WO2017047551A1 - スピンドル装置及び工作機械 - Google Patents

スピンドル装置及び工作機械 Download PDF

Info

Publication number
WO2017047551A1
WO2017047551A1 PCT/JP2016/076841 JP2016076841W WO2017047551A1 WO 2017047551 A1 WO2017047551 A1 WO 2017047551A1 JP 2016076841 W JP2016076841 W JP 2016076841W WO 2017047551 A1 WO2017047551 A1 WO 2017047551A1
Authority
WO
WIPO (PCT)
Prior art keywords
wax
lubricant
bearing
rolling bearing
temperature
Prior art date
Application number
PCT/JP2016/076841
Other languages
English (en)
French (fr)
Inventor
好史 稲垣
晋哉 中村
美昭 勝野
Original Assignee
日本精工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本精工株式会社 filed Critical 日本精工株式会社
Priority to CN201680053673.0A priority Critical patent/CN108025370B/zh
Priority to KR1020187005738A priority patent/KR102026079B1/ko
Priority to JP2017539894A priority patent/JP6981253B2/ja
Priority to EP16846422.0A priority patent/EP3351325B1/en
Publication of WO2017047551A1 publication Critical patent/WO2017047551A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q11/00Accessories fitted to machine tools for keeping tools or parts of the machine in good working condition or for cooling work; Safety devices specially combined with or arranged in, or specially adapted for use in connection with, machine tools
    • B23Q11/12Arrangements for cooling or lubricating parts of the machine
    • B23Q11/121Arrangements for cooling or lubricating parts of the machine with lubricating effect for reducing friction
    • B23Q11/123Arrangements for cooling or lubricating parts of the machine with lubricating effect for reducing friction for lubricating spindle bearings
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M109/00Lubricating compositions characterised by the base-material being a compound of unknown or incompletely defined constitution
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M121/00Lubricating compositions characterised by the thickener being a compound of unknown or incompletely defined constitution
    • C10M121/02Petroleum fractions, e.g. tars
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M159/00Lubricating compositions characterised by the additive being of unknown or incompletely defined constitution
    • C10M159/02Natural products
    • C10M159/06Waxes, e.g. ozocerite, ceresine, petrolatum, slack-wax
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/16Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with a single row of balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/66Special parts or details in view of lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16NLUBRICATING
    • F16N13/00Lubricating-pumps
    • F16N13/22Lubricating-pumps with distributing equipment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16NLUBRICATING
    • F16N15/00Lubrication with substances other than oil or grease; Lubrication characterised by the use of particular lubricants in particular apparatus or conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16NLUBRICATING
    • F16N7/00Arrangements for supplying oil or unspecified lubricant from a stationary reservoir or the equivalent in or on the machine or member to be lubricated
    • F16N7/38Arrangements for supplying oil or unspecified lubricant from a stationary reservoir or the equivalent in or on the machine or member to be lubricated with a separate pump; Central lubrication systems

