリシア化学製)を加えて1時間室温で攪拌し、酸性シリカゲルのショートカラムを通した。溶液を濃縮することで、目的とするコポリマー5を、収率83%で得た。得られたコポリマー5の重量平均分子量Mwは119,000であり、PDIは4.2であった。 Under a nitrogen atmosphere, 3,7-di (2-bromo-3-dodecylthiophene-) obtained in a 50 mL two-necked eggplant flask as a monomer with reference to the method described in US Patent Application Publication No. 2012/0227812 5-yl) -naphtho [1,2-c: 5,6-c] bis [1,2,5] thiadiazole (Compound A1) (58.6 mg, 0.065 mmol), known literature (ACS Macro Lett., 2013, 2, 605-608) 4,8-bis- [5- (2-octyldodecyl) -thiophen-2-yl] -2,6-bis (trimethyl ester) obtained by referring to the method described in Nyl) -benzo [1,2-b: 4,5-b ′] dithiophene (compound B5) (80.5 mg, 0.065 mmol) is added, and tris (dibenzylideneacetone is added. Add dipalladium chloroform complex (2.7 mg, 4.00 mol%), tris (2-methylphenyl) phosphine (6.3 mg, 32.00 mol%), chlorobenzene (5.0 mL), and continue at 100 ° C. for 1 hour. And stirred at 110 ° C. for 2 hours. The reaction solution was diluted 2-fold with chlorobenzene and further heated and stirred at 110 ° C. for 1 hour. Then, trimethyl (phenyl) tin (0.03 mL) was added as a terminal treatment, and the mixture was heated and stirred at 110 ° C. for 1.0 hour. Bromobenzene (1.0 mL) was further added, and the mixture was stirred with heating at 110 ° C. for 1.0 hour. The reaction solution was poured into methanol, and the deposited precipitate was collected by filtration. The obtained solid was dissolved in chloroform, diamine silica gel (Fuji Silysia Chemical) was added, and the mixture was stirred for 1 hour at room temperature and passed through a short column of acidic silica gel. By concentrating the solution, the target copolymer 5 was obtained in a yield of 83%. The weight average molecular weight Mw of the obtained copolymer 5 was 119,000, and PDI was 4.2.
<合成例6B:コポリマー6Bの合成>
[合成例:4-テトラデシル-2-トリメチルスタニルチオフェン(化合物T2)の合成]
<Synthesis Example 6B: Synthesis of Copolymer 6B>
[Synthesis Example: Synthesis of 4-tetradecyl-2-trimethylstannylthiophene (Compound T2)]
Figure JPOXMLDOC01-appb-C000117
Figure JPOXMLDOC01-appb-C000117
 50mL二口フラスコに2,2,6,6-テトラメチルピペリジン(2.18g,15mmol)を加え、窒素置換を3回行った。乾燥THF10mLを加え、ドライアイスアセトンバスで-78℃に冷却した。n-ブチルリチウム(1.6M,8.9mL,14.3mmol)を-78℃で滴下し、30分撹拌した後、氷浴で0℃まで昇温した。一方で、500mL4つ口フラスコに3‐テトラデシルチオフェン(化合物T1)(4.3g,15mmol)を加え、窒素置換を3回行った。乾燥THF190mLを加え、ドライアイスアセトンバスで-40℃に冷却した。先に調整したLiTMPを-40℃でゆっくり滴下し、滴下終了後にさらに1時間撹拌した後、トリメチルスズクロリド(1M in THF 15mL,15mmol)を滴下し、30分撹拌した。蒸留水100mLを加え反応をクエンチし、水層をヘキサンで1回抽出した。有機層を水で3回洗浄し、無水硫酸ナトリウムで乾燥した。溶媒をエバポレータで留去し、減圧下(オイルポンプ)40℃で乾燥させることで4-テトラデシル-2-トリメチルスタニルチオフェン(化合物T2)を得た。プロトンNMRの結果、スズ体の純度は70%であった。 2,2,6,6-tetramethylpiperidine (2.18 g, 15 mmol) was added to a 50 mL two-necked flask, and nitrogen substitution was performed three times. 10 mL of dry THF was added, and the mixture was cooled to −78 ° C. with a dry ice acetone bath. n-Butyllithium (1.6M, 8.9 mL, 14.3 mmol) was added dropwise at −78 ° C., stirred for 30 minutes, and then heated to 0 ° C. in an ice bath. Meanwhile, 3-tetradecylthiophene (compound T1) (4.3 g, 15 mmol) was added to a 500 mL four-necked flask, and nitrogen substitution was performed three times. 190 mL of dry THF was added, and the mixture was cooled to −40 ° C. with a dry ice acetone bath. The previously prepared LiTMP was slowly added dropwise at −40 ° C., and after the addition was further stirred for 1 hour, trimethyltin chloride (1M in THF, 15 mL, 15 mmol) was added dropwise and stirred for 30 minutes. 100 mL of distilled water was added to quench the reaction, and the aqueous layer was extracted once with hexane. The organic layer was washed 3 times with water and dried over anhydrous sodium sulfate. The solvent was distilled off with an evaporator and dried under reduced pressure (oil pump) at 40 ° C. to obtain 4-tetradecyl-2-trimethylstannylthiophene (Compound T2). As a result of proton NMR, the purity of the tin body was 70%.
[合成例:3,7-ジ(3-テトラデシルチオフェン-5-イル)-ナフト[1,2-c:5,6-c]ビス[1,2,5]チアジアゾール(化合物T4)の合成] [Synthesis Example: Synthesis of 3,7-di (3-tetradecylthiophen-5-yl) -naphtho [1,2-c: 5,6-c] bis [1,2,5] thiadiazole (Compound T4) ]
Figure JPOXMLDOC01-appb-C000118
Figure JPOXMLDOC01-appb-C000118
 50mL二口フラスコに4-テトラデシル-2-トリメチルスタニルチオフェン(化合物T2)(2.37g(P.70%)3.75mmol)、3,7-ジブロモ-ナフト[1,2-c:5,6-c]ビス[1,2,5]チアジアゾール(化合物T3)(603mg,1.5mmol)を加え、窒素置換を3回行った。 テトラキストリフェニルホスフィンパラジウム(34.9mg, 0.02mmol)を加え、窒素置換を2回行った。脱水トルエン70mL、脱水DMF7mLを加え115℃で3時間撹拌した。室温まで冷却後トルエンを留去した。酢酸エチルを20mL加えて撹拌し、濾別した。濾別した固体を酢酸エチルで3回ふりかけ洗浄して乾燥させた。得られた橙色固体をクロロホルム300mLに加熱溶解し、ショートパスのシリカゲルカラムで精製した。溶媒を留去し、減圧下乾燥させることで3,7-ジ(3-テトラデシルチオフェン-5-イル)-ナフト[1,2-c:5,6-c]ビス[1,2,5]チアジアゾール(化合物T4)を1.13g 、収率94%で得た。 In a 50 mL two-necked flask, 4-tetradecyl-2-trimethylstannylthiophene (Compound T2) (2.37 g (P.70%) 3.75 mmol), 3,7-dibromo-naphtho [1,2-c: 5, 6-c] bis [1,2,5] thiadiazole (Compound T3) (603 mg, 1.5 mmol) was added, and nitrogen substitution was performed three times. Tetrakistriphenylphosphine palladium (34.9 mg, 0.02 mmol) was added, and nitrogen substitution was performed twice. 70 mL of dehydrated toluene and 7 mL of dehydrated DMF were added and stirred at 115 ° C. for 3 hours. After cooling to room temperature, toluene was distilled off. 20 mL of ethyl acetate was added and stirred, followed by filtration. The filtered solid was washed with ethyl acetate 3 times and dried. The resulting orange solid was dissolved by heating in 300 mL of chloroform and purified by a short pass silica gel column. The solvent was distilled off and dried under reduced pressure to obtain 3,7-di (3-tetradecylthiophen-5-yl) -naphtho [1,2-c: 5,6-c] bis [1,2,5 ] 1.13 g of thiadiazole (compound T4) was obtained with a yield of 94%.
[合成例:3,7-ジ(2-ブロモ-3-テトラデシルチオフェン-5-イル)-ナフト[1,2-c:5,6-c]ビス[1,2,5]チアジアゾール(化合物A4)の合成] [Synthesis Example: 3,7-di (2-bromo-3-tetradecylthiophen-5-yl) -naphtho [1,2-c: 5,6-c] bis [1,2,5] thiadiazole (compound Synthesis of A4)
Figure JPOXMLDOC01-appb-C000119
Figure JPOXMLDOC01-appb-C000119
 2Lナスフラスコに3,7-ジ(3-テトラデシルチオフェン-5-イル)-ナフト[1,2-c:5,6-c]ビス[1,2,5]チアジアゾール(化合物T4)(1.13g,1.42mmol)を入れ、 クロロホルム1000mLを加えドライヤを用いて加熱撹拌した。室温まで冷却し、フラスコをアルミホイルで遮光した後、臭素(493mg,3.09mmol)のクロロホルム溶液を室温で素早く滴下した。室温で1時間撹拌した後、溶媒を9割留去した。得られた赤色スラリー液を減圧濾過し、クロロホルムで3回ふりかけ洗浄した。減圧下50℃で乾燥させることで3,7-ジ(2-ブロモ-3-テトラデシルチオフェン-5-イル)-ナフト[1,2-c:5,6-c]ビス[1,2,5]チアジアゾール(化合物A4)を1.34g、収率98%で得た。 In a 2 L eggplant flask, 3,7-di (3-tetradecylthiophen-5-yl) -naphtho [1,2-c: 5,6-c] bis [1,2,5] thiadiazole (Compound T4) (1 .13 g, 1.42 mmol) was added, 1000 mL of chloroform was added, and the mixture was heated and stirred using a dryer. After cooling to room temperature and shielding the flask from light with aluminum foil, a chloroform solution of bromine (493 mg, 3.09 mmol) was quickly added dropwise at room temperature. After stirring at room temperature for 1 hour, 90% of the solvent was distilled off. The obtained red slurry was filtered under reduced pressure and washed by sprinkling with chloroform three times. By drying at 50 ° C. under reduced pressure, 3,7-di (2-bromo-3-tetradecylthiophen-5-yl) -naphtho [1,2-c: 5,6-c] bis [1,2, 5] 1.34 g of thiadiazole (Compound A4) was obtained with a yield of 98%.
[合成例6B:コポリマー6Bの合成] [Synthesis Example 6B: Synthesis of Copolymer 6B]
Figure JPOXMLDOC01-appb-C000120
Figure JPOXMLDOC01-appb-C000120
