WO2017047244A1 - Method for manufacturing silicon carbide epitaxial substrate and apparatus for silicon carbide epitaxial growth - Google Patents

Method for manufacturing silicon carbide epitaxial substrate and apparatus for silicon carbide epitaxial growth Download PDF

Info

Publication number
WO2017047244A1
WO2017047244A1 PCT/JP2016/072141 JP2016072141W WO2017047244A1 WO 2017047244 A1 WO2017047244 A1 WO 2017047244A1 JP 2016072141 W JP2016072141 W JP 2016072141W WO 2017047244 A1 WO2017047244 A1 WO 2017047244A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon carbide
gas
single crystal
preheating
nitrogen gas
Prior art date
Application number
PCT/JP2016/072141
Other languages
French (fr)
Japanese (ja)
Inventor
土井 秀之
和田 圭司
健二 平塚
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Publication of WO2017047244A1 publication Critical patent/WO2017047244A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02378Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/42Silicides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02433Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02441Group 14 semiconducting materials
    • H01L21/02447Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02529Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Definitions

  • the present disclosure relates to a method for manufacturing a silicon carbide epitaxial substrate and a silicon carbide epitaxial growth apparatus.
  • Patent Document 1 discloses a method for manufacturing a silicon carbide semiconductor. This manufacturing method includes a preheating step for thermally decomposing a nitrogen compound gas in advance before introduction into a substrate on which silicon carbide crystals are formed.
  • a method for manufacturing a silicon carbide epitaxial substrate according to the present disclosure includes a step of preheating nitrogen gas before introducing nitrogen gas into a silicon carbide single crystal substrate in a reaction chamber, a carrier gas, a source gas, and nitrogen gas. And introducing a mixed gas containing ammonia gas into a heated reaction chamber to epitaxially grow a silicon carbide layer doped with nitrogen on a silicon carbide single crystal substrate.
  • a silicon carbide epitaxial growth apparatus includes a reaction chamber having a gas inlet, a heating mechanism for heating the reaction chamber, and a support arranged in the reaction chamber and configured to support the silicon carbide single crystal substrate.
  • the member a pipe configured to introduce a mixed gas containing carrier gas, raw material gas, nitrogen gas, and ammonia gas into the gas inlet, and reserve nitrogen gas upstream of the mixed gas flow from the support member
  • a preheating mechanism configured to heat.
  • FIG. 1 is a schematic cross-sectional view showing the configuration of the silicon carbide epitaxial substrate according to the present embodiment.
  • FIG. 2 is a partial cross-sectional schematic diagram showing the configuration of a film forming apparatus for executing the method for manufacturing a silicon carbide epitaxial substrate according to the present embodiment.
  • FIG. 3 is a flowchart showing a method for manufacturing the silicon carbide epitaxial substrate according to the present embodiment.
  • FIG. 4 is a schematic perspective view showing an example of a silicon carbide single crystal substrate.
  • FIG. 5 is a diagram showing an example of a substrate holder for supporting a plurality of silicon carbide single crystal substrates.
  • a method for manufacturing a silicon carbide epitaxial substrate according to the present disclosure includes a step of preheating nitrogen gas before introducing nitrogen gas into a silicon carbide single crystal substrate in a reaction chamber, a carrier gas, a source gas, Introducing a mixed gas containing nitrogen gas and ammonia gas into a heated reaction chamber to epitaxially grow a silicon carbide layer doped with nitrogen on a silicon carbide single crystal substrate.
  • Ammonia gas can be thermally decomposed at a lower temperature than nitrogen gas.
  • the ammonia gas can be sufficiently thermally decomposed. Since nitrogen atoms are doped into the silicon carbide layer, with ammonia gas alone, the concentration of nitrogen atoms, which are dopants, tends to decrease toward the downstream side of the gas flow.
  • the efficiency of decomposition of the nitrogen gas in the reaction chamber can be controlled. Inside the reaction chamber, the thermal decomposition of nitrogen gas tends to proceed more downstream in the flow of nitrogen gas.
  • the dopant concentration on the silicon carbide single crystal substrate can be made uniform. Therefore, a silicon carbide layer excellent in in-plane uniformity of doping density can be formed.
  • the method for manufacturing a silicon carbide epitaxial substrate according to (1) further includes a step of preheating ammonia gas before introducing the ammonia gas into the reaction chamber.
  • the temperature for preheating ammonia gas is lower than the temperature for preheating nitrogen gas.
  • the temperature for preheating nitrogen gas is 1000 ° C. or higher.
  • the flow rate of nitrogen gas is larger than the flow rate of ammonia gas.
  • the flow rate of nitrogen gas is smaller than the flow rate of ammonia gas.
  • the diameter of the silicon carbide single crystal substrate is 100 mm or more.
  • a method for manufacturing a silicon carbide epitaxial substrate according to the present disclosure includes a step of preheating nitrogen gas and introducing ammonia gas into the reaction chamber before introducing nitrogen gas into the silicon carbide single crystal substrate in the reaction chamber.
  • a step of preheating ammonia gas a mixed gas containing carrier gas, source gas, nitrogen gas, and ammonia gas is introduced into the reaction chamber, and the silicon carbide layer doped with nitrogen is carbonized.
  • a step of epitaxial growth on the silicon single crystal substrate The temperature for preheating ammonia gas is lower than the temperature for preheating nitrogen gas.
  • the temperature for preheating nitrogen gas is 1000 ° C. or higher.
  • the flow rate of nitrogen gas is larger than the flow rate of ammonia gas.
  • the diameter of the silicon carbide single crystal substrate is 100 mm or more.
  • the epitaxial growth step a plurality of silicon carbide single crystal substrates are arranged in the reaction chamber.
  • a silicon carbide epitaxial growth apparatus is configured to support a silicon carbide single crystal substrate that is disposed in a reaction chamber having a gas inlet, a heating mechanism for heating the reaction chamber, and the reaction chamber.
  • a support member a pipe configured to introduce a mixed gas containing carrier gas, raw material gas, nitrogen gas and ammonia gas into the gas inlet, and upstream of the flow of the mixed gas from the support member,
  • a first preheating mechanism configured to preheat the gas.
  • the silicon carbide epitaxial growth apparatus further includes a second preheating mechanism configured to preheat the ammonia gas upstream of the support member in the flow of the mixed gas.
  • the temperature for preheating ammonia gas is lower than the temperature for preheating nitrogen gas.
  • the preheating temperature of the nitrogen gas is 1000 ° C. or higher.
  • the flow rate of nitrogen gas is larger than the flow rate of ammonia gas.
  • the flow rate of nitrogen gas is smaller than the flow rate of ammonia gas.
  • the diameter of the silicon carbide single crystal substrate is 100 mm or more.
  • the support member is configured to be capable of supporting a plurality of silicon carbide single crystal substrates.
  • FIG. 1 is a schematic cross-sectional view showing a configuration of a silicon carbide epitaxial substrate according to the present embodiment.
  • silicon carbide epitaxial substrate 10 includes a silicon carbide single crystal substrate 20, a silicon carbide layer 31, and a silicon carbide layer 32.
  • Silicon carbide single crystal substrate 20 is made of, for example, polytype 4H hexagonal silicon carbide. Silicon carbide single crystal substrate 20 has a front surface 21 and a back surface 22. The maximum diameter 23 of the front surface 21 and the back surface 22 is, for example, 100 mm or more. The maximum diameter 23 may be 150 mm or more.
  • Silicon carbide single crystal substrate 20, silicon carbide layer 31, and silicon carbide layer 32 contain nitrogen as an n-type impurity.
  • the concentration of n-type impurities in silicon carbide single crystal substrate 20 is higher than the concentration of n-type impurities in silicon carbide layer 31.
  • the concentration of n-type impurities in silicon carbide layer 31 is higher than the concentration of n-type impurities in silicon carbide layer 32.
  • the concentration of the n-type impurity in silicon carbide single crystal substrate 20 is 1 ⁇ 10 19 cm ⁇ 3 .
  • the concentration of n-type impurities in silicon carbide layer 31 is 1 ⁇ 10 18 cm ⁇ 3 .
  • the concentration of the n-type impurity of the silicon carbide layer 32 is than 2 ⁇ 10 16 cm -3 for example least 1 ⁇ 10 15 cm -3.
  • the thickness of the silicon carbide single crystal substrate 20 is, for example, not less than 300 ⁇ m and not more than 600 ⁇ m.
  • Silicon carbide layer 31 has a thickness of, for example, not less than 0.1 ⁇ m and not more than 20 ⁇ m.
  • Silicon carbide layer 32 may have a thickness greater than that of silicon carbide layer 31.
  • Silicon carbide layer 32 has a thickness of not less than 1 ⁇ m and not more than 150 ⁇ m, for example.
  • FIG. 2 is a partial cross-sectional schematic diagram showing a configuration of a film forming apparatus 40 for executing the method for manufacturing a silicon carbide epitaxial substrate according to the present embodiment.
  • the film forming apparatus 40 is, for example, a CVD (Chemical Vapor Deposition) apparatus.
  • the film forming apparatus 40 includes a quartz tube 43, an induction heating coil 44, a heat insulating material 42, a heating element 41, a substrate holder 46, gas supply sources 51 to 55, and a pipe 61. , 62, 63, a valve 64, an exhaust pump 65, and preheating mechanisms 71, 72.
  • the heating element 41 has a hollow structure and has a reaction chamber 45 formed therein.