Definitions

  • the present invention relates to a spindle device and a machine tool for periodically supplying a predetermined amount of a new lubricant to a rolling bearing for supporting a spindle.
  • grease lubrication has been adopted as a lubrication method for bearings.
  • As grease lubrication there are known a system in which lubrication is performed with grease pre-filled in the bearing space of the bearing and a system in which grease is replenished at an appropriate timing from a grease replenishing means provided outside the housing. Yes.
  • the bearing filled with grease is inserted into the main shaft while being heated in a range of 80 ° C. or less. Furthermore, after the spindle device is assembled, the bearings are conditioned in the initial stage to prevent abnormal heat generation due to the biting of grease during high-speed rotation and stirring resistance.
  • the amount of grease composition supplied to the rolling bearing is extremely small. For this reason, a small amount of grease composition with a low consistency is stable due to pipe resistance when the supply path is long, bent in the middle, or there are several parts bent at right angles. Thus, it becomes difficult to be supplied to the rolling bearing.
  • the thickener is solidified by the pressure repeatedly applied during pumping, and it becomes difficult to stably supply a certain amount of the grease composition.
  • the present invention provides a long service life that enables stable supply of lubricant from the lubricant supply device to the rolling bearing even during operation, while maintaining handleability both when the bearing is assembled and during initial running-in.
  • An object of the present invention is to provide a spindle device and a machine tool.
  • the spindle A housing; A rolling bearing that rotatably supports the main shaft with respect to the housing; A lubricant supply device for supplying a lubricant to the rolling bearing via a supply path provided in the housing;
  • a spindle device comprising: The lubricant supplied from the lubricant supply device includes lubricating oil and wax, and exceeds the liquefaction point at a liquefaction point that is a predetermined temperature within a temperature range of 25 to 60 ° C.
  • a wax-based lubricant capable of reversibly changing between a liquid state at a time and a semi-solidified state below the liquefaction point
  • a spindle device characterized in that a grease comprising a base oil component having affinity and infiltration property with the wax-based lubricant is sealed in a bearing space of the rolling bearing.
  • the ratio of the lubricant to the wax in the wax-based lubricant is such that the wax is 4 to 40% by mass and the lubricant is 96 to 60% by mass with respect to the total amount of both.
  • (3) A machine tool comprising the spindle device according to (1) or (2).
  • “Wax lubricant” refers to a lubricant containing lubricating oil and wax
  • “liquefaction point” refers to a wax lubricant from a semi-solid state to a liquid state, or from a liquid state. The temperature when reversibly changing to a semi-solid state.
  • the “liquefaction point” is in accordance with, for example, the regulations on the regulation of dangerous goods, Chapter 12 Miscellaneous Article 69-2 (Definition of liquid).
  • the wax-based lubricant used in the present invention does not contain a thickener, and the thickener does not solidify and does not hinder the supply from the lubricant supply device to the rolling bearing. Therefore, in the spindle device of the present invention, the wax-based lubricant is stably supplied for a long period of time as compared with the grease supply method.
  • the wax-based lubricant is a lubricating component of both the lubricating oil and the wax, the replenishment amount per one time of the wax-based lubricant can be reduced and the replenishment interval can be lengthened, so the consumption amount of the wax-based lubricant And can be replenished for a longer period of time.
  • the lubricant supply device for grease can be used as it is.
  • the bearing space of the rolling bearing is filled with grease containing a base oil component that has affinity and infiltration with a wax-based lubricant, it can be used either when the bearing is installed or during initial running-in.
  • the handleability can be maintained even in Therefore, as described above, a wax lubricant and a grease including a base oil component having affinity and infiltration property with the wax lubricant can be used in a spindle device, so that the bearing can be assembled.
  • the spindle device 100 includes a main shaft 1 to which a tool can be attached, a housing 30, and a plurality of rolling bearings 2 that rotatably support the main shaft 1 with respect to the housing 30.
  • the main shaft 1 is rotationally driven by a motor including a stator 12 and a rotor 13 provided at an intermediate portion in the axial direction.
  • the rolling bearing 2 shows only the front bearing, and the rear bearing opposite to the front bearing with respect to the motor is not shown.
  • the spindle device 100 further includes a lubricant supply device 3 installed outside the housing 30, and a plurality of wax-based lubricants W formed from the lubricant supply device 3 in the plurality of supply pipes 4 and the housing 30.
  • a constant amount is regularly supplied to each rolling bearing 2 through the supply path 31.
  • Each supply path 31 of the housing 30 has a supply hole 31a (see FIG. 2) at its end (downstream end) communicating with a supply hole 2b provided in the outer ring 2a of each rolling bearing 2, and a wax system. Lubricant W is evenly supplied to each rolling bearing 2.
  • the lubricant supply device 3 of the present embodiment has a cylinder-structured tank for storing the lubricant, and discharges the lubricant to the (quantitative) pipe by applying pressure (for example, air pressure) from the outside to the inside of the tank. .
  • the wax-based lubricant W contains lubricating oil and wax as basic components. However, at a temperature lower than the melting point, the wax crystallizes in a three-dimensional network structure in the lubricating oil and loses fluidity. Then it becomes liquid. Originally, if it is a simple substance of wax, it changes reversibly into a semi-solid state and a liquid as a whole at a temperature near the melting point of the wax.
  • the wax-based lubricant W of the present invention is a mixture of lubricating oil (liquid) and wax (semi-solid) (corresponding to a diluted solution obtained by adding lubricating oil (dilute liquid) to wax (solvent)).
  • the temperature at which the whole reversibly changes to a semi-solid state and a liquid state (hereinafter referred to as “liquefaction point”) is closely related to the melting point of the wax contained, but the “melting point of the wax depends on the mixing ratio with the lubricating oil. It was found by the present invention that “> liquefaction point”. It was also found that the temperature difference between the melting point of the wax and the liquefaction point was about 10 to 30 ° C. depending on the lubricating oil and wax, and the mixing ratio of both. In the present invention, the liquefaction point is set to 25 to 60 ° C. in consideration of the supply of the spindle device 100 to the rolling bearing 2.
  • test tubes are immersed in a thermostatic bath maintained at a liquid confirmation temperature of ⁇ 0.1 ° C. so that the B line (30 mm above the surface of the test article) is submerged under the water surface of the thermostatic bath. Let stand upright. (5) The state of the test article in the temperature measurement test tube is maintained as it is for 10 minutes after the liquid confirmation temperature becomes ⁇ 0.1 ° C. (6) Remove the liquid judgment test tube from the constant temperature water tank while standing upright on a horizontal table, immediately lay down horizontally on the table, and measure the time until the tip of the test article reaches line B. (7) When the time until the test article reaches line B is within 90 seconds, it is determined that the test article is “liquid”.
  • the liquefaction point is not a fixed point temperature such as the freezing point of water (0 ° / pure water, under atmospheric pressure), but is defined and quantified in a range of about ⁇ 2 ° C. with respect to a specific temperature. .
  • the wax-based lubricant W has such properties, there is no limitation on both the lubricating oil and the wax, but as the lubricating oil, various lubricating oils conventionally used for bearing lubrication can be used, Paraffinic or naphthenic mineral oils, or synthetic oils such as ester oils, hydrocarbon oils, ether oils, and the like can be used, and a plurality of types can also be mixed and used.
  • the viscosity may be in a general range, but considering the lubricity of the rolling bearing 2, the kinematic viscosity at 40 ° C. is preferably 5 to 200 mm 2 / s.
  • the wax may be either a natural wax or a synthetic wax.
  • Natural waxes include animal and plant waxes, mineral waxes, and petroleum waxes.
  • Synthetic waxes include Fischer-Tropsch wax, polyethylene wax, oil-based synthetic waxes (esters, ketones, amides), hydrogenated waxes, and the like. It is also possible to use a mixture of a plurality of types.
  • the wax exemplified above is set so that the liquefaction point is 25 to 60 ° C. And a lubricating oil and a wax are prepared at an appropriate mixing ratio.
  • the ratio of the lubricating oil and the wax is preferably 4 to 40% by mass of the wax and 96 to 60% by mass of the lubricating oil based on the total amount of both.
  • the wax ratio increases, the fluidity when the wax-based lubricant W is in a semi-solid state deteriorates.
  • the wax-based lubricant W exceeds 40% by mass, the discharge performance from the lubricant supply device 3, the supply pipe 4 and the supply path 31 The transportability deteriorates, and further, the transportability when discharged after lubrication described later is also deteriorated.
  • the wax may be added as an oiliness improver for lubricating oil or grease.
  • the amount of wax added is larger than the amount of general additives as described above. By doing so, the function as a thickener (semi-solid property equivalent to grease) is retained.
  • Microcrystalline wax has a melting point of 67 to 98 ° C., but wax-based lubricant W mixed with lubricating oil at the above mixing ratio can set the liquefaction point to 25 to 60 ° C.
  • Paraffin wax has a melting point of 47 to 69 ° C., but wax-based lubricant W mixed with lubricating oil at the above mixing ratio can set the liquefaction point to 25 to 35 ° C.
  • additives can be added to the wax-based lubricant W depending on the purpose.
  • an appropriate amount of a known antioxidant, rust inhibitor, extreme pressure agent or the like can be added.
  • the liquefaction point is generally 25 to 60 ° C in consideration of the ambient temperature around the bearing and the operating temperature of the bearing.
  • the liquefaction point is applicable to rolling bearings for machine tools (machine tools).
  • the temperature is preferably 30 to 60 ° C., more preferably 40 to 60 ° C. for the reasons described below.
  • the ambient environment in which the machine tool is used is about 20 to 25 ° C in order to minimize the thermal displacement of the members accompanying changes in the ambient temperature and to ensure the machining accuracy of the workpiece. Air conditioning is often managed. Therefore, if the lower limit of the liquefaction point is set to 30 ° C., the wax-based lubricant W is not liquefied and is maintained in the bearing and the oil storage portion because it is below the liquefaction point in the stopped state. Even if the bearing or spindle in which the wax-based lubricant W is stored is stopped or stored in a stopped state in stock, the bearing or spindle is held in and around the bearing without liquefaction. Similarly, the lubricating function is not impaired over a long period of time. Accordingly, the liquefaction point is preferably 30 to 60 ° C.
  • the bearing internal temperature rises as the rotational speed increases, it is necessary to supply more lubricating oil to the rolling contact surface in order to maintain an appropriate lubrication state.
  • the bearing temperature is approximately 40 ° C or less, and the amount of lubricating oil is the rolling contact surface. A nearby lubricant is sufficient.
  • the bearing temperature may exceed 40 ° C. In this case, the lubricating oil on the rolling contact surface There may be a shortage.
  • the liquefaction point is more preferably 40 to 60 ° C.
  • wax-based lubricant W having a liquefaction point of 47 ° C. 78.5% by mass of diester oil (dioctyl sebacate), 15% by mass of microcrystalline wax, an antioxidant, an extreme pressure agent
  • An additive containing 6.5% by mass of the other additives may be mentioned.
  • examples of other wax-based lubricant W having a liquefaction point of 38 ° C. include 83% by mass of diester oil (dioctyl sebacate), 10.5% by mass of microcrystalline wax, antioxidant, extreme pressure And additives containing 6.5% by mass of additives and others.
  • An example of the component ratio of the base oil, wax component, and additive of the wax-based lubricant having liquefaction points of 25 ° C. and 60 ° C. is proportional based on the component ratios at the liquefaction points of 38 ° C. and 47 ° C.
  • the values shown in Table 1 can be inferred using an interpolation calculation method or the like.
  • the wax is heated to a temperature equal to or higher than the melting point to form a liquid, and the lubricating oil or the lubricating oil to which the additive has been added is added and thoroughly mixed. What is necessary is just to cool to temperature (usually room temperature).
  • the lubricating oil or lubricating oil to which an additive has been added and solid wax may be placed in a suitable container, and the whole may be heated to a temperature equal to or higher than the melting point of the wax and then cooled.
  • the wax-based lubricant W is stored in a semi-solid state in a lubricant supply device 3 of a general spindle device as shown in FIG. 1, and a constant amount is regularly supplied to the rolling bearing 2.
  • the wax-based lubricant W could be stably supplied to the rolling bearing without clogging the supply path and the discharge path.
  • Lubricant supply device 3 stores wax-based lubricant W in a semi-solid state without heating, and discharges a certain amount to supply pipe 4 in a semi-solid state.
  • the lubricating oil and wax forming the wax-based lubricant W are both lubricating components and are in a semi-solid state, a conventional lubricant supply device for a grease composition can be used as it is.
  • the supply pipe 4 and the supply path 31 can be circulated even in the shape.