 窒素雰囲気下、50mL二口ナスフラスコに、モノマーとして、上述の方法で得られた3,7-ジ(2-ブロモ-3-テトラデシルチオフェン-5-イル)-ナフト[1,2-c:5,6-c]ビス[1,2,5]チアジアゾール(化合物A4)(38.4mg,0.040mmol)、公知文献(ACS Macro Lett.,2013,2,605-608)に記載の方法を参考にして得られた4,8-ビス-[5-(2-ブチルオクチル)-チオフェン-2-イル]-2,6-ビス(トリメチルスタニル)-ベンゾ[1,2-b:4,5-b’]ジチオフェン(化合物D2)(40.7mg,0.040mmol)を入れ、さらにトリス(ジベンジリデンアセトン)ジパラジウムクロロホルム錯体(1.65mg,4.00mol%)、トリス(2-メチルフェニル)ホスフィン(1.95mg,16.00mol%)、クロロベンゼン(3.0mL)を入れ、100℃で1時間、続いて110℃で2時間攪拌した。反応液をクロロベンゼンで2倍に希釈して110℃でさらに0.5時間加熱攪拌した後、末端処理として、トリメチル(フェニル)スズ(0.03mL)を加えて110℃で1.0時間加熱攪拌し、さらにブロモベンゼン(1.00mL)を加えて110℃で1.0時間加熱攪拌して、反応溶液をメタノール中に注ぎ、析出した沈殿をろ取した。得られた固体をクロロホルムに溶解させ、ジアミンシリカゲル(Fujiシリシア化学製)を加えて1時間室温で攪拌し、酸性シリカゲルのショートカラムを通した。溶液を濃縮することで、目的とするコポリマー6Bを、収率76%で得た。得られたコポリマー6Bの重量平均分子量Mwは270,000であり、PDIは8.7であった。 In a 50 mL two-necked eggplant flask under a nitrogen atmosphere, 3,7-di (2-bromo-3-tetradecylthiophen-5-yl) -naphtho [1,2-c: obtained by the above method as a monomer was used. 5,6-c] bis [1,2,5] thiadiazole (compound A4) (38.4 mg, 0.040 mmol), a method described in known literature (ACS Macro Lett., 2013, 2, 605-608). 4,8-bis- [5- (2-butyloctyl) -thiophen-2-yl] -2,6-bis (trimethylstannyl) -benzo [1,2-b: 4,4 obtained by reference 5-b ′] dithiophene (compound D2) (40.7 mg, 0.040 mmol) was added, and tris (dibenzylideneacetone) dipalladium chloroform complex (1.65 mg, 4.00 mo) was added. %), Tris (2-methylphenyl) phosphine (1.95 mg, 16.00Mol%), was placed chlorobenzene (3.0 mL), 1 hour at 100 ° C., followed by stirring for 2 hours at 110 ° C.. After diluting the reaction solution with chlorobenzene twice and heating and stirring at 110 ° C. for another 0.5 hours, as a terminal treatment, trimethyl (phenyl) tin (0.03 mL) was added and heating and stirring at 110 ° C. for 1.0 hour. Further, bromobenzene (1.00 mL) was added and stirred with heating at 110 ° C. for 1.0 hour, and the reaction solution was poured into methanol, and the deposited precipitate was collected by filtration. The obtained solid was dissolved in chloroform, diamine silica gel (Fuji Silysia Chemical) was added, and the mixture was stirred for 1 hour at room temperature and passed through a short column of acidic silica gel. By concentrating the solution, the target copolymer 6B was obtained in a yield of 76%. The obtained copolymer 6B had a weight average molecular weight Mw of 270,000 and a PDI of 8.7.
<合成例7B:コポリマー7Bの合成> <Synthesis Example 7B: Synthesis of Copolymer 7B>
Figure JPOXMLDOC01-appb-C000121
Figure JPOXMLDOC01-appb-C000121
 窒素雰囲気下、50mL二口ナスフラスコに、モノマーとして、上述の方法で得られた3,7-ジ(2-ブロモ-3-テトラデシルチオフェン-5-イル)-ナフト[1,2-c:5,6-c]ビス[1,2,5]チアジアゾール(化合物A4)(62.0mg,0.065mmol)、公知文献(ACS Macro Lett.,2013,2,605-608)に記載の方法を参考にして得られた4,8-ビス-[5-(2-ブチルオクチル)-チオフェン-2-イル]-2,6-ビス(トリメチルスタニル)-ベンゾ[1,2-b:4,5-b’]ジチオフェン(化合物D2)(32.9mg,0.032mmol)、日本国特表2014-501032号公報に記載の方法を参考にして得られた4,8-ビス-[5-(2-ヘキシルデシル)-チオフェン-2-イル]-2,6-ビス(トリメチルスタニル)-ベンゾ[1,2-b:4,5-b’]ジチオフェン(化合物D1)(36.5mg,0.032mmol)を入れ、さらにトリス(ジベンジリデンアセトン)ジパラジウムクロロホルム錯体(2.7mg,4.00mol%)、トリス(2-メチルフェニル)ホスフィン(6.3mg,32.00mol%)、クロロベンゼン(5.0mL)を入れ、100℃で1時間、続いて110℃で2時間攪拌した。反応液をクロロベンゼンで2倍に希釈して110℃でさらに1時間加熱攪拌した後、末端処理として、トリメチル(フェニル)スズ(0.03mL)を加えて110℃で1.0時間加熱攪拌し、さらにブロモベンゼン(1.0mL)を加えて110℃で1.0時間加熱攪拌して、反応溶液をメタノール中に注ぎ、析出した沈殿をろ取した。得られた固体をクロロホルムに溶解させ、ジアミンシリカゲル(Fujiシリシア化学製)を加えて1時間室温で攪拌し、酸性シリカゲルのショートカラムを通した。溶液を濃縮することで、目的とするコポリマー7Bを、収率86%で得た。得られたコポリマー7Bの重量平均分子量Mwは367,000Kであり、PDIは8.2であった。 In a 50 mL two-necked eggplant flask under a nitrogen atmosphere, 3,7-di (2-bromo-3-tetradecylthiophen-5-yl) -naphtho [1,2-c: obtained by the above method as a monomer was used. 5,6-c] bis [1,2,5] thiadiazole (Compound A4) (62.0 mg, 0.065 mmol), a method described in known literature (ACS Macro Lett., 2013, 2, 605-608). 4,8-bis- [5- (2-butyloctyl) -thiophen-2-yl] -2,6-bis (trimethylstannyl) -benzo [1,2-b: 4,4 obtained by reference 5-b ′] dithiophene (compound D2) (32.9 mg, 0.032 mmol), 4,8-bis- [5- (5- (2)) obtained by referring to the method described in Japanese Patent Publication No. 2014-501032. 2-heki Rudecyl) -thiophen-2-yl] -2,6-bis (trimethylstannyl) -benzo [1,2-b: 4,5-b ′] dithiophene (compound D1) (36.5 mg, 0.032 mmol) And tris (dibenzylideneacetone) dipalladium chloroform complex (2.7 mg, 4.00 mol%), tris (2-methylphenyl) phosphine (6.3 mg, 32.00 mol%), chlorobenzene (5.0 mL) And stirred at 100 ° C. for 1 hour and then at 110 ° C. for 2 hours. The reaction solution was diluted 2-fold with chlorobenzene and further heated and stirred at 110 ° C. for 1 hour. Then, as a terminal treatment, trimethyl (phenyl) tin (0.03 mL) was added and heated and stirred at 110 ° C. for 1.0 hour. Bromobenzene (1.0 mL) was further added, and the mixture was stirred with heating at 110 ° C. for 1.0 hour. The reaction solution was poured into methanol, and the deposited precipitate was collected by filtration. The obtained solid was dissolved in chloroform, diamine silica gel (Fuji Silysia Chemical) was added, and the mixture was stirred for 1 hour at room temperature and passed through a short column of acidic silica gel. By concentrating the solution, the target copolymer 7B was obtained in a yield of 86%. The resulting copolymer 7B had a weight average molecular weight Mw of 367,000 K and a PDI of 8.2.
<合成例8B:コポリマー8Bの合成> <Synthesis Example 8B: Synthesis of Copolymer 8B>
Figure JPOXMLDOC01-appb-C000122
Figure JPOXMLDOC01-appb-C000122
 窒素雰囲気下、50mL二口ナスフラスコに、モノマーとして、上述の方法で得られた3,7-ジ(2-ブロモ-3-テトラデシルチオフェン-5-イル)-ナフト[1,2-c:5,6-c]ビス[1,2,5]チアジアゾール(化合物A4)(62.0mg,0.065mmol)、日本国特表2014-501032号公報に記載の方法を参考にして得られた4,8-ビス-[5-(2-ヘキシルデシル)-チオフェン-2-イル]-2,6-ビス(トリメチルスタニル)-ベンゾ[1,2-b:4,5-b’]ジチオフェン(化合物D1)(73.0mg,0.065mmol)を入れ、さらにトリス(ジベンジリデンアセトン)ジパラジウムクロロホルム錯体(2.7mg,4.00mol%)、トリス(2-メチルフェニル)ホスフィン(6.3mg,32.00mol%)、クロロベンゼン(5.0mL)を入れ、100℃で1時間、続いて110℃で2時間攪拌した。反応液をクロロベンゼンで2倍に希釈して110℃でさらに1時間加熱攪拌した後、末端処理として、トリメチル(フェニル)スズ(0.03mL)を加えて110℃で1.0時間加熱攪拌し、さらにブロモベンゼン(1.0mL)を加えて110℃で1.0時間加熱攪拌して、反応溶液をメタノール中に注ぎ、析出した沈殿をろ取した。得られた固体をクロロホルムに溶解させ、ジアミンシリカゲル(Fujiシリシア化学製)を加えて1時間室温で攪拌し、酸性シリカゲルのショートカラムを通した。溶液を濃縮することで、目的とするコポリマー8Bを、収率90%で得た。得られたコポリマー8Bの重量平均分子量Mwは291,000であり、PDIは6.4であった。 In a 50 mL two-necked eggplant flask under a nitrogen atmosphere, 3,7-di (2-bromo-3-tetradecylthiophen-5-yl) -naphtho [1,2-c: obtained by the above method as a monomer was used. 5,6-c] bis [1,2,5] thiadiazole (Compound A4) (62.0 mg, 0.065 mmol), 4 obtained by referring to the method described in Japanese Patent Special Publication No. 2014-501032 , 8-bis- [5- (2-hexyldecyl) -thiophen-2-yl] -2,6-bis (trimethylstannyl) -benzo [1,2-b: 4,5-b ′] dithiophene ( Compound D1) (73.0 mg, 0.065 mmol) was added, and tris (dibenzylideneacetone) dipalladium chloroform complex (2.7 mg, 4.00 mol%), tris (2-methylphenyl) Sufin (6.3mg, 32.00mol%), was placed chlorobenzene (5.0 mL), 1 hour at 100 ° C., followed by stirring for 2 hours at 110 ° C.. The reaction solution was diluted 2-fold with chlorobenzene and further heated and stirred at 110 ° C. for 1 hour. Then, trimethyl (phenyl) tin (0.03 mL) was added as a terminal treatment, and the mixture was heated and stirred at 110 ° C. for 1.0 hour. Bromobenzene (1.0 mL) was further added, and the mixture was stirred with heating at 110 ° C. for 1.0 hour. The reaction solution was poured into methanol, and the deposited precipitate was collected by filtration. The obtained solid was dissolved in chloroform, diamine silica gel (Fuji Silysia Chemical) was added, and the mixture was stirred for 1 hour at room temperature and passed through a short column of acidic silica gel. By concentrating the solution, the target copolymer 8B was obtained in a yield of 90%. The resulting copolymer 8B had a weight average molecular weight Mw of 291,000 and a PDI of 6.4.