  • the heat insulating material 42 is disposed so as to surround the outer periphery of the heating element 41.
  • the quartz tube 43 is disposed so as to surround the outer periphery of the heat insulating material 42.
  • the induction heating coil 44 is provided so as to wind the outer periphery of the quartz tube 43.
  • the heating element 41, the heat insulating material 42, and the induction heating coil 44 are elements of a heating mechanism for heating the reaction chamber 45.
  • the substrate holder 46 is placed inside the reaction chamber 45.
  • Substrate holder 46 is a support member configured to hold silicon carbide single crystal substrate 20.
  • the substrate holder 46 is a susceptor.
  • the gas supply source 51 supplies hydrogen (H 2 ) gas as a carrier gas.
  • the gas supply sources 52 and 53 supply a source gas.
  • the gas supply source 52 supplies a gas containing silicon (Si) atoms.
  • the gas supply source 53 supplies a gas containing carbon (C) atoms.
  • the gas containing silicon atoms may be silane (SiH 4 ) gas.
  • Other examples of the gas containing silicon atoms include silicon tetrachloride (SiCl 4 ) gas, trichlorosilane (SiHCl 3 ) gas, and dichlorosilane (SiH 2 Cl 2 ) gas.
  • the gas containing carbon atoms may be propane (C 3 H 8 ) gas.
  • the gas supply sources 54 and 55 supply a gas containing nitrogen atoms as a dopant gas.
  • the gas supply source 54 supplies nitrogen (N 2 ) gas.
  • the gas supply source 55 supplies ammonia (NH 3 ) gas.
  • the gas containing silicon (Si) atoms is a silane gas.
  • the gas containing carbon atoms is propane (C 3 H 8 ) gas.
  • the pipe 61 is configured to introduce a carrier gas, a raw material gas, and a nitrogen gas into the gas inlet 47.
  • the pipe 62 is configured to introduce ammonia gas into the gas inlet 47.
  • the pipe 62 is connected to the pipe 61.
  • the pipe 61 and the pipe 62 are configured to introduce a mixed gas 80 containing carrier gas, raw material gas, nitrogen gas and ammonia gas into the gas inlet 47.
  • the pipe 63 is connected to the gas discharge port 48 and is configured to discharge gas from the reaction chamber 45.
  • the exhaust pump 65 is connected to the pipe 63.
  • the valve 64 is provided in the pipe 63.
  • the preheating mechanism 71 is provided in the pipe 61.
  • the preheating mechanism 72 is provided in the pipe 62.
  • the preheating mechanism 71 can heat the nitrogen gas before the nitrogen gas is introduced into the reaction chamber 45.
  • the preheating mechanism 72 can heat the ammonia gas before the ammonia gas is introduced into the reaction chamber 45.
  • Each of the preheating mechanisms 71 and 72 may be, for example, a tube heated from the outside or a room provided with an electric heating coil inside.
  • the preheating mechanism 71 and the preheating mechanism 72 are preferably configured so that the heating temperature can be controlled independently of each other.
  • the preheating mechanism 71 may be disposed upstream of the substrate holder 46 in the flow of the mixed gas 80. Therefore, the preheating mechanism 71 may be incorporated in the reaction chamber 45. The preheating mechanism 72 may be omitted.
  • FIG. 3 is a flowchart showing a method for manufacturing the silicon carbide epitaxial substrate according to the present embodiment.
  • a step (110) of preparing a silicon carbide single crystal substrate is performed.
  • Silicon carbide single crystal substrate 20 is made of, for example, polytype 4H hexagonal silicon carbide.
  • a silicon carbide single crystal substrate 20 having a front surface 21 and a back surface 22 is prepared by slicing an ingot made of a silicon carbide single crystal manufactured by a sublimation method (see FIG. 4).
  • the surface 21 is a surface inclined by an off angle from the basal plane.
  • the basal plane is, for example, a ⁇ 0001 ⁇ plane, specifically a (0001) Si plane.
  • the off angle is, for example, 2 ° or more and 8 ° or less.
  • the off direction may be the ⁇ 1-100> direction or the ⁇ 11-20> direction.
  • a step (120) of forming a first silicon carbide layer is performed.
  • silicon carbide single crystal substrate 20 is arranged inside reaction chamber 45.
  • Silicon carbide single crystal substrate 20 is supported by substrate holder 46.
  • Hydrogen gas is supplied to the reaction chamber 45 through the pipe 61.
  • the flow rate of hydrogen gas is, for example, 120 slm.
  • silicon carbide single crystal substrate 20 is heated.
  • the heating element 41 is induction heated by electromagnetic induction.
  • silicon carbide single crystal substrate 20 in reaction chamber 45 is heated to a temperature of about 1500 ° C. to 1700 ° C., for example.
  • a mixed gas 80 in which hydrogen gas as a carrier gas, raw material gas, and dopant gas are mixed is introduced into the reaction chamber 45.
  • the dopant gas may be either ammonia gas or nitrogen gas, or both.
  • the nitrogen gas is heated by the preheating mechanism 71. The heating temperature of nitrogen gas is 1000 ° C. or higher.
  • silicon carbide layer 31 is formed on silicon carbide single crystal substrate 20 by epitaxial growth.
  • a step (130) of forming a second silicon carbide layer (silicon carbide layer 32) is performed. Similar to step 120, the mixed gas 80 is introduced into the reaction chamber 45.
  • the mixed gas 80 includes ammonia gas and nitrogen gas as dopant gases.
  • the preheating mechanism 71 heats nitrogen gas. In this embodiment, the heating temperature is 1000 ° C. or higher.
  • ammonia gas may be preheated by the preheating mechanism 72.
  • Ammonia gas undergoes thermal decomposition from a lower temperature than nitrogen gas.
  • the ammonia gas preheating temperature may be lower than the nitrogen gas preheating temperature.
  • silicon carbide layer 32 is formed on silicon carbide layer 31 by epitaxial growth.
  • the nitrogen atom doping density is uniformly distributed in the plane of the substrate.
  • the ammonia gas reaches the silicon carbide single crystal substrate 20, the ammonia can be sufficiently thermally decomposed.
  • the concentration of the dopant (nitrogen atoms) decreases toward the downstream side of the ammonia gas flow.
  • the dopant gas is only ammonia gas, the doping density tends to vary within the substrate plane as the silicon carbide single crystal substrate 20 has a larger diameter. In other words, the in-plane uniformity of the doping density tends to decrease.
  • nitrogen gas has lower thermal decomposition efficiency than ammonia gas because of the large energy of triple bonds of nitrogen molecules. For this reason, it is considered that the thermal decomposition of the nitrogen gas is more likely to proceed toward the downstream of the nitrogen gas flow inside the reaction chamber 45.
  • a mixed gas of nitrogen gas and ammonia gas is used as the dopant gas. Further, the nitrogen gas is heated before being introduced into the reaction chamber. Thereby, the efficiency of decomposition of nitrogen gas in the reaction chamber can be controlled. Inside the reaction chamber, the thermal decomposition of nitrogen gas tends to proceed more downstream in the flow of nitrogen gas. By introducing a gas in which ammonia gas and nitrogen gas are mixed into the reaction chamber, the dopant concentration on the silicon carbide single crystal substrate can be made uniform. Therefore, a silicon carbide layer excellent in in-plane uniformity of the doping density distribution can be formed.
  • in-plane uniformity of the doping density can be improved even when silicon carbide is epitaxially grown in a reaction chamber having a large volume. Therefore, in-plane uniformity of doping density can be improved in a silicon carbide epitaxial substrate having a large diameter (for example, a diameter of 150 mm or more).
  • the temperature for preheating nitrogen gas is 1000 ° C.
  • the flow rate of nitrogen gas is 3 sccm.
  • the flow rate of ammonia gas is 1 sccm.
  • the flow rate of hydrogen gas is 120 slm.
  • the flow rate of silane gas is 46 sccm.
  • the flow rate of propane gas is 17 sccm.
  • the flow rate of nitrogen gas is larger than the flow rate of ammonia gas.
  • the flow rate of nitrogen gas can be smaller than the flow rate of ammonia gas.
  • the ratio of the flow rate of nitrogen gas to the flow rate of ammonia gas may be greater than 1 or less than 1.
  • a silicon carbide single crystal substrate having a diameter of 150 mm is shown. Even when the method for manufacturing a silicon carbide epitaxial substrate according to the present embodiment is applied to a silicon carbide single crystal substrate having a small diameter, in-plane uniformity of doping density can be improved.
  • the diameter of the silicon carbide single crystal substrate may be 100 mm or more.
  • the in-plane uniformity of the doping density can be improved in each silicon carbide single crystal substrate. it can.
  • FIG. 5 is a diagram showing an example of a substrate holder 46 for supporting a plurality of silicon carbide single crystal substrates 20. As shown in FIG. 5, for example, two silicon carbide single crystal substrates 20 are arranged on substrate holder 46. Inside the reaction chamber 45, the substrate holder 46 may rotate about the central axis 49. The diameter of silicon carbide single crystal substrate 20 may be 100 mm or more, or 150 mm or more.
  • silicon carbide epitaxial substrate 20 silicon carbide single crystal substrate, 21 front surface, 22 back surface, 23 maximum diameter, 31, 32 silicon carbide layer, 40 film forming device, 41 heating element, 42 heat insulating material, 43 quartz tube, 44 induction heating Coil, 45 reaction chamber, 46 substrate holder, 47 gas inlet, 48 gas outlet, 49 central axis, 51-55 gas supply source, 61-63 piping, 64 valve, 65 exhaust pump, 71, 72 preheating mechanism, 80 gas mixture, 110-130 steps.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

This method for manufacturing a silicon carbide epitaxial substrate comprises: preheating nitrogen gas prior to introducing the nitrogen gas into a reactor containing a silicon carbide single crystal substrate; and introducing a gas mixture including carrier gas, raw gas, nitrogen gas, and ammonia gas into the reactor, and then epitaxially growing a nitrogen-doped silicon carbide layer on the silicon carbide single crystal substrate.