  • the wax-based lubricant W from the lubricant supply device 3 In order to supply the wax-based lubricant W from the lubricant supply device 3 to the inside of the rolling bearing 2, it is necessary to cause the liquid wax-based lubricant W to flow through the supply hole 2 b provided in the outer ring 2 a of the rolling bearing 2. .
  • the wax-based lubricant W from the lubricant supply device 3 circulates in the semisolid state inside the supply pipe 4 and the supply path 31.
  • the rolling bearing 2 is at a high temperature.
  • the tip of the supply path 31 connected to the supply hole 2b of the outer ring 2a is set by setting the liquefaction point to 25 to 60 ° C. The vicinity is sufficiently higher than the temperature, and the wax-based lubricant W changes into a liquid state and easily flows into the bearing while passing through this portion.
  • the wax-based lubricant W is in a liquid state, but does not contain a thickener, and both the lubricating oil and the wax are lubricating components, so the ratio of the base oil in the grease composition has increased. The same condition is obtained and the lubricating performance is higher than that of the grease composition. Therefore, since the replenishment amount per time can be reduced and the replenishment interval can be increased, the consumption amount of the wax-based lubricant W can be reduced, the number of replenishments to the lubricant supply device 3 can be reduced, and the spindle device 100 can be reduced. The operating cost can be reduced.
  • the wax-based lubricant W is discharged into the lubricant storage groove 9 provided beside the rolling bearing 2 by the centrifugal force generated by the rotation of the spacer 7. Since the lubricant storage groove 9 is outside the rolling bearing 2, the temperature is lower than the inside of the bearing, and the discharged wax-based lubricant W is again changed into a semi-solid state and sent to the outside of the housing 30.
  • a residue derived from the thickener is generated in the lubricant storage groove 9 due to long-term use, and the flow of air is prevented, which can contribute to an increase in the temperature of the bearing.
  • the wax-based lubricant W is discharged in a liquid state up to a certain distance after being discharged from the rolling bearing 2, such a problem does not occur.
  • the consumption amount of the wax-based lubricant W can be reduced as compared with the grease, when the volume of the lubricant storage groove 9 can be sufficiently secured as compared with the lubricant to be discharged, it is not necessary to discharge it outside the housing. From the viewpoint of environmental performance, it is more preferable.
  • the spindle device 100 can be variously modified.
  • a cooling passage 10 is provided in a spiral shape on the outer side of each outer ring 2a of the housing 30 to circulate the coolant, and the bearing temperature is about 40 to 50 ° C. during operation. It is preferable to prevent the rolling bearing 2 from being seized by cooling.
  • the cooling path 15 spirals outside the rotor 13. It is preferable to circulate the coolant and cool it.
  • a supply pipe 21 from a coolant supply device 20 installed outside the housing 30 is connected to a supply passage 21 a for cooling the bearing and a supply passage 21 b for cooling the main shaft inside the housing 30. After the coolant is supplied to each of them and circulated through both supply passages 21 a and 21 b, the coolant is returned to the coolant supply device 20 through the discharge pipe 22. Further, the cooling mechanism may be provided separately for the rolling bearing and the main shaft.
  • the liquefaction point of the wax-based lubricant W varies depending on the composition, but the supply path 31 from the lubricant supply device 3 is piped near the cooling paths 10 and 15 to cool the cooling paths 10 and 15.
  • the temperature of the lubricant storage groove 9 can be adjusted by the cooling temperature of the cooling passages 10 and 15, and the various wax-based lubricants W can be discharged in a semi-solid state after lubrication.
  • the bearing space S of the rolling bearing 2 includes the supply hole 2b of the outer ring 2a.
  • a grease G including a base oil component having affinity and infiltration property with the wax-based lubricant W is enclosed.
  • a portion other than the terminal supply hole 31 a connected to the supply hole 2 b is pre-filled with a wax-based lubricant W, while the terminal supply hole 31 a is filled with wax.
  • a grease G configured to contain a base oil component having affinity and infiltration with the system lubricant W is enclosed.
  • the bearing when the bearing is assembled when assembling the spindle device 100, the plurality of rolling bearings 2 are inserted into the main shaft 1 while being heated in a range of 80 ° C. or less. At this time, if the wax-based lubricant W is sealed in the bearing space S, the wax-based lubricant W may be liquefied by heating and flow out of the bearing 2.
  • the grease G is sealed in the bearing space S as in the conventional case, when the rolling bearing 2 is heated when the bearing is assembled, or when the rolling bearing 2 generates heat during the break-in operation.
  • the grease G is not liquefied and the problem of flowing out of the bearing does not occur.
  • the grease G contributes to lubrication at the initial stage of rotation, and thereafter, a small amount of wax-based lubricant W is periodically supplied from the lubricant supply device 3. After lubrication, the grease G is discharged from the rolling bearing 2 to the housing 30 and gradually replaced with the wax-based lubricant W. Thereafter, the inside of the bearing is lubricated only with a mixture of the initial grease G and the wax-based lubricant W or only with the wax-based lubricant W.
  • the lubricant supplied from the lubricant supply device 3 includes lubricating oil and wax, and has a predetermined temperature range of 25 to 60 ° C.
  • a wax-based lubricant W that can be reversibly changed between a liquid state when the temperature exceeds the liquefaction point and a semi-solidified state below the liquefaction point with a liquefaction point that is a temperature as a rolling bearing.
  • a grease G configured to contain a base oil component having affinity and infiltration property with the wax-based lubricant W is enclosed. Accordingly, it is possible to stably supply the lubricant from the lubricant supply device 3 to the rolling bearing 2 even during the operation while maintaining the handleability when the bearing is assembled or during the initial running-in operation.
  • the ratio of the lubricating oil and the wax in the wax-based lubricant is 4 to 40% by mass of the wax and 96 to 60% by mass of the lubricating oil with respect to the total amount of the both. It is possible to ensure reversible change between the two and ensure fluidity.
  • a circumferential groove 16 communicating with the supply hole 2b of the outer ring 2a may be formed on the inner peripheral surface of the housing 30 where the supply hole 31a opens.
  • a circumferential groove 16a communicating with the supply hole 31a of the housing 30 is formed on the outer peripheral surface of the outer ring 2a where the supply hole 2b opens.
  • grease G may be sealed in the circumferential grooves 16 and 16a.
  • the supply hole 31a may be sealed with a wax-based lubricant instead of grease.
  • the replenishing hole 2b can be replenished appropriately regardless of where it is opened inside the bearing. Then, the supply hole 2b is arrange

