WO2017047453A1 - 音質判定装置及び記録媒体 - Google Patents

音質判定装置及び記録媒体 Download PDF

Info

Publication number
WO2017047453A1
WO2017047453A1 PCT/JP2016/076180 JP2016076180W WO2017047453A1 WO 2017047453 A1 WO2017047453 A1 WO 2017047453A1 JP 2016076180 W JP2016076180 W JP 2016076180W WO 2017047453 A1 WO2017047453 A1 WO 2017047453A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
tilt
sound quality
sound
frequency distribution
Prior art date
Application number
PCT/JP2016/076180
Other languages
English (en)
French (fr)
Inventor
隆一 成山
Original Assignee
ヤマハ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマハ株式会社 filed Critical ヤマハ株式会社
Publication of WO2017047453A1 publication Critical patent/WO2017047453A1/ja
Priority to US15/920,532 priority Critical patent/US10453478B2/en

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L25/00Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00
    • G10L25/48Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 specially adapted for particular use
    • G10L25/51Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 specially adapted for particular use for comparison or discrimination
    • G10L25/60Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 specially adapted for particular use for comparison or discrimination for measuring the quality of voice signals
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
    • G10H1/00Details of electrophonic musical instruments
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
    • G10H1/00Details of electrophonic musical instruments
    • G10H1/02Means for controlling the tone frequencies, e.g. attack or decay; Means for producing special musical effects, e.g. vibratos or glissandos
    • G10H1/06Circuits for establishing the harmonic content of tones, or other arrangements for changing the tone colour
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
    • G10H2210/00Aspects or methods of musical processing having intrinsic musical character, i.e. involving musical theory or musical parameters or relying on musical knowledge, as applied in electrophonic musical tools or instruments
    • G10H2210/031Musical analysis, i.e. isolation, extraction or identification of musical elements or musical parameters from a raw acoustic signal or from an encoded audio signal
    • G10H2210/066Musical analysis, i.e. isolation, extraction or identification of musical elements or musical parameters from a raw acoustic signal or from an encoded audio signal for pitch analysis as part of wider processing for musical purposes, e.g. transcription, musical performance evaluation; Pitch recognition, e.g. in polyphonic sounds; Estimation or use of missing fundamental
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
    • G10H2210/00Aspects or methods of musical processing having intrinsic musical character, i.e. involving musical theory or musical parameters or relying on musical knowledge, as applied in electrophonic musical tools or instruments
    • G10H2210/031Musical analysis, i.e. isolation, extraction or identification of musical elements or musical parameters from a raw acoustic signal or from an encoded audio signal
    • G10H2210/091Musical analysis, i.e. isolation, extraction or identification of musical elements or musical parameters from a raw acoustic signal or from an encoded audio signal for performance evaluation, i.e. judging, grading or scoring the musical qualities or faithfulness of a performance, e.g. with respect to pitch, tempo or other timings of a reference performance
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L25/00Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00
    • G10L25/03Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 characterised by the type of extracted parameters
    • G10L25/18Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 characterised by the type of extracted parameters the extracted parameters being spectral information of each sub-band
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L25/00Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00
    • G10L25/48Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 specially adapted for particular use
    • G10L25/51Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 specially adapted for particular use for comparison or discrimination

Definitions

  • the present invention relates to a technique for determining sound quality in real time.
  • Patent Document 1 has a problem that it is necessary to perform machine learning in the evaluation unit, and enormous data is required.
  • One of the problems of the present invention is to determine sound quality in real time without requiring enormous data.
  • a sound quality determination apparatus is calculated by an acquisition unit that acquires an input sound, a frequency distribution calculation unit that calculates a frequency distribution of the input sound acquired by the acquisition unit, and the frequency distribution calculation unit.
  • a tilt comparison unit that calculates a tilt indicating a change in the intensity of overtones with respect to a frequency based on the frequency distribution, and a tilt comparison that compares the tilt calculated by the tilt calculation unit with a threshold value related to the tilt.
  • a determination unit that determines whether or not the input sound has a predetermined sound quality based on a result of comparison by the tilt comparison unit.
  • the sound quality determination device further includes a harmonic overtone ratio calculation unit that calculates a harmonic overtone ratio indicating a ratio of a harmonic overtone frequency to a fundamental frequency based on the frequency distribution calculated by the frequency distribution calculation unit, and the overtone ratio calculation
  • a harmonic overtone ratio calculation unit that calculates a harmonic overtone ratio indicating a ratio of a harmonic overtone frequency to a fundamental frequency based on the frequency distribution calculated by the frequency distribution calculation unit, and the overtone ratio calculation
  • a harmonic ratio comparison unit that compares the harmonic ratio calculated by the unit with a threshold value related to the harmonic ratio, and the determination unit compares the result compared by the tilt comparison unit and the harmonic ratio comparison unit Based on the result, it may be determined whether or not the input sound has a predetermined sound quality.
  • a sound quality determination apparatus includes an acquisition unit that acquires an input sound, a frequency distribution calculation unit that calculates a frequency distribution of the input sound acquired by the input sound acquisition unit, and the frequency Based on the frequency distribution calculated by the distribution calculation unit, a harmonic ratio calculation unit that calculates a harmonic ratio indicating a ratio of a harmonic to a fundamental tone, a harmonic ratio calculated by the harmonic ratio calculation unit, and a related to the harmonic ratio And a determination unit for determining whether or not the input sound has a predetermined sound quality based on a result of comparison by the harmonic ratio comparison unit.
  • threshold value related to the tilt or the harmonic content ratio a value derived using the frequency of the fundamental tone in the frequency distribution may be used.
  • These threshold values may be derived from a predetermined arithmetic expression, or may be derived from a lookup table in which a tilt or harmonic ratio is associated with a threshold value in advance.
  • a parameter changing unit that can change a parameter of the arithmetic expression may be further provided.
  • a selection unit that selects an accompaniment sound that is output during an input period of the input sound may be further provided, and the parameter change unit may change the parameter based on information associated with the selected accompaniment sound. May be.
  • the determination unit may determine that the tilt has the predetermined sound quality when the tilt satisfies a predetermined reference, or the tilt satisfies the predetermined reference for a predetermined time continuously.
  • the predetermined sound quality may be determined.
  • a computer-readable recording medium that records a program according to an embodiment of the present invention acquires an input sound from a computer, A frequency distribution of the acquired input sound is calculated, a tilt indicating a change in the intensity of overtones with respect to the frequency is calculated based on the calculated frequency distribution, and the calculated tilt and a threshold related to the tilt are calculated. Are recorded, and a program is executed to determine whether or not the input sound has a predetermined sound quality based on the comparison result.
  • a computer-readable recording medium that records a program according to another embodiment of the present invention acquires an input sound in a computer, calculates a frequency distribution of the acquired input sound, and calculates the calculated frequency distribution.
  • a harmonic ratio indicating the ratio of the harmonics to the fundamental tone is calculated, the calculated harmonic ratio is compared with a threshold value related to the harmonic ratio, and the input sound is determined based on the comparison result.
  • a program for executing determination of whether or not the sound quality is recorded is recorded.
  • the sound quality determination device 10 is a device having a function of determining the sound quality of a singing voice of a user who sings (hereinafter sometimes referred to as a singer).
  • the sound quality determination device 10 has a function of evaluating a sound quality parameter using a threshold value depending on a change in pitch (fundamental frequency) and determining that the sound quality is a specific sound quality when a predetermined condition is satisfied.
  • an example of using a tilt (details will be described later) indicating a change in intensity of overtone with respect to a frequency is used as a sound quality parameter, and an example of determining a back voice (farset) as a sound quality from a singing voice is shown.
  • FIG. 1 is a block diagram showing a configuration of a sound quality determination device 10 according to the first embodiment of the present invention.
  • the sound quality determination device 10 is, for example, a karaoke device having a singing scoring function.
  • the sound quality determination device 10 includes a control unit 11, a storage unit 13, an operation unit 15, a display unit 17, a communication unit 19, and a signal processing unit 21.
  • the signal processing unit 21 is connected to a sound input unit (for example, a microphone) 23 and a sound output unit (for example, a speaker) 25. These components are connected to each other via a bus 27.
  • the control unit 11 includes an arithmetic processing circuit such as a CPU.
  • the control unit 11 causes the CPU to execute the control program 13 a stored in the storage unit 13 to realize various functions in the sound quality determination device 10.
  • the realized functions include a sound quality determination function for singing voice.
  • a function for determining a back voice from a singing voice is illustrated.
  • the storage unit 13 is a storage device such as a nonvolatile memory or a hard disk.
  • the storage unit 13 stores a control program 13a for realizing the sound quality determination function.
  • the control program may be provided in a state stored in a computer-readable recording medium such as a magnetic recording medium, an optical recording medium, a magneto-optical recording medium, or a semiconductor memory.
  • the sound quality determination device 10 only needs to include a device that reads the recording medium.
  • the control program 13a may be downloaded via a network such as the Internet.
  • storage part 13 memorize
  • the music data 13b includes data related to a karaoke song, for example, guide melody data, accompaniment data, and lyrics data.
  • the guide melody data is data indicating the melody of the song.
  • Accompaniment data is data indicating the accompaniment of a song.
  • the guide melody data and accompaniment data may be data expressed in the MIDI format.
  • the lyric data is data for displaying the lyrics of the song and data indicating the timing for changing the color of the displayed lyrics telop.
  • the singing voice data 13 c is data indicating the singing voice input from the sound input unit 23 by the singer. In this example, the singing voice data is stored in the storage unit 13 until the sound quality is determined based on the singing voice by the sound quality determination function.
  • the operation unit 15 is a device such as operation buttons, a keyboard, and a mouse provided on the operation panel and the remote controller, and outputs a signal corresponding to the input operation to the control unit 11.
  • the display unit 17 is a display device such as a liquid crystal display or an organic EL display, and displays a screen based on control by the control unit 11. Note that the operation unit 15 and the display unit 17 may integrally form a touch panel.
  • the communication unit 19 is connected to a communication line such as the Internet or a LAN (Local Area Network) based on the control of the control unit 11 and transmits / receives information to / from an external device such as a server.
  • the function of the storage unit 13 may be realized by an external device that can communicate with the communication unit 19.
  • the signal processing unit 21 includes a sound source that generates an audio signal from a MIDI format signal, an A / D converter, a D / A converter, and the like.
  • the singing voice is converted into an electric signal by a sound input unit 23 such as a microphone and input to the signal processing unit 21, and A / D converted by the signal processing unit 21 and output to the control unit 11.
  • the singing voice is stored in the storage unit 13 as singing voice data.
  • the accompaniment data is read out by the control unit 11, D / A converted by the signal processing unit 21, and output as an accompaniment sound of a song from a sound output unit 25 such as a speaker.
  • a guide melody may also be output from the sound output unit 25.
  • FIG. 2 is a block diagram showing the configuration of the sound quality determination function 100 in the first embodiment of the present invention.
  • the sound quality determination function 100 includes an accompaniment output unit 101, an input sound acquisition unit 103, a frequency distribution calculation unit 105, a tilt calculation unit 107, a threshold Tth derivation unit 109, a comparison unit 111, and a determination unit 113.
  • the accompaniment output unit 101 and the threshold Tth deriving unit 109 are shown as broken lines because they are not essential components of the sound quality determination function 100.
  • elements (functions) indicated by broken lines are not indispensable configurations.
  • the accompaniment output unit 101 reads out accompaniment data corresponding to the singing song designated by the singer and causes the sound output unit 25 to output the accompaniment sound via the signal processing unit 21.
  • the input sound acquisition unit 103 acquires singing voice data indicating the singing voice input from the sound input unit 23. In this example, the input sound to the sound input unit 23 during the period in which the accompaniment sound is output is recognized as the determination target singing voice.
  • the input sound acquisition part 103 acquires song voice data directly from the signal processing part 21, you may make it acquire the song voice data once memorize
  • the input sound acquisition unit 103 is not limited to acquiring singing voice data indicating the input sound to the sound input unit 23, and the singing voice data indicating the input sound to the external device is transmitted by the communication unit 19 via the network. You may get it.
  • the frequency distribution calculation unit 105 performs a Fourier analysis on the singing voice data acquired by the input sound acquisition unit 103 for each frame (data sample divided by a predetermined period), and calculates a frequency distribution in each frame. From the frequency distribution acquired by the frequency distribution calculation unit 105, the relationship between the fundamental tone and harmonics of the singing voice in each frame can be obtained.
  • the tilt calculation unit 107 calculates a tilt (T) from the frequency distribution of the singing voice data acquired by the frequency distribution calculation unit 105.
  • the tilt is a value indicating a change in the intensity (power) of the harmonic over frequency.
  • the tilt calculation unit 107 can calculate a plurality of intensities corresponding to a plurality of harmonics from the frequency distribution, and calculate a tilt of a linear function obtained by linear approximation using the plurality of intensities as a tilt.
  • FIG. 3 is a diagram for explaining the concept of tilt.
  • the horizontal axis represents frequency components included in the singing voice in logarithm
  • the vertical axis represents sound intensity at each frequency in logarithm.
  • the frequency f0 is called a pitch (fundamental frequency) and corresponds to the frequency of the fundamental tone.
  • the frequencies f1, f2, and f3 correspond to the frequencies of the second harmonic, the third harmonic, and the fourth harmonic, respectively.
  • the linear function 301 can be obtained by performing linear approximation by the least square method for the peak value of the intensity of each overtone.
  • the tilt is obtained by linear approximation using the least squares method.
  • any method can be used as long as a parameter indicating how the overtone intensity changes with respect to the frequency change can be extracted.
  • the tilt may be obtained using.
  • an example of using the peak value of the intensity of the harmonic overtone as an example of “intensity corresponding to the harmonic overtone” has been shown, but the peak value is limited to the peak value as long as it is a value that can represent the tendency of the intensity change of each harmonic overtone. There is no need.
  • an intensity value at the frequency of the harmonic overtone may be different from the above-described peak value
  • an area obtained by integrating the intensity of the harmonic overtone within a predetermined range may be used.
  • the tilt is obtained using f1 to f3 (that is, the second to fourth overtones).
  • the present invention is not limited to this, and the overtone used for calculating the tilt can be arbitrarily determined.
  • the tilt may be calculated using overtones having a certain intensity or higher.
  • the threshold value Tth deriving unit 109 derives a threshold value based on the pitch acquired by the frequency distribution calculating unit 105 as a threshold value (Tth) related to tilt.
  • the threshold value (Tth) related to tilt is a value that changes depending on the pitch, and can be derived using a predetermined arithmetic expression (for example, a function Ft (F0) having an independent variable as a pitch).
  • the predetermined arithmetic expression may be a linear function or a higher-order function of second or higher order.
  • it may be derived from a look-up table in which a pitch and a threshold value are associated in advance. These arithmetic expressions and lookup tables may be obtained in advance by statistically processing various singing voices.
  • the comparing unit 111 compares the tilt acquired by the tilt calculating unit 107 with the threshold value related to the tilt acquired by the threshold value Tth deriving unit 109. Then, a signal indicating the magnitude relationship between the tilt and the threshold is output to the determination unit 113.
  • the determination unit 113 determines whether or not the singing voice data acquired by the input sound acquisition unit 103 indicates a reverse voice based on the signal indicating the magnitude relationship between the tilt and the threshold acquired from the comparison unit 111. judge.
  • the above-described threshold value related to tilt has a meaning as a value serving as an index for determining whether or not the singing voice is a reverse voice at an arbitrary pitch. Specifically, when the tilt in a certain frame is greater than or equal to a predetermined threshold depending on the pitch in that frame (that is, the constant “a” indicating the slope of the linear function 301 described above is greater than or equal to a predetermined threshold. ), It is determined that the singing voice of the frame is a back voice.
  • FIG. 4 is a diagram for explaining the concept of the back voice determination in the determination unit 113.
  • the horizontal axis is pitch (P)
  • the vertical axis is tilt (T).
  • FIG. 4 shows a function Ft (P) as a predetermined arithmetic expression for deriving the aforementioned threshold value (Tth).
  • a threshold value (Tth) corresponding to the pitch is obtained from the function Ft (P).
  • the determination unit 113 compares the tilt calculated by the tilt calculation unit 107 with the threshold value (Tth) obtained from the function Ft (P) by the threshold value Tth deriving unit 109 based on the result of comparing the tilt with the threshold value (Tth). If it is above, it will determine with the singing sound of the flame
  • the determination unit 113 determines that the singing voice of the frame 1 is a voice.
  • the pitch is P1
  • the tilt is T2
  • T2 is equal to or greater than the threshold (Ft (P2)).
  • the determination unit 113 determines that the singing voice of the frame 2 is a back voice.
  • an example is shown in which it is determined whether or not the voice is in a frame unit. However, it may be configured that the voice is determined to be a voice when a predetermined number or more of the frames continuously satisfy the above condition.
  • the harmonics become the second harmonic, the third harmonic, the fourth harmonic and the higher harmonics.
  • the strength tends to decrease rapidly. That is, as shown in FIG. 3, the tilt (inclination) indicating the change in the intensity of the harmonic over frequency is steep. If this tendency is used, if the tilt can be calculated, it can be determined that it is a back-sound when it exceeds a predetermined threshold (that is, when the intensity of the harmonic overtone with respect to the frequency is steep).
  • the above-described function Ft (P) can vary depending on the person who speaks, but the function Ft (P) can be obtained in advance by statistically processing the singing voices of various persons.
  • the sound quality determination apparatus 10 performs frequency analysis on the singing voice data input from the input sound acquisition unit 103 by the frequency distribution calculation unit 105, and calculates tilt based on the analysis result.
  • the unit 107 calculates tilt as a sound quality parameter.
  • the comparison unit 111 compares the calculated tilt with a predetermined threshold value related to the tilt acquired from the threshold value Tth deriving unit 109.
  • the determination unit 113 determines whether or not the input singing voice data is data indicating a reverse voice.
  • the sound quality determination function 100a is the first implementation in that the sound quality parameter uses a harmonic ratio in addition to the tilt described in the first embodiment, and performs a back voice determination based on the tilt and the harmonic ratio. It differs from the sound quality determination function 100 in the form.
  • the overtone ratio is a parameter indicating the ratio of the frequency of the overtone to the frequency of the fundamental tone.
  • description will be made by paying attention to the difference in configuration from the sound quality determination function 100 in the first embodiment, and the same portions are denoted by the same reference numerals and description thereof is omitted.
  • FIG. 5 is a block diagram showing the configuration of the sound quality determination function 100a in the second embodiment of the present invention.
  • the sound quality determination function 100a includes an accompaniment output unit 101, an input sound acquisition unit 103, a frequency distribution calculation unit 105, a tilt calculation unit 107, a threshold Tth derivation unit 109, a harmonic ratio calculation unit 201, a threshold Hth derivation unit 203, a comparison unit 111a, And a determination unit 113a.
  • the harmonic ratio calculation unit 201 calculates the harmonic ratio using the fundamental frequency intensity and harmonic frequency intensity acquired from the frequency distribution calculation unit 105.
  • an example of a specific method for calculating the overtone ratio will be described with reference to FIG.
  • FIG. 6 is a diagram showing the frequency distribution in the singing voice data for one frame.
  • intensity peaks appear at the fundamental frequency f0 and the harmonic frequencies f1 to f3.
  • the overtone ratio is the ratio of the frequency of the overtone to the frequency of the fundamental tone, it can be expressed as “intensity of overtone frequency / intensity of frequency of the fundamental tone”.
  • areas A0 to A3 occupied by each peak are obtained on the basis of intensity widths (for example, half-value widths W0 to W3) in each overtone, and these areas A0 to A3 are calculated as intensities in each peak.
  • the harmonic overtone ratio in the frequency distribution shown in FIG. 6 is obtained by “(A1 + A2 + A3) / A0”.
  • the method for calculating the overtone ratio is not limited to the above-described example.
  • the area of each peak may be obtained on the basis of a predetermined width other than the half-value width, or the maximum peak value of each peak may be simply used as the intensity.
  • the harmonics used for calculating the harmonic ratio can be arbitrarily determined, for example, using up to 3rd harmonics or 4th harmonics, or using only harmonics included in a specific frequency band. Furthermore, for example, it is possible to calculate the harmonic ratio using harmonics having a certain intensity or higher.
  • the threshold value Hth deriving unit 203 derives a threshold value (Hth) related to the overtone ratio.
  • the threshold value (Hth) related to the overtone ratio is a value that changes depending on the pitch, like the threshold value (Tth) related to the tilt. That is, the threshold value (Hth) related to the overtone ratio can also be derived using a predetermined arithmetic expression (for example, a function Fh (f0) having an independent variable as a pitch).
  • the predetermined arithmetic expression may be a linear function or a higher-order function of second or higher order.
  • a method using a predetermined arithmetic expression it may be derived from a look-up table in which a pitch and a threshold value are associated in advance.
  • These arithmetic expressions and lookup tables may be obtained in advance by statistically processing various singing voices.
  • the comparison unit 111a compares the tilt acquired by the tilt calculation unit 107 with the threshold value (Tth) acquired by the threshold value Tth deriving unit 109, and at the same time, acquires the harmonic ratio and threshold value Hth deriving unit acquired by the harmonic ratio calculation unit 201.
  • the threshold value (Hth) acquired in 203 is compared. Then, a signal indicating the magnitude relationship between the tilt and the threshold value (Tth) and a signal indicating the magnitude relationship between the overtone ratio and the threshold value (Hth) are output to the determination unit 113a.
  • the determination unit 113a acquires the input sound based on the signal acquired from the comparison unit 111a indicating the magnitude relationship between the tilt and the threshold (Tth) and the signal indicating the magnitude relationship between the overtone ratio and the threshold (Hth). It is determined whether or not the singing voice data acquired by the unit 103 indicates a reverse voice. Specifically, when the tilt in a certain frame is equal to or greater than a threshold value (Tth) and the overtone ratio is equal to or less than the threshold value (Hth), it is determined that the singing sound of that frame is a reverse voice. .
  • Tth threshold value
  • Hth the overtone ratio
  • it is determined that the singing sound of that frame is a reverse voice.
  • an example is shown in which it is determined whether or not the voice is in a frame unit. However, it may be configured that the voice is determined to be a voice when a predetermined number or more of the frames continuously satisfy the above condition.
  • FIG. 7A and FIG. 7B are diagrams for explaining the concept of back voice determination in the determination unit 113a.
  • the determination unit 113a determines whether or not the voice is a back-sound using both the determination based on the tilt illustrated in FIG. 7A and the determination based on the overtone ratio illustrated in FIG. 7B.
  • the horizontal axis represents pitch (P)
  • the vertical axis represents tilt (T)
  • the function Ft (P) is an arithmetic expression for deriving a threshold value (Tth) related to tilt
  • Tth threshold value
  • the horizontal axis represents pitch (P)
  • the vertical axis represents harmonic ratio (H)
  • the function Fh (P) corresponds to an arithmetic expression for deriving a threshold value (Hth) related to the harmonic ratio.
  • the determination unit 113 in the first embodiment determines that the singing voice of the frame 1 is a reverse voice, but the determination unit 113a in the present embodiment further determines based on the harmonic ratio at the same pitch (P1).
  • the overtone ratio is H1 when the pitch is P1
  • the overtone ratio is equal to or less than a threshold (Fh (P1)
  • the input singing voice is a back sound. It is determined that there is.
  • the overtone ratio becomes H2 when the pitch is P1, that is, when the overtone ratio exceeds the threshold (Fh (P1)), the tilt T1 is equal to or greater than the threshold (Ft (P1)). Even so, it is determined that the input singing voice is a voice.
  • the tilt is equal to or greater than the threshold (Ft (P)) at a predetermined pitch
  • the harmonic ratio is It is determined that the singing voice located in a certain space that is equal to or less than the threshold (Fh (P)) is a back voice.
  • the functions Ft (P) and Fh (P) described above can vary depending on the person who generates them, but the function Ft (P) can be obtained by statistically processing the singing voices of various persons. ) And the function Fh (P).
  • the ratio of overtones to the fundamental tone tends to decrease.
  • the voice 801 is relatively distributed in the region where the pitch is low and the harmonic ratio is high.
  • the back voice 802 tends to be distributed in a region where the pitch is high and the overtone ratio is low. Therefore, by simply demarcating the boundary between the voice 801 and the back voice 802 with the function Fh (P), the area below the function Fh (P) in FIG. 8 can be estimated as the back voice area.
  • the sound quality determination function 100a calculates the overtone ratio as a sound quality parameter in addition to the tilt described in the first embodiment, and the tilt and the overtone ratio are associated with predetermined predetermined amounts. Compare with the threshold. And based on those comparison results, it is determined whether or not the input singing voice data is data indicating a reverse voice. As described above, by using the overtone ratio in addition to the tilt as the sound quality parameter for the back voice determination, the accuracy of the back voice determination is further improved in addition to the effects described in the first embodiment.
  • the sound quality determination function 100b performs back voice determination based on the overtone ratio described in the second embodiment as a sound quality parameter.
  • the description will be made by paying attention to the difference in configuration from the sound quality determination functions 100 and 100a in the first embodiment and the second embodiment, and the same parts are denoted by the same reference numerals and the description is omitted. To do.
  • FIG. 9 is a block diagram showing the configuration of the sound quality determination function 100b in the third embodiment of the present invention.
  • the sound quality determination function 100b includes an accompaniment output unit 101, an input sound acquisition unit 103, a frequency distribution calculation unit 105, a harmonic ratio calculation unit 201, a threshold Hth derivation unit 203, a comparison unit 111b, and a determination unit 113b.
  • the overtone ratio calculation unit 201 calculates the overtone ratio using the fundamental frequency intensity and the overtone frequency intensity acquired from the frequency distribution calculation unit 105.
  • the threshold value Hth deriving unit 203 derives a threshold value (Hth) related to the harmonic overtone ratio.
  • the comparison unit 111b compares the overtone ratio acquired by the overtone ratio calculation unit 201 with the threshold value (Hth) acquired by the threshold value Hth deriving unit 203, and indicates a magnitude relationship between the overtone ratio and the threshold value (Hth).
  • the signal is output to the determination unit 113b.
  • the determination unit 113b Based on the signal indicating the magnitude relationship between the overtone ratio acquired from the comparison unit 111b and the threshold (Hth), the determination unit 113b indicates that the singing voice data acquired by the input sound acquisition unit 103 indicates a back voice. It is determined whether or not. Specifically, when the overtone ratio in a certain frame is equal to or less than a threshold value (Hth), it is determined that the singing voice of that frame is a back voice.
  • FIG. 10 is a diagram for explaining the concept of the back voice determination in the determination unit 113b.
  • the horizontal axis represents the pitch (P)
  • the vertical axis represents the overtone ratio (H).
  • FIG. 10 shows a function Fh (P) as a predetermined arithmetic expression for deriving the threshold value (Hth) described in the second embodiment.
  • Fh a threshold value
  • P the pitch in a certain frame
  • a threshold value (Hth) corresponding to the pitch is obtained from the function Fh (P).
  • the overtone ratio is set to the threshold value. If it is below, it is determined that the singing voice of the frame is a back voice.
  • the determination unit 113b determines that the singing voice of the frame 1 is a back voice.
  • the pitch P1 is the same, if the overtone ratio is H2 equal to or higher than the threshold value, it is determined that the singing voice of frame 1 is a voice.
  • the harmonic overtone ratio is H1
  • the overtone ratio exceeds a threshold (Fh (P2)) because the pitch is P2 lower than P1
  • the singing voice is determined to be voice.
  • an example is shown in which it is determined whether or not the voice is in a frame unit. However, it may be configured that the voice is determined to be a voice when a predetermined number or more of the frames continuously satisfy the above condition.
  • the sound quality determination function 100b calculates the overtone ratio as the sound quality parameter, and compares the overtone ratio with a predetermined threshold related thereto. Then, based on the comparison result, it is determined whether or not the input singing voice data is data indicating a reverse voice.
  • a series of processing from frequency analysis to determination can be executed with a small amount of calculation for each predetermined frame. Therefore, accumulation of singing voice data and machine learning are unnecessary, and it is possible to determine a back voice in real time while suppressing the amount of calculation.
  • Modification 1 In the sound quality determination function 100 according to the first embodiment, based on the data acquired from the frequency distribution calculation unit 105, the threshold Tth deriving unit 109 derives a threshold (Tth) related to tilt, and compares the threshold with the tilt. An example is shown. However, the tendency that the tilt becomes steep when it becomes a back voice is so large that it may not depend on a person. For this reason, it is possible to simply perform the back-sound determination by regarding the threshold value as a constant value.
  • FIG. 11 is a block diagram showing the configuration of the sound quality determination function 100c in the first modification.
  • the threshold value Tth deriving unit 109 of the sound quality determination function 100 in the first embodiment is omitted, and the comparison unit 111c has a threshold value Tth as a fixed value. Therefore, in the sound quality determination function 100c, when the tilt acquired by the tilt calculation unit 107 is input to the comparison unit 111c, the magnitude relationship is compared with the threshold value Tth that is a fixed value. At this time, the threshold value Tth may be obtained in advance by statistically processing various singing voices.
  • the process of deriving the threshold value (Tth) can be omitted, the load of the entire process for determining the back voice can be reduced, and the back voice determination can be performed more quickly.
  • the sound quality determination function 100 in the first embodiment is taken as an example, and an example in which the threshold value Tth derivation unit is omitted with the threshold value (Tth) related to tilt as a fixed value is shown.
  • the present invention is not limited to this, and the threshold value Hth deriving unit 203 is omitted as a fixed value for the threshold value (Hth) related to the harmonic ratio of the sound quality determination function 100a in the second embodiment and the sound quality determination function 100b in the third embodiment. Is possible.
  • the comparison unit 111a or 111b may have a threshold Hth.
  • both the threshold Tth deriving unit 109 and the threshold Hth deriving unit 203 can be omitted.
  • the comparison unit 111a may have a threshold value Tth and a threshold value Hth.
  • FIG. 12 is a block diagram showing the configuration of the sound quality determination function 100d in the second modification.
  • the sound quality determination function 100d allows the setting parameter of the function Ft (f0) to be changed in the threshold value Tth deriving unit 109 in the sound quality determination function 100 in the first embodiment.
  • data from the parameter changing unit 205 is input to the threshold value Tth deriving unit 109a of the sound quality determination function 100d.
  • the parameter changing unit 205 outputs data for changing a constant (setting parameter) in an arithmetic expression for deriving the threshold Tth to the threshold Tth deriving unit 109a.
  • the parameter changing unit 205 outputs different data depending on whether the singer is male or female, and by changing the constant of the above-described arithmetic expression, the arithmetic expression used in the threshold Tth deriving unit 109a Can be changed to an arithmetic expression for men or an arithmetic expression for women.
  • the parameter changing unit described in the second modification can be configured to further change the parameter based on information associated with the accompaniment sound.
  • the parameter changing unit can change the parameter based on information indicating a male part, information indicating a female part, information indicating that the sound is an accompaniment sound for a child, and the like associated with the accompaniment sound. .
  • FIG. 13 is a block diagram showing the configuration of the sound quality determination function 100e in the third modification.
  • a selection unit 207 for selecting an accompaniment sound is connected to the parameter changing unit 205a.
  • accompaniment data corresponding to the song piece is selected by the selection unit 207.
  • a signal instructing selection of accompaniment data by the selection unit 207 is input to the accompaniment output unit 101, and the accompaniment data is reproduced. Further, information associated with the accompaniment sound is input from the selection unit 207 to the parameter changing unit 205a.
  • the information associated with the accompaniment sound may be data associated with the accompaniment data, or may be other data stored in association with the accompaniment data.
  • the parameter changing unit is configured to change the arithmetic expression of the threshold Tth deriving unit 109a to the arithmetic expression for male singers. Data corresponding to the male singing formula is output from 205a.
  • the sound quality determination apparatus is not limited to the back voice, and other sound quality may be determined using the tilt or the overtone ratio. Is possible. For example, in the case of a singing voice that has a small tilt and a high harmonic ratio, it is determined that the sound quality is bright. It is also possible to do.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Quality & Reliability (AREA)
  • Computational Linguistics (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Human Computer Interaction (AREA)
  • Auxiliary Devices For Music (AREA)
  • Reverberation, Karaoke And Other Acoustics (AREA)

Abstract

音質判定装置は、入力音を取得する取得部と、前記取得部によって取得された前記入力音の周波数分布を算出する周波数分布算出部と、前記周波数分布算出部によって算出された前記周波数分布に基づいて、周波数に対する倍音の強度の変化を示すチルトを算出するチルト算出部と、前記チルト算出部によって算出されたチルトと、当該チルトに関連した閾値とを比較するチルト比較部と、前記チルト比較部によって比較された結果に基づいて、前記入力音が所定の音質であるか否かを判定する判定部と、を備える。

Description

音質判定装置及び記録媒体
 本発明は、音質をリアルタイムに判定する技術に関する。
 発声の技法として裏声又はファルセットと呼ばれる技法が存在する。これらは、特に高いピッチ(音高)に対応する発音を作り出すための技法であり、アーティストの間でも一般的に用いられる技法である。そのため、近年では、表声(地声)及び裏声を含む発声を客観的に評価する技術を開発する動きがある(特許文献1)。
特開2014-130227号公報
 しかしながら、特許文献1に記載された技術では、評価部において機械学習を行う必要があり、膨大なデータが必要になるという問題があった。
 本発明の課題の一つは、膨大なデータを必要とせず、リアルタイムに音質を判定することにある。
 本発明の一実施形態による音質判定装置は、入力音を取得する取得部と、前記取得部によって取得された前記入力音の周波数分布を算出する周波数分布算出部と、前記周波数分布算出部によって算出された前記周波数分布に基づいて、周波数に対する倍音の強度の変化を示すチルトを算出するチルト算出部と、前記チルト算出部によって算出されたチルトと、当該チルトに関連した閾値とを比較するチルト比較部と、前記チルト比較部によって比較された結果に基づいて、前記入力音が所定の音質であるか否かを判定する判定部と、を備えることを特徴とする。
 上記音質判定装置は、さらに、前記周波数分布算出部によって算出された前記周波数分布に基づいて、基音の周波数に対する倍音の周波数の比率を示す倍音比率を算出する倍音比率算出部と、前記倍音比率算出部によって算出された倍音比率と、当該倍音比率に関連した閾値とを比較する倍音比率比較部と、を備え、前記判定部は、チルト比較部によって比較された結果及び前記倍音比率比較部によって比較された結果に基づいて、前記入力音が所定の音質であるか否かを判定してもよい。
 また、本発明の他の実施形態による音質判定装置は、入力音を取得する取得部と、前記入力音取得部によって取得された前記入力音の周波数分布を算出する周波数分布算出部と、前記周波数分布算出部によって算出された前記周波数分布に基づいて、基音に対する倍音の比率を示す倍音比率を算出する倍音比率算出部と、前記倍音比率算出部によって算出された倍音比率と、当該倍音比率に関連した閾値とを比較する倍音比率比較部と、前記倍音比率比較部によって比較された結果に基づいて、前記入力音が所定の音質であるか否かを判定する判定部と、を備えることを特徴とする。
 前記チルトに関連した閾値、または倍音比率に関連した閾値としては、前記周波数分布における基音の周波数を用いて導出された値を用いてもよい。これらの閾値は、所定の演算式により導出されてもよいし、予めチルトまたは倍音比率と閾値とを関連付けたルックアップテーブルから導出してもよい。前記閾値を所定の演算式により導出する場合、当該演算式のパラメータを変更可能なパラメータ変更部をさらに備えてもよい。
 また、前記入力音の入力期間において出力される伴奏音を選択する選択部をさらに備えてもよく、前記パラメータ変更部は、選択された前記伴奏音に関連付けられた情報に基づいて前記パラメータを変更してもよい。
 上述した音質判定装置において、前記判定部は、前記チルトが所定の基準を満たすとき、前記所定の音質であると判定してもよいし、前記チルトが所定の基準を所定時間継続して満たすとき、前記所定の音質であると判定してもよい。
 また、本発明の一実施形態によるプログラムを記録したコンピュータ読み取り可能な記録媒体は、コンピュータに、入力音を取得し、
 取得された前記入力音の周波数分布を算出し、算出された前記周波数分布に基づいて、周波数に対する倍音の強度の変化を示すチルトを算出し、算出されたチルトと、当該チルトに関連した閾値とを比較し、比較された結果に基づいて、前記入力音が所定の音質であるか否かを判定することを実行させるプログラムを記録する。
 また、本発明の他の実施形態によるプログラムを記録したコンピュータ読み取り可能な記録媒体は、コンピュータに、入力音を取得し、取得された前記入力音の周波数分布を算出し、算出された前記周波数分布に基づいて、基音に対する倍音の比率を示す倍音比率を算出し、算出された倍音比率と、当該倍音比率に関連した閾値とを比較し、比較された結果に基づいて、前記入力音が所定の音質であるか否かを判定することを実行させるプログラムを記録する。
 上述した構成によれば、膨大なデータを必要とせず、リアルタイムに音質を判定することが可能となる。
本発明の第1実施形態における音質判定装置の構成を示すブロック図である。 本発明の第1実施形態における音質判定機能の構成を示すブロック図である。 チルトの概念を説明するための図である。 本発明の第1実施形態における音質判定機能を構成する判定部による裏声判定の概念を説明するための図である。 本発明の第2実施形態における音質判定機能の構成を示すブロック図である。 倍音比率の算出方法を説明するための図である。 本発明の第2実施形態における音質判定機能を構成する判定部による裏声判定の概念を説明するための図である。 本発明の第2実施形態における音質判定機能を構成する判定部による裏声判定の概念を説明するための図である。 ピッチと倍音比率の相関を説明するための図である。 本発明の第3実施形態における音質判定機能の構成を示すブロック図である。 本発明の第3実施形態における音質判定機能を構成する判定部による裏声判定の概念を説明するための図である。 変形例1における音質判定機能の構成を示すブロック図である。 変形例2における音質判定機能の構成を示すブロック図である。 変形例3における音質判定機能の構成を示すブロック図である。
 以下、本発明の一実施形態における音質判定装置について、図面を参照しながら詳細に説明する。以下に示す実施形態は、本発明の実施形態の一例であって、本発明はこれらの実施形態に限定されるものではない。
(第1実施形態)
 本発明の第1実施形態における音質判定装置10について説明する。第1実施形態における音質判定装置10は、歌唱する利用者(以下、歌唱者という場合がある)の歌唱音声の音質を判定する機能を備えた装置である。音質判定装置10は、ピッチ(基本周波数)の変化に依存した閾値を用いて音質パラメータを評価し、所定の条件を満たした場合に特定の音質であると判定する機能を備えている。
 本実施形態では、音質パラメータとして、周波数に対する倍音の強度の変化を示すチルト(詳細は後述する)を用いる例を示し、歌唱音声から、音質として裏声(ファルセット)を判定する例を示す。
[ハードウエア]
 図1は、本発明の第1実施形態における音質判定装置10の構成を示すブロック図である。音質判定装置10は、例えば、歌唱採点機能を備えたカラオケ装置である。音質判定装置10は、制御部11、記憶部13、操作部15、表示部17、通信部19、および信号処理部21を含む。また、信号処理部21には、音入力部(例えばマイクロフォン)23及び音出力部(例えばスピーカー)25が接続されている。これらの各構成は、バス27を介して相互に接続されている。
 制御部11は、CPUなどの演算処理回路を含む。制御部11は、記憶部13に記憶された制御プログラム13aをCPUにより実行して、各種機能を音質判定装置10において実現させる。実現される機能には、歌唱音声の音質判定機能が含まれる。本実施形態では、音質判定機能の具体例として、歌唱音声から裏声を判定する機能を例示する。
 記憶部13は、不揮発性メモリ、ハードディスク等の記憶装置である。記憶部13は、音質判定機能を実現するための制御プログラム13aを記憶する。制御プログラムは、磁気記録媒体、光記録媒体、光磁気記録媒体、半導体メモリなどのコンピュータ読み取り可能な記録媒体に記憶した状態で提供されてもよい。この場合には、音質判定装置10は、記録媒体を読み取る装置を備えていればよい。また、制御プログラム13aは、インターネット等のネットワーク経由でダウンロードされてもよい。
 また、記憶部13は、歌唱に関するデータとして、楽曲データ13b、及び歌唱音声データ13cを記憶する。楽曲データ13bは、カラオケの歌唱曲に関連するデータ、例えば、ガイドメロディデータ、伴奏データ、歌詞データなどが含まれている。ガイドメロディデータは、歌唱曲のメロディを示すデータである。伴奏データは、歌唱曲の伴奏を示すデータである。ガイドメロディデータおよび伴奏データは、MIDI形式で表現されたデータであってもよい。歌詞データは、歌唱曲の歌詞を表示させるためのデータ、および表示させた歌詞テロップを色替えするタイミングを示すデータである。歌唱音声データ13cは、歌唱者が音入力部23から入力した歌唱音声を示すデータである。この例では、歌唱音声データは、音質判定機能によって歌唱音声に基づいて音質判定がなされるまで、記憶部13に記憶される。
 操作部15は、操作パネルおよびリモコンなどに設けられた操作ボタン、キーボード、マウスなどの装置であり、入力された操作に応じた信号を制御部11に出力する。表示部17は、液晶ディスプレイ、有機ELディスプレイ等の表示装置であり、制御部11による制御に基づいた画面が表示される。なお、操作部15と表示部17とは一体としてタッチパネルを構成してもよい。通信部19は、制御部11の制御に基づいて、インターネットやLAN(Local Area Network)などの通信回線と接続して、サーバ等の外部装置と情報の送受信を行う。なお、記憶部13の機能は、通信部19において通信可能な外部装置で実現されてもよい。
 信号処理部21は、MIDI形式の信号からオーディオ信号を生成する音源、A/Dコンバータ、D/Aコンバータ等を含む。歌唱音声は、マイクロフォン等の音入力部23において電気信号に変換されて信号処理部21に入力され、信号処理部21においてA/D変換されて制御部11に出力される。上述したように、歌唱音声は、歌唱音声データとして記憶部13に記憶される。また、伴奏データは、制御部11によって読み出され、信号処理部21においてD/A変換され、スピーカー等の音出力部25から歌唱曲の伴奏音として出力される。このとき、ガイドメロディも音出力部25から出力されるようにしてもよい。
[音質判定機能]
 音質判定装置10の制御部11が記憶部13に記憶された制御プログラム13aを実行することによって実現される音質判定機能について説明する。なお、以下に説明する音質判定機能を実現する構成の一部または全部は、ハードウエアによって実現されてもよい。
 図2は、本発明の第1実施形態における音質判定機能100の構成を示すブロック図である。音質判定機能100は、伴奏出力部101、入力音取得部103、周波数分布算出部105、チルト算出部107、閾値Tth導出部109、比較部111、および判定部113を含む。なお、伴奏出力部101及び閾値Tth導出部109は、音質判定機能100の構成として必須の構成ではないため破線で示している。後述する図5、図9、図11~図13においても同様に、破線で示す要素(機能)は必須の構成ではない。
 伴奏出力部101は、歌唱者に指定された歌唱曲に対応する伴奏データを読み出し、信号処理部21を介して、伴奏音を音出力部25から出力させる。入力音取得部103は、音入力部23から入力された歌唱音声を示す歌唱音声データを取得する。この例では、伴奏音が出力されている期間における音入力部23への入力音を、判定対象の歌唱音声として認識する。なお、入力音取得部103は、歌唱音声データを信号処理部21から直接取得するが、いったん記憶部13に記憶された歌唱音声データを取得するようにしてもよい。また、入力音取得部103は、音入力部23への入力音を示す歌唱音声データを取得する場合に限らず、外部装置への入力音を示す歌唱音声データを、通信部19によりネットワーク経由で取得してもよい。
 周波数分布算出部105は、入力音取得部103によって取得された歌唱音声データに対しフレーム(所定期間で区切られたデータサンプル)ごとにフーリエ解析を行い、各フレームにおける周波数分布を算出する。周波数分布算出部105で取得された周波数分布から、各フレームにおける歌唱音声の基音と倍音との関係を求めることができる。
 チルト算出部107は、周波数分布算出部105で取得された歌唱音声データの周波数分布からチルト(T)を算出する。ここで、チルトとは、周波数に対する倍音の強度(パワー)の変化を示す値のことをいう。例えば、チルト算出部107は、周波数分布から複数の倍音にそれぞれ対応する複数の強度を求め、それら複数の強度を用いた直線近似により得た一次関数の傾きをチルトとして算出することができる。図3は、チルトの概念を説明するための図である。図3において、横軸は歌唱音声に含まれる周波数成分を対数で取ったものであり、縦軸は各周波数における音の強度を対数で取ったものである。周波数f0は、ピッチ(基本周波数)と呼ばれ、基音の周波数に対応する。また、周波数f1、f2、f3は、それぞれ2倍音、3倍音、4倍音の周波数に対応する。
 このとき、例えば、各倍音の強度のピーク値について最小二乗法による直線近似を行うと、一次関数301を得ることができる。一般的に、高い周波数の倍音(高調波)ほど強度が低くなる傾向にあるため、一次関数301は右下がりとなることが多い。そのため、一次関数301を式で表すと、通常はy=-ax+b(「x」及び「y」は、それぞれ図3のx軸及びy軸に対応する変数)となり、このときの定数aを本明細書中では「チルト」と定義する。すなわち、「チルト」とは、周波数の増加分に対して倍音の強度がどのように減少するかを示すパラメータとも言える。
 なお、この例では、最小二乗法による直線近似によりチルトを求めているが、周波数の変化に対して倍音の強度がどのように変化するかを示すパラメータを抽出することさえできれば、どのような手法を用いてチルトを求めてもよい。また、「倍音に対応する強度」の一例として倍音の強度のピーク値を用いる例を示したが、各倍音の強度の変化の傾向を表すことが可能な値であれば、ピーク値に限定する必要はない。例えば、倍音の周波数における強度の値(上述したピーク値とは異なる場合がある)を用いてもよいし、倍音の強度を所定範囲で積分して得た面積を用いてもよい。
 また、図3の例では、f1からf3(つまり、2倍音から4倍音)までを用いてチルトを求めたが、これに限らず、チルトの算出に用いる倍音は任意に決定することができる。さらに、例えば強度が一定以上の倍音を用いてチルトを算出するようにしてもよい。
 閾値Tth導出部109は、チルトに関連した閾値(Tth)として、周波数分布算出部105で取得されたピッチに基づく閾値を導出する。チルトに関連した閾値(Tth)は、ピッチに依存して変化する値であり、所定の演算式(例えば、独立変数をピッチとする関数Ft(F0))を用いて導出することができる。このとき、所定の演算式は、一次関数であってもよいし、2次以上の高次関数であってもよい。さらに、所定の演算式を用いる方式に代えて、予めピッチと閾値とを関連付けたルックアップテーブルから導出してもよい。これらの演算式やルックアップテーブルは、様々な歌唱音声を統計処理するなどして予め求めておけばよい。
 比較部111は、チルト算出部107で取得されたチルトと、閾値Tth導出部109で取得されたチルトに関連した閾値とを比較する。そして、チルトと閾値との間の大小関係を示す信号を判定部113に対して出力する。
 判定部113は、比較部111から取得したチルトと閾値との間の大小関係を示す信号に基づいて、入力音取得部103で取得された歌唱音声データが裏声を示すものであるか否かを判定する。ここで、上述のチルトに関連した閾値は、任意のピッチにおいて、歌唱音声が裏声であるか否かを判定する指標となる値としての意味を持つ。具体的には、あるフレームにおけるチルトが、そのフレームにおけるピッチに依存した所定の閾値以上である場合(すなわち、上述した一次関数301の傾きを示す定数「a」が、所定の閾値以上である場合)には、そのフレームの歌唱音声は、裏声であると判定される。
 図4は、判定部113における裏声判定の概念を説明するための図である。図4において、横軸はピッチ(P)であり、縦軸はチルト(T)である。図4には、前述の閾値(Tth)を導出するための所定の演算式として、関数Ft(P)が示されている。この例では、あるフレームにおけるピッチ(P)が決まると、そのピッチに対応した閾値(Tth)が関数Ft(P)から求まる。判定部113では、チルト算出部107で算出されたチルトと、閾値Tth導出部109で関数Ft(P)から求められた閾値(Tth)とを比較した結果に基づいて、チルトが閾値(Tth)以上であれば、そのフレームの歌唱音声は裏声であると判定する。
 図4において、あるフレーム1では、ピッチがP1、チルトがT1となり、T1が閾値(Ft(P1))未満であったとする。この場合、判定部113は、フレーム1の歌唱音声は、表声であると判定する。他方、フレーム1とは異なるフレーム2において、ピッチがP1、チルトがT2となり、T2が閾値(Ft(P2))以上になったとする。この場合、判定部113は、フレーム2の歌唱音声は、裏声であると判定する。なお、ここではフレーム単位で裏声であるか否か判定する例を示したが、所定数以上のフレームが連続して上記条件を満たすときに裏声と判定されるように構成してもよい。
 本発明者らの知見によれば、歌唱音声の音質(声質)が裏声に近づくにつれて、図3に示すような周波数分布図においては、2倍音、3倍音、4倍音と高調波になるにしたがって、急激に強度が低くなる傾向がある。つまり、図3に示すように、周波数に対する倍音の強度の変化を示すチルト(傾き)が急峻なものとなる。これ傾向を利用すれば、チルトが算出できれば、それが所定の閾値以上となった場合(すなわち、周波数に対する倍音の強度の変化が急峻である場合)に裏声であると判定できる。上述の関数Ft(P)は、発声する人に依存して変化し得るが、様々な人物の歌唱音声を統計的に処理することにより、予め関数Ft(P)を求めておくことができる。
 以上のように、第1実施形態における音質判定装置10は、入力音取得部103から入力した歌唱音声データに対して周波数分布算出部105で周波数解析を行い、その解析結果に基づいて、チルト算出部107で音質パラメータとしてチルトを算出する。その後、算出されたチルトと閾値Tth導出部109から取得したチルトに関連した所定の閾値とを比較部111にて比較する。そして、その比較結果に基づいて、判定部113が、入力した歌唱音声データが裏声を示すデータであるか否かを判定する。このように、周波数解析から判定までの一連の処理は、所定のフレームごとに少ない演算量で実行することが可能であるため、歌唱音声データの蓄積や機械学習が不要である。これにより、膨大なデータを必要とせず、リアルタイムに裏声を判定することが可能となる。
(第2実施形態)
 本発明の第2実施形態における音質判定機能100aは、音質パラメータとして、第1実施形態で説明したチルトに加えて倍音比率を用い、チルト及び倍音比率に基づいて裏声判定を行う点で第1実施形態における音質判定機能100とは異なる。ここで、倍音比率とは、基音の周波数に対する倍音の周波数の比率を示すパラメータである。なお、本実施形態では、第1実施形態における音質判定機能100との構成上の差異に注目して説明を行い、同じ部分については同じ符号を付して説明を省略する。
 図5は、本発明の第2実施形態における音質判定機能100aの構成を示すブロック図である。音質判定機能100aは、伴奏出力部101、入力音取得部103、周波数分布算出部105、チルト算出部107、閾値Tth導出部109、倍音比率算出部201、閾値Hth導出部203、比較部111a、および判定部113aを含む。
 倍音比率算出部201は、周波数分布算出部105から取得した基音の周波数の強度と倍音の周波数の強度とを用いて倍音比率を算出する。ここで、倍音比率の具体的な算出方法の一例について図6を用いて説明する。
 図6は、1フレーム分の歌唱音声データにおける周波数分布を示す図である。この例では、基音の周波数f0、倍音の周波数f1~f3に強度のピークが現れている。倍音比率は、基音の周波数に対する倍音の周波数の比率であるから、「倍音の周波数の強度/基音の周波数の強度」で表すことができる。本実施形態では、各倍音における強度の幅(例えば半値幅W0~W3)を基準として、各ピークが占める面積A0~A3を求め、これらの面積A0~A3を各ピークにおける強度として演算する。したがって、図6に示す周波数分布における倍音比率は、「(A1+A2+A3)/A0」で求められる。
 なお、倍音比率の算出方法は、上述した例に限定されるものではない。例えば、半値幅以外の所定の幅を基準として各ピークの面積を求めてもよいし、簡易的に、強度として各ピークの最大ピーク値を用いてもよい。また、倍音比率の算出に使用する倍音は、例えば3倍音または4倍音まで使用したり、特定の周波数帯域に含まれる倍音のみを使用したりするなど、任意に決めることができる。さらに、例えば強度が一定以上の倍音を用いて倍音比率を算出することも可能である。
 閾値Hth導出部203は、倍音比率に関連した閾値(Hth)を導出する。倍音比率に関連した閾値(Hth)は、チルトに関連した閾値(Tth)と同様に、ピッチに依存して変化する値である。すなわち、倍音比率に関連した閾値(Hth)も、所定の演算式(例えば、独立変数をピッチとする関数Fh(f0))を用いて導出することができる。所定の演算式は、一次関数であってもよいし、2次以上の高次関数であってもよい。さらに、所定の演算式を用いる方式に代えて、予めピッチと閾値とを関連付けたルックアップテーブルから導出してもよい。これらの演算式やルックアップテーブルは、様々な歌唱音声を統計処理するなどして予め求めておけばよい。
 比較部111aは、チルト算出部107で取得されたチルトと閾値Tth導出部109で取得された閾値(Tth)とを比較するとともに、倍音比率算出部201で取得された倍音比率と閾値Hth導出部203で取得された閾値(Hth)とを比較する。そして、チルトと閾値(Tth)との間の大小関係を示す信号及び倍音比率と閾値(Hth)との間の大小関係を示す信号を判定部113aに対して出力する。
 判定部113aは、比較部111aから取得したチルトと閾値(Tth)との間の大小関係を示す信号及び倍音比率と閾値(Hth)との間の大小関係を示す信号に基づいて、入力音取得部103で取得された歌唱音声データが裏声を示すものであるか否かを判定する。具体的には、あるフレームにおけるチルトが、閾値(Tth)以上であって、かつ、倍音比率が、閾値(Hth)以下である場合に、そのフレームの歌唱音声は、裏声であると判定される。なお、ここではフレーム単位で裏声であるか否か判定する例を示したが、所定数以上のフレームが連続して上記条件を満たすときに裏声と判定されるように構成してもよい。
 図7A及び図7Bは、判定部113aにおける裏声判定の概念を説明するための図である。本実施形態の判定部113aでは、図7Aに示すチルトに基づく判定及び図7Bに示す倍音比率に基づく判定の両方を用いて裏声であるか否かの判定を行う。図7Aにおいて、横軸はピッチ(P)、縦軸はチルト(T)であり、関数Ft(P)は、図4と同様に、チルトに関連した閾値(Tth)を導出するための演算式に対応する。また、図7Bにおいて、横軸はピッチ(P)、縦軸は倍音比率(H)であり、関数Fh(P)は、倍音比率に関連した閾値(Hth)を導出するための演算式に対応する。
 図7Aに示すように、あるフレーム1において、ピッチがP1、チルトがT1となり、T1が閾値(Ft(P1))以上であったとする。この場合、第1実施形態における判定部113では、フレーム1の歌唱音声は、裏声であると判定されるが、本実施形態における判定部113aでは、さらに同一ピッチ(P1)における倍音比率に基づく判定を追加する。例えば、図7Bに示すように、ピッチがP1のとき、倍音比率がH1となった場合、すなわち倍音比率が閾値(Fh(P1))以下となった場合に、入力された歌唱音声は裏声であると判定される。逆に、ピッチがP1のとき、倍音比率がH2となった場合、すなわち倍音比率が閾値(Fh(P1))を超えた場合には、たとえチルトT1が閾値(Ft(P1))以上であったとしても、入力された歌唱音声は表声であると判定される。
 つまり、本実施形態の場合、ピッチ、チルト、及び倍音比率のそれぞれを軸とする三次元座標系において、所定のピッチにおいてチルトが閾値(Ft(P))以上であって、かつ、倍音比率が閾値(Fh(P))以下となる一定の空間に位置する歌唱音声が裏声であると判定されることになる。なお、上述の関数Ft(P)及び関数Fh(P)は、いずれも発生する人に依存して変化し得るが、様々な人物の歌唱音声を統計的に処理することにより、関数Ft(P)及び関数Fh(P)を求めておくことができる。
 本発明者らの知見によれば、歌唱音声の音質(声質)が裏声に近づくにつれて、基音に対する倍音の比率が低くなる傾向にある。具体的には、図8に示すように、ピッチを横軸、倍音比率を縦軸にとって歌唱音声の統計をとった場合、相対的に、表声801はピッチが低く倍音比率が高い領域に分布し、裏声802はピッチが高く倍音比率が低い領域に分布する傾向にあることが分かっている。そのため、これら表声801と裏声802との境界を、簡易的に関数Fh(P)により画定することにより、図8において関数Fh(P)以下となる領域を裏声領域と推定することができる。
 以上のように、第2実施形態における音質判定機能100aは、音質パラメータとして第1実施形態にて説明したチルトに加えて倍音比率を算出し、これらのチルト及び倍音比率とそれぞれに関連した所定の閾値とを比較する。そして、それらの比較結果に基づいて、入力した歌唱音声データが裏声を示すデータであるか否かを判定する。このように、チルトに加えて倍音比率も裏声判定のための音質パラメータとして用いることにより、第1実施形態にて説明した効果に加えて、さらに裏声判定の精度が向上する。
(第3実施形態)
 第2実施形態における音質判定機能100aでは、音質パラメータとしてチルト及び倍音比率の両方を用いた例を示したが、図8を用いて説明したように、倍音比率とピッチの関係から簡易的に裏声であるか否かを判定することも可能である。
 本発明の第3実施形態における音質判定機能100bは、音質パラメータとして、第2実施形態で説明した倍音比率に基づいて裏声判定を行うものである。なお、本実施形態では、第1実施形態及び第2実施形態における音質判定機能100、100aとの構成上の差異に注目して説明を行い、同じ部分については同じ符号を付して説明を省略する。
 図9は、本発明の第3実施形態における音質判定機能100bの構成を示すブロック図である。音質判定機能100bは、伴奏出力部101、入力音取得部103、周波数分布算出部105、倍音比率算出部201、閾値Hth導出部203、比較部111b、および判定部113bを含む。
 第2実施形態にて説明したように、倍音比率算出部201は、周波数分布算出部105から取得した基音の周波数の強度と倍音の周波数の強度とを用いて倍音比率を算出する。また、閾値Hth導出部203は、倍音比率に関連した閾値(Hth)を導出する。
 比較部111bは、倍音比率算出部201で取得された倍音比率と閾値Hth導出部203で取得された閾値(Hth)とを比較し、倍音比率と閾値(Hth)との間の大小関係を示す信号を判定部113bに対して出力する。
 判定部113bは、比較部111bから取得した倍音比率と閾値(Hth)との間の大小関係を示す信号に基づいて、入力音取得部103で取得された歌唱音声データが裏声を示すものであるか否かを判定する。具体的には、あるフレームにおける倍音比率が、閾値(Hth)以下である場合に、そのフレームの歌唱音声は、裏声であると判定される。
 図10は、判定部113bにおける裏声判定の概念を説明するための図である。図10において、横軸はピッチ(P)であり、縦軸は倍音比率(H)である。図10には、第2実施形態にて説明した閾値(Hth)を導出するための所定の演算式として、関数Fh(P)が示されている。この例では、あるフレームにおけるピッチ(P)が決まると、そのピッチに対応した閾値(Hth)が関数Fh(P)から求まる。判定部113bでは、倍音比率算出部201で算出された倍音比率と、閾値Hth導出部203で関数Fh(P)から求められた閾値(Hth)とを比較した結果に基づいて、倍音比率が閾値以下であれば、そのフレームの歌唱音声は裏声であると判定する。
 図10において、あるフレーム1では、ピッチがP1、倍音比率がH1となり、倍音比率が閾値(Fh(P1))未満であったとする。この場合、判定部113bは、フレーム1の歌唱音声は、裏声であると判定する。他方、同じピッチP1であっても、倍音比率が閾値以上のH2となった場合には、フレーム1の歌唱音声は表声であると判定される。さらに、たとえ倍音比率がH1であっても、ピッチがP1より低いP2となったことにより、倍音比率が閾値(Fh(P2))を超えれば、その歌唱音声は表声であると判定される。なお、ここではフレーム単位で裏声であるか否か判定する例を示したが、所定数以上のフレームが連続して上記条件を満たすときに裏声と判定されるように構成してもよい。
 以上のように、第3実施形態における音質判定機能100bは、音質パラメータとして倍音比率を算出し、倍音比率とそれに関連した所定の閾値とを比較する。そして、その比較結果に基づいて、入力した歌唱音声データが裏声を示すデータであるか否かを判定する。このように、本実施形態における音質判定機能100bによれば、周波数解析から判定までの一連の処理が所定のフレームごとに少ない演算量で実行することが可能である。そのため、歌唱音声データの蓄積や機械学習が不要であり、演算量を抑えつつ、リアルタイムに裏声を判定することが可能である。
(変形例)
 以上の各実施形態は、必要に応じて適宜変形が可能である。変形例の一例を以下に示す。これらの変形例は、組み合わせて実施されてもよい。
(変形例1)
 第1実施形態における音質判定機能100では、周波数分布算出部105から取得したデータに基づいて、閾値Tth導出部109がチルトに関連した閾値(Tth)を導出し、該閾値とチルトとを比較する例を示した。しかし、裏声になるとチルトが急峻なものとなるという傾向は、あまり大きく人に依存しない場合がある。そのため、簡易的には、閾値を一定値とみなして裏声判定を行うことも可能である。
 図11は、変形例1における音質判定機能100cの構成を示すブロック図である。音質判定機能100cは、第1実施形態における音質判定機能100の閾値Tth導出部109が省略され、比較部111cが固定値としての閾値Tthを有する。したがって、音質判定機能100cでは、チルト算出部107で取得されたチルトが比較部111cに入力されると、固定値である閾値Tthとの間で大小関係を比較される。このとき、閾値Tthは、様々な歌唱音声を統計処理するなどして予め求めておけばよい。
 これにより、閾値(Tth)を導出する処理を省略することができ、裏声判定の処理全体の負荷を軽減できるとともに、より迅速に裏声判定を行うことが可能となる。
 なお、ここでは、第1実施形態における音質判定機能100を例に挙げて、チルトに関連した閾値(Tth)を固定値として閾値Tth導出部を省略する例を示した。しかし、これに限らず、第2実施形態における音質判定機能100aや第3実施形態における音質判定機能100bの倍音比率に関連した閾値(Hth)についても固定値として閾値Hth導出部203を省略することが可能である。この場合においても、比較部111aや111bに閾値Hthをもたせておけばよい。
 さらに、第2実施形態の音質判定機能100bにおいては、閾値Tth導出部109及び閾値Hth導出部203の両方を省略することも可能である。この場合、比較部111aに閾値Tth及び閾値Hthをもたせておけばよい。
(変形例2)
 上述した各実施形態では、チルトに関連した閾値(Tth)または倍音比率に関連した閾値(Hth)を予め求めておく例を示したが、これらの閾値を導出するための演算式(関数を含む)のパラメータを適宜変更可能としてもよい。例えば、歌唱者が男性であるか女性であるか等の性別、または、大人であるか子どもであるか等の年齢に応じてパラメータを変更し、閾値を導出するための演算式(例えば係数)を変更することができる。このような演算式の設定パラメータの変更は、自動的に行われてもよいし、手動で行われてもよい。手動で行う場合、例えば、図1に示した音質判定装置10において、操作部15を操作することにより、演算式のパラメータを変更すればよい。
 図12は、変形例2における音質判定機能100dの構成を示すブロック図である。音質判定機能100dは、第1実施形態における音質判定機能100における閾値Tth導出部109において、関数Ft(f0)の設定パラメータを変更可能としたものである。図12に示すように、音質判定機能100dの閾値Tth導出部109aには、パラメータ変更部205からのデータが入力されている。
 パラメータ変更部205は、閾値Tthを導出するための演算式における定数(設定パラメータ)を変更するためのデータを閾値Tth導出部109aに対して出力する。例えば、パラメータ変更部205は、歌唱者が男性である場合と女性である場合とで異なるデータを出力し、前述の演算式の定数を変更することにより、閾値Tth導出部109aで用いられる演算式を男性用の演算式に変更したり女性用の演算式に変更したりすることができる。
 このようなパラメータ変更部205を設けることにより、男性の裏声と女性の裏声の音質的な差異を判定部113による裏声判定に反映させることが可能となり、より精度の高い裏声判定が可能となる。なお、ここでは第1実施形態の変形を例に挙げたが、第2実施形態または第3実施形態の音質判定機能に適用できることは勿論である。
(変形例3)
 変形例2で説明したパラメータ変更部は、さらに伴奏音に関連づけられた情報に基づいてパラメータを変更するように構成することも可能である。例えば、パラメータ変更部は、伴奏音に関連づけられた、男性パートを示す情報、女性パートを示す情報、子ども用の伴奏音である旨を示す情報等に基づいてパラメータを変更することが可能である。
 図13は、変形例3における音質判定機能100eの構成を示すブロック図である。音質判定機能100eは、パラメータ変更部205aに対し、伴奏音を選択する選択部207が接続されている。歌唱者が所望の歌唱曲を指定すると、歌唱曲に対応する伴奏データが選択部207により選択される。選択部207による伴奏データの選択を指示する信号は、伴奏出力部101に入力され、伴奏データが再生される。また、選択部207からは伴奏音に関連づけられた情報がパラメータ変更部205aに入力される。
 伴奏音に関連づけられた情報は、伴奏データに付随するデータであってもよいし、伴奏データに関連づけて記憶された別のデータであってもよい。伴奏音に関連づけられた情報として、例えば男性パートを示す情報がパラメータ変更部205aに入力されると、閾値Tth導出部109aの演算式を男性歌唱者用の演算式に変更するべく、パラメータ変更部205aから男性歌唱者用演算式に対応するデータが出力される。
 同様に、選択部207から女性パートを示す情報が出力された場合には、パラメータ変更部205aから演算式を女性歌唱者用演算式に設定するためのデータが出力され、子ども用の伴奏音である旨を示す情報が出力された場合には、パラメータ変更部205aから演算式を子ども用演算式に設定するためのデータが出力される。その他、伴奏音に関連づけてファルセットが多用される旨の情報を用意しておけば、裏声判定の精度を上げるように演算式のパラメータを変更することも可能である。
 このような選択部207及びパラメータ変更部205aを設けることにより、伴奏音に合わせて、閾値Tth導出部109aにおける演算式のきめ細やかなパラメータ設定が可能となり、より精度の高い裏声判定が可能となる。なお、ここでは第1実施形態の変形を例に挙げたが、第2実施形態または第3実施形態の音質判定機能に適用できることは勿論である。
(変形例4)
 上述した各実施形態では、音質判定装置として、歌唱者による歌唱音声から裏声を判定する例を示したが、裏声に限るものではなく、チルトや倍音比率を用いて他の音質を判定することも可能である。例えば、チルトが小さく倍音比率が高めに現れるような歌唱音声である場合に、明るい音質であると判定するなど、チルトまたは倍音比率の音質に依存した傾向を把握することにより、様々な音質を判定することも可能である。
(変形例5)
 上述した各実施形態では、人の歌唱音声の音質(声質)を判定する例を示したが、楽器から発せられた音または合成歌唱音(歌詞を構成する文字に応じた音声素片を組み合わせつつ、指定された音高になるように波形を合成することによって生成された歌唱音)の音質を判定することも可能である。楽器からの発音であっても、人の発声と同様に、周波数分布図において、高調波になるにしたがって、急峻に強度が低くなり、周波数に対する倍音の強度の変化を示すチルト(傾き)が急峻なものとなる場合がある。このような場合に、その楽器からの発音が裏声に相当する音質であると判定することができる。このような音質の発音は、基本的にサイン波に近い音となる。
 本発明の実施形態として説明した構成を基にして、当業者が適宜構成要素の追加、削除もしくは設計変更を行ったもの、又は、工程の追加、省略もしくは条件変更を行ったものも、本発明の要旨を備えている限り、本発明の範囲に含まれる。
 また、上述した実施形態の態様によりもたらされる作用効果とは異なる他の作用効果であっても、本明細書の記載から明らかなもの、又は、当業者において容易に予測し得るものについては、当然に本発明によりもたらされると解される。
 10…音質判定装置、11…制御部、13…記憶部、13a…制御プログラム、13b…楽曲データ、13c…歌唱音声データ、15…操作部、17…表示部、19…通信部、21…信号処理部、23…音入力部、25…音出力部、100…音質判定機能、101…伴奏出力部、103…入力音取得部、105…周波数分布算出部、107…チルト算出部、109…閾値Tth導出部、111…比較部、113…判定部
 

Claims (11)

  1.  入力音を取得する取得部と、
     前記取得部によって取得された前記入力音の周波数分布を算出する周波数分布算出部と、
     前記周波数分布算出部によって算出された前記周波数分布に基づいて、周波数に対する倍音の強度の変化を示すチルトを算出するチルト算出部と、
     前記チルト算出部によって算出されたチルトと、当該チルトに関連した閾値とを比較するチルト比較部と、
     前記チルト比較部によって比較された結果に基づいて、前記入力音が所定の音質であるか否かを判定する判定部と、
     を備えることを特徴とする音質判定装置。
  2.  さらに、前記周波数分布算出部によって算出された前記周波数分布に基づいて、基音の周波数に対する倍音の周波数の比率を示す倍音比率を算出する倍音比率算出部と、
     前記倍音比率算出部によって算出された倍音比率と、当該倍音比率に関連した閾値とを比較する倍音比率比較部と、
     を備え、
     前記判定部は、チルト比較部によって比較された結果及び前記倍音比率比較部によって比較された結果に基づいて、前記入力音が所定の音質であるか否かを判定することを特徴とする請求項1に記載の音質判定装置。
  3.  前記チルト算出部は、前記周波数分布から複数の倍音にそれぞれ対応する複数の強度を求め、前記複数の強度を用いた直線近似により得た一次関数の傾きを前記チルトとして算出することを特徴とする請求項1に記載の音質判定装置。
  4.  前記チルトに関連した閾値として、前記周波数分布における基音の周波数を用いて導出された値を用いることを特徴とする請求項1乃至3のいずれか1項に記載の音質判定装置。
  5.  前記倍音比率に関連した閾値として、前記周波数分布における基音の周波数を用いて導出された値を用いることを特徴とする請求項2に記載の音質判定装置。
  6.  入力音を取得する取得部と、
     前記入力音取得部によって取得された前記入力音の周波数分布を算出する周波数分布算出部と、
     前記周波数分布算出部によって算出された前記周波数分布に基づいて、基音に対する倍音の比率を示す倍音比率を算出する倍音比率算出部と、
     前記倍音比率算出部によって算出された倍音比率と、当該倍音比率に関連した閾値とを比較する倍音比率比較部と、
     前記倍音比率比較部によって比較された結果に基づいて、前記入力音が所定の音質であるか否かを判定する判定部と、
     を備えることを特徴とする音質判定装置。
  7.  前記倍音比率に関連した閾値として、前記周波数分布における基音の周波数を用いて導出された値を用いることを特徴とする請求項6に記載の音質判定装置。
  8.  前記閾値は、所定の演算式により導出され、
     前記演算式のパラメータを変更可能なパラメータ変更部をさらに備えることを特徴とする請求項1乃至3及び5乃至7のいずれか1項に記載の音質判定装置。
  9.  前記入力音の入力期間において出力される伴奏音を選択する選択部をさらに備え、
     前記パラメータ変更部は、選択された前記伴奏音に関連付けられた情報に基づいて前記パラメータを変更することを特徴とする請求項7に記載の音質判定装置。
  10.  コンピュータに、
     入力音を取得し、
     取得された前記入力音の周波数分布を算出し、
     算出された前記周波数分布に基づいて、周波数に対する倍音の強度の変化を示すチルトを算出し、
     算出されたチルトと、当該チルトに関連した閾値とを比較し、
     比較された結果に基づいて、前記入力音が所定の音質であるか否かを判定することを実行させるためのプログラムを記録したコンピュータ読み取り可能な記録媒体。
  11.  コンピュータに、
     入力音を取得し、
     取得された前記入力音の周波数分布を算出し、
     算出された前記周波数分布に基づいて、基音に対する倍音の比率を示す倍音比率を算出し、
     算出された倍音比率と、当該倍音比率に関連した閾値とを比較し、
     比較された結果に基づいて、前記入力音が所定の音質であるか否かを判定することを実行させるためのプログラムを記録したコンピュータ読み取り可能な記録媒体。
PCT/JP2016/076180 2015-09-17 2016-09-06 音質判定装置及び記録媒体 WO2017047453A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/920,532 US10453478B2 (en) 2015-09-17 2018-03-14 Sound quality determination device, method for the sound quality determination and recording medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-183718 2015-09-17
JP2015183718A JP6705142B2 (ja) 2015-09-17 2015-09-17 音質判定装置及びプログラム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/920,532 Continuation US10453478B2 (en) 2015-09-17 2018-03-14 Sound quality determination device, method for the sound quality determination and recording medium

Publications (1)

Publication Number Publication Date
WO2017047453A1 true WO2017047453A1 (ja) 2017-03-23

Family

ID=58289169

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/076180 WO2017047453A1 (ja) 2015-09-17 2016-09-06 音質判定装置及び記録媒体

Country Status (3)

Country Link
US (1) US10453478B2 (ja)
JP (1) JP6705142B2 (ja)
WO (1) WO2017047453A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6728754B2 (ja) * 2015-03-20 2020-07-22 ヤマハ株式会社 発音装置、発音方法および発音プログラム
JP6759545B2 (ja) * 2015-09-15 2020-09-23 ヤマハ株式会社 評価装置およびプログラム
CN114242044B (zh) * 2022-02-25 2022-10-11 腾讯科技(深圳)有限公司 语音质量评估方法、语音质量评估模型训练方法及装置
CN114400022B (zh) * 2022-03-25 2022-08-23 北京荣耀终端有限公司 音质比对的方法、设备和存储介质

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012194389A (ja) * 2011-03-16 2012-10-11 Yamaha Corp 裏声検出装置および歌唱評価装置
JP2014130227A (ja) * 2012-12-28 2014-07-10 Mie Univ 発声評価装置、発声評価方法、及びプログラム

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW430778B (en) * 1998-06-15 2001-04-21 Yamaha Corp Voice converter with extraction and modification of attribute data
US20060089836A1 (en) * 2004-10-21 2006-04-27 Motorola, Inc. System and method of signal pre-conditioning with adaptive spectral tilt compensation for audio equalization
JPWO2009116150A1 (ja) * 2008-03-19 2011-07-21 パイオニア株式会社 倍音生成装置、音響装置及び倍音生成方法
AU2009267529B2 (en) * 2008-07-11 2011-03-03 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Apparatus and method for calculating bandwidth extension data using a spectral tilt controlling framing
KR101400535B1 (ko) * 2008-07-11 2014-05-28 프라운호퍼 게젤샤프트 쭈르 푀르데룽 데어 안겐반텐 포르슝 에. 베. 시간 워프 활성 신호의 제공 및 이를 이용한 오디오 신호의 인코딩
JP4709928B1 (ja) * 2010-01-21 2011-06-29 株式会社東芝 音質補正装置及び音質補正方法
EP2362375A1 (en) * 2010-02-26 2011-08-31 Fraunhofer-Gesellschaft zur Förderung der Angewandten Forschung e.V. Apparatus and method for modifying an audio signal using harmonic locking
US8548803B2 (en) * 2011-08-08 2013-10-01 The Intellisis Corporation System and method of processing a sound signal including transforming the sound signal into a frequency-chirp domain
US9672843B2 (en) * 2014-05-29 2017-06-06 Apple Inc. Apparatus and method for improving an audio signal in the spectral domain

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012194389A (ja) * 2011-03-16 2012-10-11 Yamaha Corp 裏声検出装置および歌唱評価装置
JP2014130227A (ja) * 2012-12-28 2014-07-10 Mie Univ 発声評価装置、発声評価方法、及びプログラム

Also Published As

Publication number Publication date
JP2017058536A (ja) 2017-03-23
JP6705142B2 (ja) 2020-06-03
US20180204588A1 (en) 2018-07-19
US10453478B2 (en) 2019-10-22

Similar Documents

Publication Publication Date Title
WO2017047453A1 (ja) 音質判定装置及び記録媒体
WO2018084305A1 (ja) 音声合成方法
JP6690181B2 (ja) 楽音評価装置及び評価基準生成装置
WO2019107378A1 (ja) 音声合成方法、音声合成装置およびプログラム
JP2017058441A (ja) 評価装置およびプログラム
WO2017090720A1 (ja) 技法判定装置及び記録媒体
JP2017111268A (ja) 技法判定装置
JP6152753B2 (ja) 音声合成管理装置
JP5509536B2 (ja) 音声データ処理装置およびプログラム
JP2009258292A (ja) 音声データ処理装置およびプログラム
US20210350783A1 (en) Sound signal synthesis method, neural network training method, and sound synthesizer
WO2021106512A1 (ja) 楽曲生成方法および楽曲生成システム
JP7124870B2 (ja) 情報処理方法、情報処理装置およびプログラム
JP6488767B2 (ja) 歌唱評価装置およびプログラム
JP5618743B2 (ja) 歌唱音声評価装置
JP7127682B2 (ja) 情報処理方法、情報処理装置およびプログラム
JP2016180965A (ja) 評価装置およびプログラム
JP6144592B2 (ja) 歌唱採点システム
JP5135982B2 (ja) 楽曲加工装置およびプログラム
JP5953743B2 (ja) 音声合成装置及びプログラム
WO2016039465A1 (ja) 音響解析装置
RU2591640C1 (ru) Способ модификации голоса и устройство для его осуществления (варианты)
JP5697395B2 (ja) 歌唱音声評価装置およびプログラム
JP2015099358A (ja) 楽音情報を処理する装置およびプログラム
JP2010085710A (ja) 長音符の歌唱部分で歌声の倍音特性を測定して表示するカラオケ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16846324

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16846324

Country of ref document: EP

Kind code of ref document: A1