<合成例9B:コポリマー9Bの合成> <Synthesis Example 9B: Synthesis of Copolymer 9B>
Figure JPOXMLDOC01-appb-C000123
Figure JPOXMLDOC01-appb-C000123
 窒素雰囲気下、50mL二口ナスフラスコに、モノマーとして、上述の方法で得られた3,7-ジ(2-ブロモ-3-テトラデシルチオフェン-5-イル)-ナフト[1,2-c:5,6-c]ビス[1,2,5]チアジアゾール(化合物A4)(60.7mg,0.063mmol)、公知文献(ACS Macro Lett.,2013,2,605-608)に記載の方法を参考にして得られた4,8-ビス-[5-(2-オクチルドデシル)-チオフェン-2-イル]-2,6-ビス(トリメチルスタニル)-ベンゾ[1,2-b:4,5-b’]ジチオフェン(化合物B5)(78.5mg,0.063mmol)を入れ、さらにトリス(ジベンジリデンアセトン)ジパラジウムクロロホルム錯体(2.6mg,4.00mol%)、トリ-1-ナフチルホスフィン(8.3mg,32.00mol%)、クロロベンゼン(5.0mL)を入れ、100℃で1時間、続いて110℃で2時間攪拌した。反応液をクロロベンゼンで2倍に希釈して110℃でさらに1時間加熱攪拌した後、末端処理として、トリメチル(フェニル)スズ(0.03mL)を加えて110℃で1.0時間加熱攪拌し、さらにブロモベンゼン(1.0mL)を加えて110℃で1.0時間加熱攪拌して、反応溶液をメタノール中に注ぎ、析出した沈殿をろ取した。得られた固体をクロロホルムに溶解させ、ジアミンシリカゲル(Fujiシリシア化学製)を加えて1時間室温で攪拌し、酸性シリカゲルのショートカラムを通した。溶液を濃縮することで、目的とするコポリマー9Bを、収率85%で得た。得られたコポリマー9Bの重量平均分子量Mwは261,000であり、PDIは5.6であった。 In a 50 mL two-necked eggplant flask under a nitrogen atmosphere, 3,7-di (2-bromo-3-tetradecylthiophen-5-yl) -naphtho [1,2-c: obtained by the above method as a monomer was used. 5,6-c] bis [1,2,5] thiadiazole (Compound A4) (60.7 mg, 0.063 mmol), a method described in known literature (ACS Macro Lett., 2013, 2, 605-608). 4,8-bis- [5- (2-octyldodecyl) -thiophen-2-yl] -2,6-bis (trimethylstannyl) -benzo [1,2-b: 4,4 obtained by reference 5-b ′] dithiophene (compound B5) (78.5 mg, 0.063 mmol) was added, and tris (dibenzylideneacetone) dipalladium chloroform complex (2.6 mg, 4.00 mo) was added. %), Tri-1-naphthyl phosphine (8.3mg, 32.00mol%), was placed chlorobenzene (5.0 mL), 1 hour at 100 ° C., followed by stirring for 2 hours at 110 ° C.. The reaction solution was diluted 2-fold with chlorobenzene and further heated and stirred at 110 ° C. for 1 hour. Then, trimethyl (phenyl) tin (0.03 mL) was added as a terminal treatment, and the mixture was heated and stirred at 110 ° C. for 1.0 hour. Bromobenzene (1.0 mL) was further added, and the mixture was stirred with heating at 110 ° C. for 1.0 hour. The reaction solution was poured into methanol, and the deposited precipitate was collected by filtration. The obtained solid was dissolved in chloroform, diamine silica gel (Fuji Silysia Chemical) was added, and the mixture was stirred for 1 hour at room temperature and passed through a short column of acidic silica gel. By concentrating the solution, the target copolymer 9B was obtained in a yield of 85%. The resulting copolymer 9B had a weight average molecular weight Mw of 261,000 and a PDI of 5.6.
<合成例10B:コポリマー10Bの合成> <Synthesis Example 10B: Synthesis of Copolymer 10B>
Figure JPOXMLDOC01-appb-C000124
Figure JPOXMLDOC01-appb-C000124
 窒素雰囲気下、50mL二口ナスフラスコに、モノマーとして、米国特許出願公開第2012/0227812号公報に記載の方法を参考にして得られた3,7-ジ(2-ブロモ-3-ヘキシルチオフェン-5-イル)-ナフト[1,2-c:5,6-c]ビス[1,2,5]チアジアゾール(化合物A17)(40.0mg,0.054mmol)、公知文献(J.Am.Chem.Soc.,2011,133,9638-9641)に記載の方法を参考にして得られた4,8-ビス-[(4,5-ジヘキシル)-チオフェン-2-イル]-2,6-ビス(トリメチルスタニル)-ベンゾ[1,2-b:4,5-b’]ジチオフェン(化合物B1)(57.0mg,0.056mmol)を入れ、さらにテトラキス(トリフェニルホスフィン)パラジウム(0)(2.3mg,3.00mol%)、トリフェニルホスフィン含有不均一系パラジウム錯体触媒Pd-EnCatTPP30(Aldrich社製,3.0mg,1.53mol%)、トルエン(4.0mL)、及びN,N-ジメチルホルムアミド(1.0mL)を入れ、100℃で1時間、続いて110℃で2時間攪拌した。反応液をトルエンで2倍に希釈して110℃でさらに0.5時間加熱攪拌した後、末端処理として、トリメチル(フェニル)スズ(0.03mL)を加えて110℃で1.0時間加熱攪拌し、さらにブロモベンゼン(1.00mL)を加えて110℃で1.0時間加熱攪拌して、反応溶液をメタノール中に注ぎ、析出した沈殿をろ取した。得られた固体をクロロホルムに溶解させ、ジアミンシリカゲル(Fujiシリシア化学製)を加えて1時間室温で攪拌し、酸性シリカゲルのショートカラムを通した。溶液を濃縮することで、目的とするコポリマー10Bを、収率51%で得た。得られたコポリマー10Bの重量平均分子量Mwは24,000であり、PDIは1.9であった。 3,7-di (2-bromo-3-hexylthiophene-) obtained as a monomer in a 50 mL two-necked eggplant flask under a nitrogen atmosphere with reference to the method described in US Patent Application Publication No. 2012/0227812 5-yl) -naphtho [1,2-c: 5,6-c] bis [1,2,5] thiadiazole (Compound A17) (40.0 mg, 0.054 mmol), known literature (J. Am. Chem) Soc., 2011, 133, 9638-9641) 4,8-bis-[(4,5-dihexyl) -thiophen-2-yl] -2,6-bis obtained by referring to the method described in Soc. (Trimethylstannyl) -benzo [1,2-b: 4,5-b ′] dithiophene (Compound B1) (57.0 mg, 0.056 mmol) was added, and tetrakis (triphenylphosphine) was added. ) Palladium (0) (2.3 mg, 3.00 mol%), triphenylphosphine-containing heterogeneous palladium complex catalyst Pd-EnCatTPP30 (manufactured by Aldrich, 3.0 mg, 1.53 mol%), toluene (4. 0 mL) and N, N-dimethylformamide (1.0 mL) were added, and the mixture was stirred at 100 ° C. for 1 hour and then at 110 ° C. for 2 hours. The reaction solution was diluted twice with toluene and heated and stirred at 110 ° C. for another 0.5 hours, and then trimethyl (phenyl) tin (0.03 mL) was added as a terminal treatment and stirred at 110 ° C. for 1.0 hour. Further, bromobenzene (1.00 mL) was added and stirred with heating at 110 ° C. for 1.0 hour, and the reaction solution was poured into methanol, and the deposited precipitate was collected by filtration. The obtained solid was dissolved in chloroform, diamine silica gel (Fuji Silysia Chemical) was added, and the mixture was stirred for 1 hour at room temperature and passed through a short column of acidic silica gel. By concentrating the solution, the target copolymer 10B was obtained in a yield of 51%. The resulting copolymer 10B had a weight average molecular weight Mw of 24,000 and a PDI of 1.9.
<合成例11B:コポリマー11Bの合成> <Synthesis Example 11B: Synthesis of Copolymer 11B>
Figure JPOXMLDOC01-appb-C000125
Figure JPOXMLDOC01-appb-C000125
 窒素雰囲気下、50mL二口ナスフラスコに、モノマーとして、米国特許出願公開第2012/0227812号公報に記載の方法を参考にして得られた3,7-ジ(2-ブロモ-3-ヘキシルチオフェン-5-イル)-ナフト[1,2-c:5,6-c]ビス[1,2,5]チアジアゾール(化合物A17)(40.0mg,0.054mmol)、日本国特表2014-501032号公報に記載の方法を参考にして得られた4,8-ビス-[5-(2-ヘキシルデシル)-チオフェン-2-イル]-2,6-ビス(トリメチルスタニル)-ベンゾ[1,2-b:4,5-b’]ジチオフェン(化合物D1)(63.0mg,0.056mmol)を入れ、さらにテトラキス(トリフェニルホスフィン)パラジウム(0)(2.3mg,3.00mol%)、トリフェニルホスフィン含有不均一系パラジウム錯体触媒Pd-EnCatTPP30(Aldrich社製,3.0mg,1.53mol%)、トルエン(4.0mL)、及びN,N-ジメチルホルムアミド(1.0mL)を入れ、100℃で1時間、続いて110℃で2時間攪拌した。反応液をトルエンで2倍に希釈して110℃でさらに0.5時間加熱攪拌した後、末端処理として、トリメチル(フェニル)スズ(0.03mL)を加えて110℃で1.0時間加熱攪拌し、さらにブロモベンゼン(1.00mL)を加えて110℃で1.0時間加熱攪拌して、反応溶液をメタノール中に注ぎ、析出した沈殿をろ取した。得られた固体をクロロホルムに溶解させ、ジアミンシリカゲル(Fujiシリシア化学製)を加えて1時間室温で攪拌し、酸性シリカゲルのショートカラムを通した。溶液を濃縮することで、目的とするコポリマー11Bを、収率51%で得た。得られたコポリマー11Bの重量平均分子量Mwは38,000であり、PDIは2.3であった。 3,7-di (2-bromo-3-hexylthiophene-) obtained as a monomer in a 50 mL two-necked eggplant flask under a nitrogen atmosphere with reference to the method described in US Patent Application Publication No. 2012/0227812 5-yl) -naphtho [1,2-c: 5,6-c] bis [1,2,5] thiadiazole (Compound A17) (40.0 mg, 0.054 mmol), Japanese National Table 2014-1401032 4,8-bis- [5- (2-hexyldecyl) -thiophen-2-yl] -2,6-bis (trimethylstannyl) -benzo [1, obtained by referring to the method described in the publication 2-b: 4,5-b ′] dithiophene (compound D1) (63.0 mg, 0.056 mmol) was added, and tetrakis (triphenylphosphine) palladium (0) (2.3 mg 3.00 mol%), a triphenylphosphine-containing heterogeneous palladium complex catalyst Pd-EnCatTPP30 (Aldrich, 3.0 mg, 1.53 mol%), toluene (4.0 mL), and N, N-dimethylformamide (1 0.0 mL) and stirred at 100 ° C. for 1 hour and then at 110 ° C. for 2 hours. The reaction solution was diluted twice with toluene and heated and stirred at 110 ° C. for another 0.5 hours, and then trimethyl (phenyl) tin (0.03 mL) was added as a terminal treatment and stirred at 110 ° C. for 1.0 hour. Further, bromobenzene (1.00 mL) was added and stirred with heating at 110 ° C. for 1.0 hour, and the reaction solution was poured into methanol, and the deposited precipitate was collected by filtration. The obtained solid was dissolved in chloroform, diamine silica gel (Fuji Silysia Chemical) was added, and the mixture was stirred for 1 hour at room temperature and passed through a short column of acidic silica gel. The target copolymer 11B was obtained with a yield of 51% by concentrating the solution. The obtained copolymer 11B had a weight average molecular weight Mw of 38,000 and a PDI of 2.3.