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Rolling Contact Bearings (AREA)
  • Turning (AREA)
  • Auxiliary Devices For Machine Tools (AREA)

Abstract

潤滑剤供給装置(3)から供給される潤滑剤は、潤滑油と、ワックスとを含み、25~60℃の温度範囲内の所定の温度である液状化点を境として、液状化点を越えたときの液状状態と、液状化点以下での半固化状態との間を、可逆変化可能なワックス系潤滑剤(W)であり、転がり軸受の軸受空間には、ワックス系潤滑剤(W)と親和性及び浸潤性を有する基油成分を含んで構成されるグリース(G)が封入されている。

Description

スピンドル装置及び工作機械
 本発明は、主軸支持用の転がり軸受に、新規な潤滑剤を一定量、定期的に供給するスピンドル装置及び工作機械に関する。
 近年、工作機械用主軸装置の高速化は著しく発展しており、また、環境対策・省エネ化・省資源化の要望も強いことから、軸受の潤滑方法としては、グリース潤滑が採用されている。グリース潤滑としては、軸受の軸受空間に予め封入されたグリースで潤滑を行う方式や、ハウジングの外部に設けられたグリース補給手段からグリースを適宜のタイミングで補給して潤滑を行う方式が知られている。
 例えば、特許文献1に記載のスピンドル装置では、ハウジングの外部に設けられたグリース補給手段から、供給管及びハウジング内に形成された供給路を介して、転がり軸受の軸受空間に微量のグリースを適宜のタイミングで補給している。
 また、一般的に、スピンドル装置への軸受組込時において、グリースが封入された軸受は、80℃以下の範囲で加温された状態で主軸に挿入される。さらに、スピンドル装置の組み立て後、初期段階で軸受の慣らし運転を行って、高速回転時のグリースの噛み込みや攪拌抵抗による異常発熱を防止している。
日本国特許第4051563号公報
 ところで、特許文献1に記載のスピンドル装置では、転がり軸受に供給されるグリース組成物は極く微量である。このため、ちょう度が小さく、比較的硬い微量のグリース組成物は、供給路が長い場合や、途中で屈曲したり、直角に折れ曲がった部位が数ヶ所存在する場合などでは、配管抵抗によって安定して転がり軸受に供給されることが難しくなる。また、長期間使用していると、圧送の際に繰り返し加わった圧力により増ちょう剤が固化し、グリース組成物を一定量、安定して供給するのも困難となる。
 そこで本発明は、軸受組込時や初期慣らし運転時のいずれにおいても取扱性を維持しつつ、運転時においても潤滑剤供給装置から転がり軸受への潤滑剤の安定供給を図ることができる長寿命のスピンドル装置及び工作機械を提供することを目的とする。
 上記課題を解決するため、本発明は下記の構成によって達成される。
(1) 主軸と、
 ハウジングと、
 該ハウジングに対して前記主軸を回転可能に支持する転がり軸受と、
 前記ハウジングに設けられた供給路を介して前記転がり軸受に潤滑剤を供給する潤滑剤供給装置と、
を有するスピンドル装置であって、
 前記潤滑剤供給装置から供給される前記潤滑剤は、潤滑油と、ワックスとを含み、25~60℃の温度範囲内の所定の温度である液状化点を境として、前記液状化点を越えたときの液状状態と、前記液状化点以下での半固化状態との間を、可逆変化可能なワックス系潤滑剤であり、
 前記転がり軸受の軸受空間には、前記ワックス系潤滑剤と親和性及び浸潤性を有する基油成分を含んで構成されるグリースが封入されていることを特徴とするスピンドル装置。
(2) 前記ワックス系潤滑剤の前記潤滑油と前記ワックスとの比率は、両者の合計量に対し前記ワックスが4~40質量%で、前記潤滑油が96~60質量%であることを特徴とする(1)に記載のスピンドル装置。
(3) (1)又は(2)に記載のスピンドル装置を有することを特徴とする工作機械。
 なお、「ワックス系潤滑剤」とは、潤滑油とワックスとを含む潤滑剤を言い、また、「液状化点」とは、ワックス系潤滑剤が半固体状態から液体状態に、或いは液体状態から半固体状態に可逆変化するときの温度を言う。また、「液状化点」は、例えば危険物の規制に関する規則、第12章 雑則 第69条の2(液状の定義)に従っている。
 本発明で用いるワックス系潤滑剤は増ちょう剤を含有せず、増ちょう剤が固化して潤滑剤供給装置から転がり軸受への供給に支障をきたすことがない。そのため、本発明のスピンドル装置は、グリース供給方式に比べて、ワックス系潤滑剤が長期間安定して供給される。また、ワックス系潤滑剤は、潤滑油及びワックスの両方とも潤滑成分であるため、ワックス系潤滑剤の一回当たりの補給量を少なくでき、補給間隔も長くできるため、ワックス系潤滑剤の消費量を減らすことができ、より長期間にわたる補給が可能になる。更には、ワックスは、潤滑油やグリースの油性向上剤として添加されることがあるが、一般的な添加量よりも多く含有しているためグリースの増ちょう剤としての作用に類似する作用が発現し、グリース用の潤滑剤供給装置をそのまま使用することもできる。
 また、転がり軸受の軸受空間には、ワックス系潤滑剤と親和性及び浸潤性を有する基油成分を含んで構成されるグリースが封入されているので、軸受組込時や初期慣らし運転時のいずれにおいても取扱性を維持することができる。
 したがって、上述したように、ワックス系潤滑剤と、該ワックス系潤滑剤と親和性及び浸潤性を有する基油成分を含んで構成されるグリースとを、スピンドル装置に用いることで、軸受組込時や初期慣らし運転時のいずれにおいても取扱性を維持しつつ、運転時においても潤滑剤供給装置から転がり軸受への潤滑剤の安定供給を図ることができる。
スピンドル装置の一例を示す概略図である。 図1のII部拡大図である。 液状化点を説明するための図である。 軸受を主軸に挿入する過程を説明するための図である。 (a)は、変形例のスピンドル装置の図2に対応する図であり、(b)は、他の変形例のスピンドル装置の図2に対応する図である。
 以下、本発明の一実施形態に係る工作機械に適用されるスピンドル装置について図面を参照して詳細に説明する。
 図1に示すように、スピンドル装置100は、工具を取り付け可能な主軸1と、ハウジング30と、該ハウジング30に対して主軸1を回転可能に支持する複数の転がり軸受2と、を備え、主軸1の軸方向中間部に設けられた、ステータ12及びロータ13からなるモータによって主軸1が回転駆動される。なお、図中、転がり軸受2は、前側軸受のみを示しており、モータに対して前側軸受と反対側の後側軸受については、図示省略されている。
 また、スピンドル装置100は、ハウジング30の外部に設置した潤滑剤供給装置3をさらに備え、該潤滑剤供給装置3から、ワックス系潤滑剤Wを複数の供給管4及びハウジング30に形成された複数の供給路31を通じて一定量、定期的に各転がり軸受2に供給する。ハウジング30の各供給路31は、その末端部(下流側端部)の供給孔31a(図2参照。)が各転がり軸受2の外輪2aに設けた補給孔2bに連通しており、ワックス系潤滑剤Wが各転がり軸受2に均等に供給される。
 なお、本実施形態の潤滑剤供給装置3は、潤滑剤を貯蔵するシリンダ構造のタンクを持ち、外部よりタンク内部に圧力(例えば空圧)を加えることにより潤滑剤を(定量)配管に吐出させる。
 ワックス系潤滑剤Wは、潤滑油とワックスとを基本成分とするものであるが、ワックスはその融点よりも低温では潤滑油中で3次元網目構造状に結晶化して流動性を失い、融点以上では液状となる。本来、ワックス単体であれば、ワックスの融点付近の温度を境にして、全体として半固体状と液状とに可逆変化する。これに対し本発明のワックス系潤滑剤Wは、潤滑油(液体)とワックス(半固体)との混合体(ワックス(溶媒)に潤滑油(希薄液)を加えた希薄溶液に相当)であるので、全体として半固体状と液状に可逆変化する温度(以下「液状化点」と称する)は、含まれるワックスの融点と密接な関係があるが、潤滑油との混合比率により「ワックスの融点>液状化点」となることが本発明で判明した。また、潤滑油及びワックス、並びに両者の混合比率により、ワックスの融点と液状化点との温度差が約10~30℃発生することがわかった。本発明では、スピンドル装置100の転がり軸受2への供給を考慮して、液状化点を25~60℃とする。
 尚、液状化とは、図3に示すように、下記のようにして確認した。この方法は、危険物の規制に関する規則、第12章雑則 第69条の2(液状の定義)に従う。
(1)試験物品(ワックス系潤滑剤)を2本の試験管(直径30mm、高さ120mm)のA線(高さ55mm)まで入れる。
(2)一方の試験管(液状判断用試験管)を孔穴の無いゴム栓で密栓する。
(3)他方の試験管(温度測定用試験管)を、温度計を付けたゴム栓で密栓する。尚、温度計は、その先端が試験物品の表面より30mmの深さになるように挿入し、試験管に対して直立させる。
(4)2本の試験管を、液状確認温度±0.1℃に保持された恒温槽中に、B線(試験物品の表面よりも30mm上方)が恒温槽の水面下に没するように直立させて静置する。
(5)温度測定用試験管中の試験物品の温度が液状確認温度±0.1℃になってから、10分間そのままの状態を保持する。
(6)液状判断試験管を恒温水槽から水平な台上に直立したまま取り出し、直ちに台の上に水平に倒し、試験物品の先端がB線に到達するまでの時間を計測する。
(7)試験物品がB線に達するまでの時間が90秒以内であるとき、試験物品が「液状」であると判断する。
(8)そして、恒温水槽の温度を種々変更して(1)~(7)を行い、液状になった温度を「液状化点」とする。
 尚、液状化点とは、水の凝固点(0°/純水、大気圧下)のような定点温度ではなく、ある特定温度に対して略±2℃程度の範囲で定義、数値化される。
 ワックス系潤滑剤Wは、このような性質を有する限り、潤滑油及びワックスとも制限はないが、潤滑油としては、従来から軸受の潤滑に使用されている各種潤滑油を使用することができ、パラフィン系やナフテン系の鉱油、あるいはエステル油や炭化水素油、エーテル油等の合成油等を用いることができ、複数種を混合して使用することもできる。また、その粘度も一般的な範囲で構わないが、転がり軸受2の潤滑性を考慮すると40℃における動粘度が5~200mm/sであることが好ましい。一方、ワックスは、天然ワックス、合成ワックスの何れでもよいが、軸受内部で液状となり、潤滑油との混合物になるため、潤滑油との相溶性が高いものが好ましい。尚、天然ワックスとしては動・植物ワックス、鉱物ワックス、石油ワックスが挙げられ、合成ワックスとしてはフィッシャートロプシュワックス、ポリエチレンワックス、油脂系合成ワックス(エステル、ケトン類、アミド)、水素化ワックス等が挙げられ、複数種を混合して使用することもできる。但し、ワックス系潤滑剤Wの液状と半固体状とに可逆変化する温度は、実質的にワックスの融点によって決まるため、この液状化点が25~60℃になるように、上記に例示したワックスから選択し、かつ、潤滑油とワックスとを適正な混合比率で調製する。
 また、潤滑油とワックスとの比率は、両者の合計量に対しワックスが4~40質量%で、潤滑油が96~60質量%であることが好ましい。ワックスの比率が大きくなるほどワックス系潤滑剤Wが半固体状であるときの流動性が悪くなり、40質量%を超えると潤滑剤供給装置3からの吐出性や、供給管4及び供給路31の輸送性が悪くなり、更には後述する潤滑後に排出されたときの輸送性も悪くなる。尚、ワックスは、潤滑油やグリースの油性向上剤として添加されることもあるが、本発明のワックス系潤滑剤Wでは、上記のようにワックスの添加量を一般的な添加剤量よりも多くすることにより、増ちょう剤としての機能(グリースと同等の半固体状の性質)を保持する。
 マイクロクリスタリンワックスは、融点が67~98℃であるが、潤滑油と上記混合割合にて混合したワックス系潤滑剤Wは、液状化点を25~60℃に設定することができる。また、パラフィンワックスは、融点が47~69℃であるが、潤滑油と上記混合割合にて混合したワックス系潤滑剤Wは、液状化点を25~35℃に設定することができる。
 更に、ワックス系潤滑剤Wには、目的に応じて種々の添加剤を添加することができる。例えば、何れも公知の酸化防止剤や防錆剤、極圧剤等を適量添加することができる。
 また、液状化点は、基本的には軸受周囲の環境温度や軸受の運転温度を鑑み、一般的には、25~60℃が適正であるが、適用用途が工作機械用転がり軸受(工作機械主軸用転がり軸受やボールねじ軸端サポート用転がり軸受など)の場合、以下に述べる理由から、30~60℃が好ましく、40~60℃がより好ましい。
 工作機械が使用される周囲環境条件は、周辺温度の変化に伴なう部材の熱変位を最小限に抑えて、被加工部品の加工精度を確保するため、周囲環境は20~25℃程度に空調管理されている場合が多い。従って、液状化点の下限を30℃に設定すれば、停止状態では、液状化点以下なので、ワックス系潤滑剤Wは液状化せず、軸受内部や貯油部分に維持される。そして、ワックス系潤滑剤Wが貯油された軸受やスピンドルを、停止あるいは、停止状態のまま在庫保管しておいても、液状化することなく軸受内部及び周辺部に保持されるので、通常のグリース同様、長期に渡って潤滑機能が損なわれない。したがって、液状化点を30~60℃とすることが好ましい。
 また、軸受は、回転数が増加するほど軸受内部温度が上昇するので、適正な潤滑状態を維持するため、より多くの潤滑油を転がり接触面に供給する必要がある。通常の回転条件(低速~中速回転域)での連続運転や、低速回転と最高速回転を交互に繰り返す運転条件の場合、軸受温度はおおむね40℃以下であり、潤滑油量は転がり接触面近傍の潤滑剤で十分である。
 しかしながら、最高回転での連続加工の場合、あるいは、回転数は低くても重切削加工を連続して行なう場合、軸受温度が40℃を上回る場合があり、この場合、転がり接触面の潤滑油が不足する虞れがある。このため、液状化点の下限を40℃に設定することで、この時に、軸受周辺のワックス系潤滑剤Wが液状化し、転がり接触面に不足する潤滑油を補充することができ、不意の焼付きなどの不具合を未然に防止することができる。したがって、液状化点を40~60℃とすることがより好ましい。
 例えば、47℃の液状化点を有するワックス系潤滑剤Wの一例としては、ジエステル油(ジオクチルセバケート)が78.5質量%、マイクロクリスタリンワックスが15質量%、酸化防止剤、極圧剤、その他を含む添加剤が6.5質量%からなるものが挙げられる。また、38℃の液状化点を有する他のワックス系潤滑剤Wの一例としては、ジエステル油(ジオクチルセバケート)が83質量%、マイクロクリスタリンワックスが10.5質量%、酸化防止剤、極圧剤、その他を含む添加剤が6.5質量%からなるものが挙げられる。
 なお、25℃、及び60℃の液状化点を有するワックス系潤滑剤の基油、ワックス成分、添加剤の成分比率の一例は、液状化点38℃、及び47℃における成分比率に基づき、比例補間計算法等を用いて、表1に示す値に推知できる。
Figure JPOXMLDOC01-appb-T000001
 ワックス系潤滑剤Wを調製するには、ワックスを融点以上の温度に加熱して液状とし、そこへ潤滑油または添加剤を添加した潤滑油を加えて十分に混合した後、ワックスの融点未満の温度(通常は室温)に冷却すればよい。あるいは、潤滑油または添加剤を添加した潤滑油と、固形のワックスとを適当な容器に入れ、全体をワックスの融点以上の温度まで加熱して混合した後、冷却してもよい。
 そして、このワックス系潤滑剤Wを、図1に示すような一般的なスピンドル装置の潤滑剤供給装置3に半固体状態のまま貯蔵し、一定量を定期的に転がり軸受2に供給し続けたところ、供給路や排出路の詰まりもなく、ワックス系潤滑剤Wを安定して転がり軸受に供給することができた。
 潤滑剤供給装置3は加熱することなく、ワックス系潤滑剤Wを半固体状で貯蔵し、一定量を半固体状で供給管4に吐出する。但し、ワックス系潤滑剤Wを形成する潤滑油及びワックスは共に潤滑成分であり、半固体状であることから、従来のグリース組成物用の潤滑剤供給装置をそのまま使用でき、更には、半固体状のままでも供給管4及び供給路31を流通することができる。
 潤滑剤供給装置3からのワックス系潤滑剤Wを転がり軸受2の内部に供給するには、転がり軸受2の外輪2aに設けた補給孔2bを通じて液状のワックス系潤滑剤Wを流入させる必要がある。上記したように、潤滑剤供給装置3からのワックス系潤滑剤Wは、供給管4及び供給路31の内部を半固体状で流通する。しかし、スピンドル装置100の稼働中、転がり軸受2は高温になっており、上記したように液状化点を25~60℃にすることにより、外輪2aの補給孔2bに連結する供給路31の先端近傍が前記温度よりも十分に高い状態にあり、この部分を通る間にワックス系潤滑剤Wが液状に変化して容易に軸受内部に流入する。
 転がり軸受2の内部ではワックス系潤滑剤Wは液状であるが、増ちょう剤を含まず、潤滑油及びワックスの両方とも潤滑成分であるため、グリース組成物において基油の割合が増加したのと同じ状態となり、潤滑性能がグリース組成物よりも高まる。そのため、一回当たりの補給量を少なくでき、補給間隔も長くできるため、ワックス系潤滑剤Wの消費量を減らすことができ、潤滑剤供給装置3への補充回数も少なくなり、スピンドル装置100の運転コストを下げることができる。
 潤滑終了後、間座7の回転による遠心力により、ワックス系潤滑剤Wは転がり軸受2の横に設けられた潤滑剤貯蔵溝9に排出される。潤滑剤貯蔵溝9は転がり軸受2の外部にあるため軸受内部よりも温度が低く、排出されたワックス系潤滑剤Wは再び半固体状に変化してハウジング30の外部へと送られる。グリース組成物では長期間の使用により増ちょう剤に由来する残渣が潤滑剤貯蔵溝9に発生して空気の流れを阻止し、軸受の温度上昇の一因になりうる。しかし、ワックス系潤滑剤Wでは、転がり軸受2から排出された後もある程度の距離までは液状のままで排出されるため、このような問題は起こらない。
 なお、ワックス系潤滑剤Wは、グリースに比べて消費量を減らせるので、排出される潤滑剤に比べて、潤滑剤貯蔵溝9の容積が充分確保できる場合、ハウジング外部に排出する必要がなくなり、環境性能の観点でより好ましい。
 なお、スピンドル装置100は種々の変更が可能であり、例えば、ハウジング30の各外輪2aの外側に螺旋状に冷却路10を設けて冷却液を循環させ、稼働時に軸受温度が40~50℃程度になるように冷却して転がり軸受2が焼付かないようにすることが好ましい。更には、転がり軸受2や、モータのステータ12とロータ13の発熱により主軸1の温度も上昇し、熱膨張により回転精度が低下するおそれがあるため、ロータ13の外側に螺旋状に冷却路15を設けて冷却液を循環させて冷却することが好ましい。転がり軸受2及び主軸1の冷却には、ハウジング30の外部に設置した冷却液供給装置20からの供給管21を、ハウジング30の内部で軸受冷却用の供給路21aと主軸冷却用の供給路21bとに分岐し、それぞれに冷却液を供給して両供給路21a,21bを循環させた後、排出管22を通じて冷却液供給装置20に還流させる。また、転がり軸受用と主軸用とで、冷却機構を別々にしてもよい。
 その際、ワックス系潤滑剤Wは、その組成により液状化点が異なるが、潤滑剤供給装置3からの供給路31を、冷却路10,15の近傍に配管し、冷却路10,15の冷却温度を制御することにより、種々のワックス系潤滑剤Wを半固体状で供給路31を輸送させることができる。また、冷却路10,15の冷却温度により潤滑剤貯蔵溝9の温度も調整することができ、種々のワックス系潤滑剤Wに対して潤滑後に半固体状で排出することができる。
 一方、本実施形態では、図2に示すように、スピンドル装置100が組み立てられた時点、即ち、慣らし運転前の状態において、転がり軸受2の軸受空間Sには、外輪2aの補給孔2bを含め、ワックス系潤滑剤Wと親和性及び浸潤性を有する基油成分を含んで構成されるグリースGが封入されている。
 また、ハウジング30の供給路31では、補給孔2bにつながる末端部の供給孔31a以外の部分には、ワックス系潤滑剤Wが予め充填されている一方、末端部の供給孔31aには、ワックス系潤滑剤Wと親和性及び浸潤性を有する基油成分を含んで構成されるグリースGが封入されている。
 ここで、図4に示すように、スピンドル装置100を組み立てる際の軸受組込時において、複数の転がり軸受2は、80℃以下の範囲で加温された状態で主軸1に挿入される。その際、仮に軸受空間Sにワックス系潤滑剤Wが封入されていると、ワックス系潤滑剤Wが加温によって液状化して軸受2の外部に流れ出すことが考えられる。
 また、スピンドル装置100の組み立て後、初期段階で転がり軸受2の慣らし運転を行う際にも、軸受空間Sにワックス系潤滑剤Wが封入されていると、仮に軸受組込時に流出せずにワックス系潤滑剤Wが残存していたとしても、転動面近傍の潤滑剤の攪拌抵抗により想定以上の発熱も考えられ、同様に、潤滑剤の軸受2の外部への流出が懸念される。
 一方、本実施形態では、従来と同様に、軸受空間SにはグリースGが封入されているので、軸受組込時に転がり軸受2が加温されたり、慣らし運転時に転がり軸受2が発熱した場合にもグリースGは液状化せず、軸受の外部に流れ出すという問題は生じない。
 また、組立後のスピンドル装置100において、回転初期は、グリースGが潤滑に寄与し、その後は、潤滑剤供給装置3から微量のワックス系潤滑剤Wが定期的に供給される。グリースGは潤滑後には、転がり軸受2内からハウジング30に排出され、徐々にワックス系潤滑剤Wに置き換わる。その後、軸受内部は、初期のグリースGとワックス系潤滑剤Wの混合体、若しくは、ワックス系潤滑剤Wのみによって潤滑される。
 以上説明したように、本実施形態のスピンドル装置100によれば、潤滑剤供給装置3から供給される潤滑剤は、潤滑油と、ワックスとを含み、25~60℃の温度範囲内の所定の温度である液状化点を境として、液状化点を越えたときの液状状態と、液状化点以下での半固化状態との間を、可逆変化可能なワックス系潤滑剤Wであり、転がり軸受2の軸受空間Sには、ワックス系潤滑剤Wと親和性及び浸潤性を有する基油成分を含んで構成されるグリースGが封入されている。これにより、軸受組込時や初期慣らし運転時のいずれにおいても取扱性を維持しつつ、運転時においても潤滑剤供給装置3から転がり軸受2への潤滑剤の安定供給を図ることができる。
 また、ワックス系潤滑剤の潤滑油とワックスとの比率は、両者の合計量に対しワックスが4~40質量%で、潤滑油が96~60質量%であるので、液体状態と半固体状態との間の可逆変化を可能にすると共に、流動性を確保することができる。
 尚、本発明は、上述した実施形態に限定されるものではなく、適宜、変形、改良等が可能である。その他、上述した実施形態における各構成要素の材質、形状、寸法、数、配置箇所等は本発明を達成できるものであれば任意であり、限定されない。
 例えば、図5(a)に示す変形例のように、供給孔31aが開口するハウジング30の内周面には、外輪2aの補給孔2bと連通する円周溝16が形成されてもよいし、或いは、図5(b)に示す他の変形例のように、補給孔2bが開口する外輪2aの外周面には、ハウジング30の供給孔31aと連通する円周溝16aが形成されてもよい。この場合、円周溝16、16aには、グリースGが封入されていてもよい。或いは、必要に応じて、供給孔31aにもグリースでなく、ワックス系潤滑剤を封入してもよい。
 また、ワックス系潤滑剤は、軸受近傍で液状化して軸受内部に供給されるので、補給孔2bは、軸受内部のいずれの場所に開口していても補給が適切に行われるが、各実施形態では、補給孔2bは、径方向から見て、転動体とオーバーラップするように配置されている。この場合、給脂された潤滑剤が直接転動体に付着しやすいので、より潤滑特性を向上することができる。
 本出願は、2015年9月15日出願の日本特許出願2015-181633に基づくものであり、その内容はここに参照として取り込まれる。
1 主軸
2 転がり軸受
2a 外輪
2b 補給孔
3 潤滑剤供給装置
7 間座
9 潤滑剤貯蔵溝
10、15 冷却路
12 ステータ
13 ロータ
20 冷却液供給装置
21 供給管
22 排出管
30 ハウジング
31 供給路
31a 供給孔
100 スピンドル装置
G グリース
W ワックス系潤滑剤

Claims (3)

  1.  主軸と、
     ハウジングと、
     該ハウジングに対して前記主軸を回転可能に支持する転がり軸受と、
     前記ハウジングに設けられた供給路を介して前記転がり軸受に潤滑剤を供給する潤滑剤供給装置と、
    を有するスピンドル装置であって、
     前記潤滑剤供給装置から供給される前記潤滑剤は、潤滑油と、ワックスとを含み、25~60℃の温度範囲内の所定の温度である液状化点を境として、前記液状化点を越えたときの液状状態と、前記液状化点以下での半固化状態との間を、可逆変化可能なワックス系潤滑剤であり、
     前記転がり軸受の軸受空間には、前記ワックス系潤滑剤と親和性及び浸潤性を有する基油成分を含んで構成されるグリースが封入されていることを特徴とするスピンドル装置。
  2.  前記ワックス系潤滑剤の前記潤滑油と前記ワックスとの比率は、両者の合計量に対し前記ワックスが4~40質量%で、前記潤滑油が96~60質量%であることを特徴とする請求項1に記載のスピンドル装置。
  3.  請求項1又は2に記載のスピンドル装置を有することを特徴とする工作機械。
     
     
PCT/JP2016/076841 2015-09-15 2016-09-12 スピンドル装置及び工作機械 WO2017047551A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201680053673.0A CN108025370B (zh) 2015-09-15 2016-09-12 主轴装置和机床
KR1020187005738A KR102026079B1 (ko) 2015-09-15 2016-09-12 스핀들 장치 및 공작 기계
JP2017539894A JP6981253B2 (ja) 2015-09-15 2016-09-12 スピンドル装置
EP16846422.0A EP3351325B1 (en) 2015-09-15 2016-09-12 Spindle device and machine tool

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015181633 2015-09-15
JP2015-181633 2015-09-15

Publications (1)

Publication Number Publication Date
WO2017047551A1 true WO2017047551A1 (ja) 2017-03-23

Family

ID=58288745

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/076841 WO2017047551A1 (ja) 2015-09-15 2016-09-12 スピンドル装置及び工作機械

Country Status (6)

Country Link
EP (1) EP3351325B1 (ja)
JP (2) JP6981253B2 (ja)
KR (1) KR102026079B1 (ja)
CN (1) CN108025370B (ja)
TW (1) TWI633965B (ja)
WO (1) WO2017047551A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022071491A1 (ja) * 2020-09-30 2022-04-07 協同油脂株式会社 カーボンナノチューブを含む潤滑剤組成物

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54120606A (en) * 1978-03-14 1979-09-19 Nippon Koyu Kk Lubricator for rail switch slide plate
JPH05171172A (ja) * 1991-11-14 1993-07-09 Nippon Oil Co Ltd ポイント摺動板用潤滑剤
JP2002161922A (ja) * 2000-04-20 2002-06-07 Nsk Ltd 転がり軸受用潤滑装置
JP2006022865A (ja) * 2004-07-07 2006-01-26 Koyo Seiko Co Ltd 軸受用潤滑剤供給装置
JP4051563B2 (ja) 2003-04-17 2008-02-27 日本精工株式会社 スピンドル装置,工作機械主軸用スピンドルおよび高速モータ用スピンドル
JP2015181633A (ja) 2014-03-24 2015-10-22 株式会社三共 遊技機

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100556588C (zh) * 2003-03-31 2009-11-04 日本精工株式会社 主轴装置
JP5419392B2 (ja) * 2007-08-24 2014-02-19 Ntn株式会社 転がり軸受装置
JP2009180376A (ja) 2009-04-13 2009-08-13 Komatsu Ltd 滑り軸受およびそれを用いる作業機連結装置
JP5989454B2 (ja) * 2012-08-20 2016-09-07 Ntn株式会社 転がり軸受装置
CN103438094B (zh) * 2013-08-10 2016-12-28 江苏江海机床集团有限公司 机床主轴轴承结构

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54120606A (en) * 1978-03-14 1979-09-19 Nippon Koyu Kk Lubricator for rail switch slide plate
JPH05171172A (ja) * 1991-11-14 1993-07-09 Nippon Oil Co Ltd ポイント摺動板用潤滑剤
JP2002161922A (ja) * 2000-04-20 2002-06-07 Nsk Ltd 転がり軸受用潤滑装置
JP4051563B2 (ja) 2003-04-17 2008-02-27 日本精工株式会社 スピンドル装置,工作機械主軸用スピンドルおよび高速モータ用スピンドル
JP2006022865A (ja) * 2004-07-07 2006-01-26 Koyo Seiko Co Ltd 軸受用潤滑剤供給装置
JP2015181633A (ja) 2014-03-24 2015-10-22 株式会社三共 遊技機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3351325A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022071491A1 (ja) * 2020-09-30 2022-04-07 協同油脂株式会社 カーボンナノチューブを含む潤滑剤組成物

Also Published As

Publication number Publication date
EP3351325B1 (en) 2019-11-20
EP3351325A1 (en) 2018-07-25
EP3351325A4 (en) 2018-10-31
TW201713455A (zh) 2017-04-16
JPWO2017047551A1 (ja) 2018-08-16
CN108025370A (zh) 2018-05-11
CN108025370B (zh) 2019-10-15
KR102026079B1 (ko) 2019-09-27
KR20180034597A (ko) 2018-04-04
JP2022000326A (ja) 2022-01-04
JP7201047B2 (ja) 2023-01-10
JP6981253B2 (ja) 2021-12-15
TWI633965B (zh) 2018-09-01

Similar Documents

Publication Publication Date Title
JP6627773B2 (ja) スピンドル装置及び工作機械主軸用スピンドル
JP6617714B2 (ja) 転がり軸受
JP7201047B2 (ja) スピンドル装置
JP6565927B2 (ja) 軸受装置及び主軸装置
WO2016068219A1 (ja) 潤滑剤及び軸受装置、並びに潤滑剤供給装置
TWI598522B (zh) Bearings for spindle devices for work machines

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16846422

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187005738

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017539894

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE