WO2017047300A1 - Composition for anisotropic dye film and anisotropic dye film - Google Patents

Composition for anisotropic dye film and anisotropic dye film Download PDF

Info

Publication number
WO2017047300A1
WO2017047300A1 PCT/JP2016/073677 JP2016073677W WO2017047300A1 WO 2017047300 A1 WO2017047300 A1 WO 2017047300A1 JP 2016073677 W JP2016073677 W JP 2016073677W WO 2017047300 A1 WO2017047300 A1 WO 2017047300A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituent
formula
represented
anisotropic dye
Prior art date
Application number
PCT/JP2016/073677
Other languages
French (fr)
Japanese (ja)
Inventor
政昭 西村
充哉 青葉
靖 志賀
佐野 秀雄
浩幸 相京
輝恒 大澤
Original Assignee
三菱化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱化学株式会社 filed Critical 三菱化学株式会社
Priority to CN201680052444.7A priority Critical patent/CN108139524B/en
Priority to KR1020187006558A priority patent/KR20180055811A/en
Publication of WO2017047300A1 publication Critical patent/WO2017047300A1/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/868Arrangements for polarized light emission
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B31/00Disazo and polyazo dyes of the type A->B->C, A->B->C->D, or the like, prepared by diazotising and coupling
    • C09B31/16Trisazo dyes
    • C09B31/22Trisazo dyes from a coupling component "D" containing directive hydroxyl and amino groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B67/00Influencing the physical, e.g. the dyeing or printing properties of dyestuffs without chemical reactions, e.g. by treating with solvents grinding or grinding assistants, coating of pigments or dyes; Process features in the making of dyestuff preparations; Dyestuff preparations of a special physical nature, e.g. tablets, films
    • C09B67/006Preparation of organic pigments
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B67/00Influencing the physical, e.g. the dyeing or printing properties of dyestuffs without chemical reactions, e.g. by treating with solvents grinding or grinding assistants, coating of pigments or dyes; Process features in the making of dyestuff preparations; Dyestuff preparations of a special physical nature, e.g. tablets, films
    • C09B67/0071Process features in the making of dyestuff preparations; Dehydrating agents; Dispersing agents; Dustfree compositions
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/60Pleochroic dyes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details