Description

炭化珪素エピタキシャル基板の製造方法および炭化珪素エピタキシャル成長装置Silicon carbide epitaxial substrate manufacturing method and silicon carbide epitaxial growth apparatus
 本開示は、炭化珪素エピタキシャル基板の製造方法および炭化珪素エピタキシャル成長装置に関する。 The present disclosure relates to a method for manufacturing a silicon carbide epitaxial substrate and a silicon carbide epitaxial growth apparatus.
 本出願は、2015年9月14日出願の日本出願第2015-180664号に基づく優先権を主張し、前記日本出願に記載された全ての記載内容を援用するものである。 This application claims priority based on Japanese Application No. 2015-180664 filed on Sep. 14, 2015, and incorporates all the contents described in the Japanese application.
 特開2006-261612号公報(特許文献1)は、炭化珪素半導体の製造方法を開示する。この製造方法は、炭化珪素の結晶が形成される基板への導入前に窒素化合物のガスを予め熱分解させておくための予備加熱ステップを有する。 Japanese Unexamined Patent Publication No. 2006-261612 (Patent Document 1) discloses a method for manufacturing a silicon carbide semiconductor. This manufacturing method includes a preheating step for thermally decomposing a nitrogen compound gas in advance before introduction into a substrate on which silicon carbide crystals are formed.
特開2006-261612号公報JP 2006-261612 A
 本開示に係る炭化珪素エピタキシャル基板の製造方法は、反応室内の炭化珪素単結晶基板に窒素ガスを導入する前に、窒素ガスを予備加熱する工程と、キャリアガスと、原料ガスと、窒素ガスと、アンモニアガスとを含む混合ガスを、加熱された反応室に導入して、窒素がドープされた炭化珪素層を炭化珪素単結晶基板上にエピタキシャル成長する工程とを備える。 A method for manufacturing a silicon carbide epitaxial substrate according to the present disclosure includes a step of preheating nitrogen gas before introducing nitrogen gas into a silicon carbide single crystal substrate in a reaction chamber, a carrier gas, a source gas, and nitrogen gas. And introducing a mixed gas containing ammonia gas into a heated reaction chamber to epitaxially grow a silicon carbide layer doped with nitrogen on a silicon carbide single crystal substrate.
 本開示に係る炭化珪素エピタキシャル成長装置は、ガス導入口を有する反応室と、反応室を加熱するための加熱機構と、反応室内に配置され、炭化珪素単結晶基板を支持するように構成された支持部材と、キャリアガス、原料ガス、窒素ガスおよびアンモニアガスを含む混合ガスをガス導入口に導入するように構成された配管と、支持部材よりも混合ガスの流れの上流側において、窒素ガスを予備加熱するように構成された予備加熱機構とを備える。 A silicon carbide epitaxial growth apparatus according to the present disclosure includes a reaction chamber having a gas inlet, a heating mechanism for heating the reaction chamber, and a support arranged in the reaction chamber and configured to support the silicon carbide single crystal substrate. The member, a pipe configured to introduce a mixed gas containing carrier gas, raw material gas, nitrogen gas, and ammonia gas into the gas inlet, and reserve nitrogen gas upstream of the mixed gas flow from the support member A preheating mechanism configured to heat.
図1は、本実施形態に係る炭化珪素エピタキシャル基板の構成を示す断面模式図である。FIG. 1 is a schematic cross-sectional view showing the configuration of the silicon carbide epitaxial substrate according to the present embodiment. 図2は、本実施形態に係る炭化珪素エピタキシャル基板の製造方法を実行するための成膜装置の構成を示す一部断面模式図である。FIG. 2 is a partial cross-sectional schematic diagram showing the configuration of a film forming apparatus for executing the method for manufacturing a silicon carbide epitaxial substrate according to the present embodiment. 図3は、本実施形態に係る炭化珪素エピタキシャル基板の製造方法を示したフロー図である。FIG. 3 is a flowchart showing a method for manufacturing the silicon carbide epitaxial substrate according to the present embodiment. 図4は、炭化珪素単結晶基板の一例を示す斜視模式図である。FIG. 4 is a schematic perspective view showing an example of a silicon carbide single crystal substrate. 図5は、複数枚の炭化珪素単結晶基板を支持するための基板ホルダの一例を示した図である。FIG. 5 is a diagram showing an example of a substrate holder for supporting a plurality of silicon carbide single crystal substrates.
 [実施形態の説明]
 (1)本開示に係る炭化珪素エピタキシャル基板の製造方法は、反応室内の炭化珪素単結晶基板に窒素ガスを導入する前に、窒素ガスを予備加熱する工程と、キャリアガスと、原料ガスと、窒素ガスと、アンモニアガスとを含む混合ガスを、加熱された反応室に導入して、窒素がドープされた炭化珪素層を炭化珪素単結晶基板上にエピタキシャル成長する工程とを備える。
[Description of Embodiment]
(1) A method for manufacturing a silicon carbide epitaxial substrate according to the present disclosure includes a step of preheating nitrogen gas before introducing nitrogen gas into a silicon carbide single crystal substrate in a reaction chamber, a carrier gas, a source gas, Introducing a mixed gas containing nitrogen gas and ammonia gas into a heated reaction chamber to epitaxially grow a silicon carbide layer doped with nitrogen on a silicon carbide single crystal substrate.
 アンモニアガスは、窒素ガスと比べて低い温度で熱分解可能である。炭化珪素単結晶基板上にアンモニアガスが到達した時点において、アンモニアは十分に熱分解可能である。窒素原子が炭化珪素層にドープされるために、アンモニアガスのみでは、ガスの流れの下流側ほど、ドーパントである窒素原子の濃度が減少しやすい。窒素ガスを予め加熱することによって、反応室内での窒素ガスの分解の効率を制御することができる。反応室の内部では、窒素ガスの流れの下流ほど窒素ガスの熱分解が進行しやすい。アンモニアガスと窒素ガスとが混合されたガスを反応室に導入することにより、炭化珪素単結晶基板上のドーパント濃度を均一化することができる。したがってドーピング密度の面内均一性に優れた炭化珪素層を形成することができる。 Ammonia gas can be thermally decomposed at a lower temperature than nitrogen gas. When the ammonia gas reaches the silicon carbide single crystal substrate, the ammonia can be sufficiently thermally decomposed. Since nitrogen atoms are doped into the silicon carbide layer, with ammonia gas alone, the concentration of nitrogen atoms, which are dopants, tends to decrease toward the downstream side of the gas flow. By heating the nitrogen gas in advance, the efficiency of decomposition of the nitrogen gas in the reaction chamber can be controlled. Inside the reaction chamber, the thermal decomposition of nitrogen gas tends to proceed more downstream in the flow of nitrogen gas. By introducing a gas in which ammonia gas and nitrogen gas are mixed into the reaction chamber, the dopant concentration on the silicon carbide single crystal substrate can be made uniform. Therefore, a silicon carbide layer excellent in in-plane uniformity of doping density can be formed.
 (2)(1)に係る炭化珪素エピタキシャル基板の製造方法は、反応室内にアンモニアガスを導入する前に、アンモニアガスを予備加熱する工程をさらに備える。アンモニアガスの予備加熱の温度は、窒素ガスの予備加熱の温度よりも低い。 (2) The method for manufacturing a silicon carbide epitaxial substrate according to (1) further includes a step of preheating ammonia gas before introducing the ammonia gas into the reaction chamber. The temperature for preheating ammonia gas is lower than the temperature for preheating nitrogen gas.
 (3)(1)または(2)に係る炭化珪素エピタキシャル基板の製造方法において、窒素ガスの予備加熱の温度は、1000℃以上である。 (3) In the method for manufacturing a silicon carbide epitaxial substrate according to (1) or (2), the temperature for preheating nitrogen gas is 1000 ° C. or higher.
 (4)(1)から(3)のいずれかに係る炭化珪素エピタキシャル基板の製造方法において、窒素ガスの流量は、アンモニアガスの流量よりも大きい。 (4) In the method for manufacturing a silicon carbide epitaxial substrate according to any one of (1) to (3), the flow rate of nitrogen gas is larger than the flow rate of ammonia gas.
 (5)(1)から(3)のいずれかに係る炭化珪素エピタキシャル基板の製造方法において、窒素ガスの流量は、アンモニアガスの流量よりも小さい。 (5) In the method for manufacturing a silicon carbide epitaxial substrate according to any one of (1) to (3), the flow rate of nitrogen gas is smaller than the flow rate of ammonia gas.
 (6)(1)から(5)のいずれかに係る炭化珪素エピタキシャル基板の製造方法において、炭化珪素単結晶基板の直径は、100mm以上である。 (6) In the method for manufacturing a silicon carbide epitaxial substrate according to any one of (1) to (5), the diameter of the silicon carbide single crystal substrate is 100 mm or more.
 (7)(1)から(6)のいずれかに係る炭化珪素エピタキシャル基板の製造方法において、エピタキシャル成長する工程では、複数枚の炭化珪素単結晶基板が反応室内に配置されている。 (7) In the method for manufacturing a silicon carbide epitaxial substrate according to any one of (1) to (6), in the step of epitaxial growth, a plurality of silicon carbide single crystal substrates are arranged in the reaction chamber.
