WO2012111811A1 - Organic photoelectric conversion element and solar cell - Google Patents

Organic photoelectric conversion element and solar cell Download PDF

Info

Publication number
WO2012111811A1
WO2012111811A1 PCT/JP2012/053836 JP2012053836W WO2012111811A1 WO 2012111811 A1 WO2012111811 A1 WO 2012111811A1 JP 2012053836 W JP2012053836 W JP 2012053836W WO 2012111811 A1 WO2012111811 A1 WO 2012111811A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
photoelectric conversion
carbon atoms
substituent
organic photoelectric
Prior art date
Application number
PCT/JP2012/053836
Other languages
French (fr)
Japanese (ja)
Inventor
大久保 康
貴宗 服部
Original Assignee
コニカミノルタホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタホールディングス株式会社 filed Critical コニカミノルタホールディングス株式会社
Priority to JP2012558038A priority Critical patent/JP5838975B2/en
Publication of WO2012111811A1 publication Critical patent/WO2012111811A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/02Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings
    • C07D333/04Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom
    • C07D333/06Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to the ring carbon atoms
    • C07D333/08Hydrogen atoms or radicals containing only hydrogen and carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D513/00Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00
    • C07D513/02Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00 in which the condensed system contains two hetero rings
    • C07D513/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D519/00Heterocyclic compounds containing more than one system of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring system not provided for in groups C07D453/00 or C07D455/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0803Compounds with Si-C or Si-Si linkages
    • C07F7/081Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te
    • C07F7/0812Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te comprising a heterocyclic ring
    • C07F7/0816Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te comprising a heterocyclic ring said ring comprising Si as a ring atom
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/12Copolymers
    • C08G2261/124Copolymers alternating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/141Side-chains having aliphatic units
    • C08G2261/1414Unsaturated aliphatic units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3223Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3246Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing nitrogen and sulfur as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/414Stille reactions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/91Photovoltaic applications
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to an organic photoelectric conversion element and a solar cell, and more particularly to a bulk heterojunction type organic photoelectric conversion element and a solar cell using the organic photoelectric conversion element.
  • an electron donor layer p-type semiconductor layer
  • an electron acceptor layer p-type semiconductor layer
  • a bulk heterojunction photoelectric conversion element sandwiching a photoelectric conversion layer mixed with an n-type semiconductor layer) has been proposed, and an efficiency exceeding 5% has been reported (for example, see Non-Patent Document 1).
  • Solar cells using these bulk heterojunction type photoelectric conversion elements can be formed by coating other than the anode and cathode, so that they can be manufactured at high speed and at low cost, and the above-mentioned problem of power generation cost can be solved.
  • Non-Patent Document 2 requires a compound having a specific band gap (bg) and LUMO level as a p-type semiconductor. According to this document, the band gap is required to be 1.3 to 1.7 eV, and the LUMO level is required to be ⁇ 3.9 to ⁇ 4.0 eV (Non-patent Document 2).
  • this condition is a necessary condition, and it is necessary to satisfy other conditions in order to actually obtain a photoelectric conversion efficiency of 10%.
  • two conditions that an external quantum efficiency (EQE) is 65% and a fill factor (FF) are 65% are set as a precondition.
  • the external quantum efficiency is a value indicating how many electrons can be generated from one photon of sunlight decomposed into a spectrum
  • the fill factor (FF) is the resistance inside the solar cell. This value is the ratio of the actual maximum power on the IV characteristic and the product of the open circuit voltage and the short circuit current.
  • This curve factor and external quantum efficiency are said to be related to the mobility of the semiconductor material in the power generation layer. If the mobility is high, the series resistance inside the solar cell is low, and the fill factor can be improved. In addition, since the length of the carrier that can be taken out is the product of mobility, carrier life, and built-in electric field, ideally a material with higher mobility can produce a thicker power generation layer and can increase absorbance, High external quantum efficiency can be aimed at.
  • one of the important conditions is to have high mobility.
  • the mobility is generally higher in a crystalline material than amorphous, it is important to select a crystalline p-type semiconductor material.
  • a compound having a deeper LUMO level and a larger ⁇ conjugate length small band gap and high crystallinity is required.
  • Non-Patent Document 1 In order to obtain such a deep LUMO level, as in Non-Patent Document 1, a donor unit (thiophene, etc.) having a high electron donating property and an acceptor unit (nitrogen-containing aromatic ring, etc.) having a high electron attractive property are used. Many copolymers have been studied.
  • Non-Patent Document 3 discloses a structure in which a dicyanomethylene group is added to a thiophene ring, but the dicyanomethylene group causes steric hindrance with the adjacent thiophene ring and twists the ⁇ -conjugated surface, or the mobility is insufficient. The conversion efficiency was also low, less than 1%.
  • Non-Patent Document 4 discloses a structure in which an ester group is added to thiophene. Similarly, an ester group also causes steric hindrance with the adjacent thiophene ring and twists the ⁇ -conjugated surface, so that a vinylene group is sandwiched between them. To ensure flatness. However, the level was not deep enough and the conversion efficiency was as low as 2%.
  • Non-Patent Document 5 discloses a p-type polymer material into which a thiazolothiazole group, which is known as an acceptor nucleus of relatively high mobility even in organic TFTs, is introduced as a donor-acceptor type polymer. However, the level was not deep enough and the conversion efficiency was as low as 2%.
  • Non-Patent Document 5 the alkynyl group does not cause twisting of the main chain even in a structure in which thiophene is continuous, and is a weak electron-withdrawing substituent, so that the LUMO level is slightly deepened. It is a structure that can. With such a structure, it is expected that the above requirement (a crystalline compound having a deeper LUMO level and a larger ⁇ -conjugated area) will be observed. Properties have not been evaluated. In these documents, only polymerization with thiophenes and benzenes is carried out. Further, donor-acceptor type polymers are not synthesized, and polymers with deep LUMO levels as described above are obtained. There wasn't.
  • Patent Document 1 a material capable of providing high photoelectric conversion efficiency in a reverse layer structure has been demanded.
  • the present invention has been made in view of the above problems, and an object thereof is to provide an organic photoelectric conversion element having high photoelectric conversion efficiency and excellent durability, and a solar cell using the organic photoelectric conversion element.
  • An organic photoelectric conversion element having a transparent first electrode, a photoelectric conversion layer containing a p-type organic semiconductor material and an n-type organic semiconductor material, and a second electrode in this order on a transparent substrate, An organic photoelectric conversion element, wherein the photoelectric conversion layer contains a compound having a partial structure represented by the following general formula 1 or general formula 1 ′ as the p-type organic semiconductor material.
  • each X 1 independently represents —S—, —O—, —NR 2 —, and each Y 1 independently represents —CR 3 ⁇ or —N ⁇ .
  • R 1 -R 3 each independently represents a hydrogen atom, an alkyl group that may have a substituent, a fluorinated alkyl group that may have a substituent, or a cycloalkyl group that may have a substituent.
  • L 1 is independently selected from a single bond, an arylene group, a heteroarylene group, a carbonyl group, —COO—, and —CONR′— (wherein R ′ represents a hydrogen atom or an alkyl group).
  • A represents a divalent acceptor unit
  • D 1 and D 2 represent a donor unit
  • m and n represent an integer of 0 to 2.
  • the above-described means of the present invention can provide an organic photoelectric conversion element having high photoelectric conversion efficiency and excellent durability, and a solar cell using the organic photoelectric conversion element.
  • the schematic sectional drawing which shows the example of a structure of the organic photoelectric conversion element of this invention.
  • the schematic sectional drawing which shows the other example of a structure of the organic photoelectric conversion element of this invention.
  • the schematic sectional drawing which shows the example of the organic photoelectric conversion element of this invention provided with the tandem type photoelectric conversion layer.
  • the present invention is an organic photoelectric conversion element having a transparent first electrode, a photoelectric conversion layer containing a p-type organic semiconductor material and an n-type organic semiconductor material, and a second electrode in this order on a transparent substrate.
  • the photoelectric conversion layer contains a compound having a partial structure represented by the general formula 1 as a p-type organic semiconductor material.
  • a compound having a partial structure represented by the above general formula 1 is used as a p-type organic semiconductor material of a bulk heterojunction photoelectric conversion layer that contains a p-type organic semiconductor material and an n-type organic semiconductor material.
  • an organic photoelectric conversion element having a high fill factor value, high photoelectric conversion efficiency, and excellent durability can be provided.
  • FIG. 1 is a schematic cross-sectional view showing an example of the configuration of the organic photoelectric conversion element of the present invention.
  • the organic photoelectric conversion element 10 has a transparent first electrode 12 on a transparent substrate 11, a photoelectric conversion layer 14 on the first electrode 12, and a first electrode on the photoelectric conversion layer 14. Two electrodes 13 are provided.
  • a hole transport layer 17 described later is provided between the first electrode 12 and the photoelectric conversion layer 14, and an electron transport layer described later is provided between the photoelectric conversion layer 14 and the second electrode 13.
  • the substrate 11 and the first electrode 12 are transparent, and light used for photoelectric conversion enters from the direction of the arrow in FIG.
  • the photoelectric conversion layer 14 is a layer that converts light energy into electric energy, and contains a p-type semiconductor material and an n-type semiconductor material.
  • the p-type semiconductor material functions relatively as an electron donor (donor), and the n-type semiconductor material functions relatively as an electron acceptor (acceptor).
  • the electron donor and the electron acceptor are “an electron donor in which, when light is absorbed, electrons move from the electron donor to the electron acceptor to form a hole-electron pair (charge separation state)”.
  • an electron acceptor which does not simply donate or accept electrons like an electrode, but donates or accepts electrons by a photoreaction.
  • the generated electric charge is generated between the electron acceptors due to the internal electric field, for example, when the work functions of the first electrode 12 and the second electrode 13 are different, due to the potential difference between the first electrode 12 and the second electrode 13. And the holes pass between the electron donors and are carried to different electrodes, and a photocurrent is detected.
  • the work function of the first electrode 12 is deeper (larger) than the work function of the second electrode 13, so that holes are transported to the first electrode 12 and electrons are transported to the second electrode 13. Is done.
  • the second electrode 13 is made of a metal that has a shallow (small) work function and is easily oxidized.
  • the first electrode functions as an anode (anode) and the second electrode functions as a cathode (cathode).
  • Figure 2 shows an example of another configuration.
  • the work function of the second electrode 13 is made larger than the work function of the first electrode 12, so that electrons are transferred to the first electrode 12.
  • an electron transport layer 18 is provided between the first electrode 12 and the photoelectric conversion layer 14, and a hole transport layer 17 described later is provided between the photoelectric conversion layer 14 and the second electrode 13.
  • the first electrode functions as a cathode (cathode) and the second electrode functions as an anode (anode).
  • the configuration shown in FIG. 2 that is, the first electrode is a cathode (cathode) and the second electrode is an anode (anode) is a preferred embodiment.
  • the organic photoelectric conversion element of the present invention has a layer such as a hole blocking layer, an electron blocking layer, an electron injection layer, a hole injection layer, or a smoothing layer. You may have.
  • FIG. 3 is a cross-sectional view illustrating an organic photoelectric conversion element including a tandem photoelectric conversion layer.
  • the first electrode 12 and the first photoelectric conversion layer 14 ′ are stacked on the substrate 11, the charge recombination layer 15 is stacked, the second photoelectric conversion layer 16, and then the second photoelectric conversion layer 15.
  • the electrodes 13 By stacking the electrodes 13, a tandem configuration can be obtained.
  • the second photoelectric conversion layer 16 may be a layer that absorbs the same spectrum as the absorption spectrum of the first photoelectric conversion layer 14 'or may be a layer that absorbs a different spectrum, but is preferably a layer that absorbs a different spectrum. is there.
  • each photoelectric conversion layer preferably has a configuration as shown in FIG.
  • the photoelectric conversion layer contains a compound having a partial structure represented by the following general formula 1 or 1 ′ as a p-type organic semiconductor material.
  • a compound having a partial structure represented by the following general formula 1 or 1 ′ can provide an organic photoelectric conversion element having high photoelectric conversion efficiency, excellent durability, and preferably a high fill factor, and a solar cell using the organic photoelectric conversion element.
  • the compound includes one or more partial structures represented by the general formula 1 or 1 ′.
  • X 1 and Y 1 between the partial structures are present.
  • R 1 to R 3 , L 1 and A, and D 1 , D 2 , m and n may be the same as or different from each other.
  • each X 1 independently represents —S—, —O—, —NR 2 —
  • each Y 1 independently represents —CR 3 ⁇ or —N ⁇ .
  • R 1 -R 3 each independently represents a hydrogen atom, an alkyl group that may have a substituent, a fluorinated alkyl group that may have a substituent, or a cycloalkyl group that may have a substituent.
  • L 1 represents a substituent independently selected from a single bond, an arylene group, a heteroarylene group, a carbonyl group, —COO—, and —CONR′— (wherein R ′ is a hydrogen atom or an alkyl group).
  • A represents a divalent acceptor unit
  • D 1 and D 2 represent a donor unit
  • m and n represent an integer of 0 to 2.
  • the position of substitution with the adjacent unit in the unit represented by the chemical formula 1 or 1 ′ represents that it is substituted at either the 2-position or 5-position, respectively. That is, the partial structure of the general formula 1 includes the following acceptor unit -A- and left and right X 1 :
  • bonding position is not limited, and actually includes all of the following four isomers, and any of these may be used.
  • the partial structure of the general formula 1 ′ includes the following structure including a left donor unit —D 1 — and left X 1 and Y 1 :
  • bonding position of is not limited, and actually includes all of the following two isomers, and any of these may be used.
  • the p-type semiconductor material in the photoelectric conversion layer has a compound having a partial structure represented by the general formula 1 or 1 ′, (1) an electron-withdrawing alkynyl group is substituted. The HOMO / LUMO level is deepened and the open circuit voltage is expected to be improved. (2) The ⁇ -conjugated area is increased by the alkynyl group, the crystallinity is improved, and the mobility is improved. (3) The alkynyl group is linear. The steric hindrance to other aromatic rings connected to the general formula 1 or 1 ′ in the state is less likely to occur, so that the planarity of the main chain is maintained, and further improvement in crystallinity and mobility is expected.
  • the oligomer and polymer of the present invention have a very high planarity, and are easily ⁇ -stacked between molecules as described above. Therefore, donor materials also form a network structure by interaction with each other in the bulk heterojunction layer. However, it is presumed that even with a thick film thickness, it is possible to form a highly continuous morphology without a dead end (a region where carriers cannot be extracted).
  • R 1 to R 3 may have a hydrogen atom, an alkyl group that may have a substituent, a fluorinated alkyl group that may have a substituent, or a substituent. Represents a cycloalkyl group.
  • R 1 s there are two R 1 s , and each R 1 may be the same or different, but the same from the viewpoint of symmetry and synthesis. Preferably there is.
  • the alkyl group represented by R 1 to R 3 is preferably a linear or branched alkyl group having 1 to 24 carbon atoms, more preferably 1 to 12 carbon atoms, and particularly preferably 1 to 8 carbon atoms. It is.
  • the alkyl group is not particularly limited, and examples thereof include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, an n-pentyl group, Isopentyl, tert-pentyl, neopentyl, 1,2-dimethylpropyl, n-hexyl, isohexyl, 1,3-dimethylbutyl, 1-isopropylpropyl, 1,2-dimethylbutyl, n -Heptyl group, 1,4-dimethylpentyl group,
  • the fluorinated alkyl group is a fluorinated alkyl group in which part or all of the alkyl group is fluorinated.
  • it may be a fluorinated alkyl group in which the position close to the mother nucleus is an alkyl group and the terminal portion is a fluorinated alkyl group. preferable. For example, — (CH 2 CH 2 ) —C 4 F 9 , — (CH 2 CH 2 ) —C 7 F 15 , etc.
  • the cycloalkyl group preferably has 4 to 8 carbon atoms, and examples thereof include cyclopropyl, cyclopentyl, cyclohexyl, norbornyl, adamantyl and the like.
  • R 1 and R 2 are preferably C 6 or more and C 16 or less alkyl groups. This is because the p-type semiconductor material to be obtained needs to have a certain level of solubility in order to be formed with a sufficiently thick film, and in terms of imparting solubility, a material substituted with these substituents It is preferable that In particular, in the case of a polymer material, in addition to imparting solubility, a linear alkyl group may provide alignment and may provide high mobility (also referred to as a fastener effect). A p-type material substituted with an alkyl group is preferred.
  • Substituents optionally present in the alkyl group, fluorinated alkyl group, or cycloalkyl group include alkyl groups, fluorinated alkyl groups, alkenyl groups, alkynyl groups, aryl groups, heteroaryl groups, acyl groups, alkoxycarbonyl groups, (Alkyl) amino group, alkoxy group, cycloalkyloxy group, aryloxy group, aryloxycarbonyl group, acylamino group, alkoxycarbonylamino group, aryloxycarbonylamino group, sulfonylamino group, sulfamoyl group, carbamoyl group, alkylthio group, Arylthio group, silyl group, sulfonyl group, sulfinyl group, ureido group, phosphoric acid amide group, halogen atom, hydroxyl group, mercapto group, cyano group, sul
  • substituent which exists depending on the case is not the same as the substituent to be substituted.
  • R 1 or R 2 is an alkyl group, it is not further substituted with an alkyl group.
  • the alkyl group preferably has 1 to 24 carbon atoms, more preferably 1 to 12 carbon atoms, particularly preferably 1 to 8 carbon atoms, and specific examples thereof include the alkyl groups described above.
  • fluorinated alkyl group examples include the fluorinated alkyl groups described above.
  • the alkenyl group preferably has 2 to 20 carbon atoms, more preferably 2 to 12 carbon atoms, and particularly preferably 2 to 8 carbon atoms, and examples thereof include vinyl, allyl, 2-butenyl, and 3-pentenyl. .
  • the alkynyl group preferably has 2 to 20 carbon atoms, more preferably 2 to 12 carbon atoms, particularly preferably 2 to 8 carbon atoms, and examples thereof include propargyl and 3-pentenyl.
  • the aryl group preferably has 6 to 30 carbon atoms, more preferably 6 to 20 carbon atoms, and particularly preferably 6 to 12 carbon atoms. Specific examples thereof include a phenyl group, a biphenyl group, and a terphenyl group.
  • Non-condensed hydrocarbon group pentarenyl group, indenyl group, naphthyl group, azulenyl group, heptalenyl group, biphenylenyl group, fluorenyl group, acenaphthylenyl group, preadenenyl group, acenaphthenyl group, phenalenyl group, phenanthryl group, anthryl group, fluoranthenyl And condensed polycyclic hydrocarbon groups such as a group, an acephenanthrenyl group, an aceanthrylenyl group, a triphenylenyl group, a pyrenyl group, a chrycenyl group, and a naphthacenyl group.
  • the heteroaryl group preferably has 1 to 20 carbon atoms, more preferably 1 to 12 carbon atoms.
  • the hetero atom include a nitrogen atom, an oxygen atom, and a sulfur atom, specifically, for example, a pyridyl group.
  • the acyl group preferably has 1 to 24 carbon atoms, more preferably 1 to 16 carbon atoms, and particularly preferably 1 to 12 carbon atoms.
  • the acyl group is represented by the formula: —C (O) R.
  • R is preferably an alkyl group having 1 to 24 carbon atoms, and examples of the alkyl group include the alkyl groups described above.
  • the alkoxycarbonyl group preferably has 2 to 25 carbon atoms, more preferably 2 to 16 carbon atoms, and particularly preferably 2 to 12 carbon atoms.
  • the alkoxycarbonyl group is represented by the formula: —C (O) OR.
  • R is preferably an alkyl group having 1 to 24 carbon atoms, and examples of the alkyl group include the alkyl groups described above.
  • the (alkyl) amino group preferably has 0 to 24 carbon atoms, more preferably 0 to 10 carbon atoms, and particularly preferably 0 to 6 carbon atoms.
  • the alkoxy group is preferably a group having 1 to 24 carbon atoms, more preferably 1 to 12 carbon atoms, particularly preferably 1 to 8 carbon atoms, specifically a group represented by the formula: —OR;
  • R is preferably an alkyl group having 1 to 24 carbon atoms, and examples of the alkyl group in this case include the alkyl groups described above.
  • the cycloalkyloxy group preferably has 4 to 8 carbon atoms, and examples thereof include cyclopentyloxy and cyclohexyloxy.
  • the aryloxy group preferably has 6 to 20 carbon atoms, more preferably 6 to 16 carbon atoms, and particularly preferably 6 to 12 carbon atoms, and examples thereof include phenyloxy and 2-naphthyloxy.
  • the aryloxycarbonyl group preferably has 7 to 20 carbon atoms, more preferably 7 to 16 carbon atoms, and particularly preferably 7 to 10 carbon atoms, and examples thereof include phenyloxycarbonyl.
  • the acylamino group preferably has 2 to 21 carbon atoms, more preferably 2 to 16 carbon atoms, and particularly preferably 2 to 10 carbon atoms.
  • the acylamino group is a group represented by the formula: —NHCOR;
  • R is preferably an alkyl group having 1 to 24 carbon atoms, and examples of the alkyl group in this case include the alkyl groups described above.
  • the alkoxycarbonylamino group preferably has 2 to 24 carbon atoms, more preferably 2 to 16 carbon atoms, particularly preferably 2 to 12 carbon atoms, and examples thereof include methoxycarbonylamino.
  • the aryloxycarbonylamino group preferably has 7 to 24 carbon atoms, more preferably 7 to 16 carbon atoms, and particularly preferably 7 to 12 carbon atoms, and examples thereof include phenyloxycarbonylamino.
  • the sulfonylamino group preferably has 1 to 24 carbon atoms, more preferably 1 to 16 carbon atoms, and particularly preferably 1 to 12 carbon atoms, and examples thereof include methanesulfonylamino and benzenesulfonylamino.
  • the sulfamoyl group preferably has 0 to 24 carbon atoms, more preferably 0 to 16 carbon atoms, and particularly preferably 0 to 12 carbon atoms.
  • sulfamoyl, methylsulfamoyl, dimethylsulfamoyl, phenylsulfamo Moyl etc. are mentioned.
  • the carbamoyl group preferably has 1 to 24 carbon atoms, more preferably 1 to 16 carbon atoms, particularly preferably 1 to 12 carbon atoms, and examples thereof include carbamoyl, methylcarbamoyl, diethylcarbamoyl, phenylcarbamoyl and the like.
  • the alkylthio group preferably has 1 to 24 carbon atoms, more preferably 1 to 16 carbon atoms, particularly preferably 1 to 12 carbon atoms, and examples thereof include methylthio and ethylthio.
  • the arylthio group preferably has 6 to 20 carbon atoms, more preferably 6 to 16 carbon atoms, particularly preferably 6 to 12 carbon atoms, and examples thereof include phenylthio.
  • the sulfonyl group preferably has 1 to 20 carbon atoms, more preferably 1 to 16 carbon atoms, and particularly preferably 1 to 12 carbon atoms, and examples thereof include mesyl and tosyl.
  • the sulfinyl group preferably has 1 to 20 carbon atoms, more preferably 1 to 16 carbon atoms, and particularly preferably 1 to 12 carbon atoms, and examples thereof include methanesulfinyl and benzenesulfinyl.
  • the ureido group preferably has 1 to 24 carbon atoms, more preferably 1 to 16 carbon atoms, and particularly preferably 1 to 12 carbon atoms, and examples thereof include ureido, methylureido, and phenylureido.
  • the phosphoric acid amide group preferably has 1 to 24 carbon atoms, more preferably 1 to 16 carbon atoms, particularly preferably 1 to 12 carbon atoms, and examples thereof include diethyl phosphoric acid amide and phenyl phosphoric acid amide. .
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • L 1 represents a substituent selected from a single bond, an arylene group, a heteroarylene group, a carbonyl group, —COO—, and —CONR′— (wherein R ′ represents a hydrogen atom or an alkyl group). Since these substituents can deepen the HOMO / LUMO level of the structure represented by the general formula 1 and increase the ⁇ conjugate area, higher open-circuit voltage and higher mobility, that is, higher fill factor External quantum efficiency can be expected.
  • L 1 is preferably a single bond or —COO—, and more preferably —COO— because the photoelectric conversion efficiency is improved and the durability is also improved.
  • there are two L 1 s there are two L 1 s , and each L 1 may be the same or different, but the same from the viewpoint of symmetry and synthesis. Preferably there is.
  • the arylene group preferably has 6 to 30 carbon atoms, more preferably 6 to 24 carbon atoms, and particularly preferably 6 to 12 carbon atoms.
  • the heteroarylene group preferably has 1 to 20 carbon atoms, more preferably 1 to 12 carbon atoms, and examples of the hetero atom include a nitrogen atom, an oxygen atom, and a sulfur atom.
  • Examples of the alkyl group when R ′ in —CONR′— is an alkyl group include those described in the above R 1 to R 3 columns.
  • X 1 represents —S—, —O—, —NR 2 —.
  • X 1 is preferably —S— or —O—. More preferred is —S— from the viewpoint of durability.
  • there are two X 1 s there are two X 1 s , and each X 1 may be the same or different, but the same from the viewpoint of symmetry and synthesis. Preferably there is.
  • the group represented by Y 1 represents —CR 3 ⁇ or —N ⁇ .
  • Y 1 is preferably —CR 3 ⁇ , more preferably —CH ⁇ .
  • X 1 is -S-
  • there are two Y 1 s and each Y 1 may be the same or different, but the same from the viewpoint of symmetry and synthesis. Preferably there is.
  • the partial structure represented by the general formula 1 may further have a donor unit or an acceptor unit.
  • Specific partial structures include: the partial structure of the general formula 1 -D-, -general Examples include the partial structure of formula 1 -DAD-, the partial structure of general formula 1 -A-, and the like.
  • A indicates an acceptor unit
  • D indicates a donor unit.
  • the acceptor unit represented by A in the formula is generally a partial structure in which the LUMO level or the HOMO level is deeper than a hydrocarbon aromatic ring having the same number of ⁇ electrons (benzene, naphthalene, anthracene, etc.) Unit).
  • the acceptor unit included in the compound that is a conjugated polymer of this embodiment is a partial structure represented by the following among the acceptor units included in the conjugated polymer. It is preferable to contain.
  • the number of partial structures represented below is preferably 50% or more, more preferably 70% or more, based on the total number of acceptor units contained in the conjugated polymer. 90% or more, more preferably 95% or more, and most preferably 100%.
  • R is a hydrogen atom, an optionally substituted alkyl group, an optionally substituted fluorinated alkyl group, an optionally substituted cycloalkyl group, an optionally substituted alkoxy group or a substituted group.
  • the aryl group which may be sufficient is shown.
  • examples of the alkyl group, the fluorinated alkyl group, and the cycloalkyl group include those described in the above R 1 to R 3 columns.
  • the aryl group preferably has 6 to 30 carbon atoms, more preferably 6 to 20 carbon atoms, and particularly preferably 6 to 12 carbon atoms.
  • Non-condensed hydrocarbon group pentarenyl group, indenyl group, naphthyl group, azulenyl group, heptalenyl group, biphenylenyl group, fluorenyl group, acenaphthylenyl group, preadenenyl group, acenaphthenyl group, phenalenyl group, phenanthryl group, anthryl group, fluoranthenyl And condensed polycyclic hydrocarbon groups such as a group, an acephenanthrenyl group, an aceanthrylenyl group, a triphenylenyl group, a pyrenyl group, a chrycenyl group, and a naphthacenyl group.
  • Non-condensed hydrocarbon group pentarenyl group, indenyl group, naphthyl group, azulenyl group, heptalenyl group, biphenyleny
  • the alkoxy group is preferably a group having 1 to 24 carbon atoms, more preferably 1 to 12 carbon atoms, particularly preferably 1 to 8 carbon atoms, specifically a group represented by the formula: —OR;
  • R is preferably an alkyl group having 1 to 24 carbon atoms, and examples of the alkyl group in this case include those described in the above R 1 to R 3 column.
  • substituent optionally present in the alkyl group, fluorinated alkyl group, cycloalkyl group, alkoxy group or aryl group include those described in the above R 1 to R 3 columns.
  • R is preferably a hydrogen atom, an optionally substituted alkyl group, or an optionally substituted aryl group, more preferably a hydrogen atom or an optionally substituted alkyl group having 1 to 12 carbon atoms. .
  • each R when there are a plurality of R, each R may be the same or different substituent.
  • the unit represented by A is preferably a nitrogen-containing heteroaromatic ring group.
  • the unit is preferably a unit having a large ⁇ -conjugated area by condensation, and the unit represented by A is preferably a condensed polycyclic group in which two or more rings are condensed.
  • the unit is preferably a unit having a large ⁇ -conjugated area by condensation.
  • the units are A-1 to A-19 and A-33 to 38.
  • condensed polycyclic group in which two or more units are condensed include the following structures.
  • R 4 , R 5 , R 5 ′ , R 6 , R A and R B are each independently a hydrogen atom, an alkyl group which may have a substituent, or a fluorinated alkyl which may have a substituent Or a cycloalkyl group which may have a substituent.
  • the alkyl group which may have a substituent, the fluorinated alkyl group which may have a substituent, or the cycloalkyl group which may have a substituent has been described in the above R 1 to R 3 columns. It is the same as that.
  • X 2 is preferably —S— or —O—, more preferably —S—.
  • a p-type organic semiconductor material having thiazolothiazole as an acceptor unit is preferable because it can provide high mobility.
  • the above formula R 7 and R 8 are the same as R 7 and R 8 in the following general formulas 4A and 4B, separately described in detail below.
  • the structure represented by the general formula 1 is preferably a structure represented by the following general formula 2 in terms of durability.
  • a p-type organic semiconductor material in which X 2 is S in General Formula 2 has thiazolothiazole as an acceptor unit, and thus can provide high mobility and is preferable.
  • the compound containing the structural unit represented by the general formula 2 further has any of the acceptor units represented by the following general formula 4A or 4B.
  • Such a structure can absorb longer wavelengths and can provide a high short-circuit current.
  • Y 3 and Y 4 each independently represent —O—, —NR 10 —, —S—, —C (R 11 ) ⁇ C (R 11 ′ ) —, or —N ⁇ C (R 12 ) —, wherein R 10 , R 11 , R 11 ′ and R 12 are each independently an alkyl group, a fluorinated alkyl group or a cyclo group which may have a hydrogen atom or a substituent. Represents an alkyl group.
  • R 7 to R 8 each independently represents a hydrogen atom, a halogen atom (F, Cl, Br, or I), a substituted or unsubstituted alkyl group having 1 to 24 carbon atoms, or 1 carbon atom.
  • a halogen atom F, Cl, Br, or I
  • R 7 to R 8 each independently represents a hydrogen atom, a halogen atom (F, Cl, Br, or I), a substituted or unsubstituted alkyl group having 1 to 24 carbon atoms, or 1 carbon atom.
  • R 7 s there are two R 7 s
  • R 8 s there are two R 7 s .
  • Each R 7 , R 8 may be the same or different, but they are symmetrical. From the viewpoints of properties and synthesis, the same is preferable.
  • the compound preferably contains one or more partial structures represented by the general formula 4A or 4B.
  • Y 3 , Y in each partial structure 4 and R 10 to R 12 may be the same as or different from each other.
  • R 7 to R 8 are preferably a hydrogen atom or a halogen atom (preferably a fluorine atom).
  • Y 3 and Y 4 are preferably —S— and —O—, and more preferably because they can provide high mobility. Is -S-.
  • examples of the alkyl group, fluorinated alkyl group or cycloalkyl group which may be substituted in R 7 to R 8 and R 10 to R 12 include those described in the above R 1 to R 3 column. .
  • Examples of the fluorinated cycloalkyl group in R 7 to R 8 include groups in which at least one hydrogen atom contained in the cycloalkyl group exemplified above is substituted with a fluorine atom.
  • the alkoxy group having 1 to 24 carbon atoms is not particularly limited, and examples thereof include a methoxy group, an ethoxy group, an isopropoxy group, a tert-butoxy group, an n-octyloxy group, an n-decyloxy group, and an n-hexadecyl group. Examples thereof include an oxy group, 2-ethylhexyloxy group, and 2-hexyldecyloxy group.
  • Examples of the fluorinated alkoxy group include a group in which at least one hydrogen atom contained in the alkoxy group exemplified above is substituted with a fluorine atom.
  • the aryl group having 6 to 30 carbon atoms is not particularly limited, and examples thereof include non-condensed hydrocarbon groups such as a phenyl group, a biphenyl group, and a terphenyl group; a pentarenyl group, an indenyl group, a naphthyl group, an azulenyl group, Heptalenyl group, biphenylenyl group, fluorenyl group, acenaphthylenyl group, preadenyl group, acenaphthenyl group, phenalenyl group, phenanthryl group, anthryl group, fluoranthenyl group, acephenanthrenyl group, aceanthrylenyl group, triphenylenyl group,
  • the fluorinated aryl group having 6 to 30 carbon atoms is not particularly limited, and examples thereof include a group in which at least one hydrogen atom contained in the aryl group exemplified above is substituted with a fluorine atom.
  • the heteroaryl group having 1 to 20 carbon atoms is not particularly limited, and examples thereof include pyridyl group, pyrimidyl group, pyrazinyl group, triazinyl group, furanyl group, pyrrolyl group, thiophenyl group (thienyl group), quinolyl group, Furyl group, piperidyl group, coumarinyl group, silafluorenyl group, benzofuranyl group, benzimidazolyl group, benzoxazolyl group, benzthiazolyl group, dibenzofuranyl group, benzothiophenyl group, dibenzothiophenyl group, indolyl group, carbazolyl group, pyrazolyl Group,
  • the compound contained in the p-type organic semiconductor material of the present invention is preferably a copolymer of the structure represented by the general formula 1 and a donor unit.
  • a copolymer of the structure represented by the general formula 1 and a donor unit at least one of m and n is one or more forms, which is a preferable form because it has a donor unit.
  • the donor unit that can be included in the conjugated polymer compound of the present embodiment has a LUMO level or a HOMO level rather than a hydrocarbon aromatic ring (benzene, naphthalene, anthracene, etc.) having the same number of ⁇ electrons. If it is a shallow unit, it can be used without restriction.
  • thiophene examples include thiophene, thienothiophene, bithiophene, fluorene, silafluorene, carbazole, dithienocyclopentadiene, dithienosylcyclopentadiene, dithienopyrrole, and benzodithiophene.
  • thiophene thienothiophene
  • bithiophene fluorene
  • silafluorene carbazole
  • dithienocyclopentadiene dithienosylcyclopentadiene
  • dithienopyrrole dithienopyrrole
  • benzodithiophene examples include thiophene, thienothiophene, bithiophene, fluorene, silafluorene, carbazole, dithienocyclopentadiene, dithienosylcyclopentadiene, dithienopyrrole, and benzodithiophene.
  • R may have a hydrogen atom, a halogen atom, an alkyl group which may have a substituent, a fluorinated alkyl group which may have a substituent, or a substituent.
  • a cycloalkyl group, an alkoxy group which may have a substituent, a fluorinated alkoxy group which may have a substituent, a cycloalkoxy group which may have a substituent, an alkoxycarbonyl which may have a substituent A group, an acyl group which may have a substituent, an alkylaminocarbonyl group which may have a substituent, or an acylamino group which may have a substituent.
  • a hydrogen atom or an alkyl group which may have a substituent is preferable.
  • the halogen atom, an alkyl group that may have a substituent, a fluorinated alkyl group that may have a substituent, a cycloalkyl group that may have a substituent, and an alkoxy group that may have a substituent examples include those described in the above R 7 to R 8 columns.
  • each R may be the same substituent and may be different substituents.
  • the alkoxycarbonyl group is preferably an alkoxycarbonyl group (—COOR) having 2 to 30 carbon atoms, more preferably 2 to 24 carbon atoms, and still more preferably 6 to 24 carbon atoms.
  • the acyl group (—COR) is preferably an alkoxycarbonyl group (—COOR) having 2 to 30 carbon atoms, more preferably 2 to 24 carbon atoms, and still more preferably 6 to 25 carbon atoms.
  • the alkylaminocarbonyl group (—CONHR or —CONRR ′) is preferably an alkylaminocarbonyl having 2 to 40 carbon atoms, more preferably 9 to 40 carbon atoms, and still more preferably 13 to 24 carbon atoms.
  • Groups such as dimethylaminocarbonyl group, diethylaminocarbonyl group, diisopropylaminocarbonyl group, methyl-tert-butylaminocarbonyl group, dihexylaminocarbonyl group, dioctylaminocarbonyl group, didecylaminocarbonyl group, dihexadecylaminocarbonyl Group, di2-ethylhexylaminocarbonyl group, di2-hexyldecylaminocarbonyl group and the like.
  • the acylamino group (—NHCOR) is preferably an acylamino group having 2 to 30 carbon atoms, and examples thereof include an acetamide group, an ethylamide group, and a propylamide group.
  • a unit represented by the general formula 3 is preferable.
  • each R 9 independently has a hydrogen atom, a halogen atom, an alkyl group which may have a substituent, a fluorinated alkyl group which may have a substituent, or a substituent.
  • R 9 substituents are the same as those described in the column of R in the above D1 to D18.
  • each R 9 may be the same or different, but is preferably the same from the viewpoint of symmetry and synthesis.
  • the compound preferably contains one or more partial structures represented by the general formula 3, but when there are two or more partial structures, R 9 in each partial structure is the same as each other. It may be different or different.
  • the donor unit having such a structure has high crystallinity and can obtain higher conversion efficiency.
  • the compound having the structure represented by the general formula 1 is preferably a polymer compound having a number average molecular weight of 10,000 or more.
  • the low-molecular compound (fullerene derivative) is widely used as the n-type organic semiconductor which is the other component constituting the bulk heterojunction type photoelectric conversion layer. This is because a microphase-separated structure is formed, and it is easy to generate carrier paths that respectively carry holes and electrons generated in the bulk heterojunction photoelectric conversion layer.
  • the number average molecular weight of the compound is preferably 100,000 or less. More preferably, it is in the range of 15,000 to 50,000.
  • the molecular weight can be measured by gel permeation chromatography (GPC).
  • the number average molecular weight can be measured by the following method.
  • purification according to molecular weight can be performed by preparative gel permeation chromatography (GPC).
  • the ratio of the partial structure according to the present invention to the compound having the partial structure according to the present invention is generally preferably 20 to 80% by mass and particularly preferably 25 to 60% by mass with respect to the compound.
  • the compound is preferably a high molecular weight compound as described above.
  • the compound has a partial structure as a repeating unit, and the entire compound including a repeating unit other than the partial structure is used. , Preferably in the range of 30 to 50 mol%.
  • the number of repetitions (polymerization degree) of each unit is a value that falls within the above-mentioned molecular weight.
  • a number average molecular weight of 10,000 to 100,000 approximately 10 to 200 is required. It needs to be about.
  • thiazolothiazole ring and the like are described in Adv. Mater. Can be synthesized with reference to 2007, 19, 4160, etc.
  • Example Compound 11-1 3.0 g, rubeanic acid 0.4 g, and dimethylformamide (DMF) 60 ml were added and stirred at 150 ° C. for 8 hours. After completion of the reaction, the organic phase was separated with water / ethyl acetate, and then the organic phase was distilled off to obtain a crude product. Further purification by silica gel column chromatography gave Exemplified Compound 11-2 (0.69 g, 20%).
  • Exemplified Compound 11-2 (0.69 g) was dissolved in 30 ml of chloroform, 0.39 g of N-bromosuccinimide was added, reacted for 5 hours under reflux, water was added and the phases were separated to extract the organic phase. The solvent was distilled off to obtain a crude product, which was then purified by silica gel column chromatography to obtain Exemplified Compound 11-3 (0.64 g, 75%).
  • Example Compound 12-1 2.1 g, rubeanic acid 0.4 g, and dimethylformamide (DMF) 60 ml were added and stirred at 150 degrees for 8 hours. After completion of the reaction, the organic phase was separated with water / ethyl acetate, and then the organic phase was distilled off to obtain a crude product. Further purification by silica gel column chromatography gave Exemplified Compound 12-2 (0.50 g, 20%).
  • Example Compound 12-2 0.5 g of 1N aqueous sodium hydroxide solution 0.5 g and 10 ml of tetrahydrofuran was stirred at room temperature for 2 hours, and then ethyl acetate was added to extract the organic layer to deprotect the trimethylsilyl group. .
  • This compound was dissolved in 20 ml of dehydrated tetrahydrofuran, cooled to ⁇ 78 ° C., 1.0 ml of 2.0 M lithium diisopropylamine solution was added dropwise, and the mixture was stirred for 1 hour. After raising the temperature of the reaction solution to 0 ° C., dodecyl chloroformate (1.33 g) was added, and the reaction was further continued at room temperature for 5 hours.
  • Exemplified Compound 12-3 (0.65 g) was dissolved in 30 ml of chloroform, 0.35 g of N-bromosuccinimide was added and reacted for 5 hours under reflux, followed by addition of water and liquid separation to extract the organic phase. The solvent was distilled off to obtain a crude product, which was then purified by silica gel column chromatography to obtain Exemplified Compound 12-4 (0.67 g, 80%).
  • the n-type organic semiconductor material used for the photoelectric conversion layer according to the present invention is not particularly limited. Fluoropentacene, perfluorophthalocyanine, etc.), naphthalenetetracarboxylic anhydride, naphthalenetetracarboxylic acid diimide, perylenetetracarboxylic acid anhydride, perylenetetracarboxylic acid diimide and other aromatic carboxylic acid anhydrides and imidized compounds thereof Examples thereof include polymer compounds.
  • fullerene derivatives that can efficiently perform charge separation with various p-type semiconductor materials at high speed (up to 50 femtoseconds) are preferable.
  • Fullerene derivatives include fullerene C 60 , fullerene C 70 , fullerene C 76 , fullerene C 78 , fullerene C 84 , fullerene C 240 , fullerene C 540 , mixed fullerene, fullerene nanotube, multi-wall nanotube, single-wall nanotube, nanohorn (cone Type), etc., and some of these are hydrogen atoms, halogen atoms, substituted or unsubstituted alkyl groups, alkenyl groups, alkynyl groups, aryl groups, heteroaryl groups, cycloalkyl groups, silyl groups, ether groups, thioether groups, The fullerene derivative substituted by the amino group, the silyl group, etc. can be mentioned.
  • fullerene having a cyclic ether group such as Amer. Chem. Soc. , (2009) vol. 130, p15429, SIMEF, Appl. Phys. Lett. , Vol. 87 (2005), C 60 MC12 described in p203504, etc. It is preferable to use a fullerene derivative having a substituent and having improved solubility as described below.
  • Examples of a method for forming a photoelectric conversion layer containing a p-type organic semiconductor material and an n-type organic semiconductor material include a vapor deposition method and a coating method (including a casting method and a spin coating method).
  • the coating method is preferable in order to increase the area of the interface where charge and electron separation of the above-described holes is performed and to produce a device having high photoelectric conversion efficiency. Also, the coating method is excellent in production speed.
  • the application method used in this case is not limited, and examples thereof include spin coating, casting from a solution, dip coating, wire bar coating, gravure coating, and spray coating. Furthermore, patterning can also be performed by a printing method such as an ink jet method, a screen printing method, a relief printing method, an intaglio printing method, an offset printing method, or a flexographic printing method.
  • a printing method such as an ink jet method, a screen printing method, a relief printing method, an intaglio printing method, an offset printing method, or a flexographic printing method.
  • a coating liquid composed of three types of p-type semiconductor material, n-type semiconductor material, and solvent for at least the photoelectric conversion layer coating liquid As the solvent, a solvent capable of dissolving both the p-type semiconductor material and the n-type semiconductor material which are solutes is preferable.
  • a solvent for example, aromatic solvents such as toluene, xylene and tetralin, and halogen solvents such as chloroform, dichloroethane, chlorobenzene, dichlorobenzene and trichlorobenzene are preferable.
  • the total concentration of the solute in these solvents varies depending on the film thickness to be obtained and the film forming method, but is preferably about 1 to 3% by mass in the spin coating method and the blade coating method. More preferably, the content is 1.5 to 2% by mass.
  • a photoelectric conversion layer having a film thickness of about 100 to 200 nm can be formed by spin coating and blade coating, which are typical film forming methods.
  • the mass ratio of the p-type semiconductor and the n-type semiconductor, which are solutes can be any value such as 1: 4 to 4: 1, but in practice, the mass ratio is about 1: 1 to 1: 2. A value is preferred.
  • the photoelectric conversion layer can have an appropriate phase separation structure.
  • the photoelectric conversion layer may be composed of a single layer in which a p-type organic semiconductor material and an n-type organic semiconductor material are uniformly mixed.
  • the photoelectric conversion layer may be a plurality of layers in which the mixing ratio of the electron acceptor and the electron donor is changed. It may be configured. In this case, it can be formed by using a material that can be insolubilized after application.
  • a p-type semiconductor material that can be insolubilized after coating for example, the coating film is polymerized after coating, such as polythiophene having a polymerizable group described in Technical Digest of the International PVSEC-17, Fukuoka, Japan, 2007, P1225.
  • n-type semiconductor material that can be insolubilized after application include Adv. Mater. , Vol. 20 (2008), p2116, phenyl-C61-glycidyl butyrate (PCBG), and the like.
  • Electrode transport layer In the organic photoelectric conversion element of the present invention, by forming an electron transport layer in the middle of the photoelectric conversion layer and the cathode, it becomes possible to more efficiently extract charges generated in the photoelectric conversion layer. It is preferable to have.
  • the present invention can be particularly preferably applied when the first electrode is a cathode.
  • the electron transport layer is a layer that is located between the cathode and the bulk heterojunction layer and can more efficiently transfer electrons between the bulk heterojunction layer and the electrode.
  • a compound having an LUMO level intermediate between the LUMO level of the n-type semiconductor material of the bulk heterojunction photoelectric conversion layer and the work function of the cathode is suitable as the electron transporting layer.
  • it is a compound having an electron mobility of 10 ⁇ 4 or more.
  • the electron transport layer having a HOMO level deeper than the HOMO level of the p-type semiconductor material used in the bulk heterojunction type photoelectric conversion layer includes a hole generated in the bulk heterojunction layer as a cathode.
  • a hole blocking function having a rectifying effect that does not flow to the side is provided.
  • Such an electron transport layer is also referred to as a hole blocking layer. More preferably, a material having a HOMO level deeper than the HOMO level of the n-type semiconductor is used for the electron transport layer. In addition, in view of the property of blocking holes, it is preferable to use a compound having a hole mobility lower than 10 ⁇ 6 .
  • the electron transport layer As the electron transport layer, octaazaporphyrin, p-type semiconductor perfluoro compounds (perfluoropentacene, perfluorophthalocyanine, etc.), carboline compounds described in International Publication No. 04/095889, and the like can be used.
  • the electron transport layer having a HOMO level deeper than the HOMO level of the p-type semiconductor material used for the photoelectric conversion layer has a rectifying effect so that holes generated in the photoelectric conversion layer do not flow to the cathode side.
  • the hole blocking function is imparted.
  • a material deeper than the HOMO level of the n-type semiconductor is used as the electron transport layer.
  • n-type semiconductor materials such as naphthalenetetracarboxylic acid anhydride, naphthalenetetracarboxylic acid diimide, perylenetetracarboxylic acid anhydride, perylenetetracarboxylic acid diimide, and titanium oxide.
  • N-type inorganic oxides such as zinc oxide and gallium oxide, and alkali metal compounds such as lithium fluoride, sodium fluoride, and cesium fluoride can be used.
  • unit used for the photoelectric converting layer can also be used.
  • the means for forming these layers may be either a vacuum vapor deposition method or a solution coating method, but is preferably a solution coating method.
  • the organic photoelectric conversion element of the present invention can more efficiently extract the charge generated in the photoelectric conversion layer, it may have a hole transport layer between the photoelectric conversion layer and the anode. preferable.
  • the present invention can be preferably applied when the second electrode is a hole transport layer.
  • PEDOT poly-3,4-ethylenedioxythiophene
  • PSS polystyrene sulfonic acid
  • cyan compounds described in International Publication No. 06/019270, and the like can be used.
  • the hole transport layer having a LUMO level shallower than the LUMO level of the n-type semiconductor material used for the photoelectric conversion layer has a rectifying effect that prevents electrons generated in the photoelectric conversion layer from flowing to the anode side. It has an electronic block function.
  • Such a hole transport layer is also called an electron block layer, and it is preferable to use a hole transport layer having such a function.
  • unit used for the photoelectric converting layer can also be used.
  • the means for forming these layers may be either a vacuum deposition method or a solution coating method, but is preferably a solution coating method. Forming a coating film in the lower layer before forming the photoelectric conversion layer is preferable because it has the effect of leveling the coating surface and reduces the influence of leakage and the like.
  • a compound having a hole mobility higher than 10 ⁇ 4 because of the property of transporting holes, and from the property of blocking electrons, the electron mobility is higher than 10 ⁇ 6. It is preferable to use a low compound.
  • Examples of the intermediate layer include a hole block layer, an electron block layer, a hole injection layer, an electron injection layer, an exciton block layer, a UV absorption layer, a light reflection layer, and a wavelength conversion layer.
  • the organic photoelectric conversion element of the present invention has the first electrode and the second electrode.
  • the tandem configuration can be achieved by using the intermediate electrode.
  • the first electrode is a transparent electrode.
  • Transparent means that the light transmittance is 50% or more.
  • the light transmittance is the total light in the visible wavelength range measured by a method in accordance with “Testing method of total light transmittance of plastic-transparent material” of JIS K 7361-1: 1997 (corresponding to ISO 13468-1). It refers to transmittance.
  • the first electrode of the present invention is preferably a transparent cathode (cathode), and the second electrode is preferably an anode (anode).
  • first electrode transparent cathode
  • transparent metal oxides such as indium tin oxide (ITO), AZO, FTO, SnO 2 , ZnO, and titanium oxide, Ag, Al, Au, and Pt.
  • ITO indium tin oxide
  • AZO zinc oxide
  • FTO zinc oxide
  • SnO 2 zinc oxide
  • ZnO zirconium oxide
  • titanium oxide Ag, Al, Au
  • Pt platinum oxide
  • a very thin metal layer, a metal nanowire, a nanowire such as a carbon nanotube or a layer containing nanoparticles, a conductive polymer material such as PEDOT: PSS, polyaniline, or the like can be used.
  • Conductive polymers can also be used. Further, a plurality of these conductive compounds can be combined to form a cathode.
  • the second electrode may be a single conductive material layer, but in addition to a conductive material, a resin that holds these may be used in combination.
  • the work function of the transparent electrode which is the cathode
  • the built-in potential is necessary for carriers generated in the bulk heterojunction type photoelectric conversion layer to diffuse and reach each electrode. That is, it is preferable that the work function difference between the anode and the cathode is as large as possible.
  • the conductive material of the anode a material having a work function (4 eV or less) metal, alloy, electrically conductive compound, and a mixture thereof as an electrode material is used.
  • an electrode material include gold, silver, copper, platinum, rhodium, indium, nickel, palladium, and the like.
  • silver is most preferable from the viewpoint of hole extraction performance, light reflectance, and durability against oxidation.
  • the cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering.
  • the film thickness is usually selected in the range of 10 nm to 5 ⁇ m, preferably 50 to 200 nm.
  • the anode side is made light transmissive
  • a conductive material suitable for the anode such as aluminum and aluminum alloy
  • silver and silver compound is made thin with a film thickness of about 1 to 20 nm, and then the transparent electrode A light-transmitting anode can be obtained by providing the conductive light-transmitting material film mentioned in the description.
  • the so-called normal layer type (the first electrode is an anode and the second electrode is a cathode) ),
  • the relationship between the work functions of the first electrode and the second electrode may be reversed as described above, but the types of substantially transparent electrodes are limited, and the work functions are compared.
  • a normal layer type organic thin film solar cell can be obtained by using a metal having a shallow work function (less than ⁇ 4.0 eV) on the second electrode side. Examples of such a metal include aluminum, calcium, magnesium, lithium, sodium, and potassium. In general, aluminum having high reflectivity and high conductivity is used.
  • the material of the intermediate electrode required in the case of the tandem configuration as shown in FIG. 3 is preferably a layer using a compound having both transparency and conductivity.
  • Transparent metal oxides such as ITO, AZO, FTO, SnO 2 , ZnO and titanium oxide, very thin metal layers such as Ag, Al, Au and Pt, or layers containing nanowires and nanoparticles such as metal nanowires and carbon nanotubes PEDOT: PSS, conductive polymer materials such as polyaniline, etc.
  • conductive polymer materials such as polyaniline, etc.
  • the substrate is a transparent substrate, and the term “transparent” has the same meaning as described above for the electrodes.
  • the substrate for example, a glass substrate, a resin substrate, and the like are preferably used, but it is desirable to use a transparent resin film from the viewpoint of light weight and flexibility.
  • a transparent resin film which can be preferably used as a transparent substrate by this invention,
  • the material, a shape, a structure, thickness, etc. can be suitably selected from well-known things.
  • polyolefins such as polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyester resin film such as modified polyester, polyethylene (PE) resin film, polypropylene (PP) resin film, polystyrene resin film, cyclic olefin resin, etc.
  • Resin films vinyl resin films such as polyvinyl chloride and polyvinylidene chloride, polyether ether ketone (PEEK) resin films, polysulfone (PSF) resin films, polyether sulfone (PES) resin films, polycarbonate (PC) resin films , Polyamide resin film, polyimide resin film, acrylic resin film, triacetyl cellulose (TAC) resin film, and the like.
  • the resin film transmittance of 80% or more at 80 ⁇ 800 nm) can be preferably applied to a transparent resin film according to the present invention.
  • biaxially stretched polyethylene terephthalate film preferably a biaxially stretched polyethylene terephthalate film, a biaxially stretched polyethylene naphthalate film, a polyethersulfone film, or a polycarbonate film. More preferred are a stretched polyethylene terephthalate film and a biaxially stretched polyethylene naphthalate film.
  • the transparent substrate used in the present invention can be subjected to a surface treatment or an easy adhesion layer in order to ensure the wettability and adhesion of the coating solution.
  • a surface treatment or an easy adhesion layer in order to ensure the wettability and adhesion of the coating solution.
  • a conventionally well-known technique can be used about a surface treatment or an easily bonding layer.
  • the surface treatment includes surface activation treatment such as corona discharge treatment, flame treatment, ultraviolet treatment, high frequency treatment, glow discharge treatment, active plasma treatment, and laser treatment.
  • Examples of the easy adhesion layer include polyester, polyamide, polyurethane, vinyl copolymer, butadiene copolymer, acrylic copolymer, vinylidene copolymer, and epoxy copolymer.
  • a barrier coat layer may be formed in advance on the transparent substrate, or a hard coat layer may be formed in advance on the opposite side to which the transparent conductive layer is transferred. Good.
  • the organic photoelectric conversion element of the present invention may have various optical functional layers for the purpose of more efficient reception of sunlight.
  • a light condensing layer such as an antireflection film or a microlens array, or a light diffusion layer that can scatter light reflected by the cathode and enter the power generation layer again may be provided. .
  • the antireflection layer can be provided as the antireflection layer.
  • the refractive index of the easy adhesion layer adjacent to the film is 1.57. It is more preferable to set it to ⁇ 1.63 because the transmittance can be improved by reducing the interface reflection between the film substrate and the easy adhesion layer.
  • the method for adjusting the refractive index can be carried out by appropriately adjusting the ratio of the oxide sol having a relatively high refractive index such as tin oxide sol or cerium oxide sol and the binder resin.
  • the easy adhesion layer may be a single layer, but may be composed of two or more layers in order to improve adhesion.
  • the condensing layer for example, it is processed to provide a structure on the microlens array on the sunlight receiving side of the support substrate, or the amount of light received from a specific direction is increased by combining with a so-called condensing sheet. Conversely, the incident angle dependency of sunlight can be reduced.
  • quadrangular pyramids having a side of 30 ⁇ m and an apex angle of 90 degrees are arranged two-dimensionally on the light extraction side of the substrate.
  • One side is preferably 10 to 100 ⁇ m. If it becomes smaller than this, the effect of diffraction will generate
  • the light scattering layer examples include various antiglare layers, layers in which nanoparticles or nanowires such as metals or various inorganic oxides are dispersed in a colorless and transparent polymer, and the like.
  • the method and process for patterning each electrode, photoelectric conversion layer, hole transport layer, electron transport layer and the like according to the present invention are not particularly limited, and known methods can be appropriately applied.
  • the electrode can be patterned by a known method such as mask vapor deposition during vacuum deposition or etching or lift-off.
  • the pattern may be formed by transferring a pattern formed on another substrate.
  • the solar cell of this invention has said organic photoelectric conversion element.
  • the solar cell of the present invention comprises the above-described organic photoelectric conversion element, has a structure in which optimum design and circuit design are performed for sunlight, and optimum photoelectric conversion is performed when sunlight is used as a light source. .
  • the photoelectric conversion layer has a structure that can be irradiated with sunlight, and when the solar cell of the present invention is configured, the photoelectric conversion layer and each electrode are housed in a case and sealed, Alternatively, it is preferable to seal them entirely with resin.
  • a sealing method it is preferable to seal not only the organic photoelectric conversion element but also an organic electroluminescence element by a known method so that the produced organic photoelectric conversion element does not deteriorate due to oxygen, moisture, etc. in the environment. .
  • a method of sealing a cap made of aluminum or glass by bonding with an adhesive, a plastic film on which a gas barrier layer such as aluminum, silicon oxide, or aluminum oxide is formed and an organic photoelectric conversion element are pasted with an adhesive.
  • Method, spin coating of organic polymer material with high gas barrier property (polyvinyl alcohol, etc.), inorganic thin film with high gas barrier property (silicon oxide, aluminum oxide, etc.) or organic film (parylene etc.) are deposited under vacuum. Examples thereof include a method and a method of laminating these in a composite manner.
  • Example 1 Evaluation of photoelectric conversion efficiency [Preparation of organic photoelectric conversion element 1] With reference to Japanese Patent Application Laid-Open No. 2009-146981, a reverse layer type organic photoelectric conversion element was produced.
  • an indium tin oxide (ITO) transparent conductive film deposited with a thickness of 110 nm (surface resistivity 13 ⁇ / ⁇ ) is patterned to a width of 2 mm using a normal photolithography technique and hydrochloric acid etching, A transparent electrode was formed.
  • ITO indium tin oxide
  • the patterned transparent electrode was cleaned in the order of ultrasonic cleaning with a surfactant and ultrapure water, followed by ultrasonic cleaning with ultrapure water, dried by nitrogen blowing, and finally subjected to ultraviolet ozone cleaning.
  • the substrate was brought into a glove box, and a 150 mmol / L (liter) TiO x precursor solution prepared by the following procedure was spin-coated (rotation speed 2000 rpm, rotation time 60 s) on the transparent substrate in a nitrogen atmosphere. A predetermined pattern was wiped off.
  • the TiO x precursor was hydrolyzed by being left in the air.
  • the TiO x precursor was heat-treated at 150 ° C. for 1 hour to obtain a 30 nm TiO x layer.
  • Comparative Compound 1 As a p-type semiconductor material and 0.9% by mass (total solid content concentration: 1.8% by mass) of PCBM (manufactured by Frontier Carbon, Nano Spectra E100H) as an n-type semiconductor material were dissolved. A solution was prepared, and a solution filtered through a 0.45 ⁇ m filter was applied by a blade coater and dried at 100 ° C. for 30 minutes to obtain a photoelectric conversion layer having a dry film thickness of 220 nm. Comparative compound 1 was synthesized based on Non-Patent Document 3.
  • an organic solvent-based PEDOT: PSS dispersion (Enocoat HC200, manufactured by Kaken Sangyo) was blade coated on the organic semiconductor layer and air-dried to form a hole transport layer having a dry film thickness of 30 nm.
  • a reverse layer type organic photoelectric conversion element was produced by performing a heat treatment at 150 ° C. for 10 minutes.
  • the obtained organic photoelectric conversion element 1 is a transparent barrier film GX made of relief printing using a UV curable resin (manufactured by Nagase ChemteX Corporation, UV RESIN XNR5570-B1) under a nitrogen atmosphere (water vapor transmission rate 0.05 g / m 2). / D) and sealed and taken out to the atmosphere.
  • a UV curable resin manufactured by Nagase ChemteX Corporation, UV RESIN XNR5570-B1
  • nitrogen atmosphere water vapor transmission rate 0.05 g / m 2). / D
  • the obtained organic photoelectric conversion element 1 was sealed and then irradiated with solar simulator (AM1.5G) light at an irradiation intensity of 100 mW / cm 2 to measure voltage-current characteristics, and to obtain an initial conversion efficiency.
  • solar simulator AM1.5G
  • Organic photoelectric conversion elements 2 to 15 were obtained in the same manner as the comparative organic photoelectric conversion element 1 except that the p-type semiconductor material was changed to the material shown in Table 1 in the production of the organic photoelectric conversion element 1.
  • n in the table represents the mass ratio of the p-type semiconductor (polymer) and the n-type semiconductor (PCBM).
  • the compound of the present invention can provide better photoelectric conversion efficiency than the comparative compound in the reverse layer solar cell. Moreover, it turns out that durability can also be improved. In particular, it can be seen that a compound having —COO— introduced has a high effect of improving durability.
  • Example 2 Durability evaluation About the organic photoelectric conversion elements 8 and 11 produced in Example 1, the following normal layer type
  • the substrate was brought into the glove box and worked in a nitrogen atmosphere.
  • the substrate was again heat-treated at 140 ° C. for 10 minutes in a nitrogen atmosphere.
  • a p-type semiconductor material 0.6% by mass of the comparative compound 4 and 0.9% by mass of PCBM as an n-type semiconductor material are dissolved in chlorobenzene to prepare a 1.2% by mass chlorobenzene solution. While being filtered through a 45 ⁇ m filter, spin coating was performed at 700 rpm for 60 seconds, then at 2200 rpm for 1 second, and left at room temperature for 30 minutes.
  • the substrate on which the series of organic layers was formed was placed in a vacuum deposition apparatus without being exposed to the atmosphere.
  • the element was set so that the shadow mask with a width of 2 mm was orthogonal to the transparent electrode, and the inside of the vacuum deposition apparatus was depressurized to 10 ⁇ 3 Pa or less, and then 0.6 nm of lithium fluoride was deposited and 100 nm of aluminum was deposited as a counter electrode.
  • heating was performed at 120 ° C. for 30 minutes to obtain a comparative organic photoelectric conversion element 8 ′.
  • the deposition rate was 2 nm / second, and the size was 2 mm square.
  • the obtained organic photoelectric conversion element 4 ′ was obtained by using a transparent barrier film GX (water vapor transmission rate: 0.05 g / mm) using a UV curable resin (manufactured by Nagase ChemteX Corporation, UV RESIN XNR5570-B1) under a nitrogen atmosphere. m2 / d) and sealed and taken out to the atmosphere.
  • GX water vapor transmission rate: 0.05 g / mm
  • UV curable resin manufactured by Nagase ChemteX Corporation, UV RESIN XNR5570-B1
  • Photoelectric conversion elements prepared above was irradiated with light having an intensity of 100 mW / cm 2 solar simulator (AM1.5G filter), a superposed mask in which the effective area 4.0 mm 2 on the light receiving portion, the short circuit current density Jsc ( The four light-receiving portions formed on the same element were measured for mA / cm 2 ), open-circuit voltage Voc (V), and fill factor (fill factor) FF, and the average value was obtained.
  • the photoelectric conversion efficiency ⁇ (%) was obtained from Jsc, Voc, and FF according to Equation 1.
  • Formula 1 ⁇ (%) Jsc (mA / cm 2 ) ⁇ Voc (V) ⁇ FF (Durability Evaluation) Store in a container kept at a temperature of 80 ° C and a humidity of 80%, periodically take it out, measure the voltage-current characteristics, set the initial conversion efficiency as 100, and reduce the time to 80% of the initial efficiency. It was evaluated as LT80.
  • Comparison of organic photoelectric conversion elements 4 and 12 in Table 2 shows that the compound 12 of the present invention has higher durability.
  • the value of LT80 increased at 4 and 4 ′ and the value of LT80 increased at 12 and 12 ′ were compared, the former value using the compound according to the present invention was significantly more durable than the latter value. It can be understood that the effect of the present invention is particularly great in a so-called reverse layer type organic photoelectric conversion element.

Abstract

[Problem] The purpose of the present invention is to provide: an organic photoelectric conversion element having high photoelectric conversion efficiency and excellent durability; and a solar cell equipped with the organic photoelectric conversion element. [Solution] An organic photoelectric conversion element which comprises a transparent first electrode, a photoelectric conversion layer comprising a p-type organic semiconductor material and an n-type organic semiconductor material and a second electrode which are arranged in this order on a transparent substrate, and which is characterized in that the photoelectric conversion layer contains a compound having a partial structure represented by general formula (1) or (1') as the p-type organic semiconductor material. (In the formulae, X1's independently represent -S-, -O- or -NR2-; Y1's independently represent -CR3= or -N=; R1-R3 independently represent a hydrogen atom, an alkyl group which may have a substituent, a fluorinated alkyl group which may have a substituent, or a cycloalkyl group which may have a substituent; L1's independently represent a single bond or a substituent selected from an arylene group, a heteroarylene group, a carbonyl group, -COO- and -CONR'- (wherein R' represents a hydrogen atom or an alkyl group); A represents a bivalent acceptor unit; D1 and D2 independently represent a donor unit; and m and n independently represent an integer of 0-2.)

Description

有機光電変換素子および太陽電池Organic photoelectric conversion element and solar cell
 本発明は、有機光電変換素子、太陽電池に関し、更に詳しくは、バルクヘテロジャンクション型の有機光電変換素子、この有機光電変換素子を用いた太陽電池に関する。 The present invention relates to an organic photoelectric conversion element and a solar cell, and more particularly to a bulk heterojunction type organic photoelectric conversion element and a solar cell using the organic photoelectric conversion element.
 近年の化石エネルギーの高騰によって、自然エネルギーから直接電力を発電できるシステムが求められており、単結晶・多結晶・アモルファスのSiを用いた太陽電池、GaAsやCIGS(銅(Cu)、インジウム(In)、ガリウム(Ga)、セレン(Se)からなる半導体材料)などの化合物系の太陽電池、あるいは色素増感型光電変換素子(グレッツェルセル)などが提案・実用化されている。 Due to the recent rise in fossil energy, a system that can generate electric power directly from natural energy has been demanded. Solar cells using single-crystal / polycrystal / amorphous Si, GaAs, CIGS (copper (Cu), indium (In) ), Semiconductor materials such as gallium (Ga) and selenium (Se)), and dye-sensitized photoelectric conversion elements (Gretzel cells) have been proposed and put to practical use.
 しかしながら、これらの太陽電池で発電するコストは、未だ化石燃料を用いて発電・送電される電気の価格よりも高いものとなっており、普及の妨げとなっていた。また、基板に重いガラスを用いなければならないため、設置時に補強工事が必要であり、これらも発電コストが高くなる一因であった。 However, the cost of generating electricity with these solar cells is still higher than the price of electricity generated and transmitted using fossil fuels, which has hindered the spread. In addition, since heavy glass must be used for the substrate, reinforcement work is required at the time of installation, which is one of the causes that increase the power generation cost.
 このような状況に対し、化石燃料による発電コストよりも低い発電コストを達成しうる太陽電池として、透明電極と対電極との間に電子供与体層(p型半導体層)と電子受容体層(n型半導体層)とが混合された光電変換層を挟んだバルクヘテロジャンクション型光電変換素子が提案され、5%を超える効率が報告されている(例えば、非特許文献1参照)。 For such a situation, as a solar cell that can achieve a power generation cost lower than that of fossil fuel, an electron donor layer (p-type semiconductor layer) and an electron acceptor layer (p-type semiconductor layer) are provided between the transparent electrode and the counter electrode. A bulk heterojunction photoelectric conversion element sandwiching a photoelectric conversion layer mixed with an n-type semiconductor layer) has been proposed, and an efficiency exceeding 5% has been reported (for example, see Non-Patent Document 1).
 これらのバルクヘテロジャンクション型光電変換素子を用いた太陽電池においては、アノード・カソード以外は塗布により形成することが出来るため、高速且つ安価で製造が可能であり、前述の発電コストの課題を解決できる可能性がある。更に、上記のSi系太陽電池、半導体系太陽電池、色素増感太陽電池などと異なり、160℃より高温の製造工程がないため、安価且つ軽量なプラスチック基板上への形成も可能であると期待される。 Solar cells using these bulk heterojunction type photoelectric conversion elements can be formed by coating other than the anode and cathode, so that they can be manufactured at high speed and at low cost, and the above-mentioned problem of power generation cost can be solved. There is sex. Furthermore, unlike the Si-based solar cells, semiconductor-based solar cells, and dye-sensitized solar cells described above, there is no manufacturing process at a temperature higher than 160 ° C., so that it can be formed on a cheap and lightweight plastic substrate. Is done.
 しかしながら、発電コストの削減のためにはさらなる光電変換効率向上が求められている。有機薄膜太陽電池において光電変換効率10%以上を出すためには、非特許文献2ではp型半導体として特定のバンドギャップ(bg)およびLUMO準位を有する化合物が必要とされている。この文献によれば、バンドギャップは1.3~1.7eV、LUMO準位は-3.9~-4.0eVであることが必要とされる(非特許文献2)。 However, further photoelectric conversion efficiency improvement is required to reduce power generation costs. In order to obtain a photoelectric conversion efficiency of 10% or more in an organic thin film solar cell, Non-Patent Document 2 requires a compound having a specific band gap (bg) and LUMO level as a p-type semiconductor. According to this document, the band gap is required to be 1.3 to 1.7 eV, and the LUMO level is required to be −3.9 to −4.0 eV (Non-patent Document 2).
 しかもこの条件は必要条件であり、実際に光電変換効率10%を出すためにはさらにその他の条件を満たすことが必要である。前記非特許文献2においては、外部量子効率(EQE)が65%、および曲線因子(FF)が65%という2つの条件が前提条件として設定されている。 Moreover, this condition is a necessary condition, and it is necessary to satisfy other conditions in order to actually obtain a photoelectric conversion efficiency of 10%. In the said nonpatent literature 2, two conditions that an external quantum efficiency (EQE) is 65% and a fill factor (FF) are 65% are set as a precondition.
 ここで外部量子効率(EQE)とは、スペクトルに分解された太陽光の光子1つからどれくらいの電子を発生できるかを示す値であり、曲線因子(FF)とは、太陽電池内部の抵抗とかかわる値であり、IV特性上の実際の最大電力と、開放電圧と短絡電流の積との比である。 Here, the external quantum efficiency (EQE) is a value indicating how many electrons can be generated from one photon of sunlight decomposed into a spectrum, and the fill factor (FF) is the resistance inside the solar cell. This value is the ratio of the actual maximum power on the IV characteristic and the product of the open circuit voltage and the short circuit current.
 この曲線因子および外部量子効率は発電層の半導体材料の移動度と関係すると言われている。移動度が高ければ、太陽電池内部の直列抵抗は低くなり、曲線因子を向上させることができる。また、キャリアを取り出せる長さは移動度とキャリア寿命および内蔵電界の積であるため、理想的には移動度が高い材料ほど厚い発電層を作製することができ、吸光度を上げることができるため、高い外部量子効率を狙うことができる。 This curve factor and external quantum efficiency are said to be related to the mobility of the semiconductor material in the power generation layer. If the mobility is high, the series resistance inside the solar cell is low, and the fill factor can be improved. In addition, since the length of the carrier that can be taken out is the product of mobility, carrier life, and built-in electric field, ideally a material with higher mobility can produce a thicker power generation layer and can increase absorbance, High external quantum efficiency can be aimed at.
 したがって、高い移動度を有することが一つの重要な条件となるが、移動度は一般に非晶性よりも結晶性材料が高いため、結晶性のp型半導体材料を選択することが重要となる。特に本発明の様に有機化合物の場合、結晶性を向上させるためにはなるべく平面性の高い材料であることが重要である。 Therefore, one of the important conditions is to have high mobility. However, since the mobility is generally higher in a crystalline material than amorphous, it is important to select a crystalline p-type semiconductor material. In particular, in the case of an organic compound as in the present invention, it is important that the material be as flat as possible in order to improve crystallinity.
 すなわち、有機薄膜太陽電池の発電層の素材としては、より深いLUMO準位を有し、より大きなπ共役長を有する(バンドギャップが小さく、結晶性が高い)化合物が必要とされている。 That is, as a material for the power generation layer of the organic thin-film solar cell, a compound having a deeper LUMO level and a larger π conjugate length (small band gap and high crystallinity) is required.
 このような深いLUMO準位を得るために、前記非特許文献1のように、電子供与性の高いドナーユニット(チオフェン等)と電子吸引性の高いアクセプター性ユニット(含窒素芳香族環等)の共重合体が数多く検討されている。 In order to obtain such a deep LUMO level, as in Non-Patent Document 1, a donor unit (thiophene, etc.) having a high electron donating property and an acceptor unit (nitrogen-containing aromatic ring, etc.) having a high electron attractive property are used. Many copolymers have been studied.
 また、高移動度の母核として知られるチオフェンに電子吸引性基を付加することで、深いLUMO準位および低バンドギャップ化されたp型高分子材料を得ようとする試みがなされている。 Also, an attempt has been made to obtain a p-type polymer material having a deep LUMO level and a low band gap by adding an electron-withdrawing group to thiophene known as a high mobility mother nucleus.
 非特許文献3では、チオフェン環にジシアノメチレン基を付与した構造が開示されているが、ジシアノメチレン基は隣のチオフェン環と立体障害を起こしてπ共役面がねじれるためか、移動度が不十分であり、変換効率も1%未満と低いものにとどまっていた。 Non-Patent Document 3 discloses a structure in which a dicyanomethylene group is added to a thiophene ring, but the dicyanomethylene group causes steric hindrance with the adjacent thiophene ring and twists the π-conjugated surface, or the mobility is insufficient. The conversion efficiency was also low, less than 1%.
 非特許文献4では、チオフェンにエステル基を付与した構造が開示されているが、同様にエステル基も隣のチオフェン環と立体障害を起こしてπ共役面がねじれるため、間にビニレン基を挟むことで平面性を確保している。しかし、準位はまだ十分深くなく、変換効率も2%台と低いものであった。 Non-Patent Document 4 discloses a structure in which an ester group is added to thiophene. Similarly, an ester group also causes steric hindrance with the adjacent thiophene ring and twists the π-conjugated surface, so that a vinylene group is sandwiched between them. To ensure flatness. However, the level was not deep enough and the conversion efficiency was as low as 2%.
 また非特許文献5では、ドナーアクセプター型のポリマーとして、有機TFTなどでも比較的高移動度のアクセプター母核として知られているチアゾロチアゾール基が導入されたp型高分子材料が開示されているが、準位が十分深くなく、変換効率も2%台と低いものであった。 Non-Patent Document 5 discloses a p-type polymer material into which a thiazolothiazole group, which is known as an acceptor nucleus of relatively high mobility even in organic TFTs, is introduced as a donor-acceptor type polymer. However, the level was not deep enough and the conversion efficiency was as low as 2%.
 本発明者らは、非特許文献5、および特許文献2に開示されているような、アルキニル基で置換されたチオフェン基を有するポリチオフェンに注目した。この非特許文献5に開示されているように、アルキニル基はチオフェンが連続する構造においても主鎖のねじれを引き起こさず、かつ弱い電子吸引性置換基であるためにLUMO準位を若干深くすることができる構造である。このような構造であれば、上記要件(より深いLUMO準位を有し、より大きなπ共役面積を有する結晶性化合物)を見たすことが期待されるが、これまで有機薄膜太陽電池としての特性は評価されていなかった。また、これらの文献ではチオフェン類やベンゼン類との重合しか実施されておらず、さらにはドナー・アクセプター型のポリマーは合成されておらず、前述のような深いLUMO準位のポリマーは得られていなかった。 The present inventors paid attention to polythiophene having a thiophene group substituted with an alkynyl group as disclosed in Non-Patent Document 5 and Patent Document 2. As disclosed in Non-Patent Document 5, the alkynyl group does not cause twisting of the main chain even in a structure in which thiophene is continuous, and is a weak electron-withdrawing substituent, so that the LUMO level is slightly deepened. It is a structure that can. With such a structure, it is expected that the above requirement (a crystalline compound having a deeper LUMO level and a larger π-conjugated area) will be observed. Properties have not been evaluated. In these documents, only polymerization with thiophenes and benzenes is carried out. Further, donor-acceptor type polymers are not synthesized, and polymers with deep LUMO levels as described above are obtained. There wasn't.
 また有機薄膜太陽電池の実用化には耐久性も改善が必要であるとの課題があるが、電極等の劣化が起こりにくい、高い仕事関数を有する金属を用い、太陽光入射側をカソードとするタイプの太陽電池(いわゆる逆層型太陽電池)において耐久性が向上することが知られているため(特許文献1)、逆層構成において高い光電変換効率をだせる材料が求められていた。 In addition, there is a problem that the durability needs to be improved for practical use of organic thin-film solar cells, but a metal having a high work function that is unlikely to cause deterioration of electrodes and the like is used, and the sunlight incident side is used as a cathode. Since it is known that durability is improved in a solar cell of a type (so-called reverse layer type solar cell) (Patent Document 1), a material capable of providing high photoelectric conversion efficiency in a reverse layer structure has been demanded.
特開2009-146981号公報JP 2009-146981 A 米国特許出願公開第2004/127592号明細書US Patent Application Publication No. 2004/127592
 本発明は、上記課題に鑑みなされたものであり、その目的は光電変換効率が高く耐久性に優れる有機光電変換素子、それを用いた太陽電池を提供することにある。 The present invention has been made in view of the above problems, and an object thereof is to provide an organic photoelectric conversion element having high photoelectric conversion efficiency and excellent durability, and a solar cell using the organic photoelectric conversion element.
 本発明の上記課題は、下記の手段により達成される。 The above object of the present invention is achieved by the following means.
 透明な基板上に、透明な第一の電極、p型有機半導体材料とn型有機半導体材料とを含有する光電変換層、および第二の電極をこの順に有する有機光電変換素子であって、該光電変換層が、該p型有機半導体材料として下記一般式1または一般式1’で表わされる部分構造を有する化合物を含有することを特徴とする有機光電変換素子。 An organic photoelectric conversion element having a transparent first electrode, a photoelectric conversion layer containing a p-type organic semiconductor material and an n-type organic semiconductor material, and a second electrode in this order on a transparent substrate, An organic photoelectric conversion element, wherein the photoelectric conversion layer contains a compound having a partial structure represented by the following general formula 1 or general formula 1 ′ as the p-type organic semiconductor material.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
(式中、Xは、それぞれ独立して、-S-、-O-、-NR-を表し、Yは、それぞれ独立して、-CR=または-N=を表す。R~Rは、それぞれ独立して、水素原子、置換基を有してもよいアルキル基、置換基を有してもよいフッ化アルキル基、または置換基を有してもよいシクロアルキル基を表し、Lは、それぞれ独立して、単結合、アリーレン基、ヘテロアリーレン基、カルボニル基、-COO-、および-CONR’-(この際、R’は水素原子またはアルキル基を表す)から選ばれる置換基を表す。Aは2価のアクセプター性ユニットを表す。DおよびDはドナー性ユニットを表し、mおよびnは0~2の整数を表す。) (In the formula, each X 1 independently represents —S—, —O—, —NR 2 —, and each Y 1 independently represents —CR 3 ═ or —N═. R 1 -R 3 each independently represents a hydrogen atom, an alkyl group that may have a substituent, a fluorinated alkyl group that may have a substituent, or a cycloalkyl group that may have a substituent. L 1 is independently selected from a single bond, an arylene group, a heteroarylene group, a carbonyl group, —COO—, and —CONR′— (wherein R ′ represents a hydrogen atom or an alkyl group). A represents a divalent acceptor unit, D 1 and D 2 represent a donor unit, and m and n represent an integer of 0 to 2.)
 本発明の上記手段により、光電変換効率が高く、耐久性に優れる有機光電変換素子、それを用いた太陽電池を提供することができる。 The above-described means of the present invention can provide an organic photoelectric conversion element having high photoelectric conversion efficiency and excellent durability, and a solar cell using the organic photoelectric conversion element.
本発明の有機光電変換素子の構成の例を示す概略断面図。The schematic sectional drawing which shows the example of a structure of the organic photoelectric conversion element of this invention. 本発明の有機光電変換素子の構成の他の例を示す概略断面図。The schematic sectional drawing which shows the other example of a structure of the organic photoelectric conversion element of this invention. タンデム型の光電変換層を備えた、本発明の有機光電変換素子の例を示す概略断面図。The schematic sectional drawing which shows the example of the organic photoelectric conversion element of this invention provided with the tandem type photoelectric conversion layer.
 本発明は、透明な基板上に、透明な第一の電極、p型有機半導体材料とn型有機半導体材料とを含有する光電変換層、および第二の電極をこの順に有する有機光電変換素子であって、該光電変換層が、p型有機半導体材料として上記一般式1で表される部分構造を有する化合物を含有することを特徴とする。 The present invention is an organic photoelectric conversion element having a transparent first electrode, a photoelectric conversion layer containing a p-type organic semiconductor material and an n-type organic semiconductor material, and a second electrode in this order on a transparent substrate. The photoelectric conversion layer contains a compound having a partial structure represented by the general formula 1 as a p-type organic semiconductor material.
 本発明では、特にp型有機半導体材料とn型有機半導体材料とを含有するバルクヘテロジャンクション型の光電変換層のp型有機半導体材料として、上記一般式1で表される部分構造を有する化合物を用いることで、高い曲線因子の値を有し光電変換効率が高く、耐久性に優れる有機光電変換素子を提供することができる。 In the present invention, a compound having a partial structure represented by the above general formula 1 is used as a p-type organic semiconductor material of a bulk heterojunction photoelectric conversion layer that contains a p-type organic semiconductor material and an n-type organic semiconductor material. Thus, an organic photoelectric conversion element having a high fill factor value, high photoelectric conversion efficiency, and excellent durability can be provided.
 (有機光電変換素子の構成)
 図1は、本発明の有機光電変換素子の構成の例を示す概略断面図である。
(Configuration of organic photoelectric conversion element)
FIG. 1 is a schematic cross-sectional view showing an example of the configuration of the organic photoelectric conversion element of the present invention.
 有機光電変換素子10は、透明な基板11上に、透明な第一の電極12を有し、第一の電極12の上に光電変換層14を有し、さらに光電変換層14の上に第二の電極13を有する。 The organic photoelectric conversion element 10 has a transparent first electrode 12 on a transparent substrate 11, a photoelectric conversion layer 14 on the first electrode 12, and a first electrode on the photoelectric conversion layer 14. Two electrodes 13 are provided.
 図1の例では、第一の電極12と光電変換層14との間に後述する正孔輸送層17を有し、光電変換層14と第二の電極13との間に後述する電子輸送層18を有する。 In the example of FIG. 1, a hole transport layer 17 described later is provided between the first electrode 12 and the photoelectric conversion layer 14, and an electron transport layer described later is provided between the photoelectric conversion layer 14 and the second electrode 13. 18
 本発明においては、基板11および第一の電極12は透明であり、光電変換に用いられる光は、図1の矢印の方向から入射される。 In the present invention, the substrate 11 and the first electrode 12 are transparent, and light used for photoelectric conversion enters from the direction of the arrow in FIG.
 光電変換層14は、光エネルギーを電気エネルギーに変換する層であって、p型半導体材料とn型半導体材料とを含有する。 The photoelectric conversion layer 14 is a layer that converts light energy into electric energy, and contains a p-type semiconductor material and an n-type semiconductor material.
 p型半導体材料は、相対的に電子供与体(ドナー)として機能し、n型半導体材料は、相対的に電子受容体(アクセプタ)として機能する。 The p-type semiconductor material functions relatively as an electron donor (donor), and the n-type semiconductor material functions relatively as an electron acceptor (acceptor).
 ここで、電子供与体及び電子受容体は、“光を吸収した際に、電子供与体から電子受容体に電子が移動し、正孔と電子のペア(電荷分離状態)を形成する電子供与体及び電子受容体”であり、電極のように単に電子を供与あるいは受容するものではなく、光反応によって、電子を供与あるいは受容するものである。 Here, the electron donor and the electron acceptor are “an electron donor in which, when light is absorbed, electrons move from the electron donor to the electron acceptor to form a hole-electron pair (charge separation state)”. And an electron acceptor ”, which does not simply donate or accept electrons like an electrode, but donates or accepts electrons by a photoreaction.
 図1において、基板11を介して第一の電極12から入射された光は、光電変換層14における電子受容体あるいは電子供与体で吸収され、電子供与体から電子受容体に電子が移動し、正孔と電子のペア(電荷分離状態)が形成される。 In FIG. 1, light incident from the first electrode 12 through the substrate 11 is absorbed by the electron acceptor or the electron donor in the photoelectric conversion layer 14, and electrons move from the electron donor to the electron acceptor. A pair of holes and electrons (charge separation state) is formed.
 発生した電荷は内部電界、例えば、第一の電極12と第二の電極13との仕事関数が異なる場合では第一の電極12と第二の電極13との電位差によって、電子は電子受容体間を通り、また正孔は電子供与体間を通り、それぞれ異なる電極へ運ばれ、光電流が検出される。 The generated electric charge is generated between the electron acceptors due to the internal electric field, for example, when the work functions of the first electrode 12 and the second electrode 13 are different, due to the potential difference between the first electrode 12 and the second electrode 13. And the holes pass between the electron donors and are carried to different electrodes, and a photocurrent is detected.
 図1の例では、第一の電極12の仕事関数は第二の電極13の仕事関数よりも深い(大きい)ため、正孔は第一の電極12へ、電子は第二の電極13へ輸送される。この場合、第二の電極13には仕事関数が浅く(小さく)酸化されやすい金属が用いられる。この場合、第一の電極はアノード(陽極)として、第二の電極はカソード(陰極)として機能する。 In the example of FIG. 1, the work function of the first electrode 12 is deeper (larger) than the work function of the second electrode 13, so that holes are transported to the first electrode 12 and electrons are transported to the second electrode 13. Is done. In this case, the second electrode 13 is made of a metal that has a shallow (small) work function and is easily oxidized. In this case, the first electrode functions as an anode (anode) and the second electrode functions as a cathode (cathode).
 図2に他の構成の例を示す。 Figure 2 shows an example of another configuration.
 図2においては、図1の場合とは、反対に第一の電極12の仕事関数よりも第二の電極13の仕事関数を大きくすることで、電子を第一の電極12へ、正孔を第二の電極13へと輸送するように設計した場合を示した。この場合には、第一の電極12と光電変換層14との間に電子輸送層18を有し、光電変換層14と第二の電極13との間に後述する正孔輸送層17を有し、第一の電極はカソード(陰極)として、第二の電極はアノード(陽極)として機能する。 In FIG. 2, in contrast to the case of FIG. 1, the work function of the second electrode 13 is made larger than the work function of the first electrode 12, so that electrons are transferred to the first electrode 12. The case where it designed so that it might convey to the 2nd electrode 13 was shown. In this case, an electron transport layer 18 is provided between the first electrode 12 and the photoelectric conversion layer 14, and a hole transport layer 17 described later is provided between the photoelectric conversion layer 14 and the second electrode 13. The first electrode functions as a cathode (cathode) and the second electrode functions as an anode (anode).
 本発明においては、耐久性の面から特に、図2に示す構成、即ち、第一の電極がカソード(陰極)であり、第二の電極がアノード(陽極)であることが好ましい態様である。 In the present invention, particularly from the viewpoint of durability, the configuration shown in FIG. 2, that is, the first electrode is a cathode (cathode) and the second electrode is an anode (anode) is a preferred embodiment.
 なお、図1、図2には記載していないが、本発明の有機光電変換素子は、正孔ブロック層、電子ブロック層、電子注入層、正孔注入層、あるいは平滑化層等の層を有していてもよい。 Although not shown in FIGS. 1 and 2, the organic photoelectric conversion element of the present invention has a layer such as a hole blocking layer, an electron blocking layer, an electron injection layer, a hole injection layer, or a smoothing layer. You may have.
 更に、太陽光利用率(光電変換効率)の向上を目的として、このような光電変換素子を積層した、タンデム型の構成としてもよい。図3は、タンデム型の光電変換層を備える有機光電変換素子を示す断面図である。 Furthermore, it is good also as a tandem-type structure which laminated | stacked such a photoelectric conversion element for the purpose of the improvement of sunlight utilization factor (photoelectric conversion efficiency). FIG. 3 is a cross-sectional view illustrating an organic photoelectric conversion element including a tandem photoelectric conversion layer.
 タンデム型構成の場合、基板11上に第一の電極12、第一の光電変換層14′を積層し、電荷再結合層15を積層した後、第二の光電変換層16、次いで第二の電極13を積層することで、タンデム型の構成とすることができる。 In the case of the tandem configuration, the first electrode 12 and the first photoelectric conversion layer 14 ′ are stacked on the substrate 11, the charge recombination layer 15 is stacked, the second photoelectric conversion layer 16, and then the second photoelectric conversion layer 15. By stacking the electrodes 13, a tandem configuration can be obtained.
 第二の光電変換層16は、第一の光電変換層14′の吸収スペクトルと同じスペクトルを吸収する層でもよいし、異なるスペクトルを吸収する層でもよいが、好ましくは異なるスペクトルを吸収する層である。 The second photoelectric conversion layer 16 may be a layer that absorbs the same spectrum as the absorption spectrum of the first photoelectric conversion layer 14 'or may be a layer that absorbs a different spectrum, but is preferably a layer that absorbs a different spectrum. is there.
 また、第一の光電変換層14′、第二の光電変換層16と各電極の間には、正孔輸送層17や電子輸送層18を有していても良いが、本発明においてはタンデム構成においてもそれぞれの光電変換層は、図2に示されるような構成を有していることが好ましい。 Further, a hole transport layer 17 and an electron transport layer 18 may be provided between the first photoelectric conversion layer 14 'and the second photoelectric conversion layer 16 and each electrode. Also in the configuration, each photoelectric conversion layer preferably has a configuration as shown in FIG.
 以下に、これらの層を構成する材料について述べる。 The materials that make up these layers are described below.
 〔p型有機半導体材料〕
 本発明において光電変換層は、p型有機半導体材料として下記一般式1または1’で表される部分構造を有する化合物を含有する。このような化合物により、光電変換効率が高く、耐久性に優れ、好適には高い曲線因子の値を有する有機光電変換素子、それを用いた太陽電池を提供することができる。
[P-type organic semiconductor materials]
In the present invention, the photoelectric conversion layer contains a compound having a partial structure represented by the following general formula 1 or 1 ′ as a p-type organic semiconductor material. Such a compound can provide an organic photoelectric conversion element having high photoelectric conversion efficiency, excellent durability, and preferably a high fill factor, and a solar cell using the organic photoelectric conversion element.
 一般式1または1’において、各部分構造中のX、Y、R~R、LおよびA、ならびにD、D、mおよびn(一般式1’)は、互いに同一であってもよいし、異なってもよい。 In the general formula 1 or 1 ′, X 1 , Y 1 , R 1 to R 3 , L 1 and A, and D 1 , D 2 , m and n (general formula 1 ′) in each partial structure are the same as each other It may be different or different.
 また、前記化合物には、一般式1または1’で表される部分構造が1または2以上含まれるが、当該部分構造が2以上存在する場合には、各部分構造間におけるX、Y、R~R、LおよびA、ならびにD、D、mおよびn(一般式1’)は、互いに同一であってもよいし、異なってもよい。 In addition, the compound includes one or more partial structures represented by the general formula 1 or 1 ′. When there are two or more partial structures, X 1 and Y 1 between the partial structures are present. , R 1 to R 3 , L 1 and A, and D 1 , D 2 , m and n (general formula 1 ′) may be the same as or different from each other.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
(式中、Xは、それぞれ独立して、-S-、-O-、-NR-を表し、Yは、それぞれ独立して、-CR=または-N=を表す。R~Rは、それぞれ独立して、水素原子、置換基を有してもよいアルキル基、置換基を有してもよいフッ化アルキル基、または置換基を有してもよいシクロアルキル基を表し、Lは、それぞれ独立して、単結合、アリーレン基、ヘテロアリーレン基、カルボニル基、-COO-、および-CONR’-(この際、R’は水素原子またはアルキル基)から選ばれる置換基を表す。Aは2価のアクセプター性ユニットを表す。DおよびDはドナー性ユニットを表し、mおよびnは0~2の整数を表す。)
 なお式中、化学式1または1’で表されるユニットにおける、隣接のユニットとの置換位置については、それぞれ2位、5位のいずれか一方に置換されていることを表す。すなわち、上記一般式1の部分構造は、中央のアクセプター性ユニット-A-と、左右のXを含む下記構造:
(In the formula, each X 1 independently represents —S—, —O—, —NR 2 —, and each Y 1 independently represents —CR 3 ═ or —N═. R 1 -R 3 each independently represents a hydrogen atom, an alkyl group that may have a substituent, a fluorinated alkyl group that may have a substituent, or a cycloalkyl group that may have a substituent. L 1 represents a substituent independently selected from a single bond, an arylene group, a heteroarylene group, a carbonyl group, —COO—, and —CONR′— (wherein R ′ is a hydrogen atom or an alkyl group). A represents a divalent acceptor unit, D 1 and D 2 represent a donor unit, and m and n represent an integer of 0 to 2.)
In the formula, the position of substitution with the adjacent unit in the unit represented by the chemical formula 1 or 1 ′ represents that it is substituted at either the 2-position or 5-position, respectively. That is, the partial structure of the general formula 1 includes the following acceptor unit -A- and left and right X 1 :
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
の結合位置を問わないことを意味しており、実際には以下の4種の異性体すべてを包含し、これらのいずれであってもよい。 This means that the bonding position is not limited, and actually includes all of the following four isomers, and any of these may be used.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 また、上記一般式1’の部分構造は、左のドナー性ユニット-D-と、左のX、Yを含む下記構造: The partial structure of the general formula 1 ′ includes the following structure including a left donor unit —D 1 — and left X 1 and Y 1 :
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
の結合位置を問わないことを意味しており、実際には以下の2種の異性体すべてを包含し、これらのいずれであってもよい。右のドナー性ユニット-D-と、右のX、Yを含む構造についても同様である。 This means that the bonding position of is not limited, and actually includes all of the following two isomers, and any of these may be used. The same applies to the structure containing the right donor unit -D 2 -and the right X 1 and Y 1 .
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 光電変換層中のp型半導体材料が一般式1または1’で表される部分構造を有する化合物を有することで、(1)電子吸引性のアルキニル基が置換するため、p型有機半導体材料のHOMO/LUMO準位が深くなり、開放電圧の向上が期待される、(2)アルキニル基によってπ共役面積が増大し、結晶性が向上し、移動度が向上する、(3)アルキニル基は直線状で一般式1または1’と連結される他の芳香族環と立体障害を起こしにくいので、主鎖の平面性が保たれ、さらに結晶性と移動度の向上が期待される、といった3つの効果によって高い光電変換効率を提供できるものと推定される。また、これらのアルキニル基置換ヘテロアリール基が、D-A型ポリマーにおいてアクセプター性ユニットを含み、好適にはアクセプター性ユニットに隣接する位置に存在する(一般式1で表わされる部分構造、または一般式1’においてm=0の場合の部分構造)ことによって、上記(1)~(3)の効果がより発揮される。 Since the p-type semiconductor material in the photoelectric conversion layer has a compound having a partial structure represented by the general formula 1 or 1 ′, (1) an electron-withdrawing alkynyl group is substituted. The HOMO / LUMO level is deepened and the open circuit voltage is expected to be improved. (2) The π-conjugated area is increased by the alkynyl group, the crystallinity is improved, and the mobility is improved. (3) The alkynyl group is linear. The steric hindrance to other aromatic rings connected to the general formula 1 or 1 ′ in the state is less likely to occur, so that the planarity of the main chain is maintained, and further improvement in crystallinity and mobility is expected. It is estimated that high photoelectric conversion efficiency can be provided by the effect. In addition, these alkynyl group-substituted heteroaryl groups include an acceptor unit in the DA type polymer and are preferably present at a position adjacent to the acceptor unit (the partial structure represented by the general formula 1 or the general formula (Partial structure when m = 0 at 1 ′), the effects (1) to (3) are more exhibited.