<合成例12B:コポリマー12Bの合成> <Synthesis Example 12B: Synthesis of Copolymer 12B>
Figure JPOXMLDOC01-appb-C000126
Figure JPOXMLDOC01-appb-C000126
 窒素雰囲気下、50mL二口ナスフラスコに、モノマーとして、米国特許出願公開2012/0227812号に記載の方法を参考にして得られた3,7-ジ(2-ブロモ-3-ドデシルチオフェン-5-イル)-ナフト[1,2-c:5,6-c]ビス[1,2,5]チアジアゾール(化合物A1)(59.6mg,0.066mmol)、及び特表2014-501032号公報に記載の方法を参考にして得られた4,8-ビス-[5-(2-ヘキシルデシル)-チオフェン-2-イル]-2,6-ビス(トリメチルスタニル)-ベンゾ[1,2-b:4,5-b’]ジチオフェン(化合物D1)(74.5mg,0.066mmol)を入れ、さらにテトラキス(トリフェニルホスフィン)パラジウム(0)(2.3mg,3.00mol%)、トリフェニルホスフィン含有不均一系パラジウム錯体触媒Pd-EnCatTPP30(Aldrich社製,3.0mg,1.53mol%)、トルエン(4.0mL)、及びN,N-ジメチルホルムアミド(1.0mL)を入れ、100℃で1時間、続いて110℃で2時間攪拌した。反応液をトルエンで2倍に希釈して110℃でさらに0.5時間加熱攪拌した後、末端処理として、トリメチル(フェニル)スズ(0.03mL)を加えて110℃で1.0時間加熱攪拌し、さらにブロモベンゼン(1.00mL)を加えて110℃で1.0時間加熱攪拌して、反応溶液をメタノール中に注ぎ、析出した沈殿をろ取した。得られた固体をクロロホルムに溶解させ、ジアミンシリカゲル(Fujiシリシア化学製)を加えて1時間室温で攪拌し、酸性シリカゲルのショートカラムを通した。溶液を濃縮することで、目的とするコポリマー12Bを、収率87%で得た。得られたコポリマー12Bの重量平均分子量Mwは52,000であり、PDIは2.2であった。 Under a nitrogen atmosphere, 3,7-di (2-bromo-3-dodecylthiophene-5-5) obtained by referring to a method described in US Patent Application Publication No. 2012/0227812 as a monomer in a 50 mL two-necked eggplant flask. Yl) -naphtho [1,2-c: 5,6-c] bis [1,2,5] thiadiazole (Compound A1) (59.6 mg, 0.066 mmol) and described in JP-T-2014-501032 4,8-bis- [5- (2-hexyldecyl) -thiophen-2-yl] -2,6-bis (trimethylstannyl) -benzo [1,2-b] obtained by referring to the method of : 4,5-b ′] dithiophene (Compound D1) (74.5 mg, 0.066 mmol) was added, and tetrakis (triphenylphosphine) palladium (0) (2.3 mg, 3.00). ol%), triphenylphosphine-containing heterogeneous palladium complex catalyst Pd-EnCatTPP30 (Aldrich, 3.0 mg, 1.53 mol%), toluene (4.0 mL), and N, N-dimethylformamide (1.0 mL) ) And stirred at 100 ° C. for 1 hour and then at 110 ° C. for 2 hours. The reaction solution was diluted twice with toluene and heated and stirred at 110 ° C. for another 0.5 hours, and then trimethyl (phenyl) tin (0.03 mL) was added as a terminal treatment and stirred at 110 ° C. for 1.0 hour. Further, bromobenzene (1.00 mL) was added and stirred with heating at 110 ° C. for 1.0 hour, and the reaction solution was poured into methanol, and the deposited precipitate was collected by filtration. The obtained solid was dissolved in chloroform, diamine silica gel (Fuji Silysia Chemical) was added, and the mixture was stirred for 1 hour at room temperature and passed through a short column of acidic silica gel. The target copolymer 12B was obtained with a yield of 87% by concentrating the solution. The resulting copolymer 12B had a weight average molecular weight Mw of 52,000 and a PDI of 2.2.
<実施例1B:光電変換素子の作製及び評価>
[活性層形成用組成物の作製]
 p型半導体化合物として合成例1Bで得られたコポリマー1B、及びn型半導体化合物としてフラーレン化合物であるPC61BM(フェニルC61酪酸メチルエステル)とPC71BM(フェニルC71酪酸メチルエステル)との混合物(フロンティアカーボン社,nanom spectra E123)を3.6質量%の濃度となるように窒素雰囲気中でo-キシレンとテトラリンとの混合溶媒(体積比9:1)に溶解させた。なお、p型半導体化合物とn型半導体化合物の質量比は、p型半導体化合物:n型半導体化合物=1:2とした。この溶液をホットスターラー上で80℃の温度にて1時間攪拌混合した。攪拌混合後の溶液を1μmのポリテトラフルオロエチレン(PTFE)フィルターで濾過することにより、活性層形成用組成物を作製した。
<Example 1B: Production and evaluation of photoelectric conversion element>
[Preparation of composition for forming active layer]
Copolymer 1B obtained in Synthesis Example 1B as a p-type semiconductor compound, and a mixture of PC61BM (phenyl C61 butyric acid methyl ester) and PC71BM (phenyl C71 butyric acid methyl ester) which are fullerene compounds as an n-type semiconductor compound (Frontier Carbon Corporation, nanom spectra E123) was dissolved in a mixed solvent of o-xylene and tetralin (volume ratio 9: 1) in a nitrogen atmosphere to a concentration of 3.6% by mass. Note that the mass ratio of the p-type semiconductor compound to the n-type semiconductor compound was p-type semiconductor compound: n-type semiconductor compound = 1: 2. This solution was stirred and mixed on a hot stirrer at a temperature of 80 ° C. for 1 hour. The solution after stirring and mixing was filtered through a 1 μm polytetrafluoroethylene (PTFE) filter to prepare an active layer forming composition.
 インジウム・スズ酸化物(ITO)透明導電膜がパターニングされたガラス基板(ジオマテック社製)を、アセトンによる超音波洗浄、ついでイソプロパノールによる超音波洗浄の後、窒素ブローでの乾燥およびUV―オゾン処理を行った。 A glass substrate (manufactured by Geomatic Co., Ltd.) patterned with an indium tin oxide (ITO) transparent conductive film is subjected to ultrasonic cleaning with acetone, followed by ultrasonic cleaning with isopropanol, followed by drying with nitrogen blow and UV-ozone treatment. went.
 次に、酢酸亜鉛(II)二水和物(和光純薬社)を濃度105mg/mLになるように2-メトキシエタノール(Aldrich社)とエタノールアミン(Aldrich社)の混合溶媒(体積比100:3)に溶解した溶液(約0.1mL)を3000rpmの速度にてスピンコートし、UV―オゾン処理した後、200℃のオーブンで15分間加熱することで、電子取り出し層を形成した。
 電子取り出し層を成膜した基板をグローブボックスに持ち込み、窒素雰囲気下150℃で3分間加熱処理し、冷却後に上述の通り作製した活性層塗布用組成物(0.12mL)をスピンコートすることにより約300nmの膜厚の活性層を形成した。その後、ホットプレート上にて140℃で10分間加熱した。
Next, a mixed solvent of 2-methoxyethanol (Aldrich) and ethanolamine (Aldrich) at a concentration of 105 mg / mL of zinc (II) acetate dihydrate (Wako Pure Chemical Industries) (volume ratio 100: The solution (about 0.1 mL) dissolved in 3) was spin-coated at a speed of 3000 rpm, subjected to UV-ozone treatment, and then heated in an oven at 200 ° C. for 15 minutes to form an electron extraction layer.
By bringing the substrate on which the electron extraction layer is formed into a glove box, heat-treating at 150 ° C. for 3 minutes in a nitrogen atmosphere, and spin-coating the active layer coating composition (0.12 mL) prepared as described above after cooling. An active layer having a thickness of about 300 nm was formed. Then, it heated at 140 degreeC for 10 minute (s) on the hotplate.
 次に、活性層上に、正孔取り出し層として厚さ1.5nmの三酸化モリブデン(MoO3)膜を形成し、その後、上部電極として厚さ100nmの銀膜を、抵抗加熱型真空蒸着法により順次成膜して、5mm角の光電変換素子を作製した。このように作製した光電変換素子を、上述のように電流-電圧特性を測定することにより評価し、活性層が露光されていない場合の光電変換効率(PCE)を求めた。得られた結果を表2に示す。 Next, a molybdenum trioxide (MoO 3 ) film having a thickness of 1.5 nm is formed as a hole extraction layer on the active layer, and then a silver film having a thickness of 100 nm is formed as an upper electrode by resistance heating vacuum deposition. Then, a 5 mm square photoelectric conversion element was produced. The photoelectric conversion element thus prepared was evaluated by measuring the current-voltage characteristics as described above, and the photoelectric conversion efficiency (PCE) when the active layer was not exposed was obtained. The obtained results are shown in Table 2.
<実施例2B:光電変換素子の作製及び評価>
 コポリマー1Bの代わりに合成例2Bにより得られたコポリマー2を用いた以外は、実施例1Bと同様の方法で光電変換素子を作製し、評価を行った。得られた結果を表2に示す。
<Example 2B: Production and Evaluation of Photoelectric Conversion Element>
A photoelectric conversion element was prepared and evaluated in the same manner as in Example 1B, except that the copolymer 2 obtained in Synthesis Example 2B was used instead of the copolymer 1B. The obtained results are shown in Table 2.
<実施例3B:光電変換素子の作製及び評価>
 コポリマー1Bの代わりに合成例3Bにより得られたコポリマー3Bを用いた以外は、実施例1Bと同様の方法で光電変換素子を作製し、評価を行った。得られた結果を表2に示す。
<Example 3B: Production and evaluation of photoelectric conversion element>
A photoelectric conversion element was produced and evaluated in the same manner as in Example 1B except that the copolymer 3B obtained in Synthesis Example 3B was used instead of the copolymer 1B. The obtained results are shown in Table 2.
<実施例4B:光電変換素子の作製及び評価>
 コポリマー1Bの代わりに合成例4Bにより得られたコポリマー4Bを用いた以外は、実施例1Bと同様の方法で光電変換素子を作製し、評価を行った。得られた結果を表2に示す。
<Example 4B: Production and Evaluation of Photoelectric Conversion Element>
A photoelectric conversion device was prepared and evaluated in the same manner as in Example 1B, except that the copolymer 4B obtained in Synthesis Example 4B was used instead of the copolymer 1B. The obtained results are shown in Table 2.
<実施例5B:光電変換素子の作製及び評価>
 コポリマー1Bの代わりに合成例5Bにより得られたコポリマー5Bを用いた以外は、実施例1Bと同様の方法で光電変換素子を作製し、評価を行った。得られた結果を表2に示す。
<Example 5B: Production and evaluation of photoelectric conversion element>
A photoelectric conversion element was produced and evaluated in the same manner as in Example 1B except that the copolymer 5B obtained in Synthesis Example 5B was used instead of the copolymer 1B. The obtained results are shown in Table 2.
<実施例6B:光電変換素子の作製及び評価>
 コポリマー1の代わりに合成例6Bにより得られたコポリマー6Bを用いた以外は、実施例1Bと同様の方法で光電変換素子を作製し、評価を行った。得られた結果を表2に示す。
<Example 6B: Production and evaluation of photoelectric conversion element>
A photoelectric conversion element was produced and evaluated in the same manner as in Example 1B except that the copolymer 6B obtained in Synthesis Example 6B was used instead of the copolymer 1. The obtained results are shown in Table 2.
<実施例7:光電変換素子の作製及び評価>
 コポリマー1Bの代わりに合成例7Bにより得られたコポリマー7Bを用いた以外は、実施例
1Bと同様の方法で光電変換素子を作製し、評価を行った。得られた結果を表2に示す。
<Example 7: Production and evaluation of photoelectric conversion element>
A photoelectric conversion element was produced and evaluated in the same manner as in Example 1B except that the copolymer 7B obtained in Synthesis Example 7B was used instead of the copolymer 1B. The obtained results are shown in Table 2.
<実施例8B:光電変換素子の作製及び評価>
 コポリマー1Bの代わりに合成例8Bにより得られたコポリマー8Bを用いた以外は、実施例1Bと同様の方法で光電変換素子を作製し、評価を行った。得られた結果を表2に示す。
<Example 8B: Production and evaluation of photoelectric conversion element>
A photoelectric conversion element was produced and evaluated in the same manner as in Example 1B except that the copolymer 8B obtained in Synthesis Example 8B was used instead of the copolymer 1B. The obtained results are shown in Table 2.
<実施例9B:光電変換素子の作製及び評価>
 コポリマー1Bの代わりに合成例9Bにより得られたコポリマー9Bを用いた以外は、実施例1Bと同様の方法で光電変換素子を作製し、評価を行った。得られた結果を表2に示す。
<Example 9B: Production and evaluation of photoelectric conversion element>
A photoelectric conversion element was produced and evaluated in the same manner as in Example 1B except that the copolymer 9B obtained in Synthesis Example 9B was used instead of the copolymer 1B. The obtained results are shown in Table 2.
<実施例10B:光電変換素子の作製及び評価>
 コポリマー1Bの代わりに合成例9Bにより得られたコポリマー12Bを用いた以外は、実施例1Bと同様の方法で光電変換素子を作製し、評価を行った。得られた結果を表2に示す。
<Example 10B: Production and evaluation of photoelectric conversion element>
A photoelectric conversion element was produced and evaluated in the same manner as in Example 1B, except that the copolymer 12B obtained in Synthesis Example 9B was used instead of the copolymer 1B. The obtained results are shown in Table 2.
<参考例1B:光電変換素子の作製及び評価>
 コポリマー1Bの代わりに合成例10Bにより得られたコポリマー10Bを用いた以外は、実施例1Bと同様の方法で光電変換素子を作製し、評価を行った。得られた結果を表2に示す。
<Reference Example 1B: Production and Evaluation of Photoelectric Conversion Element>
A photoelectric conversion element was produced and evaluated in the same manner as in Example 1B except that the copolymer 10B obtained in Synthesis Example 10B was used instead of the copolymer 1B. The obtained results are shown in Table 2.
<参考例2B:光電変換素子の作製及び評価>
 コポリマー1Bの代わりに合成例11Bにより得られたコポリマー11Bを用いた以外は、実施例1Bと同様の方法で光電変換素子を作製し、評価を行った。得られた結果を表2に示す。
<Reference Example 2B: Production and Evaluation of Photoelectric Conversion Element>
A photoelectric conversion element was produced and evaluated in the same manner as in Example 1B, except that the copolymer 11B obtained in Synthesis Example 11B was used instead of the copolymer 1B. The obtained results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000127
 表2中、C6はn-ヘキシル基、C12はn-ドデシル基、C14はn-テトラデシル基、Hは水素原子をそれぞれ表す。
Figure JPOXMLDOC01-appb-T000127
In Table 2, C6 represents an n-hexyl group, C12 represents an n-dodecyl group, C14 represents an n-tetradecyl group, and H represents a hydrogen atom.
 表2の結果から、実施例1Bに係る光電変換素子は、参考例1B及び参考例2Bに係る光電変換素子と比較して、高い変換効率が得られている。この結果から、式(I)におけるR1及びR4を、特定の脂肪族炭化水素基とすることにより光電変換素子の変換効率が向上することが分かる。さらに、実施例1Bに係る光電変換素子に対して、実施例2B~9Bに係る光電変換素子は大幅に変換効率が向上していることが分かる。この結果から、式(I)におけるR1及びR4を、特定の脂肪族炭化水素基とするとともに、式(XV)においてR21、R22、R24及びR25を水素原子とし、R20及びR23を特定の炭素数を有する分岐状の脂肪族炭化水素基とすることにより、コポリマー中の立体障害を抑えることができ、大幅に変換効率が向上することが分かる。また、同じ繰り返し単位を有する実施例3Bと実施例10Bを比較すると、分子量が大きい実施例3Bのほうがより変換効率が向上していることが分かる。 From the results in Table 2, the photoelectric conversion element according to Example 1B has higher conversion efficiency than the photoelectric conversion elements according to Reference Example 1B and Reference Example 2B. From the results, the R 1 and R 4 in formula (I), it can be seen that the improved conversion efficiency of the photoelectric conversion element by a specific aliphatic hydrocarbon group. Further, it can be seen that the conversion efficiency of the photoelectric conversion elements according to Examples 2B to 9B is greatly improved compared to the photoelectric conversion element according to Example 1B. From this result, R 1 and R 4 in formula (I) are specific aliphatic hydrocarbon groups, R 21 , R 22 , R 24 and R 25 are hydrogen atoms in formula (XV), and R 20 And R 23 is a branched aliphatic hydrocarbon group having a specific number of carbon atoms, steric hindrance in the copolymer can be suppressed, and the conversion efficiency is greatly improved. Moreover, when Example 3B and Example 10B which have the same repeating unit are compared, it turns out that conversion efficiency is improved more in Example 3B with a large molecular weight.
101 下部電極
102 下部バッファ層
103 活性層
104 上部バッファ層
105 上部電極
106 基材
107 光電変換素子
1   耐候性保護フィルム
2   紫外線カットフィルム
3,9 ガスバリアフィルム
4,8 ゲッター材フィルム
5,7 封止材
6   太陽電池素子
10  バックシート
12  基材
13  太陽電池ユニット
14  薄膜太陽電池
DESCRIPTION OF SYMBOLS 101 Lower electrode 102 Lower buffer layer 103 Active layer 104 Upper buffer layer 105 Upper electrode 106 Base material 107 Photoelectric conversion element 1 Weatherproofing protective film 2 UV cut film 3,9 Gas barrier film 4,8 Getter material film 5,7 Sealing material 6 Solar cell element 10 Back sheet 12 Base material 13 Solar cell unit 14 Thin film solar cell

Claims (17)

  1.  下記式(I)で表わされる繰り返し単位と、前記式(I)とは異なる下記式(II)で表わされる繰り返し単位と、を有するコポリマー。
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
    (式(I)中、X1及びX2はそれぞれ独立して周期表第16族元素から選ばれる原子を表し、R1及びR2の一方が1価の有機基で他方が水素原子またはハロゲン原子であり、R3及びR4の一方が1価の有機基で他方が水素原子またはハロゲン原子を表し、D1はドナー性構成単位を表す。式(II)中、Ar3およびAr4はそれぞれ独立して、置換基を有していてもよい芳香族基を表し、c及びdはそれぞれ独立して0以上2以下の整数を表し、Aはアクセプター性構成単位又は直接結合を表し、D2はドナー性構成単位を表す。なお、式(II)において、Aが直接結合である場合、式(II)中のc及びdはそれぞれ独立して1又は2である。)
    A copolymer having a repeating unit represented by the following formula (I) and a repeating unit represented by the following formula (II) different from the formula (I).
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
    (In the formula (I), X 1 and X 2 each independently represent an atom selected from Group 16 elements of the periodic table, one of R 1 and R 2 is a monovalent organic group and the other is a hydrogen atom or halogen. An atom, one of R 3 and R 4 is a monovalent organic group and the other represents a hydrogen atom or a halogen atom, and D 1 represents a donor-like structural unit, wherein Ar 3 and Ar 4 are each Independently represents an optionally substituted aromatic group, c and d each independently represent an integer of 0 or more and 2 or less, A represents an acceptor constituent unit or a direct bond, and D2 represents (It represents a donor structural unit. In the formula (II), when A is a direct bond, c and d in the formula (II) are each independently 1 or 2.)
  2.  前記式(I)において、RおよびR4は独立して1価の有機基であり、RおよびRは独立して水素原子またはハロゲン原子である、請求項1に記載のコポリマー。 The copolymer according to claim 1, wherein, in the formula (I), R 1 and R 4 are each independently a monovalent organic group, and R 2 and R 3 are each independently a hydrogen atom or a halogen atom.
  3.  前記式(I)中、D1が下記式(IV)又は下記式(V)で表わされる構成単位であることを特徴とする請求項1又は2に記載のコポリマー。
    Figure JPOXMLDOC01-appb-C000003
    Figure JPOXMLDOC01-appb-C000004
    (式(IV)中、Ar5及びAr6は、それぞれ独立して、置換基を有していてもよい芳香環を表し、X3及びX4は、それぞれ独立して、Q1(R5)(R6)、Q2(R7)、硫黄原子(S)、酸素原子(O)又は直接結合を表す。ただし、X3及びX4の一方が直接結合である場合、X3及びX4のうちの他方の基は、Q1(R5)(R6)、Q2(R7)、硫黄原子(S)又は酸素原子(O)である。なお、Q1は、周期表第14族元素から選ばれる原子を表し、Q2は、周期表第15族元素から選ばれる原子を表し、R5及びR6はそれぞれ独立して、水素原子、ハロゲン原子又は1価の有機基を表し、R7は水素原子、ハロゲン原子又は1価の有機基を表す。式(V)中、Ar7及びAr8は、それぞれ独立して、置換基を有していてもよい芳香環を表し、X5及びX6はそれぞれ独立して、Q3(R8)で表わされる基を表す。なお、Q3は、周期表第14族元素から選ばれる原子を表し、R8は水素原子、ハロゲン原子又は1価の有機基を表す。
    The copolymer according to claim 1 or 2, wherein D1 in the formula (I) is a structural unit represented by the following formula (IV) or the following formula (V).
    Figure JPOXMLDOC01-appb-C000003
    Figure JPOXMLDOC01-appb-C000004
    (In formula (IV), Ar 5 and Ar 6 each independently represent an aromatic ring optionally having a substituent, and X 3 and X 4 each independently represent Q 1 (R 5 ) (R 6 ), Q 2 (R 7 ), a sulfur atom (S), an oxygen atom (O) or a direct bond, provided that when one of X 3 and X 4 is a direct bond, X 3 and X The other group of 4 is Q 1 (R 5 ) (R 6 ), Q 2 (R 7 ), a sulfur atom (S) or an oxygen atom (O), where Q 1 is a periodic table Represents an atom selected from group 14 elements, Q 2 represents an atom selected from group 15 elements of the periodic table, and R 5 and R 6 each independently represents a hydrogen atom, a halogen atom or a monovalent organic group. represents, R 7 is a hydrogen atom,. formula represents a halogen atom or a monovalent organic group in (V), Ar 7 and Ar 8 are each independently have a substituent An aromatic ring, X 5 and X 6 each independently represent a group represented by Q 3 (R 8). Incidentally, Q 3 represents an atom selected from the periodic table group 14 element, R 8 Represents a hydrogen atom, a halogen atom or a monovalent organic group.
  4.  前記式(II)で表わされる繰り返し単位が下記式(VII)で表わされる繰り返し単位であることを特徴とする請求項1~3のいずれか1項に記載のコポリマー。
    Figure JPOXMLDOC01-appb-C000005
    (式(VII)中、X7及びX8はそれぞれ独立して、周期表第16族元素から選ばれる原子を表し、R11~R14はそれぞれ独立して水素原子、ハロゲン原子又は1価の有機基を表し、Aはアクセプター性構成単位又は直接結合を表し、D2はドナー性構成単位を表す。)
    The copolymer according to any one of claims 1 to 3, wherein the repeating unit represented by the formula (II) is a repeating unit represented by the following formula (VII).
    Figure JPOXMLDOC01-appb-C000005
    (In the formula (VII), X 7 and X 8 each independently represents an atom selected from Group 16 elements of the periodic table, and R 11 to R 14 each independently represents a hydrogen atom, a halogen atom or a monovalent atom. Represents an organic group, A represents an acceptor structural unit or a direct bond, and D2 represents a donor structural unit.)
  5.  前記式(II)中のAが下記式(VIII)又は下記式(IX)で表わされる構成単位であることを特徴とする請求項1~4のいずれか1項に記載のコポリマー。
    Figure JPOXMLDOC01-appb-C000006
    Figure JPOXMLDOC01-appb-C000007
    (式(VIII)中、Ar9は、置換基を有していてもよい芳香族炭化水素環、置換基を有していてもよい芳香族複素環、又は置換基を有していてもよい脂肪族複素環を表し、X9及びX10はそれぞれ独立して、窒素原子(N)又はQ4(R15)を表す。なお、Q4は周期表第14族元素から選ばれる原子を表し、R15は、水素原子、ハロゲン原子又は1価の有機基を表す。式(IX)中、Ar10は、置換基を有していてもよい芳香族炭化水素環、置換基を有していてもよい芳香族複素環、又は置換基を有していてもよい脂肪族複素環を表し、X11は、周期表第16族元素から選ばれる原子を表す。
    The copolymer according to any one of claims 1 to 4, wherein A in the formula (II) is a structural unit represented by the following formula (VIII) or the following formula (IX).
    Figure JPOXMLDOC01-appb-C000006
    Figure JPOXMLDOC01-appb-C000007
    (In Formula (VIII), Ar 9 may have an aromatic hydrocarbon ring which may have a substituent, an aromatic heterocyclic ring which may have a substituent, or a substituent. X 9 and X 10 each independently represents a nitrogen atom (N) or Q 4 (R 15 ), wherein Q 4 represents an atom selected from Group 14 elements of the periodic table. , R 15 represents a hydrogen atom, a halogen atom or a monovalent organic group, and in formula (IX), Ar 10 has an aromatic hydrocarbon ring which may have a substituent and a substituent. An aromatic heterocyclic ring which may be substituted, or an aliphatic heterocyclic ring which may have a substituent, and X 11 represents an atom selected from Group 16 elements of the periodic table.
  6.  前記式(II)中、D2が下記式(IV)又は下記式(V)で表わされる繰り返し単位であることを特徴とする請求項1~5のいずれか1項に記載のコポリマー。
    Figure JPOXMLDOC01-appb-C000008
    Figure JPOXMLDOC01-appb-C000009
    (式(IV)中、Ar5及びAr6は、それぞれ独立して、置換基を有していてもよい芳香環を表し、X3及びX4は、それぞれ独立して、Q1(R5)(R6)、Q2(R7)、硫黄原子(S)、酸素原子(O)又は直接結合を表す。ただし、X3及びX4の一方が直接結合である場合、X3及びX4のうちの他方の基は、Q1(R5)(R6)、Q2(R7)、硫黄原子(S)又は酸素原子(O)である。なお、Q1は、周期表第14族元素から選ばれる原子を表し、Q2は、周期表第15族元素から選ばれる原子を表し、R5及びR6はそれぞれ独立して、水素原子、ハロゲン原子又は1価の有機基を表し、R7は水素原子、ハロゲン原子又は1価の有機基を表す。式(V)中、Ar7及びAr8は、それぞれ独立して、置換基を有していてもよい芳香環を表し、X5及びX6はそれぞれ独立して、Q3(R8)で表わされる基を表す。なお、Q3は、周期表第14族元素から選ばれる原子を表し、R8は水素原子、ハロゲン原子又は1価の有機基を表す。)
    The copolymer according to any one of claims 1 to 5, wherein in the formula (II), D2 is a repeating unit represented by the following formula (IV) or the following formula (V).
    Figure JPOXMLDOC01-appb-C000008
    Figure JPOXMLDOC01-appb-C000009
    (In formula (IV), Ar 5 and Ar 6 each independently represent an aromatic ring optionally having a substituent, and X 3 and X 4 each independently represent Q 1 (R 5 ) (R 6 ), Q 2 (R 7 ), a sulfur atom (S), an oxygen atom (O) or a direct bond, provided that when one of X 3 and X 4 is a direct bond, X 3 and X The other group of 4 is Q 1 (R 5 ) (R 6 ), Q 2 (R 7 ), a sulfur atom (S) or an oxygen atom (O), where Q 1 is a periodic table Represents an atom selected from group 14 elements, Q 2 represents an atom selected from group 15 elements of the periodic table, and R 5 and R 6 each independently represents a hydrogen atom, a halogen atom or a monovalent organic group. represents, R 7 is a hydrogen atom,. formula represents a halogen atom or a monovalent organic group in (V), Ar 7 and Ar 8 are each independently have a substituent An aromatic ring, X 5 and X 6 each independently represent a group represented by Q 3 (R 8). Incidentally, Q 3 represents an atom selected from the periodic table group 14 element, R 8 Represents a hydrogen atom, a halogen atom or a monovalent organic group.)
  7.  前記式(I)中、D1が下記式(VI)で表わされる繰り返し単位であり、前記式(II)中、Aが式(X)で表わされる繰り返し単位であり、D2が式(VI)で表わされる繰り返し単位である、請求項1~6のいずれか1項に記載のコポリマー。
    Figure JPOXMLDOC01-appb-C000010
    Figure JPOXMLDOC01-appb-C000011
    (式(X)中、R16及びR17は、水素原子、ハロゲン原子又は1価の有機基を表す。式(VI)中、R9及びR10はそれぞれ独立して、水素原子、ハロゲン原子又は1価の有機基を表す。)
    In the formula (I), D1 is a repeating unit represented by the following formula (VI), in the formula (II), A is a repeating unit represented by the formula (X), and D2 is represented by the formula (VI). The copolymer according to any one of claims 1 to 6, which is a repeating unit represented.
    Figure JPOXMLDOC01-appb-C000010
    Figure JPOXMLDOC01-appb-C000011
    (In Formula (X), R 16 and R 17 represent a hydrogen atom, a halogen atom or a monovalent organic group. In Formula (VI), R 9 and R 10 are each independently a hydrogen atom or a halogen atom. Or represents a monovalent organic group.)
  8.  前記式(I)中、R1、R4がそれぞれ独立して、炭素数1以上20以下の脂肪族炭化水素基である、請求項1~7のいずれか1項に記載のコポリマー。 The copolymer according to any one of claims 1 to 7, wherein in the formula (I), R 1 and R 4 are each independently an aliphatic hydrocarbon group having 1 to 20 carbon atoms.
  9.  コポリマー中、前記式(II)で表わされる繰り返し単位数に対する前記式(I)で表わされる繰り返し単位数の比率が0.1以上9以下である、請求項1~8のいずれか1項に記載のコポリマー。 The ratio of the number of repeating units represented by the formula (I) to the number of repeating units represented by the formula (II) in the copolymer is 0.1 or more and 9 or less, according to any one of claims 1 to 8. Copolymer.
  10.  重量平均分子量が10,000以上300,000以下である、請求項1~9のいずれか1項に記載のコポリマー。 The copolymer according to any one of claims 1 to 9, having a weight average molecular weight of 10,000 or more and 300,000 or less.
  11.  基材上に、一対の電極と、該一対の電極間に活性層と、を有する光電変換素子であって、
     前記活性層が請求項1~10のいずれか1項に記載のコポリマーを含有する、光電変換素子。
    A photoelectric conversion element having a pair of electrodes and an active layer between the pair of electrodes on a substrate,
    A photoelectric conversion element, wherein the active layer contains the copolymer according to any one of claims 1 to 10.
  12.  請求項11に記載の光電変換素子を有する太陽電池モジュール。 A solar cell module having the photoelectric conversion element according to claim 11.
  13.  下記式(I)で表わされる繰り返し単位を有するコポリマー。
    Figure JPOXMLDOC01-appb-C000012
    (式(I)中、X1及びX2はそれぞれ独立して周期表第16族元素から選ばれる原子を表し、R1及びR4はそれぞれ独立して、炭素数9以上の直鎖状の脂肪族炭化水素基、又は主鎖の炭素数が9以上であり、かつ側鎖の炭素数が5以下である分岐状の脂肪族炭化水素基を表し、R2及びR3はそれぞれ独立して、水素原子又はハロゲン原子である。D1は式(IV)又は式(V)で表される構成単位を表す。)
    Figure JPOXMLDOC01-appb-C000013
    (式(IV)中、Ar5及びAr6は、それぞれ独立して、置換基を有していてもよい芳香環を表す。X3及びX4は、それぞれ独立して、Q1(R5)(R6)、Q2(R7)、硫黄原子(S)、酸素原子(O)又は直接結合を表す。ただし、X3及びX4の一方が直接結合である場合、X3及びX4のうちの他方の基は、Q1(R5)(R6)、Q2(R7)、硫黄原子(S)又は酸素原子(O)である。Q1は、周期表第14族元素から選ばれる原子を表し、R5及びR6はそれぞれ独立して水素原子、ハロゲン原子又は1価の有機基を表す。Q2は、周期表第15族元素から選ばれる原子を表し、R7は水素原子、ハロゲン原子又は1価の有機基を表す。)
    Figure JPOXMLDOC01-appb-C000014
    (式(V)中、Ar7及びAr8は、それぞれ独立して、置換基を有していてもよい芳香環を表す。X5及びX6は、それぞれQ3(R8)で表される基を表す。Q3は周期表第14族元素から選ばれる原子を表し、R8は水素原子、ハロゲン原子又は1価の有機基を表す。)
    A copolymer having a repeating unit represented by the following formula (I).
    Figure JPOXMLDOC01-appb-C000012
    (In Formula (I), X 1 and X 2 each independently represent an atom selected from Group 16 elements of the Periodic Table, and R 1 and R 4 each independently represent a straight chain having 9 or more carbon atoms. An aliphatic hydrocarbon group, or a branched aliphatic hydrocarbon group having 9 or more carbon atoms in the main chain and 5 or less carbon atoms in the side chain; R 2 and R 3 are each independently D1 represents a structural unit represented by formula (IV) or formula (V).
    Figure JPOXMLDOC01-appb-C000013
    (In formula (IV), Ar 5 and Ar 6 each independently represent an aromatic ring optionally having a substituent. X 3 and X 4 each independently represent Q 1 (R 5 ) (R 6 ), Q 2 (R 7 ), a sulfur atom (S), an oxygen atom (O) or a direct bond, provided that when one of X 3 and X 4 is a direct bond, X 3 and X The other group of 4 is Q 1 (R 5 ) (R 6 ), Q 2 (R 7 ), a sulfur atom (S) or an oxygen atom (O) Q 1 is group 14 of the periodic table R 5 and R 6 each independently represents a hydrogen atom, a halogen atom or a monovalent organic group, Q 2 represents an atom selected from Group 15 elements of the periodic table, 7 represents a hydrogen atom, a halogen atom or a monovalent organic group.)
    Figure JPOXMLDOC01-appb-C000014
    (In the formula (V), Ar 7 and Ar 8 each independently represents an aromatic ring optionally having a substituent. X 5 and X 6 are each represented by Q 3 (R 8 ). Q 3 represents an atom selected from Group 14 elements of the periodic table, and R 8 represents a hydrogen atom, a halogen atom, or a monovalent organic group.)
  14.  前記式(I)中、D1は下記式(III)で表される構成単位である、請求項13に記載のコポリマー。
    Figure JPOXMLDOC01-appb-C000015
    (式(III)中、X12及びX13は、それぞれ独立して、周期表第16族元素から選ばれる原子を表す。R9及びR10はそれぞれ独立して水素原子、ハロゲン原子又は1価の有機基を表す。)
    The copolymer according to claim 13, wherein D1 in the formula (I) is a structural unit represented by the following formula (III).
    Figure JPOXMLDOC01-appb-C000015
    (In formula (III), X 12 and X 13 each independently represent an atom selected from Group 16 elements of the periodic table. R 9 and R 10 each independently represent a hydrogen atom, a halogen atom or a monovalent atom. Represents an organic group of
  15.  前記式(III)で表される構成単位が式(XV)で表される構成単位である、請求項14に記載のコポリマー。
    Figure JPOXMLDOC01-appb-C000016
    (式(XV)中、X12~X15は、それぞれ独立して、周期表第16族元素から選択される原子を表す。R20~R25は、それぞれ独立して、水素原子、ハロゲン原子又は1価の有機基を表し、R20~R22のうち一つの基が1価の有機基であり、残りの2つの基はそれぞれ独立に水素原子又はハロゲン原子であり、R23~R25のうち一つの基が1価の有機基であり、残りの2つの基はそれぞれ独立に水素原子又はハロゲン原子である。)
    The copolymer according to claim 14, wherein the structural unit represented by the formula (III) is a structural unit represented by the formula (XV).
    Figure JPOXMLDOC01-appb-C000016
    (In the formula (XV), X 12 to X 15 each independently represents an atom selected from Group 16 elements of the periodic table. R 20 to R 25 each independently represents a hydrogen atom or a halogen atom. Or a monovalent organic group, one of R 20 to R 22 is a monovalent organic group, and the remaining two groups are each independently a hydrogen atom or a halogen atom, and R 23 to R 25 One of the groups is a monovalent organic group, and the remaining two groups are each independently a hydrogen atom or a halogen atom.)
  16.  基材上に、一対の電極と、該一対の電極間に活性層と、を有する光電変換素子であって、前記活性層が請求項13~15のいずれか1項に記載のコポリマーを含有する、光電変換素子。 A photoelectric conversion element having a pair of electrodes and an active layer between the pair of electrodes on a base material, wherein the active layer contains the copolymer according to any one of claims 13 to 15. , Photoelectric conversion element.
  17.  請求項16に記載の光電変換素子を有する太陽電池モジュール。 A solar cell module having the photoelectric conversion element according to claim 16.
PCT/JP2016/077599 2015-09-18 2016-09-16 Copolymer, photoelectric conversion element, solar battery, and solar battery module WO2017047808A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017540042A JP6904252B2 (en) 2015-09-18 2016-09-16 Copolymers, photoelectric conversion elements, solar cells and solar cell modules

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-185708 2015-09-18
JP2015185708 2015-09-18
JP2015-224161 2015-11-16
JP2015224161 2015-11-16

Publications (1)

Publication Number Publication Date
WO2017047808A1 true WO2017047808A1 (en) 2017-03-23

Family

ID=58289511

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/077599 WO2017047808A1 (en) 2015-09-18 2016-09-16 Copolymer, photoelectric conversion element, solar battery, and solar battery module

Country Status (2)

Country Link
JP (1) JP6904252B2 (en)
WO (1) WO2017047808A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108034042A (en) * 2017-12-11 2018-05-15 华南协同创新研究院 A kind of main chain donor-side chain receptor type conjugated polymer and its preparation and application
KR20190036189A (en) * 2017-09-27 2019-04-04 주식회사 엘지화학 Polymer and organic solar cell comprising the same
CN110573549A (en) * 2018-03-09 2019-12-13 株式会社Lg化学 Polymer and organic solar cell comprising same
JP2021038288A (en) * 2019-08-30 2021-03-11 国立大学法人広島大学 Polymer compound, method for synthesizing polymer compound, organic thin film solar cell material and organic thin film solar cell

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113061235B (en) * 2021-03-22 2023-08-08 位速科技股份有限公司 Copolymer and organic photovoltaic element

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102060982A (en) * 2010-12-03 2011-05-18 华南理工大学 Organic semiconductor material containing naphthalene [1, 2-c: 5, 6-c] di [1, 2, 5] thiadiazole and application thereof
WO2012111811A1 (en) * 2011-02-18 2012-08-23 コニカミノルタホールディングス株式会社 Organic photoelectric conversion element and solar cell
WO2012133793A1 (en) * 2011-03-31 2012-10-04 株式会社クラレ Block copolymer and photoelectric conversion element
WO2013015298A1 (en) * 2011-07-25 2013-01-31 国立大学法人広島大学 Organic semiconductor material
WO2013094456A1 (en) * 2011-12-22 2013-06-27 コニカミノルタ株式会社 Organic photoelectric conversion element
JP2013131716A (en) * 2011-12-22 2013-07-04 Konica Minolta Inc Organic photoelectric conversion element
JP2013161828A (en) * 2012-02-01 2013-08-19 Konica Minolta Inc Organic photoelectric conversion element
JP2014240483A (en) * 2013-05-13 2014-12-25 株式会社Adeka Picene derivative, photoelectric conversion material and photoelectric conversion element
WO2015037200A1 (en) * 2013-09-13 2015-03-19 Jx日鉱日石エネルギー株式会社 Method for manufacturing photoelectric conversion element, and photoelectric conversion element
JP2015513573A (en) * 2012-02-15 2015-05-14 メルク パテント ゲーエムベーハー Conjugated polymer

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102060982A (en) * 2010-12-03 2011-05-18 华南理工大学 Organic semiconductor material containing naphthalene [1, 2-c: 5, 6-c] di [1, 2, 5] thiadiazole and application thereof
WO2012111811A1 (en) * 2011-02-18 2012-08-23 コニカミノルタホールディングス株式会社 Organic photoelectric conversion element and solar cell
WO2012133793A1 (en) * 2011-03-31 2012-10-04 株式会社クラレ Block copolymer and photoelectric conversion element
WO2013015298A1 (en) * 2011-07-25 2013-01-31 国立大学法人広島大学 Organic semiconductor material
WO2013094456A1 (en) * 2011-12-22 2013-06-27 コニカミノルタ株式会社 Organic photoelectric conversion element
JP2013131716A (en) * 2011-12-22 2013-07-04 Konica Minolta Inc Organic photoelectric conversion element
JP2013161828A (en) * 2012-02-01 2013-08-19 Konica Minolta Inc Organic photoelectric conversion element
JP2015513573A (en) * 2012-02-15 2015-05-14 メルク パテント ゲーエムベーハー Conjugated polymer
JP2014240483A (en) * 2013-05-13 2014-12-25 株式会社Adeka Picene derivative, photoelectric conversion material and photoelectric conversion element
WO2015037200A1 (en) * 2013-09-13 2015-03-19 Jx日鉱日石エネルギー株式会社 Method for manufacturing photoelectric conversion element, and photoelectric conversion element

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ALAN J. HEEGER ET AL., ADVANCED ENERGY MATERIALS, vol. 4, 27 November 2013 (2013-11-27), pages 1301601 *
FEI HUANG ET AL.: "Donor–Acceptor-Type Copolymers Based on a Naphtho[1,2-c:5,6-c]bis(1,2,5-thiadiazole) Scaffold for High-Efficiency Polymer Solar Cells", CHEMISTRY AN ASIAN JOURNAL, vol. 9, 15 April 2014 (2014-04-15), pages 2104 - 2112, XP055368913 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020507648A (en) * 2017-09-27 2020-03-12 エルジー・ケム・リミテッド Polymer and organic solar cell containing the same
US10982042B2 (en) 2017-09-27 2021-04-20 Lg Chem, Ltd. Polymer and organic solar cell including same
WO2019066305A1 (en) * 2017-09-27 2019-04-04 주식회사 엘지화학 Polymer and organic solar cell including same
CN110291129A (en) * 2017-09-27 2019-09-27 株式会社Lg化学 Polymer and organic solar batteries comprising it
CN110291129B (en) * 2017-09-27 2021-12-28 株式会社Lg化学 Polymer and organic solar cell comprising same
KR102283124B1 (en) * 2017-09-27 2021-07-28 주식회사 엘지화학 Polymer and organic solar cell comprising the same
KR20190036189A (en) * 2017-09-27 2019-04-04 주식회사 엘지화학 Polymer and organic solar cell comprising the same
CN108034042B (en) * 2017-12-11 2019-12-03 华南协同创新研究院 A kind of main chain donor-side chain receptor type conjugated polymer and its preparation and application
CN108034042A (en) * 2017-12-11 2018-05-15 华南协同创新研究院 A kind of main chain donor-side chain receptor type conjugated polymer and its preparation and application
CN110573549A (en) * 2018-03-09 2019-12-13 株式会社Lg化学 Polymer and organic solar cell comprising same
JP2020516705A (en) * 2018-03-09 2020-06-11 エルジー・ケム・リミテッド Polymer and organic solar cell containing the same
JP7043721B2 (en) 2018-03-09 2022-03-30 エルジー・ケム・リミテッド Polymers and organic solar cells containing them
CN110573549B (en) * 2018-03-09 2022-07-19 株式会社Lg化学 Polymer and organic solar cell comprising same
JP2021038288A (en) * 2019-08-30 2021-03-11 国立大学法人広島大学 Polymer compound, method for synthesizing polymer compound, organic thin film solar cell material and organic thin film solar cell
JP7214119B2 (en) 2019-08-30 2023-01-30 国立大学法人広島大学 Polymer compound, method for synthesizing polymer compound, organic thin-film solar cell material, and organic thin-film solar cell

Also Published As

Publication number Publication date
JPWO2017047808A1 (en) 2018-07-05
JP6904252B2 (en) 2021-07-14

Similar Documents

Publication Publication Date Title
CN109790176B (en) Organic semiconductor compound
EP3333170B1 (en) Asymmetrical polycyclic compounds for use in organic semiconductors
CN109891616B (en) Organic semiconductor compound
CN109563104B (en) Organic semiconductor compound
EP3306690B1 (en) Organic semiconducting compounds
JP6904252B2 (en) Copolymers, photoelectric conversion elements, solar cells and solar cell modules
CN111315797A (en) Organic semiconductor compound
US11637246B2 (en) Organic semiconducting compounds
CN112236882A (en) Organic semiconductor compound
EP3704176B1 (en) Organic semiconducting compounds
CN112368316A (en) Organic semiconducting polymers
US11005043B2 (en) Organic semiconducting polymer
WO2016021660A1 (en) Copolymer, photoelectric conversion element, solar cell and solar cell module
CN113544186A (en) Organic semiconductor composition
CN112955456A (en) Organic semiconductor compound
WO2019161748A1 (en) Organic semiconducting compounds
Wei et al. Poly (4-hexyloxythiazole): A new low band gap semiconductor for polymer electronics
JP2014027175A (en) Method for manufacturing photoelectric conversion element, photoelectric conversion element, solar cell, and solar cell module
JP2016183290A (en) Copolymer, photoelectric conversion element, and solar battery module
JP2017075207A (en) Copolymer, photoelectric conversion element, solar battery and solar battery module
WO2019154973A1 (en) Organic semiconducting compounds
JP2016089048A (en) Copolymer, photoelectric conversion element, solar cell and solar cell module
JP2015218221A (en) Copolymer, photoelectric conversion element, solar battery and solar battery module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16846679

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017540042

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16846679

Country of ref document: EP

Kind code of ref document: A1