Definitions

  • the present invention is useful for anisotropic dye films formed by a wet film forming method, in particular, polarizing films included in display elements of light control elements, liquid crystal elements (LCDs), and organic electroluminescence elements (OLEDs).
  • the present invention relates to an anisotropic dye film composition and an anisotropic dye film that exhibit high dichroism.
  • a linearly polarizing film and a circularly polarizing film are used to control optical rotation and birefringence in display.
  • a circularly polarizing film is used for preventing reflection of external light.
  • iodine has been widely used as a dichroic material in these polarizing films.
  • iodine has a high sublimation property, when used as a polarizing element using a polarizing film, its heat resistance and light resistance are not sufficient. Further, since the extinction color is deep blue, it cannot be said that it is an ideal achromatic polarizing element over the entire visible spectrum region.
  • anisotropic dye film using an organic dye as a dichroic material has been studied.
  • anisotropic dye films using organic dyes conventional polymers impregnated with organic dyes, methods for obtaining films by applying organic dyes on substrates, etc. And a film formed by using a film method.
  • an adhesive layer is provided on the anisotropic dye film, a protective film of the adhesive layer is bonded, and the polarizing film is bonded with the protective film.
  • Patent Document 1 As an anisotropic dye film formed using a wet film forming method, for example, in Patent Document 1, a film containing a dye is formed on a substrate such as glass or a transparent film using a wet film forming method. There is a method of obtaining an anisotropic dye film by orienting the dye by utilizing intermolecular interaction or the like. Patent Document 2 discloses an anisotropic dye film composition containing a trisazo dye for obtaining an anisotropic dye film having a high dichroic ratio, which was not sufficient in Patent Document 1.
  • Patent Document 3 shows that a film showing a high dichroic ratio and a high degree of molecular orientation can be obtained while suppressing disturbance of molecular orientation by using a dye having a specific structure in combination. Further, Patent Document 4 shows that variation in the orientation direction during casting can be suppressed by combining dyes having different molecular sizes in a specific ratio.
  • a polarizing film is required to have high performance such as high transmittance and high dichroism.
  • it is also required to improve low manufacturing costs and productivity.
  • the anisotropic dye film using the dye used in Patent Document 2 exhibits high performance as a polarizing film, the composition for anisotropic dye film tends to increase in viscosity. Therefore, when it is applied to an actual display manufacturing process, the filtration for removing foreign substances performed before coating is slow, and it takes time to fill the composition into the coating apparatus, so that the slot die coating method is applied.
  • Patent Documents 2 and 3 show that a high dichroic ratio and the like can be obtained, but the above-described process compatibility has not been studied.
  • Patent Document 3 only shows a combination of a disazo compound and a monoazo compound having a specific structure, and does not examine process compatibility and a composition containing a trisazo compound.
  • An object of the present invention is to provide an anisotropic dye film composition and an anisotropic dye film which are excellent in optical properties and used for forming an anisotropic dye film suitable for a display manufacturing process.
  • the gist of the present invention is as follows.
  • An anisotropic dye film composition comprising an azo dye represented by the formula (III).
  • Ar 11 and Ar 12 each independently represent an aromatic hydrocarbon group which may have a substituent or an aromatic heterocyclic group which may have a substituent
  • Ar 13 is a 1,4-phenylene group optionally having an electron donating group, a 1,4-naphthylene group optionally having a substituent, or an aromatic heterocyclic ring optionally having a substituent Represents a group
  • Ar 14 represents a group represented by the formula (II).
  • R N11 and R N12 each independently represent a hydrogen atom, an alkyl group that may have a substituent, a phenyl group that may have a substituent, or an acyl group that may have a substituent.
  • b represents an integer of 0 to 3
  • d represents 0 or 1.
  • the amino group represented by —NR N11 R N12 is substituted at the ⁇ -position or ⁇ -position.
  • Ar 21 represents an aromatic hydrocarbon group which may have a substituent or an aromatic heterocyclic group which may have a substituent
  • Ar 22 is a 1,4-phenylene group optionally having an electron donating group, a 1,4-naphthylene group optionally having a substituent, or an aromatic heterocyclic ring optionally having a substituent Represents a group
  • Ar 23 represents a group represented by formula (IV).
  • R N21 and R N22 each independently represent a hydrogen atom, an alkyl group that may have a substituent, a phenyl group that may have a substituent, or an acyl group that may have a substituent.
  • e represents an integer of 0 to 3
  • f represents 0 or 1.
  • the amino group represented by —NR N21 R N22 is substituted at the ⁇ -position or ⁇ -position.
  • Ar 12 in the formula (I) may have a 1,4-phenylene group which may have a substituent, a 1,4-naphthylene group which may have a substituent, and a single ring or
  • Ar 11 in the formula (I) has a phenyl group which may have a substituent, a naphthyl group which may have a substituent, and a monocyclic or bicyclic substituent. Any one of [1] to [4], which is selected from the group consisting of optionally substituted aromatic heterocyclic groups and has at least one electron-withdrawing group as a substituent.
  • the structure excluding the substituent which may be present from at least one structure selected from Ar 11 to Ar 14 in the formula (I) is selected from Ar 21 to Ar 23 in the formula (III).
  • the structure excluding the substituent which may be present from at least one structure selected from Ar 11 to Ar 13 in the formula (I) is represented by Ar 21 and / or Ar 22 in the formula (III).
  • the structure excluding the substituent which may be present from at least one structure selected from Ar 11 to Ar 14 in the formula (I) is selected from Ar 21 to Ar 23 in the formula (III).
  • Ar 11 and Ar 12 each independently represent an aromatic hydrocarbon group which may have a substituent or an aromatic heterocyclic group which may have a substituent
  • Ar 13 is a 1,4-phenylene group optionally having an electron donating group, a 1,4-naphthylene group optionally having a substituent, or an aromatic heterocyclic ring optionally having a substituent Represents a group
  • Ar 14 represents a group represented by the formula (II).
  • R N11 and R N12 each independently represent a hydrogen atom, an alkyl group that may have a substituent, a phenyl group that may have a substituent, or an acyl group that may have a substituent.
  • b represents an integer of 0 to 3
  • d represents 0 or 1.
  • the amino group represented by —NR N11 R N12 is substituted at the ⁇ -position or ⁇ -position.
  • Ar 21 represents an aromatic hydrocarbon group which may have a substituent or an aromatic heterocyclic group which may have a substituent
  • Ar 22 is a 1,4-phenylene group optionally having an electron donating group, a 1,4-naphthylene group optionally having a substituent, or an aromatic heterocyclic ring optionally having a substituent Represents a group
  • Ar 23 represents a group represented by formula (IV).
  • R N21 and R N22 each independently represent a hydrogen atom, an alkyl group that may have a substituent, a phenyl group that may have a substituent, or an acyl group that may have a substituent.
  • e represents an integer of 0 to 3
  • f represents 0 or 1.
  • the amino group represented by —NR N21 R N22 is substituted at the ⁇ -position or ⁇ -position.
  • the composition for an anisotropic dye film of the present invention has excellent optical properties, low viscosity, and is suitable for a display manufacturing process. Specifically, the filterability at the time of removing foreign matters at the stage of preparing the anisotropic dye film composition is good, and the productivity of the anisotropic dye film composition is excellent.
  • the anisotropic dye film composition of the present invention can be easily supplied to a coating apparatus, has a high coating speed by the slot die coating method, and has a highly productive anisotropic dye film manufacturing process. it can.
  • an anisotropic dye film having excellent optical characteristics can be provided.
  • a polarizing element using an anisotropic dye film having such characteristics can be used in various fields such as a light control element, a liquid crystal element, and a display element of an organic electroluminescence element that are required to have color reproducibility.
  • the anisotropic dye film referred to in the present invention is an electromagnetic property in any two directions selected from a total of three directions in the three-dimensional coordinate system of the thickness direction of the anisotropic dye film and any two orthogonal in-plane directions.
  • a dye film having anisotropy examples include optical properties such as absorption and refraction, and electrical properties such as resistance and capacitance.
  • the film having optical anisotropy such as absorption and refraction include a polarizing film such as a linearly polarizing film and a circularly polarizing film, a retardation film, and a conductive anisotropic film.
  • the anisotropic dye film of the present invention is preferably used for a polarizing film, a retardation film and a conductive anisotropic film, and more preferably used for a polarizing film.
  • the present invention is an anisotropic dye film composition
  • an azo dye and a solvent wherein the free acid form is represented by the formula (I) (hereinafter referred to simply as the “azo dye represented by the formula (I)”.
  • an azo dye whose free acid form is represented by the formula (III) hereinafter also simply referred to as “azo dye represented by the formula (III)”.
  • the reason why the composition for anisotropic dye film of the present invention exhibits the effects of the present invention is presumed as follows.
  • the azo dye represented by the formula (I) of the present invention is a trisazo dye, and when dissolved in a solvent, particularly a solvent having a high dielectric constant (for example, water), the hydrophobic portion at the center of the molecule is large.
  • the aromatic hydrocarbon ring or aromatic heterocyclic ring constituting the molecule has high planarity, and the dye molecules are easily associated to form a column.
  • the columnar molecular assembly formed of the azo dye represented by the formula (I) has an ionic group such as a sulfo group on the outside and a highly polar group such as an amino group and a hydroxyl group, An electronic interaction occurs between the columns, and it is easy to take a hexagonal phase in which the columns are located at an equal distance.
  • This hexagonal phase is a liquid crystal having a two-dimensional order, and the order is relatively high in the liquid crystal phase. That is, the molecules have fluidity but are close to the solid state.
  • the azo dye represented by the formula (III) By adding the azo dye represented by the formula (III) to the azo dye represented by the formula (I), the azo dye represented by the formula (III) is converted into an azo dye represented by the formula (I). It binds to the outside of the column consisting of ionic groups and the like. In addition, a part of the dye molecules of the column composed of the azo dye represented by the formula (I) is replaced with the azo dye represented by the formula (III), and the outside of the column becomes uneven. By being in such a state, the interaction between the columns is reduced, the state where the columns are evenly spaced is lost, and a nematic phase having a one-dimensional order is taken.
  • the dye is in a liquid state closer to that of the hexagonal phase and the viscosity of the anisotropic dye film composition is lower.
  • the addition of the azo dye represented by the formula (III) to the azo dye represented by the formula (I) is the same as the conventional additive for improving optical characteristics (dichroic ratio). It is presumed that it is different from the effect of conventional additives in that it does not change the degree of order or raise the order, but changes the interaction between columns and lowers the order.
  • the composition for anisotropic dye film of the present invention includes an azo dye whose free acid form is represented by formula (I), an azo dye whose free acid form is represented by formula (III), and a solvent.
  • the composition is in a liquid crystal phase from the viewpoint of forming an anisotropic dye film formed after the solvent evaporates with a high degree of orientation.
  • the state of the liquid crystal phase specifically refers to 1 to 16 in “Basics and Applications of Liquid Crystal” (Shinichi Matsumoto, Ryo Tsunoda, published by Industrial Research Institute, 1991).
  • nematic phase As described on the page, it is a liquid crystal state exhibiting both liquid and crystal properties, and means a nematic phase, a cholesteric phase, a smectic phase or a discotic phase.
  • a nematic phase is preferred because of its low order in solution and a tendency to have a low viscosity.
  • curing agent, an additive, etc. may be mix
  • the anisotropic dye film composition may be in the form of a solution or gel.
  • an azo dye whose free acid form is represented by formula (I) and an azo dye whose free acid form is represented by formula (III) are dissolved or dispersed in a solvent. You may be in the state.
  • the anisotropic dye film in order for the anisotropic dye film to exhibit high orientation, it is preferable that the azo dye forms a molecular laminate in the composition for anisotropic dye film. It is preferable that the composition exhibits a liquid crystal phase.
  • having a liquid crystal phase means exhibiting lyotropic liquid crystallinity in a solvent.
  • the anisotropic dye film composition may or may not exhibit a liquid crystal phase, but is preferably in a liquid crystal phase state as described above.
  • the azo dye used in the present invention is soluble in water or an organic solvent in order for the anisotropic dye film composition to exhibit a liquid crystal phase and to be used in the wet film formation method described later. It is preferable that it is water-soluble. Further preferred are compounds having an inorganic value smaller than the organic value as defined in “Organic Conceptual Diagram-Fundamentals and Applications” (Yoshio Koda, Sankyo Publishing, 1984).
  • the molecular weight is preferably 200 or more, more preferably 300 or more, in a free state that does not take a salt form. Moreover, it is preferable that it is 1500 or less, and it is more preferable that it is 1200 or less.
  • water-soluble means that the compound is dissolved in water at room temperature, usually 0.1% by mass or more, preferably 1% by mass or more.
  • the solvent contained in the composition for anisotropic dye film of the present invention comprises an azo dye whose free acid form is represented by formula (I), and an azo dye whose free acid form is represented by formula (III), There is no particular limitation as long as it is dissolved or dispersed.
  • the azo dye whose free acid form is represented by the formula (I) and the azo dye whose free acid form is represented by the formula (III) are easy to form an association state such as a lyotropic liquid crystal in a solvent.
  • the solvent is preferably water, a water-miscible organic solvent, or a mixture thereof.
  • the organic solvent examples include alcohols such as methyl alcohol, ethyl alcohol, isopropyl alcohol, and glycerin; glycols such as ethylene glycol and diethylene glycol; cellosolves such as methyl cellosolve and ethyl cellosolve; A mixed organic solvent is mentioned.
  • an anisotropic dye film composition comprising an azo dye whose free acid form is represented by formula (I) and an azo dye whose free acid form is represented by formula (III)
  • concentration in it depends on the solubility of the dye and the concentration of the associated state such as the lyotropic liquid crystal state, but is preferably 0.1% by mass or more, more preferably 0.5% by mass or more, and still more preferably Is 1% by mass or more, particularly preferably 5% by mass or more. On the other hand, it is preferably 40% by mass or less, more preferably 30% by mass or less, still more preferably 25% by mass or less, and particularly preferably 20% by mass or less.
  • the composition for anisotropic dye film of the present invention may or may not exhibit a lyotropic liquid crystal phase, but only the amount of solvent in the composition for anisotropic dye film is changed when the lyotropic liquid crystal phase is not expressed. By doing so, it is preferable that a lyotropic liquid crystal phase is developed.
  • the expression of the lyotropic liquid crystal phase is preferable because the dye exhibits a high degree of orientation in the anisotropic dye film and a high dichroic anisotropic dye film tends to be obtained. It is more preferable that the composition for anisotropic dye film expresses a lyotropic liquid crystal phase because higher orientation in the anisotropic dye film tends to be obtained.
  • an additive such as a surfactant can be added as necessary in order to improve the wettability to the substrate and the coating property.
  • a surfactant any of anionic, cationic and nonionic types can be used.
  • the addition concentration is preferably 0.05% by mass or more and 0.5% by mass or less.
  • the viscosity of the composition for anisotropic dye film of the present invention is such that the composition containing an azo dye whose free acid form is represented by the formula (I) is different from the azo compound whose free acid form is represented by the formula (III).
  • the improvement of filterability and applicability can be determined by measuring the viscosity under the same conditions and decreasing the value.
  • the viscosity of the composition for anisotropic dye film can be measured by a capillary viscometer, a rotational viscometer, a falling body viscometer, a vibration viscometer, a parallel plate viscometer, or the like according to the measurement principle. Since the composition for anisotropic dye film of the present invention may exhibit thixotropic properties, it is preferably measured with a viscometer capable of varying the shear rate, such as a rotational viscometer. When measured with a rotational viscometer, it is preferably measured at 1 to 1000 s ⁇ 1 . As an example, measurement conditions and preferred ranges when measured with a rheometer are shown. After pre-shearing at 25 ° C.
  • the viscosity is preferably 200 cP or less, more preferably 100 cP or less, still more preferably 70 cP or less, particularly preferably 60 cP or less, and most preferably 50 cP or less.
  • the lower limit is not particularly low and is preferably lower, but is, for example, 1 cP or more, preferably 10 cP or more.
  • the anisotropic dye film composition of the present invention contains an azo dye whose free acid form is represented by the formula (I).
  • Ar 11 and Ar 12 each independently represent an aromatic hydrocarbon group which may have a substituent or an aromatic heterocyclic group which may have a substituent
  • Ar 13 is a 1,4-phenylene group optionally having an electron donating group, a 1,4-naphthylene group optionally having a substituent, or an aromatic heterocyclic ring optionally having a substituent Represents a group
  • Ar 14 represents a group represented by the formula (II).
  • R N11 and R N12 each independently have a hydrogen atom, an alkyl group that may have a substituent, a phenyl group that may have a substituent, or a substituent.
  • b represents an integer of 0 to 3
  • d represents 0 or 1.
  • the amino group represented by —NR N11 R N12 is substituted at the ⁇ -position or ⁇ -position.
  • Ar 11 represents an aromatic hydrocarbon group which may have a substituent or an aromatic heterocyclic group which may have a substituent.
  • aromatic hydrocarbon group examples include groups derived from a single ring and a plurality of rings.
  • the number of rings contained in the groups derived from a plurality of rings is not particularly limited, but is usually 2 or more and 4 or less, preferably 3 or less.
  • the aromatic hydrocarbon group may have a substituent.
  • substituents that may have include a hydrophilic group that is usually introduced to enhance the solubility of the azo compound, and an electron-withdrawing group or electron-donating group that is introduced to adjust the color tone as a dye. preferable.
  • a substituent that the aromatic hydrocarbon group may have it is preferable to introduce a functional group that promotes the association between the dyes from the viewpoint of the dyes forming a columnar aggregate.
  • the interaction that promotes the association includes an electrostatic interaction, and a hydrogen bonding functional group or a functional group having a strong dipole is particularly preferable.
  • Examples of the hydrogen bonding functional group include an alkoxy group, a hydroxyl group, an amino group, an acylamino group, a carbamoyl group, a sulfamoyl group, a carboxy group, a sulfo group, a cyano group, and a phosphate group.
  • a hydrophilic group is a functional group that exhibits an interaction due to hydrogen bonding with a protic substance such as water and has a property of being easily dissolved or mixed in water, and represents a functional group that is thermodynamically stabilized.
  • the hydrogen bonding functional group refers to a group having a lone electron pair (electron pair donor) such as a hetero atom (nitrogen, oxygen, sulfur) or a fluorine atom having a higher electronegativity than a hydrogen atom.
  • a lone electron pair such as a hetero atom (nitrogen, oxygen, sulfur) or a fluorine atom having a higher electronegativity than a hydrogen atom.
  • Specific examples include alkoxy groups, hydroxyl groups, amino groups, acylamino groups, carbamoyl groups, sulfamoyl groups, carboxy groups, sulfo groups, cyano groups, and phosphate groups.
  • An electron withdrawing group refers to a substituent that is easier to attract electrons from the bond atom side than a hydrogen atom.
  • the electron withdrawing group is substituted with a phenyl group or a naphthyl group, the electron density on the benzene ring is reduced. Let In other words, there is an effect of causing shortage of electrons.
  • An electron withdrawing group is a halogen atom; a group in which an atom having multiple electronegativity such as an oxygen atom, a nitrogen atom, or a sulfur atom is bonded to an aromatic ring; A group in which a carbon atom is bonded to an aromatic ring; a group in which a positively charged atom is bonded to an aromatic ring; and the like.
  • a substituent is electron withdrawing
  • Kenzo Konishi and Nobuhiko Kuroki “Chemistry of Synthetic Dyes” (Tsubaki Shoten, published on February 25, 1963) pp. 23-25
  • the substituent constant in the Hammett formula described in the above is positive.
  • a substituent in which the substituent constant is positive in both the meta position and the para position is preferable.
  • Specific examples include a carbamoyl group, a sulfamoyl group, a nitro group, a carboxy group, a sulfo group, a cyano group, a halogen atom, and a trifluoromethyl group.
  • the electron withdrawing group includes nonionic and ionic electron withdrawing groups.
  • the “nonionic” electron withdrawing group refers to an electron withdrawing group that is not an ionic group.
  • the ionic group is a hydrophilic group as described in Hiroshi Suzuki “Interface and Surfactant” (Sangyo Tosho Co., Ltd., published on January 23, 1990), pages 33-35.
  • anion anion
  • cation cation
  • sulfo group, carboxy group, phosphate group, trimethylammonio group, J.M. N listed on pages 105-106 by Israel Ativiri, translated by Yasuo Kondo, Hiroyuki Oshima “Intermolecular Forces and Surface Forces” (Maglow Hill Publishing Co., Ltd., issued December 25, 1991) .
  • Examples of the ionic electron withdrawing group include a sulfo group and a carboxy group.
  • the nonionic electron withdrawing group reduces the electron density of the aromatic ring of the aromatic hydrocarbon group and does not separate the charge with water. Therefore, when the azo dye represented by the formula (I) is used in an anisotropic dye film composition containing, for example, water as a solvent, the interaction with the solvent is reduced, and Ar 11 and electron-rich naphthyl are reduced. Ar 14 as a group attracts strongly between molecules, and a property that molecules tend to form an associated state occurs. Note that the electron excess means a state in which the electron density on the benzene ring is enhanced.
  • Nonionic electron-withdrawing group includes a halogen atom; a group in which an atom having a high electronegativity such as an oxygen atom, a nitrogen atom, or a sulfur atom is bonded to an aromatic ring; a halogen atom A group in which a carbon atom substituted with is bonded to an aromatic ring; a group in which a positively charged atom is bonded to an aromatic ring; and the like.
  • Specific examples include a carbamoyl group, a sulfamoyl group, a nitro group, a cyano group, a halogen atom, and a trifluoromethyl group.
  • the electron donating group refers to a substituent that easily extrudes electrons from the bonding atom side compared to a hydrogen atom, and when the electron donating group is substituted with a phenyl group, the electron density on the benzene ring is increased. In other words, there is an effect of excessive electrons.
  • an indicator that the substituent is electron donating include, for example, Kenzo Konishi and Nobuhiko Kuroki “Synthetic Dye Chemistry” (Tsubaki Shoten, published February 25, 1963), pages 23-25. It is mentioned that the substituent constant in the Hammett formula described is negative. In the present invention, a substituent in which the substituent constant is negative in both the meta position and the para position is preferable. Specific examples include an alkyl group, an alkoxy group, a hydroxyl group, an amino group, and an acylamino group.
  • the alkyl group usually has 1 to 6 carbon atoms, preferably 4 or less.
  • the alkyl group may have a substituent, and examples of the substituent include an alkoxy group having 1 to 6 carbon atoms, a hydroxyl group, a halogen atom, a sulfo group, and a carboxy group.
  • Specific examples of the alkyl group include lower alkyl groups such as a methyl group, an ethyl group, an n-propyl group, a hydroxyethyl group, and a 1,2-dihydroxypropyl group.
  • the alkoxy group usually has 1 to 6 carbon atoms, preferably 3 or less.
  • the alkoxy group may have a substituent, and examples of the substituent include an alkoxy group having 1 to 6 carbon atoms, a hydroxyl group, a halogen atom, a sulfo group, and a carboxy group.
  • Specific examples of the alkoxy group include lower alkoxy groups such as a methoxy group, an ethoxy group, an n-propoxy group, an n-butoxy group, a hydroxyethoxy group, and a 1,2-dihydroxypropoxy group.
  • the acylamino group is represented by —NH—C ( ⁇ O) R 11 .
  • R 11 represents an alkyl group, an alkenyl group, or a phenyl group.
  • Specific examples of the acylamino group include an acetylamino group, an acrylamino group, a methacrylamino group, and a benzoylamino group.
  • the alkyl group of R 11 usually has 1 or more and 4 or less carbon atoms, preferably 2 or less.
  • the alkenyl group for R 11 usually has 2 or more and 4 or less carbon atoms, preferably 3 or less.
  • the phenyl group of R 11 usually has 6 to 10 carbon atoms, preferably 8 or less.
  • the alkyl group, alkenyl group and phenyl group of R 11 may each independently have a substituent. Examples of the substituent that may have include an alkoxy group having 1 to 4 carbon atoms, a hydroxyl group, a sulfo group, a carboxy group, and a halogen atom.
  • the amino group is usually represented by —NH 2 , —NHR 22 or —NR 23 R 24 .
  • R 22 to R 24 each independently represents an alkyl group or a phenyl group. Specific examples of the amino group include a methylamino group, an ethylamino group, a propylamino group, a dimethylamino group, and a phenylamino group.
  • the alkyl group of R 22 to R 24 usually has 1 to 4 carbon atoms, preferably 2 or less.
  • the phenyl group of R 22 to R 24 usually has 6 to 10 carbon atoms, preferably 8 or less.
  • the alkyl group and phenyl group of R 22 to R 24 may have a substituent. Examples of the substituent that may have include an alkoxy group having 1 to 4 carbon atoms, a hydroxyl group, a sulfo group, a carboxy group, and a halogen atom.
  • the carbamoyl group represents an unsubstituted carbamoyl group, an alkylcarbamoyl group having 1 to 6 carbon atoms, a phenylcarbamoyl group having 6 to 10 carbon atoms, or a naphthylcarbamoyl group having 10 to 14 carbon atoms.
  • Specific examples of the carbamoyl group include a carbamoyl group, a phenylcarbamoyl group, a naphthylcarbamoyl group, and the like.
  • the alkylcarbamoyl group, phenylcarbamoyl group and naphthylcarbamoyl group may have a substituent.
  • substituents that may have include an alkoxy group having 1 to 4 carbon atoms, a hydroxyl group, a sulfo group, a carboxy group, and a halogen atom.
  • the sulfamoyl group includes an unsubstituted sulfamoyl group, an alkylsulfamoyl group having 1 to 6 carbon atoms, a phenylsulfamoyl group having 6 to 10 carbon atoms, and a naphthylsulfur group having 10 to 14 carbon atoms. Represents a moyl group.
  • the sulffile group examples include a sulfamoyl group, a methylsulfamoyl group, a dimethylsulfamoyl group, an ethylsulfamoyl group, a diethylsulfamoyl group, a phenylsulfamoyl group, and a naphthylsulfamoyl group. It is done.
  • the alkylsulfamoyl group, phenylsulfamoyl group and naphthylsulfamoyl group may have a substituent. Examples of the substituent that may have include an alkoxy group having 1 to 4 carbon atoms, a hydroxyl group, a sulfo group, a carboxy group, and a halogen atom.
  • the aromatic heterocyclic group for Ar 11 is not particularly limited, but the group derived from a monocyclic or bicyclic heterocyclic ring increases the overlap between the azo dyes represented by formula (I). This is preferable in that a column can be formed.
  • atoms other than carbon constituting the aromatic heterocyclic group include a nitrogen atom, a sulfur atom, and an oxygen atom.
  • the aromatic heterocyclic group has a plurality of atoms constituting a ring other than carbon, these may be the same or different.
  • Preferable examples include pyridine ring, quinoline ring, isoquinoline ring, thiazole ring, benzothiazole ring and the like.
  • the aromatic heterocyclic group may have a substituent.
  • substituents that may have include a hydrophilic group, an electron donating group, an electron withdrawing group, and a hydrogen bonding functional group. Specific examples include an alkyl group, an alkoxy group, an acylamino group, an amino group, a carbamoyl group, a sulfamoyl group, a nitro group, a carboxy group, a sulfo group, a hydroxyl group, a cyano group, and a halogen atom.
  • substituent groups and substituents are respectively synonymous with those mentioned as the substituents that the aromatic hydrocarbon group of Ar 11 may have, and preferred ranges and substituents that may be included. Are also synonymous.
  • having a sulfo group as a substituent is preferable from the viewpoint of imparting water solubility to the dye.
  • it is preferable at the point which does not prevent the interaction between atoms other than carbon contained in a heterocyclic ring, especially a nitrogen atom.
  • the aromatic heterocyclic group may be unsubstituted or have 1 to 5 substituents as described above, and preferably is unsubstituted or has 1 to 2 substituents.
  • Ar 11 is preferably an aromatic hydrocarbon group which may have a substituent among the above, and a phenyl group which may have a substituent or a naphthyl group which may have a substituent. It is particularly preferred that The azo dye represented by the formula (I) is formed by linking an aromatic ring and an azo group, has a wide ⁇ plane, and in a solution such as a lyotropic liquid crystal by associating molecules in a stacked ⁇ plane. A high state of association can be formed.
  • Ar 11 is an aromatic hydrocarbon group
  • the flatness is high and the bias of the charge is small, so that a long column can be formed which is less likely to be displaced when molecules are stacked, and has a high degree of orientation anisotropy. It is easy to obtain a dye film.
  • Ar 11 is a phenyl group or a naphthyl group
  • the size is the same as that of the other ring, in particular, the Ar 14 naphthalene ring arranged at the opposite end of one molecule of the azo dye. , Molecules are easier to stack, more preferable.
  • the aromatic hydrocarbon group of Ar 11 may be unsubstituted or may have a substituent. When it has a substituent, it preferably has at least one hydrogen-bonding functional group or electron-withdrawing group, and more preferably has an electron-withdrawing group.
  • the electron withdrawing group tends to attenuate the electron density of the aromatic ring of the aromatic hydrocarbon group.
  • the electron-deficient Ar 11 and the electron-rich naphthyl group Ar 14 are attracted strongly between the molecules, and the molecules tend to form an associated state. Note that the electron excess means a state in which the electron density on the benzene ring is enhanced.
  • the electron withdrawing group may be either nonionic or ionic.
  • the azo dye In the case of an ionic electron-withdrawing group, the azo dye has a property of attracting strongly between molecules due to an acid / base bond or a hydrogen bond between the molecules of the azo dye, so that the molecules can easily form an associated state.
  • a nonionic electron-withdrawing group there is a tendency not to separate charges with water. Accordingly, when the azo dye represented by the formula (I) is used in an anisotropic dye film composition containing, for example, water as a solvent, the dye and the solvent represented by the formula (I) are compared with those in the ionic case. Interaction is small, that is, hydrophobic interaction is strong, attracting more strongly between molecules, and molecules tend to form a laminated state.
  • the electron-attracting group may be either nonionic or ionic, but nonionic is preferable because lamination tends to occur strongly in terms of stronger interaction between aromatic rings.
  • a carbamoyl group, a sulfamoyl group, a nitro group, and a cyano group are particularly preferable in that the planarity of the molecule is maintained and the stacking of the molecules is not disturbed.
  • the carbamoyl group and sulfamoyl group have the same meanings as the carbamoyl group and sulfamoyl group mentioned above for the substituent that the aromatic hydrocarbon group of Ar 11 may have, and the preferred substituent and preferred range Are also synonymous.
  • Ar 12 represents an aromatic hydrocarbon group which may have a substituent or an aromatic heterocyclic group which may have a substituent.
  • (Aromatic hydrocarbon group) examples of the aromatic hydrocarbon group for Ar 12 include groups derived from a single ring and a plurality of rings. The number of rings contained in the groups derived from a plurality of rings is not particularly limited, but is usually 2 or more and 4 or less, preferably 3 or less.
  • aromatic hydrocarbon group examples include two benzene rings, naphthalene rings, anthracene rings, phenanthrene rings, perylene rings, tetracene rings, pyrene rings, benzpyrene rings, chrysene rings, triphenylene rings, and acenaphthenes.
  • aromatic hydrocarbon group for Ar 12 a phenylene group which may have a substituent or a naphthylene group which may have a substituent is preferable, and the phenylene group may have a substituent.
  • a good 1,4-phenylene group, and the 1,4-naphthylene group which may have a substituent as the naphthylene group has a high molecular linearity, a ⁇ plane spreads in the molecular minor axis direction, and an intermolecular The ⁇ - ⁇ interaction tends to be exhibited, which is preferable from the viewpoint of improving the association property of the azo dye.
  • the aromatic hydrocarbon group may have a substituent.
  • substituents that may have include a hydrophilic group that is usually introduced to enhance the solubility of the azo compound, an electron donating group or an electron withdrawing group that is introduced to adjust the color tone as a dye. preferable. Specifically, they are respectively synonymous with those mentioned for the substituent that the aromatic hydrocarbon group of Ar 11 may have.
  • the aromatic hydrocarbon group for Ar 12 may be unsubstituted or may have 1 to 5 substituents, and preferably has 1 to 2 substituents.
  • substituents that may be present, an alkyl group, an alkoxy group, a carbamoyl group, a sulfamoyl group, a hydroxyl group, a cyano group, a sulfo group, a carboxy group, a halogen atom, or a less polar group or a hydrogen bonding functional group It is preferable from the viewpoint of improving the associative property by interaction in forming a lyotropic liquid crystal, and it is particularly preferable to have a sulfo group.
  • the alkyl group, alkoxy group, carbamoyl group and sulfamoyl group that the aromatic hydrocarbon group of Ar 12 may have preferably have 1 to 8 carbon atoms, more preferably 1 to 4 carbon atoms.
  • alkyl group, alkoxy group, carbamoyl group and sulfamoyl group have the same meanings as those given as the substituents that the aromatic hydrocarbon group of Ar 12 may have, and may be substituted.
  • the group is also synonymous.
  • the aromatic heterocyclic group for Ar 12 is not particularly limited, but the group derived from a monocyclic or bicyclic heterocyclic ring increases the overlap between the azo dyes represented by formula (I). This is preferable in that a column can be formed.
  • Examples of atoms other than carbon constituting the aromatic heterocyclic group include a nitrogen atom, a sulfur atom and an oxygen atom, but the azo dyes represented by the formula (I) tend to easily form a column.
  • a nitrogen atom is particularly preferred.
  • the aromatic heterocyclic group has a plurality of atoms constituting a ring other than carbon, these may be the same or different.
  • the aromatic heterocyclic group for Ar 12 may have a substituent.
  • substituents that may have include a hydrophilic group, an electron donating group, an electron withdrawing group, and a hydrogen bonding functional group.
  • Specific examples include an alkyl group, an alkoxy group, an acylamino group, an amino group, a carbamoyl group, a sulfamoyl group, a nitro group, a carboxy group, a sulfo group, a hydroxyl group, a cyano group, and a halogen atom.
  • the alkyl group, alkoxy group, acylamino group, amino group, carbamoyl group, and sulfamoyl group each may have a substituent.
  • the substituents that may be present are the same as those described above for the substituents that the aromatic hydrocarbon group of Ar 11 may have, the substituents that may be possessed, and preferred ranges.
  • the aromatic heterocyclic group for Ar 12 may have 1 to 5 of the above-mentioned substituents, and is preferably unsubstituted or has 1 to 2 of these substituents.
  • the substituent for the aromatic heterocyclic group of Ar 12 is preferably a hydroxyl group, a sulfo group or a carboxy group from the viewpoint of water solubilization.
  • the aromatic heterocyclic group for Ar 12 is more preferably a divalent aromatic heterocyclic group represented by the following formula (Ia) or (Ib). That is, it is a divalent linking group bonded at the 2,5- or 3,6-position of the nitrogen-containing aromatic six-membered ring represented by (Ia), or represented by (Ib) is preferably a divalent linking group bonded at the substitution position of y 1 and y 4 of that aromatic heterocycle.
  • the azo dyes represented by the formula (I) tend to form a column easily.
  • Q 1 to Q 4 each independently represent a carbon atom or a nitrogen atom, and one or two of Q 1 to Q 4 represent a nitrogen atom. Q 1 to Q 4 may have a substituent. ]
  • X represents a divalent linking group forming a 5- to 7-membered ring, and the ring contains a nitrogen atom, an oxygen atom or a sulfur atom.
  • Y 1 to y 4 represent substitution positions.
  • y 2 and / or y 3 may have a substituent.
  • a nitrogen atom, an oxygen atom or a sulfur atom is contained on the ring formed by the linking group X.
  • the substituent that the divalent aromatic heterocyclic group represented by the formula (Ia) or (Ib) may have is a substituent of the aromatic heterocyclic group of Ar 12 and Ar 13 And the preferred ranges are also synonymous with each other.
  • C and N in CH and NH may be substituted with a substituent such as an organic group instead of H, for example, those listed as substituents of the aromatic heterocyclic group of Ar 12 and Ar 13.
  • the carbon atom shown at the position of y 2 or y 3 may be substituted with a substituent such as an organic group, for example, those listed as substituents for the aromatic heterocyclic group of Ar 12 and Ar 13 .
  • the aromatic heterocyclic group represented by the formula (Ia) is a group derived from pyridine, pyridazine, pyrimidine or pyrazine and having a linking position with the azo group at the 2,5 or 3,6 position. Is mentioned.
  • the aromatic heterocyclic group represented by the formula (Ib) is derived from quinoline, isoquinoline, benzothiadiazole, phthalimide and the like, and the linking position with the azo group is represented by the formula (Ib). Examples include groups in the 1 and y 4 positions.
  • the aromatic heterocyclic group of Ar 12 and Ar 13 is preferably the one represented by the formula (Ib), and in particular, the 5,8-quinolinediyl group. Alternatively, a 5,8-isoquinolinediyl group is preferable.
  • Ar 13 represents a 1,4-phenylene group optionally having an electron donating group, a 1,4-naphthalene group optionally having a substituent, or an aromatic heterocyclic ring optionally having a substituent. Represents a group. By being these groups, the association property of the azo dye is improved.
  • the electron donating group that the 1,4-phenylene group may have include an alkyl group, an alkoxy group, a hydroxyl group, an amino group, and an acetylamino group. Specific examples, preferred ranges, and substituents that may be included in these groups are the same as those described above for the substituent that the aromatic hydrocarbon group of Ar 11 may have.
  • the size of the substituent is small, the planarity of the entire azo dye is high, and it is easy to associate with each other, so that a methyl group, a methoxy group, An acetylamino group or an amino group is preferred.
  • the 1,4-naphthylene group may have a substituent.
  • substituents that may have include a hydrophilic group, an electron donating group, an electron withdrawing group, and a hydrogen bonding functional group. Specific examples include a hydroxyl group, a methyl group, a methoxy group, an acetylamino group, an amino group, a sulfo group, and a carboxy group. Among these, the methoxy group, the sulfo group, or the acetylamino group impairs the planarity of the whole molecule. However, it is preferable in that it exhibits a high associative property.
  • the aromatic heterocyclic group wherein the same meaning as the aromatic heterocyclic group of Ar 12, specific examples, preferred ranges, it is also synonymous such substituent which may have.
  • Ar 14 is represented by the formula (II).
  • R N11 and R N12 each independently have a hydrogen atom, an alkyl group that may have a substituent, a phenyl group that may have a substituent, or a substituent.
  • b represents an integer of 0 to 3
  • d represents 0 or 1.
  • the amino group represented by —NR N11 R N12 is substituted at the ⁇ -position or ⁇ -position.
  • R N11 and R N12 each independently represent a hydrogen atom, an alkyl group that may have a substituent, a phenyl group that may have a substituent, or an acyl group that may have a substituent.
  • alkyl group The alkyl groups of R N11 and R N12 are each independently synonymous with the alkyl groups mentioned as the substituents that the Ar 11 aromatic hydrocarbon group of formula (I) may have, The preferred substituents and preferred ranges are also synonymous.
  • the phenyl groups of R N11 and R N12 each independently preferably have 6 to 12 carbon atoms, more preferably 10 or less, and particularly preferably 8 or less.
  • the phenyl group may have a substituent. Examples of the substituent that may have include a methyl group, a methoxy group, a hydroxyl group, a carboxy group, and a sulfo group.
  • the acyl group of R N11 and R N12 is represented by —C ( ⁇ O) R 31 , and R 31 represents an alkyl group or a phenyl group.
  • the alkyl group usually has 1 to 4 carbon atoms, preferably 2 or less carbon atoms.
  • the phenyl group usually has 6 or more substituents, usually 10 or less, preferably 8 or less.
  • the alkyl group and the phenyl group may have a substituent. Examples of the substituent that may have include an alkoxy group having 1 to 4 carbon atoms, a hydroxyl group, a sulfo group, and a carboxy group.
  • Specific examples of the acyl group include an acetyl group and a benzoyl group.
  • RN11 or RN12 is a hydrogen atom, a methyl group, an ethyl group, a phenyl group, an acetyl group, or a benzoyl group from the viewpoint that steric hindrance is difficult when molecules are stacked and lyotropic liquid crystallinity is easily exhibited.
  • the combination of R N11 and R N12 is not particularly limited, but one of R N11 and R N12 is preferably a hydrogen atom from the viewpoint of easily exhibiting lyotropic liquid crystallinity.
  • it is preferable that RN11 and RN12 are hydrogen atoms from the viewpoint that the composition for an anisotropic dye film easily exhibits lyotropic liquid crystal properties at a relatively low concentration and is excellent in process suitability.
  • ⁇ B and d> b represents an integer of 0 to 3.
  • 1 or 2 is because the azo dye represented by the formula (I) tends to exhibit water solubility and tends to form an aggregate due to an intermolecular salt-mediated interaction.
  • d represents 0 or 1;
  • 1 is the azo dye represented by formula (I) becomes a dye having absorption up to a long wavelength in the visible region (380 nm to 780 nm), and the obtained anisotropic dye film becomes nearly black. It is preferable because of its tendency.
  • the amino group represented by —NR N11 R N12 is substituted at the ⁇ -position or the ⁇ -position.
  • Substitution at this position tends to contribute to the intermolecular interaction.
  • the position where the hydroxyl group is substituted is the 1st position, and the position where the azo group is substituted is the 2nd position. It is preferable that at least one of —SO 3 H or —NR N11 R N12 is substituted at any of the 5, 6, 7, and 8 positions, and at least one is substituted at any of the 6, 7 positions. Is more preferable.
  • Ar 14 is particularly preferably represented by the formula (VI) because it tends to contribute to the intermolecular interaction and the obtained anisotropic dye film tends to be black.
  • (G and h) g and h each independently represents 0 or 1; Preferably the sum of g and h is 1 or 2.
  • Ar 11 , Ar 12 , Ar 13 and Ar 14 The combination of Ar 11 , Ar 12 , Ar 13 and Ar 14 is not particularly limited, but Ar 11 is a phenyl group or a naphthyl group having at least one electron-withdrawing group as a substituent, and Ar 12 and / or Ar 13 Have a 1,4-phenylene group which may have a substituent, a 1,4-naphthylene group which may have a substituent, and a monocyclic or bicyclic substituent. It is preferably selected from the group consisting of aromatic heterocyclic groups, and Ar 14 is preferably represented by the formula (VI).
  • Ar 12 and / or Ar 13 may have a 1,4-naphthylene group which may have a substituent or a bicyclic substituent.
  • An aromatic heterocyclic group is preferable, and Ar 13 is a 1,4-naphthylene group which may have a substituent or an aromatic heterocyclic group which may have a bicyclic substituent.
  • the electron withdrawing group which the phenyl group or naphthyl group of Ar 11 has may be either nonionic or ionic.
  • the azo dye In the case of an ionic electron-withdrawing group, the azo dye has a property of attracting strongly between molecules due to an acid / base bond or a hydrogen bond between the molecules of the azo dye, so that the molecules can easily form an associated state.
  • a nonionic electron-withdrawing group there is a tendency not to separate charges with water. Accordingly, when the azo dye represented by the formula (I) is used in an anisotropic dye film composition containing, for example, water as a solvent, the dye and the solvent represented by the formula (I) are compared with those in the ionic case. Interaction is small, that is, hydrophobic interaction is strong, attracting more strongly between molecules, and molecules tend to form a laminated state.
  • the electron withdrawing group may be either nonionic or ionic, but it is preferable that the electron withdrawing group is nonionic in that lamination is strongly caused in terms of stronger interaction between aromatic rings.
  • the phenyl group or naphthyl group at the terminal of the azo dye molecule (Ar 11 ) is substituted.
  • an electron withdrawing group As a group, it is in an electron-deficient state (electron density on the aromatic ring is attenuated).
  • the naphthyl group (Ar 14 ) substituted with a hydroxyl group located at the terminal opposite to this is in an electron-excess state (electron density on the benzene ring is enhanced).
  • the azo dye represented by formula (I) when the azo dye represented by formula (I) are associated with laminated, strong inquiries electron-rich the aromatic ring of an electron-deficient aromatic ring and Ar 14 in the Ar 11 are between the molecules, Ar 14 on the Ar 11 It is considered that the columns are easily arranged so as to be stacked to form a column. Further, the Ar 12 and Ar 13 rings arranged in the center of the molecule are each composed of a 1,4-phenylene group, a 1,4-naphthylene group, and a monocyclic or bicyclic aromatic heterocyclic group. By being selected, it has the property that it is easy for ⁇ - ⁇ interaction to occur between molecules, and the molecules tend to form an associated state.
  • Ar 12 and / or Ar 13 is preferably a 1,4-naphthylene group or a bicyclic aromatic heterocyclic group, since it has high ⁇ planarity and increased association. Furthermore, since Ar 13 is a 1,4-naphthylene group or a bicyclic aromatic heterocyclic group, it is adjacent to the Na 14 ring of Ar 14 , so that a large ⁇ plane is formed in the molecule and the associative property is increased. It is more preferable because it increases. Therefore, the azo dye represented by the formula (I) can form a high association state in a solution such as a lyotropic liquid crystal in a composition containing the azo dye.
  • the azo compound of the present invention is also used in an anisotropic dye film obtained by applying a process specific to the wet film-forming method to the composition containing the azo dye, that is, a lamination process such as coating on the substrate surface. Is considered to be able to provide an anisotropic dye film which is arranged in high order and exhibits high dichroism. Further, the azo dye represented by the formula (I) has absorption in the entire visible light wavelength region by taking the combination of Ar 11 , Ar 12 , Ar 13 and Ar 14 as described above, and the formula (I The anisotropic dye film using the azo dye represented by) tends to be achromatic.
  • the azo dye of the present invention can form an achromatic anisotropic dye film having high anisotropy.
  • the 1,4-phenylene group, 1,4-naphthylene group, and monocyclic or bicyclic aromatic heterocyclic group may each have a substituent or may have a substituent.
  • the substituents are as described above.
  • Ar 21 represents an optionally substituted aromatic hydrocarbon group or an optionally substituted aromatic heterocyclic group
  • Ar 22 represents an electron donating group.
  • Ar 23 represents Represents a group represented by formula (IV).
  • R N21 and R N22 each independently have a hydrogen atom, an alkyl group that may have a substituent, a phenyl group that may have a substituent, or a substituent.
  • e represents an integer of 0 to 3
  • f represents 0 or 1.
  • the amino group represented by —NR N21 R N22 is substituted at the ⁇ -position or ⁇ -position.
  • Ar 21 represents an aromatic hydrocarbon group which may have a substituent or an aromatic heterocyclic group which may have a substituent.
  • Ar ⁇ 21 > is synonymous with Ar ⁇ 11 > of a formula (I), and the preferable range and the substituent which you may have are also synonymous.
  • Ar 22 is a 1,4-phenylene group optionally having an electron donating group, a 1,4-naphthalene group optionally having a substituent, or an aromatic heterocyclic ring optionally having a substituent. Represents a group.
  • Ar 22 may have a 1,4-phenylene group optionally having an electron donating group, a 1,4-naphthalene group optionally having a substituent, and an aromatic heterocyclic group optionally having a substituent Has a 1,4-phenylene group which may have an electron-donating group mentioned as Ar 12 in the formula (I), a 1,4-naphthalene group which may have a substituent, and a substituent. It is synonymous with the aromatic heterocyclic group that may be present, and the preferred range and the substituent that may be present are also synonymous.
  • Ar 23 is represented by the formula (IV).
  • ⁇ RN21 and RN22 > R N21 and R N22 each independently represent a hydrogen atom, an alkyl group that may have a substituent, a phenyl group that may have a substituent, or an acyl group that may have a substituent.
  • R N21 and R N22 have the same meanings as R N11 and R N12 in formula (I), respectively, and the substituents and preferred ranges that may be included are also the same.
  • a preferred combination of R N21 and R N22 is also synonymous with R N11 and R N12 in formula (I).
  • ⁇ E and f> e represents an integer of 0 to 3.
  • e is synonymous with b of Formula (II), and its preferable range is also synonymous.
  • f represents 0 or 1; f has the same meaning as d in formula (II), and the preferred range is also the same.
  • the amino group represented by —NR N21 R N22 is substituted at the ⁇ -position or ⁇ -position. Substitution at this position tends to contribute to the intermolecular interaction.
  • the position where the hydroxyl group is substituted is the 1st position, and the position where the azo group is substituted is the 2nd position. It is preferable that at least one of —SO 3 H or —NR N21 R N22 is substituted at any of the 5, 6, 7, and 8 positions, and at least one is substituted at any of the 6, 7 positions. Is more preferable.
  • Ar 23 is particularly preferably represented by the formula (VII) because it tends to contribute to the intermolecular interaction and the obtained anisotropic dye film tends to be black.
  • (I and j) i and j each independently represents 0 or 1. Preferably, the sum of i and j is 1 or 2.
  • a preferred combination of Ar 21 , Ar 22 and Ar 23 is not particularly limited.
  • the combination of Ar 21 , Ar 22 and Ar 23 is a phenyl group which Ar 21 may have a substituent or a naphthyl group which may have a substituent, and Ar 22 has an electron donating group.
  • Ar 23 is represented by the formula (VII).
  • Ar 22 is a 1,4-naphthylene group which may have a substituent or an aromatic heterocyclic group which may have a bicyclic substituent.
  • Ar 21 is preferably a phenyl group or a naphthyl group having at least one electron withdrawing group as a substituent.
  • the electron withdrawing group of the phenyl group or naphthyl group of Ar 21 may be either nonionic or ionic.
  • the azo dye has a property of attracting strongly between molecules due to an acid / base bond or a hydrogen bond between the molecules of the azo dye, so that the molecules can easily form an associated state.
  • the azo dye represented by the formula (III) is used in an anisotropic dye film composition containing, for example, water as a solvent, the dye and the solvent of the formula (III) are compared with those in the ionic case. Interaction is small, that is, hydrophobic interaction is strong, attracting more strongly between molecules, and molecules tend to form a laminated state.
  • the electron withdrawing group may be either nonionic or ionic, but it is preferable that the electron withdrawing group is nonionic in that lamination is strongly caused in terms of stronger interaction between aromatic rings.
  • the ring of Ar 21 of the azo dye represented by the formula (III) having a combination of Ar 21 , Ar 22 and Ar 23 as described above has a hydroxyl group and an amino group arranged at Ar 14 of the formula (I). It is expected that molecules with each other are strongly attracted with the substituted electron-rich naphthyl group to form an associated state.
  • Ar 22 is a 1,4-phenylene group or a 1,4-naphthylene group, which may have an electron donating group, whereby Ar 12 and / or Alternatively, the Ar 13 ring has a property that it is easy to take a ⁇ - ⁇ interaction between molecules and to easily form an association state between molecules.
  • Ar 23 is represented by the formula (VII), interaction with Ar 11 of the formula (I) is also expected, and the above-described viscosity reduction effect can be obtained.
  • the phenyl group, naphthyl group, 1,4-phenylene group, 1,4-naphthylene group, and monocyclic or bicyclic aromatic heterocyclic ring each may have a substituent.
  • the optional substituents are as described above.
  • a combination of an azo dye whose free acid form is represented by formula (I) and an azo dye whose free acid form is represented by formula (III) is not particularly limited.
  • At least one structure selected from Ar 21 to Ar 23 in the formula (III) is obtained by removing a substituent that may be present from at least one structure selected from Ar 11 to Ar 14 in the formula (I).
  • the structure is preferably the same as the structure excluding the substituent which may be included in the structure.
  • the structure excluding the substituent that may be present from the structure of Ar 11 in formula (I) is a naphthalene ring.
  • Ar 22 is a naphthalene ring having a sulfo group
  • the structure excluding the substituent which may be present from the structure of Ar 22 in formula (III) is a naphthalene ring.
  • the structure excluding the substituent which may be present from at least one structure selected from Ar 11 to Ar 14 in the formula (I) is selected from Ar 21 to Ar 23 in the formula (III). It is the same as the structure excluding the substituent that may be present from at least one structure.
  • the structure excluding the substituent which may be present from at least two structures selected from Ar 11 to Ar 14 is present from at least two structures selected from Ar 21 to Ar 23 in the formula (III). It is preferable that the structure is the same as that except for the substituents that may be present, and the structure excluding the substituents that may be present from at least three structures selected from Ar 11 to Ar 14 is represented by the formula ( It is preferable that each of the structures of Ar 21 to Ar 23 in III) is the same as the structure excluding the substituent which may be included. Note that the structures selected from Ar 11 to Ar 14 except for the substituents that may be present may be the same or different. Similarly, the structures selected from Ar 21 to Ar 23 except for the substituents that may be present may be the same or different.
  • the structure excluding the substituent which may be present from at least one structure selected from Ar 11 to Ar 13 of formula (I) is derived from the structure of Ar 21 and / or Ar 22 of formula (III).
  • the structure is preferably the same as the structure excluding the substituent that may have.
  • the structure excluding the substituent which may be present from at least two structures selected from Ar 11 to Ar 13 of formula (I) is derived from the structure of Ar 21 and / or Ar 22 of formula (III).
  • the group of substituents that may be present is preferably the same, and the substituents that may be possessed are more preferably the same. Moreover, it is preferable that the substitution position of the group of the substituent which may have and / or the substituent which may have is the same. Further, the bonding position with the azo bond is preferably the same.
  • the group of substituents refers to the properties of the substituents such as the hydrophilic groups, electron donating groups, electron withdrawing groups, ionic, nonionic, hydrogen bonding functional groups, and functional groups having strong dipoles. Represents a group classified by.
  • At least one combination selected from the group consisting of a combination of Ar 11 and Ar 21, a combination of Ar 12 and Ar 22, and a combination of Ar 13 and Ar 22 excludes the substituents that may be present.
  • the structures are preferably the same.
  • intermolecular interactions such as ⁇ - ⁇ stacking and hydrogen bonding between substituents of the compound of formula (I) and the compound of formula (III) are likely to occur, and the columnar aggregate formed by formula (I)
  • the group of substituents that may be present is preferably the same, and the substituents that may be possessed are more preferably the same.
  • the combination of the azo dyes represented by the formulas (I) and (III) in the form of the free acid is as described above, so that the intermolecular interaction of the azo dyes represented by the formula (I) and the formula (III) It becomes easy to do. That is, the interaction between the columns of the azo dye represented by the formula (I) can be changed, the ordering can be lowered, and the viscosity of the anisotropic dye film composition tends to be lowered.
  • Ar 11 has at least one electron-withdrawing group as a substituent, a phenyl group or a naphthyl group
  • Ar 12 and / or Ar 13 may have a substituent, a 1,4-phenylene group, a substituent, a 1,4-naphthylene group and a monocyclic or bicyclic substituent
  • Selected from the group consisting of aromatic heterocyclic groups optionally having Ar 14 is represented by the formula (VI)
  • Ar 21 may have a phenyl group which may have a substituent or a naphthyl group which may have a substituent
  • Ar 22 has a 1,4-phenylene group which may have an electron donating group
  • a 1,4-naphthylene group which may have a substituent and a monocyclic or bicyclic substituent.
  • Ar 23 is represented by the formula (VII).
  • the mass ratio of the azo dye in which the form of the free acid in the composition for anisotropic dye film of the present invention is represented by formula (I) and the azo dye in which the form of the free acid is represented by formula (III) is: There is no particular limitation.
  • the mass of the azo dye represented by the formula (III) with respect to the azo dye represented by the formula (I) is preferably 0.0001% by mass or more, more preferably 0.001% by mass or more, It is particularly preferably 0.01% by mass or more, and most preferably 0.1% by mass or more.
  • % Or less more preferably 2.75% by mass or less, particularly preferably 2.5% by mass or less, and most preferably 2.0% by mass or less.
  • the mass ratio of the azo dye whose free acid form is represented by formula (I) and the azo dye whose free acid form is represented by formula (III) is in an appropriate range, the process suitability is improved.
  • the associative property of the dye of formula (I) itself is not inhibited, and an anisotropic dye film in which the dye is well oriented tends to be obtained.
  • the azo dye whose free acid form is represented by formula (I) and the free acid form is represented by formula (III) It may have a dye other than the azo dye represented by
  • a dye exemplified as a dye for blending in Japanese Patent Application Laid-Open No. 2007-126628, an anthraquinone compound described in Japanese Patent Application Laid-Open No. 2007-199333, and the form of the free acid shown below is represented by Formula (V).
  • Ar 31 , Ar 32 and Ar 33 are each independently an aromatic hydrocarbon group which may have a substituent or an aromatic heterocyclic group which may have a substituent.
  • R 34 represents a hydrogen atom, a hydroxyl group, an amino group or an acylamino group.
  • Ar 31 represents an aromatic hydrocarbon group which may have a substituent or an aromatic heterocyclic group which may have a substituent.
  • Ar 31 is synonymous with the aromatic hydrocarbon group which may have a substituent or the aromatic heterocyclic group which may have a substituent, which is mentioned as Ar 11 in formula (I), and is preferable. Ranges and substituents that may be present are also synonymous.
  • Ar 32 and Ar 33 each independently represent an aromatic hydrocarbon group which may have a substituent or an aromatic heterocyclic group which may have a substituent.
  • Ar 32 and Ar 33 have the same meaning as the aromatic hydrocarbon group which may have a substituent or the aromatic heterocyclic group which may have a substituent, which is exemplified for Ar 12 in the formula (I).
  • the preferred range and the substituents that may be present are also synonymous.
  • Ar 31 , Ar 32 and Ar 33 A preferred combination of Ar 31 , Ar 32 and Ar 33 is not particularly limited.
  • Ar 31 is an optionally substituted phenyl group or an optionally substituted naphthyl group, and Ar 32 and Ar 33 are optionally substituted 1,4-phenylene A 1,4-naphthylene group which may have a group or a substituent is preferable.
  • Ar 31 is preferably a phenyl group or a naphthyl group having at least one electron withdrawing group as a substituent. Further, it is preferable to satisfy at least one of the following 1) to 3).
  • the structure excluding the substituent which may be present from the structure of Ar 31 is the same as the structure excluding the substituent which may be present from the structure of Ar 11 in formula (I).
  • the structure excluding the substituent which may be present from the structure of Ar 32 is the same as the structure excluding the substituent which may be present from the structure of Ar 12 in formula (I).
  • the structure excluding the substituent which may be present from the structure of Ar 33 is the same as the structure excluding the substituent which may be possessed from the structure of Ar 13 in formula (I).
  • the group of substituents that may be present is preferably the same, and the substituents that may be possessed are more preferably the same.
  • the substitution position of the group of the substituent which may have and / or the substituent which may have is the same.
  • the bonding position with the azo bond is preferably the same.
  • the electron withdrawing group which the phenyl group or naphthyl group of Ar 31 has may be either nonionic or ionic.
  • the azo dye has a property of attracting strongly between molecules due to an acid / base bond or a hydrogen bond between the molecules of the azo dye, so that the molecules can easily form an associated state.
  • a nonionic electron-withdrawing group there is a tendency not to separate charges with water.
  • the dye and the solvent represented by the formula (V) are compared with those in the ionic case.
  • Interaction is small, that is, hydrophobic interaction is strong, attracting more strongly between molecules, and molecules tend to form a laminated state.
  • the electron withdrawing group may be either nonionic or ionic, but it is preferable that the electron withdrawing group is nonionic in that lamination is strongly caused in terms of stronger interaction between aromatic rings.
  • the ring of Ar 31 of the azo dye represented by the formula (V) having a preferable combination of Ar 31 , Ar 32 and Ar 33 as described above has a hydroxyl group and an amino group arranged at Ar 14 of the formula (I). It is expected that molecules with each other are strongly attracted with the substituted electron-rich naphthyl group to form an associated state.
  • Ar 32 and Ar 33 are each a 1,4-phenylene group which may have a substituent or a 1,4-naphthylene group which may have a substituent, whereby a molecule of the formula (I)
  • the ring of Ar 12 and / or Ar 13 arranged in the center also tends to have a property that it is easy to take a ⁇ - ⁇ interaction between molecules and to form an associated state between molecules.
  • the intermolecular interaction of the azo dyes represented by formulas (I) and (V) is large, and the azo dye represented by formula (V) is:
  • the azo dye represented by formula (I) is not taken into the molecular aggregate formed, or the order of the aggregate is not greatly disturbed even if the aggregate is bonded with a hydrogen bond. Therefore, it is presumed that an effect of lowering the order formed only by the azo dye represented by the formula (I) and lowering the viscosity can be obtained.
  • the phenyl group, naphthyl group, 1,4-phenylene group and 1,4-naphthylene group may each have a substituent, and the substituents which may be present are as described above.
  • R 34 represents a hydrogen atom, a hydroxyl group, an amino group, or acylamino.
  • the amino group and acylamino group may each have a substituent.
  • the amino group and acylamino group of R 34 are respectively synonymous with the amino group and acylamino group mentioned as the substituents that the aromatic hydrocarbon group of Ar 11 of formula (I) may have, and have The substituents and preferred ranges that may be used are also synonymous.
  • the mass ratio is particularly limited as long as the effect of the present invention is not impaired.
  • the ratio of the mass of the azo dye represented by formula (I) and the sum of the masses of the azo dyes represented by formula (III) and formula (V) is preferably 0.0001% by mass or more, It is more preferably 0.001% by mass or more, particularly preferably 0.01% by mass or more, and most preferably 0.1% by mass or more. Further, it is preferably 50% by mass or less, more preferably 20% by mass or less, particularly preferably 10% by mass or less, and most preferably 6.0% by mass or less.
  • the ratio of the sum of the mass of the azo dye whose free acid form is represented by formula (I) and the mass of the azo dye whose free acid form is represented by formula (III) and formula (V) is within an appropriate range.
  • azo dye whose free acid form is represented by formula (I), formula (III) and formula (V) are: It can be produced according to a method known per se. For example, it can be produced by the method described in Japanese Patent Application Laid-Open No. 2008-81700 and Japanese Patent Application Laid-Open No. 2007-126628. For example, an azo compound represented by the following formula (I-1) can be produced according to the following steps (A) to (C).
  • (A) 4-aminobenzonitrile and 8-amino-2-naphthalenesulfonic acid (1,7-Cleves acid) are used in a conventional manner [for example, Yutaka Hosoda, “New dye chemistry” (December 21, 1973, Monoazo compound is produced through a diazotization and coupling step according to (published by Gihodo), page 396, page 409].
  • the obtained disazo compound is diazotized by a conventional method, and subjected to a coupling reaction with 7-amino-1-naphthol-3,6-disulfonic acid (RR acid) to obtain the target compound represented by the following formula (I-).
  • the azo compound represented by 1) is obtained as a sodium salt. If necessary, in each step, dissolve or suspend in a good solvent and add a salt such as sodium chloride for salting out. Dissolve or suspend in a good solvent and add a poor solvent for crystallization. It may be purified by washing, separation by column chromatography, or the like.
  • the azo dyes in which the free acid form of the present invention is represented by the formula (I), the formula (III) and the formula (V) may be used in the free acid form, and a part of the acid group is a salt form. You may have taken. Further, a salt-type dye and a free acid-type dye may be mixed. Moreover, when it is obtained in a salt form at the time of production, it may be used as it is or may be converted into a desired salt form.
  • the salt type exchange method a known method can be arbitrarily used, and examples thereof include the following methods 4) to 7).
  • a strong acid such as hydrochloric acid is added to the aqueous solution of the dye obtained in the salt form, the dye is acidified in the free acid form, and then the dye is added with an alkaline solution having a desired counter ion (for example, an aqueous lithium hydroxide solution).
  • a desired counter ion for example, an aqueous lithium hydroxide solution.
  • a method of neutralizing acidic groups and salt exchange is added to an aqueous solution of a dye obtained in a salt form, and salt exchange is performed in the form of a salting-out cake.
  • An aqueous solution of a dye obtained in a salt form is treated with a strongly acidic cation exchange resin, and the dye is acidified in a free acid form, and then an alkali solution having a desired counter ion (for example, an aqueous lithium hydroxide solution) ) To neutralize the acidic group of the dye and perform salt exchange.
  • An alkali solution having a desired counter ion for example, an aqueous lithium hydroxide solution
  • a method of performing salt exchange by allowing an aqueous solution of a dye obtained in a salt form to act on a strongly acidic cation exchange resin that has been previously treated with an alkaline solution having a desired counter ion (for example, an aqueous lithium hydroxide solution).
  • the azo dye represented by the formula (I), the formula (III) and the formula (V) of the present invention has a free acid form or a salt form in the acidic group depends on the pKa of the dye and the dye aqueous solution.
  • the salt type include salts of alkali metals such as Na, Li and K, ammonium salts which may be substituted with alkyl groups or hydroxyalkyl groups, and organic amine salts.
  • Examples of the organic amine include a lower alkyl amine having 1 to 6 carbon atoms, a hydroxy-substituted lower alkyl amine having 1 to 6 carbon atoms, a carboxy-substituted lower alkyl amine having 1 to 6 carbon atoms, and the like.
  • the type is not limited to one type, and a plurality of types may be mixed.
  • the manufacturing method of the composition for anisotropic dye films of this invention is not specifically limited.
  • other additives, a solvent, etc. are mixed at 0-100 ° C. Stir and shake to dissolve the dye.
  • a homogenizer, a bead mill disperser or the like may be used.
  • the time for the filtration step tends to be shortened.
  • a method for removing foreign substances and the like in the composition other than filtration there is a method using centrifugation described in Japanese Patent Application Laid-Open No. 2012-53388. In this case, too, if the viscosity is low, the time required for the centrifugation is reduced. It tends to be shortened.
  • the anisotropic dye film of the present invention is preferably produced by a wet film forming method.
  • the wet film forming method referred to in the present invention is a method in which a composition for an anisotropic dye film is applied on a substrate by any method, and a dye or the like is oriented and laminated on the substrate through a process of drying a solvent.
  • the anisotropic dye film composition when the anisotropic dye film composition is applied on the substrate, the dye itself self-associates in the anisotropic dye film composition or in the process of drying the solvent, so that the minute amount is obtained. Orientation by area occurs.
  • an anisotropic dye film having desired performance can be obtained by orienting in a certain direction in a macro region.
  • This is different from the method based on the principle that a so-called polyvinyl alcohol (PVA) film or the like is dyed with a solution containing a dye and stretched, and the dye is oriented only by a stretching process.
  • the external field includes the influence of the alignment treatment layer previously applied on the substrate, shear force, magnetic field, and the like, and these may be used alone or in combination.
  • the process of applying the anisotropic dye film composition on the substrate to form a film, the process of aligning by applying an external field, and the process of drying the solvent may be performed sequentially or simultaneously.
  • Examples of the method for applying the anisotropic dye film composition on the substrate in the wet film forming method include a coating method, a dip coating method, an LB film forming method, a known printing method, and the like.
  • the present invention preferably uses a coating method.
  • the orientation direction of the anisotropic dye film is usually coincident with the application direction, but may be different from the application direction.
  • the orientation direction of the anisotropic dye film is, for example, a polarizing transmission axis or absorption axis in the case of a polarizing film, and a fast axis or a slow axis in the case of a retardation film. That is.
  • the anisotropic dye film in this embodiment functions as a polarizing film or retardation film that obtains linearly polarized light, circularly polarized light, elliptically polarized light, etc. by utilizing the anisotropy of light absorption, as well as a film forming process and a substrate. And by selecting a composition containing an organic compound (pigment or transparent material), it can be functionalized as various anisotropic dye films such as refractive anisotropy and conduction anisotropy.
  • the method for applying the anisotropic dye film composition to obtain the anisotropic dye film is not particularly limited.
  • Yuji Harasaki Coating Engineering
  • the method described on pages 253 to 277 supervised by Kunihiro Ichimura, “Creation and Application of Molecular Coordination Materials” (CMC Publishing Co., Ltd., published on March 3, 1998), the method described on pages 118 to 149, steps Slot die coating method, spin coating method, spray coating method, bar coating method, roll coating method, blade coating method, curtain coating method, fountain method, dipping method, etc.
  • a die coater used in the slot die coating method generally includes an applicator for discharging a coating liquid, a so-called slit die.
  • the slit die is disclosed in, for example, Japanese Patent Application Laid-Open No. 2-164480, Japanese Patent Application Laid-Open No. 6-154687, Japanese Patent Application Laid-Open No. 9-131559, “Basics and Applications of Dispersion / Coating / Drying” (2014).
  • Examples of the substrate used for forming the anisotropic dye film of the present invention include glass, triacetate, acrylic, polyester, polyimide, triacetylcellulose, or urethane film.
  • the substrate surface is aligned by a known method described in “Liquid Crystal Handbook” Maruzen Co., Ltd., issued October 30, 2000, pages 226 to 239, etc.
  • a treatment layer (alignment film) may be provided.
  • an orientation treatment layer it is considered that the dye is oriented by the influence of the orientation treatment of the orientation treatment layer and the shearing force applied to the anisotropic dye film composition during coating.
  • the method for supplying the composition for anisotropic dye film and the supply interval when applying the composition for anisotropic dye film are not particularly limited.
  • the anisotropic dye film When the anisotropic dye film is thin, it may continuously occur because the supply operation of the coating liquid becomes complicated and the coating film thickness may vary when the coating liquid starts and stops. It is desirable to apply while supplying the composition for anisotropic dye film.
  • the speed at which the composition for anisotropic dye film is applied is usually 1 mm / second or more, preferably 5 mm / second or more. Moreover, it is 1000 mm / sec or less normally, Preferably it is 200 mm / sec or less.
  • coating speed is in an appropriate range, anisotropy of the anisotropic dye film is obtained, and the coating tends to be performed uniformly.
  • coating temperature of the composition for anisotropic dye films it is 0 degreeC or more and 80 degrees C or less normally, Preferably it is 40 degrees C or less.
  • coating of the composition for anisotropic dye films becomes like this. Preferably it is 10% RH or more, More preferably, it is 30% RH or more, Preferably it is 80% RH or less.
  • the film thickness of the anisotropic dye film is preferably 10 nm or more, more preferably 50 nm or more as a dry film thickness. On the other hand, it is preferably 30 ⁇ m or less, more preferably 1 ⁇ m or less. When the film thickness of the anisotropic dye film is within an appropriate range, uniform orientation and uniform film thickness of the dye tend to be obtained in the film.
  • the anisotropic dye film may be insolubilized.
  • the insolubilization treatment means a treatment step in which the solubility of the compound in the anisotropic dye film is reduced, thereby controlling the elution of the compound from the anisotropic dye film and increasing the stability of the film.
  • an ion with a lower valence is replaced with an ion with a higher valence (for example, a monovalent ion is replaced with a polyvalent ion), or an organic molecule or polymer having a plurality of ionic groups.
  • a replacement process is listed.
  • the anisotropic dye film obtained is treated by the method described in Japanese Patent Application Laid-Open No. 2007-241267, etc. to form an anisotropic dye film that is insoluble in water. It is preferable from the viewpoint of ease and durability.
  • the anisotropic dye film of the present invention includes an azo dye whose free acid form is represented by the following formula (I) and an azo dye whose free acid form is represented by the following formula (III).
  • Ar 11 and Ar 12 each independently represent an aromatic hydrocarbon group which may have a substituent or an aromatic heterocyclic group which may have a substituent
  • Ar 13 is a 1,4-phenylene group optionally having an electron donating group, a 1,4-naphthylene group optionally having a substituent, or an aromatic heterocyclic ring optionally having a substituent Represents a group
  • Ar 14 represents a group represented by the formula (II).
  • R N11 and R N12 each independently have a hydrogen atom, an alkyl group that may have a substituent, a phenyl group that may have a substituent, or a substituent.
  • b represents an integer of 0 to 3
  • d represents 0 or 1.
  • the amino group represented by —NR N11 R N12 is substituted at the ⁇ -position or ⁇ -position.
  • Ar 21 represents an optionally substituted aromatic hydrocarbon group or an optionally substituted aromatic heterocyclic group
  • Ar 22 represents an electron donating group.
  • Ar 23 represents Represents a group represented by formula (IV).
  • R N21 and R N22 each independently have a hydrogen atom, an alkyl group that may have a substituent, a phenyl group that may have a substituent, or a substituent.
  • e represents an integer of 0 to 3
  • f represents 0 or 1.
  • the amino group represented by —NR N21 R N22 is substituted at the ⁇ -position or ⁇ -position.
  • the orientation characteristics of the anisotropic dye film can be expressed using a dichroic ratio.
  • a dichroic ratio of 8 or more functions as a polarizing element, but is preferably 15 or more, more preferably 20 or more, further preferably 25 or more, and particularly preferably 30 or more. Moreover, the higher the dichroic ratio is, the better, and there is no upper limit. When the dichroic ratio is a specific value or more, it is useful as an optical element described later, particularly as a polarizing element.
  • the dichroic ratio (D) referred to in the present invention is represented by the following formula when anisotropic dyes are uniformly oriented.
  • D Az / Ay
  • Az is the absorbance observed when the polarization direction of the light incident on the anisotropic dye film is parallel to the orientation direction of the anisotropic dye, and Ay is observed when the polarization direction is perpendicular.
  • Absorbance Each absorbance is not particularly limited as long as the same wavelength is used, and any wavelength may be selected depending on the purpose. However, when the degree of orientation of the anisotropic dye film is expressed, the maximum absorption of the anisotropic dye film is used. It is preferable to use a value in wavelength.
  • the transmittance in the visible light wavelength region of the anisotropic dye film of the present invention is preferably 25% or more. 35% or more is more preferable, and 40% or more is particularly preferable.
  • permeability should just be an upper limit according to a use. For example, when increasing the degree of polarization, it is preferably 50% or less.
  • the transmittance is in a specific range, it is useful as the following optical element, and particularly useful as an optical element for a liquid crystal display used for color display.
  • the optical element is a polarizing element that obtains linearly polarized light, circularly polarized light, elliptically polarized light, etc. by utilizing the anisotropy of light absorption, a retardation element, an element having functions such as refractive anisotropy and conduction anisotropy. Represents. These functions can be appropriately adjusted according to the anisotropic dye film forming process and the selection of a composition containing a substrate or an organic compound (a dye or a transparent material). In the present invention, it is most preferably used as a polarizing element.
  • the polarizing element may have any other film (layer) as long as it has an anisotropic dye film.
  • it can be produced by providing an alignment film on a substrate and forming an anisotropic dye film on the surface of the alignment film.
  • the polarizing element is not limited to an anisotropic dye film, but an overcoat layer having functions such as improving polarization performance and improving mechanical strength; adhesive layer or antireflection layer; alignment film; retardation film A layer having optical functions such as a function as a brightness enhancement film, a function as a reflection film, a function as a transflective film, a function as a diffusion film, etc.
  • a layer having various functions may be laminated by coating, bonding, or the like, and used as a laminate.
  • These layers can be provided as appropriate in accordance with the manufacturing process, characteristics, and functions, and the position and order of the layers are not particularly limited.
  • the positions where the above layers are formed may be formed on the anisotropic dye film, or may be formed on the opposite surface of the substrate provided with the anisotropic dye film.
  • the order of forming the above layers may be before or after forming the anisotropic dye film.
  • the layer having a function as a retardation film can be formed by bonding a retardation film obtained by the following method to another layer constituting the polarizing element.
  • the retardation film is subjected to stretching treatment described in, for example, JP-A-2-59703, JP-A-4-230704, or the like, or described in JP-A-7-230007. It can be formed by processing.
  • the layer having a function as a brightness enhancement film can be formed by bonding the brightness enhancement film obtained by the following method to another layer constituting the polarizing element.
  • the brightness enhancement film is formed by forming micropores by a method as described in, for example, Japanese Patent Application Laid-Open No. 2002-169025 and Japanese Patent Application Laid-Open No. 2003-29030, or the central wavelength of selective reflection is different. It can be formed by overlapping two or more cholesteric liquid crystal layers.
  • a layer having a function as a reflective film or a transflective film can be formed by, for example, bonding a metal thin film obtained by vapor deposition or sputtering to another layer constituting the polarizing element. it can.
  • the layer having a function as a diffusion film can be formed, for example, by coating the other layer constituting the polarizing element with a resin solution containing fine particles.
  • the layer having a function as a retardation film or an optical compensation film is obtained by applying and aligning a liquid crystal compound such as a discotic liquid crystal compound or a nematic liquid crystal compound on another layer constituting the polarizing element. Can be formed.
  • the anisotropic dye film in the present embodiment is used as an anisotropic dye film for various display elements such as LCDs and OLEDs, it is directly anisotropic on the surface of the electrode substrate or the like constituting these display elements.
  • a dye film can be formed, or a substrate on which an anisotropic dye film is formed can be used as a constituent member of these display elements.
  • the optical element of the present invention can be suitably used for applications such as a flexible display because a polarizing element can be obtained by forming an anisotropic dye film on a substrate by coating or the like.
  • V-1 25.6 parts by weight of a sodium salt of an azo dye represented by the following formula (V-1) is dissolved in 600 parts by weight of N-methylpyrrolidone and 800 parts by weight of water, and 3.04 sodium nitrite under acidic conditions of hydrochloric acid.
  • aqueous solution of a sodium salt of a trisazo dye represented by the formula (I-1) is passed through a cation exchange resin (SK1BH manufactured by Mitsubishi Chemical Corporation) to make an aqueous solution of a free acid, neutralized with an aqueous lithium hydroxide solution, concentrated and dried.
  • a lithium salt of a trisazo dye represented by the formula (I-1) was obtained.
  • the maximum absorption wavelength ( ⁇ max) of this dye in a 10 ppm aqueous solution was 628 nm.
  • an aqueous solution of a sodium salt of a trisazo dye represented by the formula (I-1) is passed through a cation exchange resin (SK1BH, manufactured by Mitsubishi Chemical Corporation) to make an aqueous solution of a free acid, and then the aqueous solution of the free acid is used in a weight ratio.
  • the 80% fraction is divided into a 20% fraction, the 80% fraction is neutralized with an aqueous lithium hydroxide solution, the remaining 20% fraction free acid aqueous solution is mixed, and then concentrated to dryness.
  • an 80 mol% lithium neutralized salt of the trisazo dye represented by the formula (I-1) was obtained.
  • An aqueous solution of a sodium salt of a trisazo dye represented by the following formula (I-2) is passed through a cation exchange resin (SK1BH manufactured by Mitsubishi Chemical Corporation) to make an aqueous solution of a free acid, and then neutralized and concentrated with an aqueous lithium hydroxide solution.
  • a lithium salt of a trisazo dye represented by the following formula (I-2) was obtained.
  • the maximum absorption wavelength ( ⁇ max) of this dye in a 10 ppm aqueous solution was 627 nm.
  • an aqueous solution of a sodium salt of a trisazo dye represented by the formula (I-2) is passed through a cation exchange resin (SK1BH, manufactured by Mitsubishi Chemical Corporation) to make an aqueous solution of a free acid, and then the aqueous solution of the free acid is used in a weight ratio.
  • the 80% fraction and 20% fraction were separated, neutralized with an aqueous lithium hydroxide solution, mixed with the remaining 20% free acid aqueous solution, and then concentrated to dryness.
  • an 80 mol% lithium neutralized salt of a trisazo dye represented by the following formula (I-2) was obtained.
  • An aqueous solution of a sodium salt of an azo dye represented by the following formula (III-1) is passed through a cation exchange resin (SK1BH manufactured by Mitsubishi Chemical Corporation) to make an aqueous solution of a free acid, neutralized with lithium hydroxide, and concentrated and dried.
  • a lithium salt of an azo dye represented by the following formula (III-1) was obtained.
  • the maximum absorption wavelength ( ⁇ max) of this dye in a 10 ppm aqueous solution was 589 nm.
  • An aqueous solution of a sodium salt of an azo dye represented by the following formula (III-2) is passed through a cation exchange resin (SK1BH manufactured by Mitsubishi Chemical Corporation) to make an aqueous solution of a free acid, and then neutralized and concentrated with an aqueous lithium hydroxide solution. By drying, an azo dye lithium salt represented by the following formula (III-2) was obtained.
  • the maximum absorption wavelength ( ⁇ max) of this dye in a 10 ppm aqueous solution was 588 nm.
  • the disazo compound was diazotized with sodium nitrite in a mixed solvent of water and N-methylpyrrolidone under acidic conditions of hydrochloric acid, and 7-amino-1-naphthol-3,6-disulfonic acid and pH 8-10 in the aqueous solvent.
  • a coupling reaction was performed. Salting out was performed, and the precipitate was collected by filtration to obtain a sodium salt of an azo dye represented by the following formula (I-3).
  • An aqueous solution of a sodium salt of an azo dye represented by the following formula (I-3) is passed through a cation exchange resin (SK1BH manufactured by Mitsubishi Chemical Corporation) to make an aqueous solution of a free acid, and then neutralized and concentrated with an aqueous lithium hydroxide solution. By drying, an azo dye lithium salt represented by the following formula (I-3) was obtained.
  • the maximum absorption wavelength ( ⁇ max) of this dye in a 10 ppm aqueous solution was 619 nm.
  • the monoazo compound is diazotized with sodium nitrite in a mixed solvent of water and N-methylpyrrolidone under acidic conditions of hydrochloric acid, and after a coupling reaction with 8-amino-2-naphthalenesulfonic acid in an aqueous solvent, The mixture was salted out and the precipitate was collected by filtration to obtain a disazo compound.
  • the disazo compound was diazotized with sodium nitrite in a mixed solvent of water and N-methylpyrrolidone under acidic conditions of hydrochloric acid, and 7-amino-1-naphthol-3,6-disulfonic acid and pH 8-10 in the aqueous solvent. A coupling reaction was performed.
  • the precipitate was collected by filtration to obtain a sodium salt of an azo dye represented by the following formula (I-4).
  • An aqueous solution of a sodium salt of an azo dye represented by the following formula (I-4) is passed through a cation exchange resin (SK1BH manufactured by Mitsubishi Chemical Corporation) to make an aqueous solution of a free acid, and then neutralized and concentrated with an aqueous lithium hydroxide solution.
  • a lithium salt of a dye represented by the following formula (I-4) was obtained.
  • the maximum absorption wavelength ( ⁇ max) of this dye in a 10 ppm aqueous solution was 608 nm.
  • 6-Amino-1-naphthalenesulfonic acid is diazotized with sodium nitrite under acidic conditions in hydrochloric acid in an aqueous solvent, coupled with 8-amino-2-naphthalenesulfonic acid, salted out and precipitated.
  • the product was collected by filtration to obtain a monoazo compound.
  • the monoazo compound was diazotized with sodium nitrite in an aqueous solvent under acidic conditions of hydrochloric acid, and a coupling reaction was performed with 7-amino-1-naphthol-3,6-disulfonic acid in an aqueous solvent at pH 8-10.
  • the precipitate was collected by filtration to obtain a sodium salt of an azo dye represented by the following formula (III-3).
  • An aqueous solution of an azo dye sodium salt represented by the following formula (III-3) is passed through a cation exchange resin (SK1BH manufactured by Mitsubishi Chemical Corporation) to make an aqueous solution of a free acid, and then neutralized and concentrated with an aqueous lithium hydroxide solution.
  • a lithium salt of a dye represented by the following formula (III-3) was obtained.
  • the maximum absorption wavelength ( ⁇ max) of this dye in a 10 ppm aqueous solution was 587 nm.
  • aqueous solution of a sodium salt of a trisazo dye represented by the formula (I-5) is passed through a cation exchange resin (SK1BH manufactured by Mitsubishi Chemical Corporation) to make an aqueous solution of a free acid, neutralized with an aqueous lithium hydroxide solution, concentrated and dried.
  • a lithium salt of a trisazo dye represented by the formula (I-5) was obtained.
  • the maximum absorption wavelength ( ⁇ max) of this dye in a 10 ppm aqueous solution was 627 nm.
  • an aqueous solution of a sodium salt of a trisazo dye represented by the formula (I-5) is passed through a cation exchange resin (SK1BH manufactured by Mitsubishi Chemical Corporation) to make an aqueous solution of a free acid, and then the aqueous solution of the free acid is used in a weight ratio.
  • the 80% fraction is divided into a 20% fraction, the 80% fraction is neutralized with an aqueous lithium hydroxide solution, the remaining 20% fraction free acid aqueous solution is mixed, and then concentrated to dryness.
  • an 80 mol% lithium neutralized salt of the trisazo dye represented by the formula (I-5) was obtained.
  • aqueous solution of a sodium salt of a trisazo dye represented by the formula (I-6) is passed through a cation exchange resin (SK1BH manufactured by Mitsubishi Chemical Corporation) to make an aqueous solution of a free acid, neutralized with an aqueous lithium hydroxide solution, concentrated and dried.
  • a lithium salt of a trisazo dye represented by the formula (I-6) was obtained.
  • the maximum absorption wavelength ( ⁇ max) of this dye in a 10 ppm aqueous solution was 630 nm.
  • aqueous solution of a sodium salt of a disazo dye represented by the formula (III-4) is passed through a cation exchange resin (SK1BH manufactured by Mitsubishi Chemical Corporation) to make an aqueous solution of a free acid, neutralized with an aqueous lithium hydroxide solution, concentrated and dried.
  • a lithium salt of a disazo dye represented by the formula (III-4) was obtained.
  • the maximum absorption wavelength ( ⁇ max) of this dye in a 10 ppm aqueous solution was 594 nm.
  • This monoazo compound wet cake was suspended in 100 parts by weight of water, diazotized by adding 1.12 parts by weight of sodium nitrite under acidic conditions of hydrochloric acid, and 7-amino-1-naphthol-3 dissolved in 100 parts by weight of water.
  • 6-Disulfonic acid (RR acid) purity: 65.5%
  • RR acid 6-Disulfonic acid
  • pH 9-10
  • aqueous solution of a disazo dye sodium salt represented by the formula (III-5) is passed through a cation exchange resin (SK1BH, manufactured by Mitsubishi Chemical Corporation) to make an aqueous solution of a free acid, neutralized with an aqueous lithium hydroxide solution, concentrated and dried.
  • a lithium salt of a disazo dye represented by the formula (III-5) was obtained.
  • the maximum absorption wavelength ( ⁇ max) of this dye in a 10 ppm aqueous solution was 526 nm.
  • the wet cake of this monoazo compound was suspended in 100 parts by weight of N-methylpyrrolidone and 100 parts by weight of water, diazotized by adding 1.52 parts by weight of sodium nitrite under acidic conditions of hydrochloric acid, and dissolved in 200 parts by weight of water.
  • the viscosity of the liquid crystalline substance varies depending on the shear rate
  • the viscosity at the shear rate of 400 s ⁇ 1 is taken as the viscosity of each sample as a representative value.
  • the measurement temperature was 25 ° C., after 10 seconds Pureshea at a shear rate of 90.0s -1, the shear rate is varied in 720 seconds 90.0S -1 to 2.25s -1, the shear rate sweep measurement went.
  • the viscosity of a liquid crystal substance varies depending on the shear rate. From the viewpoint of the limit measurement viscosity of this measuring apparatus, the viscosity at a shear rate of 11.3 s ⁇ 1 was taken as the viscosity of each sample as a representative value.
  • the filterability of the prepared solution was evaluated as follows. 5 ml of the prepared solution was prepared and filtered with a 10 ml syringe equipped with Millex-LH 0.45 ⁇ m (manufactured by Merck Millipore Ltd.). The filterability was evaluated as follows. In the present invention, ⁇ and ⁇ are practical levels. ⁇ : Filtered quickly. ⁇ : Slow but filtered. X: It was necessary to apply a very strong force to the syringe, or filtration was not possible.
  • Example 1 To 88.40 parts of water, 10.64 parts of a lithium salt of an azo dye represented by the following formula (I-1), 80 mol% lithium neutralized salt of an azo dye represented by the following formula (I-1) 0 40 parts, 0.12 part of a lithium salt of an azo dye represented by the following formula (III-1), 0.04 part of a lithium salt of an azo dye represented by the following formula (V-1), and 0. After adding 4 parts and stirring and dissolving, it filtered and the insoluble content was removed, and the composition 1 for anisotropic dye films was obtained.
  • a lithium salt of an azo dye represented by the following formula (I-1) 80 mol% lithium neutralized salt of an azo dye represented by the following formula (I-1) 0 40 parts, 0.12 part of a lithium salt of an azo dye represented by the following formula (III-1), 0.04 part of a lithium salt of an azo dye represented by the following formula (V-1), and 0.
  • this composition 1 for an anisotropic dye film is placed on a slide glass, and a sample covered with a cover glass is observed with a polarizing microscope to confirm whether or not a liquid crystal phase is expressed. It was confirmed.
  • the viscosity of this anisotropic dye film composition 1 was measured by the method described above. The results are shown in Table 1.
  • a glass substrate 150 mm ⁇ 150 mm, thickness 1.1 mm, film thickness of about 800 mm
  • a polyimide alignment film LX1400, manufactured by Hitachi Chemical DuPont Microsystems
  • the anisotropic dye film 1 was obtained by applying the composition 1 for anisotropic dye film to an applied applicator with a gap 10 ⁇ m applicator (manufactured by Horita Seisakusho) and then naturally drying. About the obtained anisotropic pigment
  • Example 2 To 88.40 parts of water, 10.64 parts of a lithium salt of an azo dye represented by the following formula (I-1), 80 mol% lithium neutralized salt of an azo dye represented by the following formula (I-1) 0 40 parts, 0.12 part of a lithium salt of an azo dye represented by the following formula (III-2), 0.04 part of a lithium salt of an azo dye represented by the following formula (V-1) and 0. After adding 4 parts, stirring and dissolving, it filtered and the insoluble content was removed and the composition 2 for anisotropic dye films was obtained.
  • a lithium salt of an azo dye represented by the following formula (I-1) 80 mol% lithium neutralized salt of an azo dye represented by the following formula (I-1) 0 40 parts, 0.12 part of a lithium salt of an azo dye represented by the following formula (III-2), 0.04 part of a lithium salt of an azo dye represented by the following formula (V-1) and 0.
  • this composition for anisotropic dye film 2 is placed on a slide glass, and a sample covered with a cover glass is observed with a polarizing microscope to confirm whether a liquid crystal phase is present. It was confirmed.
  • the viscosity of this anisotropic dye film composition 2 was measured by the method described above. The results are shown in Table 1.
  • the anisotropic dye film composition 2 was applied to the same substrate as in Example 1 with an applicator (manufactured by Horita Seisakusho) with a gap of 10 ⁇ m, and then naturally dried to obtain the anisotropic dye film 2. With respect to the obtained anisotropic dye film 2, the dichroic ratio (D) at 640 nm was measured. The results are shown in Table 1.
  • Example 3 To 88.40 parts of water, 10.64 parts of a lithium salt of an azo dye represented by the following formula (I-2), 80 mol% lithium neutralized salt of an azo dye represented by the following formula (I-2) 0 40 parts, 0.12 part of a lithium salt of an azo dye represented by the following formula (III-1), 0.04 part of a lithium salt of an azo compound represented by the following formula (V-2), and 0. After adding 4 parts and stirring and dissolving, it filtered and the insoluble content was removed and the composition 3 for anisotropic dye films was obtained.
  • a lithium salt of an azo dye represented by the following formula (I-2) 80 mol% lithium neutralized salt of an azo dye represented by the following formula (I-2) 0 40 parts, 0.12 part of a lithium salt of an azo dye represented by the following formula (III-1), 0.04 part of a lithium salt of an azo compound represented by the following formula (V-2), and 0.
  • Example 4 In 90.68 parts of water, 8.20 parts of a lithium salt of an azo dye represented by the following formula (I-3), 80 mol% lithium neutralized salt of an azo dye represented by the following formula (I-3) 0 .64 parts, 0.16 part of a lithium salt of an azo dye represented by the following formula (III-1) and 0.32 part of lithium chloride are added, dissolved by stirring, and then filtered to remove insoluble matters.
  • This obtained composition 4 for anisotropic dye films A drop of this composition for anisotropic dye film 4 is placed on a slide glass, and a sample covered with a cover glass is observed with a polarizing microscope to confirm whether a liquid crystal phase is expressed. It was confirmed.
  • this anisotropic dye film composition 4 was measured by the method described above. The results are shown in Table 1.
  • the anisotropic dye film composition 4 was applied to the same substrate as in Example 1 with an applicator (manufactured by Horita Seisakusho) with a gap of 2 ⁇ m, and then naturally dried to obtain the anisotropic dye film 4. It was. About the obtained anisotropic pigment
  • Example 5 In 80.86 parts of water, 16.82 parts of a lithium salt of an azo dye represented by the following formula (I-4), 80 mol% lithium neutralized salt of an azo dye represented by the following formula (I-4) 1 .32 parts, 0.34 parts of lithium salt of azo dye represented by the following formula (III-3) and 0.66 parts of lithium chloride are added, dissolved by stirring, and then filtered to remove insolubles. Thus, a composition 5 for anisotropic dye film was obtained. A drop of this composition for anisotropic dye film 5 on a slide glass and observing a sample covered with a cover glass with a polarizing microscope to confirm whether or not a liquid crystal phase is expressed, thereby exhibiting lyotropic liquid crystal properties. It was confirmed.
  • this anisotropic dye film composition 5 was measured by the method described above. The results are shown in Table 1.
  • the anisotropic dye film composition 5 was applied to the same substrate as in Example 1 with an applicator (manufactured by Horita Seisakusho) with a gap of 2 ⁇ m, and then naturally dried to obtain the anisotropic dye film 5. It was. About the obtained anisotropic pigment
  • Example 6 In 83.78 parts of water, 14.35 parts of a lithium salt of an azo dye represented by the following formula (I-5), 80 mol% lithium neutralized salt of an azo dye represented by the following formula (I-5) 1 .10 parts, 0.22 part of a lithium salt of an azo dye represented by the following formula (III-4) and 0.55 part of lithium chloride are added, dissolved by stirring, and then filtered to remove insoluble matters.
  • This obtained composition 6 for anisotropic dye films A drop of this composition for anisotropic dye film 6 is placed on a slide glass, and a sample covered with a cover glass is observed with a polarizing microscope to confirm whether a liquid crystal phase is expressed. It was confirmed. The viscosity of this anisotropic dye film composition 6 was measured by the method described above. The results are shown in Table 2.
  • Example 7 In 83.78 parts of water, 14.35 parts of a lithium salt of an azo dye represented by the following formula (I-5), 80 mol% lithium neutralized salt of an azo dye represented by the following formula (I-5) 1 .10 parts, 0.22 part of a lithium salt of an azo dye represented by the following formula (III-5) and 0.55 part of lithium chloride are added, dissolved by stirring, and then filtered to remove insoluble matters. As a result, a composition 7 for anisotropic dye film was obtained. A drop of this composition 7 for an anisotropic dye film is placed on a slide glass, and a sample covered with a cover glass is observed with a polarizing microscope to confirm whether a liquid crystal phase is expressed. It was confirmed. The viscosity of this anisotropic dye film composition 7 was measured by the method described above. The results are shown in Table 2.
  • Example 8 To 91.245 parts of water, 8.500 parts of a lithium salt of an azo dye represented by the following formula (I-6) and 0.255 part of a lithium salt of an azo dye represented by the following formula (III-6) were added, After stirring and dissolving, the composition for anisotropic dye film 8 was obtained by filtering to remove insoluble matter. A drop of this composition for anisotropic dye film 8 is placed on a slide glass, and a sample covered with a cover glass is observed with a polarizing microscope to confirm whether or not a liquid crystal phase is expressed. It was confirmed. The viscosity of this anisotropic dye film composition 8 was measured by the method described above. The results are shown in Table 2.
  • the anisotropic dye film composition 31 was applied to the same substrate as in Example 1 with an applicator (manufactured by Horita Seisakusho) with a gap of 10 ⁇ m, and then naturally dried to obtain the anisotropic dye film 31.
  • an applicator manufactured by Horita Seisakusho
  • D dichroic ratio
  • the anisotropic dye film composition 32 was applied to the same substrate as in Example 1 with an applicator (manufactured by Horita Seisakusho) with a gap of 10 ⁇ m, and then naturally dried to obtain the anisotropic dye film 32.
  • an applicator manufactured by Horita Seisakusho
  • membrane 32 the dichroic ratio (D) in 640 nm was measured. The results are shown in Table 1.
  • the anisotropic dye film composition 33 was applied to the same substrate as in Example 1 with an applicator (manufactured by Horita Seisakusho) with a gap of 2 ⁇ m, and then naturally dried to obtain the anisotropic dye film 33. It was. About the obtained anisotropic pigment
  • the anisotropic dye film composition 34 was applied to the same substrate as in Example 1 with an applicator (manufactured by Horita Seisakusho) with a gap of 2 ⁇ m, and then naturally dried to obtain the anisotropic dye film 34. It was. About the obtained anisotropic pigment
  • Example 9 A glass substrate (100 mm ⁇ 100 mm, thickness 1.1 mm, film thickness of about 800 mm) on which a polyimide alignment film (LX1400, manufactured by Hitachi Chemical DuPont Microsystems) was formed as a base material was previously rubbed with a cloth.
  • the above-mentioned composition 3 for anisotropic dye film was applied using a die coater so that the film thickness at the time of application was 4.5 ⁇ m. When the upper limit of the coating speed was determined so that the entire surface of the substrate could be coated with no defects, the coating could be performed at 25 mm / s. Thereafter, the anisotropic dye film 6 was obtained by natural drying. About the obtained anisotropic pigment
  • Example 7 Coating was performed in the same manner as in Example 9 except that the anisotropic dye film composition 3 was changed to the anisotropic dye film composition 32. When an upper limit coating speed that can be applied to the entire surface of the substrate without any defects was determined, the coating could be performed at 5 mm / s. Thereafter, the anisotropic dye film 37 was obtained by natural drying. With respect to the obtained anisotropic dye film 37, the dichroic ratio (D) at 640 nm was measured. The results are shown in Table 3.
  • the anisotropic dye film compositions 1 and 2 of the present invention were excellent in filterability when removing foreign matters at the production stage of the anisotropic dye film composition. Further, the composition of the present invention allows the composition for anisotropic dye film while maintaining the dichroic ratio of the anisotropic dye film with respect to the composition 31 for anisotropic dye film (Comparative Example 1). It was shown that the viscosities of products 1 and 2 were reduced. By reducing the viscosity of the composition for anisotropic dye film, the coating speed can be improved. This is as shown in Example 9 and Comparative Example 7 in which the anisotropic dye film composition 3 and the anisotropic dye film composition 32 were applied by a die coater.
  • the anisotropic dye film composition 3 (Example 3), the anisotropic dye film composition 32 (Comparative Example 2), and the anisotropic dye film composition 4 (Example 4) are anisotropic.
  • Composition 33 (Comparative Example 3), anisotropic dye film composition 4 (Example 4) and anisotropic dye film composition 34 (Comparative Example 3), anisotropic dye film composition Also from the product 5 (Example 5) and the composition 35 for the anisotropic dye film (Comparative Example 4), the constitution of the present invention provides excellent filterability and maintains the dichroic ratio of the anisotropic dye film. However, it was shown that the viscosity of the composition for anisotropic dye films was lowered.
  • composition for anisotropic dye film 6 (Example 6), the composition for anisotropic dye film 7 (Example 7) and the composition for anisotropic dye film 35 (Comparative Example 5), anisotropy Also from the composition 8 for the dye film (Example 8) and the composition 36 for the anisotropic dye film (Comparative Example 6), the composition of the present invention provides excellent filterability and the composition for the anisotropic dye film. It has been shown to reduce the viscosity of the product.

Abstract

The present invention addresses the problem of providing a composition for an anisotropic dye film that has excellent optical characteristics and is suitable for a process for producing displays, and an anisotropic dye film. The composition according to the present invention for an anisotropic dye film contains azo dyes and a solvent wherein the azo dyes comprise an azo dye that is represented by formula (I) in the form of a free acid and an azo dye that is represented by formula (III) in the form of a free acid. Ar11-N=N-Ar12-N=N-Ar13-N=N-Ar14 (I) Ar21-N=N-Ar22-N=N-Ar23 (III)

Description

異方性色素膜用組成物及び異方性色素膜Composition for anisotropic dye film and anisotropic dye film
 本発明は、湿式成膜法により形成される異方性色素膜、特に、調光素子、液晶素子(LCD)及び有機エレクトロルミネッセンス素子(OLED)の表示素子に具備される偏光膜等に有用な高い二色性を示す異方性色素膜用組成物及び異方性色素膜に関するものである。 INDUSTRIAL APPLICABILITY The present invention is useful for anisotropic dye films formed by a wet film forming method, in particular, polarizing films included in display elements of light control elements, liquid crystal elements (LCDs), and organic electroluminescence elements (OLEDs). The present invention relates to an anisotropic dye film composition and an anisotropic dye film that exhibit high dichroism.
 LCDでは、表示における旋光性や複屈折性を制御するために直線偏光膜及び円偏光膜が用いられている。OLEDにおいても、外光の反射防止のために円偏光膜が使用されている。
 従来、これらの偏光膜にはヨウ素が二色性物質として広く使用されてきた。しかしながら、ヨウ素は昇華性が大きいために、偏光膜を用いた偏光素子として使用した場合、その耐熱性や耐光性が十分ではなかった。また、その消光色が深い青色となるため、全可視スペクトル領域に亘って、理想的な無彩色の偏光素子とは言えなかった。
In the LCD, a linearly polarizing film and a circularly polarizing film are used to control optical rotation and birefringence in display. Also in the OLED, a circularly polarizing film is used for preventing reflection of external light.
Conventionally, iodine has been widely used as a dichroic material in these polarizing films. However, since iodine has a high sublimation property, when used as a polarizing element using a polarizing film, its heat resistance and light resistance are not sufficient. Further, since the extinction color is deep blue, it cannot be said that it is an ideal achromatic polarizing element over the entire visible spectrum region.
 理想的な無彩色の偏光素子を得るために、有機系の色素を二色性物質に使用する異方性色素膜が検討されている。有機系の色素を使用する異方性色素膜としては、従来のポリマーに有機系の色素を含浸させた膜、基板等の上に有機系の色素を塗布することで膜を得る方法(湿式成膜法)を用いて形成させた膜等が挙げられる。
 従来のポリマーに有機系の色素を含浸させた異方性色素膜を用いる場合、該異方性色素膜に接着層を設け、接着層の保護フィルムを貼り合わせ、該保護フィルムを貼り合せた偏光膜をディスプレイ製造ラインに移送し、ディスプレイ製造ラインで保護フィルムを剥がし、異方性色素膜を基板等に貼合するというプロセスが取られている。これをガラスや透明フィルム等の基板上に、湿式成膜法を用いて異方性色素膜を形成する方法に置き換えれば、前記の従来のポリマーに有機系の色素を含浸させた異方性色素膜を用いる方法と比較して、製造プロセスを簡略化でき、生産性向上に寄与するものと考えられる。
In order to obtain an ideal achromatic polarizing element, an anisotropic dye film using an organic dye as a dichroic material has been studied. As anisotropic dye films using organic dyes, conventional polymers impregnated with organic dyes, methods for obtaining films by applying organic dyes on substrates, etc. And a film formed by using a film method.
When using an anisotropic dye film in which an organic dye is impregnated in a conventional polymer, an adhesive layer is provided on the anisotropic dye film, a protective film of the adhesive layer is bonded, and the polarizing film is bonded with the protective film The process of transferring a film | membrane to a display manufacturing line, peeling off a protective film with a display manufacturing line, and bonding an anisotropic pigment | dye film | membrane to a board | substrate etc. is taken. If this is replaced with a method of forming an anisotropic dye film on a substrate such as glass or transparent film by using a wet film forming method, an anisotropic dye obtained by impregnating the above-mentioned conventional polymer with an organic dye Compared with the method using a film, the manufacturing process can be simplified, which is considered to contribute to productivity improvement.
 湿式成膜法を用いて形成する異方性色素膜としては、例えば特許文献1に、ガラスや透明フィルム等の基板上に湿式成膜法を用いて色素を含む膜を形成する、すなわち、分子間相互作用等を利用して色素を配向させることにより異方性色素膜を得る方法が挙げられている。また、特許文献2には、特許文献1では十分ではなかった二色比の高い異方性色素膜を得るための、トリスアゾ色素を含む異方性色素膜用組成物が示されている。 As an anisotropic dye film formed using a wet film forming method, for example, in Patent Document 1, a film containing a dye is formed on a substrate such as glass or a transparent film using a wet film forming method. There is a method of obtaining an anisotropic dye film by orienting the dye by utilizing intermolecular interaction or the like. Patent Document 2 discloses an anisotropic dye film composition containing a trisazo dye for obtaining an anisotropic dye film having a high dichroic ratio, which was not sufficient in Patent Document 1.
 湿式成膜法を用いて形成する異方性色素膜において、複数の色素を用いる方法が示されている。特許文献3には、特定構造の色素を併用することで、分子配向の乱れを抑制しながら、高い二色比及び高い分子配向度を示す膜が得られることが示されている。また、特許文献4には分子サイズの異なる色素を特定の比で組み合わせることで、流延時の配向方向のばらつきが抑制できることが示されている。 A method using a plurality of dyes in an anisotropic dye film formed using a wet film forming method is shown. Patent Document 3 shows that a film showing a high dichroic ratio and a high degree of molecular orientation can be obtained while suppressing disturbance of molecular orientation by using a dye having a specific structure in combination. Further, Patent Document 4 shows that variation in the orientation direction during casting can be suppressed by combining dyes having different molecular sizes in a specific ratio.
日本国特表平8-511109号公報Japanese National Table No. 8-511109 日本国特開2010-168570号公報Japanese Unexamined Patent Publication No. 2010-168570 日本国特開2010-26024号公報Japanese Unexamined Patent Publication No. 2010-26024 国際公開第2011/004759号International Publication No. 2011/004759
 近年のディスプレイの高機能化及び高性能化に伴い、偏光膜にも高透過率で高い二色性を示す等の高い性能が求められている。また、ディスプレイの安価化に伴い、低い製造コストや生産性を向上することも求められている。しかしながら、特許文献2で用いられる色素を用いた異方性色素膜は、偏光膜として高い性能を示すものの、この異方性色素膜用組成物は粘度が高くなる傾向にある。そのため、実際のディスプレイ製造工程に適用する場合には、塗布前に実施される異物除去のためのろ過が遅い、塗布装置への組成物の充填に時間を要する、スロットダイコート法の塗布を行うにはカラーフィルター製造工程でカラーレジストをスロットダイコート法で塗布する速度に比べて非常に遅い等、ディスプレイ製造の観点からはプロセス適合性に問題があることを本発明者らは見出した。
 また、特許文献2及び3においても、高い二色比等が得られることが示されているが、上記のプロセス適合性については検討されていない。
 一方、特許文献3は、特定構造のジスアゾ化合物及びモノアゾ化合物の組合せが示されているのみであり、プロセス適合性やトリスアゾ化合物を含む組成物については検討されていない。
 本発明は、光学特性に優れ、且つ、ディスプレイ製造のプロセスに適合した異方性色素膜形成に用いられる異方性色素膜用組成物及び異方性色素膜を提供することを課題とする。
With high performance and high performance of displays in recent years, a polarizing film is required to have high performance such as high transmittance and high dichroism. In addition, with a reduction in the cost of displays, it is also required to improve low manufacturing costs and productivity. However, although the anisotropic dye film using the dye used in Patent Document 2 exhibits high performance as a polarizing film, the composition for anisotropic dye film tends to increase in viscosity. Therefore, when it is applied to an actual display manufacturing process, the filtration for removing foreign substances performed before coating is slow, and it takes time to fill the composition into the coating apparatus, so that the slot die coating method is applied. The present inventors have found that there is a problem in process compatibility from the viewpoint of display production, such as very slow compared with the speed at which the color resist is applied by the slot die coating method in the color filter production process.
Also, Patent Documents 2 and 3 show that a high dichroic ratio and the like can be obtained, but the above-described process compatibility has not been studied.
On the other hand, Patent Document 3 only shows a combination of a disazo compound and a monoazo compound having a specific structure, and does not examine process compatibility and a composition containing a trisazo compound.
An object of the present invention is to provide an anisotropic dye film composition and an anisotropic dye film which are excellent in optical properties and used for forming an anisotropic dye film suitable for a display manufacturing process.
 本発明は、特定のアゾ色素及び溶剤を含む異方性色素膜用組成物を用いることにより前記課題を解決することができることを見出した。
 すなわち、本発明は以下を要旨とする。
This invention discovered that the said subject could be solved by using the composition for anisotropic dye films containing a specific azo dye and a solvent.
That is, the gist of the present invention is as follows.
 [1] アゾ色素及び溶剤を含む異方性色素膜用組成物であって、前記アゾ色素は、遊離酸の形が下記式(I)で表されるアゾ色素、及び遊離酸の形が下記式(III)で表されるアゾ色素を含むものである、異方性色素膜用組成物。 [1] An anisotropic dye film composition containing an azo dye and a solvent, wherein the azo dye has an azo dye whose free acid form is represented by the following formula (I) and a free acid form: An anisotropic dye film composition comprising an azo dye represented by the formula (III).
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
[式(I)において、
 Ar11及びAr12は、それぞれ独立に、置換基を有していてもよい芳香族炭化水素基又は置換基を有していてもよい芳香族複素環基を表し、
 Ar13は、電子供与基を有していてもよい1,4-フェニレン基、置換基を有していてもよい1,4-ナフチレン基又は置換基を有していてもよい芳香族複素環基を表し、
 Ar14は、式(II)で表される基を表す。]
[In Formula (I),
Ar 11 and Ar 12 each independently represent an aromatic hydrocarbon group which may have a substituent or an aromatic heterocyclic group which may have a substituent,
Ar 13 is a 1,4-phenylene group optionally having an electron donating group, a 1,4-naphthylene group optionally having a substituent, or an aromatic heterocyclic ring optionally having a substituent Represents a group,
Ar 14 represents a group represented by the formula (II). ]
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
[式(II)において、
 RN11及びRN12は、それぞれ独立に、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいフェニル基又は置換基を有していてもよいアシル基を表し、
 bは0~3の整数を表し、dは0又は1を表す。
 なお、-NRN11N12で表されるアミノ基は、α位又はβ位に置換する。]
[In the formula (II),
R N11 and R N12 each independently represent a hydrogen atom, an alkyl group that may have a substituent, a phenyl group that may have a substituent, or an acyl group that may have a substituent. Represent,
b represents an integer of 0 to 3, and d represents 0 or 1.
The amino group represented by —NR N11 R N12 is substituted at the α-position or β-position. ]
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
[式(III)において、
 Ar21は、置換基を有していてもよい芳香族炭化水素基又は置換基を有していてもよい芳香族複素環基を表し、
 Ar22は、電子供与基を有していてもよい1,4-フェニレン基、置換基を有していてもよい1,4-ナフチレン基又は置換基を有していてもよい芳香族複素環基を表し、
 Ar23は、式(IV)で表される基を表す。]
[In Formula (III),
Ar 21 represents an aromatic hydrocarbon group which may have a substituent or an aromatic heterocyclic group which may have a substituent,
Ar 22 is a 1,4-phenylene group optionally having an electron donating group, a 1,4-naphthylene group optionally having a substituent, or an aromatic heterocyclic ring optionally having a substituent Represents a group,
Ar 23 represents a group represented by formula (IV). ]
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
[式(IV)において、
 RN21及びRN22は、それぞれ独立に、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいフェニル基又は置換基を有していてもよいアシル基を表し、
 eは0~3の整数を表し、fは0又は1を表す。
 なお、-NRN21N22で表されるアミノ基は、α位又はβ位に置換する。]
[2]前記式(I)のAr14が式(VI)で表される基である、[1]に記載の異方性色素膜用組成物。
[In Formula (IV),
R N21 and R N22 each independently represent a hydrogen atom, an alkyl group that may have a substituent, a phenyl group that may have a substituent, or an acyl group that may have a substituent. Represent,
e represents an integer of 0 to 3, and f represents 0 or 1.
The amino group represented by —NR N21 R N22 is substituted at the α-position or β-position. ]
[2] The composition for anisotropic dye film according to [1], wherein Ar 14 in the formula (I) is a group represented by the formula (VI).
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
[式(VI)において、
 g及びhはそれぞれ独立に、0又は1を表す。
 なお、式(VI)におけるd、RN11及びRN12は、式(II)のd、RN11及びRN12と同義である。]
[3] 前記式(III)のAr23が式(VII)で表される基である、[1]又は[2]に記載の異方性色素膜用組成物。
[In Formula (VI),
g and h each independently represents 0 or 1;
Incidentally, d in the formula (VI), R N11 and R N12 is d of Formula (II), and R N11 and R N12 synonymous. ]
[3] The composition for anisotropic dye film according to [1] or [2], wherein Ar 23 in the formula (III) is a group represented by the formula (VII).
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
[式(VII)において、
 i及びjはそれぞれ独立に、0又は1を表す。
 なお、式(VII)におけるf、RN21及びRN22は、式(III)のf、RN21及びRN22と同義である。]
[4]前記式(I)のAr12が、置換基を有していてもよい1,4-フェニレン基、置換基を有していてもよい1,4-ナフチレン基、及び、単環又は2環性の置換基を有していてもよい芳香族複素環基からなる群より選択されるものである、[1]~[3]のいずれか1に記載の異方性色素膜用組成物。
[5]前記式(I)のAr11が、置換基を有していてもよいフェニル基、置換基を有していてもよいナフチル基、及び、単環又は2環性の置換基を有していてもよい芳香族複素環基からなる群より選択されるものであり、置換基として電子求引基を少なくとも1つ有するものである、[1]~[4]の何れか1に記載の異方性色素膜用組成物。
[6]前記式(I)のAr11~Ar14から選択される少なくとも1つの構造から有していてもよい置換基を除いた構造が、式(III)のAr21~Ar23から選択される少なくとも1つの構造から有していてもよい置換基を除いた構造と同一である、[1]~[5]の何れか1に記載の異方性色素膜用組成物。
[7]前記式(I)のAr11~Ar13から選択される少なくとも1つの構造から有していてもよい置換基を除いた構造が、式(III)のAr21及び/又はAr22の構造から有していてもよい置換基を除いた構造と同一である、[1]~[6]の何れか1に記載の異方性色素膜用組成物。
[8]前記式(I)のAr11~Ar14から選択される少なくとも1つの構造から有していてもよい置換基を除いた構造が、式(III)のAr21~Ar23から選択される少なくとも1つの構造から有していてもよい置換基を除いた構造と同一であり、且つ、前記有していてもよい置換基の群が同一である、[1]~[7]の何れか1に記載の異方性色素膜用組成物。
[9]遊離酸の形が下記式(I)で表されるアゾ色素、及び遊離酸の形が下記式(III)で表されるアゾ色素を含むものである、異方性色素膜。
[In the formula (VII):
i and j each independently represents 0 or 1.
Incidentally, f in formula (VII), R N21 and R N22 is f of formula (III), and R N21 and R N22 synonymous. ]
[4] Ar 12 in the formula (I) may have a 1,4-phenylene group which may have a substituent, a 1,4-naphthylene group which may have a substituent, and a single ring or The composition for anisotropic dye film according to any one of [1] to [3], which is selected from the group consisting of an aromatic heterocyclic group which may have a bicyclic substituent object.
[5] Ar 11 in the formula (I) has a phenyl group which may have a substituent, a naphthyl group which may have a substituent, and a monocyclic or bicyclic substituent. Any one of [1] to [4], which is selected from the group consisting of optionally substituted aromatic heterocyclic groups and has at least one electron-withdrawing group as a substituent. An anisotropic dye film composition.
[6] The structure excluding the substituent which may be present from at least one structure selected from Ar 11 to Ar 14 in the formula (I) is selected from Ar 21 to Ar 23 in the formula (III). The composition for anisotropic dye film according to any one of [1] to [5], which is the same as the structure excluding a substituent which may be present from at least one structure.
[7] The structure excluding the substituent which may be present from at least one structure selected from Ar 11 to Ar 13 in the formula (I) is represented by Ar 21 and / or Ar 22 in the formula (III). The composition for anisotropic dye film according to any one of [1] to [6], which has the same structure as the structure excluding the substituent which may have from the structure.
[8] The structure excluding the substituent which may be present from at least one structure selected from Ar 11 to Ar 14 in the formula (I) is selected from Ar 21 to Ar 23 in the formula (III). Any one of [1] to [7], which is the same as the structure excluding the substituent that may be present from at least one structure, and the group of the substituents that may be present is the same. 2. The composition for anisotropic dye film according to claim 1.
[9] An anisotropic dye film comprising an azo dye whose free acid form is represented by the following formula (I) and an azo dye whose free acid form is represented by the following formula (III).
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
[式(I)において、
 Ar11及びAr12は、それぞれ独立に、置換基を有していてもよい芳香族炭化水素基又は置換基を有していてもよい芳香族複素環基を表し、
 Ar13は、電子供与基を有していてもよい1,4-フェニレン基、置換基を有していてもよい1,4-ナフチレン基又は置換基を有していてもよい芳香族複素環基を表し、
 Ar14は、式(II)で表される基を表す。]
[In Formula (I),
Ar 11 and Ar 12 each independently represent an aromatic hydrocarbon group which may have a substituent or an aromatic heterocyclic group which may have a substituent,
Ar 13 is a 1,4-phenylene group optionally having an electron donating group, a 1,4-naphthylene group optionally having a substituent, or an aromatic heterocyclic ring optionally having a substituent Represents a group,
Ar 14 represents a group represented by the formula (II). ]
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
[式(II)において、
 RN11及びRN12は、それぞれ独立に、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいフェニル基又は置換基を有していてもよいアシル基を表し、
 bは0~3の整数を表し、dは0又は1を表す。
 なお、-NRN11N12で表されるアミノ基は、α位又はβ位に置換する。]
[In the formula (II),
R N11 and R N12 each independently represent a hydrogen atom, an alkyl group that may have a substituent, a phenyl group that may have a substituent, or an acyl group that may have a substituent. Represent,
b represents an integer of 0 to 3, and d represents 0 or 1.
The amino group represented by —NR N11 R N12 is substituted at the α-position or β-position. ]
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
[式(III)において、
 Ar21は、置換基を有していてもよい芳香族炭化水素基又は置換基を有していてもよい芳香族複素環基を表し、
 Ar22は、電子供与基を有していてもよい1,4-フェニレン基、置換基を有していてもよい1,4-ナフチレン基又は置換基を有していてもよい芳香族複素環基を表し、
 Ar23は、式(IV)で表される基を表す。]
[In Formula (III),
Ar 21 represents an aromatic hydrocarbon group which may have a substituent or an aromatic heterocyclic group which may have a substituent,
Ar 22 is a 1,4-phenylene group optionally having an electron donating group, a 1,4-naphthylene group optionally having a substituent, or an aromatic heterocyclic ring optionally having a substituent Represents a group,
Ar 23 represents a group represented by formula (IV). ]
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
[式(IV)において、
 RN21及びRN22は、それぞれ独立に、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいフェニル基又は置換基を有していてもよいアシル基を表し、
 eは0~3の整数を表し、fは0又は1を表す。
 なお、-NRN21N22で表されるアミノ基は、α位又はβ位に置換する。]
[In Formula (IV),
R N21 and R N22 each independently represent a hydrogen atom, an alkyl group that may have a substituent, a phenyl group that may have a substituent, or an acyl group that may have a substituent. Represent,
e represents an integer of 0 to 3, and f represents 0 or 1.
The amino group represented by —NR N21 R N22 is substituted at the α-position or β-position. ]
 本発明の異方性色素膜用組成物は、光学特性に優れ、粘度が低く、ディスプレイ製造のプロセスに適合したものである。具体的には、異方性色素膜用組成物を準備する段階での異物除去の際のろ過性がよく、異方性色素膜用組成物の生産性に優れたものである。また、本発明の異方性色素膜用組成物は、塗布装置への給液が容易で、且つ、スロットダイコート法での塗布速度が大きく、生産性の高い異方性色素膜製造プロセスを構築できる。さらに、光学特性に優れた異方性色素膜を提供することができる。このような特性を有する異方性色素膜を用いた偏光素子は、色再現性等を求められる調光素子、液晶素子、有機エレクトロルミネッセンス素子の表示素子等、多方面に利用することができる。 The composition for an anisotropic dye film of the present invention has excellent optical properties, low viscosity, and is suitable for a display manufacturing process. Specifically, the filterability at the time of removing foreign matters at the stage of preparing the anisotropic dye film composition is good, and the productivity of the anisotropic dye film composition is excellent. In addition, the anisotropic dye film composition of the present invention can be easily supplied to a coating apparatus, has a high coating speed by the slot die coating method, and has a highly productive anisotropic dye film manufacturing process. it can. Furthermore, an anisotropic dye film having excellent optical characteristics can be provided. A polarizing element using an anisotropic dye film having such characteristics can be used in various fields such as a light control element, a liquid crystal element, and a display element of an organic electroluminescence element that are required to have color reproducibility.
 以下、本発明の実施の形態を具体的に説明するが、本発明は、以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々に変更して実施することができる。
 本明細書において“質量%”と“重量%”及び“質量部”と“重量部”とは、それぞれ同義である。また、単に“ppm”と記載した場合は、“重量ppm”のことを示す。
Embodiments of the present invention will be specifically described below, but the present invention is not limited to the following embodiments, and various modifications can be made within the scope of the gist of the present invention.
In the present specification, “mass%” and “wt%” and “part by mass” and “part by weight” have the same meaning. In addition, when “ppm” is simply described, it indicates “weight ppm”.
 本発明でいう異方性色素膜とは、異方性色素膜の厚み方向及び任意の直交する面内2方向の立体座標系における合計3方向から選ばれる、任意の2方向における電磁気学的性質に異方性を有する色素膜である。電磁気学的性質としては、吸収、屈折等の光学的性質、抵抗、容量等の電気的性質等が挙げられる。
 吸収、屈折等の光学的異方性を有する膜としては、例えば、直線偏光膜、円偏光膜等の偏光膜、位相差膜、導電異方性膜等がある。本発明の異方性色素膜は、偏光膜、位相差膜及び導電異方性膜に用いられることが好ましく、偏光膜に用いられることがより好ましい。
The anisotropic dye film referred to in the present invention is an electromagnetic property in any two directions selected from a total of three directions in the three-dimensional coordinate system of the thickness direction of the anisotropic dye film and any two orthogonal in-plane directions. Is a dye film having anisotropy. Examples of the electromagnetic property include optical properties such as absorption and refraction, and electrical properties such as resistance and capacitance.
Examples of the film having optical anisotropy such as absorption and refraction include a polarizing film such as a linearly polarizing film and a circularly polarizing film, a retardation film, and a conductive anisotropic film. The anisotropic dye film of the present invention is preferably used for a polarizing film, a retardation film and a conductive anisotropic film, and more preferably used for a polarizing film.
 本発明はアゾ色素及び溶剤を含む異方性色素膜用組成物であって、遊離酸の形が式(I)で表されるアゾ色素(以下、単に「式(I)で表されるアゾ色素」とも記載する。)、及び遊離酸の形が式(III)で表されるアゾ色素(以下、単に「式(III)で表されるアゾ色素」とも記載する。)を含む。
 本発明の異方性色素膜用組成物が、本発明の効果を奏する理由は次のように推察される。本発明の式(I)で表されるアゾ色素は、トリスアゾ色素であり、溶剤、特に誘電率の高い溶剤(例えば水)に溶解すると分子中央の疎水性部分が大きいものである。すなわち分子を構成する芳香族炭化水素環又は芳香族複素環により平面性が高く、色素分子が会合してカラムを形成しやすいものである。式(I)で表されるアゾ色素で形成されたカラム状の分子集合体は、外側にスルホ基等のイオン性基や、アミノ基及び水酸基等の極性の高い基を有しているため、カラム間に電子的な相互作用が生じ、カラム同士が均等な距離に位置するヘキサゴナル相を取りやすい。このヘキサゴナル相は2次元に秩序を有する液晶であり、液晶相の中では比較的秩序が高い。すなわち、分子は流動性を有するものの固体状態に近い配置にある。
 式(I)で表されるアゾ色素に、式(III)で表されるアゾ色素を添加することにより、式(III)で表されるアゾ色素が、式(I)で表されるアゾ色素からなるカラムの外側にイオン性基等を介して結合する。また、式(I)で表されるアゾ色素からなるカラムの色素分子の一部が、式(III)で表されるアゾ色素に置き換わり、前記カラムの外側が凹凸となる。このような状態になることで、カラム間の相互作用が小さくなり、カラム間が等間隔である状態が失われ、1次元に秩序を有するネマティック相を取る。
 すなわち、色素はヘキサゴナル相の場合よりも液体状態に近い配置にあり、異方性色素膜用組成物の粘度は低くなるものと推察される。このように式(I)で表されるアゾ色素に式(III)で表されるアゾ色素を添加することは、従来の光学特性(二色比)を向上させる添加剤のようにカラムの長さを変化させたり、秩序性を上げたりするものではなく、カラム間相互作用を変化させ、秩序性を下げている点で従来の添加剤の効果と異なるものと推察される。
The present invention is an anisotropic dye film composition comprising an azo dye and a solvent, wherein the free acid form is represented by the formula (I) (hereinafter referred to simply as the “azo dye represented by the formula (I)”. And an azo dye whose free acid form is represented by the formula (III) (hereinafter also simply referred to as “azo dye represented by the formula (III)”).
The reason why the composition for anisotropic dye film of the present invention exhibits the effects of the present invention is presumed as follows. The azo dye represented by the formula (I) of the present invention is a trisazo dye, and when dissolved in a solvent, particularly a solvent having a high dielectric constant (for example, water), the hydrophobic portion at the center of the molecule is large. That is, the aromatic hydrocarbon ring or aromatic heterocyclic ring constituting the molecule has high planarity, and the dye molecules are easily associated to form a column. Since the columnar molecular assembly formed of the azo dye represented by the formula (I) has an ionic group such as a sulfo group on the outside and a highly polar group such as an amino group and a hydroxyl group, An electronic interaction occurs between the columns, and it is easy to take a hexagonal phase in which the columns are located at an equal distance. This hexagonal phase is a liquid crystal having a two-dimensional order, and the order is relatively high in the liquid crystal phase. That is, the molecules have fluidity but are close to the solid state.
By adding the azo dye represented by the formula (III) to the azo dye represented by the formula (I), the azo dye represented by the formula (III) is converted into an azo dye represented by the formula (I). It binds to the outside of the column consisting of ionic groups and the like. In addition, a part of the dye molecules of the column composed of the azo dye represented by the formula (I) is replaced with the azo dye represented by the formula (III), and the outside of the column becomes uneven. By being in such a state, the interaction between the columns is reduced, the state where the columns are evenly spaced is lost, and a nematic phase having a one-dimensional order is taken.
That is, it is presumed that the dye is in a liquid state closer to that of the hexagonal phase and the viscosity of the anisotropic dye film composition is lower. Thus, the addition of the azo dye represented by the formula (III) to the azo dye represented by the formula (I) is the same as the conventional additive for improving optical characteristics (dichroic ratio). It is presumed that it is different from the effect of conventional additives in that it does not change the degree of order or raise the order, but changes the interaction between columns and lowers the order.
[異方性色素膜用組成物]
 本発明の異方性色素膜用組成物は、遊離酸の形が式(I)で表されるアゾ色素、遊離酸の形が式(III)で表されるアゾ色素及び溶剤を含めば特に限定されないが、組成物として液晶相の状態であることが、溶剤が蒸発した後に形成される異方性色素膜を高配向度に形成する観点から好ましい。なお、本実施の形態において、液晶相の状態であるとは、具体的には、『液晶の基礎と応用』(松本正一・角田市良著、工業調査会刊、1991)の1~16ページに記載されているように、液体と結晶の双方の性質を示す液晶状態であり、ネマティック相、コレステリック相、スメクティック相又はディスコティック相であることをいう。特に、溶液中での秩序性が低く、粘度が低い傾向にあるため、ネマティック相が好ましい。
 また、異方性色素膜用組成物には、必要に応じ、バインダー樹脂、モノマー、硬化剤、添加剤等が配合されてもよい。異方性色素膜用組成物の態様としては、溶液状であってもよいし、ゲル状であってもよい。異方性色素膜用組成物は、溶剤中に遊離酸の形が式(I)で表されるアゾ色素、及び遊離酸の形が式(III)で表されるアゾ色素等が溶解又は分散している状態であってもよい。
[Anisotropic Dye Film Composition]
The composition for anisotropic dye film of the present invention includes an azo dye whose free acid form is represented by formula (I), an azo dye whose free acid form is represented by formula (III), and a solvent. Although not limited, it is preferable that the composition is in a liquid crystal phase from the viewpoint of forming an anisotropic dye film formed after the solvent evaporates with a high degree of orientation. In the present embodiment, the state of the liquid crystal phase specifically refers to 1 to 16 in “Basics and Applications of Liquid Crystal” (Shinichi Matsumoto, Ryo Tsunoda, published by Industrial Research Institute, 1991). As described on the page, it is a liquid crystal state exhibiting both liquid and crystal properties, and means a nematic phase, a cholesteric phase, a smectic phase or a discotic phase. In particular, a nematic phase is preferred because of its low order in solution and a tendency to have a low viscosity.
Moreover, binder resin, a monomer, a hardening | curing agent, an additive, etc. may be mix | blended with the composition for anisotropic dye films | membranes as needed. The anisotropic dye film composition may be in the form of a solution or gel. In the composition for anisotropic dye film, an azo dye whose free acid form is represented by formula (I) and an azo dye whose free acid form is represented by formula (III) are dissolved or dispersed in a solvent. You may be in the state.
 本発明において異方性色素膜が高い配向を示すためには、異方性色素膜用組成物中で、アゾ色素が分子積層体を形成していることが好ましく、中でも異方性色素膜用組成物が液晶相を示すことが好ましい。ここで、液晶相を有するとは、溶剤中でリオトロピック液晶性を示すことを意味する。異方性色素膜用組成物が液晶相を発現していてもいなくてもよいが、前記のように液晶相の状態であることが好ましい。 In the present invention, in order for the anisotropic dye film to exhibit high orientation, it is preferable that the azo dye forms a molecular laminate in the composition for anisotropic dye film. It is preferable that the composition exhibits a liquid crystal phase. Here, having a liquid crystal phase means exhibiting lyotropic liquid crystallinity in a solvent. The anisotropic dye film composition may or may not exhibit a liquid crystal phase, but is preferably in a liquid crystal phase state as described above.
 また、本発明で用いられるアゾ色素は、異方性色素膜用組成物が液晶相を発現するため、及び、後記の湿式成膜法に供するために、水や有機溶剤に可溶であることが好ましく、特に水溶性であることが好ましい。さらに好ましいものは、「有機概念図-基礎と応用」(甲田善生著、三共出版、1984年)で定義される無機性値が有機性値よりも小さな化合物である。また、塩型をとらない遊離の状態で、その分子量が200以上であるのが好ましく、300以上であるのがより好ましい。また、1500以下であるのが好ましく、1200以下であるのがより好ましい。なお、水溶性とは、室温で化合物が水に、通常0.1質量%以上、好ましくは1質量%以上溶解することを言う。 In addition, the azo dye used in the present invention is soluble in water or an organic solvent in order for the anisotropic dye film composition to exhibit a liquid crystal phase and to be used in the wet film formation method described later. It is preferable that it is water-soluble. Further preferred are compounds having an inorganic value smaller than the organic value as defined in “Organic Conceptual Diagram-Fundamentals and Applications” (Yoshio Koda, Sankyo Publishing, 1984). The molecular weight is preferably 200 or more, more preferably 300 or more, in a free state that does not take a salt form. Moreover, it is preferable that it is 1500 or less, and it is more preferable that it is 1200 or less. The term “water-soluble” means that the compound is dissolved in water at room temperature, usually 0.1% by mass or more, preferably 1% by mass or more.
<溶剤>
 本発明の異方性色素膜用組成物が含む溶剤は、遊離酸の形が式(I)で表されるアゾ色素、及び遊離酸の形が式(III)で表されるアゾ色素を、溶解又は分散させるものであれば特に制限はない。特に、遊離酸の形が式(I)で表されるアゾ色素、及び遊離酸の形が式(III)で表されるアゾ色素が溶剤中でリオトロピック液晶のような会合状態を形成し易いことから、溶剤としては、水、水混和性のある有機溶剤又はこれらの混合物が好ましい。
 有機溶剤の具体例としては、メチルアルコール、エチルアルコール、イソプロピルアルコール、グリセリン等のアルコール類;エチレングリコール、ジエチレングリコール等のグリコール類;メチルセロソルブ、エチルセロソルブ等のセロソルブ類;等の単独又は2種以上の混合有機溶剤が挙げられる。
 これらの中でも、遊離酸の形が式(I)で表されるアゾ色素、及び遊離酸の形が式(III)で表されるアゾ色素が有する芳香族環等の疎水性の高い部分同士での会合を促進することから、水、メタノール又はエタノールが好ましく、水が特に好ましい。
<Solvent>
The solvent contained in the composition for anisotropic dye film of the present invention comprises an azo dye whose free acid form is represented by formula (I), and an azo dye whose free acid form is represented by formula (III), There is no particular limitation as long as it is dissolved or dispersed. In particular, the azo dye whose free acid form is represented by the formula (I) and the azo dye whose free acid form is represented by the formula (III) are easy to form an association state such as a lyotropic liquid crystal in a solvent. Thus, the solvent is preferably water, a water-miscible organic solvent, or a mixture thereof.
Specific examples of the organic solvent include alcohols such as methyl alcohol, ethyl alcohol, isopropyl alcohol, and glycerin; glycols such as ethylene glycol and diethylene glycol; cellosolves such as methyl cellosolve and ethyl cellosolve; A mixed organic solvent is mentioned.
Among these, the azo dye whose free acid form is represented by the formula (I) and the highly hydrophobic portions such as the aromatic rings of the azo dye whose free acid form is represented by the formula (III) Water, methanol or ethanol is preferable, and water is particularly preferable.
<アゾ色素の濃度>
 本発明において、遊離酸の形が式(I)で表されるアゾ色素、及び遊離酸の形が式(III)で表されるアゾ色素を合わせたアゾ色素の、異方性色素膜組成物中の濃度としては、色素の溶解性やリオトロピック液晶状態等の会合状態の形成濃度にも依存するが、好ましくは0.1質量%以上、より好ましくは0.5質量%以上であり、更に好ましくは1質量%以上であり、特に好ましくは5質量%以上である。一方、好ましくは40質量%以下、より好ましくは30質量%以下、更に好ましくは25質量%以下、特に好ましくは20質量%以下である。この範囲であることで、異方性色素膜組成物の塗布・乾燥後の膜厚制御がし易く、スロットダイコート法での塗布速度が大きい傾向にある。
 本発明の異方性色素膜用組成物は、リオトロピック液晶相の発現有無は問わないが、リオトロピック液晶相を発現していない場合において、異方性色素膜用組成物中の溶剤量のみを変更することでリオトロピック液晶相が発現することが好ましい。リオトロピック液晶相が発現することで、異方性色素膜中で色素が高い配向度を発現し、高い二色性の異方性色素膜が得られる傾向にあるため好ましい。
 異方性色素膜用組成物がリオトロピック液晶相を発現していれば、より異方性色素膜中での高い配向が得られる傾向にあるため、さらに好ましい。
<Concentration of azo dye>
In the present invention, an anisotropic dye film composition comprising an azo dye whose free acid form is represented by formula (I) and an azo dye whose free acid form is represented by formula (III) The concentration in it depends on the solubility of the dye and the concentration of the associated state such as the lyotropic liquid crystal state, but is preferably 0.1% by mass or more, more preferably 0.5% by mass or more, and still more preferably Is 1% by mass or more, particularly preferably 5% by mass or more. On the other hand, it is preferably 40% by mass or less, more preferably 30% by mass or less, still more preferably 25% by mass or less, and particularly preferably 20% by mass or less. Within this range, it is easy to control the thickness of the anisotropic dye film composition after coating and drying, and the coating speed in the slot die coating method tends to be high.
The composition for anisotropic dye film of the present invention may or may not exhibit a lyotropic liquid crystal phase, but only the amount of solvent in the composition for anisotropic dye film is changed when the lyotropic liquid crystal phase is not expressed. By doing so, it is preferable that a lyotropic liquid crystal phase is developed. The expression of the lyotropic liquid crystal phase is preferable because the dye exhibits a high degree of orientation in the anisotropic dye film and a high dichroic anisotropic dye film tends to be obtained.
It is more preferable that the composition for anisotropic dye film expresses a lyotropic liquid crystal phase because higher orientation in the anisotropic dye film tends to be obtained.
 本発明の異方性色素膜用組成物は、基板への濡れ性及び塗布性を向上させるため、必要に応じて界面活性剤等の添加剤を加えることができる。界面活性剤としては、アニオン系、カチオン系及びノニオン系のいずれも使用可能である。その添加濃度は、0.05質量%以上、0.5質量%以下が好ましい。 In the composition for anisotropic dye film of the present invention, an additive such as a surfactant can be added as necessary in order to improve the wettability to the substrate and the coating property. As the surfactant, any of anionic, cationic and nonionic types can be used. The addition concentration is preferably 0.05% by mass or more and 0.5% by mass or less.
<粘度>
 本発明の異方性色素膜用組成物の粘度は、遊離酸の形が式(I)で表されるアゾ色素を含む組成物に、遊離酸の形が式(III)で表されるアゾ色素を添加することで粘度が低くなり、ろ過性、塗布性の向上等のディスプレイ製造のプロセスに適合し易くなれば特に限定されない。ろ過性や塗布性の向上は、同一の条件で粘度を測定し、その値が小さくなることで判断することができる。
 異方性色素膜用組成物の粘度は、測定原理に応じて、細管粘度計、回転粘度計、落体粘度計、振動粘度計、平行板粘度計等により測定することができる。本発明の異方性色素膜用組成物は、チキソトロピー性を示すことがあるため、回転粘度計など、剪断速度を可変可能な粘度計で測定することが好ましい。回転粘度計で測定した場合には、1~1000s-1で測定することが好ましい。
 一例として、レオメーターで測定したときの測定条件及び好ましい範囲を示す。25℃において、せん断速度1000s-1で5秒間プレシェアを行った後、せん断速度を1000s-1から10s-1まで180秒間で変化させて、せん断速度掃引測定を行ったときのせん断速度400s-1における粘度が、200cP以下であることが好ましく、100cP以下であることがより好ましく、70cP以下であることがさらに好ましく、60cP以下であることが特に好ましく、50cP以下であることが最も好ましい。また、下限は特には無く低い方が好ましいが、例えば1cP以上であり、好ましくは10cP以上である。 
<Viscosity>
The viscosity of the composition for anisotropic dye film of the present invention is such that the composition containing an azo dye whose free acid form is represented by the formula (I) is different from the azo compound whose free acid form is represented by the formula (III). There is no particular limitation as long as the viscosity is lowered by adding a dye and it is easy to adapt to the process of manufacturing a display such as filterability and coatability. The improvement of filterability and applicability can be determined by measuring the viscosity under the same conditions and decreasing the value.
The viscosity of the composition for anisotropic dye film can be measured by a capillary viscometer, a rotational viscometer, a falling body viscometer, a vibration viscometer, a parallel plate viscometer, or the like according to the measurement principle. Since the composition for anisotropic dye film of the present invention may exhibit thixotropic properties, it is preferably measured with a viscometer capable of varying the shear rate, such as a rotational viscometer. When measured with a rotational viscometer, it is preferably measured at 1 to 1000 s −1 .
As an example, measurement conditions and preferred ranges when measured with a rheometer are shown. After pre-shearing at 25 ° C. and a shear rate of 1000 s −1 for 5 seconds, the shear rate was changed from 1000 s −1 to 10 s −1 in 180 seconds, and a shear rate of 400 s −1 when shear rate sweep measurement was performed. The viscosity is preferably 200 cP or less, more preferably 100 cP or less, still more preferably 70 cP or less, particularly preferably 60 cP or less, and most preferably 50 cP or less. The lower limit is not particularly low and is preferably lower, but is, for example, 1 cP or more, preferably 10 cP or more.
≪遊離酸の形が式(I)で表されるアゾ色素≫
 本発明の異方性色素膜用組成物は、遊離酸の形が式(I)で表されるアゾ色素を含む。 
<< Azo dye in which the form of the free acid is represented by the formula (I) >>
The anisotropic dye film composition of the present invention contains an azo dye whose free acid form is represented by the formula (I).
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
[式(I)において、Ar11及びAr12は、それぞれ独立に、置換基を有していてもよい芳香族炭化水素基又は置換基を有していてもよい芳香族複素環基を表し、Ar13は、電子供与基を有していてもよい1,4-フェニレン基、置換基を有していてもよい1,4-ナフチレン基又は置換基を有していてもよい芳香族複素環基を表し、Ar14は、式(II)で表される基を表す。] [In Formula (I), Ar 11 and Ar 12 each independently represent an aromatic hydrocarbon group which may have a substituent or an aromatic heterocyclic group which may have a substituent, Ar 13 is a 1,4-phenylene group optionally having an electron donating group, a 1,4-naphthylene group optionally having a substituent, or an aromatic heterocyclic ring optionally having a substituent Represents a group, and Ar 14 represents a group represented by the formula (II). ]
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
[式(II)において、RN11及びRN12は、それぞれ独立に、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいフェニル基又は置換基を有していてもよいアシル基を表し、bは0~3の整数を表し、dは0又は1を表す。なお、-NRN11N12で表されるアミノ基は、α位又はβ位に置換する。] [In Formula (II), R N11 and R N12 each independently have a hydrogen atom, an alkyl group that may have a substituent, a phenyl group that may have a substituent, or a substituent. And b represents an integer of 0 to 3, and d represents 0 or 1. The amino group represented by —NR N11 R N12 is substituted at the α-position or β-position. ]
<Ar11
 Ar11は、置換基を有していてもよい芳香族炭化水素基又は置換基を有していてもよい芳香族複素環基を表す。
<Ar 11 >
Ar 11 represents an aromatic hydrocarbon group which may have a substituent or an aromatic heterocyclic group which may have a substituent.
((芳香族炭化水素基))
 芳香族炭化水素基としては、単環及び複数の環由来の基が挙げられる。複数の環由来の基に含まれる環の数は特に限定されないが、通常、2以上、4以下であり、好ましくは3以下である。
 例えば1個の遊離原子価を有する、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、ペリレン環、テトラセン環、ピレン環、ベンズピレン環、クリセン環、トリフェニレン環、アセナフテン環、フルオランテン環、フルオレン環等が挙げられる。
((Aromatic hydrocarbon group))
Examples of the aromatic hydrocarbon group include groups derived from a single ring and a plurality of rings. The number of rings contained in the groups derived from a plurality of rings is not particularly limited, but is usually 2 or more and 4 or less, preferably 3 or less.
For example, a benzene ring, naphthalene ring, anthracene ring, phenanthrene ring, perylene ring, tetracene ring, pyrene ring, benzpyrene ring, chrysene ring, triphenylene ring, acenaphthene ring, fluoranthene ring, fluorene ring, etc. having one free valence Can be mentioned.
 前記芳香族炭化水素基は置換基を有していてもよい。有していてもよい置換基としては、通常、アゾ化合物の溶解性を高めるために導入される親水性基、色素としての色調を調節するために導入される電子求引基又は電子供与基が好ましい。
 また、前記芳香族炭化水素基が有していてもよい置換基として、色素同士がカラム状会合体を形成する観点から、色素同士の会合を促進する官能基を導入することが好ましい。
 会合を促進する相互作用には、静電的相互作用が挙げられ、特に、水素結合性官能基や、強い双極子を持つ官能基が好ましい。水素結合性の官能基としては、アルコキシ基、水酸基、アミノ基、アシルアミノ基、カルバモイル基、スルファモイル基、カルボキシ基、スルホ基、シアノ基、リン酸基等が挙げられる。
The aromatic hydrocarbon group may have a substituent. Examples of the substituent that may have include a hydrophilic group that is usually introduced to enhance the solubility of the azo compound, and an electron-withdrawing group or electron-donating group that is introduced to adjust the color tone as a dye. preferable.
In addition, as a substituent that the aromatic hydrocarbon group may have, it is preferable to introduce a functional group that promotes the association between the dyes from the viewpoint of the dyes forming a columnar aggregate.
The interaction that promotes the association includes an electrostatic interaction, and a hydrogen bonding functional group or a functional group having a strong dipole is particularly preferable. Examples of the hydrogen bonding functional group include an alkoxy group, a hydroxyl group, an amino group, an acylamino group, a carbamoyl group, a sulfamoyl group, a carboxy group, a sulfo group, a cyano group, and a phosphate group.
 親水性基とは、水などのプロトン性物質との間に水素結合性による相互作用を示し、水に溶解又は混和しやすい性質を示す官能基で、熱力学的に安定化する官能基を表す。水素結合性官能基は、水素原子より電気陰性度が高いヘテロ原子(窒素、酸素、硫黄)やフッ素原子等の孤立電子対(電子対供与体)を有する基を指す。具体的には、アルコキシ基、水酸基、アミノ基、アシルアミノ基、カルバモイル基、スルファモイル基、カルボキシ基、スルホ基、シアノ基、リン酸基等が挙げられる。 A hydrophilic group is a functional group that exhibits an interaction due to hydrogen bonding with a protic substance such as water and has a property of being easily dissolved or mixed in water, and represents a functional group that is thermodynamically stabilized. . The hydrogen bonding functional group refers to a group having a lone electron pair (electron pair donor) such as a hetero atom (nitrogen, oxygen, sulfur) or a fluorine atom having a higher electronegativity than a hydrogen atom. Specific examples include alkoxy groups, hydroxyl groups, amino groups, acylamino groups, carbamoyl groups, sulfamoyl groups, carboxy groups, sulfo groups, cyano groups, and phosphate groups.
 電子求引基とは、水素原子と比べて結合原子側から電子を引きつけやすい置換基を指し、電子求引基がフェニル基又はナフチル基に置換した場合には、ベンゼン環上の電子密度を減弱させる。つまり、電子不足にさせる効果がある。電子求引基とは、ハロゲン原子;酸素原子、窒素原子、硫黄原子等の電気陰性度が高い原子と多重結合をしている原子が芳香環と結合している基;ハロゲン原子と置換している炭素原子が芳香環と結合している基;正電荷を帯びている原子が芳香環と結合している基;等が挙げられる。
 置換基が電子求引性であることの指標の例としては、例えば、小西謙三、黒木宣彦著「合成染料の化学」(槇書店、1963年2月25日発行)第23頁~第25頁に記載されているハメット式における置換基定数が正であることが挙げられる。本発明においては、該置換基定数がメタ位、パラ位のいずれにおいても正である置換基が好ましい。具体的には、カルバモイル基、スルファモイル基、ニトロ基、カルボキシ基、スルホ基、シアノ基、ハロゲン原子、トリフルオロメチル基等が挙げられる。
 電子求引基は、非イオン性及びイオン性の電子求引基が挙げられる。ここで、「非イオン性」の電子求引基とは、イオン性基でない電子求引基を指す。
An electron withdrawing group refers to a substituent that is easier to attract electrons from the bond atom side than a hydrogen atom. When the electron withdrawing group is substituted with a phenyl group or a naphthyl group, the electron density on the benzene ring is reduced. Let In other words, there is an effect of causing shortage of electrons. An electron withdrawing group is a halogen atom; a group in which an atom having multiple electronegativity such as an oxygen atom, a nitrogen atom, or a sulfur atom is bonded to an aromatic ring; A group in which a carbon atom is bonded to an aromatic ring; a group in which a positively charged atom is bonded to an aromatic ring; and the like.
As an example of an indicator that a substituent is electron withdrawing, for example, Kenzo Konishi and Nobuhiko Kuroki, “Chemistry of Synthetic Dyes” (Tsubaki Shoten, published on February 25, 1963) pp. 23-25 It is mentioned that the substituent constant in the Hammett formula described in the above is positive. In the present invention, a substituent in which the substituent constant is positive in both the meta position and the para position is preferable. Specific examples include a carbamoyl group, a sulfamoyl group, a nitro group, a carboxy group, a sulfo group, a cyano group, a halogen atom, and a trifluoromethyl group.
The electron withdrawing group includes nonionic and ionic electron withdrawing groups. Here, the “nonionic” electron withdrawing group refers to an electron withdrawing group that is not an ionic group.
 イオン性基とは、鈴木洋著「界面と界面活性物質」(産業図書株式会社、1990年1月23日発行)第33頁~第35頁に記載されているように、親水性基のうち水の中で基の一部が解離してアニオン(陰イオン)部とカチオン(陽イオン)部に分かれる基を指す。
 具体的には、スルホ基、カルボキシ基、リン酸基、トリメチルアンモニオ基、J.N.イスラエルアチヴィリ著、近藤保、大島広行訳「分子間力と表面力」(マグロウヒル出版株式会社、1991年12月25日発行)第105頁~第106頁に記載されているもの等が挙げられる。
 イオン性の電子求引基としては、スルホ基、カルボキシ基等が挙げられる。
The ionic group is a hydrophilic group as described in Hiroshi Suzuki “Interface and Surfactant” (Sangyo Tosho Co., Ltd., published on January 23, 1990), pages 33-35. A group in which a part of the group is dissociated in water and separated into an anion (anion) portion and a cation (cation) portion.
Specifically, sulfo group, carboxy group, phosphate group, trimethylammonio group, J.M. N. Listed on pages 105-106 by Israel Ativiri, translated by Yasuo Kondo, Hiroyuki Oshima “Intermolecular Forces and Surface Forces” (Maglow Hill Publishing Co., Ltd., issued December 25, 1991) .
Examples of the ionic electron withdrawing group include a sulfo group and a carboxy group.
 非イオン性の電子求引基は、該芳香族炭化水素基の芳香環の電子密度を減弱させるとともに、水で電荷分離しない。従って、式(I)で表されるアゾ色素を、例えば溶剤を水とする異方性色素膜用組成物に用いた場合に、溶剤との相互作用が小さくなり、Ar11及び電子過剰なナフチル基であるAr14は分子間で強く引き合い、分子同士が会合状態を作りやすい性質が生じる。なお、電子過剰であるとは、ベンゼン環上の電子密度が増強された状態を意味する。 The nonionic electron withdrawing group reduces the electron density of the aromatic ring of the aromatic hydrocarbon group and does not separate the charge with water. Therefore, when the azo dye represented by the formula (I) is used in an anisotropic dye film composition containing, for example, water as a solvent, the interaction with the solvent is reduced, and Ar 11 and electron-rich naphthyl are reduced. Ar 14 as a group attracts strongly between molecules, and a property that molecules tend to form an associated state occurs. Note that the electron excess means a state in which the electron density on the benzene ring is enhanced.
 非イオン性の電子求引基としては、ハロゲン原子;酸素原子、窒素原子、硫黄原子等の電気陰性度が高い原子と多重結合をしている原子が芳香環と結合している基;ハロゲン原子と置換している炭素原子が芳香環と結合している基;正電荷を帯びている原子が芳香環と結合している基;等が挙げられる。
 具体的には、カルバモイル基、スルファモイル基、ニトロ基、シアノ基、ハロゲン原子、トリフルオロメチル基等が挙げられる。
Nonionic electron-withdrawing group includes a halogen atom; a group in which an atom having a high electronegativity such as an oxygen atom, a nitrogen atom, or a sulfur atom is bonded to an aromatic ring; a halogen atom A group in which a carbon atom substituted with is bonded to an aromatic ring; a group in which a positively charged atom is bonded to an aromatic ring; and the like.
Specific examples include a carbamoyl group, a sulfamoyl group, a nitro group, a cyano group, a halogen atom, and a trifluoromethyl group.
 本発明において電子供与基とは、水素原子と比べて結合原子側から電子を押し出しやすい置換基を指し、電子供与基がフェニル基に置換した場合には、ベンゼン環上の電子密度を増大させる、つまり、電子過剰にさせる効果がある。置換基が電子供与性であることの指標の例としては、例えば、小西謙三、黒木宣彦著「合成染料の化学」(槇書店、1963年2月25日発行)第23頁~第25頁に記載されているハメット式における置換基定数が負であることが挙げられる。本発明においては、該置換基定数がメタ位、パラ位のいずれにおいても負である置換基が好ましい。具体的には、アルキル基、アルコキシ基、水酸基、アミノ基、アシルアミノ基等が挙げられる。 In the present invention, the electron donating group refers to a substituent that easily extrudes electrons from the bonding atom side compared to a hydrogen atom, and when the electron donating group is substituted with a phenyl group, the electron density on the benzene ring is increased. In other words, there is an effect of excessive electrons. Examples of an indicator that the substituent is electron donating include, for example, Kenzo Konishi and Nobuhiko Kuroki “Synthetic Dye Chemistry” (Tsubaki Shoten, published February 25, 1963), pages 23-25. It is mentioned that the substituent constant in the Hammett formula described is negative. In the present invention, a substituent in which the substituent constant is negative in both the meta position and the para position is preferable. Specific examples include an alkyl group, an alkoxy group, a hydroxyl group, an amino group, and an acylamino group.
 前記の芳香族炭化水素基が有していてもよい置換基で挙げた各基について具体的に説明する。
(アルキル基)
 前記アルキル基は、通常、炭素数が1以上、6以下であり、好ましくは4以下である。アルキル基は、置換基を有していてもよく、その置換基は、例えば、炭素数が1以上、6以下のアルコキシ基、水酸基、ハロゲン原子、スルホ基、カルボキシ基等が挙げられる。
 前記アルキル基の具体例として、メチル基、エチル基、n-プロピル基、ヒドロキシエチル基、1,2-ジヒドロキシプロピル基等の低級アルキル基が挙げられる。
Each group mentioned by the substituent which the said aromatic hydrocarbon group may have is demonstrated concretely.
(Alkyl group)
The alkyl group usually has 1 to 6 carbon atoms, preferably 4 or less. The alkyl group may have a substituent, and examples of the substituent include an alkoxy group having 1 to 6 carbon atoms, a hydroxyl group, a halogen atom, a sulfo group, and a carboxy group.
Specific examples of the alkyl group include lower alkyl groups such as a methyl group, an ethyl group, an n-propyl group, a hydroxyethyl group, and a 1,2-dihydroxypropyl group.
(アルコキシ基)
 前記アルコキシ基は、通常、炭素数が1以上、6以下であり、好ましくは3以下である。前記アルコキシ基は置換基を有していてもよく、その置換基は、例えば、炭素数が1以上、6以下のアルコキシ基、水酸基、ハロゲン原子、スルホ基、カルボキシ基等が挙げられる。
 前記アルコキシ基の具体例として、メトキシ基、エトキシ基、n-プロポキシ基、n-ブトキシ基、ヒドロキシエトキシ基、1,2-ジヒドロキシプロポキシ基等の低級アルコキシ基が挙げられる。
(Alkoxy group)
The alkoxy group usually has 1 to 6 carbon atoms, preferably 3 or less. The alkoxy group may have a substituent, and examples of the substituent include an alkoxy group having 1 to 6 carbon atoms, a hydroxyl group, a halogen atom, a sulfo group, and a carboxy group.
Specific examples of the alkoxy group include lower alkoxy groups such as a methoxy group, an ethoxy group, an n-propoxy group, an n-butoxy group, a hydroxyethoxy group, and a 1,2-dihydroxypropoxy group.
(アシルアミノ基)
 前記アシルアミノ基は、-NH-C(=O)R11で表される。R11は、アルキル基、アルケニル基又はフェニル基を表す。
 前記アシルアミノ基の具体例としては、アセチルアミノ基、アクリルアミノ基、メタクリルアミノ基、ベンゾイルアミノ基等が挙げられる。
(Acylamino group)
The acylamino group is represented by —NH—C (═O) R 11 . R 11 represents an alkyl group, an alkenyl group, or a phenyl group.
Specific examples of the acylamino group include an acetylamino group, an acrylamino group, a methacrylamino group, and a benzoylamino group.
 R11のアルキル基は、通常、炭素数が1以上、4以下であり、好ましくは2以下である。また、R11のアルケニル基は、通常、炭素数が2以上、4以下であり、好ましくは3以下である。R11のフェニル基は、通常、炭素数が6以上、10以下であり、好ましくは8以下である。
 前記R11のアルキル基、アルケニル基及びフェニル基は、それぞれ独立に、置換基を有していてもよい。有していてもよい置換基としては、炭素数1以上、4以下のアルコキシ基、水酸基、スルホ基、カルボキシ基、ハロゲン原子等が挙げられる。
The alkyl group of R 11 usually has 1 or more and 4 or less carbon atoms, preferably 2 or less. The alkenyl group for R 11 usually has 2 or more and 4 or less carbon atoms, preferably 3 or less. The phenyl group of R 11 usually has 6 to 10 carbon atoms, preferably 8 or less.
The alkyl group, alkenyl group and phenyl group of R 11 may each independently have a substituent. Examples of the substituent that may have include an alkoxy group having 1 to 4 carbon atoms, a hydroxyl group, a sulfo group, a carboxy group, and a halogen atom.
(アミノ基)
 前記アミノ基は、通常、-NH、-NHR22又は-NR2324で表される。R22~R24はそれぞれ独立に、アルキル基又はフェニル基を表す。
 前記アミノ基の具体例としては、メチルアミノ基、エチルアミノ基、プロピルアミノ基、ジメチルアミノ基、フェニルアミノ基等が挙げられる。
 R22~R24のアルキル基は、通常、炭素数が1以上、4以下であり、好ましくは2以下である。また、R22~R24のフェニル基は、通常、炭素数が6以上、10以下であり、好ましくは8以下である。
 R22~R24のアルキル基及びフェニル基は置換基を有していてもよい。有していてもよい置換基としては、炭素数1以上、4以下のアルコキシ基、水酸基、スルホ基、カルボキシ基、ハロゲン原子等が挙げられる。
(Amino group)
The amino group is usually represented by —NH 2 , —NHR 22 or —NR 23 R 24 . R 22 to R 24 each independently represents an alkyl group or a phenyl group.
Specific examples of the amino group include a methylamino group, an ethylamino group, a propylamino group, a dimethylamino group, and a phenylamino group.
The alkyl group of R 22 to R 24 usually has 1 to 4 carbon atoms, preferably 2 or less. Further, the phenyl group of R 22 to R 24 usually has 6 to 10 carbon atoms, preferably 8 or less.
The alkyl group and phenyl group of R 22 to R 24 may have a substituent. Examples of the substituent that may have include an alkoxy group having 1 to 4 carbon atoms, a hydroxyl group, a sulfo group, a carboxy group, and a halogen atom.
(カルバモイル基)
 前記カルバモイル基は、無置換のカルバモイル基、炭素数1以上、6以下のアルキルカルバモイル基、炭素数6以上、10以下のフェニルカルバモイル基又は炭素数10以上、14以下のナフチルカルバモイル基を表す。カルバモイル基の具体例としては、カルバモイル基、フェニルカルバモイル基、ナフチルカルバモイル基等が挙げられる。
 前記アルキルカルバモイル基、フェニルカルバモイル基及びナフチルカルバモイル基は置換基を有していてもよい。有していてもよい置換基としては、炭素数1以上、4以下のアルコキシ基、水酸基、スルホ基、カルボキシ基、ハロゲン原子等が挙げられる。
(Carbamoyl group)
The carbamoyl group represents an unsubstituted carbamoyl group, an alkylcarbamoyl group having 1 to 6 carbon atoms, a phenylcarbamoyl group having 6 to 10 carbon atoms, or a naphthylcarbamoyl group having 10 to 14 carbon atoms. Specific examples of the carbamoyl group include a carbamoyl group, a phenylcarbamoyl group, a naphthylcarbamoyl group, and the like.
The alkylcarbamoyl group, phenylcarbamoyl group and naphthylcarbamoyl group may have a substituent. Examples of the substituent that may have include an alkoxy group having 1 to 4 carbon atoms, a hydroxyl group, a sulfo group, a carboxy group, and a halogen atom.
(スルファモイル基)
 前記スルファモイル基は、無置換のスルファモイル基、炭素数1以上、6以下のアルキルスルファモイル基、炭素数6以上、10以下のフェニルスルファモイル基及び炭素数10以上、14以下のナフチルスルファモイル基を表す。スルファイル基の具体例としては、スルファモイル基、メチルスルファモイル基、ジメチルスルファモイル基、エチルスルファモイル基、ジエチルスルファモイル基、フェニルスルファモイル基、ナフチルスルファモイル基等が挙げられる。
 前記アルキルスルファモイル基、フェニルスルファモイル基及びナフチルスルファモイル基は置換基を有していてもよい。有していてもよい置換基としては、炭素数1以上、4以下のアルコキシ基、水酸基、スルホ基、カルボキシ基、ハロゲン原子等が挙げられる。
(Sulfamoyl group)
The sulfamoyl group includes an unsubstituted sulfamoyl group, an alkylsulfamoyl group having 1 to 6 carbon atoms, a phenylsulfamoyl group having 6 to 10 carbon atoms, and a naphthylsulfur group having 10 to 14 carbon atoms. Represents a moyl group. Specific examples of the sulffile group include a sulfamoyl group, a methylsulfamoyl group, a dimethylsulfamoyl group, an ethylsulfamoyl group, a diethylsulfamoyl group, a phenylsulfamoyl group, and a naphthylsulfamoyl group. It is done.
The alkylsulfamoyl group, phenylsulfamoyl group and naphthylsulfamoyl group may have a substituent. Examples of the substituent that may have include an alkoxy group having 1 to 4 carbon atoms, a hydroxyl group, a sulfo group, a carboxy group, and a halogen atom.
((芳香族複素環基))
 Ar11の芳香族複素環基としては、特に限定されないが、単環又は二環性の複素環由来の基であることが、式(I)で表されるアゾ色素同士の重なりを大きくしてカラムを形成できる点で好ましい。芳香族複素環基を構成する炭素以外の原子としては、窒素原子、硫黄原子及び酸素原子が挙げられる。特に、式(I)で表されるアゾ色素同士がカラムを形成し易い傾向となるため、窒素原子が好ましい。芳香族複素環基が炭素以外の環を構成する原子を複数有する場合、これらは同一であっても異なっていてもよい。好ましい例として、ピリジン環、キノリン環、イソキノリン環、チアゾール環、ベンゾチアゾール環等が挙げられる。
((Aromatic heterocyclic group))
The aromatic heterocyclic group for Ar 11 is not particularly limited, but the group derived from a monocyclic or bicyclic heterocyclic ring increases the overlap between the azo dyes represented by formula (I). This is preferable in that a column can be formed. Examples of atoms other than carbon constituting the aromatic heterocyclic group include a nitrogen atom, a sulfur atom, and an oxygen atom. In particular, since the azo dyes represented by the formula (I) tend to form a column, a nitrogen atom is preferable. When the aromatic heterocyclic group has a plurality of atoms constituting a ring other than carbon, these may be the same or different. Preferable examples include pyridine ring, quinoline ring, isoquinoline ring, thiazole ring, benzothiazole ring and the like.
 前記芳香族複素環基は置換基を有していてもよい。有していてもよい置換基としては、親水性基、電子供与基、電子求引基、水素結合性官能基等が挙げられる。具体的には、アルキル基、アルコキシ基、アシルアミノ基、アミノ基、カルバモイル基、スルファモイル基、ニトロ基、カルボキシ基、スルホ基、水酸基、シアノ基、ハロゲン原子等が挙げられる。これら置換基の群及び置換基は、前述のAr11の芳香族炭化水素基が有していてもよい置換基として挙げたものとそれぞれ同義であり、好ましい範囲及び有していてもよい置換基もそれぞれ同義である。
 この中でもスルホ基を置換基として有することが、色素に水溶性を付与する点で好ましい。また、無置換である場合、複素環に含まれる炭素以外の原子、特に窒素原子の分子間での相互作用を妨げない点で好ましい。該芳香族複素環基は、無置換又は上述の置換基を1~5個有していてもよく、好ましくは無置換又は置換基を1~2個有していることである。
The aromatic heterocyclic group may have a substituent. Examples of the substituent that may have include a hydrophilic group, an electron donating group, an electron withdrawing group, and a hydrogen bonding functional group. Specific examples include an alkyl group, an alkoxy group, an acylamino group, an amino group, a carbamoyl group, a sulfamoyl group, a nitro group, a carboxy group, a sulfo group, a hydroxyl group, a cyano group, and a halogen atom. These substituent groups and substituents are respectively synonymous with those mentioned as the substituents that the aromatic hydrocarbon group of Ar 11 may have, and preferred ranges and substituents that may be included. Are also synonymous.
Among these, having a sulfo group as a substituent is preferable from the viewpoint of imparting water solubility to the dye. Moreover, when it is unsubstituted, it is preferable at the point which does not prevent the interaction between atoms other than carbon contained in a heterocyclic ring, especially a nitrogen atom. The aromatic heterocyclic group may be unsubstituted or have 1 to 5 substituents as described above, and preferably is unsubstituted or has 1 to 2 substituents.
((Ar11の好ましい例))
 Ar11は、前記の中でも置換基を有していてもよい芳香族炭化水素基であることが好ましく、置換基を有していてもよいフェニル基又は置換基を有していてもよいナフチル基であることが特に好ましい。
 式(I)で表されるアゾ色素は芳香族環とアゾ基の連結からなり、広いπ平面を有し、分子同士π平面を積層するように会合することによってリオトロピック液晶のような、溶液中での高い会合状態を形成することができる。Ar11が、芳香族炭化水素基であると、平面性が高く電荷の偏りが少ないため、分子が積層するときにずれが生じにくく長いカラムを形成することができ、高い配向度の異方性色素膜を得やすい。特に、Ar11が、フェニル基又はナフチル基であることが、他の環との大きさ、特に、アゾ色素1分子の逆の末端に配置されたAr14のナフタレン環とほぼ同じ大きさとなるため、分子が積層し易くなり、より好ましい。
((Preferred example of Ar 11 ))
Ar 11 is preferably an aromatic hydrocarbon group which may have a substituent among the above, and a phenyl group which may have a substituent or a naphthyl group which may have a substituent. It is particularly preferred that
The azo dye represented by the formula (I) is formed by linking an aromatic ring and an azo group, has a wide π plane, and in a solution such as a lyotropic liquid crystal by associating molecules in a stacked π plane. A high state of association can be formed. When Ar 11 is an aromatic hydrocarbon group, the flatness is high and the bias of the charge is small, so that a long column can be formed which is less likely to be displaced when molecules are stacked, and has a high degree of orientation anisotropy. It is easy to obtain a dye film. In particular, when Ar 11 is a phenyl group or a naphthyl group, the size is the same as that of the other ring, in particular, the Ar 14 naphthalene ring arranged at the opposite end of one molecule of the azo dye. , Molecules are easier to stack, more preferable.
 また、Ar11の芳香族炭化水素基は無置換でも置換基を有していても良い。置換基を有する場合、水素結合性の官能基又は電子求引基を少なくとも1つ有することが好ましく、電子求引基を有することが更に好ましい。電子求引基は、該芳香族炭化水素基の芳香環の電子密度を減弱させる傾向にある。これにより、式(I)で表されるアゾ色素において、電子不足なAr11及び電子過剰なナフチル基であるAr14は分子間で強く引き合い、分子同士が会合状態を作りやすい性質が生じる。なお、電子過剰であるとは、ベンゼン環上の電子密度が増強された状態を意味する。
 電子求引基は、非イオン性及びイオン性のどちらでもよい。イオン性の電子求引基である場合は、アゾ色素の分子間で、酸・塩基の結合や水素結合により、分子間で強く引き合い、分子同士が会合状態を作りやすい性質が生じる。
 一方で、非イオン性の電子求引基である場合は、水で電荷分離しない傾向にある。従って、式(I)で表されるアゾ色素を、例えば溶剤を水とする異方性色素膜用組成物に用いた場合に、イオン性の場合に比べて、式(I)の色素と溶剤との相互作用が小さい、即ち、疎水性相互作用が強く、分子間でより強く引き合い、分子同士が積層状態を作りやすい性質が生じる。
 電子求引基は、非イオン性又はイオン性のどちらでもよいが、非イオン性であることが芳香環同士の相互作用がより強い点で積層が強く起こる傾向にあるため好ましい。
 この中でも、分子の平面性を保持し、分子同士の積層を乱さない点で、カルバモイル基、スルファモイル基、ニトロ基及びシアノ基が特に好ましい。
 前記カルバモイル基及びスルファモイル基は、Ar11の芳香族炭化水素基が有していてもよい置換基で挙げたカルバモイル基及びスルファモイル基とそれぞれ同義であり、有していてもよい置換基及び好ましい範囲もそれぞれ同義である。
The aromatic hydrocarbon group of Ar 11 may be unsubstituted or may have a substituent. When it has a substituent, it preferably has at least one hydrogen-bonding functional group or electron-withdrawing group, and more preferably has an electron-withdrawing group. The electron withdrawing group tends to attenuate the electron density of the aromatic ring of the aromatic hydrocarbon group. Thereby, in the azo dye represented by the formula (I), the electron-deficient Ar 11 and the electron-rich naphthyl group Ar 14 are attracted strongly between the molecules, and the molecules tend to form an associated state. Note that the electron excess means a state in which the electron density on the benzene ring is enhanced.
The electron withdrawing group may be either nonionic or ionic. In the case of an ionic electron-withdrawing group, the azo dye has a property of attracting strongly between molecules due to an acid / base bond or a hydrogen bond between the molecules of the azo dye, so that the molecules can easily form an associated state.
On the other hand, in the case of a nonionic electron-withdrawing group, there is a tendency not to separate charges with water. Accordingly, when the azo dye represented by the formula (I) is used in an anisotropic dye film composition containing, for example, water as a solvent, the dye and the solvent represented by the formula (I) are compared with those in the ionic case. Interaction is small, that is, hydrophobic interaction is strong, attracting more strongly between molecules, and molecules tend to form a laminated state.
The electron-attracting group may be either nonionic or ionic, but nonionic is preferable because lamination tends to occur strongly in terms of stronger interaction between aromatic rings.
Among these, a carbamoyl group, a sulfamoyl group, a nitro group, and a cyano group are particularly preferable in that the planarity of the molecule is maintained and the stacking of the molecules is not disturbed.
The carbamoyl group and sulfamoyl group have the same meanings as the carbamoyl group and sulfamoyl group mentioned above for the substituent that the aromatic hydrocarbon group of Ar 11 may have, and the preferred substituent and preferred range Are also synonymous.
<Ar12
 Ar12は、置換基を有していてもよい芳香族炭化水素基又は置換基を有していてもよい芳香族複素環基を表す。
((芳香族炭化水素基))
 Ar12の芳香族炭化水素基としては、単環及び複数の環由来の基が挙げられる。複数の環由来の基に含まれる環の数は特に限定されないが、通常、2以上、4以下であり、好ましくは3以下である。芳香族炭化水素基としては、例えば、2個の遊離原子価を有する、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、ペリレン環、テトラセン環、ピレン環、ベンズピレン環、クリセン環、トリフェニレン環、アセナフテン環、フルオランテン環、フルオレン環等が挙げられる。
 Ar12の芳香族炭化水素基としては、置換基を有していてもよいフェニレン基又は置換基を有していてもよいナフチレン基が好ましく、該フェニレン基としては置換基を有していてもよい1,4-フェニレン基が、また該ナフチレン基としては置換基を有していてもよい1,4-ナフチレン基が分子の直線性が高く、分子短軸方向にπ平面が広がり、分子間のπ-π相互作用を示しやすい傾向にあることから、アゾ色素の会合性向上の点で好ましい。
<Ar 12 >
Ar 12 represents an aromatic hydrocarbon group which may have a substituent or an aromatic heterocyclic group which may have a substituent.
((Aromatic hydrocarbon group))
Examples of the aromatic hydrocarbon group for Ar 12 include groups derived from a single ring and a plurality of rings. The number of rings contained in the groups derived from a plurality of rings is not particularly limited, but is usually 2 or more and 4 or less, preferably 3 or less. Examples of the aromatic hydrocarbon group include two benzene rings, naphthalene rings, anthracene rings, phenanthrene rings, perylene rings, tetracene rings, pyrene rings, benzpyrene rings, chrysene rings, triphenylene rings, and acenaphthenes. A ring, a fluoranthene ring, a fluorene ring, and the like.
As the aromatic hydrocarbon group for Ar 12, a phenylene group which may have a substituent or a naphthylene group which may have a substituent is preferable, and the phenylene group may have a substituent. A good 1,4-phenylene group, and the 1,4-naphthylene group which may have a substituent as the naphthylene group has a high molecular linearity, a π plane spreads in the molecular minor axis direction, and an intermolecular The π-π interaction tends to be exhibited, which is preferable from the viewpoint of improving the association property of the azo dye.
 前記芳香族炭化水素基は置換基を有していてもよい。有していてもよい置換基としては、通常、アゾ化合物の溶解性を高めるために導入される親水性基、色素としての色調を調節するために導入される電子供与基又は電子求引基が好ましい。
 具体的には、前記Ar11の芳香族炭化水素基が有していてもよい置換基で挙げたものとそれぞれ同義である。
The aromatic hydrocarbon group may have a substituent. Examples of the substituent that may have include a hydrophilic group that is usually introduced to enhance the solubility of the azo compound, an electron donating group or an electron withdrawing group that is introduced to adjust the color tone as a dye. preferable.
Specifically, they are respectively synonymous with those mentioned for the substituent that the aromatic hydrocarbon group of Ar 11 may have.
 Ar12の芳香族炭化水素基は、無置換でも、前記置換基を1~5個有していてもよく、好ましくは置換基を1~2個有する。前記の有していてもよい置換基の中でも、アルキル基、アルコキシ基、カルバモイル基、スルファモイル基、水酸基、シアノ基、スルホ基、カルボキシ基、ハロゲン原子等の極性の小さい基又は水素結合性官能基を有することが、リオトロピック液晶を形成する上での相互作用による会合性向上の点で好ましく、特にスルホ基を有することが好ましい。スルホ基を有することで、アゾ色素に水溶性を付与するとともに、スルホ基の塩がアゾ色素の分子間で形成され、アゾ色素分子同士の積層(会合)を促進する効果があり、分子が積み重なって形成されるカラム状の会合体に関与する分子数が多くなる。つまり、高い分子配向度の異方性色素膜を得ることができる傾向にある。
 Ar12の芳香族炭化水素基が有していてもよい、アルキル基、アルコキシ基、カルバモイル基及びスルファモイル基の炭素数は1~8が好ましく、1~4がさらに好ましい。また、前記アルキル基、アルコキシ基、カルバモイル基及びスルファモイル基は、Ar12の芳香族炭化水素基が有していてもよい置換基として挙げたものとそれぞれ同義であり、有していてもよい置換基等も同義である。
The aromatic hydrocarbon group for Ar 12 may be unsubstituted or may have 1 to 5 substituents, and preferably has 1 to 2 substituents. Among the substituents that may be present, an alkyl group, an alkoxy group, a carbamoyl group, a sulfamoyl group, a hydroxyl group, a cyano group, a sulfo group, a carboxy group, a halogen atom, or a less polar group or a hydrogen bonding functional group It is preferable from the viewpoint of improving the associative property by interaction in forming a lyotropic liquid crystal, and it is particularly preferable to have a sulfo group. By having a sulfo group, water-solubility is imparted to the azo dye, and a salt of the sulfo group is formed between the molecules of the azo dye, which has the effect of promoting the stacking (association) of the azo dye molecules. The number of molecules involved in the columnar aggregates formed in this way increases. In other words, an anisotropic dye film having a high degree of molecular orientation tends to be obtained.
The alkyl group, alkoxy group, carbamoyl group and sulfamoyl group that the aromatic hydrocarbon group of Ar 12 may have preferably have 1 to 8 carbon atoms, more preferably 1 to 4 carbon atoms. Further, the alkyl group, alkoxy group, carbamoyl group and sulfamoyl group have the same meanings as those given as the substituents that the aromatic hydrocarbon group of Ar 12 may have, and may be substituted. The group is also synonymous.
((芳香族複素環基))
 Ar12の芳香族複素環基としては、特に限定されないが、単環又は二環性の複素環由来の基であることが、式(I)で表されるアゾ色素同士の重なりを大きくしてカラムを形成できる点で好ましい。芳香族複素環基を構成する炭素以外の原子としては、窒素原子、硫黄原子及び酸素原子が挙げられるが、式(I)で表されるアゾ色素同士がカラムを形成し易い傾向となるため、窒素原子が特に好ましい。芳香族複素環基が炭素以外の環を構成する原子を複数有する場合、これらは同一であっても異なっていてもよい。
((Aromatic heterocyclic group))
The aromatic heterocyclic group for Ar 12 is not particularly limited, but the group derived from a monocyclic or bicyclic heterocyclic ring increases the overlap between the azo dyes represented by formula (I). This is preferable in that a column can be formed. Examples of atoms other than carbon constituting the aromatic heterocyclic group include a nitrogen atom, a sulfur atom and an oxygen atom, but the azo dyes represented by the formula (I) tend to easily form a column. A nitrogen atom is particularly preferred. When the aromatic heterocyclic group has a plurality of atoms constituting a ring other than carbon, these may be the same or different.
 Ar12の芳香族複素環基は置換基を有していてもよい。有していてもよい置換基としては、親水性基、電子供与基、電子求引基、水素結合性官能基等が挙げられる。具体的には、アルキル基、アルコキシ基、アシルアミノ基、アミノ基、カルバモイル基、スルファモイル基、ニトロ基、カルボキシ基、スルホ基、水酸基、シアノ基、ハロゲン原子等が挙げられる。
 前記、アルキル基、アルコキシ基、アシルアミノ基、アミノ基、カルバモイル基及びスルファモイル基は、それぞれ置換基を有していてもよい。有していてもよい置換基としては、前記Ar11の芳香族炭化水素基が有していてもよい置換基で挙げたものとそれぞれ同義であり、有していてもよい置換基及び好ましい範囲もそれぞれ同義である。
 Ar12の芳香族複素環基は、前記置換基を1~5個有していてもよく、好ましくは、無置換であるか、又はこれらの置換基を1~2個有する。前記の中でも、Ar12の芳香族複素環基の置換基としては、水溶化の観点から、水酸基、スルホ基又はカルボキシ基が好ましい。
The aromatic heterocyclic group for Ar 12 may have a substituent. Examples of the substituent that may have include a hydrophilic group, an electron donating group, an electron withdrawing group, and a hydrogen bonding functional group. Specific examples include an alkyl group, an alkoxy group, an acylamino group, an amino group, a carbamoyl group, a sulfamoyl group, a nitro group, a carboxy group, a sulfo group, a hydroxyl group, a cyano group, and a halogen atom.
The alkyl group, alkoxy group, acylamino group, amino group, carbamoyl group, and sulfamoyl group each may have a substituent. The substituents that may be present are the same as those described above for the substituents that the aromatic hydrocarbon group of Ar 11 may have, the substituents that may be possessed, and preferred ranges. Are also synonymous.
The aromatic heterocyclic group for Ar 12 may have 1 to 5 of the above-mentioned substituents, and is preferably unsubstituted or has 1 to 2 of these substituents. Among them, the substituent for the aromatic heterocyclic group of Ar 12 is preferably a hydroxyl group, a sulfo group or a carboxy group from the viewpoint of water solubilization.
 Ar12の芳香族複素環基としては、下記式(I-a)又は(I-b)で表される2価の芳香族複素環基であることがさらに好ましい。すなわち、(I-a)で表される含窒素芳香族6員環の2,5位又は3,6位で結合する2価の連結基であるか、又は、(I-b)で表される芳香族複素環のy及びyの置換位置で結合する2価の連結基であることが好ましい。このような芳香族複素環基であることにより、前記式(I)で表されるアゾ色素同士がカラムを形成しやすくなる傾向にある。 The aromatic heterocyclic group for Ar 12 is more preferably a divalent aromatic heterocyclic group represented by the following formula (Ia) or (Ib). That is, it is a divalent linking group bonded at the 2,5- or 3,6-position of the nitrogen-containing aromatic six-membered ring represented by (Ia), or represented by (Ib) is preferably a divalent linking group bonded at the substitution position of y 1 and y 4 of that aromatic heterocycle. By being such an aromatic heterocyclic group, the azo dyes represented by the formula (I) tend to form a column easily.
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
[式(I-a)中、Q~Qはそれぞれ独立に、炭素原子又は窒素原子を表し、Q~Qの内、1個又は2個が窒素原子を表す。Q~Qは置換基を有していてもよい。] [In Formula (Ia), Q 1 to Q 4 each independently represent a carbon atom or a nitrogen atom, and one or two of Q 1 to Q 4 represent a nitrogen atom. Q 1 to Q 4 may have a substituent. ]
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
[式(I-b)中、Xは5~7員環を形成する2価の連結基を表し、前記環に窒素原子、酸素原子又は硫黄原子を含む。また、y~yは置換位置を表す。y及び/又はyは置換基を有していてもよい。] [In the formula (Ib), X represents a divalent linking group forming a 5- to 7-membered ring, and the ring contains a nitrogen atom, an oxygen atom or a sulfur atom. Y 1 to y 4 represent substitution positions. y 2 and / or y 3 may have a substituent. ]
 式(I-b)において、連結基Xにより形成される環上に、窒素原子、酸素原子又は硫黄原子を含む。
 式(I-a)又は(I-b)で表される2価の芳香族複素環基が有していてもよい置換基としては、Ar12及びAr13の芳香族複素環基の置換基として列記のものとそれぞれ同義であり、好ましい範囲もそれぞれ同義である。
 式(I-b)におけるXで表される連結基としては、例えば、-N=CH-CH=C-、-CO-NH-CO-、=N-S-N=、-CH=N-CH=CH-等が挙げられる。但し、CH及びNHにおけるC及びNには、Hの代わりに有機基等の置換基、例えばAr12及びAr13の芳香族複素環基の置換基として列記したもの等が置換していてもよい。
 y、yの位置に示される炭素原子には、有機基等の置換基、例えばAr12及びAr13の芳香族複素環基の置換基として列記したもの等が置換していてもよい。]
In the formula (Ib), a nitrogen atom, an oxygen atom or a sulfur atom is contained on the ring formed by the linking group X.
The substituent that the divalent aromatic heterocyclic group represented by the formula (Ia) or (Ib) may have is a substituent of the aromatic heterocyclic group of Ar 12 and Ar 13 And the preferred ranges are also synonymous with each other.
Examples of the linking group represented by X in the formula (Ib) include —N═CH—CH═C—, —CO—NH—CO—, ═NS—N═, —CH═N—. CH = CH- and the like can be mentioned. However, C and N in CH and NH may be substituted with a substituent such as an organic group instead of H, for example, those listed as substituents of the aromatic heterocyclic group of Ar 12 and Ar 13. .
The carbon atom shown at the position of y 2 or y 3 may be substituted with a substituent such as an organic group, for example, those listed as substituents for the aromatic heterocyclic group of Ar 12 and Ar 13 . ]
 式(I-a)で表される芳香族複素環基としては、ピリジン、ピリダジン、ピリミジン又はピラジンから誘導され、且つ、アゾ基との連結位置が2,5位又は3,6位にある基が挙げられる。
 式(I-b)で表される芳香族複素環基としては、キノリン、イソキノリン、ベンゾチアジアゾール、フタルイミド等から誘導され、且つ、アゾ基との連結位置が式(I-b)で示したy及びyの位置にある基が挙げられる。具体的には、ピリジンジイル基、キノリンジイル基、イソキノリンジイル基、ベンゾチアジアゾールジイル基、フタルイミドジイル基等が挙げられる。中でも、キノリンジイル基及びイソキノリンジイル基が好ましい。
 これらの中でも、化合物全体の平面性の点から、Ar12及びAr13の芳香族複素環基は式(I-b)で表されるものであるのが好ましく、特に、5,8-キノリンジイル基又は5,8-イソキノリンジイル基が好ましい。
The aromatic heterocyclic group represented by the formula (Ia) is a group derived from pyridine, pyridazine, pyrimidine or pyrazine and having a linking position with the azo group at the 2,5 or 3,6 position. Is mentioned.
The aromatic heterocyclic group represented by the formula (Ib) is derived from quinoline, isoquinoline, benzothiadiazole, phthalimide and the like, and the linking position with the azo group is represented by the formula (Ib). Examples include groups in the 1 and y 4 positions. Specific examples include a pyridinediyl group, a quinolinediyl group, an isoquinolinediyl group, a benzothiadiazolediyl group, and a phthalimidodiyl group. Among these, a quinoline diyl group and an isoquinoline diyl group are preferable.
Among these, from the viewpoint of the planarity of the entire compound, the aromatic heterocyclic group of Ar 12 and Ar 13 is preferably the one represented by the formula (Ib), and in particular, the 5,8-quinolinediyl group. Alternatively, a 5,8-isoquinolinediyl group is preferable.
<Ar13
 Ar13は、電子供与基を有していてもよい1,4-フェニレン基、置換基を有していてもよい1,4-ナフタレン基又は置換基を有していてもよい芳香族複素環基を表す。これらの基であることで、アゾ色素の会合性が向上する。
 1,4-フェニレン基が有していてもよい電子供与基としては、アルキル基、アルコキシ基、水酸基、アミノ基、アセチルアミノ基等が挙げられる。これらの基の具体例、好ましい範囲及び有していてもよい置換基は、前記Ar11の芳香族炭化水素基が有していてもよい置換基で挙げたものとそれぞれ同義である。1,4-フェニレン基が有していてもよい電子供与基の中でも、置換基の大きさが小さく、アゾ色素全体の平面性が高く、且つ、会合しやすい点で、メチル基、メトキシ基、アセチルアミノ基又はアミノ基が好ましい。
<Ar 13 >
Ar 13 represents a 1,4-phenylene group optionally having an electron donating group, a 1,4-naphthalene group optionally having a substituent, or an aromatic heterocyclic ring optionally having a substituent. Represents a group. By being these groups, the association property of the azo dye is improved.
Examples of the electron donating group that the 1,4-phenylene group may have include an alkyl group, an alkoxy group, a hydroxyl group, an amino group, and an acetylamino group. Specific examples, preferred ranges, and substituents that may be included in these groups are the same as those described above for the substituent that the aromatic hydrocarbon group of Ar 11 may have. Among the electron donating groups that the 1,4-phenylene group may have, the size of the substituent is small, the planarity of the entire azo dye is high, and it is easy to associate with each other, so that a methyl group, a methoxy group, An acetylamino group or an amino group is preferred.
 1,4-ナフチレン基は置換基を有していてもよい。有していてもよい置換基は、親水性基、電子供与基、電子求引基、水素結合性官能基等が挙げられる。具体的には、水酸基、メチル基、メトキシ基、アセチルアミノ基、アミノ基、スルホ基、カルボキシ基等が挙げられ、これらの中でもメトキシ基、スルホ基又はアセチルアミノ基が分子全体の平面性を損なわず、高い会合性を示す点で好ましい。
 芳香族複素環基としては、前記Ar12の芳香族複素環基と同義であり、具体例、好ましい範囲、有していてもよい置換基等も同義である。
The 1,4-naphthylene group may have a substituent. Examples of the substituent that may have include a hydrophilic group, an electron donating group, an electron withdrawing group, and a hydrogen bonding functional group. Specific examples include a hydroxyl group, a methyl group, a methoxy group, an acetylamino group, an amino group, a sulfo group, and a carboxy group. Among these, the methoxy group, the sulfo group, or the acetylamino group impairs the planarity of the whole molecule. However, it is preferable in that it exhibits a high associative property.
The aromatic heterocyclic group, wherein the same meaning as the aromatic heterocyclic group of Ar 12, specific examples, preferred ranges, it is also synonymous such substituent which may have.
<Ar14
 Ar14は、式(II)で表される。
<Ar 14 >
Ar 14 is represented by the formula (II).
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
[式(II)において、RN11及びRN12は、それぞれ独立に、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいフェニル基又は置換基を有していてもよいアシル基を表し、bは0~3の整数を表し、dは0又は1を表す。なお、-NRN11N12で表されるアミノ基は、α位又はβ位に置換する。] [In Formula (II), R N11 and R N12 each independently have a hydrogen atom, an alkyl group that may have a substituent, a phenyl group that may have a substituent, or a substituent. And b represents an integer of 0 to 3, and d represents 0 or 1. The amino group represented by —NR N11 R N12 is substituted at the α-position or β-position. ]
<RN11及びRN12
 RN11及びRN12は、それぞれ独立に、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいフェニル基又は置換基を有していてもよいアシル基を表す。
<R N11 and R N12 >
R N11 and R N12 each independently represent a hydrogen atom, an alkyl group that may have a substituent, a phenyl group that may have a substituent, or an acyl group that may have a substituent. To express.
(アルキル基)
 RN11及びRN12のアルキル基は、それぞれ独立に、式(I)のAr11の芳香族炭化水素基が有していてもよい置換基として挙げたアルキル基と同義であり、有していてもよい置換基及び好ましい範囲も同義である。
(Alkyl group)
The alkyl groups of R N11 and R N12 are each independently synonymous with the alkyl groups mentioned as the substituents that the Ar 11 aromatic hydrocarbon group of formula (I) may have, The preferred substituents and preferred ranges are also synonymous.
(フェニル基)
 RN11及びRN12のフェニル基は、それぞれ独立に、炭素数が6以上、12以下でありることが好ましく、さらに好ましくは10以下、特に好ましくは8以下である。該フェニル基は置換基を有していてもよい。有していてもよい置換基としては、メチル基、メトキシ基、水酸基、カルボキシ基、スルホ基等が挙げられる。
(Phenyl group)
The phenyl groups of R N11 and R N12 each independently preferably have 6 to 12 carbon atoms, more preferably 10 or less, and particularly preferably 8 or less. The phenyl group may have a substituent. Examples of the substituent that may have include a methyl group, a methoxy group, a hydroxyl group, a carboxy group, and a sulfo group.
(アシル基)
 RN11及びRN12のアシル基は、-C(=O)R31で表され、R31はアルキル基又はフェニル基を表す。該アルキル基は、通常、炭素数が1以上、4以下、好ましくは2以下である。該フェニル基は、置換基の炭素数が通常6以上、また、通常10以下、好ましくは8以下である。該アルキル基及び該フェニル基は置換基を有していてもよい。有していてもよい置換基としては、炭素数が1~4のアルコキシ基、水酸基、スルホ基、カルボキシ基等が挙げられる。アシル基の具体例としては、アセチル基、ベンゾイル基等が挙げられる。
(Acyl group)
The acyl group of R N11 and R N12 is represented by —C (═O) R 31 , and R 31 represents an alkyl group or a phenyl group. The alkyl group usually has 1 to 4 carbon atoms, preferably 2 or less carbon atoms. The phenyl group usually has 6 or more substituents, usually 10 or less, preferably 8 or less. The alkyl group and the phenyl group may have a substituent. Examples of the substituent that may have include an alkoxy group having 1 to 4 carbon atoms, a hydroxyl group, a sulfo group, and a carboxy group. Specific examples of the acyl group include an acetyl group and a benzoyl group.
 特に、分子が積層するときに立体障害になりにくく、リオトロピック液晶性を発現し易いという観点から、RN11又はRN12が、水素原子、メチル基、エチル基、フェニル基、アセチル基又はベンゾイル基であることが好ましい。
 RN11及びRN12の組み合わせは特に限定されないが、RN11及びRN12のいずれか一方が水素原子であることが、リオトロピック液晶性を発現しやすい点で好ましい。
 特に、異方性色素膜用組成物が、比較的低濃度でリオトロピック液晶性を発現し易く、プロセス適性に優れているという観点から、RN11及びRN12が水素原子であることが好ましい。
In particular, RN11 or RN12 is a hydrogen atom, a methyl group, an ethyl group, a phenyl group, an acetyl group, or a benzoyl group from the viewpoint that steric hindrance is difficult when molecules are stacked and lyotropic liquid crystallinity is easily exhibited. Preferably there is.
The combination of R N11 and R N12 is not particularly limited, but one of R N11 and R N12 is preferably a hydrogen atom from the viewpoint of easily exhibiting lyotropic liquid crystallinity.
In particular, it is preferable that RN11 and RN12 are hydrogen atoms from the viewpoint that the composition for an anisotropic dye film easily exhibits lyotropic liquid crystal properties at a relatively low concentration and is excellent in process suitability.
<b及びd>
 bは0~3の整数を表す。これらの中でも1又は2であることが、式(I)で表されるアゾ色素が水溶性を示しやすく、分子間での塩を介した相互作用により、会合体を形成しやすい傾向にあるため好ましい。
 dは0又は1を表す。これらの中でも1であることが、式(I)で表されるアゾ色素が可視域(380nm~780nm)の長波長まで吸収を有する色素となり、得られた異方性色素膜が黒色に近くなる傾向にあるため好ましい。
 式(II)において、-NRN11N12で表されるアミノ基は、α位又はβ位に置換する。この位置に置換することで分子間相互作用に寄与しやすい傾向にある。
 また、特に限定されないが、-SOH及び-NRN11N12が分子間相互作用に寄与しやすい点で、水酸基が置換した位置を1位、アゾ基が置換した位置を2位とすると、5,6,7,8位のいずれかに-SOH又は-NRN11N12が少なくとも1つ置換していることが好ましく、6,7位のいずれかに少なくとも1つ置換していることがさらに好ましい。
<B and d>
b represents an integer of 0 to 3. Among these, 1 or 2 is because the azo dye represented by the formula (I) tends to exhibit water solubility and tends to form an aggregate due to an intermolecular salt-mediated interaction. preferable.
d represents 0 or 1; Among these, 1 is the azo dye represented by formula (I) becomes a dye having absorption up to a long wavelength in the visible region (380 nm to 780 nm), and the obtained anisotropic dye film becomes nearly black. It is preferable because of its tendency.
In the formula (II), the amino group represented by —NR N11 R N12 is substituted at the α-position or the β-position. Substitution at this position tends to contribute to the intermolecular interaction.
Although not particularly limited, when —SO 3 H and —NR N11 R N12 are likely to contribute to the intermolecular interaction, the position where the hydroxyl group is substituted is the 1st position, and the position where the azo group is substituted is the 2nd position. It is preferable that at least one of —SO 3 H or —NR N11 R N12 is substituted at any of the 5, 6, 7, and 8 positions, and at least one is substituted at any of the 6, 7 positions. Is more preferable.
 前記の中でも、Ar14は式(VI)で表されるものであることが分子間相互作用に寄与しやすく、得られた異方性色素膜が黒色に近くなる傾向にあるため特に好ましい。 Among these, Ar 14 is particularly preferably represented by the formula (VI) because it tends to contribute to the intermolecular interaction and the obtained anisotropic dye film tends to be black.
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
[式(VI)において、g及びhはそれぞれ独立に、0又は1を表す。なお、式(VI)におけるd、RN11及びRN12は、式(II)のd、RN11及びRN12とそれぞれ同義である。] [In Formula (VI), g and h represent 0 or 1 each independently. Incidentally, d in the formula (VI), R N11 and R N12 are each synonymous d of Formula (II), and R N11 and R N12. ]
(g及びh)
 g及びhはそれぞれ独立に、0又は1を表す。好ましくはg及びhの和が、1又は2である。
(G and h)
g and h each independently represents 0 or 1; Preferably the sum of g and h is 1 or 2.
<Ar11、Ar12、Ar13及びAr14の好ましい組み合わせ>
 Ar11、Ar12、Ar13及びAr14の組み合わせは特に限定されないが、Ar11が置換基として電子求引基を少なくとも1つ有する、フェニル基又はナフチル基であり、Ar12及び/又はAr13が、置換基を有していてもよい1,4-フェニレン基、置換基を有していてもよい1,4-ナフチレン基、及び、単環又は2環性の置換基を有していてもよい芳香族複素環基からなる群より選択されるものであり、Ar14が式(VI)で表されるものであることが好ましい。特に、カラム形成(πスタッキング)の観点から、Ar12及び/又はAr13が、置換基を有していてもよい1,4-ナフチレン基又は2環性の置換基を有していてもよい芳香族複素環基が好ましく、Ar13が置換基を有していてもよい1,4-ナフチレン基又は2環性の置換基を有していてもよい芳香族複素環基であることがさらに好ましい。
 Ar11のフェニル基又はナフチル基が有する電子求引基は、非イオン性又はイオン性のどちらでもよい。イオン性の電子求引基である場合は、アゾ色素の分子間で、酸・塩基の結合や水素結合により、分子間で強く引き合い、分子同士が会合状態を作りやすい性質が生じる。
 一方で、非イオン性の電子求引基である場合は、水で電荷分離しない傾向にある。従って、式(I)で表されるアゾ色素を、例えば溶剤を水とする異方性色素膜用組成物に用いた場合に、イオン性の場合に比べて、式(I)の色素と溶剤との相互作用が小さい、即ち、疎水性相互作用が強く、分子間でより強く引き合い、分子同士が積層状態を作りやすい性質が生じる。
 電子求引基は、非イオン性又はイオン性のどちらでもよいが、非イオン性であることが芳香環同士の相互作用がより強い点で積層が強く起こる点で好ましい。
<Preferable combinations of Ar 11 , Ar 12 , Ar 13 and Ar 14 >
The combination of Ar 11 , Ar 12 , Ar 13 and Ar 14 is not particularly limited, but Ar 11 is a phenyl group or a naphthyl group having at least one electron-withdrawing group as a substituent, and Ar 12 and / or Ar 13 Have a 1,4-phenylene group which may have a substituent, a 1,4-naphthylene group which may have a substituent, and a monocyclic or bicyclic substituent. It is preferably selected from the group consisting of aromatic heterocyclic groups, and Ar 14 is preferably represented by the formula (VI). In particular, from the viewpoint of column formation (π stacking), Ar 12 and / or Ar 13 may have a 1,4-naphthylene group which may have a substituent or a bicyclic substituent. An aromatic heterocyclic group is preferable, and Ar 13 is a 1,4-naphthylene group which may have a substituent or an aromatic heterocyclic group which may have a bicyclic substituent. preferable.
The electron withdrawing group which the phenyl group or naphthyl group of Ar 11 has may be either nonionic or ionic. In the case of an ionic electron-withdrawing group, the azo dye has a property of attracting strongly between molecules due to an acid / base bond or a hydrogen bond between the molecules of the azo dye, so that the molecules can easily form an associated state.
On the other hand, in the case of a nonionic electron-withdrawing group, there is a tendency not to separate charges with water. Accordingly, when the azo dye represented by the formula (I) is used in an anisotropic dye film composition containing, for example, water as a solvent, the dye and the solvent represented by the formula (I) are compared with those in the ionic case. Interaction is small, that is, hydrophobic interaction is strong, attracting more strongly between molecules, and molecules tend to form a laminated state.
The electron withdrawing group may be either nonionic or ionic, but it is preferable that the electron withdrawing group is nonionic in that lamination is strongly caused in terms of stronger interaction between aromatic rings.
 これらの組み合わせが好ましい理由は、下記であると推測される。前記のような好ましいAr11、Ar12、Ar13及びAr14の組み合わせを有する式(I)で表されるアゾ色素は、アゾ色素分子末端(Ar11)の、フェニル基又はナフチル基が、置換基として電子求引基を有することにより電子不足な(芳香環上の電子密度が減弱された)状態になっている。一方、これと逆の末端に配置された水酸基が置換したナフチル基(Ar14)は、電子過剰な(ベンゼン環上の電子密度が増強された)状態になっている。このため式(I)で表されるアゾ色素が積層して会合するときは、Ar11の電子不足芳香環とAr14の電子過剰芳香環が分子間で強く引き合い、Ar11の上にAr14が積層するように互い違いに配置されてカラムを形成しやすいものと考えられる。
 さらに、分子中央に配置されたAr12及びAr13の環同士が、1,4-フェニレン基、1,4-ナフチレン基、及び、単環又は2環性の芳香族複素環基からなる群より選択されるものであることにより、分子間でπ-π相互作用を取りやすく、分子同士が会合状態を作りやすい性質を有している。特に、Ar12及び/又はAr13が、1,4-ナフチレン基又は2環性の芳香族複素環基であることで、π平面性が高く、会合性が増すので好ましい。さらに、Ar13が1,4-ナフチレン基または2環性の芳香族複素環基であることで、Ar14のナフタレン環と隣合わせになることから、分子内に大きいπ平面が形成され会合性が増すのでさらに好ましい。
 そのため、式(I)で表されるアゾ色素は、該アゾ色素を含有した組成物中において、リオトロピック液晶のような溶液中での高い会合状態を形成することができる。そして、このアゾ色素を含有した組成物に湿式成膜法特有のプロセス、すなわち、基材表面に塗布等の積層プロセスを適用して得られる異方性色素膜中においても、本発明のアゾ化合物は高い秩序で配列し、高い二色性を示す異方性色素膜を提供することができるものと考えられる。
 また、式(I)で表されるアゾ色素は、前記のようなAr11、Ar12、Ar13及びAr14の組み合わせを取ることにより、可視光波長領域全体に吸収を有し、式(I)で表されるアゾ色素を用いた異方性色素膜は無彩色となる傾向にある。従って、本発明のアゾ色素は高い異方性を有する無彩色の異方性色素膜を形成することが可能である。
 なお、上記の1,4-フェニレン基、1,4-ナフチレン基、及び、単環又は2環性の芳香族複素環基はそれぞれ置換基を有していてもよく、有していてもよい置換基は前記の通りある。
The reason why these combinations are preferable is assumed as follows. In the azo dye represented by the formula (I) having a preferable combination of Ar 11 , Ar 12 , Ar 13 and Ar 14 as described above, the phenyl group or naphthyl group at the terminal of the azo dye molecule (Ar 11 ) is substituted. By having an electron withdrawing group as a group, it is in an electron-deficient state (electron density on the aromatic ring is attenuated). On the other hand, the naphthyl group (Ar 14 ) substituted with a hydroxyl group located at the terminal opposite to this is in an electron-excess state (electron density on the benzene ring is enhanced). Therefore when the azo dye represented by formula (I) are associated with laminated, strong inquiries electron-rich the aromatic ring of an electron-deficient aromatic ring and Ar 14 in the Ar 11 are between the molecules, Ar 14 on the Ar 11 It is considered that the columns are easily arranged so as to be stacked to form a column.
Further, the Ar 12 and Ar 13 rings arranged in the center of the molecule are each composed of a 1,4-phenylene group, a 1,4-naphthylene group, and a monocyclic or bicyclic aromatic heterocyclic group. By being selected, it has the property that it is easy for π-π interaction to occur between molecules, and the molecules tend to form an associated state. In particular, Ar 12 and / or Ar 13 is preferably a 1,4-naphthylene group or a bicyclic aromatic heterocyclic group, since it has high π planarity and increased association. Furthermore, since Ar 13 is a 1,4-naphthylene group or a bicyclic aromatic heterocyclic group, it is adjacent to the Na 14 ring of Ar 14 , so that a large π plane is formed in the molecule and the associative property is increased. It is more preferable because it increases.
Therefore, the azo dye represented by the formula (I) can form a high association state in a solution such as a lyotropic liquid crystal in a composition containing the azo dye. The azo compound of the present invention is also used in an anisotropic dye film obtained by applying a process specific to the wet film-forming method to the composition containing the azo dye, that is, a lamination process such as coating on the substrate surface. Is considered to be able to provide an anisotropic dye film which is arranged in high order and exhibits high dichroism.
Further, the azo dye represented by the formula (I) has absorption in the entire visible light wavelength region by taking the combination of Ar 11 , Ar 12 , Ar 13 and Ar 14 as described above, and the formula (I The anisotropic dye film using the azo dye represented by) tends to be achromatic. Therefore, the azo dye of the present invention can form an achromatic anisotropic dye film having high anisotropy.
The 1,4-phenylene group, 1,4-naphthylene group, and monocyclic or bicyclic aromatic heterocyclic group may each have a substituent or may have a substituent. The substituents are as described above.
<式(I)で表されるアゾ色素の具体例>
 遊離酸の形が式(I)で表されるアゾ色素の具体例としては、例えば、以下に記載の色素が挙げられるが、これらに限定されるものではない。
<Specific Examples of Azo Dye Represented by Formula (I)>
Specific examples of the azo dye whose free acid form is represented by the formula (I) include, but are not limited to, the dyes described below.
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
<<遊離酸の形が式(III)で表されるアゾ色素>> << Azo Dye with Free Acid Form Represented by Formula (III) >>
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
[式(III)において、Ar21は、置換基を有していてもよい芳香族炭化水素基又は置換基を有していてもよい芳香族複素環基を表し、Ar22は、電子供与基を有していてもよい1,4-フェニレン基、置換基を有していてもよい1,4-ナフチレン基又は置換基を有していてもよい芳香族複素環基を表し、Ar23は、式(IV)で表される基を表す。] [In the formula (III), Ar 21 represents an optionally substituted aromatic hydrocarbon group or an optionally substituted aromatic heterocyclic group, and Ar 22 represents an electron donating group. Represents an optionally substituted 1,4-phenylene group, an optionally substituted 1,4-naphthylene group or an optionally substituted aromatic heterocyclic group, and Ar 23 represents Represents a group represented by formula (IV). ]
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
[式(IV)において、RN21及びRN22は、それぞれ独立に、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいフェニル基又は置換基を有していてもよいアシル基を表し、eは0~3の整数を表し、fは0又は1を表す。なお、-NRN21N22で表されるアミノ基は、α位又はβ位に置換する。] [In Formula (IV), R N21 and R N22 each independently have a hydrogen atom, an alkyl group that may have a substituent, a phenyl group that may have a substituent, or a substituent. And e represents an integer of 0 to 3, and f represents 0 or 1. The amino group represented by —NR N21 R N22 is substituted at the α-position or β-position. ]
<Ar21
 Ar21は、置換基を有していてもよい芳香族炭化水素基又は置換基を有していてもよい芳香族複素環基を表す。Ar21は、式(I)のAr11と同義であり、好ましい範囲及び有していてもよい置換基も同義である。
<Ar 21 >
Ar 21 represents an aromatic hydrocarbon group which may have a substituent or an aromatic heterocyclic group which may have a substituent. Ar < 21 > is synonymous with Ar < 11 > of a formula (I), and the preferable range and the substituent which you may have are also synonymous.
<Ar22
 Ar22は、電子供与基を有していてもよい1,4-フェニレン基、置換基を有していてもよい1,4-ナフタレン基又は置換基を有していてもよい芳香族複素環基を表す。Ar22の電子供与基を有していてもよい1,4-フェニレン基、置換基を有していてもよい1,4-ナフタレン基及び置換基を有していてもよい芳香族複素環基は、式(I)のAr12で挙げた電子供与基を有していてもよい1,4-フェニレン基、置換基を有していてもよい1,4-ナフタレン基及び置換基を有していてもよい芳香族複素環基とそれぞれ同義であり、好ましい範囲及び有していてもよい置換基もそれぞれ同義である。
<Ar 22 >
Ar 22 is a 1,4-phenylene group optionally having an electron donating group, a 1,4-naphthalene group optionally having a substituent, or an aromatic heterocyclic ring optionally having a substituent. Represents a group. Ar 22 may have a 1,4-phenylene group optionally having an electron donating group, a 1,4-naphthalene group optionally having a substituent, and an aromatic heterocyclic group optionally having a substituent Has a 1,4-phenylene group which may have an electron-donating group mentioned as Ar 12 in the formula (I), a 1,4-naphthalene group which may have a substituent, and a substituent. It is synonymous with the aromatic heterocyclic group that may be present, and the preferred range and the substituent that may be present are also synonymous.
<Ar23
 Ar23は、前記式(IV)で表される。
<RN21及びRN22
 RN21及びRN22は、それぞれ独立に、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいフェニル基又は置換基を有していてもよいアシル基を表す。RN21及びRN22は、式(I)のRN11及びRN12とそれぞれ同義であり、有していてもよい置換基及び好ましい範囲もそれぞれ同義である。また、RN21及びRN22の好ましい組み合わせも式(I)のRN11及びRN12と同義である。
<Ar 23 >
Ar 23 is represented by the formula (IV).
< RN21 and RN22 >
R N21 and R N22 each independently represent a hydrogen atom, an alkyl group that may have a substituent, a phenyl group that may have a substituent, or an acyl group that may have a substituent. To express. R N21 and R N22 have the same meanings as R N11 and R N12 in formula (I), respectively, and the substituents and preferred ranges that may be included are also the same. A preferred combination of R N21 and R N22 is also synonymous with R N11 and R N12 in formula (I).
<e及びf>
 eは0~3の整数を表す。eは式(II)のbと同義であり、好ましい範囲も同義である。
 fは0又は1を表す。fは式(II)のdと同義であり、好ましい範囲も同義である。
 式(IV)において、-NRN21N22で表されるアミノ基は、α位又はβ位に置換する。この位置に置換することで分子間相互作用に寄与しやすい傾向にある。
 また、特に限定されないが、-SOH及び-NRN21N22が分子間相互作用に寄与しやすい点で、水酸基が置換した位置を1位、アゾ基が置換した位置を2位とすると、5,6,7,8位のいずれかに-SOH又は-NRN21N22が少なくとも1つ置換していることが好ましく、6,7位のいずれかに少なくとも1つ置換していることがさらに好ましい。
<E and f>
e represents an integer of 0 to 3. e is synonymous with b of Formula (II), and its preferable range is also synonymous.
f represents 0 or 1; f has the same meaning as d in formula (II), and the preferred range is also the same.
In formula (IV), the amino group represented by —NR N21 R N22 is substituted at the α-position or β-position. Substitution at this position tends to contribute to the intermolecular interaction.
Although not particularly limited, when —SO 3 H and —NR N21 R N22 are likely to contribute to the intermolecular interaction, the position where the hydroxyl group is substituted is the 1st position, and the position where the azo group is substituted is the 2nd position. It is preferable that at least one of —SO 3 H or —NR N21 R N22 is substituted at any of the 5, 6, 7, and 8 positions, and at least one is substituted at any of the 6, 7 positions. Is more preferable.
 前記の中でも、Ar23は式(VII)で表されることが分子間相互作用に寄与しやすく、得られた異方性色素膜が黒色に近くなる傾向にあるため特に好ましい。 Among these, Ar 23 is particularly preferably represented by the formula (VII) because it tends to contribute to the intermolecular interaction and the obtained anisotropic dye film tends to be black.
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
[式(VII)において、i及びjはそれぞれ独立に、0又は1を表す。なお、式(VII)におけるf、RN21及びRN22は、式(IV)のf、RN21及びRN22とそれぞれ同義である。] [In Formula (VII), i and j each independently represents 0 or 1. Incidentally, f in formula (VII), R N21 and R N22 are each synonymous f of Formula (IV), and R N21 and R N22. ]
(i及びj)
 i及びjはそれぞれ独立に、0又は1を表す。好ましくはi及びjの和が、1又は2である。
(I and j)
i and j each independently represents 0 or 1. Preferably, the sum of i and j is 1 or 2.
<Ar21、Ar22及びAr23の好ましい組み合わせ>
 Ar21、Ar22及びAr23の好ましい組み合わせは特に限定されない。Ar21、Ar22及びAr23の組み合わせは、Ar21が置換基を有していてもよいフェニル基又は置換基を有していてもよいナフチル基であり、Ar22が電子供与基を有していてもよい1,4-フェニレン基、置換基を有していてもよい1,4-ナフチレン基及び、単環又は2環性の置換基を有していてもよい芳香族複素環基からなる群より選択されるものであり、Ar23が式(VII)で表されるものであることが好ましい。
 特に、Ar22はカラム形成(πスタッキング)の観点から、置換基を有していてもよい1,4-ナフチレン基又は2環性の置換基を有していてもよい芳香族複素環基が好ましい。さらに、Ar21が置換基として電子求引基を少なくとも1つ有する、フェニル基又はナフチル基であることが好ましい。
 Ar21のフェニル基又はナフチル基が有する電子求引基は、非イオン性又はイオン性のどちらでもよい。イオン性の電子求引基である場合は、アゾ色素の分子間で、酸・塩基の結合や水素結合により、分子間で強く引き合い、分子同士が会合状態を作りやすい性質が生じる。
 一方で、非イオン性の電子求引基である場合は、水で電荷分離しない傾向にある。従って、式(III)で表されるアゾ色素を、例えば溶剤を水とする異方性色素膜用組成物に用いた場合に、イオン性の場合に比べて、式(III)の色素と溶剤との相互作用が小さい、即ち、疎水性相互作用が強く、分子間でより強く引き合い、分子同士が積層状態を作りやすい性質が生じる。
 電子求引基は、非イオン性又はイオン性のどちらでもよいが、非イオン性であることが芳香環同士の相互作用がより強い点で積層が強く起こる点で好ましい。
 前記のような好ましいAr21、Ar22及びAr23の組み合わせを有する式(III)で表されるアゾ色素のAr21の環が、式(I)のAr14に配置された水酸基およびアミノ基が置換した電子過剰なナフチル基との間で、分子間で強く引き合い、分子同士が会合状態を作ることが期待される。さらに、Ar22が、電子供与基を有していてもよい、1,4-フェニレン基又は1,4-ナフチレン基であることにより、式(I)の分子中央に配置されたAr12及び/又はAr13の環とも、分子間でπ-π相互作用を取りやすく、分子同士が会合状態を作りやすい性質を有している。また、Ar23が式(VII)で表されるものであることで、式(I)のAr11との相互作用も期待され、前記のような粘度低下効果を得ることができる。
 なお、フェニル基、ナフチル基、1,4-フェニレン基、1,4-ナフチレン基及び、単環又は2環性の芳香族複素環は、それぞれ置換基を有していてもよく、有していてもよい置換基は前記の通りある。
<Preferable combination of Ar 21 , Ar 22 and Ar 23 >
A preferred combination of Ar 21 , Ar 22 and Ar 23 is not particularly limited. The combination of Ar 21 , Ar 22 and Ar 23 is a phenyl group which Ar 21 may have a substituent or a naphthyl group which may have a substituent, and Ar 22 has an electron donating group. An optionally substituted 1,4-phenylene group, an optionally substituted 1,4-naphthylene group, and a monocyclic or bicyclic substituent optionally substituted aromatic heterocyclic group It is preferable that Ar 23 is represented by the formula (VII).
In particular, from the viewpoint of column formation (π stacking), Ar 22 is a 1,4-naphthylene group which may have a substituent or an aromatic heterocyclic group which may have a bicyclic substituent. preferable. Furthermore, Ar 21 is preferably a phenyl group or a naphthyl group having at least one electron withdrawing group as a substituent.
The electron withdrawing group of the phenyl group or naphthyl group of Ar 21 may be either nonionic or ionic. In the case of an ionic electron-withdrawing group, the azo dye has a property of attracting strongly between molecules due to an acid / base bond or a hydrogen bond between the molecules of the azo dye, so that the molecules can easily form an associated state.
On the other hand, in the case of a nonionic electron-withdrawing group, there is a tendency not to separate charges with water. Accordingly, when the azo dye represented by the formula (III) is used in an anisotropic dye film composition containing, for example, water as a solvent, the dye and the solvent of the formula (III) are compared with those in the ionic case. Interaction is small, that is, hydrophobic interaction is strong, attracting more strongly between molecules, and molecules tend to form a laminated state.
The electron withdrawing group may be either nonionic or ionic, but it is preferable that the electron withdrawing group is nonionic in that lamination is strongly caused in terms of stronger interaction between aromatic rings.
The ring of Ar 21 of the azo dye represented by the formula (III) having a combination of Ar 21 , Ar 22 and Ar 23 as described above has a hydroxyl group and an amino group arranged at Ar 14 of the formula (I). It is expected that molecules with each other are strongly attracted with the substituted electron-rich naphthyl group to form an associated state. Further, Ar 22 is a 1,4-phenylene group or a 1,4-naphthylene group, which may have an electron donating group, whereby Ar 12 and / or Alternatively, the Ar 13 ring has a property that it is easy to take a π-π interaction between molecules and to easily form an association state between molecules. Moreover, since Ar 23 is represented by the formula (VII), interaction with Ar 11 of the formula (I) is also expected, and the above-described viscosity reduction effect can be obtained.
The phenyl group, naphthyl group, 1,4-phenylene group, 1,4-naphthylene group, and monocyclic or bicyclic aromatic heterocyclic ring each may have a substituent. The optional substituents are as described above.
<遊離酸の形が式(III)で表されるアゾ色素の具体例>
 遊離酸の形が式(III)で表されるアゾ色素の具体例としては、以下に記載の色素が挙げられるが、これらに限定されるものではない。
<Specific Example of Azo Dye with Free Acid Form Represented by Formula (III)>
Specific examples of the azo dye in which the form of the free acid is represented by the formula (III) include, but are not limited to, the dyes described below.
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000043
<<遊離酸の形が式(I)で表されるアゾ色素及び遊離酸の形が式(III)で表されるアゾ色素の組み合わせ>>
 本発明において、遊離酸の形が式(I)及び式(III)で表されるアゾ色素の組合せは特に限定されない。
 式(I)のAr11~Ar14から選択される少なくとも1つの構造から有していてもよい置換基を除いた構造が、式(III)のAr21~Ar23から選択される少なくとも1つの構造から有していてもよい置換基を除いた構造と同一であることが好ましい。例えば、Ar11がシアノ基を有するナフタレン環である場合、式(I)のAr11の構造から有していてもよい置換基を除いた構造はナフタレン環となる。また、Ar22がスルホ基を有するナフタレン環である場合、式(III)のAr22の構造から有していてもよい置換基を除いた構造はナフタレン環となる。この場合、式(I)のAr11~Ar14から選択される少なくとも1つの構造から有していてもよい置換基を除いた構造が、式(III)のAr21~Ar23から選択される少なくとも1つの構造から有していてもよい置換基を除いた構造と同一となる。
 さらに、Ar11~Ar14から選択される少なくとも2つの構造から有していてもよい置換基を除いた構造が、式(III)のAr21~Ar23から選択される少なくとも2つの構造から有していてもよい置換基を除いた構造とそれぞれ同一であることが好ましく、Ar11~Ar14から選択される少なくとも3つの構造から有していてもよい置換基を除いた構造が、式(III)のAr21~Ar23の構造から有していてもよい置換基を除いた構造とそれぞれ同一であることが好ましい。なお、Ar11~Ar14から選択される、有していてもよい置換基を除いた構造は、同一でも異なっていてもよい。同様に、Ar21~Ar23から選択される、有していてもよい置換基を除いた構造は、同一でも異なっていてもよい。
 また、式(I)のAr11~Ar13から選択される少なくとも1つの構造から有していてもよい置換基を除いた構造が、式(III)のAr21及び/又はAr22の構造から有していてもよい置換基を除いた構造と同一であることが好ましい。さらに、式(I)のAr11~Ar13から選択される少なくとも2つの構造から有していてもよい置換基を除いた構造が、式(III)のAr21及び/又はAr22の構造から有していてもよい置換基を除いた構造と同一であることが好ましく、式(I)のAr11~Ar13の構造から有していてもよい置換基を除いた構造が、式(III)のAr21及び/又はAr22の構造から有していてもよい置換基を除いた構造と同一であることが好ましい。
<< A combination of an azo dye whose free acid form is represented by formula (I) and an azo dye whose free acid form is represented by formula (III) >>
In the present invention, the combination of the azo dyes whose free acid forms are represented by the formulas (I) and (III) is not particularly limited.
At least one structure selected from Ar 21 to Ar 23 in the formula (III) is obtained by removing a substituent that may be present from at least one structure selected from Ar 11 to Ar 14 in the formula (I). The structure is preferably the same as the structure excluding the substituent which may be included in the structure. For example, when Ar 11 is a naphthalene ring having a cyano group, the structure excluding the substituent that may be present from the structure of Ar 11 in formula (I) is a naphthalene ring. Further, when Ar 22 is a naphthalene ring having a sulfo group, the structure excluding the substituent which may be present from the structure of Ar 22 in formula (III) is a naphthalene ring. In this case, the structure excluding the substituent which may be present from at least one structure selected from Ar 11 to Ar 14 in the formula (I) is selected from Ar 21 to Ar 23 in the formula (III). It is the same as the structure excluding the substituent that may be present from at least one structure.
Further, the structure excluding the substituent which may be present from at least two structures selected from Ar 11 to Ar 14 is present from at least two structures selected from Ar 21 to Ar 23 in the formula (III). It is preferable that the structure is the same as that except for the substituents that may be present, and the structure excluding the substituents that may be present from at least three structures selected from Ar 11 to Ar 14 is represented by the formula ( It is preferable that each of the structures of Ar 21 to Ar 23 in III) is the same as the structure excluding the substituent which may be included. Note that the structures selected from Ar 11 to Ar 14 except for the substituents that may be present may be the same or different. Similarly, the structures selected from Ar 21 to Ar 23 except for the substituents that may be present may be the same or different.
Further, the structure excluding the substituent which may be present from at least one structure selected from Ar 11 to Ar 13 of formula (I) is derived from the structure of Ar 21 and / or Ar 22 of formula (III). The structure is preferably the same as the structure excluding the substituent that may have. Furthermore, the structure excluding the substituent which may be present from at least two structures selected from Ar 11 to Ar 13 of formula (I) is derived from the structure of Ar 21 and / or Ar 22 of formula (III). It is preferably the same as the structure excluding the substituent which may be present, and the structure excluding the substituent which may be present from the structure of Ar 11 to Ar 13 in the formula (I) is represented by the formula (III It is preferable that it is the same as the structure except the substituent which you may have from the structure of Ar 21 and / or Ar 22 .
 上記構造の組合せは、有していてもよい置換基の群も同一であることが好ましく、有していてもよい置換基が同一であることが更に好ましい。また、有していてもよい置換基の群及び/又は有していてもよい置換基の置換位置が同一であることが好ましい。
 また、アゾ結合との結合位置も同一であることが好ましい。
 なお、置換基の群とは、前記の親水性基、電子供与基、電子求引基、イオン性、非イオン性、水素結合性官能基、強い双極子を持つ官能基等の置換基の性質で分類した群を表す。
 上記のように、有していてもよい置換基を除く構造、有していてもよい置換基の群、有していてもよい置換基、有していてもよい置換基の群及び/又は有していてもよい置換基の置換位置が同一であることで、式(I)の化合物と式(III)の化合物のπ-πスタッキングや置換基同士の水素結合等の分子間相互作用が起こりやすく、式(I)が形成するカラム状の会合体や、カラム集合体の構造を大きく変更しないで、カラム間相互作用を変化させる効果が得られる傾向にある。
In the combination of the above structures, the group of substituents that may be present is preferably the same, and the substituents that may be possessed are more preferably the same. Moreover, it is preferable that the substitution position of the group of the substituent which may have and / or the substituent which may have is the same.
Further, the bonding position with the azo bond is preferably the same.
The group of substituents refers to the properties of the substituents such as the hydrophilic groups, electron donating groups, electron withdrawing groups, ionic, nonionic, hydrogen bonding functional groups, and functional groups having strong dipoles. Represents a group classified by.
As described above, the structure excluding the substituent that may be present, the group of substituents that may be present, the substituent that may be present, the group of substituents that may be present, and / or Since the substitution positions of the substituents that may be present are the same, intermolecular interactions such as π-π stacking and hydrogen bonding between substituents of the compound of formula (I) and the compound of formula (III) It tends to occur, and there is a tendency that an effect of changing the interaction between columns tends to be obtained without greatly changing the structure of the column-like aggregate formed by the formula (I) or the structure of the column aggregate.
 一方、Ar11及びAr21の組合せ、Ar12及びAr22の組合せ、並びにAr13及びAr22の組合せからなる群から選択される少なくとも1つの組合せが、有していてもよい置換基を除いた構造が同一であることが好ましい。それにより、式(I)の化合物と式(III)の化合物のπ-πスタッキングや置換基同士の水素結合等の分子間相互作用が起こりやすく、式(I)が形成するカラム状の会合体や、カラム集合体の構造を大きく変更しないで、カラム間相互作用を変化させる効果がある。さらに、上記の組合せは、有していてもよい置換基の群も同一であることが好ましく、有していてもよい置換基が同一であることが更に好ましい。
 遊離酸の形が式(I)及び式(III)で表されるアゾ色素の組み合わせが、上記であることで、式(I)と式(III)で表されるアゾ色素の分子間相互作用し易くなる。つまり、式(I)で表されるアゾ色素のカラム間相互作用を変化させ、秩序性を下げることができ、異方性色素膜用組成物の粘度を低くできる傾向にある。
On the other hand, at least one combination selected from the group consisting of a combination of Ar 11 and Ar 21, a combination of Ar 12 and Ar 22, and a combination of Ar 13 and Ar 22 excludes the substituents that may be present. The structures are preferably the same. As a result, intermolecular interactions such as π-π stacking and hydrogen bonding between substituents of the compound of formula (I) and the compound of formula (III) are likely to occur, and the columnar aggregate formed by formula (I) In addition, there is an effect of changing the interaction between columns without greatly changing the structure of the column aggregate. Further, in the above combination, the group of substituents that may be present is preferably the same, and the substituents that may be possessed are more preferably the same.
The combination of the azo dyes represented by the formulas (I) and (III) in the form of the free acid is as described above, so that the intermolecular interaction of the azo dyes represented by the formula (I) and the formula (III) It becomes easy to do. That is, the interaction between the columns of the azo dye represented by the formula (I) can be changed, the ordering can be lowered, and the viscosity of the anisotropic dye film composition tends to be lowered.
 具体的な組み合わせは特に限定されないが、上記のAr11~Ar14で挙げた具体例及び好ましい基と上記のAr21~Ar23で挙げた具体例及び好ましい基をそれぞれ適宜組み合わせることができる。
 これらの中でも、特に下記に挙げるAr11~Ar14及びAr21~Ar23の各基をそれぞれ組合せることが好ましい。これらの組合せであることで、式(I)の化合物と式(III)の化合物のπ-πスタッキングや置換基同士の水素結合等の分子間相互作用が起こりやすく、式(I)が形成するカラム状の会合体や、カラム集合体の構造を大きく変更しないで、カラム間相互作用を変化させる効果が得られる傾向にある。
Ar11が置換基として電子求引基を少なくとも1つ有する、フェニル基又はナフチル基、
Ar12及び/又はAr13が、置換基を有していてもよい1,4-フェニレン基、置換基を有していてもよい1,4-ナフチレン基及び単環又は2環性の置換基を有していてもよい芳香族複素環基からなる群より選択されるもの、
Ar14が式(VI)で表されるもの、Ar21が置換基を有していてもよいフェニル基又は置換基を有していてもよいナフチル基、
Ar22が電子供与基を有していてもよい1,4-フェニレン基、置換基を有していてもよい1,4-ナフチレン基及び単環又は2環性の置換基を有していてもよい芳香族複素環基からなる群より選択されるもの、
Ar23が式(VII)で表されるもの。
Specific combinations are not particularly limited, but the specific examples and preferred groups given for Ar 11 to Ar 14 and the specific examples and preferred groups given for Ar 21 to Ar 23 can be appropriately combined.
Among these, it is particularly preferable to combine the following groups of Ar 11 to Ar 14 and Ar 21 to Ar 23 , respectively. With these combinations, intermolecular interactions such as π-π stacking and hydrogen bonding between substituents of the compound of formula (I) and the compound of formula (III) are likely to occur, and formula (I) is formed. There is a tendency to obtain an effect of changing the interaction between columns without greatly changing the structure of the column-like aggregates or the column aggregates.
Ar 11 has at least one electron-withdrawing group as a substituent, a phenyl group or a naphthyl group,
Ar 12 and / or Ar 13 may have a substituent, a 1,4-phenylene group, a substituent, a 1,4-naphthylene group and a monocyclic or bicyclic substituent Selected from the group consisting of aromatic heterocyclic groups optionally having
Ar 14 is represented by the formula (VI), Ar 21 may have a phenyl group which may have a substituent or a naphthyl group which may have a substituent,
Ar 22 has a 1,4-phenylene group which may have an electron donating group, a 1,4-naphthylene group which may have a substituent, and a monocyclic or bicyclic substituent. Selected from the group consisting of good aromatic heterocyclic groups,
Ar 23 is represented by the formula (VII).
<遊離酸の形が式(I)で表されるアゾ色素、及び遊離酸の形が式(III)で表されるアゾ色素の質量分率> 
 本発明の異方性色素膜用組成物中の遊離酸の形が式(I)で表されるアゾ色素、及び遊離酸の形が式(III)で表されるアゾ色素の質量比は、特に限定されない。式(I)で表されるアゾ色素に対する式(III)で表されるアゾ色素の質量が、0.0001質量%以上であることが好ましく、0.001質量%以上であることがさらに好ましく、0.01質量%以上であることが特に好ましく、0.1質量%以上であることが最も好ましい。また、25質量%以下であることが好ましく、10質量%以下であることがより好ましく、5質量%以下であることがさらに好ましく、3.25質量%以下であることがよりさらに好ましく、3質量%以下であることがことさらに好ましく、2.75質量%以下であることが特に好ましく、2.5質量%以下であることがより特に好ましく、2.0質量%以下であることが最も好ましい。遊離酸の形が式(I)で表されるアゾ色素、及び遊離酸の形が式(III)で表されるアゾ色素の質量比が適当な範囲にあることで、プロセス適性を向上させつつも式(I)の色素自体の会合性を阻害せず、色素が良好に配向した異方性色素膜を得ることができる傾向にある。
<Mass fraction of azo dye whose free acid form is represented by formula (I) and azo dye whose free acid form is represented by formula (III)>
The mass ratio of the azo dye in which the form of the free acid in the composition for anisotropic dye film of the present invention is represented by formula (I) and the azo dye in which the form of the free acid is represented by formula (III) is: There is no particular limitation. The mass of the azo dye represented by the formula (III) with respect to the azo dye represented by the formula (I) is preferably 0.0001% by mass or more, more preferably 0.001% by mass or more, It is particularly preferably 0.01% by mass or more, and most preferably 0.1% by mass or more. Further, it is preferably 25% by mass or less, more preferably 10% by mass or less, further preferably 5% by mass or less, still more preferably 3.25% by mass or less, and 3% by mass. % Or less, more preferably 2.75% by mass or less, particularly preferably 2.5% by mass or less, and most preferably 2.0% by mass or less. While the mass ratio of the azo dye whose free acid form is represented by formula (I) and the azo dye whose free acid form is represented by formula (III) is in an appropriate range, the process suitability is improved. However, the associative property of the dye of formula (I) itself is not inhibited, and an anisotropic dye film in which the dye is well oriented tends to be obtained.
<<その他の色素>>
 本発明の異方性色素膜用組成物は、本発明の効果を損なわない範囲であれば、遊離酸の形が式(I)で表されるアゾ色素、及び遊離酸の形が式(III)で表されるアゾ色素以外の色素を有していてもよい。例えば、日本国特開2007-126628号公報に配合用の色素として例示の色素、日本国特開2007-199333号公報に記載のアントラキノン化合物、下記に示す遊離酸の形が式(V)で表されるアゾ色素等が挙げられる。
<< Other dyes >>
As long as the composition for anisotropic dye film of the present invention is within the range not impairing the effects of the present invention, the azo dye whose free acid form is represented by formula (I) and the free acid form is represented by formula (III) It may have a dye other than the azo dye represented by For example, a dye exemplified as a dye for blending in Japanese Patent Application Laid-Open No. 2007-126628, an anthraquinone compound described in Japanese Patent Application Laid-Open No. 2007-199333, and the form of the free acid shown below is represented by Formula (V). Azo dyes to be used.
<<遊離酸の形が式(V)で表されるアゾ色素>> << Azo Dye with Free Acid Form Represented by Formula (V) >>
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000044
[式(V)において、Ar31、Ar32及びAr33は、それぞれ独立に、置換基を有していてもよい芳香族炭化水素基又は置換基を有していてもよい芳香族複素環基を表し、R34は、水素原子、水酸基、アミノ基又はアシルアミノ基を表す。] [In Formula (V), Ar 31 , Ar 32 and Ar 33 are each independently an aromatic hydrocarbon group which may have a substituent or an aromatic heterocyclic group which may have a substituent. R 34 represents a hydrogen atom, a hydroxyl group, an amino group or an acylamino group. ]
<Ar31
 Ar31は、置換基を有していてもよい芳香族炭化水素基又は置換基を有していてもよい芳香族複素環基を表す。Ar31は、式(I)のAr11で挙げた、置換基を有していてもよい芳香族炭化水素基又は置換基を有していてもよい芳香族複素環基と同義であり、好ましい範囲及び有していてもよい置換基も同義である。
<Ar 31 >
Ar 31 represents an aromatic hydrocarbon group which may have a substituent or an aromatic heterocyclic group which may have a substituent. Ar 31 is synonymous with the aromatic hydrocarbon group which may have a substituent or the aromatic heterocyclic group which may have a substituent, which is mentioned as Ar 11 in formula (I), and is preferable. Ranges and substituents that may be present are also synonymous.
<Ar32及びAr33
 Ar32及びAr33は、それぞれ独立に、置換基を有していてもよい芳香族炭化水素基又は置換基を有していてもよい芳香族複素環基を表す。Ar32及びAr33は、式(I)のAr12で挙げた、置換基を有していてもよい芳香族炭化水素基又は置換基を有していてもよい芳香族複素環基と同義であり、好ましい範囲及び有していてもよい置換基もそれぞれ同義である。
<Ar 32 and Ar 33 >
Ar 32 and Ar 33 each independently represent an aromatic hydrocarbon group which may have a substituent or an aromatic heterocyclic group which may have a substituent. Ar 32 and Ar 33 have the same meaning as the aromatic hydrocarbon group which may have a substituent or the aromatic heterocyclic group which may have a substituent, which is exemplified for Ar 12 in the formula (I). The preferred range and the substituents that may be present are also synonymous.
<Ar31、Ar32及びAr33の好ましい組み合わせ>
 Ar31、Ar32及びAr33の好ましい組み合わせは特に限定されない。Ar31が置換基を有していてもよいフェニル基又は置換基を有していてもよいナフチル基であり、Ar32及びAr33が、置換基を有していてもよい1,4-フェニレン基又は置換基を有していてもよい1,4-ナフチレン基であることが好ましい。
 また、Ar31が置換基として電子求引基を少なくとも1つ有する、フェニル基又はナフチル基であること好ましい。また、以下1)~3)を少なくとも1つ満たすことが好ましい。
1)Ar31の構造から有していてもよい置換基を除いた構造が、式(I)のAr11の構造から有していてもよい置換基を除いた構造と同一。
2)Ar32の構造から有していてもよい置換基を除いた構造が、式(I)のAr12の構造から有していてもよい置換基を除いた構造と同一。
3)Ar33の構造から有していてもよい置換基を除いた構造が、式(I)のAr13の構造から有していてもよい置換基を除いた構造と同一。
 上記1)~3)に示した構造の組合せは、有していてもよい置換基の群も同一であることが好ましく、有していてもよい置換基が同一であることが更に好ましい。また、有していてもよい置換基の群及び/又は有していてもよい置換基の置換位置が同一であることが好ましい。
 また、アゾ結合との結合位置も同一であることが好ましい。
 Ar31のフェニル基又はナフチル基が有する電子求引基は、非イオン性又はイオン性のどちらでもよい。イオン性の電子求引基である場合は、アゾ色素の分子間で、酸・塩基の結合や水素結合により、分子間で強く引き合い、分子同士が会合状態を作りやすい性質が生じる。
 一方で、非イオン性の電子求引基である場合は、水で電荷分離しない傾向にある。従って、式(V)で表されるアゾ色素を、例えば溶剤を水とする異方性色素膜用組成物に用いた場合に、イオン性の場合に比べて、式(V)の色素と溶剤との相互作用が小さい、即ち、疎水性相互作用が強く、分子間でより強く引き合い、分子同士が積層状態を作りやすい性質が生じる。
 電子求引基は、非イオン性又はイオン性のどちらでもよいが、非イオン性であることが芳香環同士の相互作用がより強い点で積層が強く起こる点で好ましい。
 前記のような好ましいAr31、Ar32及びAr33の組み合わせを有する式(V)で表されるアゾ色素のAr31の環が、式(I)のAr14に配置された水酸基およびアミノ基が置換した電子過剰なナフチル基との間で、分子間で強く引き合い、分子同士が会合状態を作ることが期待される。さらに、Ar32及びAr33が置換基を有していてもよい1,4-フェニレン基又は置換基を有していてもよい1,4-ナフチレン基であることにより、式(I)の分子中央に配置されたAr12及び/又はAr13の環とも、分子間でπ-π相互作用を取りやすく、分子同士が会合状態を作りやすい性質となる傾向にある。さらに、上記1)~3)の少なくとも1つをみたす場合、式(I)及び(V)で表されるアゾ色素の分子間相互作用が大きく、式(V)で表されるアゾ色素が、式(I)で表されるアゾ色素が形成する分子会合体に取り込まれたり、会合体間に水素結合をもって結合しても会合体の秩序を大きく乱したりしない傾向になる。従って、式(I)で表されるアゾ色素のみで形成される秩序を低次にし、粘度を下げる効果を得ることができると推測される。
 なお、上記フェニル基、ナフチル基、1,4-フェニレン基及び1,4-ナフチレン基は、それぞれ置換基を有していてもよく、有していてもよい置換基は前記の通りである。
<Preferable combination of Ar 31 , Ar 32 and Ar 33 >
A preferred combination of Ar 31 , Ar 32 and Ar 33 is not particularly limited. Ar 31 is an optionally substituted phenyl group or an optionally substituted naphthyl group, and Ar 32 and Ar 33 are optionally substituted 1,4-phenylene A 1,4-naphthylene group which may have a group or a substituent is preferable.
Ar 31 is preferably a phenyl group or a naphthyl group having at least one electron withdrawing group as a substituent. Further, it is preferable to satisfy at least one of the following 1) to 3).
1) The structure excluding the substituent which may be present from the structure of Ar 31 is the same as the structure excluding the substituent which may be present from the structure of Ar 11 in formula (I).
2) The structure excluding the substituent which may be present from the structure of Ar 32 is the same as the structure excluding the substituent which may be present from the structure of Ar 12 in formula (I).
3) The structure excluding the substituent which may be present from the structure of Ar 33 is the same as the structure excluding the substituent which may be possessed from the structure of Ar 13 in formula (I).
In the combination of structures shown in the above 1) to 3), the group of substituents that may be present is preferably the same, and the substituents that may be possessed are more preferably the same. Moreover, it is preferable that the substitution position of the group of the substituent which may have and / or the substituent which may have is the same.
Further, the bonding position with the azo bond is preferably the same.
The electron withdrawing group which the phenyl group or naphthyl group of Ar 31 has may be either nonionic or ionic. In the case of an ionic electron-withdrawing group, the azo dye has a property of attracting strongly between molecules due to an acid / base bond or a hydrogen bond between the molecules of the azo dye, so that the molecules can easily form an associated state.
On the other hand, in the case of a nonionic electron-withdrawing group, there is a tendency not to separate charges with water. Accordingly, when the azo dye represented by the formula (V) is used in an anisotropic dye film composition containing, for example, water as a solvent, the dye and the solvent represented by the formula (V) are compared with those in the ionic case. Interaction is small, that is, hydrophobic interaction is strong, attracting more strongly between molecules, and molecules tend to form a laminated state.
The electron withdrawing group may be either nonionic or ionic, but it is preferable that the electron withdrawing group is nonionic in that lamination is strongly caused in terms of stronger interaction between aromatic rings.
The ring of Ar 31 of the azo dye represented by the formula (V) having a preferable combination of Ar 31 , Ar 32 and Ar 33 as described above has a hydroxyl group and an amino group arranged at Ar 14 of the formula (I). It is expected that molecules with each other are strongly attracted with the substituted electron-rich naphthyl group to form an associated state. Further, Ar 32 and Ar 33 are each a 1,4-phenylene group which may have a substituent or a 1,4-naphthylene group which may have a substituent, whereby a molecule of the formula (I) The ring of Ar 12 and / or Ar 13 arranged in the center also tends to have a property that it is easy to take a π-π interaction between molecules and to form an associated state between molecules. Furthermore, when satisfying at least one of the above 1) to 3), the intermolecular interaction of the azo dyes represented by formulas (I) and (V) is large, and the azo dye represented by formula (V) is: There is a tendency that the azo dye represented by the formula (I) is not taken into the molecular aggregate formed, or the order of the aggregate is not greatly disturbed even if the aggregate is bonded with a hydrogen bond. Therefore, it is presumed that an effect of lowering the order formed only by the azo dye represented by the formula (I) and lowering the viscosity can be obtained.
The phenyl group, naphthyl group, 1,4-phenylene group and 1,4-naphthylene group may each have a substituent, and the substituents which may be present are as described above.
<R34
 R34は、水素原子、水酸基、アミノ基又はアシルアミノを表す。前記、アミノ基及びアシルアミノ基は、それぞれ置換基を有していてもよい。
 R34のアミノ基及びアシルアミノ基は、式(I)のAr11の芳香族炭化水素基が有していてもよい置換基として挙げた、アミノ基及びアシルアミノ基とそれぞれ同義であり、有していてもよい置換基及び好ましい範囲もそれぞれ同義である。
< R34 >
R 34 represents a hydrogen atom, a hydroxyl group, an amino group, or acylamino. The amino group and acylamino group may each have a substituent.
The amino group and acylamino group of R 34 are respectively synonymous with the amino group and acylamino group mentioned as the substituents that the aromatic hydrocarbon group of Ar 11 of formula (I) may have, and have The substituents and preferred ranges that may be used are also synonymous.
<遊離酸の形が式(V)で表されるアゾ色素の具体例>
 遊離酸の形が式(V)で表されるアゾ色素の具体例としては、例えば、以下に記載の色素が挙げられるが、これらに限定されるものではない。
<Specific Example of Azo Dye with Free Acid Form Represented by Formula (V)>
Specific examples of the azo dye whose free acid form is represented by the formula (V) include, but are not limited to, the dyes described below.
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000047
 本発明の異方性色素膜用組成物に、遊離酸の形が式(V)で表されるアゾ色素を含む場合、その質量比は、本発明の効果を損なわない範囲であれば特に限定されない。式(I)で表されるアゾ色素の質量と、式(III)と式(V)で表されるアゾ色素の質量の和の比は、0.0001質量%以上であることが好ましく、0.001質量%以上であることがさらに好ましく、0.01質量%以上であることが特に好ましく、0.1質量%以上であることが最も好ましい。また、50質量%以下であることが好ましく、20質量%以下であることがさらに好ましく、10質量%以下であることが特に好ましく、6.0質量%以下であることが最も好ましい。遊離酸の形が式(I)で表されるアゾ色素の質量と、遊離酸の形が式(III)と式(V)で表されるアゾ色素の質量の和の比が適当な範囲にあることで、プロセス適性を向上させつつも(I)の色素自体の会合性を阻害せず、色素が良好に配向した異方性色素膜を得ることができる傾向にある。 When the composition for anisotropic dye film of the present invention contains an azo dye whose free acid form is represented by the formula (V), the mass ratio is particularly limited as long as the effect of the present invention is not impaired. Not. The ratio of the mass of the azo dye represented by formula (I) and the sum of the masses of the azo dyes represented by formula (III) and formula (V) is preferably 0.0001% by mass or more, It is more preferably 0.001% by mass or more, particularly preferably 0.01% by mass or more, and most preferably 0.1% by mass or more. Further, it is preferably 50% by mass or less, more preferably 20% by mass or less, particularly preferably 10% by mass or less, and most preferably 6.0% by mass or less. The ratio of the sum of the mass of the azo dye whose free acid form is represented by formula (I) and the mass of the azo dye whose free acid form is represented by formula (III) and formula (V) is within an appropriate range. As a result, there is a tendency that an anisotropic dye film in which the dye is well oriented can be obtained without improving the associability of the dye itself of (I) while improving process suitability.
<<遊離酸の形が、式(I)、式(III)及び式(V)で表されるアゾ色素の合成>>
 遊離酸の形が式(I)で表されるアゾ色素、遊離酸の形が式(III)で表されるアゾ色素、及び遊離酸の形が式(V)で表されるアゾ色素は、それ自体周知の方法に準じて製造することができる。例えば、日本国特開2008-81700号公報、日本国特開2007-126628号公報に記載の方法等で製造できる。
 例えば、下記式(I-1)で表されるアゾ化合物は、下記(A)~(C)の工程に従い製造することができる。 
(A)4-アミノベンゾニトリルと8-アミノ-2-ナフタレンスルホン酸(1,7-Cleves酸)とから常法[例えば、細田豊著「新染料化学」(昭和48年12月21日、技報堂発行)第396頁第409頁参照]に従って、ジアゾ化、カップリング工程を経てモノアゾ化合物を製造する。 
(B)得られたモノアゾ化合物を同様に、常法によりジアゾ化し、8-アミノ-2-ナフタレンスルホン酸(1,7-Cleves酸)とカップリング反応を行い、ジスアゾ化合物を製造する。 
(C)得られたジスアゾ化合物を同様に、常法によりジアゾ化し、7-アミノ-1-ナフトール-3,6-ジスルホン酸(RR酸)とカップリング反応を行い、目的の下記式(I-1)で表されるアゾ化合物がナトリウム塩として得られる。
 なお、必要に応じて、各工程において、良溶媒に溶解または懸濁して塩化ナトリウム等の塩を加えて塩析、良溶媒に溶解または懸濁して貧溶媒を加えて晶析、貧溶媒で懸洗、カラムクロマトグラフィーによる分離等によって精製してもよい。
<< Synthesis of azo dye whose free acid form is represented by formula (I), formula (III) and formula (V) >>
The azo dye whose free acid form is represented by formula (I), the azo dye whose free acid form is represented by formula (III), and the azo dye whose free acid form is represented by formula (V) are: It can be produced according to a method known per se. For example, it can be produced by the method described in Japanese Patent Application Laid-Open No. 2008-81700 and Japanese Patent Application Laid-Open No. 2007-126628.
For example, an azo compound represented by the following formula (I-1) can be produced according to the following steps (A) to (C).
(A) 4-aminobenzonitrile and 8-amino-2-naphthalenesulfonic acid (1,7-Cleves acid) are used in a conventional manner [for example, Yutaka Hosoda, “New dye chemistry” (December 21, 1973, Monoazo compound is produced through a diazotization and coupling step according to (published by Gihodo), page 396, page 409].
(B) Similarly, the obtained monoazo compound is diazotized by a conventional method and subjected to a coupling reaction with 8-amino-2-naphthalenesulfonic acid (1,7-Cleves acid) to produce a disazo compound.
(C) Similarly, the obtained disazo compound is diazotized by a conventional method, and subjected to a coupling reaction with 7-amino-1-naphthol-3,6-disulfonic acid (RR acid) to obtain the target compound represented by the following formula (I- The azo compound represented by 1) is obtained as a sodium salt.
If necessary, in each step, dissolve or suspend in a good solvent and add a salt such as sodium chloride for salting out. Dissolve or suspend in a good solvent and add a poor solvent for crystallization. It may be purified by washing, separation by column chromatography, or the like.
 本発明の遊離酸の形が、式(I)、式(III)及び式(V)で表されるアゾ色素は、遊離酸型のまま使用してもよく、酸基の一部が塩型を取っているものであってもよい。また、塩型の色素と遊離酸型の色素が混在していてもよい。また、製造時に塩型で得られた場合はそのまま使用してもよいし、所望の塩型に変換してもよい。塩型の交換方法としては、公知の方法を任意に用いることができ、例えば以下4)~7)の方法が挙げられる。
4)塩型で得られた色素の水溶液に塩酸等の強酸を添加し、色素を遊離酸型で酸析せしめたのち、所望の対イオンを有するアルカリ溶液(例えば、水酸化リチウム水溶液)で色素酸性基を中和し塩交換する方法。
5)塩型で得られた色素の水溶液に、所望の対イオンを有する大過剰の中性塩(例えば、塩化リチウム)を添加し、塩析ケーキの形で塩交換を行う方法。
6)塩型で得られた色素の水溶液を、強酸性陽イオン交換樹脂で処理し、色素を遊離酸型で酸析せしめたのち、所望の対イオンを有するアルカリ溶液(例えば、水酸化リチウム水溶液)で色素酸性基を中和し塩交換する方法。
7)予め所望の対イオンを有するアルカリ溶液(例えば、水酸化リチウム水溶液)で処理した強酸性陽イオン交換樹脂に、塩型で得られた色素の水溶液を作用させ、塩交換を行う方法。
The azo dyes in which the free acid form of the present invention is represented by the formula (I), the formula (III) and the formula (V) may be used in the free acid form, and a part of the acid group is a salt form. You may have taken. Further, a salt-type dye and a free acid-type dye may be mixed. Moreover, when it is obtained in a salt form at the time of production, it may be used as it is or may be converted into a desired salt form. As the salt type exchange method, a known method can be arbitrarily used, and examples thereof include the following methods 4) to 7).
4) A strong acid such as hydrochloric acid is added to the aqueous solution of the dye obtained in the salt form, the dye is acidified in the free acid form, and then the dye is added with an alkaline solution having a desired counter ion (for example, an aqueous lithium hydroxide solution). A method of neutralizing acidic groups and salt exchange.
5) A method in which a large excess of a neutral salt (eg, lithium chloride) having a desired counter ion is added to an aqueous solution of a dye obtained in a salt form, and salt exchange is performed in the form of a salting-out cake.
6) An aqueous solution of a dye obtained in a salt form is treated with a strongly acidic cation exchange resin, and the dye is acidified in a free acid form, and then an alkali solution having a desired counter ion (for example, an aqueous lithium hydroxide solution) ) To neutralize the acidic group of the dye and perform salt exchange.
7) A method of performing salt exchange by allowing an aqueous solution of a dye obtained in a salt form to act on a strongly acidic cation exchange resin that has been previously treated with an alkaline solution having a desired counter ion (for example, an aqueous lithium hydroxide solution).
 また、本発明の式(I)、式(III)及び式(V)で表されるアゾ色素が、酸性基が遊離酸型をとるか、塩型を取るかは、色素のpKaと色素水溶液のpHに依存する。
 前記の塩型の例としては、Na、Li、K等のアルカリ金属の塩、アルキル基もしくはヒドロキシアルキル基で置換されていてもよいアンモニウムの塩、又は有機アミンの塩が挙げられる。
 有機アミンの例として、炭素数1~6の低級アルキルアミン、ヒドロキシ置換された炭素数1~6の低級アルキルアミン、カルボキシ置換された炭素数1~6の低級アルキルアミン等が挙げられる。これらの塩型の場合、その種類は1種類に限られず複数種混在していてもよい。
Whether the azo dye represented by the formula (I), the formula (III) and the formula (V) of the present invention has a free acid form or a salt form in the acidic group depends on the pKa of the dye and the dye aqueous solution. Depending on the pH of
Examples of the salt type include salts of alkali metals such as Na, Li and K, ammonium salts which may be substituted with alkyl groups or hydroxyalkyl groups, and organic amine salts.
Examples of the organic amine include a lower alkyl amine having 1 to 6 carbon atoms, a hydroxy-substituted lower alkyl amine having 1 to 6 carbon atoms, a carboxy-substituted lower alkyl amine having 1 to 6 carbon atoms, and the like. In the case of these salt types, the type is not limited to one type, and a plurality of types may be mixed.
<<異方性色素膜用組成物の製造方法>>
 本発明の異方性色素膜用組成物の製造方法は特に限定されない。例えば、遊離酸の形が式(I)で表されるアゾ色素、遊離酸の形が式(III)で表されるアゾ色素、その他の添加剤及び溶剤等を混合し、0~100℃で撹拌、振盪して色素を溶解する。難溶性の場合は、ホモジナイザー、ビーズミル分散機等を用いてもよい。
 本発明の異方性色素膜用組成物の製造方法として、組成物中の異物等を除去する目的でろ過工程を有していてもよい。本発明の異方性色素膜用組成物は、粘度が低い傾向にあるため、ろ過工程の時間を短くすることができる傾向にある。ろ過以外の組成物中の異物等を除去する方法としては、日本国特開2012-53388公報に記載の遠心分離を用いる方法もあるが、この場合にも粘度が低いと遠心分離にかかる時間を短くすることが出来る傾向にある。
<< Method for Producing Composition for Anisotropic Dye Film >>
The manufacturing method of the composition for anisotropic dye films of this invention is not specifically limited. For example, an azo dye whose free acid form is represented by the formula (I), an azo dye whose free acid form is represented by the formula (III), other additives, a solvent, etc., are mixed at 0-100 ° C. Stir and shake to dissolve the dye. In the case of poor solubility, a homogenizer, a bead mill disperser or the like may be used.
As a manufacturing method of the composition for anisotropic dye films of this invention, you may have a filtration process in order to remove the foreign material etc. in a composition. Since the composition for anisotropic dye films of the present invention tends to have a low viscosity, the time for the filtration step tends to be shortened. As a method for removing foreign substances and the like in the composition other than filtration, there is a method using centrifugation described in Japanese Patent Application Laid-Open No. 2012-53388. In this case, too, if the viscosity is low, the time required for the centrifugation is reduced. It tends to be shortened.
<<異方性色素膜の形成方法>>
 本発明の異方性色素膜は、湿式成膜法により作製することが好ましい。
 本発明でいう湿式成膜法とは、異方性色素膜用組成物を基板上に何らかの手法により付与し、溶剤が乾燥する過程を経て色素等を基板上で配向・積層させる方法である。湿式成膜法では、異方性色素膜用組成物を基板上に付与すると、すでに異方性色素膜用組成物中で、又は溶剤が乾燥する過程で、色素自体が自己会合することにより微小面積での配向が起こる。この状態に外場を与えることにより、マクロな領域で一定方向に配向させ、所望の性能を有する異方性色素膜を得ることができる。この点で、いわゆるポリビニルアルコール(PVA)フィルム等を、色素を含む溶液で染色して延伸し、延伸工程だけで色素を配向させることを原理とする方法とは異なる。なお、ここで外場とは、あらかじめ基板上に施された配向処理層の影響、せん断力、磁場等が挙げられ、これらを単独で用いてもよく、複数組み合わせて用いてもよい。
<< Method for Forming Anisotropic Dye Film >>
The anisotropic dye film of the present invention is preferably produced by a wet film forming method.
The wet film forming method referred to in the present invention is a method in which a composition for an anisotropic dye film is applied on a substrate by any method, and a dye or the like is oriented and laminated on the substrate through a process of drying a solvent. In the wet film forming method, when the anisotropic dye film composition is applied on the substrate, the dye itself self-associates in the anisotropic dye film composition or in the process of drying the solvent, so that the minute amount is obtained. Orientation by area occurs. By applying an external field to this state, an anisotropic dye film having desired performance can be obtained by orienting in a certain direction in a macro region. This is different from the method based on the principle that a so-called polyvinyl alcohol (PVA) film or the like is dyed with a solution containing a dye and stretched, and the dye is oriented only by a stretching process. Here, the external field includes the influence of the alignment treatment layer previously applied on the substrate, shear force, magnetic field, and the like, and these may be used alone or in combination.
 また、異方性色素膜用組成物を基板上に付与し成膜する過程、外場を与えて配向させる過程、溶剤を乾燥させる過程は、逐次行ってもよいし、同時に行ってもよい。
 湿式成膜法における異方性色素膜用組成物の基板上への付与する方法としては、例えば、塗布法、ディップコート法、LB膜形成法、公知の印刷法等が挙げられる。またこのようにして得た異方性色素膜を別の基板に転写する方法もある。これらの中でも、本発明は塗布法を用いることが好ましい。
 異方性色素膜の配向方向は、通常、塗布方向と一致するが、塗布方向と異なっていてもよい。なお、本実施の形態において異方性色素膜の配向方向とは、例えば、偏光膜であれば、偏光の透過軸又は吸収軸であり、位相差膜であれば、進相軸又は遅相軸のことである。
The process of applying the anisotropic dye film composition on the substrate to form a film, the process of aligning by applying an external field, and the process of drying the solvent may be performed sequentially or simultaneously.
Examples of the method for applying the anisotropic dye film composition on the substrate in the wet film forming method include a coating method, a dip coating method, an LB film forming method, a known printing method, and the like. There is also a method of transferring the anisotropic dye film thus obtained to another substrate. Among these, the present invention preferably uses a coating method.
The orientation direction of the anisotropic dye film is usually coincident with the application direction, but may be different from the application direction. In the present embodiment, the orientation direction of the anisotropic dye film is, for example, a polarizing transmission axis or absorption axis in the case of a polarizing film, and a fast axis or a slow axis in the case of a retardation film. That is.
 そして、本実施の形態における異方性色素膜は、光吸収の異方性を利用し直線偏光、円偏光、楕円偏光等を得る偏光膜又は位相差膜として機能する他、膜形成プロセスと基板や有機化合物(色素や透明材料)を含有する組成物の選択により、屈折異方性や伝導異方性等の各種異方性色素膜として機能化が可能である。 The anisotropic dye film in this embodiment functions as a polarizing film or retardation film that obtains linearly polarized light, circularly polarized light, elliptically polarized light, etc. by utilizing the anisotropy of light absorption, as well as a film forming process and a substrate. And by selecting a composition containing an organic compound (pigment or transparent material), it can be functionalized as various anisotropic dye films such as refractive anisotropy and conduction anisotropy.
 異方性色素膜用組成物を塗布し、異方性色素膜を得る方法としては、特に限定されないが、例えば、原崎勇次著「コーティング工学」(株式会社朝倉書店、1971年3月20日発行)253頁~277頁に記載の方法、市村國宏監修「分子協調材料の創製と応用」(株式会社シーエムシー出版、1998年3月3日発行)118頁~149頁に記載の方法、段差構造を有する基板(予め配向処理を施してもよい)上にスロットダイコート法、スピンコート法、スプレーコート法、バーコート法、ロールコート法、ブレードコート法、カーテンコート法、ファウンテン法、ディップ法等で塗布する方法が挙げられる。中でも、スロットダイコート法を採用すると、均一性の高い異方性色素膜が得られるため好適である。
 スロットダイコート法に用いるダイコーターは、一般的に塗布液を吐出する塗布器、いわゆるスリットダイを備えている。該スリットダイは、例えば、日本国特開平2-164480号公報、日本国特開平6-154687号公報、日本国特開平9-131559号公報、「分散・塗布・乾燥の基礎と応用」(2014年、株式会社テクノシステ、ISBN9784924728707 C 305))、「ディスプレイ・光学部材における湿式コーティング技術」(2007年、情報機構、ISBN9784901677752)、「エレクトロニクス分野における精密塗布・乾燥技術」(2007年、技術情報教会、ISBN9784861041389)等に開示されている。これら公知のスリットダイは、フィルムやテープなどの可撓性を有した部材やガラス基板のような硬い部材であっても塗布が実施できる。
 本発明の異方性色素膜用組成物は、組成物の粘度を低くすることができるため、塗布装置への給液が容易であり、スロットダイコート法での塗布を行う場合にも、実用に耐える塗布速度で塗布することができ、生産性の高い異方性色素膜製造プロセスを構築することができる。
The method for applying the anisotropic dye film composition to obtain the anisotropic dye film is not particularly limited. For example, Yuji Harasaki "Coating Engineering" (Asakura Shoten Co., Ltd., issued March 20, 1971) ) The method described on pages 253 to 277, supervised by Kunihiro Ichimura, “Creation and Application of Molecular Coordination Materials” (CMC Publishing Co., Ltd., published on March 3, 1998), the method described on pages 118 to 149, steps Slot die coating method, spin coating method, spray coating method, bar coating method, roll coating method, blade coating method, curtain coating method, fountain method, dipping method, etc. on a substrate having a structure (which may be subjected to orientation treatment in advance) The method of apply | coating is mentioned. Among these, the slot die coating method is preferable because an anisotropic dye film with high uniformity can be obtained.
A die coater used in the slot die coating method generally includes an applicator for discharging a coating liquid, a so-called slit die. The slit die is disclosed in, for example, Japanese Patent Application Laid-Open No. 2-164480, Japanese Patent Application Laid-Open No. 6-154687, Japanese Patent Application Laid-Open No. 9-131559, “Basics and Applications of Dispersion / Coating / Drying” (2014). Technosystem Co., Ltd., ISBN 9844924728707 C 305)), "Wet coating technology for displays and optical components" (2007, Information Technology, ISBN 9784690777752), "Precision coating and drying technology in electronics field" (2007, Technical Information Church , ISBN 97884861041389). These known slit dies can be applied even with a flexible member such as a film or a tape or a hard member such as a glass substrate.
Since the composition for anisotropic dye film of the present invention can reduce the viscosity of the composition, it is easy to supply liquid to a coating apparatus, and is practical even when coating by the slot die coating method. The coating can be performed at a withstanding coating speed, and a highly productive anisotropic dye film manufacturing process can be constructed.
 本発明の異方性色素膜形成に使用される基板として、ガラスやトリアセテート、アクリル、ポリエステル、ポリイミド、トリアセチルセルロース又はウレタン系のフィルム等が挙げられる。また、この基板表面には、色素の配向方向を制御するために、「液晶便覧」丸善株式会社、平成12年10月30日発行、226頁から239頁等に記載の公知の方法により、配向処理層(配向膜)を施していてもよい。配向処理層を設けた場合、配向処理層の配向処理の影響と塗布時に異方性色素膜用組成物にかかるせん断力によって色素が配向すると考えられる。 Examples of the substrate used for forming the anisotropic dye film of the present invention include glass, triacetate, acrylic, polyester, polyimide, triacetylcellulose, or urethane film. In addition, in order to control the alignment direction of the dye, the substrate surface is aligned by a known method described in “Liquid Crystal Handbook” Maruzen Co., Ltd., issued October 30, 2000, pages 226 to 239, etc. A treatment layer (alignment film) may be provided. In the case where an orientation treatment layer is provided, it is considered that the dye is oriented by the influence of the orientation treatment of the orientation treatment layer and the shearing force applied to the anisotropic dye film composition during coating.
 異方性色素膜用組成物を塗布する際の、異方性色素膜用組成物の供給方法、供給間隔は特に限定されない。塗布液の供給操作が繁雑になったり、塗布液の開始時と停止時に塗布膜厚の変動を生じてしまったりする場合があるため、異方性色素膜の膜厚が薄い時には、連続的に異方性色素膜用組成物を供給しながら塗布することが望ましい。 The method for supplying the composition for anisotropic dye film and the supply interval when applying the composition for anisotropic dye film are not particularly limited. When the anisotropic dye film is thin, it may continuously occur because the supply operation of the coating liquid becomes complicated and the coating film thickness may vary when the coating liquid starts and stops. It is desirable to apply while supplying the composition for anisotropic dye film.
 異方性色素膜用組成物を塗布する速度としては、通常1mm/秒以上であり、好ましくは5mm/秒以上である。また、通常1000mm/秒以下であり、好ましくは200mm/秒以下である。塗布速度が適当な範囲であることで、異方性色素膜の異方性が得られ、均一に塗布できる傾向にある。
 なお、異方性色素膜用組成物の塗布温度としては、通常0℃以上80℃以下、好ましくは40℃以下である。また、異方性色素膜用組成物の塗布時の湿度は、好ましくは10%RH以上、さらに好ましくは30%RH以上であり、好ましくは80%RH以下である。
The speed at which the composition for anisotropic dye film is applied is usually 1 mm / second or more, preferably 5 mm / second or more. Moreover, it is 1000 mm / sec or less normally, Preferably it is 200 mm / sec or less. When the coating speed is in an appropriate range, anisotropy of the anisotropic dye film is obtained, and the coating tends to be performed uniformly.
In addition, as application | coating temperature of the composition for anisotropic dye films, it is 0 degreeC or more and 80 degrees C or less normally, Preferably it is 40 degrees C or less. Moreover, the humidity at the time of application | coating of the composition for anisotropic dye films becomes like this. Preferably it is 10% RH or more, More preferably, it is 30% RH or more, Preferably it is 80% RH or less.
 異方性色素膜の膜厚は、乾燥膜厚として、好ましくは10nm以上、さらに好ましくは50nm以上である。一方、好ましくは30μm以下、さらに好ましくは1μm以下である。異方性色素膜の膜厚が適当な範囲にあることで、膜内で色素の均一な配向及び均一な膜厚を得られる傾向にある。 The film thickness of the anisotropic dye film is preferably 10 nm or more, more preferably 50 nm or more as a dry film thickness. On the other hand, it is preferably 30 μm or less, more preferably 1 μm or less. When the film thickness of the anisotropic dye film is within an appropriate range, uniform orientation and uniform film thickness of the dye tend to be obtained in the film.
 異方性色素膜には、不溶化処理を行ってもよい。不溶化処理とは、異方性色素膜中の化合物の溶解性を低下させることにより、該化合物の異方性色素膜からの溶出を制御し、膜の安定性を高める処理工程を意味する。
 具体的には、例えば少ない価数のイオンを、それより大きい価数のイオンに置き換える(例えば、1価のイオンを多価のイオンに置き換える)処理や、イオン基を複数有する有機分子やポリマーに置き換える処理が挙げられる。このような処理方法としては、例えば、細田豊著「理論製造 染色化学」(技報堂、1957年)435~437頁等に記載されている処理工程等の公知の方法を用いることができる。
 これらの中でも、得られた異方性色素膜を日本国特開2007-241267号公報等に記載の方法で処理し、水に対して不溶性の異方性色素膜とすることが、後工程の容易さ、耐久性等の点から好ましい。
The anisotropic dye film may be insolubilized. The insolubilization treatment means a treatment step in which the solubility of the compound in the anisotropic dye film is reduced, thereby controlling the elution of the compound from the anisotropic dye film and increasing the stability of the film.
Specifically, for example, an ion with a lower valence is replaced with an ion with a higher valence (for example, a monovalent ion is replaced with a polyvalent ion), or an organic molecule or polymer having a plurality of ionic groups. A replacement process is listed. As such a treatment method, for example, known methods such as treatment steps described in Yutaka Hosoda, “Theoretical Manufacturing, Dyeing Chemistry” (Gihodo, 1957), pages 435 to 437 can be used.
Among these, the anisotropic dye film obtained is treated by the method described in Japanese Patent Application Laid-Open No. 2007-241267, etc. to form an anisotropic dye film that is insoluble in water. It is preferable from the viewpoint of ease and durability.
[異方性色素膜]
 本発明の異方性色素膜は、遊離酸の形が下記式(I)で表されるアゾ色素、及び遊離酸の形が下記式(III)で表されるアゾ色素を含む。
[Anisotropic dye film]
The anisotropic dye film of the present invention includes an azo dye whose free acid form is represented by the following formula (I) and an azo dye whose free acid form is represented by the following formula (III).
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000048
[式(I)において、Ar11及びAr12は、それぞれ独立に、置換基を有していてもよい芳香族炭化水素基又は置換基を有していてもよい芳香族複素環基を表し、Ar13は、電子供与基を有していてもよい1,4-フェニレン基、置換基を有していてもよい1,4-ナフチレン基又は置換基を有していてもよい芳香族複素環基を表し、Ar14は、式(II)で表される基を表す。] [In Formula (I), Ar 11 and Ar 12 each independently represent an aromatic hydrocarbon group which may have a substituent or an aromatic heterocyclic group which may have a substituent, Ar 13 is a 1,4-phenylene group optionally having an electron donating group, a 1,4-naphthylene group optionally having a substituent, or an aromatic heterocyclic ring optionally having a substituent Represents a group, and Ar 14 represents a group represented by the formula (II). ]
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000049
[式(II)において、RN11及びRN12は、それぞれ独立に、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいフェニル基又は置換基を有していてもよいアシル基を表し、bは0~3の整数を表し、dは0又は1を表す。なお、-NRN11N12で表されるアミノ基は、α位又はβ位に置換する。] [In Formula (II), R N11 and R N12 each independently have a hydrogen atom, an alkyl group that may have a substituent, a phenyl group that may have a substituent, or a substituent. And b represents an integer of 0 to 3, and d represents 0 or 1. The amino group represented by —NR N11 R N12 is substituted at the α-position or β-position. ]
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000050
[式(III)において、Ar21は、置換基を有していてもよい芳香族炭化水素基又は置換基を有していてもよい芳香族複素環基を表し、Ar22は、電子供与基を有していてもよい1,4-フェニレン基、置換基を有していてもよい1,4-ナフチレン基又は置換基を有していてもよい芳香族複素環基を表し、Ar23は、式(IV)で表される基を表す。] [In the formula (III), Ar 21 represents an optionally substituted aromatic hydrocarbon group or an optionally substituted aromatic heterocyclic group, and Ar 22 represents an electron donating group. Represents an optionally substituted 1,4-phenylene group, an optionally substituted 1,4-naphthylene group or an optionally substituted aromatic heterocyclic group, and Ar 23 represents Represents a group represented by formula (IV). ]
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000051
[式(IV)において、RN21及びRN22は、それぞれ独立に、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいフェニル基又は置換基を有していてもよいアシル基を表し、eは0~3の整数を表し、fは0又は1を表す。なお、-NRN21N22で表されるアミノ基は、α位又はβ位に置換する。] [In Formula (IV), R N21 and R N22 each independently have a hydrogen atom, an alkyl group that may have a substituent, a phenyl group that may have a substituent, or a substituent. And e represents an integer of 0 to 3, and f represents 0 or 1. The amino group represented by —NR N21 R N22 is substituted at the α-position or β-position. ]
 上記式(I)~(IV)の各基は、上記の異方性色素膜用組成物で挙げたものと同義であり、好ましい範囲、有していてもよい置換基等も同義である。 The groups of the above formulas (I) to (IV) have the same meanings as those mentioned in the above-mentioned composition for anisotropic dye film, and the preferred range, the substituents that may be included, and the like are also the same.
 本発明の異方性色素膜を液晶ディスプレイ用の偏光素子として使う場合は、異方性色素膜の配向特性は二色比を用いて表すことができる。二色比は8以上あれば偏光素子として機能するが、15以上が好ましく、20以上がより好ましく、25以上がさらに好ましく、30以上が特に好ましい。また、二色比は高いほど好ましく、上限はない。二色比が特定値以上であることで、後述する光学素子、特に偏光素子として有用である。 When the anisotropic dye film of the present invention is used as a polarizing element for a liquid crystal display, the orientation characteristics of the anisotropic dye film can be expressed using a dichroic ratio. A dichroic ratio of 8 or more functions as a polarizing element, but is preferably 15 or more, more preferably 20 or more, further preferably 25 or more, and particularly preferably 30 or more. Moreover, the higher the dichroic ratio is, the better, and there is no upper limit. When the dichroic ratio is a specific value or more, it is useful as an optical element described later, particularly as a polarizing element.
 本発明で言う二色比(D)とは、異方性色素が一様に配向している場合、以下の式で表される。
D=Az/Ay
 ここで、Azは異方性色素膜に入射した光の偏光方向が異方性色素の配向方向に平行な場合に観測される吸光度であり、Ayはその偏光方向が垂直な場合に観測される吸光度である。それぞれの吸光度は同じ波長のものを用いれば特に制限なく、目的によっていずれの波長を選択してもよいが、異方性色素膜の配向の度合を表す場合は、異方性色素膜の極大吸収波長における値を用いることが好ましい。
The dichroic ratio (D) referred to in the present invention is represented by the following formula when anisotropic dyes are uniformly oriented.
D = Az / Ay
Here, Az is the absorbance observed when the polarization direction of the light incident on the anisotropic dye film is parallel to the orientation direction of the anisotropic dye, and Ay is observed when the polarization direction is perpendicular. Absorbance. Each absorbance is not particularly limited as long as the same wavelength is used, and any wavelength may be selected depending on the purpose. However, when the degree of orientation of the anisotropic dye film is expressed, the maximum absorption of the anisotropic dye film is used. It is preferable to use a value in wavelength.
 また、本発明の異方性色素膜の可視光波長域における透過率は、好ましくは25%以上である。35%以上が更に好ましく、40%以上が特に好ましい。また、透過率は用途に応じた上限であればよい。 
 例えば、偏光度を高くする場合には、50%以下であることが好ましい。透過率が特定範囲であることで、下記の光学素子として有用であり、特にカラー表示に用いる液晶ディスプレイ用の光学素子として有用である。
Further, the transmittance in the visible light wavelength region of the anisotropic dye film of the present invention is preferably 25% or more. 35% or more is more preferable, and 40% or more is particularly preferable. Moreover, the transmittance | permeability should just be an upper limit according to a use.
For example, when increasing the degree of polarization, it is preferably 50% or less. When the transmittance is in a specific range, it is useful as the following optical element, and particularly useful as an optical element for a liquid crystal display used for color display.
[光学素子]
 本発明において、光学素子は、光吸収の異方性を利用し直線偏光、円偏光、楕円偏光等を得る偏光素子、位相差素子、屈折異方性や伝導異方性等の機能を有する素子を表す。これらの機能は、異方性色素膜形成プロセスと基板や有機化合物(色素や透明材料)を含有する組成物の選択により、適宜調整することができる。本発明では、偏光素子として用いることが最も好ましい。
[Optical element]
In the present invention, the optical element is a polarizing element that obtains linearly polarized light, circularly polarized light, elliptically polarized light, etc. by utilizing the anisotropy of light absorption, a retardation element, an element having functions such as refractive anisotropy and conduction anisotropy. Represents. These functions can be appropriately adjusted according to the anisotropic dye film forming process and the selection of a composition containing a substrate or an organic compound (a dye or a transparent material). In the present invention, it is most preferably used as a polarizing element.
[偏光素子]
 本発明において、偏光素子は、異方性色素膜を有するものであれば他の如何なる膜(層)を有するものであってもよい。例えば、基板上に配向膜を設け、該配向膜の表面に、異方性色素膜を形成することにより製造することができる。
 また、偏光素子は異方性色素膜だけに限らず、偏光性能を向上させる、機械的強度を向上させる等の機能を有するオーバーコート層;粘着層又は反射防止層;配向膜;位相差フィルムとしての機能、輝度向上フィルムとしての機能、反射フィルムとしての機能、半透過反射フィルムとしての機能、拡散フィルムとしての機能などの光学機能を有する層;等、を基板として使用してもよいし、様々な機能を有する層を塗布や貼合等により積層形成し、積層体として使用してもよい。
 これらの層は、製造プロセス、特性及び機能に合わせ適宜設けることができ、その積層の位置、順番等は特に限定されない。例えば、上記各層を形成する位置は、異方性色素膜の上に形成してもよく、また、異方性色素膜を設けた基板の反対面に形成してもよい。一方、上記各層を形成する順番は、異方性色素膜を形成する前でも形成した後でもよい。
[Polarizing element]
In the present invention, the polarizing element may have any other film (layer) as long as it has an anisotropic dye film. For example, it can be produced by providing an alignment film on a substrate and forming an anisotropic dye film on the surface of the alignment film.
Further, the polarizing element is not limited to an anisotropic dye film, but an overcoat layer having functions such as improving polarization performance and improving mechanical strength; adhesive layer or antireflection layer; alignment film; retardation film A layer having optical functions such as a function as a brightness enhancement film, a function as a reflection film, a function as a transflective film, a function as a diffusion film, etc. A layer having various functions may be laminated by coating, bonding, or the like, and used as a laminate.
These layers can be provided as appropriate in accordance with the manufacturing process, characteristics, and functions, and the position and order of the layers are not particularly limited. For example, the positions where the above layers are formed may be formed on the anisotropic dye film, or may be formed on the opposite surface of the substrate provided with the anisotropic dye film. On the other hand, the order of forming the above layers may be before or after forming the anisotropic dye film.
 これら光学機能を有する層は、以下の様な方法により形成することができる。
 位相差フィルムとしての機能を有する層は、以下のような方法で得られた位相差フィルムを、偏光素子を構成する他の層に貼合等を行うことにより、形成することができる。
 位相差フィルムは、例えば、日本国特開平2-59703号公報、日本国特開平4-230704号公報等に記載の延伸処理を施したり、日本国特開平7-230007号公報等に記載された処理を施したりすることにより形成することができる。
These layers having an optical function can be formed by the following method.
The layer having a function as a retardation film can be formed by bonding a retardation film obtained by the following method to another layer constituting the polarizing element.
The retardation film is subjected to stretching treatment described in, for example, JP-A-2-59703, JP-A-4-230704, or the like, or described in JP-A-7-230007. It can be formed by processing.
 輝度向上フィルムとしての機能を有する層は、以下のような方法で得られた輝度向上フィルムを、偏光素子を構成する他の層に貼合等を行うことにより、形成することができる。
 輝度向上フィルムは、例えば、日本国特開2002-169025号公報及び日本国特開2003-29030号公報に記載されるような方法で微細孔を形成すること、又は、選択反射の中心波長が異なる2層以上のコレステリック液晶層を重畳することにより形成することができる。
The layer having a function as a brightness enhancement film can be formed by bonding the brightness enhancement film obtained by the following method to another layer constituting the polarizing element.
The brightness enhancement film is formed by forming micropores by a method as described in, for example, Japanese Patent Application Laid-Open No. 2002-169025 and Japanese Patent Application Laid-Open No. 2003-29030, or the central wavelength of selective reflection is different. It can be formed by overlapping two or more cholesteric liquid crystal layers.
 反射フィルムまたは半透過反射フィルムとしての機能を有する層は、例えば、蒸着やスパッタリングなどで得られた金属薄膜を、偏光素子を構成する他の層に貼合等を行うことにより、形成することができる。
 拡散フィルムとしての機能を有する層は、例えば、偏光素子を構成する他の層に微粒子を含む樹脂溶液をコーティングすることにより、形成することができる。
A layer having a function as a reflective film or a transflective film can be formed by, for example, bonding a metal thin film obtained by vapor deposition or sputtering to another layer constituting the polarizing element. it can.
The layer having a function as a diffusion film can be formed, for example, by coating the other layer constituting the polarizing element with a resin solution containing fine particles.
 また、位相差フィルムや光学補償フィルムとしての機能を有する層は、ディスコティック液晶性化合物、ネマティック液晶性化合物等の液晶性化合物を、偏光素子を構成する他の層に塗布して配向させることにより形成することができる。 The layer having a function as a retardation film or an optical compensation film is obtained by applying and aligning a liquid crystal compound such as a discotic liquid crystal compound or a nematic liquid crystal compound on another layer constituting the polarizing element. Can be formed.
 本実施の形態における異方性色素膜をLCDやOLED等の各種の表示素子に異方性色素膜等として用いる場合には、これらの表示素子を構成する電極基板等の表面に直接異方性色素膜を形成したり、異方性色素膜を形成した基板をこれら表示素子の構成部材として用いたりすることができる。
 本発明の光学素子は、基板上に塗布などにより異方性色素膜を形成することで偏光素子を得ることができるという点から、フレキシブルディスプレイ等の用途にも好適に使用することができる。
When the anisotropic dye film in the present embodiment is used as an anisotropic dye film for various display elements such as LCDs and OLEDs, it is directly anisotropic on the surface of the electrode substrate or the like constituting these display elements. A dye film can be formed, or a substrate on which an anisotropic dye film is formed can be used as a constituent member of these display elements.
The optical element of the present invention can be suitably used for applications such as a flexible display because a polarizing element can be obtained by forming an anisotropic dye film on a substrate by coating or the like.
 実施例により本発明を更に具体的に説明するが、本発明はその要旨を超えない限り以下の実施例に限定されるものではない。なお、以下の記載において、「部」は「重量部」を示す。 EXAMPLES The present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples unless it exceeds the gist. In the following description, “part” means “part by weight”.
[アゾ色素の合成例]
 本発明で合成した色素は、下記の合成例に従い合成し、必要に応じて精製し用いた。
<合成例1>
 4-アミノベンゾニトリル11.8重量部、および水250重量部に塩酸酸性条件下、亜硝酸ナトリウム7.25重量部を加えてジアゾ化し、水500重量部に溶解した8-アミノ-2-ナフタレンスルホン酸(1,7-クレーブ酸)22.3重量部とカップリングを行った後、中和、塩析して析出固体を濾過分離し、モノアゾ化合物のウエットケーキを得た。
 このモノアゾ化合物のウエットケーキをN-メチルピロリドン640重量部、および水400重量部に溶解し、塩酸酸性条件下、亜硝酸ナトリウム8.97重量部を加えてジアゾ化し、水200重量部に溶解した8-アミノ-2-ナフタレンスルホン酸(1,7-クレーブ酸)21.2重量部とpH=3~4でカップリングを行った後、塩析して析出物を取り出した。水に溶解して水酸化ナトリウムで中和し、イソプロピルアルコールを加えて析出固体を濾過分離し、得られたウエットケーキを乾燥して、下記式(V-1)で表されるアゾ色素のナトリウム塩47.6重量部を得た。
[Synthesis examples of azo dyes]
The dye synthesized in the present invention was synthesized according to the following synthesis example, and purified and used as necessary.
<Synthesis Example 1>
8-amino-2-naphthalene dissolved in 500 parts by weight of water by adding 7.25 parts by weight of sodium nitrite to 11.8 parts by weight of 4-aminobenzonitrile and 250 parts by weight of water under acidic conditions of hydrochloric acid After coupling with 22.3 parts by weight of sulfonic acid (1,7-claveic acid), neutralization and salting out were performed, and the precipitated solid was separated by filtration to obtain a wet cake of a monoazo compound.
The wet cake of this monoazo compound was dissolved in 640 parts by weight of N-methylpyrrolidone and 400 parts by weight of water, diazotized by adding 8.97 parts by weight of sodium nitrite under hydrochloric acid conditions, and dissolved in 200 parts by weight of water. After coupling with 21.2 parts by weight of 8-amino-2-naphthalenesulfonic acid (1,7-clebic acid) at pH = 3 to 4, salting out was performed to take out the precipitate. It is dissolved in water, neutralized with sodium hydroxide, isopropyl alcohol is added, the precipitated solid is filtered and separated, the resulting wet cake is dried, and sodium azo dye represented by the following formula (V-1) 47.6 parts by weight of salt were obtained.
 下記式(V-1)で表されるアゾ色素のナトリウム塩25.6重量部をN-メチルピロリドン600重量部、および水800重量部に溶解し、塩酸酸性条件下、亜硝酸ナトリウム3.04重量部を加えてジアゾ化し、水600重量部に溶解した7-アミノ-1-ナフトール-3,6-ジスルホン酸(RR酸)(純度:96.7%)14.1重量部とpH=9~10でカップリングを行った。反応後、析出固体を濾過分離し、下記式(I-1)で表されるトリスアゾ色素のナトリウム塩を得た。
 式(I-1)で表されるトリスアゾ色素のナトリウム塩の水溶液を陽イオン交換樹脂(三菱化学社製SK1BH)に通し、遊離酸の水溶液とした後、水酸化リチウム水溶液で中和、濃縮乾燥することにより、式(I-1)で表されるトリスアゾ色素のリチウム塩を得た。この色素の10ppm水溶液での極大吸収波長(λmax)は628nmであった。
 また、式(I-1)で表されるトリスアゾ色素のナトリウム塩の水溶液を陽イオン交換樹脂(三菱化学社製SK1BH)に通し、遊離酸の水溶液とした後、遊離酸の水溶液を重量比で80%の分画と20%の分画とに分け、80%の分画を水酸化リチウム水溶液で中和し、残りの20%の分画の遊離酸の水溶液の混合した後、濃縮乾固することにより、式(I-1)で表されるトリスアゾ色素の80モル%リチウム中和塩を得た。
25.6 parts by weight of a sodium salt of an azo dye represented by the following formula (V-1) is dissolved in 600 parts by weight of N-methylpyrrolidone and 800 parts by weight of water, and 3.04 sodium nitrite under acidic conditions of hydrochloric acid. 7-amino-1-naphthol-3,6-disulfonic acid (RR acid) (purity: 96.7%) dissolved in 600 parts by weight of water and diazotized by adding parts by weight and pH = 9 Coupling was performed at ~ 10. After the reaction, the precipitated solid was separated by filtration to obtain a trisazo dye sodium salt represented by the following formula (I-1).
An aqueous solution of a sodium salt of a trisazo dye represented by the formula (I-1) is passed through a cation exchange resin (SK1BH manufactured by Mitsubishi Chemical Corporation) to make an aqueous solution of a free acid, neutralized with an aqueous lithium hydroxide solution, concentrated and dried. As a result, a lithium salt of a trisazo dye represented by the formula (I-1) was obtained. The maximum absorption wavelength (λmax) of this dye in a 10 ppm aqueous solution was 628 nm.
Further, an aqueous solution of a sodium salt of a trisazo dye represented by the formula (I-1) is passed through a cation exchange resin (SK1BH, manufactured by Mitsubishi Chemical Corporation) to make an aqueous solution of a free acid, and then the aqueous solution of the free acid is used in a weight ratio. The 80% fraction is divided into a 20% fraction, the 80% fraction is neutralized with an aqueous lithium hydroxide solution, the remaining 20% fraction free acid aqueous solution is mixed, and then concentrated to dryness. As a result, an 80 mol% lithium neutralized salt of the trisazo dye represented by the formula (I-1) was obtained.
<合成例2>
 4-アミノベンズアミド5.45重量部、および水200重量部に塩酸酸性条件下、亜硝酸ナトリウム3.00重量部を加えてジアゾ化し、水240重量部に溶解した8-アミノ-2-ナフタレンスルホン酸(1,7-クレーブ酸)8.93重量部とpH=2~3でカップリングを行った後、中和、塩析して析出固体を濾過分離し、モノアゾ化合物のウエットケーキを得た。
 このモノアゾ化合物のウエットケーキをN-メチルピロリドン220重量部、および水110重量部に溶解し、塩酸酸性条件下、亜硝酸ナトリウム3.00重量部を加えてジアゾ化し、水200重量部に溶解した8-アミノ-2-ナフタレンスルホン酸(1,7-クレーブ酸)8.93重量部とpH=2~3でカップリングを行った後、塩析して析出物を取り出した。水に溶解して水酸化ナトリウムで中和し、イソプロピルアルコールを加えて析出固体を濾過分離し、得られたウエットケーキを乾燥することにより、下記式(V-2)で表されるアゾ色素のナトリウム塩31.1重量部を得た。
 下記式(V-2)で表されるアゾ色素のナトリウム塩31.3重量部をN-メチルピロリドン200重量部、および水260重量部に溶解し、塩酸酸性条件下、亜硝酸ナトリウム3.04重量部を加えてジアゾ化し、水400重量部に溶解した7-アミノ-1-ナフトール-3,6-ジスルホン酸(RR酸)(純度:65.5%)19.5重量部とpH=9~10でカップリングを行った。反応後、析出固体を濾過分離し下記式(I-2)で表されるトリスアゾ色素のナトリウム塩を得た。
 下記式(I-2)で表されるトリスアゾ色素のナトリウム塩の水溶液を陽イオン交換樹脂(三菱化学社製SK1BH)に通し、遊離酸の水溶液とした後、水酸化リチウム水溶液で中和、濃縮乾燥することにより、下記式(I-2)で表されるトリスアゾ色素のリチウム塩を得た。この色素の10ppm水溶液での極大吸収波長(λmax)は627nmであった。
 また、式(I-2)で表されるトリスアゾ色素のナトリウム塩の水溶液を陽イオン交換樹脂(三菱化学社製SK1BH)に通し、遊離酸の水溶液とした後、遊離酸の水溶液を重量比で80%の分画と20%の分画とに分け、80%の分画を水酸化リチウム水溶液で中和し、残りの20%の分画の遊離酸の水溶液と混合した後、濃縮乾固することにより、下記式(I-2)で表されるトリスアゾ色素の80モル%リチウム中和塩を得た。
<Synthesis Example 2>
8-amino-2-naphthalenesulfone dissolved in 240 parts by weight of 4-aminobenzamide and diazotized by adding 3.00 parts by weight of sodium nitrite under acidic conditions of hydrochloric acid to 200 parts by weight of water After coupling with 8.93 parts by weight of acid (1,7-clebic acid) at pH = 2 to 3, neutralization and salting out were performed, and the precipitated solid was separated by filtration to obtain a wet cake of a monoazo compound. .
The wet cake of this monoazo compound was dissolved in 220 parts by weight of N-methylpyrrolidone and 110 parts by weight of water, diazotized by adding 3.00 parts by weight of sodium nitrite under acidic conditions of hydrochloric acid, and dissolved in 200 parts by weight of water. After coupling with 8.93 parts by weight of 8-amino-2-naphthalenesulfonic acid (1,7-claveic acid) at pH = 2 to 3, the precipitate was taken out by salting out. It is dissolved in water, neutralized with sodium hydroxide, isopropyl alcohol is added, the precipitated solid is separated by filtration, and the resulting wet cake is dried to obtain an azo dye represented by the following formula (V-2). 31.1 parts by weight of sodium salt were obtained.
31.3 parts by weight of a sodium salt of an azo dye represented by the following formula (V-2) is dissolved in 200 parts by weight of N-methylpyrrolidone and 260 parts by weight of water. 19.5 parts by weight of 7-amino-1-naphthol-3,6-disulfonic acid (RR acid) (purity: 65.5%) dissolved in 400 parts by weight of water and diazotized by adding parts by weight and pH = 9 Coupling was performed at ~ 10. After the reaction, the precipitated solid was separated by filtration to obtain a trisazo dye sodium salt represented by the following formula (I-2).
An aqueous solution of a sodium salt of a trisazo dye represented by the following formula (I-2) is passed through a cation exchange resin (SK1BH manufactured by Mitsubishi Chemical Corporation) to make an aqueous solution of a free acid, and then neutralized and concentrated with an aqueous lithium hydroxide solution. By drying, a lithium salt of a trisazo dye represented by the following formula (I-2) was obtained. The maximum absorption wavelength (λmax) of this dye in a 10 ppm aqueous solution was 627 nm.
Further, an aqueous solution of a sodium salt of a trisazo dye represented by the formula (I-2) is passed through a cation exchange resin (SK1BH, manufactured by Mitsubishi Chemical Corporation) to make an aqueous solution of a free acid, and then the aqueous solution of the free acid is used in a weight ratio. The 80% fraction and 20% fraction were separated, neutralized with an aqueous lithium hydroxide solution, mixed with the remaining 20% free acid aqueous solution, and then concentrated to dryness. As a result, an 80 mol% lithium neutralized salt of a trisazo dye represented by the following formula (I-2) was obtained.
<合成例3>
 4-アミノベンズアミド13.61重量部、および水272重量部に塩酸酸性条件下、亜硝酸ナトリウム7.59重量部を加えてジアゾ化し、水446重量部に溶解した8-アミノ-2-ナフタレンスルホン酸(1,7-クレーブ酸)22.3重量部とpH=2~3でカップリング反応を行った後、中和・塩析して析出固体を濾過分離し、モノアゾ化合物のウエットケーキを得た。
 このモノアゾ化合物のウエットケーキを,N-メチルピロリドン392重量部及び水392重量部に溶解した。その後、塩酸酸性条件下、亜硝酸ナトリウム7.59重量部を加えてジアゾ化し、水975重量部に溶解した7-アミノ-1-ナフトール-3,6-ジスルホン酸(RR酸)(純度65.5%)48.7重量部とpH=9~10でカップリング反応を行った。反応後、析出固体を濾過分離し、下記式(III-1)で表されるアゾ色素のナトリウム塩を得た。
 下記式(III-1)で表されるアゾ色素のナトリウム塩の水溶液を陽イオン交換樹脂(三菱化学社製SK1BH)に通し、遊離酸の水溶液とした後、水酸化リチウムで中和、濃縮乾燥することにより、下記式(III-1)で表されるアゾ色素のリチウム塩を得た。この色素の10ppm水溶液での極大吸収波長(λmax)は589nmであった。
<Synthesis Example 3>
8-amino-2-naphthalenesulfone dissolved in 446 parts by weight of diamino by adding 7.59 parts by weight of sodium nitrite under acidic conditions of hydrochloric acid to 13.61 parts by weight of 4-aminobenzamide and 272 parts by weight of water A coupling reaction was performed with 22.3 parts by weight of acid (1,7-clebic acid) at pH = 2 to 3, followed by neutralization and salting out, and the precipitated solid was separated by filtration to obtain a wet cake of a monoazo compound. It was.
The wet cake of this monoazo compound was dissolved in 392 parts by weight of N-methylpyrrolidone and 392 parts by weight of water. Thereafter, 7.59 parts by weight of sodium nitrite was added to diazotize under acidic conditions of hydrochloric acid, and 7-amino-1-naphthol-3,6-disulfonic acid (RR acid) dissolved in 975 parts by weight of water (purity 65. 5%) The coupling reaction was carried out at 48.7 parts by weight and pH = 9-10. After the reaction, the precipitated solid was separated by filtration to obtain a sodium salt of an azo dye represented by the following formula (III-1).
An aqueous solution of a sodium salt of an azo dye represented by the following formula (III-1) is passed through a cation exchange resin (SK1BH manufactured by Mitsubishi Chemical Corporation) to make an aqueous solution of a free acid, neutralized with lithium hydroxide, and concentrated and dried. As a result, a lithium salt of an azo dye represented by the following formula (III-1) was obtained. The maximum absorption wavelength (λmax) of this dye in a 10 ppm aqueous solution was 589 nm.
<合成例4>
 下記式(V-1)で表されるアゾ色素のナトリウム塩の水溶液を陽イオン交換樹脂(三菱化学社製SK1BH)に通し、遊離酸の水溶液とした後、水酸化リチウム水溶液で中和、濃縮乾燥することにより、下記式(V-1)で表されるアゾ色素のリチウム塩を得た。この色素の10ppm水溶液での吸収極大波長(λmax)は543nmであった。
<Synthesis Example 4>
An aqueous solution of a sodium salt of an azo dye represented by the following formula (V-1) is passed through a cation exchange resin (SK1BH manufactured by Mitsubishi Chemical Corporation) to make an aqueous solution of a free acid, and then neutralized and concentrated with an aqueous lithium hydroxide solution. By drying, a lithium salt of an azo dye represented by the following formula (V-1) was obtained. The absorption maximum wavelength (λmax) in a 10 ppm aqueous solution of this dye was 543 nm.
<合成例5>
 4-アミノベンゾニトリル11.8重量部、および水250重量部に塩酸酸性条件下、亜硝酸ナトリウム7.25重量部を加えてジアゾ化し、水500重量部に溶解した8-アミノ-2-ナフタレンスルホン酸(1,7-クレーブ酸)22.3重量部とカップリングを行った後、中和、塩析して析出固体を濾過分離し、モノアゾ化合物のウエットケーキを得た。
 このモノアゾ化合物のウエットケーキをN-メチルピロリドン640重量部、および水400重量部に溶解し、塩酸酸性条件下、亜硝酸ナトリウム8.97重量部を加えてジアゾ化し、水300重量部に溶解した7-アミノ-1-ナフトール-3,6-ジスルホン酸(RR酸)(純度:66.9%)45.34重量部とpH=8~10でカップリングを行った。反応後、析出固体を濾過分離し、下記式(III-2)で表されるアゾ色素のナトリウム塩を得た。
 下記式(III-2)で表されるアゾ色素のナトリウム塩の水溶液を陽イオン交換樹脂(三菱化学社製SK1BH)に通し、遊離酸の水溶液とした後、水酸化リチウム水溶液で中和、濃縮乾燥することにより、下記式(III-2)で表されるアゾ色素リチウム塩を得た。この色素の10ppm水溶液での極大吸収波長(λmax)は588nmであった。
<Synthesis Example 5>
8-amino-2-naphthalene dissolved in 500 parts by weight of water by adding 7.25 parts by weight of sodium nitrite to 11.8 parts by weight of 4-aminobenzonitrile and 250 parts by weight of water under acidic conditions of hydrochloric acid After coupling with 22.3 parts by weight of sulfonic acid (1,7-claveic acid), neutralization and salting out were performed, and the precipitated solid was separated by filtration to obtain a wet cake of a monoazo compound.
The wet cake of this monoazo compound was dissolved in 640 parts by weight of N-methylpyrrolidone and 400 parts by weight of water, diazotized by adding 8.97 parts by weight of sodium nitrite under acidic conditions of hydrochloric acid, and dissolved in 300 parts by weight of water. Coupling was performed with 45.34 parts by weight of 7-amino-1-naphthol-3,6-disulfonic acid (RR acid) (purity: 66.9%) at pH = 8-10. After the reaction, the precipitated solid was separated by filtration to obtain a sodium salt of an azo dye represented by the following formula (III-2).
An aqueous solution of a sodium salt of an azo dye represented by the following formula (III-2) is passed through a cation exchange resin (SK1BH manufactured by Mitsubishi Chemical Corporation) to make an aqueous solution of a free acid, and then neutralized and concentrated with an aqueous lithium hydroxide solution. By drying, an azo dye lithium salt represented by the following formula (III-2) was obtained. The maximum absorption wavelength (λmax) of this dye in a 10 ppm aqueous solution was 588 nm.
<合成例6>
 下記式(V-2)で表されるアゾ色素のナトリウム塩の水溶液を陽イオン交換樹脂(三菱化学社製SK1BH)に通し、遊離酸の水溶液とした後、水酸化リチウム水溶液で中和、濃縮乾燥することにより、下記式(V-2)で表されるアゾ色素のリチウム塩を得た。この色素の10ppmの水溶液での極大吸収波長(λmax)は541nmであった。
<Synthesis Example 6>
An aqueous solution of a sodium salt of an azo dye represented by the following formula (V-2) is passed through a cation exchange resin (SK1BH manufactured by Mitsubishi Chemical Corporation) to make an aqueous solution of a free acid, and then neutralized and concentrated with an aqueous lithium hydroxide solution. By drying, a lithium salt of an azo dye represented by the following formula (V-2) was obtained. The maximum absorption wavelength (λmax) of this dye in a 10 ppm aqueous solution was 541 nm.
<合成例7>
 4-アミノベンズアミドを、水溶媒中、塩酸酸性条件下、亜硝酸ナトリウムでジアゾ化し、水溶媒中、p-クレシジンとカップリング反応を行い、析出物を濾取してモノアゾ化合物を得た。
 モノアゾ化合物を、水とN-メチルピロリドンの混合溶媒中、塩酸酸性条件下、亜硝酸ナトリウムでジアゾ化し、水溶媒中、8-アミノ-2-ナフタレンスルホン酸とカップリング反応を行った後、中和、塩析して析出物を濾取してジスアゾ化合物を得た。
 ジスアゾ化合物を、水とN-メチルピロリドンの混合溶媒中、塩酸酸性条件下、亜硝酸ナトリウムでジアゾ化し、水溶媒中、7-アミノ-1-ナフトール-3,6-ジスルホン酸とpH8~10でカップリング反応を行った。塩析して析出物を濾取し、下記式(I-3)で表されるアゾ色素のナトリウム塩を得た。下記式(I-3)で表されるアゾ色素のナトリウム塩の水溶液を陽イオン交換樹脂(三菱化学社製SK1BH)に通し、遊離酸の水溶液とした後、水酸化リチウム水溶液で中和、濃縮乾固することにより、下記式(I-3)で表されるアゾ色素のリチウム塩を得た。この色素の10ppm水溶液での極大吸収波長(λmax)は619nmであった。
<Synthesis Example 7>
4-Aminobenzamide was diazotized with sodium nitrite in an aqueous solvent under acidic conditions of hydrochloric acid, coupled with p-cresidine in an aqueous solvent, and the precipitate was collected by filtration to obtain a monoazo compound.
The monoazo compound is diazotized with sodium nitrite in a mixed solvent of water and N-methylpyrrolidone under acidic conditions of hydrochloric acid, and after a coupling reaction with 8-amino-2-naphthalenesulfonic acid in an aqueous solvent, The mixture was salted out and the precipitate was collected by filtration to obtain a disazo compound.
The disazo compound was diazotized with sodium nitrite in a mixed solvent of water and N-methylpyrrolidone under acidic conditions of hydrochloric acid, and 7-amino-1-naphthol-3,6-disulfonic acid and pH 8-10 in the aqueous solvent. A coupling reaction was performed. Salting out was performed, and the precipitate was collected by filtration to obtain a sodium salt of an azo dye represented by the following formula (I-3). An aqueous solution of a sodium salt of an azo dye represented by the following formula (I-3) is passed through a cation exchange resin (SK1BH manufactured by Mitsubishi Chemical Corporation) to make an aqueous solution of a free acid, and then neutralized and concentrated with an aqueous lithium hydroxide solution. By drying, an azo dye lithium salt represented by the following formula (I-3) was obtained. The maximum absorption wavelength (λmax) of this dye in a 10 ppm aqueous solution was 619 nm.
<合成例8>
 6-アミノ-1-ナフタレンスルホン酸を、水溶媒中、塩酸酸性条件下、亜硝酸ナトリウムでジアゾ化してジアゾ液を得た。別容器にm-トルイジン及びヒドロキシメタンスルホン酸ナトリウムを取り、水溶媒下60~70℃で反応させた後、冷却してカップリング液とした。ジアゾ液をカップリング液に加えて反応を行った後、アルカリ性で脱保護反応を行い、塩析して析出物を濾取して、モノアゾ化合物を得た。
 モノアゾ化合物を、水とN-メチルピロリドンの混合溶媒中、塩酸酸性条件下、亜硝酸ナトリウムでジアゾ化し、水溶媒中、8-アミノ-2-ナフタレンスルホン酸とカップリング反応を行った後、中和、塩析して析出物を濾取してジスアゾ化合物を得た。
 ジスアゾ化合物を、水とN-メチルピロリドンの混合溶媒中、塩酸酸性条件下、亜硝酸ナトリウムでジアゾ化し、水溶媒中、7-アミノ-1-ナフトール-3,6-ジスルホン酸とpH8~10でカップリング反応を行った。析出物を濾取し、下記式(I-4)で表されるアゾ色素のナトリウム塩を得た。下記式(I-4)で表されるアゾ色素のナトリウム塩の水溶液を陽イオン交換樹脂(三菱化学社製SK1BH)に通し、遊離酸の水溶液とした後、水酸化リチウム水溶液で中和、濃縮乾固することにより、下記式(I-4)で表される色素のリチウム塩を得た。この色素の10ppm水溶液での極大吸収波長(λmax)は608nmであった。
<Synthesis Example 8>
6-Amino-1-naphthalenesulfonic acid was diazotized with sodium nitrite in an aqueous solvent under acidic conditions of hydrochloric acid to obtain a diazo liquid. In a separate container, m-toluidine and sodium hydroxymethanesulfonate were taken, reacted in an aqueous solvent at 60 to 70 ° C., and then cooled to obtain a coupling solution. After reacting by adding the diazo liquid to the coupling liquid, alkaline deprotection was performed, salting out was performed, and the precipitate was collected by filtration to obtain a monoazo compound.
The monoazo compound is diazotized with sodium nitrite in a mixed solvent of water and N-methylpyrrolidone under acidic conditions of hydrochloric acid, and after a coupling reaction with 8-amino-2-naphthalenesulfonic acid in an aqueous solvent, The mixture was salted out and the precipitate was collected by filtration to obtain a disazo compound.
The disazo compound was diazotized with sodium nitrite in a mixed solvent of water and N-methylpyrrolidone under acidic conditions of hydrochloric acid, and 7-amino-1-naphthol-3,6-disulfonic acid and pH 8-10 in the aqueous solvent. A coupling reaction was performed. The precipitate was collected by filtration to obtain a sodium salt of an azo dye represented by the following formula (I-4). An aqueous solution of a sodium salt of an azo dye represented by the following formula (I-4) is passed through a cation exchange resin (SK1BH manufactured by Mitsubishi Chemical Corporation) to make an aqueous solution of a free acid, and then neutralized and concentrated with an aqueous lithium hydroxide solution. By drying, a lithium salt of a dye represented by the following formula (I-4) was obtained. The maximum absorption wavelength (λmax) of this dye in a 10 ppm aqueous solution was 608 nm.
<合成例9>
 6-アミノ-1-ナフタレンスルホン酸を、水溶媒中、塩酸酸性条件下、亜硝酸ナトリウムでジアゾ化し、8-アミノ-2-ナフタレンスルホン酸とカップリング反応を行った後、塩析し、析出物を濾取して、モノアゾ化合物を得た。
 モノアゾ化合物を水溶媒中、塩酸酸性条件下、亜硝酸ナトリウムでジアゾ化し、水溶媒中、7-アミノ-1-ナフトール-3,6-ジスルホン酸とpH8~10でカップリング反応を行った。析出物を濾取し、下記式(III-3)で表されるアゾ色素のナトリウム塩を得た。下記式(III-3)で表されるアゾ色素のナトリウム塩の水溶液を陽イオン交換樹脂(三菱化学社製SK1BH)に通し、遊離酸の水溶液とした後、水酸化リチウム水溶液で中和、濃縮乾固することにより、下記式(III-3)で表される色素のリチウム塩を得た。この色素の10ppm水溶液での極大吸収波長(λmax)は587nmであった。
<Synthesis Example 9>
6-Amino-1-naphthalenesulfonic acid is diazotized with sodium nitrite under acidic conditions in hydrochloric acid in an aqueous solvent, coupled with 8-amino-2-naphthalenesulfonic acid, salted out and precipitated. The product was collected by filtration to obtain a monoazo compound.
The monoazo compound was diazotized with sodium nitrite in an aqueous solvent under acidic conditions of hydrochloric acid, and a coupling reaction was performed with 7-amino-1-naphthol-3,6-disulfonic acid in an aqueous solvent at pH 8-10. The precipitate was collected by filtration to obtain a sodium salt of an azo dye represented by the following formula (III-3). An aqueous solution of an azo dye sodium salt represented by the following formula (III-3) is passed through a cation exchange resin (SK1BH manufactured by Mitsubishi Chemical Corporation) to make an aqueous solution of a free acid, and then neutralized and concentrated with an aqueous lithium hydroxide solution. By drying, a lithium salt of a dye represented by the following formula (III-3) was obtained. The maximum absorption wavelength (λmax) of this dye in a 10 ppm aqueous solution was 587 nm.
<合成例10>
 3´-アミノアセトアニリド15.0重量部及び水300重量部に、塩酸酸性条件下、亜硝酸ナトリウム7.59重量部を加えてジアゾ化し、水500重量部に溶解した8-アミノ-2-ナフタレンスルホン酸(1,7-クレーブ酸)22.3重量部とカップリングを行った後、中和、塩析して析出固体を濾過分離し、モノアゾ化合物のウエットケーキを得た。
 このモノアゾ化合物のウエットケーキをN-メチルピロリドン640重量部、および水400重量部に溶解し、塩酸酸性条件下、亜硝酸ナトリウム8.97重量部を加えてジアゾ化し、水500重量部に溶解した8-アミノ-2-ナフタレンスルホン酸(1,7-クレーブ酸)22.3重量部とpH=3~4でカップリングを行った後、塩析して析出物を濾過分離し、ジスアゾ化合物のウエットケーキを得た。
<Synthesis Example 10>
8-amino-2-naphthalene dissolved in 500 parts by weight of water by adding 7.59 parts by weight of sodium nitrite to 15.0 parts by weight of 3′-aminoacetanilide and 300 parts by weight of water under acidic conditions of hydrochloric acid After coupling with 22.3 parts by weight of sulfonic acid (1,7-claveic acid), neutralization and salting out were performed, and the precipitated solid was separated by filtration to obtain a wet cake of a monoazo compound.
This monoazo compound wet cake was dissolved in 640 parts by weight of N-methylpyrrolidone and 400 parts by weight of water, diazotized by adding 8.97 parts by weight of sodium nitrite under acidic conditions of hydrochloric acid, and dissolved in 500 parts by weight of water. After coupling with 22.3 parts by weight of 8-amino-2-naphthalenesulfonic acid (1,7-claveic acid) at pH = 3 to 4, salting out was performed, and the precipitate was separated by filtration to obtain a disazo compound. A wet cake was obtained.
 このジスアゾ化合物のウエットケーキをN-メチルピロリドン600重量部、および水800重量部に溶解し、塩酸酸性条件下、亜硝酸ナトリウム7.59重量部を加えてジアゾ化し、水600重量部に溶解した7-アミノ-1-ナフトール-3,6-ジスルホン酸(RR酸)(純度:96.7%)29.7重量部とpH=9~10でカップリングを行った。反応後、塩析して析出固体を濾過分離し、下記式(I―5)で表されるトリスアゾ色素のナトリウム塩を得た。
 式(I-5)で表されるトリスアゾ色素のナトリウム塩の水溶液を陽イオン交換樹脂(三菱化学社製SK1BH)に通し、遊離酸の水溶液とした後、水酸化リチウム水溶液で中和、濃縮乾燥することにより、式(I-5)で表されるトリスアゾ色素のリチウム塩を得た。この色素の10ppm水溶液での極大吸収波長(λmax)は627nmであった。
 また、式(I-5)で表されるトリスアゾ色素のナトリウム塩の水溶液を陽イオン交換樹脂(三菱化学社製SK1BH)に通し、遊離酸の水溶液とした後、遊離酸の水溶液を重量比で80%の分画と20%の分画とに分け、80%の分画を水酸化リチウム水溶液で中和し、残りの20%の分画の遊離酸の水溶液の混合した後、濃縮乾固することにより、式(I-5)で表されるトリスアゾ色素の80モル%リチウム中和塩を得た。
The wet cake of this disazo compound was dissolved in 600 parts by weight of N-methylpyrrolidone and 800 parts by weight of water, diazotized by adding 7.59 parts by weight of sodium nitrite under hydrochloric acid conditions, and dissolved in 600 parts by weight of water. Coupling was carried out with 29.7 parts by weight of 7-amino-1-naphthol-3,6-disulfonic acid (RR acid) (purity: 96.7%) at pH = 9-10. After the reaction, salting out was performed, and the precipitated solid was separated by filtration to obtain a sodium salt of a trisazo dye represented by the following formula (I-5).
An aqueous solution of a sodium salt of a trisazo dye represented by the formula (I-5) is passed through a cation exchange resin (SK1BH manufactured by Mitsubishi Chemical Corporation) to make an aqueous solution of a free acid, neutralized with an aqueous lithium hydroxide solution, concentrated and dried. As a result, a lithium salt of a trisazo dye represented by the formula (I-5) was obtained. The maximum absorption wavelength (λmax) of this dye in a 10 ppm aqueous solution was 627 nm.
Further, an aqueous solution of a sodium salt of a trisazo dye represented by the formula (I-5) is passed through a cation exchange resin (SK1BH manufactured by Mitsubishi Chemical Corporation) to make an aqueous solution of a free acid, and then the aqueous solution of the free acid is used in a weight ratio. The 80% fraction is divided into a 20% fraction, the 80% fraction is neutralized with an aqueous lithium hydroxide solution, the remaining 20% fraction free acid aqueous solution is mixed, and then concentrated to dryness. As a result, an 80 mol% lithium neutralized salt of the trisazo dye represented by the formula (I-5) was obtained.
<合成例11>
 3-アミノキノリン9.45重量部及び水300重量部に、塩酸酸性条件下、亜硝酸ナトリウム4.99重量部を加えてジアゾ化し、水600重量部に溶解した8-アミノ-2-ナフタレンスルホン酸(1,7-クレーブ酸)14.6重量部とカップリングを行った後、中和、塩析して析出固体を濾過分離し、モノアゾ化合物のウエットケーキを得た。
 このモノアゾ化合物のウエットケーキをN-メチルピロリドン200重量部、および水450重量部に懸濁し、塩酸酸性条件下、亜硝酸ナトリウム6.51重量部を加えてジアゾ化し、水600重量部に溶解した8-アミノ-2-ナフタレンスルホン酸(1,7-クレーブ酸)14.6重量部とpH=3~4でカップリングを行った後、中和、塩析して析出固体を濾過分離し、ジスアゾ化合物のウエットケーキを得た。
 このジスアゾ化合物のウエットケーキをN-メチルピロリドン300重量部、および水200重量部に懸濁し、塩酸酸性条件下、亜硝酸ナトリウム5.20重量部を加えてジアゾ化し、水400重量部に溶解した7-アミノ-1-ナフトール-3,6-ジスルホン酸(RR酸)(純度:65.5%)31.5重量部とpH=9~10でカップリングを行った。反応後、塩析して、析出固体を濾過分離し、下記式(I-6)で表されるトリスアゾ色素のナトリウム塩を得た。
 式(I-6)で表されるトリスアゾ色素のナトリウム塩の水溶液を陽イオン交換樹脂(三菱化学社製SK1BH)に通し、遊離酸の水溶液とした後、水酸化リチウム水溶液で中和、濃縮乾燥することにより、式(I-6)で表されるトリスアゾ色素のリチウム塩を得た。この色素の10ppm水溶液での極大吸収波長(λmax)は630nmであった。
<Synthesis Example 11>
8-amino-2-naphthalenesulfone dissolved in 600 parts by weight of 9.45 parts by weight of 3-aminoquinoline and 300 parts by weight of water by adding 4.99 parts by weight of sodium nitrite under acidic conditions of hydrochloric acid After coupling with 14.6 parts by weight of acid (1,7-clave acid), the mixture was neutralized and salted out, and the precipitated solid was separated by filtration to obtain a wet cake of a monoazo compound.
This monoazo compound wet cake was suspended in 200 parts by weight of N-methylpyrrolidone and 450 parts by weight of water, diazotized by adding 6.51 parts by weight of sodium nitrite under acidic conditions of hydrochloric acid, and dissolved in 600 parts by weight of water. After coupling with 14.6 parts by weight of 8-amino-2-naphthalenesulfonic acid (1,7-clebic acid) at pH = 3-4, neutralization and salting out were performed, and the precipitated solid was separated by filtration. A wet cake of a disazo compound was obtained.
This disazo compound wet cake was suspended in 300 parts by weight of N-methylpyrrolidone and 200 parts by weight of water, diazotized by adding 5.20 parts by weight of sodium nitrite under acidic conditions of hydrochloric acid, and dissolved in 400 parts by weight of water. Coupling was performed with 31.5 parts by weight of 7-amino-1-naphthol-3,6-disulfonic acid (RR acid) (purity: 65.5%) at pH = 9-10. After the reaction, salting out was performed, and the precipitated solid was separated by filtration to obtain a sodium salt of a trisazo dye represented by the following formula (I-6).
An aqueous solution of a sodium salt of a trisazo dye represented by the formula (I-6) is passed through a cation exchange resin (SK1BH manufactured by Mitsubishi Chemical Corporation) to make an aqueous solution of a free acid, neutralized with an aqueous lithium hydroxide solution, concentrated and dried. As a result, a lithium salt of a trisazo dye represented by the formula (I-6) was obtained. The maximum absorption wavelength (λmax) of this dye in a 10 ppm aqueous solution was 630 nm.
<合成例12>
 4-アミノ-N-メチルフタルイミド15.9重量部及び水500重量部に、塩酸酸性条件下、亜硝酸ナトリウム6.83重量部を加えてジアゾ化し、水700重量部に溶解した8-アミノ-2-ナフタレンスルホン酸(1,7-クレーブ酸)20.1重量部とカップリングを行った後、中和、塩析して析出固体を濾過分離し、モノアゾ化合物のウエットケーキを得た。
 このモノアゾ化合物のウエットケーキを、N-メチルピロリドン1000重量部及び水400重量部に溶解し、塩酸酸性条件下、亜硝酸ナトリウム7.48重量部を加えてジアゾ化し、水1100重量部に溶解した7-アミノ-1-ナフトール-3,6-ジスルホン酸(RR酸)(純度:65.5%)29.0重量部とpH=9~10でカップリングを行った。反応後、析出固体を濾過分離し、下記式(III-4)で表されるジスアゾ色素のナトリウム塩を得た。
 式(III-4)で表されるジスアゾ色素のナトリウム塩の水溶液を陽イオン交換樹脂(三菱化学社製SK1BH)に通し、遊離酸の水溶液とした後、水酸化リチウム水溶液で中和、濃縮乾燥することにより、式(III-4)で表されるジスアゾ色素のリチウム塩を得た。この色素の10ppm水溶液での極大吸収波長(λmax)は594nmであった。
<Synthesis Example 12>
To 4-amino-N-methylphthalimide (15.9 parts by weight) and water (500 parts by weight), sodium nitrite (6.83 parts by weight) was added to diazotize under acidic conditions of hydrochloric acid, and dissolved in 700 parts by weight of water. After coupling with 20.1 parts by weight of 2-naphthalenesulfonic acid (1,7-claveic acid), the mixture was neutralized and salted out, and the precipitated solid was separated by filtration to obtain a wet cake of a monoazo compound.
The wet cake of this monoazo compound was dissolved in 1000 parts by weight of N-methylpyrrolidone and 400 parts by weight of water, diazotized by adding 7.48 parts by weight of sodium nitrite under acidic conditions of hydrochloric acid, and dissolved in 1100 parts by weight of water. Coupling was performed with 29.0 parts by weight of 7-amino-1-naphthol-3,6-disulfonic acid (RR acid) (purity: 65.5%) at pH = 9-10. After the reaction, the precipitated solid was separated by filtration to obtain a sodium salt of a disazo dye represented by the following formula (III-4).
An aqueous solution of a sodium salt of a disazo dye represented by the formula (III-4) is passed through a cation exchange resin (SK1BH manufactured by Mitsubishi Chemical Corporation) to make an aqueous solution of a free acid, neutralized with an aqueous lithium hydroxide solution, concentrated and dried. As a result, a lithium salt of a disazo dye represented by the formula (III-4) was obtained. The maximum absorption wavelength (λmax) of this dye in a 10 ppm aqueous solution was 594 nm.
<合成例13>
 6-アミノ-1-ナフタレンスルホン酸(純度67.3%)4.78重量部と水60重量部に、塩酸酸性条件下、亜硝酸ナトリウム1.12重量部を加えてジアゾ化し、水80重量部に溶解した3-アミノフタルイミド2.34重量部とカップリングを行った後、中和、塩析して析出固体を濾過分離し、モノアゾ化合物のウエットケーキを得た。
 このモノアゾ化合物のウエットケーキを水100重量部に懸濁し、塩酸酸性条件下、亜硝酸ナトリウム1.12重量部を加えてジアゾ化し、水100重量部に溶解した7-アミノ-1-ナフトール-3,6-ジスルホン酸(RR酸)(純度:65.5%)7.02重量部とpH=9~10でカップリングを行った。反応後、析出固体を濾過分離し、下記式(III-5)で表されるジスアゾ色素のナトリウム塩を得た。
 式(III-5)で表されるジスアゾ色素のナトリウム塩の水溶液を陽イオン交換樹脂(三菱化学社製SK1BH)に通し、遊離酸の水溶液とした後、水酸化リチウム水溶液で中和、濃縮乾燥することにより、式(III-5)で表されるジスアゾ色素のリチウム塩を得た。この色素の10ppm水溶液での極大吸収波長(λmax)は526nmであった。
<Synthesis Example 13>
Diazotization is carried out by adding 1.12 parts by weight of sodium nitrite to 4.78 parts by weight of 6-amino-1-naphthalenesulfonic acid (purity 67.3%) and 60 parts by weight of water under acidic conditions of hydrochloric acid, and 80 parts by weight of water. After coupling with 2.34 parts by weight of 3-aminophthalimide dissolved in 1 part, the mixture was neutralized and salted out, and the precipitated solid was separated by filtration to obtain a monoazo compound wet cake.
This monoazo compound wet cake was suspended in 100 parts by weight of water, diazotized by adding 1.12 parts by weight of sodium nitrite under acidic conditions of hydrochloric acid, and 7-amino-1-naphthol-3 dissolved in 100 parts by weight of water. , 6-Disulfonic acid (RR acid) (purity: 65.5%) was coupled with 7.02 parts by weight at pH = 9-10. After the reaction, the precipitated solid was separated by filtration to obtain a sodium salt of a disazo dye represented by the following formula (III-5).
An aqueous solution of a disazo dye sodium salt represented by the formula (III-5) is passed through a cation exchange resin (SK1BH, manufactured by Mitsubishi Chemical Corporation) to make an aqueous solution of a free acid, neutralized with an aqueous lithium hydroxide solution, concentrated and dried. As a result, a lithium salt of a disazo dye represented by the formula (III-5) was obtained. The maximum absorption wavelength (λmax) of this dye in a 10 ppm aqueous solution was 526 nm.
<合成例14>
 3-アミノキノリン2.88重量部、および水100重量部に塩酸酸性条件下、亜硝酸ナトリウム1.52重量部を加えてジアゾ化し、水100重量部に溶解した5-アミノキノリン2.88重量部とカップリングを行った後、中和、塩析して析出固体を濾過分離し、モノアゾ化合物のウエットケーキを得た。
 このモノアゾ化合物のウエットケーキをN-メチルピロリドン100重量部、および水100重量部に懸濁し、塩酸酸性条件下、亜硝酸ナトリウム1.52重量部を加えてジアゾ化し、水200重量部に溶解した7-アミノ-1-ナフトール-3,6-ジスルホン酸(RR酸)(純度:65.5%)9.75重量部とpH=9~10でカップリングを行った。反応後、塩析して、析出固体を濾過分離し、下記式(III-6)で表されるジスアゾ色素のナトリウム塩を得た。
 式(III-6)で表されるジスアゾ色素のナトリウム塩の水溶液を陽イオン交換樹脂(三菱化学社製SK1BH)に通し、遊離酸の水溶液とした後、水酸化リチウム水溶液で中和、濃縮乾燥することにより、式(III-6)で表されるジスアゾ色素のリチウム塩を得た。この色素の10ppm水溶液での極大吸収波長(λmax)は581nmであった。
<Synthesis Example 14>
2.88 parts by weight of 3-aminoquinoline and 2.88 parts by weight of 5-aminoquinoline dissolved in 100 parts by weight of water by adding 1.52 parts by weight of sodium nitrite to 100 parts by weight of water under acidic conditions of hydrochloric acid After coupling with the part, neutralization and salting out were performed, and the precipitated solid was separated by filtration to obtain a wet cake of a monoazo compound.
The wet cake of this monoazo compound was suspended in 100 parts by weight of N-methylpyrrolidone and 100 parts by weight of water, diazotized by adding 1.52 parts by weight of sodium nitrite under acidic conditions of hydrochloric acid, and dissolved in 200 parts by weight of water. Coupling was conducted with 9.75 parts by weight of 7-amino-1-naphthol-3,6-disulfonic acid (RR acid) (purity: 65.5%) at pH = 9-10. After the reaction, salting out was performed, and the precipitated solid was separated by filtration to obtain a sodium salt of a disazo dye represented by the following formula (III-6).
An aqueous solution of a disazo dye sodium salt represented by the formula (III-6) is passed through a cation exchange resin (SK1BH, manufactured by Mitsubishi Chemical Corporation) to make an aqueous solution of a free acid, neutralized with an aqueous lithium hydroxide solution, concentrated and dried. As a result, a lithium salt of a disazo dye represented by the formula (III-6) was obtained. The maximum absorption wavelength (λmax) of this dye in a 10 ppm aqueous solution was 581 nm.
[粘度の測定方法]
 実施例1~5及び比較例1~4の粘度の測定は、レオメーターVAR-50(REOLOGICA社製)を使用し、パラレルプレート(直径40mm、ギャップ0.8mm)にて行った。測定温度を25℃とし、せん断速度1000s-1で5秒間プレシェアを行った後、せん断速度を1000s-1から10s-1まで180秒間で変化させて、せん断速度掃引測定を行った。
 一般に液晶性物質の粘度はせん断速度によって変化するので、代表値としてせん断速度400s-1における粘度を各試料の粘度とした。
 実施例6~8及び比較例5~6の粘度の測定は、B型粘度計DV-I Prime(BROOKFILELD社製)を使用し、コーンプレート(直径24mm、コーン角度0.8°、ギャップ0.0005inch=0.013mm)にて行った。測定温度を25℃とし、せん断速度90.0s-1で10秒間プレシェアを行った後、せん断速度を90.0s-1から2.25s-1まで720秒間で変化させて、せん断速度掃引測定を行った。
 一般に液晶性物質の粘度はせん断速度によって変化する。本測定装置の限界測定粘度の観点から、代表値としてせん断速度11.3s-1における粘度を各試料の粘度とした。
[Measurement method of viscosity]
The viscosity of Examples 1 to 5 and Comparative Examples 1 to 4 was measured using a rheometer VAR-50 (manufactured by REOLOGICA) on a parallel plate (diameter 40 mm, gap 0.8 mm). After pre-shearing was performed at a measurement temperature of 25 ° C. and a shear rate of 1000 s −1 for 5 seconds, the shear rate was changed from 1000 s −1 to 10 s −1 in 180 seconds, and shear rate sweep measurement was performed.
In general, since the viscosity of the liquid crystalline substance varies depending on the shear rate, the viscosity at the shear rate of 400 s −1 is taken as the viscosity of each sample as a representative value.
The viscosities of Examples 6 to 8 and Comparative Examples 5 to 6 were measured using a B-type viscometer DV-I Prime (manufactured by BROOKFIELD) and a cone plate (diameter 24 mm, cone angle 0.8 °, gap 0. 0005 inch = 0.013 mm). The measurement temperature was 25 ° C., after 10 seconds Pureshea at a shear rate of 90.0s -1, the shear rate is varied in 720 seconds 90.0S -1 to 2.25s -1, the shear rate sweep measurement went.
In general, the viscosity of a liquid crystal substance varies depending on the shear rate. From the viewpoint of the limit measurement viscosity of this measuring apparatus, the viscosity at a shear rate of 11.3 s −1 was taken as the viscosity of each sample as a representative value.
[異方性色素膜の吸収軸方向の偏光に対する透過率及び二色比の測定方法]
 実施例及び比較例において、異方性色素膜の吸収軸方向の偏光に対する透過率及び二色比は、グラムトムソン偏光子を備える分光光度計(大塚電子(株)製、製品名「RETS-100」)を用いて測定した。まず、異方性色素膜に直線偏光の測定光を入射し、異方性色素膜の吸収軸方向の偏光に対する透過率及び偏光軸方向の偏光に対する透過率を測定した後、次式により二色比を計算した。
 二色比(D)=Az/Ay
   Ay=-log(Ty)
   Az=-log(Tz)
     Tz:異方性色素膜の吸収軸方向の偏光に対する透過率
     Ty:異方性色素膜の偏光軸方向の偏光に対する透過率
[Measurement method of transmittance and dichroic ratio for polarized light in the absorption axis direction of anisotropic dye film]
In Examples and Comparative Examples, the transmittance and dichroic ratio for polarized light in the absorption axis direction of the anisotropic dye film were measured using a spectrophotometer equipped with a Gram Thompson polarizer (manufactured by Otsuka Electronics Co., Ltd., product name “RETS-100”). )). First, linearly polarized measuring light is incident on the anisotropic dye film, and the transmittance of the anisotropic dye film with respect to the polarized light in the absorption axis direction and the transmittance with respect to the polarized light in the direction of the polarization axis are measured. The ratio was calculated.
Dichroic ratio (D) = Az / Ay
Ay = -log (Ty)
Az = -log (Tz)
Tz: transmittance for polarized light in the direction of the absorption axis of the anisotropic dye film Ty: transmittance for polarized light in the direction of the polarization axis of the anisotropic dye film
[濾過性の評価方法]
 調液した溶液の濾過性は下記の要領で評価した。調液した溶液を5ml準備し、Millex-LH 0.45・m(Merck Millipore Ltd.製)を装着した10mlシリンジにて濾過した。濾過性は以下のように評価した。本発明では、○、△が実用可のレベルである。
〇:速やかに濾過できた。
△:ゆっくりであるが濾過できた。
×:シリンジに非常に強い力を加える必要がある又は濾過ができなかった。
[Method for evaluating filterability]
The filterability of the prepared solution was evaluated as follows. 5 ml of the prepared solution was prepared and filtered with a 10 ml syringe equipped with Millex-LH 0.45 · m (manufactured by Merck Millipore Ltd.). The filterability was evaluated as follows. In the present invention, ○ and Δ are practical levels.
◯: Filtered quickly.
Δ: Slow but filtered.
X: It was necessary to apply a very strong force to the syringe, or filtration was not possible.
[実施例1]
 水88.40部に、下記式(I-1)で表されるアゾ色素のリチウム塩10.64部、下記式(I-1)で表されるアゾ色素の80モル%リチウム中和塩0.40部、下記式(III-1)で表されるアゾ色素のリチウム塩0.12部、下記式(V-1)で表されるアゾ色素のリチウム塩0.04部と塩化リチウム0.4部を加え、撹拌して溶解させた後、濾過して不溶分を除去することにより、異方性色素膜用組成物1を得た。
 スライドガラス上にこの異方性色素膜用組成物1を一滴垂らし、カバーガラスで覆った試料を偏光顕微鏡にて観察して、液晶相が発現しているか確認することで、リオトロピック液晶性の発現を確認した。この異方性色素膜用組成物1の粘度を前記の方法にて測定した。その結果を表1に示す。
 一方、基材としてポリイミドの配向膜(LX1400、日立化成デュポンマイクロシステムズ社製)が形成されたガラス基板(150mm×150mm、厚さ1.1mm、膜厚約800Åのポリイミドにあらかじめ布でラビング処理を施したもの)に前記の異方性色素膜用組成物1をギャップ10μmのアプリケーター(堀田製作所社製) で塗布した後、自然乾燥することにより異方性色素膜1を得た。得られた異方性色素膜1について、640nmでの二色比(D)を測定した。その結果を表1に示す。
[Example 1]
To 88.40 parts of water, 10.64 parts of a lithium salt of an azo dye represented by the following formula (I-1), 80 mol% lithium neutralized salt of an azo dye represented by the following formula (I-1) 0 40 parts, 0.12 part of a lithium salt of an azo dye represented by the following formula (III-1), 0.04 part of a lithium salt of an azo dye represented by the following formula (V-1), and 0. After adding 4 parts and stirring and dissolving, it filtered and the insoluble content was removed, and the composition 1 for anisotropic dye films was obtained.
A drop of this composition 1 for an anisotropic dye film is placed on a slide glass, and a sample covered with a cover glass is observed with a polarizing microscope to confirm whether or not a liquid crystal phase is expressed. It was confirmed. The viscosity of this anisotropic dye film composition 1 was measured by the method described above. The results are shown in Table 1.
On the other hand, a glass substrate (150 mm × 150 mm, thickness 1.1 mm, film thickness of about 800 mm) on which a polyimide alignment film (LX1400, manufactured by Hitachi Chemical DuPont Microsystems) is formed as a base material is rubbed with a cloth in advance. The anisotropic dye film 1 was obtained by applying the composition 1 for anisotropic dye film to an applied applicator with a gap 10 μm applicator (manufactured by Horita Seisakusho) and then naturally drying. About the obtained anisotropic pigment | dye film | membrane 1, the dichroic ratio (D) in 640 nm was measured. The results are shown in Table 1.
[実施例2]
 水88.40部に、下記式(I-1)で表されるアゾ色素のリチウム塩10.64部、下記式(I-1)で表されるアゾ色素の80モル%リチウム中和塩0.40部、下記式(III-2)で表されるアゾ色素のリチウム塩0.12部、下記式(V-1)で表されるアゾ色素のリチウム塩0.04部と塩化リチウム0.4部を加え撹拌して溶解させた後、濾過して不溶分を除去することにより、異方性色素膜用組成物2を得た。
 スライドガラス上にこの異方性色素膜用組成物2を一滴垂らし、カバーガラスで覆った試料を偏光顕微鏡にて観察して、液晶相が発現しているか確認することで、リオトロピック液晶性の発現を確認した。この異方性色素膜用組成物2の粘度を前記の方法にて測定した。その結果を表1に示す。
 一方、実施例1と同様の基板に異方性色素膜用組成物2をギャップ10μmのアプリケーター(堀田製作所社製)で塗布した後、自然乾燥することにより異方性色素膜2を得た。得られた異方性色素膜2について、640nmでの二色比(D)を測定した。その結果を表1に示す。
[Example 2]
To 88.40 parts of water, 10.64 parts of a lithium salt of an azo dye represented by the following formula (I-1), 80 mol% lithium neutralized salt of an azo dye represented by the following formula (I-1) 0 40 parts, 0.12 part of a lithium salt of an azo dye represented by the following formula (III-2), 0.04 part of a lithium salt of an azo dye represented by the following formula (V-1) and 0. After adding 4 parts, stirring and dissolving, it filtered and the insoluble content was removed and the composition 2 for anisotropic dye films was obtained.
A drop of this composition for anisotropic dye film 2 is placed on a slide glass, and a sample covered with a cover glass is observed with a polarizing microscope to confirm whether a liquid crystal phase is present. It was confirmed. The viscosity of this anisotropic dye film composition 2 was measured by the method described above. The results are shown in Table 1.
On the other hand, the anisotropic dye film composition 2 was applied to the same substrate as in Example 1 with an applicator (manufactured by Horita Seisakusho) with a gap of 10 μm, and then naturally dried to obtain the anisotropic dye film 2. With respect to the obtained anisotropic dye film 2, the dichroic ratio (D) at 640 nm was measured. The results are shown in Table 1.
[実施例3]
 水88.40部に、下記式(I-2)で表されるアゾ色素のリチウム塩10.64部、下記式(I-2)で表されるアゾ色素の80モル%リチウム中和塩0.40部、下記式(III-1)で表されるアゾ色素のリチウム塩0.12部、下記式(V-2)で表されるアゾ化合物のリチウム塩0.04部と塩化リチウム0.4部を加え、撹拌して溶解させた後、濾過して不溶分を除去することにより、異方性色素膜用組成物3を得た。
 スライドガラス上にこの異方性色素膜用組成物3を一滴垂らし、カバーガラスで覆った試料を偏光顕微鏡にて観察して、液晶相が発現しているか確認することで、リオトロピック液晶性の発現を確認した。この異方性色素膜用組成物3の粘度を前記の方法にて測定した。その結果を表1に示す。
 一方、実施例1と同様の基板に前記の異方性色素膜用組成物3をギャップ10μmのアプリケーター(堀田製作所社製)で塗布した後、自然乾燥することにより異方性色素膜3を得た。得られた異方性色素膜について、640nmでの二色比(D)を測定した。その結果を表1に示す。
[Example 3]
To 88.40 parts of water, 10.64 parts of a lithium salt of an azo dye represented by the following formula (I-2), 80 mol% lithium neutralized salt of an azo dye represented by the following formula (I-2) 0 40 parts, 0.12 part of a lithium salt of an azo dye represented by the following formula (III-1), 0.04 part of a lithium salt of an azo compound represented by the following formula (V-2), and 0. After adding 4 parts and stirring and dissolving, it filtered and the insoluble content was removed and the composition 3 for anisotropic dye films was obtained.
A drop of this composition for anisotropic dye film 3 on a slide glass and observing a sample covered with a cover glass with a polarizing microscope to confirm whether or not a liquid crystal phase is expressed, thereby exhibiting lyotropic liquid crystallinity. It was confirmed. The viscosity of this anisotropic dye film composition 3 was measured by the method described above. The results are shown in Table 1.
On the other hand, the anisotropic dye film composition 3 was applied to the same substrate as in Example 1 with an applicator (manufactured by Horita Seisakusho) with a gap of 10 μm, and then naturally dried to obtain the anisotropic dye film 3. It was. About the obtained anisotropic pigment | dye film | membrane, the dichroic ratio (D) in 640 nm was measured. The results are shown in Table 1.
[実施例4]
 水90.68部に、下記式(I-3)で表されるアゾ色素のリチウム塩8.20部、下記式(I-3)で表されるアゾ色素の80モル%リチウム中和塩0.64部、下記式(III-1)で表されるアゾ色素のリチウム塩0.16部と塩化リチウム0.32部を加え、撹拌して溶解させた後、濾過して不溶分を除去することにより、異方性色素膜用組成物4を得た。
 スライドガラス上にこの異方性色素膜用組成物4を一滴垂らし、カバーガラスで覆った試料を偏光顕微鏡にて観察して、液晶相が発現しているか確認することで、リオトロピック液晶性の発現を確認した。この異方性色素膜用組成物4の粘度を前記の方法にて測定した。その結果を表1に示す。
 一方、実施例1と同様の基板に前記の異方性色素膜用組成物4をギャップ2μmのアプリケーター(堀田製作所社製)で塗布した後、自然乾燥することにより異方性色素膜4を得た。得られた異方性色素膜について、640nmでの二色比(D)を測定した。その結果を表1に示す。
[Example 4]
In 90.68 parts of water, 8.20 parts of a lithium salt of an azo dye represented by the following formula (I-3), 80 mol% lithium neutralized salt of an azo dye represented by the following formula (I-3) 0 .64 parts, 0.16 part of a lithium salt of an azo dye represented by the following formula (III-1) and 0.32 part of lithium chloride are added, dissolved by stirring, and then filtered to remove insoluble matters. This obtained composition 4 for anisotropic dye films.
A drop of this composition for anisotropic dye film 4 is placed on a slide glass, and a sample covered with a cover glass is observed with a polarizing microscope to confirm whether a liquid crystal phase is expressed. It was confirmed. The viscosity of this anisotropic dye film composition 4 was measured by the method described above. The results are shown in Table 1.
On the other hand, the anisotropic dye film composition 4 was applied to the same substrate as in Example 1 with an applicator (manufactured by Horita Seisakusho) with a gap of 2 μm, and then naturally dried to obtain the anisotropic dye film 4. It was. About the obtained anisotropic pigment | dye film | membrane, the dichroic ratio (D) in 640 nm was measured. The results are shown in Table 1.
[実施例5]
 水80.86部に、下記式(I-4)で表されるアゾ色素のリチウム塩16.82部、下記式(I-4)で表されるアゾ色素の80モル%リチウム中和塩1.32部、下記式(III-3)で表されるアゾ色素のリチウム塩0.34部と塩化リチウム0.66部を加え、撹拌して溶解させた後、濾過して不溶分を除去することにより、異方性色素膜用組成物5を得た。
 スライドガラス上にこの異方性色素膜用組成物5を一滴垂らし、カバーガラスで覆った試料を偏光顕微鏡にて観察して、液晶相が発現しているか確認することで、リオトロピック液晶性の発現を確認した。この異方性色素膜用組成物5の粘度を前記の方法にて測定した。その結果を表1に示す。
 一方、実施例1と同様の基板に前記の異方性色素膜用組成物5をギャップ2μmのアプリケーター(堀田製作所社製)で塗布した後、自然乾燥することにより異方性色素膜5を得た。得られた異方性色素膜について、640nmでの二色比(D)を測定した。その結果を表1に示す。
[Example 5]
In 80.86 parts of water, 16.82 parts of a lithium salt of an azo dye represented by the following formula (I-4), 80 mol% lithium neutralized salt of an azo dye represented by the following formula (I-4) 1 .32 parts, 0.34 parts of lithium salt of azo dye represented by the following formula (III-3) and 0.66 parts of lithium chloride are added, dissolved by stirring, and then filtered to remove insolubles. Thus, a composition 5 for anisotropic dye film was obtained.
A drop of this composition for anisotropic dye film 5 on a slide glass and observing a sample covered with a cover glass with a polarizing microscope to confirm whether or not a liquid crystal phase is expressed, thereby exhibiting lyotropic liquid crystal properties. It was confirmed. The viscosity of this anisotropic dye film composition 5 was measured by the method described above. The results are shown in Table 1.
On the other hand, the anisotropic dye film composition 5 was applied to the same substrate as in Example 1 with an applicator (manufactured by Horita Seisakusho) with a gap of 2 μm, and then naturally dried to obtain the anisotropic dye film 5. It was. About the obtained anisotropic pigment | dye film | membrane, the dichroic ratio (D) in 640 nm was measured. The results are shown in Table 1.
[実施例6]    
 水83.78部に、下記式(I-5)で表されるアゾ色素のリチウム塩14.35部、下記式(I-5)で表されるアゾ色素の80モル%リチウム中和塩1.10部、下記式(III-4)で表されるアゾ色素のリチウム塩0.22部と塩化リチウム0.55部を加え、撹拌して溶解させた後、濾過して不溶分を除去することにより、異方性色素膜用組成物6を得た。
 スライドガラス上にこの異方性色素膜用組成物6を一滴垂らし、カバーガラスで覆った試料を偏光顕微鏡にて観察して、液晶相が発現しているか確認することで、リオトロピック液晶性の発現を確認した。この異方性色素膜用組成物6の粘度を前記の方法にて測定した。その結果を表2に示す。
[Example 6]
In 83.78 parts of water, 14.35 parts of a lithium salt of an azo dye represented by the following formula (I-5), 80 mol% lithium neutralized salt of an azo dye represented by the following formula (I-5) 1 .10 parts, 0.22 part of a lithium salt of an azo dye represented by the following formula (III-4) and 0.55 part of lithium chloride are added, dissolved by stirring, and then filtered to remove insoluble matters. This obtained composition 6 for anisotropic dye films.
A drop of this composition for anisotropic dye film 6 is placed on a slide glass, and a sample covered with a cover glass is observed with a polarizing microscope to confirm whether a liquid crystal phase is expressed. It was confirmed. The viscosity of this anisotropic dye film composition 6 was measured by the method described above. The results are shown in Table 2.
[実施例7]    
 水83.78部に、下記式(I-5)で表されるアゾ色素のリチウム塩14.35部、下記式(I-5)で表されるアゾ色素の80モル%リチウム中和塩1.10部、下記式(III-5)で表されるアゾ色素のリチウム塩0.22部と塩化リチウム 0.55部を加え、撹拌して溶解させた後、濾過して不溶分を除去することにより、異方性色素膜用組成物7を得た。
 スライドガラス上にこの異方性色素膜用組成物7を一滴垂らし、カバーガラスで覆った試料を偏光顕微鏡にて観察して、液晶相が発現しているか確認することで、リオトロピック液晶性の発現を確認した。この異方性色素膜用組成物7の粘度を前記の方法にて測定した。その結果を表2に示す。
[Example 7]
In 83.78 parts of water, 14.35 parts of a lithium salt of an azo dye represented by the following formula (I-5), 80 mol% lithium neutralized salt of an azo dye represented by the following formula (I-5) 1 .10 parts, 0.22 part of a lithium salt of an azo dye represented by the following formula (III-5) and 0.55 part of lithium chloride are added, dissolved by stirring, and then filtered to remove insoluble matters. As a result, a composition 7 for anisotropic dye film was obtained.
A drop of this composition 7 for an anisotropic dye film is placed on a slide glass, and a sample covered with a cover glass is observed with a polarizing microscope to confirm whether a liquid crystal phase is expressed. It was confirmed. The viscosity of this anisotropic dye film composition 7 was measured by the method described above. The results are shown in Table 2.
[実施例8]    
 水91.245部に、下記式(I-6)で表されアゾ色素のリチウム塩8.500部、下記式(III-6)で表されるアゾ色素のリチウム塩0.255部を加え、撹拌して溶解させた後、濾過して不溶分を除去することにより、異方性色素膜用組成物8を得た。
 スライドガラス上にこの異方性色素膜用組成物8を一滴垂らし、カバーガラスで覆った試料を偏光顕微鏡にて観察して、液晶相が発現しているか確認することで、リオトロピック液晶性の発現を確認した。この異方性色素膜用組成物8の粘度を前記の方法にて測定した。その結果を表2に示す。
[Example 8]
To 91.245 parts of water, 8.500 parts of a lithium salt of an azo dye represented by the following formula (I-6) and 0.255 part of a lithium salt of an azo dye represented by the following formula (III-6) were added, After stirring and dissolving, the composition for anisotropic dye film 8 was obtained by filtering to remove insoluble matter.
A drop of this composition for anisotropic dye film 8 is placed on a slide glass, and a sample covered with a cover glass is observed with a polarizing microscope to confirm whether or not a liquid crystal phase is expressed. It was confirmed. The viscosity of this anisotropic dye film composition 8 was measured by the method described above. The results are shown in Table 2.
[比較例1]
 水88.4部に、下記式(I-1)で表されるアゾ色素のリチウム塩10.80部、下記式(I-1)で表されるアゾ色素の80モル%リチウム中和塩0.40部と塩化リチウム0.40部を加え、撹拌して溶解させた後、濾過して不溶分を除去することにより、異方性色素膜用組成物31を得た。
 スライドガラス上にこの異方性色素膜用組成物31を一滴垂らし、カバーガラスで覆った試料を偏光顕微鏡にて観察して、液晶相が発現しているか確認することで、リオトロピック液晶性の発現を確認した。この異方性色素膜用組成物31の粘度を前記の方法にて測定した。その結果を表1に示す。
 一方、実施例1と同様の基板に異方性色素膜用組成物31をギャップ10μmのアプリケーター(堀田製作所社製)で塗布した後、自然乾燥することにより異方性色素膜31を得た。得られた異方性色素膜31について、640nmでの二色比(D)を測定した。その結果を表1に示す。
[Comparative Example 1]
To 88.4 parts of water, 10.80 parts of a lithium salt of an azo dye represented by the following formula (I-1), 80 mol% lithium neutralized salt of an azo dye represented by the following formula (I-1) 0 .40 parts and 0.40 part of lithium chloride were added, dissolved by stirring, and then filtered to remove insolubles, thereby obtaining an anisotropic dye film composition 31.
A drop of this composition 31 for an anisotropic dye film is placed on a slide glass, and a sample covered with a cover glass is observed with a polarizing microscope to confirm whether a liquid crystal phase is expressed. It was confirmed. The viscosity of this anisotropic dye film composition 31 was measured by the method described above. The results are shown in Table 1.
On the other hand, the anisotropic dye film composition 31 was applied to the same substrate as in Example 1 with an applicator (manufactured by Horita Seisakusho) with a gap of 10 μm, and then naturally dried to obtain the anisotropic dye film 31. About the obtained anisotropic dye film 31, the dichroic ratio (D) in 640 nm was measured. The results are shown in Table 1.
[比較例2]
 水88.4部に、下記式(I-2)で表されるアゾ色素のリチウム塩10.80部、下記式(I-2)で表されるアゾ色素の80モル%リチウム中和塩0.40部と塩化リチウム0.40部を加え、撹拌して溶解させた後、濾過して不溶分を除去することにより、異方性色素膜用組成物32を得た。
 スライドガラス上にこの異方性色素膜用組成物32を一滴垂らし、カバーガラスで覆った試料を偏光顕微鏡にて観察して、液晶相が発現しているか確認することで、リオトロピック液晶性の発現を確認した。この異方性色素膜用組成物32の粘度を前記の方法にて測定した。その結果を表1に示す。
 一方、実施例1と同様の基板に異方性色素膜用組成物32をギャップ10μmのアプリケーター(堀田製作所社製)で塗布した後、自然乾燥することにより異方性色素膜32を得た。得られた異方性色素膜32について、640nmでの二色比(D)を測定した。その結果を表1に示す。
[Comparative Example 2]
To 88.4 parts of water, 10.80 parts of a lithium salt of an azo dye represented by the following formula (I-2), 80 mol% lithium neutralized salt of an azo dye represented by the following formula (I-2) 0 .40 parts and 0.40 part of lithium chloride were added, dissolved by stirring, and then filtered to remove insolubles, thereby obtaining anisotropic dye film composition 32.
A drop of this composition for anisotropic dye film 32 is dropped on a slide glass, and a sample covered with a cover glass is observed with a polarizing microscope to confirm whether a liquid crystal phase is expressed. It was confirmed. The viscosity of this anisotropic dye film composition 32 was measured by the method described above. The results are shown in Table 1.
On the other hand, the anisotropic dye film composition 32 was applied to the same substrate as in Example 1 with an applicator (manufactured by Horita Seisakusho) with a gap of 10 μm, and then naturally dried to obtain the anisotropic dye film 32. About the obtained anisotropic dye film | membrane 32, the dichroic ratio (D) in 640 nm was measured. The results are shown in Table 1.
[比較例3]
 水90.68部に、下記式(I-3)で表されるアゾ色素のリチウム塩8.36部、下記式(I-3)で表されるアゾ色素の80モル%リチウム中和塩0.64部と塩化リチウム0.32部を加え、撹拌して溶解させた後、濾過して不溶分を除去することにより、異方性色素膜用組成物33を得た。
 スライドガラス上にこの異方性色素膜用組成物33を一滴垂らし、カバーガラスで覆った試料を偏光顕微鏡にて観察して、液晶相が発現しているか確認することで、リオトロピック液晶性の発現を確認した。この異方性色素膜用組成物33の粘度を前記の方法にて測定した。その結果を表1に示す。
 一方、実施例1と同様の基板に前記の異方性色素膜用組成物33をギャップ2μmのアプリケーター(堀田製作所社製)で塗布した後、自然乾燥することにより異方性色素膜33を得た。得られた異方性色素膜33について、640nmでの二色比(D)を測定した。その結果を表1に示す。
[Comparative Example 3]
In 90.68 parts of water, 8.36 parts of a lithium salt of an azo dye represented by the following formula (I-3), 80 mol% lithium neutralized salt of an azo dye represented by the following formula (I-3) 0 .64 parts and 0.32 parts of lithium chloride were added, dissolved by stirring, and then filtered to remove insolubles, thereby obtaining anisotropic dye film composition 33.
A drop of this composition for anisotropic dye film 33 is placed on a slide glass, and a sample covered with a cover glass is observed with a polarizing microscope to confirm whether or not a liquid crystal phase is expressed. It was confirmed. The viscosity of the anisotropic dye film composition 33 was measured by the method described above. The results are shown in Table 1.
On the other hand, the anisotropic dye film composition 33 was applied to the same substrate as in Example 1 with an applicator (manufactured by Horita Seisakusho) with a gap of 2 μm, and then naturally dried to obtain the anisotropic dye film 33. It was. About the obtained anisotropic pigment | dye film | membrane 33, the dichroic ratio (D) in 640 nm was measured. The results are shown in Table 1.
[比較例4]
 水80.87部に、下記式(I-4)で表されるアゾ色素のリチウム塩17.15部、下記式(I-4)で表されるアゾ色素の80モル%リチウム中和塩1.32部と塩化リチウム0.66部を加え、撹拌して溶解させた後、濾過して不溶分を除去することにより、異方性色素膜用組成物34を得た。
 スライドガラス上にこの異方性色素膜用組成物34を一滴垂らし、カバーガラスで覆った試料を偏光顕微鏡にて観察して、液晶相が発現しているか確認することで、リオトロピック液晶性の発現を確認した。この異方性色素膜用組成物34の粘度を前記の方法にて測定した。その結果を表1に示す。
 一方、実施例1と同様の基板に前記の異方性色素膜用組成物34をギャップ2μmのアプリケーター(堀田製作所社製)で塗布した後、自然乾燥することにより異方性色素膜34を得た。得られた異方性色素膜について、640nmでの二色比(D)を測定した。その結果を表1に示す。
[Comparative Example 4]
In 80.87 parts of water, 17.15 parts of a lithium salt of an azo dye represented by the following formula (I-4), 80 mol% lithium neutralized salt of an azo dye represented by the following formula (I-4) 1 .32 parts and 0.66 parts of lithium chloride were added, dissolved by stirring, and then filtered to remove insolubles, whereby a composition 34 for anisotropic dye film was obtained.
A drop of this anisotropic dye film composition 34 is placed on a slide glass, and a sample covered with a cover glass is observed with a polarizing microscope to confirm whether a liquid crystal phase is expressed. It was confirmed. The viscosity of the anisotropic dye film composition 34 was measured by the method described above. The results are shown in Table 1.
On the other hand, the anisotropic dye film composition 34 was applied to the same substrate as in Example 1 with an applicator (manufactured by Horita Seisakusho) with a gap of 2 μm, and then naturally dried to obtain the anisotropic dye film 34. It was. About the obtained anisotropic pigment | dye film | membrane, the dichroic ratio (D) in 640 nm was measured. The results are shown in Table 1.
[比較例5]    
 水84.00部に、下記式(I-5)で表されるアゾ色素のリチウム塩14.35部、下記式(I-5)で表されるアゾ色素の80モル%リチウム中和塩1.10部と塩化リチウム0.55部を加え、撹拌して溶解させた後、濾過して不溶分を除去することにより、異方性色素膜用組成物35を得た。
 スライドガラス上にこの異方性色素膜用組成物35を一滴垂らし、カバーガラスで覆った試料を偏光顕微鏡にて観察して、液晶相が発現しているか確認することで、リオトロピック液晶性の発現を確認した。この異方性色素膜用組成物35の粘度を前記の方法にて測定した。その結果を表2に示す。
[Comparative Example 5]
In 84.00 parts of water, 14.35 parts of a lithium salt of an azo dye represented by the following formula (I-5), 80 mol% lithium neutralized salt of an azo dye represented by the following formula (I-5) 1 10 parts and 0.55 parts of lithium chloride were added and dissolved by stirring, followed by filtration to remove insolubles, thereby obtaining an anisotropic dye film composition 35.
A drop of this anisotropic dye film composition 35 is placed on a slide glass, and a sample covered with a cover glass is observed with a polarizing microscope to confirm whether or not a liquid crystal phase is expressed. It was confirmed. The viscosity of this anisotropic dye film composition 35 was measured by the method described above. The results are shown in Table 2.
[比較例6]    
 水91.50部に、下記式(I-6)で表されるアゾ色素のリチウム塩8.50部を加え、撹拌して溶解させた後、濾過して不溶分を除去することにより、異方性色素膜用組成物36を得た。
 スライドガラス上にこの異方性色素膜用組成物36を一滴垂らし、カバーガラスで覆った試料を偏光顕微鏡にて観察して、液晶相が発現しているか確認することで、リオトロピック液晶性の発現を確認した。この異方性色素膜用組成物36の粘度を前記の方法にて測定した。その結果を表2に示す。
[Comparative Example 6]
To 91.50 parts of water, 8.50 parts of a lithium salt of an azo dye represented by the following formula (I-6) was added, dissolved by stirring, and then filtered to remove insoluble matters. An isotropic dye film composition 36 was obtained.
A drop of this composition for anisotropic dye film 36 is placed on a slide glass, and a sample covered with a cover glass is observed with a polarizing microscope to confirm whether a liquid crystal phase is expressed. It was confirmed. The viscosity of the anisotropic dye film composition 36 was measured by the method described above. The results are shown in Table 2.
[実施例9]    
 基材としてポリイミドの配向膜(LX1400、日立化成デュポンマイクロシステムズ社製)が形成されたガラス基板(100mm×100mm、厚さ1.1mm、膜厚約800Åのポリイミドにあらかじめ布でラビング処理を施したもの)に前記の異方性色素膜用組成物3をダイコーターを用いて塗布時の膜厚が4.5μmとなるように塗布した。基材全面に欠陥なく塗布できるような上限の塗布速度を求めたところ、25mm/sで塗布ができた。その後、自然乾燥することにより異方性色素膜6を得た。得られた異方性色素膜6について、640nmでの二色比(D)を測定した。その結果を表3に示す。
[Example 9]
A glass substrate (100 mm × 100 mm, thickness 1.1 mm, film thickness of about 800 mm) on which a polyimide alignment film (LX1400, manufactured by Hitachi Chemical DuPont Microsystems) was formed as a base material was previously rubbed with a cloth. The above-mentioned composition 3 for anisotropic dye film was applied using a die coater so that the film thickness at the time of application was 4.5 μm. When the upper limit of the coating speed was determined so that the entire surface of the substrate could be coated with no defects, the coating could be performed at 25 mm / s. Thereafter, the anisotropic dye film 6 was obtained by natural drying. About the obtained anisotropic pigment | dye film | membrane 6, the dichroic ratio (D) in 640 nm was measured. The results are shown in Table 3.
[比較例7]
 異方性色素膜用組成物3を異方性色素膜用組成物32に変更した以外は実施例9と同様に塗布した。基材全面に欠陥なく塗布できるような上限の塗布速度を求めたところ、5mm/sで塗布ができた。その後、自然乾燥することにより異方性色素膜37を得た。得られた異方性色素膜37について、640nmでの二色比(D)を測定した。その結果を表3に示す。
[Comparative Example 7]
Coating was performed in the same manner as in Example 9 except that the anisotropic dye film composition 3 was changed to the anisotropic dye film composition 32. When an upper limit coating speed that can be applied to the entire surface of the substrate without any defects was determined, the coating could be performed at 5 mm / s. Thereafter, the anisotropic dye film 37 was obtained by natural drying. With respect to the obtained anisotropic dye film 37, the dichroic ratio (D) at 640 nm was measured. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-T000055
Figure JPOXMLDOC01-appb-T000055
Figure JPOXMLDOC01-appb-T000056
Figure JPOXMLDOC01-appb-T000056
Figure JPOXMLDOC01-appb-T000057
Figure JPOXMLDOC01-appb-T000057
 本発明の異方性色素膜用組成物1及び2(実施例1及び2)は、該異方性色素膜用組成物の製造段階での異物除去の際のろ過性に優れていた。また、本願発明の構成であることで、異方性色素膜用組成物31(比較例1)に対して、異方性色素膜の二色比を維持しながら、異方性色素膜用組成物1及び2の粘度が低下していることが示された。異方性色素膜用組成物の粘度が低下することにより、塗布速度を向上させることができる。これは、異方性色素膜用組成物3及び異方性色素膜用組成物32をダイコーターで塗布した実施例9及び比較例7に示されている通りである。
 同様に、異方性色素膜用組成物3(実施例3)と異方性色素膜用組成物32(比較例2)、異方性色素膜用組成物4(実施例4)と異方性色素膜用組成物33(比較例3)、異方性色素膜用組成物4(実施例4)と異方性色素膜用組成物34(比較例3)、異方性色素膜用組成物5(実施例5)と異方性色素膜用組成物35(比較例4)からも、本願発明の構成であることで、ろ過性に優れ、異方性色素膜の二色比を維持しながら、異方性色素膜用組成物の粘度を低下させることが示された。
 また、異方性色素膜用組成物6(実施例6)、異方性色素膜用組成物7(実施例7)と異方性色素膜用組成物35(比較例5)、異方性色素膜用組成物8(実施例8)と異方性色素膜用組成物36(比較例6)からも、本願発明の構成であることで、ろ過性に優れ、異方性色素膜用組成物の粘度を低下させることが示された。
The anisotropic dye film compositions 1 and 2 of the present invention (Examples 1 and 2) were excellent in filterability when removing foreign matters at the production stage of the anisotropic dye film composition. Further, the composition of the present invention allows the composition for anisotropic dye film while maintaining the dichroic ratio of the anisotropic dye film with respect to the composition 31 for anisotropic dye film (Comparative Example 1). It was shown that the viscosities of products 1 and 2 were reduced. By reducing the viscosity of the composition for anisotropic dye film, the coating speed can be improved. This is as shown in Example 9 and Comparative Example 7 in which the anisotropic dye film composition 3 and the anisotropic dye film composition 32 were applied by a die coater.
Similarly, the anisotropic dye film composition 3 (Example 3), the anisotropic dye film composition 32 (Comparative Example 2), and the anisotropic dye film composition 4 (Example 4) are anisotropic. Composition 33 (Comparative Example 3), anisotropic dye film composition 4 (Example 4) and anisotropic dye film composition 34 (Comparative Example 3), anisotropic dye film composition Also from the product 5 (Example 5) and the composition 35 for the anisotropic dye film (Comparative Example 4), the constitution of the present invention provides excellent filterability and maintains the dichroic ratio of the anisotropic dye film. However, it was shown that the viscosity of the composition for anisotropic dye films was lowered.
Further, the composition for anisotropic dye film 6 (Example 6), the composition for anisotropic dye film 7 (Example 7) and the composition for anisotropic dye film 35 (Comparative Example 5), anisotropy Also from the composition 8 for the dye film (Example 8) and the composition 36 for the anisotropic dye film (Comparative Example 6), the composition of the present invention provides excellent filterability and the composition for the anisotropic dye film. It has been shown to reduce the viscosity of the product.
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は2015年9月18日出願の日本特許出願(特願2015-185709)に基づくものであり、その内容はここに参照として取り込まれる。 Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention. This application is based on a Japanese patent application (Japanese Patent Application No. 2015-185709) filed on Sep. 18, 2015, the contents of which are incorporated herein by reference.

Claims (9)

  1.  アゾ色素及び溶剤を含む異方性色素膜用組成物であって、前記アゾ色素は、遊離酸の形が下記式(I)で表されるアゾ色素、及び遊離酸の形が下記式(III)で表されるアゾ色素を含むものである、異方性色素膜用組成物。
    Figure JPOXMLDOC01-appb-C000001
    [式(I)において、
     Ar11及びAr12は、それぞれ独立に、置換基を有していてもよい芳香族炭化水素基又は置換基を有していてもよい芳香族複素環基を表し、
     Ar13は、電子供与基を有していてもよい1,4-フェニレン基、置換基を有していてもよい1,4-ナフチレン基又は置換基を有していてもよい芳香族複素環基を表し、
     Ar14は、式(II)で表される基を表す。]
    Figure JPOXMLDOC01-appb-C000002
    [式(II)において、
     RN11及びRN12は、それぞれ独立に、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいフェニル基又は置換基を有していてもよいアシル基を表し、
     bは0~3の整数を表し、dは0又は1を表す。
     なお、-NRN11N12で表されるアミノ基は、α位又はβ位に置換する。]
    Figure JPOXMLDOC01-appb-C000003
    [式(III)において、
     Ar21は、置換基を有していてもよい芳香族炭化水素基又は置換基を有していてもよい芳香族複素環基を表し、
     Ar22は、電子供与基を有していてもよい1,4-フェニレン基、置換基を有していてもよい1,4-ナフチレン基又は置換基を有していてもよい芳香族複素環基を表し、
     Ar23は、式(IV)で表される基を表す。]
    Figure JPOXMLDOC01-appb-C000004
    [式(IV)において、
     RN21及びRN22は、それぞれ独立に、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいフェニル基又は置換基を有していてもよいアシル基を表し、
     eは0~3の整数を表し、fは0又は1を表す。
     なお、-NRN21N22で表されるアミノ基は、α位又はβ位に置換する。]
    An anisotropic dye film composition comprising an azo dye and a solvent, wherein the azo dye has a free acid form represented by the following formula (I) and a free acid form represented by the following formula (III): The composition for anisotropic dye films | membranes containing the azo dye represented by this.
    Figure JPOXMLDOC01-appb-C000001
    [In Formula (I),
    Ar 11 and Ar 12 each independently represent an aromatic hydrocarbon group which may have a substituent or an aromatic heterocyclic group which may have a substituent,
    Ar 13 is a 1,4-phenylene group optionally having an electron donating group, a 1,4-naphthylene group optionally having a substituent, or an aromatic heterocyclic ring optionally having a substituent Represents a group,
    Ar 14 represents a group represented by the formula (II). ]
    Figure JPOXMLDOC01-appb-C000002
    [In the formula (II),
    R N11 and R N12 each independently represent a hydrogen atom, an alkyl group that may have a substituent, a phenyl group that may have a substituent, or an acyl group that may have a substituent. Represent,
    b represents an integer of 0 to 3, and d represents 0 or 1.
    The amino group represented by —NR N11 R N12 is substituted at the α-position or β-position. ]
    Figure JPOXMLDOC01-appb-C000003
    [In Formula (III),
    Ar 21 represents an aromatic hydrocarbon group which may have a substituent or an aromatic heterocyclic group which may have a substituent,
    Ar 22 is a 1,4-phenylene group optionally having an electron donating group, a 1,4-naphthylene group optionally having a substituent, or an aromatic heterocyclic ring optionally having a substituent Represents a group,
    Ar 23 represents a group represented by formula (IV). ]
    Figure JPOXMLDOC01-appb-C000004
    [In Formula (IV),
    R N21 and R N22 each independently represent a hydrogen atom, an alkyl group that may have a substituent, a phenyl group that may have a substituent, or an acyl group that may have a substituent. Represent,
    e represents an integer of 0 to 3, and f represents 0 or 1.
    The amino group represented by —NR N21 R N22 is substituted at the α-position or β-position. ]
  2.  前記式(I)のAr14が式(VI)で表される基である、請求項1に記載の異方性色素膜用組成物。
    Figure JPOXMLDOC01-appb-C000005
    [式(VI)において、
     g及びhはそれぞれ独立に、0又は1を表す。
     なお、式(VI)におけるd、RN11及びRN12は、式(II)のd、RN11及びRN12と同義である。]
    Ar 14 in the formula (I) is a group represented by the formula (VI), an anisotropic dye film composition according to claim 1.
    Figure JPOXMLDOC01-appb-C000005
    [In Formula (VI),
    g and h each independently represents 0 or 1;
    Incidentally, d in the formula (VI), R N11 and R N12 is d of Formula (II), and R N11 and R N12 synonymous. ]
  3.  前記式(III)のAr23が式(VII)で表される基である、請求項1又は2に記載の異方性色素膜用組成物。
    Figure JPOXMLDOC01-appb-C000006
    [式(VII)において、
     i及びjはそれぞれ独立に、0又は1を表す。
     なお、式(VII)におけるf、RN21及びRN22は、式(III)のf、RN21及びRN22と同義である。]
    The composition for anisotropic dye films according to claim 1 or 2, wherein Ar 23 in the formula (III) is a group represented by the formula (VII).
    Figure JPOXMLDOC01-appb-C000006
    [In the formula (VII):
    i and j each independently represents 0 or 1.
    Incidentally, f in formula (VII), R N21 and R N22 is f of formula (III), and R N21 and R N22 synonymous. ]
  4.  前記式(I)のAr12が、置換基を有していてもよい1,4-フェニレン基、置換基を有していてもよい1,4-ナフチレン基、及び、単環又は2環性の置換基を有していてもよい芳香族複素環基からなる群より選択されるものである、請求項1~3の何れか1項に記載の異方性色素膜用組成物。 Ar 12 in the formula (I) may have a 1,4-phenylene group which may have a substituent, a 1,4-naphthylene group which may have a substituent, and a monocyclic or bicyclic group The composition for an anisotropic dye film according to any one of claims 1 to 3, wherein the composition is selected from the group consisting of an aromatic heterocyclic group which may have a substituent.
  5.  前記式(I)のAr11が、置換基を有していてもよいフェニル基、置換基を有していてもよいナフチル基、及び、単環又は2環性の置換基を有していてもよい芳香族複素環基からなる群より選択されるものであり、置換基として電子求引基を少なくとも1つ有するものである、請求項1~4の何れか1項に記載の異方性色素膜用組成物。 Ar 11 in the formula (I) has a phenyl group which may have a substituent, a naphthyl group which may have a substituent, and a monocyclic or bicyclic substituent. The anisotropy according to any one of claims 1 to 4, which is selected from the group consisting of good aromatic heterocyclic groups and has at least one electron withdrawing group as a substituent. A composition for a dye film.
  6.  前記式(I)のAr11~Ar14から選択される少なくとも1つの構造から有していてもよい置換基を除いた構造が、式(III)のAr21~Ar23から選択される少なくとも1つの構造から有していてもよい置換基を除いた構造と同一である、請求項1~5の何れか1項に記載の異方性色素膜用組成物。 At least one structure selected from Ar 21 to Ar 23 in the formula (III) is a structure obtained by removing a substituent that may be present from at least one structure selected from Ar 11 to Ar 14 in the formula (I). The composition for anisotropic dye film according to any one of claims 1 to 5, which has the same structure as that obtained by removing a substituent which may be present from one structure.
  7.  前記式(I)のAr11~Ar13から選択される少なくとも1つの構造から有していてもよい置換基を除いた構造が、式(III)のAr21及び/又はAr22の構造から有していてもよい置換基を除いた構造と同一である、請求項1~6の何れか1項に記載の異方性色素膜用組成物。 The structure excluding the substituent which may be present from at least one structure selected from Ar 11 to Ar 13 in the formula (I) is present from the structure of Ar 21 and / or Ar 22 in the formula (III). The composition for an anisotropic dye film according to any one of claims 1 to 6, which has the same structure except for an optionally substituted group.
  8.  前記式(I)のAr11~Ar14から選択される少なくとも1つの構造から有していてもよい置換基を除いた構造が、式(III)のAr21~Ar23から選択される少なくとも1つの構造から有していてもよい置換基を除いた構造と同一であり、且つ、前記有していてもよい置換基の群が同一である、請求項1~7の何れか1項に記載の異方性色素膜用組成物。 At least one structure selected from Ar 21 to Ar 23 in the formula (III) is a structure obtained by removing a substituent that may be present from at least one structure selected from Ar 11 to Ar 14 in the formula (I). The structure according to any one of claims 1 to 7, wherein the structure is the same as the structure excluding the substituents that may be present from one structure, and the group of the substituents that may be present is the same. An anisotropic dye film composition.
  9.  遊離酸の形が下記式(I)で表されるアゾ色素、及び遊離酸の形が下記式(III)で表されるアゾ色素を含むものである、異方性色素膜。
    Figure JPOXMLDOC01-appb-C000007
    [式(I)において、
     Ar11及びAr12は、それぞれ独立に、置換基を有していてもよい芳香族炭化水素基又は置換基を有していてもよい芳香族複素環基を表し、
     Ar13は、電子供与基を有していてもよい1,4-フェニレン基、置換基を有していてもよい1,4-ナフチレン基又は置換基を有していてもよい芳香族複素環基を表し、
     Ar14は、式(II)で表される基を表す。]
    Figure JPOXMLDOC01-appb-C000008
    [式(II)において、
     RN11及びRN12は、それぞれ独立に、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいフェニル基又は置換基を有していてもよいアシル基を表し、
     bは0~3の整数を表し、dは0又は1を表す。
     なお、-NRN11N12で表されるアミノ基は、α位又はβ位に置換する。]
    Figure JPOXMLDOC01-appb-C000009
    [式(III)において、
     Ar21は、置換基を有していてもよい芳香族炭化水素基又は置換基を有していてもよい芳香族複素環基を表し、
     Ar22は、電子供与基を有していてもよい1,4-フェニレン基、置換基を有していてもよい1,4-ナフチレン基又は置換基を有していてもよい芳香族複素環基を表し、
     Ar23は、式(IV)で表される基を表す。]
    Figure JPOXMLDOC01-appb-C000010
    [式(IV)において、
     RN21及びRN22は、それぞれ独立に、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいフェニル基又は置換基を有していてもよいアシル基を表し、
     eは0~3の整数を表し、fは0又は1を表す。
     なお、-NRN21N22で表されるアミノ基は、α位又はβ位に置換する。]
    An anisotropic dye film comprising an azo dye having a free acid form represented by the following formula (I) and an azo dye having a free acid form represented by the following formula (III):
    Figure JPOXMLDOC01-appb-C000007
    [In Formula (I),
    Ar 11 and Ar 12 each independently represent an aromatic hydrocarbon group which may have a substituent or an aromatic heterocyclic group which may have a substituent,
    Ar 13 is a 1,4-phenylene group optionally having an electron donating group, a 1,4-naphthylene group optionally having a substituent, or an aromatic heterocyclic ring optionally having a substituent Represents a group,
    Ar 14 represents a group represented by the formula (II). ]
    Figure JPOXMLDOC01-appb-C000008
    [In the formula (II),
    R N11 and R N12 each independently represent a hydrogen atom, an alkyl group that may have a substituent, a phenyl group that may have a substituent, or an acyl group that may have a substituent. Represent,
    b represents an integer of 0 to 3, and d represents 0 or 1.
    The amino group represented by —NR N11 R N12 is substituted at the α-position or β-position. ]
    Figure JPOXMLDOC01-appb-C000009
    [In Formula (III),
    Ar 21 represents an aromatic hydrocarbon group which may have a substituent or an aromatic heterocyclic group which may have a substituent,
    Ar 22 is a 1,4-phenylene group optionally having an electron donating group, a 1,4-naphthylene group optionally having a substituent, or an aromatic heterocyclic ring optionally having a substituent Represents a group,
    Ar 23 represents a group represented by formula (IV). ]
    Figure JPOXMLDOC01-appb-C000010
    [In Formula (IV),
    R N21 and R N22 each independently represent a hydrogen atom, an alkyl group that may have a substituent, a phenyl group that may have a substituent, or an acyl group that may have a substituent. Represent,
    e represents an integer of 0 to 3, and f represents 0 or 1.
    The amino group represented by —NR N21 R N22 is substituted at the α-position or β-position. ]
PCT/JP2016/073677 2015-09-18 2016-08-10 Composition for anisotropic dye film and anisotropic dye film WO2017047300A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680052444.7A CN108139524B (en) 2015-09-18 2016-08-10 Composition for anisotropic dye film and anisotropic dye film
KR1020187006558A KR20180055811A (en) 2015-09-18 2016-08-10 Composition for anisotropic coloring film and anisotropic coloring film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015185709A JP6008031B1 (en) 2015-09-18 2015-09-18 Composition for anisotropic dye film and anisotropic dye film
JP2015-185709 2015-09-18

Publications (1)

Publication Number Publication Date
WO2017047300A1 true WO2017047300A1 (en) 2017-03-23

Family

ID=57140134

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/073677 WO2017047300A1 (en) 2015-09-18 2016-08-10 Composition for anisotropic dye film and anisotropic dye film

Country Status (4)

Country Link
JP (1) JP6008031B1 (en)
KR (1) KR20180055811A (en)
CN (1) CN108139524B (en)
WO (1) WO2017047300A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021246437A1 (en) * 2020-06-05 2021-12-09 日本化薬株式会社 Polarizing element and polarizing plate for use in visible range and infrared range, and liquid crystal display device equipped with same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0193703A (en) * 1987-10-05 1989-04-12 Mitsubishi Kasei Corp Polarizing film
JPH09230142A (en) * 1995-05-17 1997-09-05 Nippon Kayaku Co Ltd Polarizing element or polarizing plate
JP2007148179A (en) * 2005-11-30 2007-06-14 Mitsubishi Chemicals Corp Dye composition for anisotropic dye film, film forming composition for anisotropic dye film, anisotropic dye film and polarization element
JP2010168570A (en) * 2008-12-25 2010-08-05 Mitsubishi Chemicals Corp Azo compound for anisotropic film, composition containing the same, anisotropic film, and polarizing element
WO2014030409A1 (en) * 2012-08-24 2014-02-27 三菱樹脂株式会社 Optical laminate and method for manufacturing optical laminate

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006047966A (en) * 2004-06-28 2006-02-16 Mitsubishi Chemicals Corp Pigment for anisotropic pigment film, pigment composition for anisotropic pigment film, anisotropic pigment film and polarizing element
JP4876549B2 (en) * 2004-12-16 2012-02-15 三菱化学株式会社 Azo dye, composition for anisotropic dye film using the same, anisotropic dye film and polarizing element
JP5200325B2 (en) * 2005-04-04 2013-06-05 三菱化学株式会社 Anisotropic dye film and polarizing element formed by wet film formation method
JP2008031455A (en) * 2006-06-30 2008-02-14 Mitsubishi Chemicals Corp Azo dye for anisotropic dye film

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0193703A (en) * 1987-10-05 1989-04-12 Mitsubishi Kasei Corp Polarizing film
JPH09230142A (en) * 1995-05-17 1997-09-05 Nippon Kayaku Co Ltd Polarizing element or polarizing plate
JP2007148179A (en) * 2005-11-30 2007-06-14 Mitsubishi Chemicals Corp Dye composition for anisotropic dye film, film forming composition for anisotropic dye film, anisotropic dye film and polarization element
JP2010168570A (en) * 2008-12-25 2010-08-05 Mitsubishi Chemicals Corp Azo compound for anisotropic film, composition containing the same, anisotropic film, and polarizing element
WO2014030409A1 (en) * 2012-08-24 2014-02-27 三菱樹脂株式会社 Optical laminate and method for manufacturing optical laminate
WO2014030698A1 (en) * 2012-08-24 2014-02-27 三菱樹脂株式会社 Optical laminate and method for manufacturing optical laminate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021246437A1 (en) * 2020-06-05 2021-12-09 日本化薬株式会社 Polarizing element and polarizing plate for use in visible range and infrared range, and liquid crystal display device equipped with same

Also Published As

Publication number Publication date
CN108139524B (en) 2020-12-18
JP2017058630A (en) 2017-03-23
JP6008031B1 (en) 2016-10-19
CN108139524A (en) 2018-06-08
KR20180055811A (en) 2018-05-25

Similar Documents

Publication Publication Date Title
JP6036787B2 (en) Azo compound for anisotropic film, composition containing the compound, anisotropic film and polarizing element
JP4876549B2 (en) Azo dye, composition for anisotropic dye film using the same, anisotropic dye film and polarizing element
JP5422864B2 (en) Trisazo dye, composition for anisotropic dye film containing the dye, anisotropic dye film, and polarizing element
JP2007126628A (en) Pigment for anisotropic pigment film, composition containing the pigment, anisotropic pigment film, and polarizing element
JP2010026024A (en) Composition for anisotropic film, anisotropic film, polarizing element, and azo compound
JP5168878B2 (en) Composition for anisotropic dye film, anisotropic dye film and polarizing element
JP4736823B2 (en) Composition for anisotropic dye film, anisotropic dye film, polarizing element and dye for anisotropic dye film
JP2007302807A (en) Azo dye for anisotropic dye film, composition containing the azo dye, anisotropic dye film and polarizing element
JP2006047966A (en) Pigment for anisotropic pigment film, pigment composition for anisotropic pigment film, anisotropic pigment film and polarizing element
JP6604203B2 (en) Composition for anisotropic dye film, anisotropic dye film and optical element
JP6922381B2 (en) Azo compounds for anisotropic films, compositions for anisotropic films containing the compounds, and anisotropic films
JP6008031B1 (en) Composition for anisotropic dye film and anisotropic dye film
JP5092345B2 (en) Anisotropic dye film and polarizing element
JP7024379B2 (en) Anisotropic dye film forming composition, anisotropic dye film and polarizing element
JP4973100B2 (en) Anisotropic dye film and polarizing element formed by wet film formation method
JP6064759B2 (en) Dye for anisotropic dye film, composition containing the dye, anisotropic dye film and polarizing element
JP5521408B2 (en) Compound, composition containing the compound, anisotropic film, and polarizing element
JP5499791B2 (en) Azo compound for anisotropic film, composition for anisotropic film, anisotropic film and polarizing element
JP6107352B2 (en) Dye for anisotropic dye film, composition containing the dye, anisotropic dye film and polarizing element
JP2009115866A (en) Coating liquid, polarizing film and method of manufacturing polarizing film
JP2007121458A (en) Substrate for anisotropic dye film, anisotropic dye film and its manufacturing method, and polarizing element
JP2010018587A (en) Compound for anisotropic film, composition for anisotropic film containing the compound for anisotropic film, anisotropic film and polarizing element
JP2007145995A (en) Water-soluble pigment and pigment composition using the same, anisotropic pigment film and polarizing element
JP2008111952A (en) Composition for anisotropic film, anisotropic film, polarizing element and optical device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16846173

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187006558

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16846173

Country of ref document: EP

Kind code of ref document: A1