 このように、本発明のオリゴマー、ポリマーは非常に平面性が高く、前述のように分子間でπスタックしやすい構造であるため、バルクヘテロジャンクション層においてもドナー材料同士が相互作用によりネットワーク構造を形成し、厚い膜厚でもデッドエンド(キャリアを取り出せない領域)のない、連続性の高いモルホロジーを形成できるものと推定される。 As described above, the oligomer and polymer of the present invention have a very high planarity, and are easily π-stacked between molecules as described above. Therefore, donor materials also form a network structure by interaction with each other in the bulk heterojunction layer. However, it is presumed that even with a thick film thickness, it is possible to form a highly continuous morphology without a dead end (a region where carriers cannot be extracted).
 一般式1および1’においてR~Rは、水素原子、置換基を有してもよいアルキル基、置換基を有してもよいフッ化アルキル基、または置換基を有してもよいシクロアルキル基を表す。なお、一般式1および1’中には、Rが2個存在するが、各Rは同じであっても異なるものであってもよいが、対称性および合成上の観点からは同じであることが好ましい。 In General Formulas 1 and 1 ′, R 1 to R 3 may have a hydrogen atom, an alkyl group that may have a substituent, a fluorinated alkyl group that may have a substituent, or a substituent. Represents a cycloalkyl group. In general formulas 1 and 1 ′, there are two R 1 s , and each R 1 may be the same or different, but the same from the viewpoint of symmetry and synthesis. Preferably there is.
 R~Rが表す、アルキル基としては、好ましくは炭素数1~24、より好ましくは炭素数1~12、特に好ましくは炭素数1~8であり、直鎖、または分岐鎖のアルキル基である。アルキル基としては、特に制限はないが、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、tert-ペンチル基、ネオペンチル基、1,2-ジメチルプロピル基、n-ヘキシル基、イソヘキシル基、1,3-ジメチルブチル基、1-イソプロピルプロピル基、1,2-ジメチルブチル基、n-ヘプチル基、1,4-ジメチルペンチル基、3-エチルペンチル基、2-メチル-1-イソプロピルプロピル基、1-エチル-3-メチルブチル基、n-オクチル基、2-エチルヘキシル基、3-メチル-1-イソプロピルブチル基、2-メチル-1-イソプロピル基、1-t-ブチル-2-メチルプロピル基、n-ノニル基、3,5,5-トリメチルヘキシル基、n-デシル基、イソデシル基、n-ウンデシル基、1-メチルデシル基、n-ドデシル基、n-トリデシル基、n-テトラデシル基、n-ペンタデシル基、n-ヘキサデシル基、n-ヘプタデシル基、n-オクタデシル基、n-ノナデシル基、n-エイコシル基、2-ヘキシルデシル基、2-デシルテトラデシル基、などが挙げられる。 The alkyl group represented by R 1 to R 3 is preferably a linear or branched alkyl group having 1 to 24 carbon atoms, more preferably 1 to 12 carbon atoms, and particularly preferably 1 to 8 carbon atoms. It is. The alkyl group is not particularly limited, and examples thereof include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, an n-pentyl group, Isopentyl, tert-pentyl, neopentyl, 1,2-dimethylpropyl, n-hexyl, isohexyl, 1,3-dimethylbutyl, 1-isopropylpropyl, 1,2-dimethylbutyl, n -Heptyl group, 1,4-dimethylpentyl group, 3-ethylpentyl group, 2-methyl-1-isopropylpropyl group, 1-ethyl-3-methylbutyl group, n-octyl group, 2-ethylhexyl group, 3-methyl -1-isopropylbutyl group, 2-methyl-1-isopropyl group, 1-t-butyl-2-methylpropyl group, n-noni Group, 3,5,5-trimethylhexyl group, n-decyl group, isodecyl group, n-undecyl group, 1-methyldecyl group, n-dodecyl group, n-tridecyl group, n-tetradecyl group, n-pentadecyl group, Examples thereof include n-hexadecyl group, n-heptadecyl group, n-octadecyl group, n-nonadecyl group, n-eicosyl group, 2-hexyldecyl group, 2-decyltetradecyl group and the like.
 フッ化アルキル基は、上記アルキル基の一部またはすべてがフッ素化されたフッ化アルキル基である。なお完全にフッ素化されたフッ化アルキル基では溶解性が低下しやすいため、母核に近い位置はアルキル基で、末端部がフッ化アルキル基であるような、フッ化アルキル基であることが好ましい。たとえば-(CHCH)-C、-(CHCH)-C15、等である。 The fluorinated alkyl group is a fluorinated alkyl group in which part or all of the alkyl group is fluorinated. In addition, since the solubility of a fully fluorinated alkyl group is likely to be lowered, it may be a fluorinated alkyl group in which the position close to the mother nucleus is an alkyl group and the terminal portion is a fluorinated alkyl group. preferable. For example, — (CH 2 CH 2 ) —C 4 F 9 , — (CH 2 CH 2 ) —C 7 F 15 , etc.
 シクロアルキル基としては、好ましくは炭素数4~8であり、例えば、シクロプロピル、シクロペンチル、シクロヘキシル、ノルボルニル、アダマンチルなどが挙げられる。 The cycloalkyl group preferably has 4 to 8 carbon atoms, and examples thereof include cyclopropyl, cyclopentyl, cyclohexyl, norbornyl, adamantyl and the like.
 これらの置換基の中でも、RおよびRは、C以上C16以下のアルキル基であることが好ましい。これは、得られるp型半導体材料を十分な厚膜で形成できるようにするためには、一定以上の溶解性が必要であり、溶解性の付与といった観点ではこれらの置換基で置換された材料であることが好ましい。特に高分子材料の場合、溶解性の付与だけでなく、直鎖状のアルキル基が配列性を提供して(ファスナー効果とも呼ばれる)高い移動度を提供しうる場合もあるため、直鎖状のアルキル基で置換されたp型材料であることが好ましい。 Among these substituents, R 1 and R 2 are preferably C 6 or more and C 16 or less alkyl groups. This is because the p-type semiconductor material to be obtained needs to have a certain level of solubility in order to be formed with a sufficiently thick film, and in terms of imparting solubility, a material substituted with these substituents It is preferable that In particular, in the case of a polymer material, in addition to imparting solubility, a linear alkyl group may provide alignment and may provide high mobility (also referred to as a fastener effect). A p-type material substituted with an alkyl group is preferred.
 アルキル基、フッ化アルキル基、またはシクロアルキル基に場合によって存在する置換基としては、アルキル基、フッ化アルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基、アシル基、アルコキシカルボニル基、(アルキル)アミノ基、アルコキシ基、シクロアルキルオキシ基、アリールオキシ基、アリールオキシカルボニル基、アシルアミノ基、アルコキシカルボニルアミノ基、アリールオキシカルボニルアミノ基、スルホニルアミノ基、スルファモイル基、カルバモイル基、アルキルチオ基、アリールチオ基、シリル基、スルホニル基、スルフィニル基、ウレイド基、リン酸アミド基、ハロゲン原子、ヒドロキシル基、メルカプト基、シアノ基、スルホ基、カルボキシル基、ニトロ基、ヒドロキサム酸基、スルフィノ基、ヒドラジノ基、イミノ基等を挙げることができる。 Substituents optionally present in the alkyl group, fluorinated alkyl group, or cycloalkyl group include alkyl groups, fluorinated alkyl groups, alkenyl groups, alkynyl groups, aryl groups, heteroaryl groups, acyl groups, alkoxycarbonyl groups, (Alkyl) amino group, alkoxy group, cycloalkyloxy group, aryloxy group, aryloxycarbonyl group, acylamino group, alkoxycarbonylamino group, aryloxycarbonylamino group, sulfonylamino group, sulfamoyl group, carbamoyl group, alkylthio group, Arylthio group, silyl group, sulfonyl group, sulfinyl group, ureido group, phosphoric acid amide group, halogen atom, hydroxyl group, mercapto group, cyano group, sulfo group, carboxyl group, nitro group, hydroxamic acid group, sulfur group Inomoto, mention may be made of a hydrazino group, an imino group, and the like.
 なお、場合によって存在する置換基は、置換する置換基と同じとなることはない。例えば、RまたはRがアルキル基の場合には、さらにアルキル基で置換されることはない。 In addition, the substituent which exists depending on the case is not the same as the substituent to be substituted. For example, when R 1 or R 2 is an alkyl group, it is not further substituted with an alkyl group.
 アルキル基としては、好ましくは炭素数1~24、より好ましくは炭素数1~12、特に好ましくは炭素数1~8であり、具体的には上記で記載したアルキル基が挙げられる。 The alkyl group preferably has 1 to 24 carbon atoms, more preferably 1 to 12 carbon atoms, particularly preferably 1 to 8 carbon atoms, and specific examples thereof include the alkyl groups described above.
 フッ化アルキル基としては、具体的には上記で記載したフッ化アルキル基が挙げられる。 Specific examples of the fluorinated alkyl group include the fluorinated alkyl groups described above.
 アルケニル基としては、好ましくは炭素数2~20、より好ましくは炭素数2~12、特に好ましくは炭素数2~8であり、例えば、ビニル、アリル、2-ブテニル、3-ペンテニル等が挙げられる。 The alkenyl group preferably has 2 to 20 carbon atoms, more preferably 2 to 12 carbon atoms, and particularly preferably 2 to 8 carbon atoms, and examples thereof include vinyl, allyl, 2-butenyl, and 3-pentenyl. .
 アルキニル基としては、好ましくは炭素数2~20、より好ましくは炭素数2~12、特に好ましくは炭素数2~8であり、例えば、プロパルギル、3-ペンテニル等が挙げられる。 The alkynyl group preferably has 2 to 20 carbon atoms, more preferably 2 to 12 carbon atoms, particularly preferably 2 to 8 carbon atoms, and examples thereof include propargyl and 3-pentenyl.
 アリール基としては、好ましくは炭素数6~30、より好ましくは炭素数6~20、特に好ましくは炭素数6~12であり、具体的には、例えば、フェニル基、ビフェニル基、ターフェニル基などの非縮合炭化水素基;ペンタレニル基、インデニル基、ナフチル基、アズレニル基、ヘプタレニル基、ビフェニレニル基、フルオレニル基、アセナフチレニル基、プレイアデニル基、アセナフテニル基、フェナレニル基、フェナントリル基、アントリル基、フルオランテニル基、アセフェナントリレニル基、アセアントリレニル基、トリフェニレニル基、ピレニル基、クリセニル基、ナフタセニル基などの縮合多環炭化水素基が挙げられる。 The aryl group preferably has 6 to 30 carbon atoms, more preferably 6 to 20 carbon atoms, and particularly preferably 6 to 12 carbon atoms. Specific examples thereof include a phenyl group, a biphenyl group, and a terphenyl group. Non-condensed hydrocarbon group: pentarenyl group, indenyl group, naphthyl group, azulenyl group, heptalenyl group, biphenylenyl group, fluorenyl group, acenaphthylenyl group, preadenenyl group, acenaphthenyl group, phenalenyl group, phenanthryl group, anthryl group, fluoranthenyl And condensed polycyclic hydrocarbon groups such as a group, an acephenanthrenyl group, an aceanthrylenyl group, a triphenylenyl group, a pyrenyl group, a chrycenyl group, and a naphthacenyl group.
 ヘテロアリール基としては、好ましくは炭素数1~20、より好ましくは炭素数1~12であり、ヘテロ原子としては、例えば、窒素原子、酸素原子、硫黄原子、具体的には、例えば、ピリジル基、ピリミジル基、ピラジニル基、トリアジニル基、フラニル基、ピロリル基、チオフェニル基(チエニル基)、キノリル基、フリル基、ピペリジル基、クマリニル基、シラフルオレニル基、ベンゾフラニル基、ベンズイミダゾリル基、ベンズオキサゾリル基、ベンズチアゾリル基、ジベンゾフラニル基、ベンゾチオフェニル基、ジベンゾチオフェニル基、インドリル基、カルバゾリル基、ピラゾリル基、イミダゾリル基、オキサゾリル基、イソオキサゾリル基、チアゾリル基、インダゾリル基、ベンゾチアゾリル基、ピリダジニル基、シンノリル基、キナゾリル基、キノキサリル基、フタラジニル基、フタラジンジオニル基、フタルアミジル基、クロモニル基、ナフトラクタミル基、キノロニル基、ナフタリジニル基、ベンズイミダゾロニル基、ベンズオキサゾロニル基、ベンゾチアゾロニル基、ベンゾチアゾチオニル基、キナゾロニル基、キノキサロニル基、フタラゾニル基、ジオキソピリミジニル基、ピリドニル基、イソキノロニル基、イソキノリニル基、イソチアゾリル基、ベンズイソキサゾリル基、ベンズイソチアゾリル基、インダジロニル基、アクリジニル基、アクリドニル基、キナゾリンジオニル基、キノキサリンジオニル基、ベンゾオキサジンジオニル基、ベンゾキサジノニル基、ナフタルイミジル基、ジチエノシクロペンタジエニル基、ジチエノシラシクロペンタジエニル基、ジチエノピロリル基、ベンゾジチオフェニル基などが挙げられる。 The heteroaryl group preferably has 1 to 20 carbon atoms, more preferably 1 to 12 carbon atoms. Examples of the hetero atom include a nitrogen atom, an oxygen atom, and a sulfur atom, specifically, for example, a pyridyl group. , Pyrimidyl group, pyrazinyl group, triazinyl group, furanyl group, pyrrolyl group, thiophenyl group (thienyl group), quinolyl group, furyl group, piperidyl group, comarinyl group, silafluorenyl group, benzofuranyl group, benzimidazolyl group, benzoxazolyl group , Benzthiazolyl group, dibenzofuranyl group, benzothiophenyl group, dibenzothiophenyl group, indolyl group, carbazolyl group, pyrazolyl group, imidazolyl group, oxazolyl group, isoxazolyl group, thiazolyl group, indazolyl group, benzothiazolyl group, pyridazinyl group, cinnolin Group, quinazolyl group, quinoxalyl group, phthalazinyl group, phthalazine dionyl group, phthalamidyl group, chromonyl group, naphtholactamyl group, quinolonyl group, naphthalidinyl group, benzimidazolonyl group, benzoxazolonyl group, benzothiazolonyl Group, benzothiazothionyl group, quinazolonyl group, quinoxalonyl group, phthalazonyl group, dioxopyrimidinyl group, pyridonyl group, isoquinolinyl group, isoquinolinyl group, isothiazolyl group, benzisoxazolyl group, benzisothiazolyl group, indazironyl group, Acridinyl group, acridonyl group, quinazoline dionyl group, quinoxaline dionyl group, benzoxazine dionyl group, benzoxazinonyl group, naphthalimidyl group, dithienocyclopentadienyl group, dithienosilacyclopentadi Group, Jichienopiroriru group, etc. benzodithiolium phenyl group.
 アシル基としては、好ましくは炭素数1~24、より好ましくは炭素数1~16、特に好ましくは炭素数1~12であり、具体的には、式:-C(O)Rで表される基であり、この際、Rは、好ましくは炭素原子数1~24のアルキル基であり、この際のアルキル基は上記で記載したアルキル基が挙げられる。 The acyl group preferably has 1 to 24 carbon atoms, more preferably 1 to 16 carbon atoms, and particularly preferably 1 to 12 carbon atoms. Specifically, the acyl group is represented by the formula: —C (O) R. In this case, R is preferably an alkyl group having 1 to 24 carbon atoms, and examples of the alkyl group include the alkyl groups described above.
 アルコキシカルボニル基としては、好ましくは炭素数2~25、より好ましくは炭素数2~16、特に好ましくは炭素数2~12であり、具体的には、式:-C(O)ORで表される基であり、この際、Rは、好ましくは炭素原子数1~24のアルキル基であり、この際のアルキル基は上記で記載したアルキル基が挙げられる。 The alkoxycarbonyl group preferably has 2 to 25 carbon atoms, more preferably 2 to 16 carbon atoms, and particularly preferably 2 to 12 carbon atoms. Specifically, the alkoxycarbonyl group is represented by the formula: —C (O) OR. In this case, R is preferably an alkyl group having 1 to 24 carbon atoms, and examples of the alkyl group include the alkyl groups described above.
 (アルキル)アミノ基としては、好ましくは炭素数0~24、より好ましくは炭素数0~10、特に好ましくは炭素数0~6であり、例えばアミノ、メチルアミノ、ジメチルアミノ、ジエチルアミノ、ジベンジルアミノ等が挙げられる。 The (alkyl) amino group preferably has 0 to 24 carbon atoms, more preferably 0 to 10 carbon atoms, and particularly preferably 0 to 6 carbon atoms. For example, amino, methylamino, dimethylamino, diethylamino, dibenzylamino Etc.
 アルコキシ基としては、好ましくは炭素数1~24、より好ましくは炭素数1~12、特に好ましくは炭素数1~8であり、具体的には、式:-ORで表される基であり、この際、Rは、好ましくは炭素原子数1~24のアルキル基であり、この際のアルキル基は上記で記載したアルキル基が挙げられる。 The alkoxy group is preferably a group having 1 to 24 carbon atoms, more preferably 1 to 12 carbon atoms, particularly preferably 1 to 8 carbon atoms, specifically a group represented by the formula: —OR; In this case, R is preferably an alkyl group having 1 to 24 carbon atoms, and examples of the alkyl group in this case include the alkyl groups described above.
 シクロアルキルオキシ基としては、好ましくは炭素数4~8であり、例えば、シクロペンチルオキシ、シクロヘキシルオキシ等が挙げられる。 The cycloalkyloxy group preferably has 4 to 8 carbon atoms, and examples thereof include cyclopentyloxy and cyclohexyloxy.
 アリールオキシ基としては、好ましくは炭素数6~20、より好ましくは炭素数6~16、特に好ましくは炭素数6~12であり、例えば、フェニルオキシ、2-ナフチルオキシ等が挙げられる。 The aryloxy group preferably has 6 to 20 carbon atoms, more preferably 6 to 16 carbon atoms, and particularly preferably 6 to 12 carbon atoms, and examples thereof include phenyloxy and 2-naphthyloxy.
 アリールオキシカルボニル基としては、好ましくは炭素数7~20、より好ましくは炭素数7~16、特に好ましくは炭素数7~10であり、例えば、フェニルオキシカルボニル等が挙げられる。 The aryloxycarbonyl group preferably has 7 to 20 carbon atoms, more preferably 7 to 16 carbon atoms, and particularly preferably 7 to 10 carbon atoms, and examples thereof include phenyloxycarbonyl.
 アシルアミノ基としては、好ましくは炭素数2~21、より好ましくは炭素数2~16、特に好ましくは炭素数2~10であり、具体的には、式:-NHCORで表される基であり、この際、Rは、好ましくは炭素原子数1~24のアルキル基であり、この際のアルキル基は上記で記載したアルキル基が挙げられる。 The acylamino group preferably has 2 to 21 carbon atoms, more preferably 2 to 16 carbon atoms, and particularly preferably 2 to 10 carbon atoms. Specifically, the acylamino group is a group represented by the formula: —NHCOR; In this case, R is preferably an alkyl group having 1 to 24 carbon atoms, and examples of the alkyl group in this case include the alkyl groups described above.
 アルコキシカルボニルアミノ基としては、好ましくは炭素数2~24、より好ましくは炭素数2~16、特に好ましくは炭素数2~12であり、例えば、メトキシカルボニルアミノ等が挙げられる。 The alkoxycarbonylamino group preferably has 2 to 24 carbon atoms, more preferably 2 to 16 carbon atoms, particularly preferably 2 to 12 carbon atoms, and examples thereof include methoxycarbonylamino.
 アリールオキシカルボニルアミノ基としては、好ましくは炭素数7~24、より好ましくは炭素数7~16、特に好ましくは炭素数7~12であり、例えば、フェニルオキシカルボニルアミノ等が挙げられる。 The aryloxycarbonylamino group preferably has 7 to 24 carbon atoms, more preferably 7 to 16 carbon atoms, and particularly preferably 7 to 12 carbon atoms, and examples thereof include phenyloxycarbonylamino.
 スルホニルアミノ基としては、好ましくは炭素数1~24、より好ましくは炭素数1~16、特に好ましくは炭素数1~12であり、例えば、メタンスルホニルアミノ、ベンゼンスルホニルアミノ等が挙げられる。 The sulfonylamino group preferably has 1 to 24 carbon atoms, more preferably 1 to 16 carbon atoms, and particularly preferably 1 to 12 carbon atoms, and examples thereof include methanesulfonylamino and benzenesulfonylamino.
 スルファモイル基としては、好ましくは炭素数0~24、より好ましくは炭素数0~16、特に好ましくは炭素数0~12であり、例えば、スルファモイル、メチルスルファモイル、ジメチルスルファモイル、フェニルスルファモイル等が挙げられる。 The sulfamoyl group preferably has 0 to 24 carbon atoms, more preferably 0 to 16 carbon atoms, and particularly preferably 0 to 12 carbon atoms. For example, sulfamoyl, methylsulfamoyl, dimethylsulfamoyl, phenylsulfamo Moyl etc. are mentioned.
 カルバモイル基としては、好ましくは炭素数1~24、より好ましくは炭素数1~16、特に好ましくは炭素数1~12であり、例えば、カルバモイル、メチルカルバモイル、ジエチルカルバモイル、フェニルカルバモイル等が挙げられる。 The carbamoyl group preferably has 1 to 24 carbon atoms, more preferably 1 to 16 carbon atoms, particularly preferably 1 to 12 carbon atoms, and examples thereof include carbamoyl, methylcarbamoyl, diethylcarbamoyl, phenylcarbamoyl and the like.
 アルキルチオ基としては、好ましくは炭素数1~24、より好ましくは炭素数1~16、特に好ましくは炭素数1~12であり、例えば、メチルチオ、エチルチオ等が挙げられる。 The alkylthio group preferably has 1 to 24 carbon atoms, more preferably 1 to 16 carbon atoms, particularly preferably 1 to 12 carbon atoms, and examples thereof include methylthio and ethylthio.
 アリールチオ基としては、好ましくは炭素数6~20、より好ましくは炭素数6~16、特に好ましくは炭素数6~12であり、例えば、フェニルチオ等が挙げられる。 The arylthio group preferably has 6 to 20 carbon atoms, more preferably 6 to 16 carbon atoms, particularly preferably 6 to 12 carbon atoms, and examples thereof include phenylthio.
 スルホニル基としては、好ましくは炭素数1~20、より好ましくは炭素数1~16、特に好ましくは炭素数1~12であり、例えば、メシル、トシル等が挙げられる。 The sulfonyl group preferably has 1 to 20 carbon atoms, more preferably 1 to 16 carbon atoms, and particularly preferably 1 to 12 carbon atoms, and examples thereof include mesyl and tosyl.
 スルフィニル基としては、好ましくは炭素数1~20、より好ましくは炭素数1~16、特に好ましくは炭素数1~12であり、例えば、メタンスルフィニル、ベンゼンスルフィニル等が挙げられる。 The sulfinyl group preferably has 1 to 20 carbon atoms, more preferably 1 to 16 carbon atoms, and particularly preferably 1 to 12 carbon atoms, and examples thereof include methanesulfinyl and benzenesulfinyl.
 ウレイド基としては、好ましくは炭素数1~24、より好ましくは炭素数1~16、特に好ましくは炭素数1~12であり、例えば、ウレイド、メチルウレイド、フェニルウレイド等が挙げられる。 The ureido group preferably has 1 to 24 carbon atoms, more preferably 1 to 16 carbon atoms, and particularly preferably 1 to 12 carbon atoms, and examples thereof include ureido, methylureido, and phenylureido.
 リン酸アミド基としては、好ましくは炭素数1~24、より好ましくは炭素数1~16、特に好ましくは炭素数1~12であり、例えば、ジエチルリン酸アミド、フェニルリン酸アミド等が挙げられる。 The phosphoric acid amide group preferably has 1 to 24 carbon atoms, more preferably 1 to 16 carbon atoms, particularly preferably 1 to 12 carbon atoms, and examples thereof include diethyl phosphoric acid amide and phenyl phosphoric acid amide. .
 ハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。 Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
 Lは単結合、アリーレン基、ヘテロアリーレン基、カルボニル基、-COO-、および-CONR’-(この際、R’は水素原子またはアルキル基を表す)から選ばれる置換基を表す。これらの置換基は一般式1で表わされる構造のHOMO/LUMO準位をより深くし、かつπ共役面積を大きくすることができるため、より高い開放電圧とより高い移動度、すなわちより高い曲線因子と外部量子効率が期待できる。好ましくはLは単結合または-COO-であり、さらに光電変換効率が向上し、また耐久性も向上することからより好ましくは-COO-である。なお、一般式1および1’中には、Lが2個存在するが、各Lは同じであっても異なるものであってもよいが、対称性および合成上の観点からは同じであることが好ましい。 L 1 represents a substituent selected from a single bond, an arylene group, a heteroarylene group, a carbonyl group, —COO—, and —CONR′— (wherein R ′ represents a hydrogen atom or an alkyl group). Since these substituents can deepen the HOMO / LUMO level of the structure represented by the general formula 1 and increase the π conjugate area, higher open-circuit voltage and higher mobility, that is, higher fill factor External quantum efficiency can be expected. L 1 is preferably a single bond or —COO—, and more preferably —COO— because the photoelectric conversion efficiency is improved and the durability is also improved. In general formulas 1 and 1 ′, there are two L 1 s , and each L 1 may be the same or different, but the same from the viewpoint of symmetry and synthesis. Preferably there is.
 ここで、アリーレン基としては、好ましくは炭素数6~30、より好ましくは炭素数6~24、特に好ましくは炭素数6~12であり、例えば、フェニレン、p-メチルフェニレン、ナフチレン、フェナントリレン、ピレニレンなどが挙げられる。 Here, the arylene group preferably has 6 to 30 carbon atoms, more preferably 6 to 24 carbon atoms, and particularly preferably 6 to 12 carbon atoms. For example, phenylene, p-methylphenylene, naphthylene, phenanthrylene, pyrenylene. Etc.
 ヘテロアリーレン基としては、好ましくは炭素数1~20、より好ましくは炭素数1~12であり、ヘテロ原子としては、例えば、窒素原子、酸素原子、硫黄原子が挙げられ、具体的には、例えば、イミダゾリル、ピリジル、キノリル、フリル、ピペリジル、ベンズオキサゾリル、ベンズイミダゾリル、ベンズチアゾリル、チエニル、フリル、ピロール、チアゾリル等が挙げられる。 The heteroarylene group preferably has 1 to 20 carbon atoms, more preferably 1 to 12 carbon atoms, and examples of the hetero atom include a nitrogen atom, an oxygen atom, and a sulfur atom. Imidazolyl, pyridyl, quinolyl, furyl, piperidyl, benzoxazolyl, benzimidazolyl, benzthiazolyl, thienyl, furyl, pyrrole, thiazolyl and the like.
 -CONR’-におけるR’がアルキル基の場合のアルキル基については、上記R~Rの欄で説明したものが挙げられる。 Examples of the alkyl group when R ′ in —CONR′— is an alkyl group include those described in the above R 1 to R 3 columns.
 またはこれらが互いに複数結合した連結基であっても良い。 Or a linking group in which a plurality of these are bonded to each other.
 式中Xは-S-,-O-,-NR-を表す。一般式1または1’で表わされる構造が隣接する基と立体障害を起こさず平面を保つためには、Xは-S-、-O-であることが好ましい。より好ましくは耐久性の点で、-S-である。なお、一般式1および1’中には、Xが2個存在するが、各Xは同じであっても異なるものであってもよいが、対称性および合成上の観点からは同じであることが好ましい。 In the formula, X 1 represents —S—, —O—, —NR 2 —. In order for the structure represented by the general formula 1 or 1 ′ to maintain a plane without causing steric hindrance with an adjacent group, X 1 is preferably —S— or —O—. More preferred is —S— from the viewpoint of durability. In general formulas 1 and 1 ′, there are two X 1 s , and each X 1 may be the same or different, but the same from the viewpoint of symmetry and synthesis. Preferably there is.
 また、前記一般式1および1’においてYで表わされる基は-CR=または-N=を表す。このうち、光電変換効率の観点から、Yは-CR=であることが好ましく、-CH=であることがより好ましい。特にXが-S-である際、Yが-CH=(Rが水素原子)である化合物(チオフェン)が高移動度を得やすく、光電変換効率が向上するため、Yは-CH=であることが好ましい。なお、一般式1および1’中には、Yが2個存在するが、各Yは同じであっても異なるものであってもよいが、対称性および合成上の観点からは同じであることが好ましい。 In the general formulas 1 and 1 ′, the group represented by Y 1 represents —CR 3 ═ or —N═. Among these, from the viewpoint of photoelectric conversion efficiency, Y 1 is preferably —CR 3 ═, more preferably —CH═. Especially when X 1 is -S-, since Y 1 is -CH = compound (R 3 is a hydrogen atom) is (thiophene) is easily obtained high mobility, improved photoelectric conversion efficiency, Y 1 is - It is preferable that CH =. In general formulas 1 and 1 ′, there are two Y 1 s , and each Y 1 may be the same or different, but the same from the viewpoint of symmetry and synthesis. Preferably there is.
 なお、一般式1で表わされる部分構造は、さらに、ドナー性ユニットや、アクセプター性ユニットを有していてもよく、具体的な部分構造には-一般式1の部分構造-D-、-一般式1の部分構造-D-A-D-、-一般式1の部分構造-A-等が挙げられる。ここで、Aはアクセプター性ユニットを指し、Dはドナー性ユニットを指す。 The partial structure represented by the general formula 1 may further have a donor unit or an acceptor unit. Specific partial structures include: the partial structure of the general formula 1 -D-, -general Examples include the partial structure of formula 1 -DAD-, the partial structure of general formula 1 -A-, and the like. Here, A indicates an acceptor unit, and D indicates a donor unit.
 一般式1’中DおよびDで表わされるドナー性ユニットについては後述する。式1’中、mおよびnは0~2の整数であるが、m=n=0であるか、m=n=1であることが好ましい。 The donor unit represented by D 1 and D 2 in the general formula 1 ′ will be described later. In Formula 1 ′, m and n are integers of 0 to 2, and it is preferable that m = n = 0 or m = n = 1.
 なお式中Aであらわされるアクセプター性ユニットとは、一般に、同じπ電子数を有する炭化水素芳香環(ベンゼン、ナフタレン、アントラセンなど)よりもLUMO準位またはHOMO準位が深くなるような部分構造(ユニット)をいう。なお、本形態の共役系高分子である化合物に含まれるアクセプター性ユニットは、より高い光電変換効率を達成するため、共役系高分子に含まれるアクセプター性ユニットのうち、下記で表される部分構造を含むことが好ましい。具体的には、共役系高分子に含まれる全アクセプター性ユニットの数に対して、下記で表される部分構造の数が50%以上であることが好ましく、70%以上であることがより好ましく、90%以上であることがさらに好ましく、95%以上であることが特に好ましく、100%であることが最も好ましい。 The acceptor unit represented by A in the formula is generally a partial structure in which the LUMO level or the HOMO level is deeper than a hydrocarbon aromatic ring having the same number of π electrons (benzene, naphthalene, anthracene, etc.) Unit). In addition, in order to achieve higher photoelectric conversion efficiency, the acceptor unit included in the compound that is a conjugated polymer of this embodiment is a partial structure represented by the following among the acceptor units included in the conjugated polymer. It is preferable to contain. Specifically, the number of partial structures represented below is preferably 50% or more, more preferably 70% or more, based on the total number of acceptor units contained in the conjugated polymer. 90% or more, more preferably 95% or more, and most preferably 100%.
 以下に、Aで表わされるアクセプター性ユニットの具体例を挙げる。 The following are specific examples of the acceptor unit represented by A.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 A1~A41の式中、Rは、水素原子、置換されてもよいアルキル基、置換されてもよいフッ化アルキル基、置換されてもよいシクロアルキル基、置換されてもよいアルコキシ基または置換されてもよいアリール基を示す。ここで、アルキル基、フッ化アルキル基、シクロアルキル基としては、上記R~Rの欄で説明したものが挙げられる。アリール基としては、好ましくは炭素数6~30、より好ましくは炭素数6~20、特に好ましくは炭素数6~12であり、具体的には、例えば、フェニル基、ビフェニル基、ターフェニル基などの非縮合炭化水素基;ペンタレニル基、インデニル基、ナフチル基、アズレニル基、ヘプタレニル基、ビフェニレニル基、フルオレニル基、アセナフチレニル基、プレイアデニル基、アセナフテニル基、フェナレニル基、フェナントリル基、アントリル基、フルオランテニル基、アセフェナントリレニル基、アセアントリレニル基、トリフェニレニル基、ピレニル基、クリセニル基、ナフタセニル基などの縮合多環炭化水素基が挙げられる。アルコキシ基としては、好ましくは炭素数1~24、より好ましくは炭素数1~12、特に好ましくは炭素数1~8であり、具体的には、式:-ORで表される基であり、この際、Rは、好ましくは炭素原子数1~24のアルキル基であり、この際のアルキル基は上記R~Rの欄で説明したものが挙げられる。アルキル基、フッ化アルキル基、シクロアルキル基、アルコキシ基またはアリール基に場合によって存在する置換基は、上記R~Rの欄で説明したものが挙げられる。Rは好ましくは、水素原子、置換されてもよいアルキル基、または置換されてもよいアリール基であり、より好ましくは水素原子、または炭素原子数1~12の置換されてもよいアルキル基である。なお、A1~A41の式中、Rが複数存在する場合には、各Rは同一の置換基であってもよいし、異なる置換基であってもよい。 In the formulas A1 to A41, R is a hydrogen atom, an optionally substituted alkyl group, an optionally substituted fluorinated alkyl group, an optionally substituted cycloalkyl group, an optionally substituted alkoxy group or a substituted group. The aryl group which may be sufficient is shown. Here, examples of the alkyl group, the fluorinated alkyl group, and the cycloalkyl group include those described in the above R 1 to R 3 columns. The aryl group preferably has 6 to 30 carbon atoms, more preferably 6 to 20 carbon atoms, and particularly preferably 6 to 12 carbon atoms. Specific examples thereof include a phenyl group, a biphenyl group, and a terphenyl group. Non-condensed hydrocarbon group: pentarenyl group, indenyl group, naphthyl group, azulenyl group, heptalenyl group, biphenylenyl group, fluorenyl group, acenaphthylenyl group, preadenenyl group, acenaphthenyl group, phenalenyl group, phenanthryl group, anthryl group, fluoranthenyl And condensed polycyclic hydrocarbon groups such as a group, an acephenanthrenyl group, an aceanthrylenyl group, a triphenylenyl group, a pyrenyl group, a chrycenyl group, and a naphthacenyl group. The alkoxy group is preferably a group having 1 to 24 carbon atoms, more preferably 1 to 12 carbon atoms, particularly preferably 1 to 8 carbon atoms, specifically a group represented by the formula: —OR; In this case, R is preferably an alkyl group having 1 to 24 carbon atoms, and examples of the alkyl group in this case include those described in the above R 1 to R 3 column. Examples of the substituent optionally present in the alkyl group, fluorinated alkyl group, cycloalkyl group, alkoxy group or aryl group include those described in the above R 1 to R 3 columns. R is preferably a hydrogen atom, an optionally substituted alkyl group, or an optionally substituted aryl group, more preferably a hydrogen atom or an optionally substituted alkyl group having 1 to 12 carbon atoms. . In the formulas A1 to A41, when there are a plurality of R, each R may be the same or different substituent.
 上記のアクセプター性ユニットの中でも、準位が深いものを得やすく、光電変換効率が向上し、また耐久性が向上するため、Aで表わされるユニットが含窒素複素芳香族環基であることが好ましい。また、さらに移動度の点を考慮すると、縮合して大きなπ共役面積を有するユニットであることが好ましく、Aで表わされるユニットが2環以上が縮合した縮合多環基であることが好ましい。 Among the above acceptor units, a unit having a deep level is easily obtained, the photoelectric conversion efficiency is improved, and the durability is improved. Therefore, the unit represented by A is preferably a nitrogen-containing heteroaromatic ring group. . Further, in consideration of mobility, the unit is preferably a unit having a large π-conjugated area by condensation, and the unit represented by A is preferably a condensed polycyclic group in which two or more rings are condensed.
 さらに移動度を考慮すると、縮合して大きなπ共役面積を有するユニットであることが好ましい。具体的には、A-1~A-19、A-33~38のユニットである。 In consideration of mobility, the unit is preferably a unit having a large π-conjugated area by condensation. Specifically, the units are A-1 to A-19 and A-33 to 38.
 すなわちユニットが2環以上が縮合した縮合多環基としては、具体的には、下記構造が挙げられる。 That is, specific examples of the condensed polycyclic group in which two or more units are condensed include the following structures.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 ここで、式中、X~Xは-S-、-O-、-NR-、-CR=CR5’-、-CR=N-、-CR-、または-N=N-を表す。R、R、R5’、R、RおよびRは、それぞれ独立して、水素原子、置換基を有してもよいアルキル基、置換基を有してもよいフッ化アルキル基、または置換基を有してもよいシクロアルキル基を表す。置換基を有してもよいアルキル基、置換基を有してもよいフッ化アルキル基、または置換基を有してもよいシクロアルキル基については、上記R~Rの欄で説明したものと同様である。 In the formula, X 2 to X 4 are —S—, —O—, —NR 4 —, —CR 5 = CR 5 ′ —, —CR 6 = N—, —CR A R B —, or — N = N-. R 4 , R 5 , R 5 ′ , R 6 , R A and R B are each independently a hydrogen atom, an alkyl group which may have a substituent, or a fluorinated alkyl which may have a substituent Or a cycloalkyl group which may have a substituent. The alkyl group which may have a substituent, the fluorinated alkyl group which may have a substituent, or the cycloalkyl group which may have a substituent has been described in the above R 1 to R 3 columns. It is the same as that.
 また、隣接する基と立体障害を起こさず平面を保つためには、Xは-S-、-O-であることが好ましく、より好ましくは-S-である。アクセプター性ユニットとしてチアゾロチアゾールを有するp型有機半導体材料は、高い移動度を提供することができるために好ましい。なお、上記式中RおよびRは下記一般式4Aおよび4B中のRおよびRと同一であり、下記別途詳述する。 In order to maintain a flat surface without causing steric hindrance with an adjacent group, X 2 is preferably —S— or —O—, more preferably —S—. A p-type organic semiconductor material having thiazolothiazole as an acceptor unit is preferable because it can provide high mobility. The above formula R 7 and R 8 are the same as R 7 and R 8 in the following general formulas 4A and 4B, separately described in detail below.
 一般式1で表わされる構造は、耐久性の点で、下記一般式2で表わされる構造であることが好ましい。 The structure represented by the general formula 1 is preferably a structure represented by the following general formula 2 in terms of durability.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 特に、一般式2においてXがSであるp型有機半導体材料は、アクセプター性ユニットとしてチアゾロチアゾールを有するため、高い移動度を提供することができ好ましい。 In particular, a p-type organic semiconductor material in which X 2 is S in General Formula 2 has thiazolothiazole as an acceptor unit, and thus can provide high mobility and is preferable.
 また、上記一般式2で表わされる構造単位を含有する化合物が、さらに、下記一般式4A、または4Bで表わされるアクセプター性ユニットのいずれかを有することが好ましい。このような構造は、より長波長まで吸収が可能となり、高い短絡電流を提供することが可能となる。 Moreover, it is preferable that the compound containing the structural unit represented by the general formula 2 further has any of the acceptor units represented by the following general formula 4A or 4B. Such a structure can absorb longer wavelengths and can provide a high short-circuit current.
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 式中、Y、Yは、それぞれ独立して、-O-、-NR10-、-S-、-C(R11)=C(R11’)-、または-N=C(R12)-を表し、この際、R10、R11、R11’およびR12は、それぞれ独立して、水素原子または置換基を有してもよい、アルキル基、フッ化アルキル基、またはシクロアルキル基を表す。 In the formula, Y 3 and Y 4 each independently represent —O—, —NR 10 —, —S—, —C (R 11 ) ═C (R 11 ′ ) —, or —N═C (R 12 ) —, wherein R 10 , R 11 , R 11 ′ and R 12 are each independently an alkyl group, a fluorinated alkyl group or a cyclo group which may have a hydrogen atom or a substituent. Represents an alkyl group.
 R~Rは、それぞれ独立して、水素原子、ハロゲン原子(F、Cl、Br、もしくはI)、置換されたもしくは非置換の、炭素原子数1~24のアルキル基、炭素原子数1~24のフッ化アルキル基、炭素原子数3~20のシクロアルキル基、炭素原子数3~20のフッ化シクロアルキル基、炭素原子数1~24のアルコキシ基、炭素原子数1~24のフッ化アルコキシ基、炭素原子数1~24のフッ化アルキルチオ基、炭素原子数6~30のアリール基、炭素原子数6~30のフッ化アリール基、炭素原子数1~20のヘテロアリール基、または炭素原子数1~20のフッ化ヘテロアリール基を表す。一般式4A中には、Rが2個、一般式4B中にはRが2個存在するが、各R、Rは同じであっても異なるものであってもよいが、対称性および合成上の観点からは同じであることが好ましい。また、化合物中には、一般式4Aまたは4Bで表される部分構造が好適には1または2以上含まれるが、当該部分構造が2以上存在する場合には、各部分構造におけるY、Y、R10~R12は、互いに同一であってもよいし、異なってもよい。R~Rは、好ましくは、水素原子またはハロゲン原子(好ましくはフッ素原子)である。また、隣接する基と立体障害を起こさず平面を保つためには、YおよびYは、-S-、-O-であることが好ましく、高い移動度を提供することができるためより好ましくは-S-である。 R 7 to R 8 each independently represents a hydrogen atom, a halogen atom (F, Cl, Br, or I), a substituted or unsubstituted alkyl group having 1 to 24 carbon atoms, or 1 carbon atom. -24 fluorinated alkyl groups, cycloalkyl groups having 3 to 20 carbon atoms, fluorinated cycloalkyl groups having 3 to 20 carbon atoms, alkoxy groups having 1 to 24 carbon atoms, and fluorine groups having 1 to 24 carbon atoms. Alkoxy group, fluorinated alkylthio group having 1 to 24 carbon atoms, aryl group having 6 to 30 carbon atoms, fluorinated aryl group having 6 to 30 carbon atoms, heteroaryl group having 1 to 20 carbon atoms, or Represents a fluorinated heteroaryl group having 1 to 20 carbon atoms. In general formula 4A, there are two R 7 s , and in general formula 4B there are two R 8 s . Each R 7 , R 8 may be the same or different, but they are symmetrical. From the viewpoints of properties and synthesis, the same is preferable. Further, the compound preferably contains one or more partial structures represented by the general formula 4A or 4B. When two or more partial structures are present, Y 3 , Y in each partial structure 4 and R 10 to R 12 may be the same as or different from each other. R 7 to R 8 are preferably a hydrogen atom or a halogen atom (preferably a fluorine atom). In order to maintain a plane without causing steric hindrance with adjacent groups, Y 3 and Y 4 are preferably —S— and —O—, and more preferably because they can provide high mobility. Is -S-.
 ここで、R~RならびにR10~R12における置換されてもよい、アルキル基、フッ化アルキル基またはシクロアルキル基としては、上記R~Rの欄で説明したものが挙げられる。 Here, examples of the alkyl group, fluorinated alkyl group or cycloalkyl group which may be substituted in R 7 to R 8 and R 10 to R 12 include those described in the above R 1 to R 3 column. .
 また、R~Rにおけるフッ化シクロアルキル基としては、例えば、上記で例示したシクロアルキル基に含まれる水素原子の少なくとも1つがフッ素原子で置換された基が挙げられる。炭素原子数1~24のアルコキシ基としては、特に制限はないが、例えば、メトキシ基、エトキシ基、イソプロポキシ基、tert-ブトキシ基、n-オクチルオキシ基、n-デシルオキシ基、n-ヘキサデシルオキシ基、2-エチルヘキシルオキシ基、2-ヘキシルデシルオキシ基などが挙げられる。フッ化アルコキシ基としては、例えば、上記で例示したアルコキシ基に含まれる水素原子の少なくとも1つがフッ素原子で置換された基が挙げられる。上記炭素原子数6~30のアリール基としては、特に制限はないが、例えば、フェニル基、ビフェニル基、ターフェニル基などの非縮合炭化水素基;ペンタレニル基、インデニル基、ナフチル基、アズレニル基、ヘプタレニル基、ビフェニレニル基、フルオレニル基、アセナフチレニル基、プレイアデニル基、アセナフテニル基、フェナレニル基、フェナントリル基、アントリル基、フルオランテニル基、アセフェナントリレニル基、アセアントリレニル基、トリフェニレニル基、ピレニル基、クリセニル基、ナフタセニル基などの縮合多環炭化水素基が挙げられる。上記炭素原子数6~30のフッ化アリール基としては、特に制限はないが、例えば、上記で例示したアリール基に含まれる水素原子の少なくとも1つがフッ素原子で置換された基が挙げられる。上記炭素原子数1~20のヘテロアリール基としては、特に制限はないが、例えば、ピリジル基、ピリミジル基、ピラジニル基、トリアジニル基、フラニル基、ピロリル基、チオフェニル基(チエニル基)、キノリル基、フリル基、ピペリジル基、クマリニル基、シラフルオレニル基、ベンゾフラニル基、ベンズイミダゾリル基、ベンズオキサゾリル基、ベンズチアゾリル基、ジベンゾフラニル基、ベンゾチオフェニル基、ジベンゾチオフェニル基、インドリル基、カルバゾリル基、ピラゾリル基、イミダゾリル基、オキサゾリル基、イソオキサゾリル基、チアゾリル基、インダゾリル基、ベンゾチアゾリル基、ピリダジニル基、シンノリル基、キナゾリル基、キノキサリル基、フタラジニル基、フタラジンジオニル基、フタルアミジル基、クロモニル基、ナフトラクタミル基、キノロニル基、ナフタリジニル基、ベンズイミダゾロニル基、ベンズオキサゾロニル基、ベンゾチアゾロニル基、ベンゾチアゾチオニル基、キナゾロニル基、キノキサロニル基、フタラゾニル基、ジオキソピリミジニル基、ピリドニル基、イソキノロニル基、イソキノリニル基、イソチアゾリル基、ベンズイソキサゾリル基、ベンズイソチアゾリル基、インダジロニル基、アクリジニル基、アクリドニル基、キナゾリンジオニル基、キノキサリンジオニル基、ベンゾオキサジンジオニル基、ベンゾキサジノニル基、ナフタルイミジル基、ジチエノシクロペンタジエニル基、ジチエノシラシクロペンタジエニル基、ジチエノピロリル基、ベンゾジチオフェニル基などが挙げられる。上記炭素原子数1~20のフッ化ヘテロアリール基としては、特に制限はないが、例えば、上記で例示したヘテロアリール基に含まれる水素原子の少なくとも1つがフッ素原子で置換された基が挙げられる。 Examples of the fluorinated cycloalkyl group in R 7 to R 8 include groups in which at least one hydrogen atom contained in the cycloalkyl group exemplified above is substituted with a fluorine atom. The alkoxy group having 1 to 24 carbon atoms is not particularly limited, and examples thereof include a methoxy group, an ethoxy group, an isopropoxy group, a tert-butoxy group, an n-octyloxy group, an n-decyloxy group, and an n-hexadecyl group. Examples thereof include an oxy group, 2-ethylhexyloxy group, and 2-hexyldecyloxy group. Examples of the fluorinated alkoxy group include a group in which at least one hydrogen atom contained in the alkoxy group exemplified above is substituted with a fluorine atom. The aryl group having 6 to 30 carbon atoms is not particularly limited, and examples thereof include non-condensed hydrocarbon groups such as a phenyl group, a biphenyl group, and a terphenyl group; a pentarenyl group, an indenyl group, a naphthyl group, an azulenyl group, Heptalenyl group, biphenylenyl group, fluorenyl group, acenaphthylenyl group, preadenyl group, acenaphthenyl group, phenalenyl group, phenanthryl group, anthryl group, fluoranthenyl group, acephenanthrenyl group, aceanthrylenyl group, triphenylenyl group, pyrenyl group , Condensed polycyclic hydrocarbon groups such as a chrycenyl group and a naphthacenyl group. The fluorinated aryl group having 6 to 30 carbon atoms is not particularly limited, and examples thereof include a group in which at least one hydrogen atom contained in the aryl group exemplified above is substituted with a fluorine atom. The heteroaryl group having 1 to 20 carbon atoms is not particularly limited, and examples thereof include pyridyl group, pyrimidyl group, pyrazinyl group, triazinyl group, furanyl group, pyrrolyl group, thiophenyl group (thienyl group), quinolyl group, Furyl group, piperidyl group, coumarinyl group, silafluorenyl group, benzofuranyl group, benzimidazolyl group, benzoxazolyl group, benzthiazolyl group, dibenzofuranyl group, benzothiophenyl group, dibenzothiophenyl group, indolyl group, carbazolyl group, pyrazolyl Group, imidazolyl group, oxazolyl group, isoxazolyl group, thiazolyl group, indazolyl group, benzothiazolyl group, pyridazinyl group, cinnolyl group, quinazolyl group, quinoxalyl group, phthalazinyl group, phthalazine dionyl group, phthalamidyl group, Romonyl, naphtholactamyl, quinolonyl, naphthalidinyl, benzimidazolonyl, benzoxazolonyl, benzothiazolonyl, benzothiazothionyl, quinazolonyl, quinoxalonyl, phthalazonyl, dioxopyrimidinyl Group, pyridonyl group, isoquinolonyl group, isoquinolinyl group, isothiazolyl group, benzisoxazolyl group, benzisothiazolyl group, indazironyl group, acridinyl group, acridonyl group, quinazoline dionyl group, quinoxaline dionyl group, benzoxazine dionyl Group, benzoxazinonyl group, naphthalimidyl group, dithienocyclopentadienyl group, dithienosylcyclopentadienyl group, dithienopyrrolyl group, benzodithiophenyl group and the like. The fluorinated heteroaryl group having 1 to 20 carbon atoms is not particularly limited, and examples thereof include groups in which at least one hydrogen atom contained in the heteroaryl group exemplified above is substituted with a fluorine atom. .
 また、本発明のp型有機半導体材料に含まれる化合物は、前記一般式1で表わされる構造と、さらにドナー性ユニットとの共重合体であることが好ましい。または、一般式1’において、mまたはnの少なくとも一方が1以上の形態もドナー性ユニットを有するので好ましい形態である。本形態の共役系高分子化合物に含まれうるドナー性ユニットとは、本発明においては同じπ電子数を有する炭化水素芳香環(ベンゼン、ナフタレン、アントラセンなど)よりもLUMO準位またはHOMO準位が浅くなるようなユニットであれば、制限なく使用できる。例えば、チオフェン環、フラン環、ピロール環、シクロペンタジエン、シラシクロペンタジエンなどの複素5員環、およびこれらの縮合環を含むユニットである。 Further, the compound contained in the p-type organic semiconductor material of the present invention is preferably a copolymer of the structure represented by the general formula 1 and a donor unit. Alternatively, in General Formula 1 ′, at least one of m and n is one or more forms, which is a preferable form because it has a donor unit. In the present invention, the donor unit that can be included in the conjugated polymer compound of the present embodiment has a LUMO level or a HOMO level rather than a hydrocarbon aromatic ring (benzene, naphthalene, anthracene, etc.) having the same number of π electrons. If it is a shallow unit, it can be used without restriction. For example, a unit including a thiophene ring, a furan ring, a pyrrole ring, a hetero 5-membered ring such as cyclopentadiene, silacyclopentadiene, and a condensed ring thereof.
 具体的には、チオフェン、チエノチオフェン、ビチオフェン、フルオレン、シラフルオレン、カルバゾール、ジチエノシクロペンタジエン、ジチエノシラシクロペンタジエン、ジチエノピロール、ベンゾジチオフェンなどを挙げることができる。これらのユニットのうち、高い移動度を付与できるチオフェン構造を有していることが好ましく、これにより光電変換効率を一層向上させることが可能である。また、環構造を構成する原子に結合している水素原子を、炭素原子数1~24の直鎖または分岐鎖のアルキル基やアルコキシ基などに置換することにより、溶解性や結晶性を向上させることも可能である。 Specific examples include thiophene, thienothiophene, bithiophene, fluorene, silafluorene, carbazole, dithienocyclopentadiene, dithienosylcyclopentadiene, dithienopyrrole, and benzodithiophene. Among these units, it is preferable to have a thiophene structure capable of imparting high mobility, and thus, the photoelectric conversion efficiency can be further improved. Further, the solubility and crystallinity are improved by substituting the hydrogen atom bonded to the atoms constituting the ring structure with a linear or branched alkyl group or alkoxy group having 1 to 24 carbon atoms. It is also possible.
 以下、ドナー性ユニットの好ましい形態を例示する。 Hereinafter, preferred forms of the donor unit will be exemplified.
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
 ここで、上記D1~D18において、Rは、水素原子、ハロゲン原子、置換基を有してもよいアルキル基、置換基を有してもよいフッ化アルキル基、置換基を有してもよいシクロアルキル基、置換基を有してもよいアルコキシ基、置換基を有してもよいフッ化アルコキシ基、置換基を有してもよいシクロアルコキシ基、置換基を有してもよいアルコキシカルボニル基、置換基を有してもよいアシル基、置換基を有してもよいアルキルアミノカルボニル基、または置換基を有してもよいアシルアミノ基を表わす。これらの置換基の中でも、水素原子または置換基を有していてもよいアルキル基であることが好ましい。上記ハロゲン原子、置換基を有してもよいアルキル基、置換基を有してもよいフッ化アルキル基、置換基を有してもよいシクロアルキル基、置換基を有してもよいアルコキシ基、置換基を有してもよいフッ化アルコキシ基、置換基を有してもよいシクロアルコキシ基としては、上記R~Rの欄で説明したものが挙げられる。なお、上記ドナー性ユニット中、Rが複数存在する場合には、各Rは同一の置換基であってもよいし、異なる置換基であってもよい。 Here, in the above D1 to D18, R may have a hydrogen atom, a halogen atom, an alkyl group which may have a substituent, a fluorinated alkyl group which may have a substituent, or a substituent. A cycloalkyl group, an alkoxy group which may have a substituent, a fluorinated alkoxy group which may have a substituent, a cycloalkoxy group which may have a substituent, an alkoxycarbonyl which may have a substituent A group, an acyl group which may have a substituent, an alkylaminocarbonyl group which may have a substituent, or an acylamino group which may have a substituent. Among these substituents, a hydrogen atom or an alkyl group which may have a substituent is preferable. The halogen atom, an alkyl group that may have a substituent, a fluorinated alkyl group that may have a substituent, a cycloalkyl group that may have a substituent, and an alkoxy group that may have a substituent Examples of the fluorinated alkoxy group which may have a substituent and the cycloalkoxy group which may have a substituent include those described in the above R 7 to R 8 columns. In addition, when two or more R exists in the said donor property unit, each R may be the same substituent and may be different substituents.
 Rにおいて、アルコキシカルボニル基としては、好ましくは炭素原子数2~30、より好ましくは炭素原子数2~24、さらに好ましくは炭素原子数6~24のアルコキシカルボニル基(-COOR)が好ましく、例えば、メトキシカルボニル基、エトキシカルボニル基、イソプロポキシカルボニル基、tert-ブトキシカルボニル基、n-ヘキシルオキシカルボニル基、n-オクチルオキシカルボニル基、n-デシルオキシカルボニル基、n-ヘキサデシルオキシカルボニル基、2-エチルヘキシルオキシカルボニル基、2-ヘキシルデシルオキシカルボニル基などが挙げられる。 In R, the alkoxycarbonyl group is preferably an alkoxycarbonyl group (—COOR) having 2 to 30 carbon atoms, more preferably 2 to 24 carbon atoms, and still more preferably 6 to 24 carbon atoms. Methoxycarbonyl group, ethoxycarbonyl group, isopropoxycarbonyl group, tert-butoxycarbonyl group, n-hexyloxycarbonyl group, n-octyloxycarbonyl group, n-decyloxycarbonyl group, n-hexadecyloxycarbonyl group, 2- Examples include an ethylhexyloxycarbonyl group and a 2-hexyldecyloxycarbonyl group.
 Rにおいて、アシル基(-COR)としては、好ましくは炭素原子数2~30、より好ましくは炭素原子数2~24、さらに好ましくは炭素原子数6~25のアルコキシカルボニル基(-COOR)が好ましく、例えば、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、tert-ブチリル基、ペンタノイル基、バレリル基、イソバレリル基、ピバロイル基、ヘキサノイル基、ヘプタノイル基、オクタノイル基、デカノイル基、ドデカノイル基、ヘキサデカノイル基、オクタデカノイル基、シクロヘキサンカルボニル基、ベンゾイル基、2-エチルヘキシルカルボニル基、2-ヘキシルデシルカルボニル基などが挙げられる。 In R, the acyl group (—COR) is preferably an alkoxycarbonyl group (—COOR) having 2 to 30 carbon atoms, more preferably 2 to 24 carbon atoms, and still more preferably 6 to 25 carbon atoms. For example, acetyl, propionyl, butyryl, isobutyryl, tert-butyryl, pentanoyl, valeryl, isovaleryl, pivaloyl, hexanoyl, heptanoyl, octanoyl, decanoyl, dodecanoyl, hexadecanoyl Group, octadecanoyl group, cyclohexanecarbonyl group, benzoyl group, 2-ethylhexylcarbonyl group, 2-hexyldecylcarbonyl group and the like.
 Rにおいて、アルキルアミノカルボニル基(-CONHRまたは-CONRR’)としては、好ましくは炭素原子数2~40、より好ましくは炭素原子数9~40、さらに好ましくは炭素原子数13~24のアルキルアミノカルボニル基が好ましく、例えば、ジメチルアミノカルボニル基、ジエチルアミノカルボニル基、ジイソプロピルアミノカルボニル基、メチル-tert-ブチルアミノカルボニル基、ジヘキシルアミノカルボニル基、ジオクチルアミノカルボニル基、ジデシルアミノカルボニル基、ジヘキサデシルアミノカルボニル基、ジ2-エチルヘキシルアミノカルボニル基、ジ2-ヘキシルデシルアミノカルボニル基などが挙げられる。 In R, the alkylaminocarbonyl group (—CONHR or —CONRR ′) is preferably an alkylaminocarbonyl having 2 to 40 carbon atoms, more preferably 9 to 40 carbon atoms, and still more preferably 13 to 24 carbon atoms. Groups such as dimethylaminocarbonyl group, diethylaminocarbonyl group, diisopropylaminocarbonyl group, methyl-tert-butylaminocarbonyl group, dihexylaminocarbonyl group, dioctylaminocarbonyl group, didecylaminocarbonyl group, dihexadecylaminocarbonyl Group, di2-ethylhexylaminocarbonyl group, di2-hexyldecylaminocarbonyl group and the like.
 Rにおいて、アシルアミノ基(-NHCOR)としては、好ましくは炭素原子数2~30のアシルアミノ基が好ましく、例えば、アセトアミド基、エチルアミド基、プロピルアミド基などが挙げられる。 In R, the acylamino group (—NHCOR) is preferably an acylamino group having 2 to 30 carbon atoms, and examples thereof include an acetamide group, an ethylamide group, and a propylamide group.
 ドナー性ユニットの中でも、好ましくは一般式3で表わされるユニットであることが好ましい。 Among the donor units, a unit represented by the general formula 3 is preferable.
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
 式中、Rは、それぞれ独立して、水素原子、ハロゲン原子、置換基を有してもよいアルキル基、置換基を有してもよいフッ化アルキル基、置換基を有してもよいシクロアルキル基、置換基を有してもよいアルコキシ基、置換基を有してもよいフッ化アルコキシ基、置換基を有してもよいシクロアルコキシ基、置換基を有してもよいアルコキシカルボニル基、置換基を有してもよいアシル基、置換基を有してもよいアルキルアミノカルボニル基、または置換基を有してもよいアシルアミノ基を表す。これらの置換基については、上記D1~D18におけるRの欄で説明したものと同様である。一般式3中には、Rが2個存在するが、各Rは同じであっても異なるものであってもよいが、対称性および合成上の観点からは同じであることが好ましい。また、化合物中には、一般式3で表される部分構造が好適には1または2以上含まれるが、当該部分構造が2以上存在する場合には、各部分構造におけるRは、互いに同一であってもよいし、異なってもよい。 In the formula, each R 9 independently has a hydrogen atom, a halogen atom, an alkyl group which may have a substituent, a fluorinated alkyl group which may have a substituent, or a substituent. A cycloalkyl group, an alkoxy group which may have a substituent, a fluorinated alkoxy group which may have a substituent, a cycloalkoxy group which may have a substituent, an alkoxycarbonyl which may have a substituent A group, an acyl group which may have a substituent, an alkylaminocarbonyl group which may have a substituent, or an acylamino group which may have a substituent. These substituents are the same as those described in the column of R in the above D1 to D18. In formula 3, there are two R 9 s, but each R 9 may be the same or different, but is preferably the same from the viewpoint of symmetry and synthesis. In addition, the compound preferably contains one or more partial structures represented by the general formula 3, but when there are two or more partial structures, R 9 in each partial structure is the same as each other. It may be different or different.
 このような構造を有するドナーユニットは結晶性が高く、より高い変換効率を得ることができる。 The donor unit having such a structure has high crystallinity and can obtain higher conversion efficiency.
 さらに上記一般式1で表される構造を有する化合物としては、分子量10,000以上の数平均分子量を有する高分子化合物であることが好ましい。 Furthermore, the compound having the structure represented by the general formula 1 is preferably a polymer compound having a number average molecular weight of 10,000 or more.
 これは、バルクヘテロジャンクション型の光電変換層を構成する他方の成分であるn型有機半導体が低分子化合物(フラーレン誘導体)が広く用いられているため、p型半導体材料が高分子である方が互いにミクロ相分離構造を形成し、バルクヘテロジャンクション型光電変換層で発生した正孔と電子をそれぞれ運ぶキャリアパスを生成しやすくなる傾向があるためである。 This is because the low-molecular compound (fullerene derivative) is widely used as the n-type organic semiconductor which is the other component constituting the bulk heterojunction type photoelectric conversion layer. This is because a microphase-separated structure is formed, and it is easy to generate carrier paths that respectively carry holes and electrons generated in the bulk heterojunction photoelectric conversion layer.
 他方で分子量が大きすぎると溶解性が低下するため、化合物の数平均分子量は10万以下であることが好ましい。より好ましくは15,000~50,000の範囲である。 On the other hand, if the molecular weight is too large, the solubility is lowered, so the number average molecular weight of the compound is preferably 100,000 or less. More preferably, it is in the range of 15,000 to 50,000.
 なお、分子量はゲルパーミエーションクロマトグラフィー(GPC)で測定することができる。 The molecular weight can be measured by gel permeation chromatography (GPC).
 例えば数平均分子量は、下記の方法により測定することができる。 For example, the number average molecular weight can be measured by the following method.
 ウオーターズ社製150C ALC/GPC(カラム:東ソー(株)製GMHHR-H(S)、溶媒:1,2,4-トリクロロベンゼン)を使用して、ゲルパーミエーション・クロマトグラフィー(GPC)法により、重量平均分子量(Mw)および数平均分子量(Mn)を測定した。なお、東ソー(株)製標準ポリスチレンを用いて、ユニバーサルキャリブレーション法によりカラム溶出体積は校正した。 Water per 150C ALC / GPC (column: GMHHR-H (S) manufactured by Tosoh Corporation), solvent: 1,2,4-trichlorobenzene), by gel permeation chromatography (GPC) method, The weight average molecular weight (Mw) and the number average molecular weight (Mn) were measured. In addition, column elution volume was calibrated by the universal calibration method using Tosoh Corporation standard polystyrene.
 また、分子量に応じた精製も分取用のゲルパーミエーションクロマトグラフィー(GPC)で精製することができる。 Also, purification according to molecular weight can be performed by preparative gel permeation chromatography (GPC).
 本発明に係る部分構造を有する化合物に占める本発明に係る部分構造の割合は、当該化合物に対して概ね20~80質量%が好ましく25~60質量%が特に好ましい。本発明においては、当該化合物は、上記のような高分子量の化合物であることが好ましいが、この場合部分構造を繰り返し単位として有し、この部分構造以外の繰り返し単位を含めた化合物全体に対して、30~50モル%の範囲で含有することが好ましい。 The ratio of the partial structure according to the present invention to the compound having the partial structure according to the present invention is generally preferably 20 to 80% by mass and particularly preferably 25 to 60% by mass with respect to the compound. In the present invention, the compound is preferably a high molecular weight compound as described above. In this case, the compound has a partial structure as a repeating unit, and the entire compound including a repeating unit other than the partial structure is used. , Preferably in the range of 30 to 50 mol%.
 以下に、一般式1または一般式1’で表される部分構造を有する化合物の例を挙げるが、本発明はこれらに限定されない。 Hereinafter, examples of the compound having the partial structure represented by the general formula 1 or the general formula 1 'will be described, but the present invention is not limited thereto.
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
 上記化合物に置いて、各ユニットの繰り返し数(重合度)は前述の分子量に入るような値となれば十分であるが、例えば数平均分子量10000~100000の範囲に入るためにはおよそ10~200程度である必要がある。 In the above compound, it is sufficient that the number of repetitions (polymerization degree) of each unit is a value that falls within the above-mentioned molecular weight. For example, in order to fall within the range of a number average molecular weight of 10,000 to 100,000, approximately 10 to 200 is required. It needs to be about.
 〔本発明に係る化合物の合成方法〕
 本発明に係る化合物のうち、アルキニル基で置換されたチオフェン類は、Bull.Chem.Soc.Jpn.,2005, p1368を参考として合成することができる。
[Method for Synthesizing Compound According to the Present Invention]
Among the compounds according to the present invention, thiophenes substituted with an alkynyl group are described in Bull. Chem. Soc. Jpn. , 2005, p1368.
 また、チアゾロチアゾール環などはAdv. Mater.2007, 19, 4160等を参考として合成することができる。 In addition, thiazolothiazole ring and the like are described in Adv. Mater. Can be synthesized with reference to 2007, 19, 4160, etc.
 以下、本発明の有機光電変換素子用化合物の合成例を記載する。 Hereafter, the synthesis example of the compound for organic photoelectric conversion elements of this invention is described.
 なお、他の化合物についても同様にユニットを構成するアルキニル基置換ヘテロアリール基、アクセプター性ユニットおよびドナー性ユニットを用いて合成することができる。 In addition, it can synthesize | combine also about another compound using the alkynyl group substituted heteroaryl group which comprises a unit, an acceptor unit, and a donor unit.
 (例示化合物11) (Exemplary Compound 11)
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
 例示化合物11-1の合成
 J.Org.Chem.2002,p4178を参考として、例示化合物11-1を合成した。窒素雰囲気下で東京化成製 3-ブロモ-2-カルボキシアルデヒド4.0g、Pd(PPhClを0.74g、トリフェニルホスフィンを0.14g、トリエチルアミンを3.2g、1-テトラデシンを4.5g、脱水テトラヒドロフランを150mlを加えて室温で15分撹拌した後、ヨウ化銅60mgを加えてそのまま20時間撹拌した。
Synthesis of Exemplary Compound 11-1 Org. Chem. Exemplified compound 11-1 was synthesized with reference to 2002, p4178. 3-bromo-2-carboxaldehyde 4.0 g, Pd (PPh 3 ) 2 Cl 2 0.74 g, triphenylphosphine 0.14 g, triethylamine 3.2 g, 1-tetradecine After adding 4.5 g and 150 ml of dehydrated tetrahydrofuran and stirring at room temperature for 15 minutes, 60 mg of copper iodide was added and stirring was continued for 20 hours.
 反応終了後、セライトでろ過した後溶媒を留去して得た粗製物をシリカゲルカラムクロマトグラフィーで精製し、例示化合物11-1(5.2g、収率80%)を得た。 After completion of the reaction, the reaction mixture was filtered through celite and the solvent was distilled off. The resulting crude product was purified by silica gel column chromatography to obtain Exemplified Compound 11-1 (5.2 g, yield 80%).
 例示化合物11-2の合成
 米国特許出願公開第2010137611A1号公報を参考として、例示化合物11-2を合成した。
Synthesis of Exemplified Compound 11-2 Exemplified Compound 11-2 was synthesized with reference to US Patent Application Publication No. 2010137376A1.
 例示化合物11-1;3.0g、ルベアン酸0.4g、ジメチルホルムアミド(DMF)60mlを加え、150℃で8時間撹拌した。反応終了後、水・酢酸エチルで有機相を分液した後、有機相を留去して粗製物を得た。さらにシリカゲルカラムクロマトグラフィーで精製し、例示化合物11-2(0.69g、20%)を得た。 Example Compound 11-1; 3.0 g, rubeanic acid 0.4 g, and dimethylformamide (DMF) 60 ml were added and stirred at 150 ° C. for 8 hours. After completion of the reaction, the organic phase was separated with water / ethyl acetate, and then the organic phase was distilled off to obtain a crude product. Further purification by silica gel column chromatography gave Exemplified Compound 11-2 (0.69 g, 20%).
 例示化合物11-3の合成
 Adv.Mater.2007,19,4160を参考として、例示化合物11-3を合成した。
Synthesis of Exemplary Compound 11-3 Adv. Mater. Exemplified compound 11-3 was synthesized with reference to 2007, 19, 4160.
 例示化合物11-2(0.69g)を30mlのクロロホルムに溶解させ、N-ブロモスクシンイミド0.39gを加え、環流下で5時間反応した後、水を加えて分液して有機相を抽出し、溶媒を留去して粗製物を得たのち、シリカゲルカラムクロマトグラフィーで精製して例示化合物11-3を得た(0.64g、75%)。 Exemplified Compound 11-2 (0.69 g) was dissolved in 30 ml of chloroform, 0.39 g of N-bromosuccinimide was added, reacted for 5 hours under reflux, water was added and the phases were separated to extract the organic phase. The solvent was distilled off to obtain a crude product, which was then purified by silica gel column chromatography to obtain Exemplified Compound 11-3 (0.64 g, 75%).
 例示化合物11の合成
 J.Phys.Chem.C 2010, 114, 16843を参考として、例示化合物11を合成した。
Synthesis of Exemplary Compound 11 Phys. Chem. Exemplified compound 11 was synthesized with reference to C 2010, 114, 16843.
 例示化合物11-3;255mgと、2,6-ビス(トリメチルすず)-4,8-ジドデシロキシベンゾ[1,2-b:4,5-b′]ジチオフェン(265mg,0.3mmol)を15mlの脱水トルエンに溶解させ、窒素で30分間場ブリングを行い脱気した後、Pd(PPh3)4(35mg,0.03mmol)を加え、環流下で72時間反応を行った。さらにエンドキャップを行うため、2-トリブチルすず-チオフェン(11mg,0.03mmol)を添加し、さらに10時間還流した。さらに2-ブロモチオフェン(10mg,0.06mmol)を添加し、さらに10時間還流した。反応終了後、室温まで冷却した反応溶液を150mlのメタノールに再沈殿を行い、沈殿物をろ過した。得られた沈殿物は日本分析工業製ゲルろ過精製装置を用いて高分子量成分を分画し、数平均分子量18000のポリマーを(200mg、55%)得た。 Exemplified Compound 11-3; 255 mg and 2,6-bis (trimethyltin) -4,8-didodecyloxybenzo [1,2-b: 4,5-b ′] dithiophene (265 mg, 0.3 mmol) After dissolving in 15 ml of dehydrated toluene and degassing with nitrogen for 30 minutes, Pd (PPh3) 4 (35 mg, 0.03 mmol) was added, and the reaction was carried out under reflux for 72 hours. In order to further endcap, 2-tributyltin-thiophene (11 mg, 0.03 mmol) was added and refluxed for another 10 hours. Further, 2-bromothiophene (10 mg, 0.06 mmol) was added, and the mixture was further refluxed for 10 hours. After completion of the reaction, the reaction solution cooled to room temperature was reprecipitated in 150 ml of methanol, and the precipitate was filtered. The obtained precipitate fractionated a high molecular weight component using a gel filtration purification apparatus manufactured by Nippon Analytical Industrial Co., Ltd. to obtain a polymer having a number average molecular weight of 18000 (200 mg, 55%).
 (例示化合物12) (Exemplary Compound 12)
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
 例示化合物12-1の合成
 J.Org.Chem.2002,p4178を参考として、例示化合物12-1を合成した。窒素雰囲気下で東京化成製;3-ブロモ-2-カルボキシアルデヒド4.0g、Pd(PPh3)2Cl2を0.74g、トリフェニルホスフィンを0.14g、トリエチルアミンを3.2g、トリメチルシリルアセチレンを2.27g、脱水テトラヒドロフランを150mlを加えて室温で15分撹拌した後、ヨウ化銅60mgを加えてそのまま20時間撹拌した。
Synthesis of Exemplary Compound 12-1 Org. Chem. Exemplified Compound 12-1 was synthesized with reference to 2002, p4178. Manufactured by Tokyo Chemical Industry under a nitrogen atmosphere; 4.0 g of 3-bromo-2-carboxaldehyde, 0.74 g of Pd (PPh3) 2Cl2, 0.14 g of triphenylphosphine, 3.2 g of triethylamine, and 2.27 g of trimethylsilylacetylene After adding 150 ml of dehydrated tetrahydrofuran and stirring at room temperature for 15 minutes, 60 mg of copper iodide was added and stirring was continued for 20 hours.
 反応終了後、セライトでろ過した後溶媒を留去して得た粗製物をシリカゲルカラムクロマトグラフィーで精製し、例示化合物12-1(3.5g、収率80%)を得た。 After completion of the reaction, the reaction mixture was filtered through celite and the solvent was distilled off to purify the crude product, which was purified by silica gel column chromatography to obtain Exemplified Compound 12-1 (3.5 g, yield 80%).
 例示化合物12-2の合成
 米国特許出願公開第2010137611A1号公報を参考として、例示化合物12-2を合成した。
Synthesis of Exemplified Compound 12-2 Exemplified Compound 12-2 was synthesized with reference to US Patent Application Publication No. 2010137611A1.
 例示化合物12-1;2.1g、ルベアン酸0.4g、ジメチルホルムアミド(DMF)60mlを加え、150度で8時間撹拌した。反応終了後、水・酢酸エチルで有機相を分液した後、有機相を留去して粗製物を得た。さらにシリカゲルカラムクロマトグラフィーで精製し、例示化合物12-2(0.50g、20%)を得た。 Example Compound 12-1: 2.1 g, rubeanic acid 0.4 g, and dimethylformamide (DMF) 60 ml were added and stirred at 150 degrees for 8 hours. After completion of the reaction, the organic phase was separated with water / ethyl acetate, and then the organic phase was distilled off to obtain a crude product. Further purification by silica gel column chromatography gave Exemplified Compound 12-2 (0.50 g, 20%).
 例示化合物12-3の合成
 Journal of the American Chemical Society, 1955,vol.77,p.1911を参考として合成を行った。
Synthesis of Exemplary Compound 12-3 Journal of the American Chemical Society, 1955, vol. 77, p. Synthesis was carried out with reference to 1911.
 例示化合物12-2;0.5gを1規定の水酸化ナトリウム水溶液0.5g、テトラヒドロフラン10ml中で室温で2時間撹拌したのち、酢酸エチルを加えて有機層を抽出し、トリメチルシリル基を脱保護した。 Example Compound 12-2; 0.5 g of 1N aqueous sodium hydroxide solution 0.5 g and 10 ml of tetrahydrofuran was stirred at room temperature for 2 hours, and then ethyl acetate was added to extract the organic layer to deprotect the trimethylsilyl group. .
 この化合物を脱水のテトラヒドロフランに20mlに溶解し、-78℃まで冷却した後に2.0Mリチウムジイソプロピルアミン溶液1.0mlを滴下し、1時間撹拌した。反応溶液を0℃まで昇温した後、クロロぎ酸ドデシル(1.33g)を加え、さらに室温で5時間反応を続けた。 This compound was dissolved in 20 ml of dehydrated tetrahydrofuran, cooled to −78 ° C., 1.0 ml of 2.0 M lithium diisopropylamine solution was added dropwise, and the mixture was stirred for 1 hour. After raising the temperature of the reaction solution to 0 ° C., dodecyl chloroformate (1.33 g) was added, and the reaction was further continued at room temperature for 5 hours.
 反応終了後、精製した塩をろ過した後に有機層を5%炭酸カーボネート溶液で洗浄し、有機層を抽出して留去することにより、粗製物を得た。粗製物はシリカゲルカラムクロマトグラフィーにより精製し、例示化合物12-3を0.65g(収率90%)得た。 After completion of the reaction, the purified salt was filtered and the organic layer was washed with 5% carbonate solution, and the organic layer was extracted and distilled to obtain a crude product. The crude product was purified by silica gel column chromatography to obtain 0.65 g (yield 90%) of Exemplary Compound 12-3.
 例示化合物12-4の合成 Adv.Mater.2007, 19, 4160を参考として、例示化合物12-4を合成した。 Synthesis of Exemplified Compound 12-4 Adv. Mater. Exemplified compound 12-4 was synthesized with reference to 2007, 19, 4160.
 例示化合物12-3(0.65g)を30mlのクロロホルムに溶解させ、N-ブロモスクシンイミド0.35gを加え、環流下で5時間反応した後、水を加えて分液して有機相を抽出し、溶媒を留去して粗製物を得たのち、シリカゲルカラムクロマトグラフィーで精製して例示化合物12-4を得た(0.67g、80%)。 Exemplified Compound 12-3 (0.65 g) was dissolved in 30 ml of chloroform, 0.35 g of N-bromosuccinimide was added and reacted for 5 hours under reflux, followed by addition of water and liquid separation to extract the organic phase. The solvent was distilled off to obtain a crude product, which was then purified by silica gel column chromatography to obtain Exemplified Compound 12-4 (0.67 g, 80%).
 例示化合物12の合成 J. Phys. Chem.C 2010, 114, 16843を参考として、例示化合物12を合成した。 Synthesis of Exemplified Compound 12 Phys. Chem. Exemplified Compound 12 was synthesized with reference to C 2010, 114, 16843.
 例示化合物12-4;265mgと、2,6-ビス(トリメチルすず)-4,8-ジドデシロキシベンゾ[1,2-b:4,5-b′]ジチオフェン(265mg、0.3mmol)を15mlの脱水トルエンに溶解させ、窒素で30分間場ブリングを行い脱気した後、Pd(PPh3)4(35mg、0.03mmol)を加え、環流下で72時間反応を行った。さらにエンドキャップを行うため、2-トリブチルすず-チオフェン(11mg、0.03mmol)を添加し、さらに10時間還流した。さらに2-ブロモチオフェン(10mg、0.06mmol)を添加し、さらに10時間還流した。反応終了後、室温まで冷却した反応溶液を150mlのメタノールに再沈殿を行い、沈殿物をろ過した。得られた沈殿物は日本分析工業製ゲルろ過精製装置を用いて高分子量成分を分画し、数平均分子量30000のポリマーを(150mg、40%)得た。 Exemplified Compound 12-4; 265 mg and 2,6-bis (trimethyltin) -4,8-didodecyloxybenzo [1,2-b: 4,5-b ′] dithiophene (265 mg, 0.3 mmol) After dissolving in 15 ml of dehydrated toluene and degassing with nitrogen for 30 minutes, Pd (PPh3) 4 (35 mg, 0.03 mmol) was added, and the reaction was carried out for 72 hours under reflux. To further endcap, 2-tributyltin-thiophene (11 mg, 0.03 mmol) was added and refluxed for another 10 hours. Further 2-bromothiophene (10 mg, 0.06 mmol) was added and refluxed for an additional 10 hours. After completion of the reaction, the reaction solution cooled to room temperature was reprecipitated in 150 ml of methanol, and the precipitate was filtered. The obtained precipitate fractionated a high molecular weight component using a gel filtration purification apparatus manufactured by Japan Analytical Industrial Co., Ltd. to obtain a polymer having a number average molecular weight of 30,000 (150 mg, 40%).
 (例示化合物46の合成) (Synthesis of Exemplified Compound 46)
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
 前記例示化合物11-2を690mg窒素置換したフラスコ内で脱水THF30mlに溶解させ、-78℃で1.0Mリチウムジイソプロピルアミド2.2mlを滴下し、30分撹拌した。ついで塩化トリメチルスズの1.0Mヘキサン溶液を2.5ml滴下し、さらに30分撹拌後、室温で一昼夜撹拌し、反応終了後に酢酸エチルと純水を加えて水洗し、有機層を抽出したのちにヘキサン:トリエチルアミン=9:1の溶離液で薄いシリカゲルパッドを通して精製することにより、例示化合物46-1を1.0g得た(収率99%)。 The exemplified compound 11-2 was dissolved in 30 ml of dehydrated THF in a flask purged with 690 mg of nitrogen, and 2.2 ml of 1.0 M lithium diisopropylamide was added dropwise at −78 ° C. and stirred for 30 minutes. Next, 2.5 ml of a 1.0M hexane solution of trimethyltin chloride was added dropwise, followed by further stirring for 30 minutes, followed by stirring overnight at room temperature. After completion of the reaction, ethyl acetate and pure water were added and washed, and the organic layer was extracted. Purification through a thin silica gel pad with an eluent of hexane: triethylamine = 9: 1 gave 1.0 g of Exemplified Compound 46-1 (yield 99%).
 また、Angewandte Chemie、Volume 123, Issue 13, pages 3051-3054, March 21, 2011を参考として化合物46-2を合成した。 In addition, Compound 46-2 was synthesized with reference to Angewante Chemie, Volume 123, Issue 13, pages 3051-3054, March 21, 2011.
 この化合物46-1を例示化合物11-3に代えて305mg、2,6-ビス(トリメチルすず)-4,8-ジドデシロキシベンゾ[1,2-b:4,5-b′]ジチオフェンを例示化合物46-2に代えて280mg(0.3mmol)とした以外は例示化合物11の合成と同様にして例示化合物46(Mn=28000)を340mg得た。 In place of this compound 46-1 instead of the exemplified compound 11-3, 305 mg of 2,6-bis (trimethyltin) -4,8-didodecyloxybenzo [1,2-b: 4,5-b ′] dithiophene 340 mg of Exemplified Compound 46 (Mn = 28000) was obtained in the same manner as in the synthesis of Exemplified Compound 11 except that 280 mg (0.3 mmol) was used instead of Exemplified Compound 46-2.
 (例示化合物49の合成) (Synthesis of Exemplified Compound 49)
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
 前記例示化合物12-3を730mg窒素置換したフラスコ内で脱水THF30mlに溶解させ、-78℃で1.0Mリチウムジイソプロピルアミド2.2mlを滴下し、30分撹拌した。ついで塩化トリメチルスズの1.0Mヘキサン溶液を2.5ml滴下し、さらに30分撹拌後、室温で一昼夜撹拌し、反応終了後に酢酸エチルと純水を加えて水洗し、有機層を抽出したのちにヘキサン:トリエチルアミン=9:1の溶離液で薄いシリカゲルパッドを通して精製することにより、例示化合物49-1を1.1g得た(収率99%)。 The exemplified compound 12-3 was dissolved in 30 ml of dehydrated THF in a flask purged with 730 mg of nitrogen, and 2.2 ml of 1.0 M lithium diisopropylamide was added dropwise at −78 ° C. and stirred for 30 minutes. Next, 2.5 ml of a 1.0M hexane solution of trimethyltin chloride was added dropwise, followed by further stirring for 30 minutes, followed by stirring overnight at room temperature. After completion of the reaction, ethyl acetate and pure water were added and washed, and the organic layer was extracted. By purifying through a thin silica gel pad with an eluent of hexane: triethylamine = 9: 1, 1.1 g of Exemplified Compound 49-1 was obtained (yield 99%).
 J. Am. Chem. Soc., 2011, 133 (25), pp 9638を参考として、例示化合物49-2を合成した。 J. Am. Chem. Soc. , 2011, 133 (25), pp 9638 was used as a reference to synthesize Exemplified Compound 49-2.
 この化合物49-1を例示化合物11-3に代えて372mg、2,6-ビス(トリメチルすず)-4,8-ジドデシロキシベンゾ[1,2-b:4,5-b′]ジチオフェンを例示化合物49-2に代えて305mg(0.3mmol)とした以外は例示化合物11の合成と同様にして例示化合物49(Mn=31000)を360mg得た。 Instead of Compound 49-1, Exemplified Compound 11-3 was replaced with 372 mg of 2,6-bis (trimethyltin) -4,8-didodecyloxybenzo [1,2-b: 4,5-b ′] dithiophene. 360 mg of Exemplified Compound 49 (Mn = 31000) was obtained in the same manner as in the synthesis of Exemplified Compound 11 except that 305 mg (0.3 mmol) was used instead of Exemplified Compound 49-2.
 〔n型半導体材料〕
 本発明に係る光電変換層に用いられるn型有機半導体材料としては、特に限定されないが、例えば、フラーレン、オクタアザポルフィリン等、p型有機半導体の水素原子をフッ素原子に置換したパーフルオロ体(パーフルオロペンタセンやパーフルオロフタロシアニン等)、ナフタレンテトラカルボン酸無水物、ナフタレンテトラカルボン酸ジイミド、ペリレンテトラカルボン酸無水物、ペリレンテトラカルボン酸ジイミド等の芳香族カルボン酸無水物やそのイミド化物を骨格として含む高分子化合物等を挙げることができる。
[N-type semiconductor materials]
The n-type organic semiconductor material used for the photoelectric conversion layer according to the present invention is not particularly limited. Fluoropentacene, perfluorophthalocyanine, etc.), naphthalenetetracarboxylic anhydride, naphthalenetetracarboxylic acid diimide, perylenetetracarboxylic acid anhydride, perylenetetracarboxylic acid diimide and other aromatic carboxylic acid anhydrides and imidized compounds thereof Examples thereof include polymer compounds.
 この中でもn型有機半導体材料としては、各種のp型半導体材料と高速(~50フェムト秒)且つ効率的に電荷分離を行うことができる、フラーレン誘導体が好ましい。 Among these, as the n-type organic semiconductor material, fullerene derivatives that can efficiently perform charge separation with various p-type semiconductor materials at high speed (up to 50 femtoseconds) are preferable.
 フラーレン誘導体としては、フラーレンC60、フラーレンC70、フラーレンC76、フラーレンC78、フラーレンC84、フラーレンC240、フラーレンC540、ミックスドフラーレン、フラーレンナノチューブ、多層ナノチューブ、単層ナノチューブ、ナノホーン(円錐型)等、及びこれらの一部が水素原子、ハロゲン原子、置換または無置換のアルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基、シクロアルキル基、シリル基、エーテル基、チオエーテル基、アミノ基、シリル基等によって置換されたフラーレン誘導体を挙げることができる。 Fullerene derivatives include fullerene C 60 , fullerene C 70 , fullerene C 76 , fullerene C 78 , fullerene C 84 , fullerene C 240 , fullerene C 540 , mixed fullerene, fullerene nanotube, multi-wall nanotube, single-wall nanotube, nanohorn (cone Type), etc., and some of these are hydrogen atoms, halogen atoms, substituted or unsubstituted alkyl groups, alkenyl groups, alkynyl groups, aryl groups, heteroaryl groups, cycloalkyl groups, silyl groups, ether groups, thioether groups, The fullerene derivative substituted by the amino group, the silyl group, etc. can be mentioned.
 中でもN-Methylfulleropyrrolidine、下記構造式で表される[6,6]-フェニルC61-ブチリックアシッドメチルエステル(略称PCBM)、[6,6]-フェニルC61-ブチリックアシッド-nブチルエステル(PCBnB)、[6,6]-フェニルC61-ブチリックアシッド-イソブチルエステル(PCBiB)、[6,6]-フェニルC61-ブチリックアシッド-n-ヘキシルエステル(PCBH)、Adv.Mater.,vol.20(2008),p2116等に記載のbis-PCBM、特開2006-199674号公報等のアミノ化フラーレン、特開2008-130889号公報等のメタロセン化フラーレン、米国特許第7,329,709号明細書等の環状エーテル基を有するフラーレン、J.Amer.Chem.Soc.,(2009)vol.130,p15429に記載のSIMEF、Appl.Phys.Lett.,Vol.87(2005)、p203504に記載のC60MC12等のような、置換基を有してより溶解性が向上した下記の如きフラーレン誘導体を用いることが好ましい。 Among them, N-methylfullropyrrolidine, [6,6] -phenyl C 61 -butyric acid methyl ester (abbreviated as PCBM), [6,6] -phenyl C 61 -butyric acid-n-butyl ester represented by the following structural formula ( PCBnB), [6,6] -phenyl C 61 -butyric acid-isobutyl ester (PCBiB), [6,6] -phenyl C 61 -butyric acid-n-hexyl ester (PCBH), Adv. Mater. , Vol. 20 (2008), p2116, etc., aminated fullerenes such as JP-A 2006-199674, metallocene fullerenes such as JP-A 2008-130889, US Pat. No. 7,329,709, etc. Fullerene having a cyclic ether group such as Amer. Chem. Soc. , (2009) vol. 130, p15429, SIMEF, Appl. Phys. Lett. , Vol. 87 (2005), C 60 MC12 described in p203504, etc. It is preferable to use a fullerene derivative having a substituent and having improved solubility as described below.
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
 〔光電変換層の形成方法〕
 p型有機半導体材料とn型有機半導体材料とを含有する光電変換層の形成方法としては、蒸着法、塗布法(キャスト法、スピンコート法を含む)等を例示することができる。
[Method for forming photoelectric conversion layer]
Examples of a method for forming a photoelectric conversion layer containing a p-type organic semiconductor material and an n-type organic semiconductor material include a vapor deposition method and a coating method (including a casting method and a spin coating method).
 このうち、前述の正孔と電子が電荷分離する界面の面積を増大させ、高い光電変換効率を有する素子を作製するためには、塗布法が好ましい。また、塗布法は製造速度にも優れている。 Among these, the coating method is preferable in order to increase the area of the interface where charge and electron separation of the above-described holes is performed and to produce a device having high photoelectric conversion efficiency. Also, the coating method is excellent in production speed.
 この際に使用する塗布方法に制限はないが、例えば、スピンコート法、溶液からのキャスト法、ディップコート法、ワイヤーバーコート法、グラビアコート法、スプレーコート法等が挙げられる。さらには、インクジェット法、スクリーン印刷法、凸版印刷法、凹版印刷法、オフセット印刷法、フレキソ印刷法等の印刷法でパターニングすることもできる。 The application method used in this case is not limited, and examples thereof include spin coating, casting from a solution, dip coating, wire bar coating, gravure coating, and spray coating. Furthermore, patterning can also be performed by a printing method such as an ink jet method, a screen printing method, a relief printing method, an intaglio printing method, an offset printing method, or a flexographic printing method.
 このような溶液塗布法で塗布する場合には、少なくとも光電変換層塗布液にはp型半導体材料、n型半導体材料、および溶剤の3種で構成される塗布液を用いる必要がある。溶剤としては、溶質となるp型半導体材料およびn型半導体材料の両方を溶解可能な溶媒が好ましい。このような溶媒としては、例えば、トルエン、キシレン、テトラリン等の芳香族系溶媒、およびクロロホルム、ジクロロエタン、クロロベンゼン、ジクロロベンゼン、トリクロロベンゼン等のハロゲン系溶媒が好ましい。 When coating by such a solution coating method, it is necessary to use a coating liquid composed of three types of p-type semiconductor material, n-type semiconductor material, and solvent for at least the photoelectric conversion layer coating liquid. As the solvent, a solvent capable of dissolving both the p-type semiconductor material and the n-type semiconductor material which are solutes is preferable. As such a solvent, for example, aromatic solvents such as toluene, xylene and tetralin, and halogen solvents such as chloroform, dichloroethane, chlorobenzene, dichlorobenzene and trichlorobenzene are preferable.
 これらの溶媒に対する溶質のトータル濃度は、得たい膜厚および製膜方法によって異なるが、スピンコート法およびブレードコート法においては約1~3質量%とすることが好ましい。より好ましくは1.5~2質量%である。このような溶解量とすることで、代表的な製膜法であるスピンコート法およびブレードコート法で約100~200nm程度の膜厚の光電変換層を形成することができる。 The total concentration of the solute in these solvents varies depending on the film thickness to be obtained and the film forming method, but is preferably about 1 to 3% by mass in the spin coating method and the blade coating method. More preferably, the content is 1.5 to 2% by mass. By setting such a dissolution amount, a photoelectric conversion layer having a film thickness of about 100 to 200 nm can be formed by spin coating and blade coating, which are typical film forming methods.
 このうち、溶質であるp型半導体とn型半導体の質量比は例えば、1:4~4:1と任意の値を使用することができるが、実際には1:1~1:2程度の値とする方が好ましい。 Among these, the mass ratio of the p-type semiconductor and the n-type semiconductor, which are solutes, can be any value such as 1: 4 to 4: 1, but in practice, the mass ratio is about 1: 1 to 1: 2. A value is preferred.
 塗布後は残留溶媒及び水分、ガスの除去、及び半導体材料の結晶化による移動度向上・吸収長波化を引き起こすために加熱を行うことが好ましい。 After application, it is preferable to perform heating in order to cause removal of residual solvent, moisture, and gas, and improvement of mobility and absorption of long wave by crystallization of the semiconductor material.
 製造工程中において所定の温度でアニール処理されると、微視的に一部が凝集または結晶化が促進され、光電変換層を適切な相分離構造とすることができる。 When annealing is performed at a predetermined temperature during the production process, a part of the particles is microscopically aggregated or crystallized, and the photoelectric conversion layer can have an appropriate phase separation structure.
 その結果、光電変換層の正孔と電子(キャリア)の移動度が向上し、高い効率を得ることができるようになる。 As a result, the mobility of holes and electrons (carriers) in the photoelectric conversion layer is improved, and high efficiency can be obtained.
 光電変換層は、p型有機半導体材料とn型有機半導体材料とが均一に混在された単一層で構成してもよいが、電子受容体と電子供与体との混合比を変えた複数層で構成してもよい。この場合、塗布後に不溶化できるような材料を用いることで形成することが可能となる。塗布後に不溶化できるp型半導体材料としては、例えば、Technical Digest of the International PVSEC-17,Fukuoka,Japan,2007,P1225に記載の重合性基を有するようなポリチオフェンのような、塗布後に塗布膜を重合架橋して不溶化できる材料、または米国特許出願公開第2003/136964号、及び特開2008-16834号等に記載されているような、熱等のエネルギーを加えることによって可溶性置換基が反応して不溶化する(顔料化する)ポルフィリン化合物等を挙げることができる。また、塗布後に不溶化できるn型半導体材料としては、例えばAdv.Mater.,vol.20(2008),p2116に記載のフェニル-C61-酪酸グリシジル(PCBG)、等を挙げることができる。 The photoelectric conversion layer may be composed of a single layer in which a p-type organic semiconductor material and an n-type organic semiconductor material are uniformly mixed. However, the photoelectric conversion layer may be a plurality of layers in which the mixing ratio of the electron acceptor and the electron donor is changed. It may be configured. In this case, it can be formed by using a material that can be insolubilized after application. As a p-type semiconductor material that can be insolubilized after coating, for example, the coating film is polymerized after coating, such as polythiophene having a polymerizable group described in Technical Digest of the International PVSEC-17, Fukuoka, Japan, 2007, P1225. Materials that can be insolubilized by crosslinking, or soluble substituents react and insolubilize by applying energy such as heat, as described in US Patent Application Publication No. 2003/136964, and Japanese Patent Application Laid-Open No. 2008-16834 And porphyrin compounds to be pigmented. Examples of the n-type semiconductor material that can be insolubilized after application include Adv. Mater. , Vol. 20 (2008), p2116, phenyl-C61-glycidyl butyrate (PCBG), and the like.
 〔電子輸送層〕
 本発明の有機光電変換素子は、光電変換層とカソードとの中間に電子輸送層を形成することで、光電変換層で発生した電荷をより効率的に取り出すことが可能となるため、これらの層を有していることが好ましい。
(Electron transport layer)
In the organic photoelectric conversion element of the present invention, by forming an electron transport layer in the middle of the photoelectric conversion layer and the cathode, it becomes possible to more efficiently extract charges generated in the photoelectric conversion layer. It is preferable to have.
 本発明においては、第一の電極がカソードである場合に特に好ましく適用できる。 In the present invention, the present invention can be particularly preferably applied when the first electrode is a cathode.
 電子輸送層とは、このようにカソードとバルクヘテロジャンクション層の中間に位置して、バルクヘテロジャンクション層と電極との間で電子の授受をより効率的にすることのできる層のことである。 The electron transport layer is a layer that is located between the cathode and the bulk heterojunction layer and can more efficiently transfer electrons between the bulk heterojunction layer and the electrode.
 より具体的には、バルクヘテロジャンクション型の光電変換層のn型半導体材料のLUMO準位とカソードの仕事関数との中間のLUMO準位を有する化合物が電子輸送層として適切である。 More specifically, a compound having an LUMO level intermediate between the LUMO level of the n-type semiconductor material of the bulk heterojunction photoelectric conversion layer and the work function of the cathode is suitable as the electron transporting layer.
 より好ましくは、電子移動度が10-4以上の化合物である。 More preferably, it is a compound having an electron mobility of 10 −4 or more.
 電子輸送層の中には、バルクヘテロジャンクション型の光電変換層に用いられるp型半導体材料のHOMO準位よりも深いHOMO準位を有する電子輸送層には、バルクヘテロジャンクション層で生成した正孔をカソード側には流さないような整流効果を有する、正孔ブロック機能が付与される。 In the electron transport layer, the electron transport layer having a HOMO level deeper than the HOMO level of the p-type semiconductor material used in the bulk heterojunction type photoelectric conversion layer includes a hole generated in the bulk heterojunction layer as a cathode. A hole blocking function having a rectifying effect that does not flow to the side is provided.
 このような電子輸送層は、正孔ブロック層とも呼ばれる。より好ましくは、n型半導体のHOMO準位よりも深いHOMO準位を有する材料を電子輸送層として用いることである。また、正孔を阻止する特性から、正孔移動度が10-6よりも低い化合物を用いることが好ましい。 Such an electron transport layer is also referred to as a hole blocking layer. More preferably, a material having a HOMO level deeper than the HOMO level of the n-type semiconductor is used for the electron transport layer. In addition, in view of the property of blocking holes, it is preferable to use a compound having a hole mobility lower than 10 −6 .
 電子輸送層としては、オクタアザポルフィリン、p型半導体のパーフルオロ体(パーフルオロペンタセンやパーフルオロフタロシアニン等)、国際公開第04/095889号に記載のカルボリン化合物等を用いることができるが、同様に、光電変換層に用いられるp型半導体材料のHOMO準位よりも深いHOMO準位を有する電子輸送層には、光電変換層で生成した正孔をカソード側には流さないような整流効果を有する、正孔ブロック機能が付与される。より好ましくは、n型半導体のHOMO準位よりも深い材料を電子輸送層として用いることである。また、電子を輸送する特性から、電子移動度の高い化合物を用いることが好ましい。 As the electron transport layer, octaazaporphyrin, p-type semiconductor perfluoro compounds (perfluoropentacene, perfluorophthalocyanine, etc.), carboline compounds described in International Publication No. 04/095889, and the like can be used. The electron transport layer having a HOMO level deeper than the HOMO level of the p-type semiconductor material used for the photoelectric conversion layer has a rectifying effect so that holes generated in the photoelectric conversion layer do not flow to the cathode side. The hole blocking function is imparted. More preferably, a material deeper than the HOMO level of the n-type semiconductor is used as the electron transport layer. Moreover, it is preferable to use a compound with high electron mobility from the characteristic of transporting electrons.
 このような材料としては、バソキュプロイン等のフェナントレン系化合物、ナフタレンテトラカルボン酸無水物、ナフタレンテトラカルボン酸ジイミド、ペリレンテトラカルボン酸無水物、ペリレンテトラカルボン酸ジイミド等のn型半導体材料、及び酸化チタン、酸化亜鉛、酸化ガリウム等のn型無機酸化物及びフッ化リチウム、フッ化ナトリウム、フッ化セシウム等のアルカリ金属化合物等を用いることができる。また、光電変換層に用いたn型半導体材料単体からなる層を用いることもできる。 Examples of such materials include phenanthrene compounds such as bathocuproine, n-type semiconductor materials such as naphthalenetetracarboxylic acid anhydride, naphthalenetetracarboxylic acid diimide, perylenetetracarboxylic acid anhydride, perylenetetracarboxylic acid diimide, and titanium oxide. N-type inorganic oxides such as zinc oxide and gallium oxide, and alkali metal compounds such as lithium fluoride, sodium fluoride, and cesium fluoride can be used. Moreover, the layer which consists of a n-type semiconductor material single-piece | unit used for the photoelectric converting layer can also be used.
 これらの層を形成する手段としては、真空蒸着法、溶液塗布法のいずれであってもよいが、好ましくは溶液塗布法である。 The means for forming these layers may be either a vacuum vapor deposition method or a solution coating method, but is preferably a solution coating method.
 〔正孔輸送層(電子ブロック層)〕
 本発明の有機光電変換素子は、光電変換層で発生した電荷をより効率的に取り出すことが可能となるため、光電変換層とアノードとの中間には正孔輸送層を有していることが好ましい。
[Hole transport layer (electron blocking layer)]
Since the organic photoelectric conversion element of the present invention can more efficiently extract the charge generated in the photoelectric conversion layer, it may have a hole transport layer between the photoelectric conversion layer and the anode. preferable.
 本発明においては、第二の電極が正孔輸送層である場合に好ましく適用できる。 The present invention can be preferably applied when the second electrode is a hole transport layer.
 これらの層を構成する材料としては、例えば、正孔輸送層としては、スタルクヴイテック製、商品名BaytronP等のPEDOT(ポリ-3,4-エチレンジオキシチオフェン)-PSS(ポリスチレンスルホン酸)、ポリアニリン及びそのドープ材料、国際公開第06/019270号等に記載のシアン化合物、などを用いることができる。なお、光電変換層に用いられるn型半導体材料のLUMO準位よりも浅いLUMO準位を有する正孔輸送層には、光電変換層で生成した電子をアノード側には流さないような整流効果を有する、電子ブロック機能が付与される。このような正孔輸送層は電子ブロック層とも呼ばれ、このような機能を有する正孔輸送層を使用する方が好ましい。 As a material constituting these layers, for example, as a hole transport layer, PEDOT (poly-3,4-ethylenedioxythiophene) -PSS (polystyrene sulfonic acid) manufactured by Starck Vitec, trade name BaytronP, etc., Polyaniline and its doping material, cyan compounds described in International Publication No. 06/019270, and the like can be used. Note that the hole transport layer having a LUMO level shallower than the LUMO level of the n-type semiconductor material used for the photoelectric conversion layer has a rectifying effect that prevents electrons generated in the photoelectric conversion layer from flowing to the anode side. It has an electronic block function. Such a hole transport layer is also called an electron block layer, and it is preferable to use a hole transport layer having such a function.
 このような材料としては、特開平5-271166号公報等に記載のトリアリールアミン系化合物、また酸化モリブデン、酸化ニッケル、酸化タングステン等の金属酸化物等を用いることができる。また、光電変換層に用いたp型半導体材料単体からなる層を用いることもできる。これらの層を形成する手段としては、真空蒸着法、溶液塗布法のいずれであってもよいが、好ましくは溶液塗布法である。光電変換層を形成する前に、下層に塗布膜を形成すると塗布面をレベリングする効果があり、リーク等の影響が低減するため好ましい。 As such materials, triarylamine compounds described in JP-A-5-271166, metal oxides such as molybdenum oxide, nickel oxide, and tungsten oxide can be used. Moreover, the layer which consists of a p-type semiconductor material single-piece | unit used for the photoelectric converting layer can also be used. The means for forming these layers may be either a vacuum deposition method or a solution coating method, but is preferably a solution coating method. Forming a coating film in the lower layer before forming the photoelectric conversion layer is preferable because it has the effect of leveling the coating surface and reduces the influence of leakage and the like.
 また、同様に正孔を輸送する特性から10-4よりも高い正孔移動度を有している化合物を用いることが好ましく、また電子を阻止する特性から、電子移動度が10-6よりも低い化合物を用いることが好ましい。 Similarly, it is preferable to use a compound having a hole mobility higher than 10 −4 because of the property of transporting holes, and from the property of blocking electrons, the electron mobility is higher than 10 −6. It is preferable to use a low compound.
 〔その他の層〕
 本発明の有機光電変換素子の構成としては、光電変換効率の向上や、素子寿命の向上を目的に、各種中間層を素子内に有する構成としてもよい。
[Other layers]
As a structure of the organic photoelectric conversion element of this invention, it is good also as a structure which has various intermediate | middle layers in an element for the purpose of the improvement of a photoelectric conversion efficiency, and the improvement of element lifetime.
 中間層の例としては、正孔ブロック層、電子ブロック層、正孔注入層、電子注入層、励起子ブロック層、UV吸収層、光反射層、波長変換層などを挙げることができる。 Examples of the intermediate layer include a hole block layer, an electron block layer, a hole injection layer, an electron injection layer, an exciton block layer, a UV absorption layer, a light reflection layer, and a wavelength conversion layer.
 〔電極〕
 本発明の有機光電変換素子においては、第一の電極と第二の電極を有するが、タンデム構成をとる場合には、中間電極を用いることでタンデム構成を達成することができる。
〔electrode〕
The organic photoelectric conversion element of the present invention has the first electrode and the second electrode. When the tandem configuration is adopted, the tandem configuration can be achieved by using the intermediate electrode.
 本発明において、第一の電極は、透明な電極である。 In the present invention, the first electrode is a transparent electrode.
 透明な、とは、光透過率が50%以上であるものをいう。 “Transparent” means that the light transmittance is 50% or more.
 光透過率とは、JIS K 7361-1:1997(ISO 13468-1に対応)の「プラスチック-透明材料の全光線透過率の試験方法」に準拠した方法で測定した可視光波長領域における全光線透過率をいう。 The light transmittance is the total light in the visible wavelength range measured by a method in accordance with “Testing method of total light transmittance of plastic-transparent material” of JIS K 7361-1: 1997 (corresponding to ISO 13468-1). It refers to transmittance.
 本発明の第一の電極は、前述のように透明なカソード(陰極)であり、第二の電極はアノード(陽極)であることが好ましい。 As described above, the first electrode of the present invention is preferably a transparent cathode (cathode), and the second electrode is preferably an anode (anode).
 〔第一の電極(透明なカソード)〕
 本発明の第一の電極に用いられる材料としては、例えば、インジウムチンオキシド(ITO)、AZO、FTO、SnO、ZnO、酸化チタン等の透明金属酸化物、Ag、Al、Au、Pt等の非常に薄い金属層または金属ナノワイヤ、カーボンナノチューブ等のナノワイヤやナノ粒子を含有する層、PEDOT:PSS、ポリアニリン等の導電性高分子材料等を用いることができる。
[First electrode (transparent cathode)]
Examples of the material used for the first electrode of the present invention include transparent metal oxides such as indium tin oxide (ITO), AZO, FTO, SnO 2 , ZnO, and titanium oxide, Ag, Al, Au, and Pt. A very thin metal layer, a metal nanowire, a nanowire such as a carbon nanotube or a layer containing nanoparticles, a conductive polymer material such as PEDOT: PSS, polyaniline, or the like can be used.
 また、ポリピロール、ポリアニリン、ポリチオフェン、ポリチエニレンビニレン、ポリアズレン、ポリイソチアナフテン、ポリカルバゾール、ポリアセチレン、ポリフェニレン、ポリフェニレンビニレン、ポリアセン、ポリフェニルアセチレン、ポリジアセチレン及びポリナフタレンの各誘導体からなる群より選ばれる導電性高分子等も用いることができる。また、これらの導電性化合物を複数組み合わせてカソードとすることもできる。 Also selected from the group consisting of derivatives of polypyrrole, polyaniline, polythiophene, polythienylene vinylene, polyazulene, polyisothianaphthene, polycarbazole, polyacetylene, polyphenylene, polyphenylene vinylene, polyacene, polyphenylacetylene, polydiacetylene and polynaphthalene. Conductive polymers can also be used. Further, a plurality of these conductive compounds can be combined to form a cathode.
 〔第二の電極(アノード)〕
 第二の電極は導電材単独層であってもよいが、導電性を有する材料に加えて、これらを保持する樹脂を併用してもよい。
[Second electrode (anode)]
The second electrode may be a single conductive material layer, but in addition to a conductive material, a resin that holds these may be used in combination.
 カソードである透明電極の仕事関数がおよそ-5.0~-4.0eVであるため、バルクヘテロジャンクション型の光電変換層で生成したキャリアが拡散してそれぞれの電極に到達するためには、ビルトインポテンシャル、すなわちアノードとカソード間の仕事関数の差がなるべく大きいことが好ましい。 Since the work function of the transparent electrode, which is the cathode, is about −5.0 to −4.0 eV, the built-in potential is necessary for carriers generated in the bulk heterojunction type photoelectric conversion layer to diffuse and reach each electrode. That is, it is preferable that the work function difference between the anode and the cathode is as large as possible.
 したがって、アノードの導電材としては、仕事関数の大きい(4eV以下)金属、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが用いられる。このような電極物質の具体例としては、金、銀、銅、白金、ロジウム、インジウム、ニッケル、パラジウム等が挙げられる。 Therefore, as the conductive material of the anode, a material having a work function (4 eV or less) metal, alloy, electrically conductive compound, and a mixture thereof as an electrode material is used. Specific examples of such an electrode material include gold, silver, copper, platinum, rhodium, indium, nickel, palladium, and the like.
 これらの中で、正孔の取り出し性能、光の反射率、及び酸化等に対する耐久性の点から、銀が最も好ましい。 Of these, silver is most preferable from the viewpoint of hole extraction performance, light reflectance, and durability against oxidation.
 カソードはこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させることにより、作製することができる。また、膜厚は通常10nm~5μm、好ましくは50~200nmの範囲で選ばれる。 The cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering. The film thickness is usually selected in the range of 10 nm to 5 μm, preferably 50 to 200 nm.
 また、アノード側を光透過性とする場合は、例えば、アルミニウム及びアルミニウム合金、銀及び銀化合物等のアノードに適した導電性材料を薄く1~20nm程度の膜厚で作製した後、上記透明電極の説明で挙げた導電性光透過性材料の膜を設けることで、光透過性アノードとすることができる。 In the case where the anode side is made light transmissive, for example, a conductive material suitable for the anode such as aluminum and aluminum alloy, silver and silver compound is made thin with a film thickness of about 1 to 20 nm, and then the transparent electrode A light-transmitting anode can be obtained by providing the conductive light-transmitting material film mentioned in the description.
 なお上記は耐久性向上に有利な、いわゆる逆層型素子とするための第2の電極材料に好ましい材料を記載したが、いわゆる順層型(第1の電極がアノードで第2の電極がカソード)とするためには、前述のように第1電極と第2の電極の仕事関数の関係を逆転させればよいが、実質的に透明な電極は種類が限られておりその仕事関数は比較的深いものが多いため、実際には第2の電極側に仕事関数の浅い(-4.0eV未満)金属を使用することで順層型の有機薄膜太陽電池とすることができる。そのような金属としては、たとえば、アルミニウム、カルシウム、マグネシウム、リチウム、ナトリウム、カリウムなどである。一般的には反射率が高く導電性の高いアルミニウムが使用される。 In the above description, preferred materials for the second electrode material for making a so-called reverse layer type element, which is advantageous for improving the durability, have been described. However, the so-called normal layer type (the first electrode is an anode and the second electrode is a cathode) ), The relationship between the work functions of the first electrode and the second electrode may be reversed as described above, but the types of substantially transparent electrodes are limited, and the work functions are compared. In many cases, a normal layer type organic thin film solar cell can be obtained by using a metal having a shallow work function (less than −4.0 eV) on the second electrode side. Examples of such a metal include aluminum, calcium, magnesium, lithium, sodium, and potassium. In general, aluminum having high reflectivity and high conductivity is used.
 〔中間電極〕
 また、前記図3のようなタンデム構成の場合に必要となる中間電極の材料としては、透明性と導電性を併せ持つ化合物を用いた層であることが好ましく、前記アノードで用いたような材料(ITO、AZO、FTO、SnO、ZnO、酸化チタン等の透明金属酸化物、Ag、Al、Au、Pt等の非常に薄い金属層または金属ナノワイヤ、カーボンナノチューブ等のナノワイヤやナノ粒子を含有する層、PEDOT:PSS、ポリアニリン等の導電性高分子材料等)を用いることができる。
[Intermediate electrode]
Further, the material of the intermediate electrode required in the case of the tandem configuration as shown in FIG. 3 is preferably a layer using a compound having both transparency and conductivity. Transparent metal oxides such as ITO, AZO, FTO, SnO 2 , ZnO and titanium oxide, very thin metal layers such as Ag, Al, Au and Pt, or layers containing nanowires and nanoparticles such as metal nanowires and carbon nanotubes PEDOT: PSS, conductive polymer materials such as polyaniline, etc.) can be used.
 なお、前述した正孔輸送層と電子輸送層の中には、適切に組み合わせて積層することで中間電極(電荷再結合層)として働く組み合わせもあり、このような構成とすると1層形成する工程を省くことができ好ましい。 In addition, in the hole transport layer and the electron transport layer described above, there is also a combination that works as an intermediate electrode (charge recombination layer) by appropriately combining and laminating. Is preferable.
 〔基板〕
 本発明において、基板は透明な基板であるが、透明な、とは前述の電極の記載と同様の意味を有する。
〔substrate〕
In the present invention, the substrate is a transparent substrate, and the term “transparent” has the same meaning as described above for the electrodes.
 基板としては、例えばガラス基板や樹脂基板等が好適に挙げられるが、軽量性と柔軟性の観点から透明樹脂フィルムを用いることが望ましい。本発明で透明基板として好ましく用いることができる透明樹脂フィルムには特に制限がなく、その材料、形状、構造、厚み等については公知のものの中から適宜選択することができる。 As the substrate, for example, a glass substrate, a resin substrate, and the like are preferably used, but it is desirable to use a transparent resin film from the viewpoint of light weight and flexibility. There is no restriction | limiting in particular in the transparent resin film which can be preferably used as a transparent substrate by this invention, The material, a shape, a structure, thickness, etc. can be suitably selected from well-known things.
 例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、変性ポリエステル等のポリエステル系樹脂フィルム、ポリエチレン(PE)樹脂フィルム、ポリプロピレン(PP)樹脂フィルム、ポリスチレン樹脂フィルム、環状オレフィン系樹脂等のポリオレフィン類樹脂フィルム、ポリ塩化ビニル、ポリ塩化ビニリデン等のビニル系樹脂フィルム、ポリエーテルエーテルケトン(PEEK)樹脂フィルム、ポリサルホン(PSF)樹脂フィルム、ポリエーテルサルホン(PES)樹脂フィルム、ポリカーボネート(PC)樹脂フィルム、ポリアミド樹脂フィルム、ポリイミド樹脂フィルム、アクリル樹脂フィルム、トリアセチルセルロース(TAC)樹脂フィルム等を挙げることができるが、可視域の波長(380~800nm)における透過率が80%以上である樹脂フィルムであれば、本発明に係る透明樹脂フィルムに好ましく適用することができる。 For example, polyolefins such as polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyester resin film such as modified polyester, polyethylene (PE) resin film, polypropylene (PP) resin film, polystyrene resin film, cyclic olefin resin, etc. Resin films, vinyl resin films such as polyvinyl chloride and polyvinylidene chloride, polyether ether ketone (PEEK) resin films, polysulfone (PSF) resin films, polyether sulfone (PES) resin films, polycarbonate (PC) resin films , Polyamide resin film, polyimide resin film, acrylic resin film, triacetyl cellulose (TAC) resin film, and the like. If the resin film transmittance of 80% or more at 80 ~ 800 nm), can be preferably applied to a transparent resin film according to the present invention.
 中でも、透明性、耐熱性、取り扱いやすさ、強度及びコストの点から、二軸延伸ポリエチレンテレフタレートフィルム、二軸延伸ポリエチレンナフタレートフィルム、ポリエーテルサルホンフィルム、ポリカーボネートフィルムであることが好ましく、二軸延伸ポリエチレンテレフタレートフィルム、二軸延伸ポリエチレンナフタレートフィルムであることがより好ましい。 Among them, from the viewpoint of transparency, heat resistance, ease of handling, strength and cost, it is preferably a biaxially stretched polyethylene terephthalate film, a biaxially stretched polyethylene naphthalate film, a polyethersulfone film, or a polycarbonate film. More preferred are a stretched polyethylene terephthalate film and a biaxially stretched polyethylene naphthalate film.
 本発明に用いられる透明基板には、塗布液の濡れ性や接着性を確保するために、表面処理を施すことや易接着層を設けることができる。表面処理や易接着層については従来公知の技術を使用できる。例えば、表面処理としては、コロナ放電処理、火炎処理、紫外線処理、高周波処理、グロー放電処理、活性プラズマ処理、レーザー処理等の表面活性化処理を挙げることができる。また、易接着層としては、ポリエステル、ポリアミド、ポリウレタン、ビニル系共重合体、ブタジエン系共重合体、アクリル系共重合体、ビニリデン系共重合体、エポキシ系共重合体等を挙げることができる。 The transparent substrate used in the present invention can be subjected to a surface treatment or an easy adhesion layer in order to ensure the wettability and adhesion of the coating solution. A conventionally well-known technique can be used about a surface treatment or an easily bonding layer. For example, the surface treatment includes surface activation treatment such as corona discharge treatment, flame treatment, ultraviolet treatment, high frequency treatment, glow discharge treatment, active plasma treatment, and laser treatment. Examples of the easy adhesion layer include polyester, polyamide, polyurethane, vinyl copolymer, butadiene copolymer, acrylic copolymer, vinylidene copolymer, and epoxy copolymer.
 また、酸素及び水蒸気の透過を抑制する目的で、透明基板にはバリアコート層が予め形成されていてもよいし、透明導電層を転写する反対側にはハードコート層が予め形成されていてもよい。 Further, for the purpose of suppressing the permeation of oxygen and water vapor, a barrier coat layer may be formed in advance on the transparent substrate, or a hard coat layer may be formed in advance on the opposite side to which the transparent conductive layer is transferred. Good.
 〔光学機能層〕
 本発明の有機光電変換素子は、太陽光のより効率的な受光を目的として、各種の光学機能層を有していてよい。光学機能層としては、例えば、反射防止膜、マイクロレンズアレイ等の集光層、カソードで反射した光を散乱させて再度発電層に入射させることができるような光拡散層などを設けてもよい。
(Optical function layer)
The organic photoelectric conversion element of the present invention may have various optical functional layers for the purpose of more efficient reception of sunlight. As the optical functional layer, for example, a light condensing layer such as an antireflection film or a microlens array, or a light diffusion layer that can scatter light reflected by the cathode and enter the power generation layer again may be provided. .
 反射防止層としては、各種公知の反射防止層を設けることができるが、例えば、透明樹脂フィルムが二軸延伸ポリエチレンテレフタレートフィルムである場合は、フィルムに隣接する易接着層の屈折率を1.57~1.63とすることで、フィルム基板と易接着層との界面反射を低減して透過率を向上させることができるのでより好ましい。屈折率を調整する方法としては、酸化スズゾルや酸化セリウムゾル等の比較的屈折率の高い酸化物ゾルとバインダー樹脂との比率を適宜調整して塗設することで実施できる。易接着層は単層でもよいが、接着性を向上させるためには2層以上の構成にしてもよい。 Various known antireflection layers can be provided as the antireflection layer. For example, when the transparent resin film is a biaxially stretched polyethylene terephthalate film, the refractive index of the easy adhesion layer adjacent to the film is 1.57. It is more preferable to set it to ˜1.63 because the transmittance can be improved by reducing the interface reflection between the film substrate and the easy adhesion layer. The method for adjusting the refractive index can be carried out by appropriately adjusting the ratio of the oxide sol having a relatively high refractive index such as tin oxide sol or cerium oxide sol and the binder resin. The easy adhesion layer may be a single layer, but may be composed of two or more layers in order to improve adhesion.
 集光層としては、例えば、支持基板の太陽光受光側にマイクロレンズアレイ上の構造を設けるように加工したり、あるいは所謂集光シートと組み合わせたりすることにより特定方向からの受光量を高めたり、逆に太陽光の入射角度依存性を低減することができる。 As the condensing layer, for example, it is processed to provide a structure on the microlens array on the sunlight receiving side of the support substrate, or the amount of light received from a specific direction is increased by combining with a so-called condensing sheet. Conversely, the incident angle dependency of sunlight can be reduced.
 マイクロレンズアレイの例としては、基板の光取り出し側に一辺が30μmでその頂角が90度となるような四角錐を2次元に配列する。一辺は10~100μmが好ましい。これより小さくなると回折の効果が発生して色付き、大きすぎると厚みが厚くなり好ましくない。 As an example of a microlens array, quadrangular pyramids having a side of 30 μm and an apex angle of 90 degrees are arranged two-dimensionally on the light extraction side of the substrate. One side is preferably 10 to 100 μm. If it becomes smaller than this, the effect of diffraction will generate | occur | produce and color, and if too large, thickness will become thick and is not preferable.
 また、光散乱層としては、各種のアンチグレア層、金属または各種無機酸化物などのナノ粒子・ナノワイヤー等を無色透明なポリマーに分散した層などを挙げることができる。 Examples of the light scattering layer include various antiglare layers, layers in which nanoparticles or nanowires such as metals or various inorganic oxides are dispersed in a colorless and transparent polymer, and the like.
 〔パターニング〕
 本発明に係る各々の電極、光電変換層や、正孔輸送層、電子輸送層等をパターニングする方法やプロセスには特に制限はなく、公知の手法を適宜適用することができる。
[Patterning]
The method and process for patterning each electrode, photoelectric conversion layer, hole transport layer, electron transport layer and the like according to the present invention are not particularly limited, and known methods can be appropriately applied.
 光電変換層、輸送層等の可溶性の材料であれば、ダイコート、ディップコート等の全面塗布後に不要部だけ拭き取ってもよいし、インクジェット法やスクリーン印刷等の方法を使用して塗布時に直接パターニングしてもよい。 If it is a soluble material such as a photoelectric conversion layer and a transport layer, only unnecessary portions may be wiped after the entire surface of die coating, dip coating, etc., or patterning is directly performed at the time of coating using a method such as an ink jet method or screen printing. May be.
 電極材料などの不溶性の材料の場合は、電極を真空堆積時にマスク蒸着を行ったり、エッチングまたはリフトオフ等の公知の方法によってパターニングすることができる。また、別の基板上に形成したパターンを転写することによってパターンを形成してもよい。 In the case of an insoluble material such as an electrode material, the electrode can be patterned by a known method such as mask vapor deposition during vacuum deposition or etching or lift-off. Alternatively, the pattern may be formed by transferring a pattern formed on another substrate.
 〔太陽電池〕
 本発明の太陽電池は、上記の有機光電変換素子を有する。
[Solar cell]
The solar cell of this invention has said organic photoelectric conversion element.
 本発明の太陽電池は、上記有機光電変換素子を具備し、太陽光に最適の設計並びに回路設計が行われ、太陽光を光源として用いたときに最適な光電変換が行われるような構造を有する。 The solar cell of the present invention comprises the above-described organic photoelectric conversion element, has a structure in which optimum design and circuit design are performed for sunlight, and optimum photoelectric conversion is performed when sunlight is used as a light source. .
 即ち、光電変換層に太陽光が照射されうる構造となっており、本発明の太陽電池を構成する際には、前記光電変換層および各々の電極をケース内に収納して封止するか、あるいはそれら全体を樹脂封止することが好ましい。 That is, the photoelectric conversion layer has a structure that can be irradiated with sunlight, and when the solar cell of the present invention is configured, the photoelectric conversion layer and each electrode are housed in a case and sealed, Alternatively, it is preferable to seal them entirely with resin.
 封止の方法としては、作製した有機光電変換素子が環境中の酸素、水分等で劣化しないために、有機光電変換素子だけでなく有機エレクトロルミネッセンス素子などで公知の手法によって封止することが好ましい。 As a sealing method, it is preferable to seal not only the organic photoelectric conversion element but also an organic electroluminescence element by a known method so that the produced organic photoelectric conversion element does not deteriorate due to oxygen, moisture, etc. in the environment. .
 例えば、アルミまたはガラスでできたキャップを接着剤によって接着することによって封止する手法、アルミニウム、酸化珪素、酸化アルミニウム等のガスバリア層が形成されたプラスチックフィルムと有機光電変換素子上を接着剤で貼合する手法、ガスバリア性の高い有機高分子材料(ポリビニルアルコール等)をスピンコートする方法、ガスバリア性の高い無機薄膜(酸化珪素、酸化アルミニウム等)または有機膜(パリレン等)を真空下で堆積する方法、及びこれらを複合的に積層する方法等を挙げることができる。 For example, a method of sealing a cap made of aluminum or glass by bonding with an adhesive, a plastic film on which a gas barrier layer such as aluminum, silicon oxide, or aluminum oxide is formed and an organic photoelectric conversion element are pasted with an adhesive. Method, spin coating of organic polymer material with high gas barrier property (polyvinyl alcohol, etc.), inorganic thin film with high gas barrier property (silicon oxide, aluminum oxide, etc.) or organic film (parylene etc.) are deposited under vacuum. Examples thereof include a method and a method of laminating these in a composite manner.
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto.
 実施例1:光電変換効率の評価
 〔有機光電変換素子1の作製〕
 特開2009-146981号を参考として、逆層型の有機光電変換素子を作製した。
Example 1: Evaluation of photoelectric conversion efficiency [Preparation of organic photoelectric conversion element 1]
With reference to Japanese Patent Application Laid-Open No. 2009-146981, a reverse layer type organic photoelectric conversion element was produced.
 ガラス基板上に、インジウム・スズ酸化物(ITO)透明導電膜を110nm堆積したもの(表面抵抗率13Ω/□)を、通常のフォトリソグラフィ技術と塩酸エッチングとを用いて2mm幅にパターニングして、透明電極を形成した。 On a glass substrate, an indium tin oxide (ITO) transparent conductive film deposited with a thickness of 110 nm (surface resistivity 13 Ω / □) is patterned to a width of 2 mm using a normal photolithography technique and hydrochloric acid etching, A transparent electrode was formed.
 パターン形成した透明電極を、界面活性剤と超純水による超音波洗浄、超純水による超音波洗浄の順で洗浄後、窒素ブローで乾燥させ、最後に紫外線オゾン洗浄を行った。 The patterned transparent electrode was cleaned in the order of ultrasonic cleaning with a surfactant and ultrapure water, followed by ultrasonic cleaning with ultrapure water, dried by nitrogen blowing, and finally subjected to ultraviolet ozone cleaning.
 次いで基板をグローブボックス中に持ち込み、窒素雰囲気下でこの透明基板上に、以下の手順で作製した150mmol/L(リットル)のTiO前駆体溶液をスピンコート(回転速度2000rpm、回転時間60s)し、所定のパターンに拭き取りを行った。 Next, the substrate was brought into a glove box, and a 150 mmol / L (liter) TiO x precursor solution prepared by the following procedure was spin-coated (rotation speed 2000 rpm, rotation time 60 s) on the transparent substrate in a nitrogen atmosphere. A predetermined pattern was wiped off.
 次に、空気中で放置してTiO前駆体を加水分解させた。次に、TiO前駆体を150℃で1時間加熱処理して30nmのTiO層を得た。 Next, the TiO x precursor was hydrolyzed by being left in the air. Next, the TiO x precursor was heat-treated at 150 ° C. for 1 hour to obtain a 30 nm TiO x layer.
 (TiO前駆体の調製:ゾルゲル法)
 先ず、100ml三口フラスコに2-メトキシエタノール12.5mlと、6.25mmolのチタニウムテトライソプロポキシドとを入れ、氷浴中で10分間冷却した。次に、12.5mmolのアセチルアセトンをゆっくり加えて、氷浴中で10分間撹拌した。次に、混合溶液を80℃で2時間加熱後、1時間還流した。最後に、室温まで冷却し、メトキシエタノールを用いて所定の濃度(150mmol/L)に調整し、TiO前駆体を得た。なお、上記工程は全て窒素雰囲気で行った。
(Preparation of TiO x precursor: sol-gel method)
First, 12.5 ml of 2-methoxyethanol and 6.25 mmol of titanium tetraisopropoxide were placed in a 100 ml three-necked flask and cooled in an ice bath for 10 minutes. Next, 12.5 mmol of acetylacetone was slowly added and stirred in an ice bath for 10 minutes. Next, the mixed solution was heated at 80 ° C. for 2 hours and then refluxed for 1 hour. Finally, it was cooled to room temperature and adjusted to a predetermined concentration (150 mmol / L) using methoxyethanol to obtain a TiO x precursor. The above steps were all performed in a nitrogen atmosphere.
 次いで、TiO層の上にバルクヘテロジャンクション層を形成した。p型半導体材料として比較化合物1を0.9質量%、n型半導体材料としてPCBM(フロンティアカーボン製、Nanon Spectra E100H)を0.9質量%(全固形分濃度1.8質量%)を溶解した液を作製し、0.45μmのフィルタでろ過をかけた溶液をブレードコーターで塗布し、100℃で30分乾燥後、乾燥膜厚220nmの光電変換層を得た。なお比較化合物1は非特許文献3に基づいて合成した。 Next, a bulk heterojunction layer was formed on the TiO x layer. 0.9% by mass of Comparative Compound 1 as a p-type semiconductor material and 0.9% by mass (total solid content concentration: 1.8% by mass) of PCBM (manufactured by Frontier Carbon, Nano Spectra E100H) as an n-type semiconductor material were dissolved. A solution was prepared, and a solution filtered through a 0.45 μm filter was applied by a blade coater and dried at 100 ° C. for 30 minutes to obtain a photoelectric conversion layer having a dry film thickness of 220 nm. Comparative compound 1 was synthesized based on Non-Patent Document 3.
 次に、有機半導体層の上に有機溶剤系PEDOT:PSSの分散液(化研産業製、エノコートHC200)をブレードコートして風乾し、乾燥膜厚30nmの正孔輸送層を成膜した。 Next, an organic solvent-based PEDOT: PSS dispersion (Enocoat HC200, manufactured by Kaken Sangyo) was blade coated on the organic semiconductor layer and air-dried to form a hole transport layer having a dry film thickness of 30 nm.
 次に、導電性ポリマー層の上に銀電極層を膜厚約200nmになるように真空蒸着を行った。 Next, vacuum deposition was performed so that the silver electrode layer had a thickness of about 200 nm on the conductive polymer layer.
 最後に150℃で10分間加熱処理を行うことで、逆層型の有機光電変換素子を作製した。 Finally, a reverse layer type organic photoelectric conversion element was produced by performing a heat treatment at 150 ° C. for 10 minutes.
 得られた有機光電変換素子1は、窒素雰囲気下でUV硬化樹脂(ナガセケムテックス株式会社製、UV RESIN XNR5570-B1)を用いて凸版印刷製透明バリアフィルムGX(水蒸気透過率0.05g/m2/d)と貼り合わせて封止した後に大気下に取り出した。 The obtained organic photoelectric conversion element 1 is a transparent barrier film GX made of relief printing using a UV curable resin (manufactured by Nagase ChemteX Corporation, UV RESIN XNR5570-B1) under a nitrogen atmosphere (water vapor transmission rate 0.05 g / m 2). / D) and sealed and taken out to the atmosphere.
 得られた有機光電変換素子1は、封止を行った後、ソーラシミュレーター(AM1.5G)の光を100mW/cm2照射強度で照射して、電圧-電流特性を測定し、初期の変換効率を測定した。 The obtained organic photoelectric conversion element 1 was sealed and then irradiated with solar simulator (AM1.5G) light at an irradiation intensity of 100 mW / cm 2 to measure voltage-current characteristics, and to obtain an initial conversion efficiency. Was measured.
 〔有機光電変換素子2~15の作製〕
 上記有機光電変換素子1の作製において、p型半導体材料を表1に記載の材料に変更したこと以外は、比較の有機光電変換素子1と同様にして有機光電変換素子2~15を得た。
[Production of organic photoelectric conversion elements 2 to 15]
Organic photoelectric conversion elements 2 to 15 were obtained in the same manner as the comparative organic photoelectric conversion element 1 except that the p-type semiconductor material was changed to the material shown in Table 1 in the production of the organic photoelectric conversion element 1.
 (変換効率の評価)
 上記作製した光電変換素子に、ソーラーシミュレーター(AM1.5Gフィルタ)の1
00mW/cmの強度の光を照射し、有効面積を4.0mmにしたマスクを受光部に重ね、短絡電流密度Jsc(mA/cm)及び開放電圧Voc(V)、曲線因子(フィルファクター)FFを、同素子上に形成した4箇所の受光部をそれぞれ測定し、平均値を求めた。また、Jsc、Voc、FFから式1に従って光電変換効率η(%)を求めた。
(Evaluation of conversion efficiency)
1 of solar simulator (AM1.5G filter) is applied to the photoelectric conversion element produced above.
It was irradiated with light having an intensity of 00mW / cm 2, a superposed mask in which the effective area 4.0 mm 2 on the light receiving portion, the short circuit current density Jsc (mA / cm 2) and the open-circuit voltage Voc (V), fill factor (Phil Factor) Each of the four light receiving portions formed on the same element was measured, and the average value was obtained. In addition, the photoelectric conversion efficiency η (%) was obtained from Jsc, Voc, and FF according to Equation 1.
 式1 η(%)=Jsc(mA/cm)×Voc(V)×FF
(耐久性評価)
 上記で得た各有機光電変換素子1~15を、1Sunの光を当てながら温度85℃に保持したホットプレート上に置き、定期的に取りだしてIV特性を測定し、初期の光電変換効率を100として、初期の効率の80%まで低下した時間をLT80[時間]として評価した。LT80の値が大きいほど、耐久性が良好であることを意味する。結果を表1に示す。
Formula 1 η (%) = Jsc (mA / cm 2 ) × Voc (V) × FF
(Durability evaluation)
Each of the organic photoelectric conversion elements 1 to 15 obtained above is placed on a hot plate maintained at a temperature of 85 ° C. while being irradiated with 1 Sun light, periodically taken and measured for IV characteristics, and an initial photoelectric conversion efficiency of 100 is obtained. The time when the initial efficiency was reduced to 80% was evaluated as LT80 [time]. It means that durability is so favorable that the value of LT80 is large. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000041
Figure JPOXMLDOC01-appb-T000041
 表中のP:nは、p型半導体(ポリマー)とn型半導体(PCBM)の質量比を表す。 P: n in the table represents the mass ratio of the p-type semiconductor (polymer) and the n-type semiconductor (PCBM).
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000043
 表1からわかるように、本発明の化合物は逆層型の太陽電池において比較の化合物よりも良好な光電変換効率を提供できることが分かる。また、耐久性も向上できることが分かる。特に-COO-を導入した化合物において、耐久性の向上効果が高いことがわかる。 As can be seen from Table 1, the compound of the present invention can provide better photoelectric conversion efficiency than the comparative compound in the reverse layer solar cell. Moreover, it turns out that durability can also be improved. In particular, it can be seen that a compound having —COO— introduced has a high effect of improving durability.
 実施例2:耐久性評価
 実施例1で作製した有機光電変換素子8および11について、それぞれ同様の素材および組成を用いて以下のような順層型の素子を作製した。
Example 2: Durability evaluation About the organic photoelectric conversion elements 8 and 11 produced in Example 1, the following normal layer type | mold elements were produced using the same raw material and composition, respectively.
 〔有機光電変換素子4′の作製〕
 実施例1と同じ透明基板を同様の工程で洗浄した後、ITO膜上に、導電性高分子であるBaytron P4083(スタルクヴィテック社製)を30nmの膜厚となるようにスピンコートした後、140℃で大気中10分間加熱乾燥した。
[Production of Organic Photoelectric Conversion Element 4 ′]
After the same transparent substrate as in Example 1 was washed in the same process, on the ITO film, Baytron P4083 (manufactured by Starck Vitec), which is a conductive polymer, was spin-coated so as to have a film thickness of 30 nm. Heat drying at 140 ° C. for 10 minutes in the air.
 これ以降は、基板をグローブボックス中に持ち込み、窒素雰囲気下で作業した。まず、窒素雰囲気下で上記基板を再度140℃で10分間加熱処理した。 After this, the substrate was brought into the glove box and worked in a nitrogen atmosphere. First, the substrate was again heat-treated at 140 ° C. for 10 minutes in a nitrogen atmosphere.
 p型半導体材料として、前記比較化合物4を0.6質量%と、n型半導体材料として前記PCBM0.9質量%分をクロロベンゼンに溶解して、1.2質量%のクロロベンゼン溶液を作製し、0.45μmのフィルタでろ過しながら700rpmで60秒、次いで2200rpmで1秒間のスピンコートを行い、室温で30分放置した。 As a p-type semiconductor material, 0.6% by mass of the comparative compound 4 and 0.9% by mass of PCBM as an n-type semiconductor material are dissolved in chlorobenzene to prepare a 1.2% by mass chlorobenzene solution. While being filtered through a 45 μm filter, spin coating was performed at 700 rpm for 60 seconds, then at 2200 rpm for 1 second, and left at room temperature for 30 minutes.
 次に、上記一連の有機層を成膜した基板を大気に晒すことなく真空蒸着装置内に設置した。2mm幅のシャドウマスクが透明電極と直交するように素子をセットし、10-3Pa以下にまで真空蒸着機内を減圧した後、フッ化リチウムを0.6nm、対極としてアルミニウムを100nm蒸着した。最後に120℃で30分間の加熱を行い、比較の有機光電変換素子8′を得た。なお蒸着速度は2nm/秒で、2mm角のサイズとした。 Next, the substrate on which the series of organic layers was formed was placed in a vacuum deposition apparatus without being exposed to the atmosphere. The element was set so that the shadow mask with a width of 2 mm was orthogonal to the transparent electrode, and the inside of the vacuum deposition apparatus was depressurized to 10 −3 Pa or less, and then 0.6 nm of lithium fluoride was deposited and 100 nm of aluminum was deposited as a counter electrode. Finally, heating was performed at 120 ° C. for 30 minutes to obtain a comparative organic photoelectric conversion element 8 ′. The deposition rate was 2 nm / second, and the size was 2 mm square.
 得られた有機光電変換素子4′は、窒素雰囲気下でUV硬化樹脂(ナガセケムテックス株式会社製、UV RESIN XNR5570-B1)を用いて凸版印刷製透明バリアフィルムGX(水蒸気透過率0.05g/m2/d)と貼り合わせて封止した後に大気下に取り出した。 The obtained organic photoelectric conversion element 4 ′ was obtained by using a transparent barrier film GX (water vapor transmission rate: 0.05 g / mm) using a UV curable resin (manufactured by Nagase ChemteX Corporation, UV RESIN XNR5570-B1) under a nitrogen atmosphere. m2 / d) and sealed and taken out to the atmosphere.
 〔有機光電変換素子12′の作製〕
 上記有機光電変換素子4′の作製において、p型半導体材料として、比較化合物4の代わりに例示化合物12を用い、他は同様にして、有機光電変換素子12′を作製した。
[Production of organic photoelectric conversion element 12 ']
In the production of the organic photoelectric conversion element 4 ′, the organic photoelectric conversion element 12 ′ was produced in the same manner except that the exemplified compound 12 was used instead of the comparative compound 4 as the p-type semiconductor material.
 (変換効率の評価)
 上記作製した光電変換素子に、ソーラーシミュレーター(AM1.5Gフィルタ)の100mW/cmの強度の光を照射し、有効面積を4.0mmにしたマスクを受光部に重ね、短絡電流密度Jsc(mA/cm)及び開放電圧Voc(V)、曲線因子(フィルファクター)FFを、同素子上に形成した4箇所の受光部をそれぞれ測定し、平均値を求めた。また、Jsc、Voc、FFから式1に従って光電変換効率η(%)を求めた。
(Evaluation of conversion efficiency)
Photoelectric conversion elements prepared above, was irradiated with light having an intensity of 100 mW / cm 2 solar simulator (AM1.5G filter), a superposed mask in which the effective area 4.0 mm 2 on the light receiving portion, the short circuit current density Jsc ( The four light-receiving portions formed on the same element were measured for mA / cm 2 ), open-circuit voltage Voc (V), and fill factor (fill factor) FF, and the average value was obtained. In addition, the photoelectric conversion efficiency η (%) was obtained from Jsc, Voc, and FF according to Equation 1.
 式1 η(%)=Jsc(mA/cm)×Voc(V)×FF (耐久性評価)
 温度80℃、湿度80%に保持した容器内に保存し、定期的に取りだして電圧-電流特性を測定し、初期の変換効率を100として、初期の効率の80%の効率まで低下する時間をLT80として評価した。
Formula 1 η (%) = Jsc (mA / cm 2 ) × Voc (V) × FF (Durability Evaluation)
Store in a container kept at a temperature of 80 ° C and a humidity of 80%, periodically take it out, measure the voltage-current characteristics, set the initial conversion efficiency as 100, and reduce the time to 80% of the initial efficiency. It was evaluated as LT80.
Figure JPOXMLDOC01-appb-T000044
Figure JPOXMLDOC01-appb-T000044
 表2において有機光電変換素子4および12を比較すると、本発明の化合物12の方が耐久性が高いことが分かる。また、4と4’においてLT80が増加した値と、12、12’においてLT80が増加した値とを比較すると、本発明に係る化合物を用いた前者の値が、後者の値に比べて大きく耐久性の向上の割合が大きく、本発明の効果はいわゆる逆層型の有機光電変換素子において、特に大きいことがわかる。 Comparison of organic photoelectric conversion elements 4 and 12 in Table 2 shows that the compound 12 of the present invention has higher durability. In addition, when the value of LT80 increased at 4 and 4 ′ and the value of LT80 increased at 12 and 12 ′ were compared, the former value using the compound according to the present invention was significantly more durable than the latter value. It can be understood that the effect of the present invention is particularly great in a so-called reverse layer type organic photoelectric conversion element.
 本出願は、2011年2月18日に出願された日本特許出願番号2011-032923号に基づいており、その開示内容は、参照され、全体として、組み入れられている。 This application is based on Japanese Patent Application No. 2011-032923 filed on February 18, 2011, the disclosure content of which is referenced and incorporated as a whole.
 10 有機光電変換素子
 11 基板
 12 第一の電極
 13 第二の電極
 14 光電変換層
 14′ 第一の光電変換層
 15 電荷再結合層
 16 第二の光電変換層
 17 正孔輸送層
 18 電子輸送層
DESCRIPTION OF SYMBOLS 10 Organic photoelectric conversion element 11 Board | substrate 12 1st electrode 13 2nd electrode 14 Photoelectric conversion layer 14 '1st photoelectric conversion layer 15 Charge recombination layer 16 2nd photoelectric conversion layer 17 Hole transport layer 18 Electron transport layer

Claims (12)

  1.  透明な基板上に、透明な第一の電極、p型有機半導体材料とn型有機半導体材料とを含有する光電変換層、および第二の電極をこの順に有する有機光電変換素子であって、該光電変換層が、該p型有機半導体材料として下記一般式1または一般式1’で表わされる部分構造を有する化合物を含有することを特徴とする有機光電変換素子。
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
    (式中、Xは、それぞれ独立して、-S-、-O-、-NR-を表し、Yは、それぞれ独立して、-CR=または-N=を表す。R~Rは、それぞれ独立して、水素原子、置換基を有してもよいアルキル基、置換基を有してもよいフッ化アルキル基、または置換基を有してもよいシクロアルキル基を表し、Lは、それぞれ独立して、単結合、アリーレン基、ヘテロアリーレン基、カルボニル基、-COO-、および-CONR’-(この際、R’は水素原子またはアルキル基を表す)から選ばれる置換基を表す。Aは2価のアクセプター性ユニットを表す。DおよびDはドナー性ユニットを表し、mおよびnは0~2の整数を表す。)
    An organic photoelectric conversion element having a transparent first electrode, a photoelectric conversion layer containing a p-type organic semiconductor material and an n-type organic semiconductor material, and a second electrode in this order on a transparent substrate, An organic photoelectric conversion element, wherein the photoelectric conversion layer contains a compound having a partial structure represented by the following general formula 1 or general formula 1 ′ as the p-type organic semiconductor material.
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
    (In the formula, each X 1 independently represents —S—, —O—, —NR 2 —, and each Y 1 independently represents —CR 3 ═ or —N═. R 1 -R 3 each independently represents a hydrogen atom, an alkyl group that may have a substituent, a fluorinated alkyl group that may have a substituent, or a cycloalkyl group that may have a substituent. L 1 is independently selected from a single bond, an arylene group, a heteroarylene group, a carbonyl group, —COO—, and —CONR′— (wherein R ′ represents a hydrogen atom or an alkyl group). A represents a divalent acceptor unit, D 1 and D 2 represent a donor unit, and m and n represent an integer of 0 to 2.)
  2.  前記一般式1または1’において、Aで表わされるユニットが含窒素複素芳香族環基である、請求項1に記載の有機光電変換素子。 The organic photoelectric conversion device according to claim 1, wherein the unit represented by A in the general formula 1 or 1 'is a nitrogen-containing heteroaromatic ring group.
  3.  前記一般式1または1’において、Aで表わされるユニットが2環以上が縮合した縮合多環基である、請求項1又は2に記載の有機光電変換素子。 The organic photoelectric conversion device according to claim 1 or 2, wherein in the general formula 1 or 1 ', the unit represented by A is a condensed polycyclic group in which two or more rings are condensed.
  4.  前記一般式1が、下記一般式2で表わされる、請求項3に記載の有機光電変換素子。
    Figure JPOXMLDOC01-appb-C000003
    (式中、Xは、それぞれ独立して、-S-、-O-、-NR-、-CR=CR5’-、-CR=N-、-CR-、または-N=N-を表す。R、R、R5’、R、RおよびRは、それぞれ独立して、水素原子、置換基を有してもよいアルキル基、置換基を有してもよいフッ化アルキル基、または置換基を有してもよいシクロアルキル基を表す。)
    The organic photoelectric conversion element according to claim 3, wherein the general formula 1 is represented by the following general formula 2.
    Figure JPOXMLDOC01-appb-C000003
    (Wherein, X 2 are each independently, -S -, - O -, - NR 4 -, - CR 5 = CR 5 '-, - CR 6 = N -, - CR A R B -, or —N═N— R 4 , R 5 , R 5 ′ , R 6 , R A and R B each independently represents a hydrogen atom, an alkyl group which may have a substituent, or a substituent. It represents a fluorinated alkyl group that may have or a cycloalkyl group that may have a substituent.)
  5.  前記一般式1または1’において、Xで表わされる基が-S-である、請求項1~4のいずれか1項に記載の有機光電変換素子。 The organic photoelectric conversion device according to any one of claims 1 to 4, wherein in the general formula 1 or 1 ', the group represented by X 1 is -S-.
  6.  前記一般式1または1’において、Yで表わされる基が-CH=である、請求項1~5のいずれか一項に記載の有機光電変換素子。 The organic photoelectric conversion device according to any one of claims 1 to 5, wherein in the general formula 1 or 1 ', a group represented by Y 1 is -CH =.
  7.  前記Lで表わされる基が、-COO-である、請求項1~6のいずれか一項に記載の有機光電変換素子。 The organic photoelectric conversion device according to any one of claims 1 to 6, wherein the group represented by L 1 is -COO-.
  8.  前記化合物が、前記一般式1で表わされる構造と、さらに下記一般式3で表わされる構造との共重合体である、請求項1~7のいずれか1項に記載の有機光電変換素子。
    Figure JPOXMLDOC01-appb-C000004
    (式中、Rは、それぞれ独立して、水素原子、ハロゲン原子、置換基を有してもよいアルキル基、置換基を有してもよいフッ化アルキル基、置換基を有してもよいシクロアルキル基、置換基を有してもよいアルコキシ基、置換基を有してもよいフッ化アルコキシ基、置換基を有してもよいシクロアルコキシ基、置換基を有してもよいアルコキシカルボニル基、置換基を有してもよいアシル基、置換基を有してもよいアルキルアミノカルボニル基、または置換基を有してもよいアシルアミノ基を表す。)
    The organic photoelectric conversion device according to any one of claims 1 to 7, wherein the compound is a copolymer of a structure represented by the general formula 1 and a structure represented by the following general formula 3.
    Figure JPOXMLDOC01-appb-C000004
    (In the formula, each R 9 independently has a hydrogen atom, a halogen atom, an alkyl group which may have a substituent, a fluorinated alkyl group which may have a substituent, or a substituent. Good cycloalkyl group, optionally substituted alkoxy group, optionally substituted fluorinated alkoxy group, optionally substituted cycloalkoxy group, optionally substituted alkoxy A carbonyl group, an acyl group that may have a substituent, an alkylaminocarbonyl group that may have a substituent, or an acylamino group that may have a substituent.
  9.  前記一般式2で表わされる構造単位を含有する化合物が、さらに下記一般式4A、または4Bで表わされる構造を含有する、請求項4~8のいずれか1項に記載の有機光電変換素子。
    Figure JPOXMLDOC01-appb-C000005
     式中、Y、Yは、それぞれ独立して、-O-、-NR10-、-S-、-C(R11)=C(R11’)-、または-N=C(R12)-を表し、この際、R10~R12は、それぞれ独立して、水素原子、置換基を有してもよいアルキル基、置換基を有してもよいフッ化アルキル基、または置換基を有してもよいシクロアルキル基を表し、
     R、Rは、それぞれ独立して、水素原子、ハロゲン原子、置換されたもしくは非置換の、炭素原子数1~24のアルキル基、炭素原子数1~24のフッ化アルキル基、炭素原子数3~20のシクロアルキル基、炭素原子数3~20のフッ化シクロアルキル基、炭素原子数1~24のアルコキシ基、炭素原子数1~24のフッ化アルコキシ基、炭素原子数1~24のフッ化アルキルチオ基、炭素原子数6~30のアリール基、炭素原子数6~30のフッ化アリール基、炭素原子数1~20のヘテロアリール基、または炭素原子数1~20のフッ化ヘテロアリール基を表す。
    The organic photoelectric conversion device according to any one of claims 4 to 8, wherein the compound containing the structural unit represented by the general formula 2 further contains a structure represented by the following general formula 4A or 4B.
    Figure JPOXMLDOC01-appb-C000005
    In the formula, Y 3 and Y 4 each independently represent —O—, —NR 10 —, —S—, —C (R 11 ) ═C (R 11 ′ ) —, or —N═C (R 12 ) —, wherein each of R 10 to R 12 independently represents a hydrogen atom, an alkyl group which may have a substituent, a fluorinated alkyl group which may have a substituent, or a substituent. Represents an optionally substituted cycloalkyl group,
    R 7 and R 8 each independently represent a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group having 1 to 24 carbon atoms, a fluorinated alkyl group having 1 to 24 carbon atoms, or a carbon atom. A cycloalkyl group having 3 to 20 carbon atoms, a fluorinated cycloalkyl group having 3 to 20 carbon atoms, an alkoxy group having 1 to 24 carbon atoms, a fluorinated alkoxy group having 1 to 24 carbon atoms, and 1 to 24 carbon atoms. A fluorinated alkylthio group, an aryl group having 6 to 30 carbon atoms, a fluorinated aryl group having 6 to 30 carbon atoms, a heteroaryl group having 1 to 20 carbon atoms, or a fluorinated heterocycle having 1 to 20 carbon atoms Represents an aryl group.
  10.  前記化合物の数平均分子量が、15000~50000である、請求項1~9のいずれか1項に記載の有機光電変換素子。 The organic photoelectric conversion device according to any one of claims 1 to 9, wherein the compound has a number average molecular weight of 15,000 to 50,000.
  11.  前記第一の電極が、カソードであり、第二の電極がアノードである、請求項1~10のいずれか1項に記載の有機光電変換素子。 The organic photoelectric conversion device according to any one of claims 1 to 10, wherein the first electrode is a cathode and the second electrode is an anode.
  12.  請求項1~11のいずれか1項に記載の有機光電変換素子を具備する、太陽電池。 A solar cell comprising the organic photoelectric conversion device according to any one of claims 1 to 11.
PCT/JP2012/053836 2011-02-18 2012-02-17 Organic photoelectric conversion element and solar cell WO2012111811A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012558038A JP5838975B2 (en) 2011-02-18 2012-02-17 Organic photoelectric conversion element and solar cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011032923 2011-02-18
JP2011-032923 2011-02-18

Publications (1)

Publication Number Publication Date
WO2012111811A1 true WO2012111811A1 (en) 2012-08-23

Family

ID=46672722

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/053836 WO2012111811A1 (en) 2011-02-18 2012-02-17 Organic photoelectric conversion element and solar cell

Country Status (2)

Country Link
JP (1) JP5838975B2 (en)
WO (1) WO2012111811A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013073581A1 (en) * 2011-11-15 2013-05-23 コニカミノルタ株式会社 Organic photoelectric conversion element, and solar cell and optical sensor array each using same
ITMI20130606A1 (en) * 2013-04-12 2014-10-13 Eni Spa DISCOVERED NAPHTHO-AERODIAZOLIC COMPOUNDS
WO2015015397A1 (en) * 2013-07-30 2015-02-05 Karlsruher Institut Für Technologie Lichttechnisches Institut Substituted naphthyridines as acceptor molecules for electronic devices
JP2016017117A (en) * 2014-07-07 2016-02-01 国立研究開発法人理化学研究所 Polymer compound, organic semiconductor material, photoelectric conversion element, and transistor
JP2017503875A (en) * 2013-12-26 2017-02-02 レイナジー テック インコーポレイション Conjugated polymers and devices incorporating them
WO2017047808A1 (en) * 2015-09-18 2017-03-23 三菱化学株式会社 Copolymer, photoelectric conversion element, solar battery, and solar battery module
WO2017097246A1 (en) * 2015-12-09 2017-06-15 The Hong Kong University Of Science And Technology Fluorinated benzoxadiazole-based donor-acceptor polymers for electronic and photonic applications
CN108059714A (en) * 2018-01-16 2018-05-22 华南协同创新研究院 It is a kind of containing asymmetric two heterocyclic conjugated polymer of naphthalene and its application in organic electro-optic device
WO2018119780A1 (en) * 2016-12-28 2018-07-05 South University Of Science And Technology Of China Weak electron-donating building blocks, copolymers thereof and related devices
CN108602826A (en) * 2016-02-04 2018-09-28 默克专利有限公司 [1,5] naphthyridine compounds and polymer as semiconductor
WO2019043451A1 (en) * 2017-08-31 2019-03-07 東洋紡株式会社 Compound usable as n-type semiconductor
US10777746B2 (en) * 2014-01-20 2020-09-15 Sumitomo Chemical Company, Limited Compound and electronic device
JPWO2020203355A1 (en) * 2019-03-29 2020-10-08

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004115794A (en) * 2002-09-14 2004-04-15 Merck Patent Gmbh Monomer, oligomer, poly(3-alkynylthiophene) and use thereof as charge-transfer material
JP2007176929A (en) * 2005-11-25 2007-07-12 Samsung Electronics Co Ltd Novel aromatic endiyne derivative, precursor solution for manufacturing organic semiconductor containing this derivative, organic semiconductor thin film using precursor solution and manufacturing method thereof, and electronic device
JP2010111649A (en) * 2008-11-10 2010-05-20 Toray Ind Inc Quinoxaline compound, electron-donating organic material produced by using the same, material for photovoltaic element and photovoltaic element
JP2010527327A (en) * 2007-04-13 2010-08-12 エルジー・ケム・リミテッド Heterocyclic compound containing dioxopyrrole ring and organic electronic device using the same
WO2010114116A1 (en) * 2009-04-03 2010-10-07 コニカミノルタホールディングス株式会社 Organic photoelectric conversion element, solar cell using same, and light sensor array
JP2011003703A (en) * 2009-06-18 2011-01-06 Sumitomo Chemical Co Ltd Organic photoelectric conversion element

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004115794A (en) * 2002-09-14 2004-04-15 Merck Patent Gmbh Monomer, oligomer, poly(3-alkynylthiophene) and use thereof as charge-transfer material
JP2007176929A (en) * 2005-11-25 2007-07-12 Samsung Electronics Co Ltd Novel aromatic endiyne derivative, precursor solution for manufacturing organic semiconductor containing this derivative, organic semiconductor thin film using precursor solution and manufacturing method thereof, and electronic device
JP2010527327A (en) * 2007-04-13 2010-08-12 エルジー・ケム・リミテッド Heterocyclic compound containing dioxopyrrole ring and organic electronic device using the same
JP2010111649A (en) * 2008-11-10 2010-05-20 Toray Ind Inc Quinoxaline compound, electron-donating organic material produced by using the same, material for photovoltaic element and photovoltaic element
WO2010114116A1 (en) * 2009-04-03 2010-10-07 コニカミノルタホールディングス株式会社 Organic photoelectric conversion element, solar cell using same, and light sensor array
JP2011003703A (en) * 2009-06-18 2011-01-06 Sumitomo Chemical Co Ltd Organic photoelectric conversion element

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TAKAKAZU YAMAMOTO ET AL.: "Highly Coplanar Polythiophenes with C=CR Side Chains: Self- Assembly, Linear and Nonlinear Optical Properties, and Piezochromism", BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN, vol. 82, 2009, pages 896 - 909 *

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013073581A1 (en) * 2011-11-15 2013-05-23 コニカミノルタ株式会社 Organic photoelectric conversion element, and solar cell and optical sensor array each using same
JPWO2013073581A1 (en) * 2011-11-15 2015-04-02 コニカミノルタ株式会社 ORGANIC PHOTOELECTRIC CONVERSION DEVICE, SOLAR CELL USING SAME, AND OPTICAL SENSOR ARRAY
US9318707B2 (en) 2011-11-15 2016-04-19 Konica Minolta, Inc. Organic photoelectric conversion element, and solar cell and optical sensor array each using same
US9353128B2 (en) 2013-04-12 2016-05-31 Eni S.P.A. Disubstituted naphthoheterodiazole compounds
ITMI20130606A1 (en) * 2013-04-12 2014-10-13 Eni Spa DISCOVERED NAPHTHO-AERODIAZOLIC COMPOUNDS
EP2789621A1 (en) * 2013-04-12 2014-10-15 ENI S.p.A. Disubstituted naphthoheterodiazole compounds
CN104098593A (en) * 2013-04-12 2014-10-15 艾尼股份公司 Disubstituted naphthoheterodiazole compounds
CN104098593B (en) * 2013-04-12 2018-06-05 艾尼股份公司 Disubstituted miscellaneous diazole compounds of naphtho-
WO2015015397A1 (en) * 2013-07-30 2015-02-05 Karlsruher Institut Für Technologie Lichttechnisches Institut Substituted naphthyridines as acceptor molecules for electronic devices
JP2017503875A (en) * 2013-12-26 2017-02-02 レイナジー テック インコーポレイション Conjugated polymers and devices incorporating them
US10777746B2 (en) * 2014-01-20 2020-09-15 Sumitomo Chemical Company, Limited Compound and electronic device
JP2016017117A (en) * 2014-07-07 2016-02-01 国立研究開発法人理化学研究所 Polymer compound, organic semiconductor material, photoelectric conversion element, and transistor
WO2017047808A1 (en) * 2015-09-18 2017-03-23 三菱化学株式会社 Copolymer, photoelectric conversion element, solar battery, and solar battery module
WO2017097246A1 (en) * 2015-12-09 2017-06-15 The Hong Kong University Of Science And Technology Fluorinated benzoxadiazole-based donor-acceptor polymers for electronic and photonic applications
CN109071782A (en) * 2015-12-09 2018-12-21 香港科技大学 Application based on the donor-receptor polymer of fluoro benzoxadiazole in electronics and photonics
US11603431B2 (en) 2016-02-04 2023-03-14 Raynergy Tek Incorporation Organic semiconductors
CN108602826A (en) * 2016-02-04 2018-09-28 默克专利有限公司 [1,5] naphthyridine compounds and polymer as semiconductor
WO2018119780A1 (en) * 2016-12-28 2018-07-05 South University Of Science And Technology Of China Weak electron-donating building blocks, copolymers thereof and related devices
JP2019043878A (en) * 2017-08-31 2019-03-22 東洋紡株式会社 Compound that can be used as n-type semiconductor
WO2019043451A1 (en) * 2017-08-31 2019-03-07 東洋紡株式会社 Compound usable as n-type semiconductor
CN108059714A (en) * 2018-01-16 2018-05-22 华南协同创新研究院 It is a kind of containing asymmetric two heterocyclic conjugated polymer of naphthalene and its application in organic electro-optic device
JPWO2020203355A1 (en) * 2019-03-29 2020-10-08
WO2020203355A1 (en) * 2019-03-29 2020-10-08 富士フイルム株式会社 Photoelectric conversion element, imaging element, optical sensor, material for photoelectric conversion element, material for imaging element, and material for optical sensor
JP7133707B2 (en) 2019-03-29 2022-09-08 富士フイルム株式会社 Photoelectric conversion device, image pickup device, optical sensor, photoelectric conversion device material, image pickup device material, optical sensor material

Also Published As

Publication number Publication date
JPWO2012111811A1 (en) 2014-07-07
JP5838975B2 (en) 2016-01-06

Similar Documents

Publication Publication Date Title
JP5838975B2 (en) Organic photoelectric conversion element and solar cell
JP6020463B2 (en) ORGANIC PHOTOELECTRIC CONVERSION DEVICE, SOLAR CELL USING SAME, AND OPTICAL SENSOR ARRAY
JP6015672B2 (en) Organic photoelectric conversion element
JP6024776B2 (en) Organic photoelectric conversion element, solar cell, and optical sensor array
JP5845937B2 (en) Organic photoelectric conversion element
JP5920341B2 (en) ORGANIC PHOTOELECTRIC CONVERSION DEVICE, ITS MANUFACTURING METHOD, AND SOLAR CELL
JP5310838B2 (en) Organic photoelectric conversion element, solar cell, and optical sensor array
JP5839033B2 (en) Conjugated polymer and organic photoelectric conversion device using the same
JP5853852B2 (en) Conjugated polymer compound and organic photoelectric conversion device using the same
JP5686141B2 (en) Organic photoelectric conversion element and solar cell
JP5712769B2 (en) Organic photoelectric conversion element and solar cell
JP2013143486A (en) Organic photoelectric conversion element, solar cell using the same and optical sensor array using the same
JP2014053383A (en) Tandem organic photoelectric conversion element and solar cell using the same
WO2010137449A1 (en) Organic photoelectric conversion element, and solar cell and optical sensor array each using same
JP5891924B2 (en) Conjugated polymer compound and organic photoelectric conversion device using the same
JP5825134B2 (en) ORGANIC PHOTOELECTRIC CONVERSION DEVICE, SOLAR CELL USING THE SAME, AND OPTICAL SENSOR ARRAY
JP5790404B2 (en) Conjugated polymer compound and organic photoelectric conversion device using the same
JP5691810B2 (en) Conjugated polymer and organic photoelectric conversion device using the same
JP5582042B2 (en) Organic photoelectric conversion element and solar cell
JP5413055B2 (en) Organic photoelectric conversion element, solar cell using the same, and optical sensor array
JP2012015390A (en) Organic photoelectric conversion element, solar battery and optical sensor array
JP2011210952A (en) Organic photoelectric conversion element, solar cell, and optical sensor array

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12746635

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012558038

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12746635

Country of ref document: EP

Kind code of ref document: A1