 (8)本開示に係る炭化珪素エピタキシャル基板の製造方法は、反応室内の炭化珪素単結晶基板に窒素ガスを導入する前に、窒素ガスを予備加熱する工程と、反応室内にアンモニアガスを導入する前に、アンモニアガスを予備加熱する工程と、キャリアガスと、原料ガスと、窒素ガスと、アンモニアガスとを含む混合ガスを、反応室に導入して、窒素がドープされた炭化珪素層を炭化珪素単結晶基板上にエピタキシャル成長する工程とを備える。アンモニアガスの予備加熱の温度は、窒素ガスの予備加熱の温度よりも低い。窒素ガスの予備加熱の温度は、1000℃以上である。窒素ガスの流量は、アンモニアガスの流量よりも大きい。炭化珪素単結晶基板の直径は、100mm以上である。エピタキシャル成長する工程において、複数枚の炭化珪素単結晶基板が前記反応室内に配置されている。 (8) A method for manufacturing a silicon carbide epitaxial substrate according to the present disclosure includes a step of preheating nitrogen gas and introducing ammonia gas into the reaction chamber before introducing nitrogen gas into the silicon carbide single crystal substrate in the reaction chamber. Before, a step of preheating ammonia gas, a mixed gas containing carrier gas, source gas, nitrogen gas, and ammonia gas is introduced into the reaction chamber, and the silicon carbide layer doped with nitrogen is carbonized. And a step of epitaxial growth on the silicon single crystal substrate. The temperature for preheating ammonia gas is lower than the temperature for preheating nitrogen gas. The temperature for preheating nitrogen gas is 1000 ° C. or higher. The flow rate of nitrogen gas is larger than the flow rate of ammonia gas. The diameter of the silicon carbide single crystal substrate is 100 mm or more. In the epitaxial growth step, a plurality of silicon carbide single crystal substrates are arranged in the reaction chamber.
 (9)本開示に係る炭化珪素エピタキシャル成長装置は、ガス導入口を有する反応室と、反応室を加熱するための加熱機構と、反応室内に配置され、炭化珪素単結晶基板を支持するように構成された支持部材と、キャリアガス、原料ガス、窒素ガスおよびアンモニアガスを含む混合ガスをガス導入口に導入するように構成された配管と、支持部材よりも混合ガスの流れの上流側において、窒素ガスを予備加熱するように構成された第1の予備加熱機構とを備える。 (9) A silicon carbide epitaxial growth apparatus according to the present disclosure is configured to support a silicon carbide single crystal substrate that is disposed in a reaction chamber having a gas inlet, a heating mechanism for heating the reaction chamber, and the reaction chamber. A support member, a pipe configured to introduce a mixed gas containing carrier gas, raw material gas, nitrogen gas and ammonia gas into the gas inlet, and upstream of the flow of the mixed gas from the support member, A first preheating mechanism configured to preheat the gas.
 第1の予備加熱機構によって、窒素ガスを反応室に導入する前に加熱することができる。これにより、反応室内での窒素ガスの分解の効率を制御することができる。 It is possible to heat the nitrogen gas before introducing it into the reaction chamber by the first preheating mechanism. Thereby, the efficiency of decomposition of the nitrogen gas in the reaction chamber can be controlled.
 (10)(9)に係る炭化珪素エピタキシャル成長装置は、支持部材よりも混合ガスの流れの上流側において、アンモニアガスを予備加熱するように構成された第2の予備加熱機構をさらに備える。アンモニアガスの予備加熱の温度は、窒素ガスの予備加熱の温度よりも低い。 (10) The silicon carbide epitaxial growth apparatus according to (9) further includes a second preheating mechanism configured to preheat the ammonia gas upstream of the support member in the flow of the mixed gas. The temperature for preheating ammonia gas is lower than the temperature for preheating nitrogen gas.
 (11)(9)または(10)に係る炭化珪素エピタキシャル成長装置において、窒素ガスの予備加熱の温度は、1000℃以上である。 (11) In the silicon carbide epitaxial growth apparatus according to (9) or (10), the preheating temperature of the nitrogen gas is 1000 ° C. or higher.
 (12)(9)から(11)のいずれかに係る炭化珪素エピタキシャル成長装置において、窒素ガスの流量は、アンモニアガスの流量よりも大きい。 (12) In the silicon carbide epitaxial growth apparatus according to any one of (9) to (11), the flow rate of nitrogen gas is larger than the flow rate of ammonia gas.
 (13)(9)から(11)のいずれかに係る炭化珪素エピタキシャル成長装置において、窒素ガスの流量は、アンモニアガスの流量よりも小さい。 (13) In the silicon carbide epitaxial growth apparatus according to any one of (9) to (11), the flow rate of nitrogen gas is smaller than the flow rate of ammonia gas.
 (14)(9)から(13)のいずれかに係る炭化珪素エピタキシャル成長装置において、炭化珪素単結晶基板の直径は、100mm以上である。 (14) In the silicon carbide epitaxial growth apparatus according to any one of (9) to (13), the diameter of the silicon carbide single crystal substrate is 100 mm or more.
 (15)(9)から(14)のいずれかに係る炭化珪素エピタキシャル成長装置において、支持部材は、複数枚の炭化珪素単結晶基板を支持可能に構成される。 (15) In the silicon carbide epitaxial growth apparatus according to any one of (9) to (14), the support member is configured to be capable of supporting a plurality of silicon carbide single crystal substrates.
 [実施形態の詳細]
 以下、図面に基づいて実施形態を説明する。なお、以下の図面において同一または相当する部分には同一の参照番号を付し、その説明は繰り返さない。本明細書中においては、個別面を()、集合面を{}でそれぞれ示す。負の指数については、結晶学上、”-”(バー)を数字の上に付けることになっているが、本明細書中では、数字の前に負の符号を付けている。
[Details of the embodiment]
Embodiments will be described below with reference to the drawings. In the following drawings, the same or corresponding parts are denoted by the same reference numerals, and description thereof will not be repeated. In the present specification, individual planes are indicated by (), and aggregate planes are indicated by {}. As for the negative index, “−” (bar) is attached on the number in crystallography, but in this specification, a negative sign is attached before the number.
 図1は、本実施形態に係る炭化珪素エピタキシャル基板の構成を示す断面模式図である。図1に示されるように、炭化珪素エピタキシャル基板10は、炭化珪素単結晶基板20と、炭化珪素層31と、炭化珪素層32とを含む。 FIG. 1 is a schematic cross-sectional view showing a configuration of a silicon carbide epitaxial substrate according to the present embodiment. As shown in FIG. 1, silicon carbide epitaxial substrate 10 includes a silicon carbide single crystal substrate 20, a silicon carbide layer 31, and a silicon carbide layer 32.
 炭化珪素単結晶基板20は、たとえばポリタイプ4Hの六方晶炭化珪素から構成される。炭化珪素単結晶基板20は、表面21と裏面22とを有する。表面21および裏面22の最大径23は、たとえば100mm以上である。最大径23は、150mm以上でもよい。 Silicon carbide single crystal substrate 20 is made of, for example, polytype 4H hexagonal silicon carbide. Silicon carbide single crystal substrate 20 has a front surface 21 and a back surface 22. The maximum diameter 23 of the front surface 21 and the back surface 22 is, for example, 100 mm or more. The maximum diameter 23 may be 150 mm or more.
 炭化珪素単結晶基板20と、炭化珪素層31と、炭化珪素層32とは、窒素をn型不純物として含む。一例では、炭化珪素単結晶基板20のn型不純物の濃度は、炭化珪素層31のn型不純物の濃度よりも高い。炭化珪素層31のn型不純物の濃度は、炭化珪素層32のn型不純物の濃度よりも高い。 Silicon carbide single crystal substrate 20, silicon carbide layer 31, and silicon carbide layer 32 contain nitrogen as an n-type impurity. In one example, the concentration of n-type impurities in silicon carbide single crystal substrate 20 is higher than the concentration of n-type impurities in silicon carbide layer 31. The concentration of n-type impurities in silicon carbide layer 31 is higher than the concentration of n-type impurities in silicon carbide layer 32.
 たとえば炭化珪素単結晶基板20におけるn型不純物の濃度は、1×1019cm-3である。炭化珪素層31のn型不純物の濃度は、1×1018cm-3である。炭化珪素層32のn型不純物の濃度は、たとえば1×1015cm-3以上2×1016cm-3以下である。 For example, the concentration of the n-type impurity in silicon carbide single crystal substrate 20 is 1 × 10 19 cm −3 . The concentration of n-type impurities in silicon carbide layer 31 is 1 × 10 18 cm −3 . The concentration of the n-type impurity of the silicon carbide layer 32 is than 2 × 10 16 cm -3 for example least 1 × 10 15 cm -3.
 炭化珪素単結晶基板20の厚みは、たとえば300μm以上600μm以下である。炭化珪素層31の厚みは、たとえば0.1μm以上20μm以下である。炭化珪素層32の厚みは、炭化珪素層31の厚みよりも大きくてもよい。炭化珪素層32の厚みは、たとえば1μm以上150μm以下である。 The thickness of the silicon carbide single crystal substrate 20 is, for example, not less than 300 μm and not more than 600 μm. Silicon carbide layer 31 has a thickness of, for example, not less than 0.1 μm and not more than 20 μm. Silicon carbide layer 32 may have a thickness greater than that of silicon carbide layer 31. Silicon carbide layer 32 has a thickness of not less than 1 μm and not more than 150 μm, for example.
 図2は、本実施形態に係る炭化珪素エピタキシャル基板の製造方法を実行するための成膜装置40の構成を示す一部断面模式図である。成膜装置40は、たとえばCVD(Chemical Vapor Deposition)装置である。図2に示されるように、成膜装置40は、石英管43と、誘導加熱コイル44と、断熱材42と、発熱体41と、基板ホルダ46と、ガス供給源51~55と、配管61,62,63と、バルブ64と、排気ポンプ65と、予備加熱機構71,72とを主に有している。 FIG. 2 is a partial cross-sectional schematic diagram showing a configuration of a film forming apparatus 40 for executing the method for manufacturing a silicon carbide epitaxial substrate according to the present embodiment. The film forming apparatus 40 is, for example, a CVD (Chemical Vapor Deposition) apparatus. As shown in FIG. 2, the film forming apparatus 40 includes a quartz tube 43, an induction heating coil 44, a heat insulating material 42, a heating element 41, a substrate holder 46, gas supply sources 51 to 55, and a pipe 61. , 62, 63, a valve 64, an exhaust pump 65, and preheating mechanisms 71, 72.
 発熱体41は中空構造であって、内部に反応室45を形成している。断熱材42は、発熱体41の外周を囲うように配置されている。石英管43は、断熱材42の外周を囲うように配置されている。誘導加熱コイル44は、石英管43の外周を巻回するように設けられている。発熱体41、断熱材42および誘導加熱コイル44は、反応室45を加熱するための加熱機構の要素である。 The heating element 41 has a hollow structure and has a reaction chamber 45 formed therein. The heat insulating material 42 is disposed so as to surround the outer periphery of the heating element 41. The quartz tube 43 is disposed so as to surround the outer periphery of the heat insulating material 42. The induction heating coil 44 is provided so as to wind the outer periphery of the quartz tube 43. The heating element 41, the heat insulating material 42, and the induction heating coil 44 are elements of a heating mechanism for heating the reaction chamber 45.
 基板ホルダ46は、反応室45の内部に載置される。基板ホルダ46は、炭化珪素単結晶基板20を保持可能に構成された支持部材である。一例では、基板ホルダ46は、サセプタである。 The substrate holder 46 is placed inside the reaction chamber 45. Substrate holder 46 is a support member configured to hold silicon carbide single crystal substrate 20. In one example, the substrate holder 46 is a susceptor.
 ガス供給源51は、キャリアガスとして水素(H)ガスを供給する。ガス供給源52,53は、原料ガスを供給する。ガス供給源52は、シリコン(Si)原子を含むガスを供給する。ガス供給源53は、炭素(C)原子を含むガスを供給する。 The gas supply source 51 supplies hydrogen (H 2 ) gas as a carrier gas. The gas supply sources 52 and 53 supply a source gas. The gas supply source 52 supplies a gas containing silicon (Si) atoms. The gas supply source 53 supplies a gas containing carbon (C) atoms.
 シリコン原子を含むガスは、シラン(SiH)ガスであってもよい。シリコン原子を含むガスの他の例として、四塩化ケイ素(SiCl)ガス、トリクロロシラン(SiHCl)ガス、およびジクロロシラン(SiHCl)ガスを挙げることができる。炭素原子を含むガスは、プロパン(C)ガスであってもよい。 The gas containing silicon atoms may be silane (SiH 4 ) gas. Other examples of the gas containing silicon atoms include silicon tetrachloride (SiCl 4 ) gas, trichlorosilane (SiHCl 3 ) gas, and dichlorosilane (SiH 2 Cl 2 ) gas. The gas containing carbon atoms may be propane (C 3 H 8 ) gas.
 ガス供給源54,55は、ドーパントガスとして、窒素原子を含むガスを供給する。ガス供給源54は、窒素(N)ガスを供給する。ガス供給源55は、アンモニア(NH)ガスを供給する。以下に説明される例において、シリコン(Si)原子を含むガスはシランガスである。炭素原子を含むガスは、プロパン(C)ガスである。 The gas supply sources 54 and 55 supply a gas containing nitrogen atoms as a dopant gas. The gas supply source 54 supplies nitrogen (N 2 ) gas. The gas supply source 55 supplies ammonia (NH 3 ) gas. In the example described below, the gas containing silicon (Si) atoms is a silane gas. The gas containing carbon atoms is propane (C 3 H 8 ) gas.
 配管61は、キャリアガス、原料ガス、および窒素ガスをガス導入口47に導入するように構成される。配管62は、アンモニアガスをガス導入口47に導入するように構成される。配管62は、配管61に接続される。配管61および配管62は、キャリアガス、原料ガス、窒素ガスおよびアンモニアガスを含む混合ガス80を、ガス導入口47に導入するように構成される。 The pipe 61 is configured to introduce a carrier gas, a raw material gas, and a nitrogen gas into the gas inlet 47. The pipe 62 is configured to introduce ammonia gas into the gas inlet 47. The pipe 62 is connected to the pipe 61. The pipe 61 and the pipe 62 are configured to introduce a mixed gas 80 containing carrier gas, raw material gas, nitrogen gas and ammonia gas into the gas inlet 47.
 配管63は、ガス排出口48に接続されて、反応室45からガスを排出するように構成されている。排気ポンプ65は、配管63に接続されている。バルブ64は、配管63に設けられる。 The pipe 63 is connected to the gas discharge port 48 and is configured to discharge gas from the reaction chamber 45. The exhaust pump 65 is connected to the pipe 63. The valve 64 is provided in the pipe 63.
 予備加熱機構71は、配管61に設けられる。予備加熱機構72は、配管62に設けられる。予備加熱機構71は、窒素ガスが反応室45に導入される前に窒素ガスを加熱することができる。予備加熱機構72は、アンモニアガスが反応室45に導入される前にアンモニアガスを加熱することができる。 The preheating mechanism 71 is provided in the pipe 61. The preheating mechanism 72 is provided in the pipe 62. The preheating mechanism 71 can heat the nitrogen gas before the nitrogen gas is introduced into the reaction chamber 45. The preheating mechanism 72 can heat the ammonia gas before the ammonia gas is introduced into the reaction chamber 45.
 予備加熱機構71,72の各々は、たとえば外部から加熱される管、あるいは、内部に電熱コイルが設けられた部屋などでよい。予備加熱機構71と予備加熱機構72とは、加熱温度を互いに独立して制御可能なように構成されることが好ましい。 Each of the preheating mechanisms 71 and 72 may be, for example, a tube heated from the outside or a room provided with an electric heating coil inside. The preheating mechanism 71 and the preheating mechanism 72 are preferably configured so that the heating temperature can be controlled independently of each other.
 予備加熱機構71は、基板ホルダ46よりも混合ガス80の流れの上流側に配置されていればよい。したがって予備加熱機構71は、反応室45の内部に組み込まれてもよい。予備加熱機構72は省略されてもよい。 The preheating mechanism 71 may be disposed upstream of the substrate holder 46 in the flow of the mixed gas 80. Therefore, the preheating mechanism 71 may be incorporated in the reaction chamber 45. The preheating mechanism 72 may be omitted.
 図3は、本実施形態に係る炭化珪素エピタキシャル基板の製造方法を示したフロー図である。図3に示されるように、まず、炭化珪素単結晶基板を準備する工程(110)が実施される。炭化珪素単結晶基板20は、たとえばポリタイプ4Hの六方晶炭化珪素から構成されている。たとえば昇華法により製造された炭化珪素単結晶からなるインゴットをスライスすることにより、表面21と、裏面22とを有する炭化珪素単結晶基板20が準備される(図4を参照)。 FIG. 3 is a flowchart showing a method for manufacturing the silicon carbide epitaxial substrate according to the present embodiment. As shown in FIG. 3, first, a step (110) of preparing a silicon carbide single crystal substrate is performed. Silicon carbide single crystal substrate 20 is made of, for example, polytype 4H hexagonal silicon carbide. For example, a silicon carbide single crystal substrate 20 having a front surface 21 and a back surface 22 is prepared by slicing an ingot made of a silicon carbide single crystal manufactured by a sublimation method (see FIG. 4).
 表面21は、基底面からオフ角だけ傾斜した面である。基底面は、たとえば{0001}面であり、特定的には(0001)Si面である。オフ角は、たとえば2°以上8°以下である。オフ方向は、<1-100>方向であってもよいし、<11-20>方向であってもよい。 The surface 21 is a surface inclined by an off angle from the basal plane. The basal plane is, for example, a {0001} plane, specifically a (0001) Si plane. The off angle is, for example, 2 ° or more and 8 ° or less. The off direction may be the <1-100> direction or the <11-20> direction.
 次に、第1炭化珪素層(炭化珪素層31)を形成する工程(120)が実施される。図2に示されるように、炭化珪素単結晶基板20が、反応室45の内部に配置される。炭化珪素単結晶基板20は、基板ホルダ46によって支持される。水素ガスが、配管61を通って反応室45に供給される。水素ガスの流量は、たとえば120slmである。水素ガスが反応室45に供給された状態を維持しながら、炭化珪素単結晶基板20が加熱される。誘導加熱コイル44に高周波電流を流すことで、電磁誘導作用により、発熱体41が誘導加熱される。これにより、反応室45中の炭化珪素単結晶基板20が、たとえば1500℃以上1700℃以下程度の温度に加熱される。 Next, a step (120) of forming a first silicon carbide layer (silicon carbide layer 31) is performed. As shown in FIG. 2, silicon carbide single crystal substrate 20 is arranged inside reaction chamber 45. Silicon carbide single crystal substrate 20 is supported by substrate holder 46. Hydrogen gas is supplied to the reaction chamber 45 through the pipe 61. The flow rate of hydrogen gas is, for example, 120 slm. While maintaining the state where hydrogen gas is supplied to reaction chamber 45, silicon carbide single crystal substrate 20 is heated. By causing a high frequency current to flow through the induction heating coil 44, the heating element 41 is induction heated by electromagnetic induction. Thereby, silicon carbide single crystal substrate 20 in reaction chamber 45 is heated to a temperature of about 1500 ° C. to 1700 ° C., for example.
 次に、キャリアガスとしての水素ガス、原料ガスおよびドーパントガスが混合された混合ガス80が反応室45に導入される。ドーパントガスは、アンモニアガスおよび窒素ガスのいずれか一方でもよく、両方であってもよい。ドーパントガスが窒素ガスを含む場合、窒素ガスは、予備加熱機構71によって、加熱される。窒素ガスの加熱温度は、1000℃以上である。反応室45の内部では、炭化珪素層31が、炭化珪素単結晶基板20上に、エピタキシャル成長により形成される。 Next, a mixed gas 80 in which hydrogen gas as a carrier gas, raw material gas, and dopant gas are mixed is introduced into the reaction chamber 45. The dopant gas may be either ammonia gas or nitrogen gas, or both. When the dopant gas contains nitrogen gas, the nitrogen gas is heated by the preheating mechanism 71. The heating temperature of nitrogen gas is 1000 ° C. or higher. Inside reaction chamber 45, silicon carbide layer 31 is formed on silicon carbide single crystal substrate 20 by epitaxial growth.
 続いて、第2炭化珪素層(炭化珪素層32)を形成する工程(130)が実施される。工程120と同様に、混合ガス80が反応室45に導入される。混合ガス80は、ドーパントガスとして、アンモニアガスおよび窒素ガスを含む。予備加熱機構71は、窒素ガスを加熱する。この実施形態では、加熱温度は、1000℃以上である。 Subsequently, a step (130) of forming a second silicon carbide layer (silicon carbide layer 32) is performed. Similar to step 120, the mixed gas 80 is introduced into the reaction chamber 45. The mixed gas 80 includes ammonia gas and nitrogen gas as dopant gases. The preheating mechanism 71 heats nitrogen gas. In this embodiment, the heating temperature is 1000 ° C. or higher.
 さらに、予備加熱機構72によって、アンモニアガスを予備加熱してもよい。アンモニアガスは、窒素ガスに比べて、より低温から熱分解が生じる。この実施形態では、アンモニアガスを予備加熱する場合には、アンモニアガスの予備加熱の温度を、窒素ガスの予備加熱の温度よりも低くしてもよい。 Furthermore, the ammonia gas may be preheated by the preheating mechanism 72. Ammonia gas undergoes thermal decomposition from a lower temperature than nitrogen gas. In this embodiment, when the ammonia gas is preheated, the ammonia gas preheating temperature may be lower than the nitrogen gas preheating temperature.
 以上のようにして、エピタキシャル成長により、炭化珪素層31上に炭化珪素層32が形成される。 As described above, silicon carbide layer 32 is formed on silicon carbide layer 31 by epitaxial growth.
 炭化珪素エピタキシャル基板に形成されるデバイス(たとえば高耐圧デバイス)の歩留を向上させるためには、窒素原子のドーピング密度の基板の面内での分布が均一であることが望ましい。炭化珪素単結晶基板20上にアンモニアガスが到達した時点において、アンモニアは十分に熱分解可能である。窒素原子が炭化珪素層にドープされることにより、アンモニアガスの流れの下流側ほどドーパント(窒素原子)の濃度が減少する。ドーパントガスがアンモニアガスのみである場合には、炭化珪素単結晶基板20の直径が大きいほど、ドーピング密度が基板面内でばらつきやすい。言い換えると、ドーピング密度の面内均一性が低下しやすい。 In order to improve the yield of a device (for example, a high breakdown voltage device) formed on a silicon carbide epitaxial substrate, it is desirable that the nitrogen atom doping density is uniformly distributed in the plane of the substrate. When the ammonia gas reaches the silicon carbide single crystal substrate 20, the ammonia can be sufficiently thermally decomposed. By doping the silicon carbide layer with nitrogen atoms, the concentration of the dopant (nitrogen atoms) decreases toward the downstream side of the ammonia gas flow. When the dopant gas is only ammonia gas, the doping density tends to vary within the substrate plane as the silicon carbide single crystal substrate 20 has a larger diameter. In other words, the in-plane uniformity of the doping density tends to decrease.
 一方、窒素ガスは、窒素分子の三重結合のエネルギーが大きいために、アンモニアガスに比べると熱分解の効率が低い。このため、反応室45の内部では窒素ガスの流れの下流ほど、窒素ガスの熱分解が進行しやすいと考えられる。 On the other hand, nitrogen gas has lower thermal decomposition efficiency than ammonia gas because of the large energy of triple bonds of nitrogen molecules. For this reason, it is considered that the thermal decomposition of the nitrogen gas is more likely to proceed toward the downstream of the nitrogen gas flow inside the reaction chamber 45.
 本実施の形態では、窒素ガスおよびアンモニアガスを混合したガスがドーパントガスとして用いられる。さらに窒素ガスは、反応室に導入する前に加熱される。これによって、反応室内での窒素ガスの分解の効率を制御することができる。反応室の内部では、窒素ガスの流れの下流ほど窒素ガスの熱分解が進行しやすい。アンモニアガスと窒素ガスとが混合されたガスを反応室に導入することにより、炭化珪素単結晶基板上のドーパント濃度を均一化することができる。したがってドーピング密度の分布の面内均一性に優れた炭化珪素層を形成することができる。 In the present embodiment, a mixed gas of nitrogen gas and ammonia gas is used as the dopant gas. Further, the nitrogen gas is heated before being introduced into the reaction chamber. Thereby, the efficiency of decomposition of nitrogen gas in the reaction chamber can be controlled. Inside the reaction chamber, the thermal decomposition of nitrogen gas tends to proceed more downstream in the flow of nitrogen gas. By introducing a gas in which ammonia gas and nitrogen gas are mixed into the reaction chamber, the dopant concentration on the silicon carbide single crystal substrate can be made uniform. Therefore, a silicon carbide layer excellent in in-plane uniformity of the doping density distribution can be formed.
 本開示に係る炭化珪素エピタキシャル基板の製造方法によれば、容積の大きい反応室内で炭化珪素のエピタキシャル成長を行う場合にも、ドーピング密度の面内均一性向上が可能となる。したがって、大口径(たとえば直径150mm以上)の炭化珪素エピタキシャル基板において、ドーピング密度の面内均一性を良好にすることができる。 According to the method for manufacturing a silicon carbide epitaxial substrate according to the present disclosure, in-plane uniformity of the doping density can be improved even when silicon carbide is epitaxially grown in a reaction chamber having a large volume. Therefore, in-plane uniformity of doping density can be improved in a silicon carbide epitaxial substrate having a large diameter (for example, a diameter of 150 mm or more).
 直径150mmの炭化珪素単結晶基板において、ドーピング密度が5×1015(cm-3)である炭化珪素層32を、本開示に係るエピタキシャル成長によって形成する例を以下に説明する。この例において、窒素ガスの予備加熱の温度は1000℃である。窒素ガスの流量は、3sccmである。アンモニアガスの流量は1sccmである。水素ガスの流量は120slmである。シランガスの流量は46sccmである。プロパンガスの流量は17sccmである。 An example in which a silicon carbide layer 32 having a doping density of 5 × 10 15 (cm −3 ) in a silicon carbide single crystal substrate having a diameter of 150 mm is formed by epitaxial growth according to the present disclosure will be described below. In this example, the temperature for preheating nitrogen gas is 1000 ° C. The flow rate of nitrogen gas is 3 sccm. The flow rate of ammonia gas is 1 sccm. The flow rate of hydrogen gas is 120 slm. The flow rate of silane gas is 46 sccm. The flow rate of propane gas is 17 sccm.
 上記の例では、窒素ガスの流量は、アンモニアガスの流量よりも大きい。しかしながら、窒素ガスの流量は、アンモニアガスの流量より小さくすることもできる。言い換えると、アンモニアガスの流量に対する窒素ガスの流量の比率(窒素ガスの流量をアンモニアガスの流量で割った値)は1より大きくてもよく、1より小さくてもよい。 In the above example, the flow rate of nitrogen gas is larger than the flow rate of ammonia gas. However, the flow rate of nitrogen gas can be smaller than the flow rate of ammonia gas. In other words, the ratio of the flow rate of nitrogen gas to the flow rate of ammonia gas (the value obtained by dividing the flow rate of nitrogen gas by the flow rate of ammonia gas) may be greater than 1 or less than 1.
 上記の例では、直径150mmの炭化珪素単結晶基板が示される。本実施の形態に係る炭化珪素エピタキシャル基板の製造方法を、直径が小さい炭化珪素単結晶基板に適用した場合にも、ドーピング密度の面内均一性を良好にすることができる。炭化珪素単結晶基板の直径は100mm以上であってもよい。 In the above example, a silicon carbide single crystal substrate having a diameter of 150 mm is shown. Even when the method for manufacturing a silicon carbide epitaxial substrate according to the present embodiment is applied to a silicon carbide single crystal substrate having a small diameter, in-plane uniformity of doping density can be improved. The diameter of the silicon carbide single crystal substrate may be 100 mm or more.
 さらに、本実施の形態によれば、複数枚の炭化珪素単結晶基板を反応室内に配置した場合にも、各々の炭化珪素単結晶基板において、ドーピング密度の面内均一性を良好にすることができる。 Furthermore, according to the present embodiment, even when a plurality of silicon carbide single crystal substrates are arranged in the reaction chamber, the in-plane uniformity of the doping density can be improved in each silicon carbide single crystal substrate. it can.
 図5は、複数枚の炭化珪素単結晶基板20を支持するための基板ホルダ46の一例を示した図である。図5に示されるように、たとえば2枚の炭化珪素単結晶基板20が、基板ホルダ46に配置される。反応室45の内部において、基板ホルダ46は、中心軸49を中心として回転してもよい。炭化珪素単結晶基板20の直径は、100mm以上でもよく、150mm以上でもよい。 FIG. 5 is a diagram showing an example of a substrate holder 46 for supporting a plurality of silicon carbide single crystal substrates 20. As shown in FIG. 5, for example, two silicon carbide single crystal substrates 20 are arranged on substrate holder 46. Inside the reaction chamber 45, the substrate holder 46 may rotate about the central axis 49. The diameter of silicon carbide single crystal substrate 20 may be 100 mm or more, or 150 mm or more.
 今回開示された実施の形態はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した実施の形態ではなく請求の範囲によって示され、請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。 It should be considered that the embodiment disclosed this time is illustrative in all respects and not restrictive. The scope of the present invention is shown not by the above-described embodiment but by the scope of claims, and is intended to include meanings equivalent to the scope of claims and all modifications within the scope.
10 炭化珪素エピタキシャル基板、20 炭化珪素単結晶基板、21 表面、22 裏面、23 最大径、31,32 炭化珪素層、40 成膜装置、41 発熱体、42 断熱材、43 石英管、44 誘導加熱コイル、45 反応室、46 基板ホルダ、47 ガス導入口、48 ガス排出口、49 中心軸、51~55 ガス供給源、61~63 配管、64 バルブ、65 排気ポンプ、71,72 予備加熱機構、80 混合ガス、110~130 工程。 10 silicon carbide epitaxial substrate, 20 silicon carbide single crystal substrate, 21 front surface, 22 back surface, 23 maximum diameter, 31, 32 silicon carbide layer, 40 film forming device, 41 heating element, 42 heat insulating material, 43 quartz tube, 44 induction heating Coil, 45 reaction chamber, 46 substrate holder, 47 gas inlet, 48 gas outlet, 49 central axis, 51-55 gas supply source, 61-63 piping, 64 valve, 65 exhaust pump, 71, 72 preheating mechanism, 80 gas mixture, 110-130 steps.

Claims (15)

  1.  反応室内の炭化珪素単結晶基板に窒素ガスを導入する前に、前記窒素ガスを予備加熱する工程と、
     キャリアガスと、原料ガスと、前記窒素ガスと、アンモニアガスとを含む混合ガスを、前記反応室に導入して、窒素がドープされた炭化珪素層を前記炭化珪素単結晶基板上にエピタキシャル成長する工程とを備える、炭化珪素エピタキシャル基板の製造方法。
    A step of preheating the nitrogen gas before introducing the nitrogen gas into the silicon carbide single crystal substrate in the reaction chamber;
    Introducing a mixed gas containing a carrier gas, a source gas, the nitrogen gas, and ammonia gas into the reaction chamber, and epitaxially growing a silicon carbide layer doped with nitrogen on the silicon carbide single crystal substrate; A method for manufacturing a silicon carbide epitaxial substrate.
  2.  前記反応室内に前記アンモニアガスを導入する前に、前記アンモニアガスを予備加熱する工程をさらに備え、
     前記アンモニアガスの予備加熱の温度は、前記窒素ガスの予備加熱の温度よりも低い、請求項1に記載の炭化珪素エピタキシャル基板の製造方法。
    A step of preheating the ammonia gas before introducing the ammonia gas into the reaction chamber;
    The method for manufacturing a silicon carbide epitaxial substrate according to claim 1, wherein a temperature of the ammonia gas preheating is lower than a temperature of the nitrogen gas preheating.
  3.  前記窒素ガスの予備加熱の温度は、1000℃以上である、請求項1または請求項2に記載の炭化珪素エピタキシャル基板の製造方法。 3. The method for manufacturing a silicon carbide epitaxial substrate according to claim 1, wherein a temperature of preheating the nitrogen gas is 1000 ° C. or higher.
  4.  前記窒素ガスの流量は、前記アンモニアガスの流量よりも大きい、請求項1から請求項3のいずれか1項に記載の炭化珪素エピタキシャル基板の製造方法。 The method for manufacturing a silicon carbide epitaxial substrate according to any one of claims 1 to 3, wherein a flow rate of the nitrogen gas is larger than a flow rate of the ammonia gas.
  5.  前記窒素ガスの流量は、前記アンモニアガスの流量よりも小さい、請求項1から請求項3のいずれか1項に記載の炭化珪素エピタキシャル基板の製造方法。 The method for manufacturing a silicon carbide epitaxial substrate according to any one of claims 1 to 3, wherein a flow rate of the nitrogen gas is smaller than a flow rate of the ammonia gas.
  6.  前記炭化珪素単結晶基板の直径は、100mm以上である、請求項1から請求項5のいずれか1項に記載の炭化珪素エピタキシャル基板の製造方法。 The method for manufacturing a silicon carbide epitaxial substrate according to any one of claims 1 to 5, wherein the silicon carbide single crystal substrate has a diameter of 100 mm or more.
  7.  前記エピタキシャル成長する工程において、複数枚の前記炭化珪素単結晶基板が前記反応室内に配置されている、請求項1から請求項6のいずれか1項に記載の炭化珪素エピタキシャル基板の製造方法。 The method for manufacturing a silicon carbide epitaxial substrate according to any one of claims 1 to 6, wherein in the epitaxial growth step, a plurality of the silicon carbide single crystal substrates are arranged in the reaction chamber.
  8.  反応室内の炭化珪素単結晶基板に窒素ガスを導入する前に、前記窒素ガスを予備加熱する工程と、
     前記反応室内にアンモニアガスを導入する前に、前記アンモニアガスを予備加熱する工程と、
     キャリアガスと、原料ガスと、前記窒素ガスと、アンモニアガスとを含む混合ガスを、前記反応室に導入して、窒素がドープされた炭化珪素層を前記炭化珪素単結晶基板上にエピタキシャル成長する工程とを備え、
     前記アンモニアガスの予備加熱の温度は、前記窒素ガスの予備加熱の温度よりも低く、
     前記窒素ガスの予備加熱の温度は、1000℃以上であり、
     前記窒素ガスの流量は、前記アンモニアガスの流量よりも大きく、
     前記炭化珪素単結晶基板の直径は、100mm以上であり、
     前記エピタキシャル成長する工程において、複数枚の前記炭化珪素単結晶基板が前記反応室内に配置されている、炭化珪素エピタキシャル基板の製造方法。
    A step of preheating the nitrogen gas before introducing the nitrogen gas into the silicon carbide single crystal substrate in the reaction chamber;
    A step of preheating the ammonia gas before introducing the ammonia gas into the reaction chamber;
    Introducing a mixed gas containing a carrier gas, a source gas, the nitrogen gas, and ammonia gas into the reaction chamber, and epitaxially growing a silicon carbide layer doped with nitrogen on the silicon carbide single crystal substrate; And
    The preheating temperature of the ammonia gas is lower than the preheating temperature of the nitrogen gas,
    The temperature of the nitrogen gas preheating is 1000 ° C. or higher,
    The flow rate of the nitrogen gas is larger than the flow rate of the ammonia gas,
    The diameter of the silicon carbide single crystal substrate is 100 mm or more,
    A method for manufacturing a silicon carbide epitaxial substrate, wherein in the epitaxial growth step, a plurality of the silicon carbide single crystal substrates are arranged in the reaction chamber.
  9.  ガス導入口を有する反応室と、
     前記反応室を加熱するための加熱機構と、
     前記反応室内に配置され、炭化珪素単結晶基板を支持するように構成された支持部材と、
     キャリアガス、原料ガス、窒素ガスおよびアンモニアガスを含む混合ガスを前記ガス導入口に導入するように構成された配管と、
     前記支持部材よりも前記混合ガスの流れの上流側において、前記窒素ガスを予備加熱するように構成された第1の予備加熱機構とを備える、炭化珪素エピタキシャル成長装置。
    A reaction chamber having a gas inlet;
    A heating mechanism for heating the reaction chamber;
    A support member disposed within the reaction chamber and configured to support a silicon carbide single crystal substrate;
    A pipe configured to introduce a mixed gas containing carrier gas, source gas, nitrogen gas and ammonia gas into the gas inlet;
    A silicon carbide epitaxial growth apparatus comprising: a first preheating mechanism configured to preheat the nitrogen gas upstream of the support member in the mixed gas flow.
  10.  前記支持部材よりも前記混合ガスの流れの上流側において、前記アンモニアガスを予備加熱するように構成された第2の予備加熱機構をさらに備え、
     前記アンモニアガスの予備加熱の温度は、前記窒素ガスの予備加熱の温度よりも低い、請求項9に記載の炭化珪素エピタキシャル成長装置。
    A second preheating mechanism configured to preheat the ammonia gas upstream of the support member in the mixed gas flow;
    The silicon carbide epitaxial growth apparatus according to claim 9, wherein a temperature of the ammonia gas preheating is lower than a temperature of the nitrogen gas preheating.
  11.  前記窒素ガスの予備加熱の温度は、1000℃以上である、請求項9または請求項10に記載の炭化珪素エピタキシャル成長装置。 The silicon carbide epitaxial growth apparatus according to claim 9 or 10, wherein a temperature of the nitrogen gas preheating is 1000 ° C or higher.
  12.  前記窒素ガスの流量は、前記アンモニアガスの流量よりも大きい、請求項9から請求項11のいずれか1項に記載の炭化珪素エピタキシャル成長装置。 The silicon carbide epitaxial growth apparatus according to any one of claims 9 to 11, wherein a flow rate of the nitrogen gas is larger than a flow rate of the ammonia gas.
  13.  前記窒素ガスの流量は、前記アンモニアガスの流量よりも小さい、請求項9から請求項11のいずれか1項に記載の炭化珪素エピタキシャル成長装置。 The silicon carbide epitaxial growth apparatus according to any one of claims 9 to 11, wherein a flow rate of the nitrogen gas is smaller than a flow rate of the ammonia gas.
  14.  前記支持部材は、直径が100mm以上である前記炭化珪素単結晶基板を支持可能に構成される、請求項9から請求項13のいずれか1項に記載の炭化珪素エピタキシャル成長装置。 The silicon carbide epitaxial growth apparatus according to any one of claims 9 to 13, wherein the support member is configured to be capable of supporting the silicon carbide single crystal substrate having a diameter of 100 mm or more.
  15.  前記支持部材は、複数枚の前記炭化珪素単結晶基板を支持可能に構成される、請求項9から請求項14のいずれか1項に記載の炭化珪素エピタキシャル成長装置。 The silicon carbide epitaxial growth apparatus according to any one of claims 9 to 14, wherein the support member is configured to be capable of supporting a plurality of the silicon carbide single crystal substrates.
PCT/JP2016/072141 2015-09-14 2016-07-28 Method for manufacturing silicon carbide epitaxial substrate and apparatus for silicon carbide epitaxial growth WO2017047244A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-180664 2015-09-14
JP2015180664 2015-09-14

Publications (1)

Publication Number Publication Date
WO2017047244A1 true WO2017047244A1 (en) 2017-03-23

Family

ID=58288770

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/072141 WO2017047244A1 (en) 2015-09-14 2016-07-28 Method for manufacturing silicon carbide epitaxial substrate and apparatus for silicon carbide epitaxial growth

Country Status (1)

Country Link
WO (1) WO2017047244A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009035095A1 (en) * 2007-09-12 2009-03-19 Showa Denko K.K. EPITAXIAL SiC SINGLE CRYSTAL SUBSTRATE AND METHOD FOR MANUFACTURING EPITAXIAL SiC SINGLE CRYSTAL SUBSTRATE
JP2014103363A (en) * 2012-11-22 2014-06-05 Sumitomo Electric Ind Ltd Silicon carbide semiconductor substrate manufacturing method
JP2015051895A (en) * 2013-09-06 2015-03-19 住友電気工業株式会社 Silicon carbide epitaxial substrate, method of manufacturing silicon carbide epitaxial substrate, method of manufacturing silicon carbide semiconductor device, silicon carbide growth apparatus and member for silicon carbide growth apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009035095A1 (en) * 2007-09-12 2009-03-19 Showa Denko K.K. EPITAXIAL SiC SINGLE CRYSTAL SUBSTRATE AND METHOD FOR MANUFACTURING EPITAXIAL SiC SINGLE CRYSTAL SUBSTRATE
JP2014103363A (en) * 2012-11-22 2014-06-05 Sumitomo Electric Ind Ltd Silicon carbide semiconductor substrate manufacturing method
JP2015051895A (en) * 2013-09-06 2015-03-19 住友電気工業株式会社 Silicon carbide epitaxial substrate, method of manufacturing silicon carbide epitaxial substrate, method of manufacturing silicon carbide semiconductor device, silicon carbide growth apparatus and member for silicon carbide growth apparatus

Similar Documents

Publication Publication Date Title
KR101478331B1 (en) Method for producing epitaxial silicon carbide single crystal substrate
TW201529914A (en) Silicon carbide epitaxial substrate, and method for producing silicon carbide epitaxial substrate
JP6362266B2 (en) SiC epitaxial wafer manufacturing method and SiC epitaxial growth apparatus
JP4139306B2 (en) Vertical hot wall CVD epitaxial apparatus and SiC epitaxial growth method
JP2018522412A (en) Growth of epitaxial 3C-SiC on single crystal silicon
JP5943509B2 (en) Method for forming film on silicon carbide substrate
JP4662034B2 (en) Method for producing silicon carbide single crystal
JP6149931B2 (en) Silicon carbide semiconductor device manufacturing method and silicon carbide semiconductor device
JP2017019679A (en) Silicon carbide epitaxial substrate
US8802546B2 (en) Method for manufacturing silicon carbide semiconductor device
WO2018078944A1 (en) Method for manufacturing silicon carbide epitaxial substrate
JP2016154223A (en) Cvd device and method of manufacturing compound semiconductor epitaxial substrate
JP2014232799A (en) Method of manufacturing silicon carbide semiconductor substrate
US10337119B2 (en) Method of manufacturing silicon carbide epitaxial substrate
JP2015198213A (en) Method of manufacturing epitaxial silicon carbide wafer, and holde for silicon carbide single cristal substrate used for the same
WO2017047244A1 (en) Method for manufacturing silicon carbide epitaxial substrate and apparatus for silicon carbide epitaxial growth
JP2014103363A (en) Silicon carbide semiconductor substrate manufacturing method
JP7143638B2 (en) Method for manufacturing silicon carbide epitaxial substrate
JP6671195B2 (en) Method for epitaxial growth of silicon carbide
US9269572B2 (en) Method for manufacturing silicon carbide semiconductor substrate
JP2014166957A5 (en)
JP5896346B2 (en) Silicon carbide semiconductor
US20160348274A1 (en) Method and apparatus for manufacturing silicon carbide substrate
JP4396195B2 (en) CVD epitaxial growth method
JP2017069239A (en) Epitaxial growth method for silicon carbide

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16846117

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16846117

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP