WO2017047088A1 - High-strength thick steel plate for structural use and manufacturing method therefor - Google Patents

High-strength thick steel plate for structural use and manufacturing method therefor Download PDF

Info

Publication number
WO2017047088A1
WO2017047088A1 PCT/JP2016/004223 JP2016004223W WO2017047088A1 WO 2017047088 A1 WO2017047088 A1 WO 2017047088A1 JP 2016004223 W JP2016004223 W JP 2016004223W WO 2017047088 A1 WO2017047088 A1 WO 2017047088A1
Authority
WO
WIPO (PCT)
Prior art keywords
thick steel
less
brittle crack
thickness
vtrs
Prior art date
Application number
PCT/JP2016/004223
Other languages
French (fr)
Japanese (ja)
Inventor
隆洋 ▲崎▼本
恒久 半田
聡 伊木
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to CN201680052939.XA priority Critical patent/CN108026618B/en
Priority to KR1020187006623A priority patent/KR102092000B1/en
Priority to JP2016568462A priority patent/JP6245384B2/en
Publication of WO2017047088A1 publication Critical patent/WO2017047088A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite

Definitions

  • the present invention relates to a structural steel plate suitable for large steel structures such as ships, marine structures, low-temperature storage tanks, and construction / civil engineering structures, and a method for producing the same. It relates to improvement of brittle crack propagation stopping performance.
  • TEU wenty feet Equivalent Unit
  • Steel materials such as thick steel plates used in large steel structures such as ships have excellent low temperature toughness and excellent brittle crack propagation stop toughness values at operating temperatures from the viewpoint of ensuring the safety of the structure. It is required to have. In particular, even if a brittle crack occurs, it is necessary to stop the propagation of the brittle crack before it reaches a large-scale fracture.
  • the toughness value (hereinafter also referred to as “arrest performance”) is an important characteristic.
  • Patent Document 1 describes a structural high-strength thick steel plate having excellent brittle crack propagation stopping characteristics.
  • the technology described in Patent Document 1 includes, in mass%, C: 0.03-0.20%, Si: 0.03-0.5%, Mn: 0.5-2.0%, Al: 0.005-0.08%, or Ti: 0.005- 0.03%, Nb: 0.005-0.05%, Cu: 0.01-0.5%, Ni: 0.01-1.0%, Cr: 0.01-0.5%, Mo: 0.01-0.5%, V: 0.001-0.1%, B: 0.003% or less , Ca: 0.005% or less, REM: 0.01% or less steel material containing one or more of them is heated to a temperature of 900-1200 ° C, and the temperature at the center of the plate thickness is Ar 3 or higher Cumulative rolling reduction: 30% or more, and rolling at a rolling temperature of 30% or more in the temperature range where the temperature at the center of the sheet thickness is Ar 3 points or less Ar 3 points -60 ° C or more, then
  • the (100) plane X-ray intensity ratio is 2.0 or more and the thickness is 1/4 portion.
  • Patent Document 2 describes a thick steel plate having a thickness of 50 mm or more, which is excellent in long brittle crack propagation stopping characteristics, and a manufacturing method thereof.
  • the technique described in Patent Document 2 includes, in mass%, C: 0.15% or less, Si: 0.60% or less, Mn: 0.80 to 1.80%, S: 0.001 to 0.05%, Ti: 0.005 to 0.050%, or Nb : Containing at least one selected from 0.001 to 0.1%, Cu: 2.0% or less, V: 0.2% or less, Ni: 2.0% or less, Cr: 0.6% or less, Mo: 0.6% or less, W : A steel material containing one or more selected from 0.5% or less, B: 0.0050% or less, Zr: 0.5% or less is heated to a temperature of 900-1300 ° C, and a surface temperature of 1000-850 After rolling at a cumulative reduction ratio of 10% or more in the temperature range of °C, the surface temperature is 900-600 °C and the internal temperature is 50-
  • the X-ray intensity ratio of the (211) surface or (100) surface at the rolled surface in the region of at least 20% of the plate thickness at the center of the plate thickness is 1.5 or more, and 1/4 to 1/1 of the plate thickness.
  • the tip shape of the brittle crack propagation stop in the cross section in the thickness direction of the fracture surface of the steel sheet is from 1/4 to 1/1 / of the plate thickness from the steel plate surface.
  • Thick steel plate that forms a concave recess with a maximum crack length of 10 or 3/4 to 9/10 of the plate thickness which is at least as long as the plate thickness and shorter than the direction of the brittle crack. It is said that long brittle cracks, which have been difficult in conventional thick steel plates, can be stopped even under conditions without stress reflection.
  • Patent Document 3 describes a method for producing a structural high-strength thick steel plate having a plate thickness of 50 mm or more and excellent brittle crack propagation stopping characteristics.
  • C 0.03-0.20%, Si: 0.03-0.5%, Mn: 0.5-2.2%, Al: 0.005-0.08%, P: 0.03% or less, S: 0.01% or less, N: 0.0050% or less, Ti: 0.005-0.03%, or Nb: 0.005-0.05%, Cu: 0.01-0.5%, Ni: 0.01-1.0%, Cr: 0.01-0.5%,
  • the total rolling reduction in the austenite recrystallization temperature range and the austenite non-recrystallization temperature range is 65% or more, and
  • the microstructure is mainly composed of ferrite, and the RD // (110) plane integration degree in the surface layer portion is 1.3 or more, and the RD // (110) plane integration degree in the central portion of the plate thickness is 1.8 or more.
  • Patent Document 4 describes a method for producing a structural high-strength thick steel plate having a thickness of 50 mm or more and excellent brittle crack propagation stopping characteristics.
  • C 0.03-0.20%, Si: 0.03-0.5%, Mn: 0.5-2.5%, Al: 0.005-0.08%, P: 0.03% or less, S: 0.01% or less, N: 0.0050% or less, Ti: 0.005-0.03%, or Nb: 0.005-0.05%, Cu: 0.01-0.5%, Ni: 0.01-1.0%, Cr: 0.01-0.5%,
  • the total rolling reduction in the austenite recrystallization temperature range and the austenite non-recrystallization temperature range is 65% or more, and the cumulative reduction rate
  • the cumulative rolling reduction in the state where the center of the plate thickness is in the austenite non-recrystallization temperature range is set to 40% or more and the center of the plate thickness is austenite.
  • rolling is performed so that the difference in rolling temperature between the first pass and the final pass is within 40 ° C, and then 450 ° C at a cooling rate of 4 ° C / s or more. It is supposed to cool to below °C.
  • the structure is mainly bainite
  • the RD // (110) surface has a texture of 1.5 or more in the surface layer
  • the Charpy fracture surface transition temperature in the surface layer and the center of the plate thickness is -40 ° C or less.
  • Patent Document 5 describes “a high-strength thick steel plate excellent in arrestability”.
  • the thick steel sheet described in Patent Document 5 is mass%, C: 0.04 to 0.16%, Si: 0.01 to 0.5%, Mn: 0.75 to 2.5%, Al: 0.001 to 0.1%, Nb: 0.003 to 0.05%, Ti: 0.005 ⁇ 0.05%, N: 0.001 ⁇ 0.008% included, P, S, Cu, Ni, Mo, V, B, Ca, Mg, REM are restricted to below specified values, and the remainder from Fe and inevitable impurities And having a composition with a carbon equivalent Ceq of 0.30 to 0.50%, a ferrite with an area ratio of 70% or less, and a microstructure containing 30% or more of bainite.
  • the grain boundary density which is the total length per unit area of grain boundaries with an orientation difference of 15 ° or more, is 400 to 1000 mm / mm 2 and has an angle within 15 ° with respect to the plane perpendicular to the main rolling direction (
  • the area ratio of the (100) plane is 10 to 40%, and at 1/2 part of the plate thickness, the grain boundary density is 300 to 900 mm / mm 2 and within 15 ° to the plane perpendicular to the main rolling direction.
  • the area ratio of (110) plane with angle is 40-7 It is a 0% high strength thick steel plate.
  • a steel slab having the composition described above is charged as a manufacturing method in a heating furnace having an atmospheric temperature of 1000 to 1250 ° C., and then exceeds a center thickness of 850 ° C. to 1150 ° C.
  • Finishing with ⁇ 15 passes shape ratio average of 0.5 ⁇ 1, cumulative reduction ratio of 40 ⁇ 80%, and then the sheet thickness center temperature is over 700 °C, and the thickness is 2 ⁇ 10 °C / s It is preferable to cool to 550 ° C. or lower at the center cooling rate.
  • the propagation of brittle cracks is suppressed by changing the texture to be developed between 1/2 part of the plate thickness and 1/4 part of the plate thickness.
  • the present invention has been made in view of the problems of the prior art, and an object thereof is to provide a high-strength thick steel plate having a plate thickness of 70 mm or more and excellent brittle crack propagation stopping performance and a method for producing the same.
  • “high strength” refers to the case where the yield strength is 400 N / mm 2 or more.
  • excellent in brittle crack propagation stopping performance here means that the brittle crack propagation stopping toughness value Kca -10 ° C at the hull design temperature of -10 ° C is 9500 N / mm 3/2 or more. It shall be said.
  • the present inventors paid attention to the difference in brittle crack propagation stopping performance at each position in the plate thickness direction in the thick steel plate, and distributed the brittle crack propagation stopping performance at each position in the plate thickness direction.
  • the relationship between the state and the brittle crack propagation stopping performance of the entire thick steel plate was studied. As a result, in a thick steel plate with a thickness of 70 mm or more, the brittle crack propagation stopping performance of the entire thick steel plate can be remarkably improved. Found it to exist.
  • an inner region (plate thickness central region) having a high brittle crack propagation stopping performance and the outer sides thereof are relatively compared with each other. It was found that a thick steel plate consisting of three layers having a region with low brittle crack propagation stopping performance is required. In such a thick steel plate, when a brittle crack propagates (propagates), a step occurs in the vicinity of the boundary between the central portion of the plate thickness and the outer portions thereof, and the brittle crack in which the crack tip branches into three layers. It has been found that the brittle crack propagation stopping performance of the entire thick steel plate changes greatly depending on the combination of the thickness of each layer and its characteristics, since it propagates as a crack.
  • Y vTrs-12 ⁇ I (100) ⁇ 22 ⁇ I (211) (A)
  • vTrs V notch Charpy impact test fracture surface transition temperature (° C)
  • I (100) X-ray diffraction intensity ratio of (100) plane parallel to the rolling surface (plate surface)
  • I (211) X-ray diffraction intensity ratio of (211) plane parallel to the rolling surface (plate surface)
  • I came up with the idea that it can be evaluated easily using the index Y (° C) defined in.
  • This index Y is based on the fracture surface transition temperature (vTrs) of the Charpy impact test and improves the brittle crack propagation stop toughness by taking into account the degree of texture development that affects the improvement of brittle crack propagation stop performance. This is a parameter introduced by some of the present inventors in order to define the fracture surface transition temperature (vTrs) necessary to achieve this. If a texture favorable for improving the brittle crack propagation stopping performance develops and I (100) and I (211) become large, the index Y becomes low temperature.
  • the present inventors use this index Y as an index of brittle crack propagation stopping performance at each position in the plate thickness direction, and in particular, brittle crack propagation stopping performance index Y 1 / 6t at 1/6 position of the plate thickness,
  • the brittle crack propagation stopping performance index Y 1 / 3t at the 1/3 position of the plate thickness and the brittle crack propagation stopping performance index Y 1 / 2t at the 1/2 position of the sheet thickness are expressed by the following equations (1) and (2 ) Formula Y 1 / 3t ⁇ 0.9Y 1 / 2t (1) Y 1 / 6t ⁇ 0.8 Y 1 / 2t (2) It was newly found out that by adjusting so as to satisfy the above, a steel plate having a significantly improved brittle crack propagation stop toughness value Kca in the entire thickness was obtained.
  • Formula (1) means that an internal region (plate thickness central region) having high brittle crack propagation stopping performance exists over a region between at least two plate thickness 1/3 positions.
  • Formula (2) means that the area
  • Y 1 / 2t , Y 1 / 3t and Y 1 / 6t are less than zero.
  • Various types of thick steel plates with a thickness of 70 mm or more were prepared by changing the composition, manufacturing conditions, and the like so that the characteristics at each position in the thickness direction changed. From each of the obtained thick steel plates, a full thickness ESSO test piece (size: t ⁇ 500 ⁇ 500 mm) and a reduced thickness ESSO test piece (size: 20 ⁇ centered on each position in the plate thickness direction) 500 ⁇ 500 mm) was collected.
  • Figure 1 shows a steel plate with brittle crack propagation stopping performance, which shows a high brittle crack propagation stopping toughness value Kca in the plate thickness internal region at 1/2 the plate thickness and 1/3 the plate thickness. Thickness indicating the distribution of brittle crack propagation stopping performance at each position in the plate thickness direction, consisting of three layers, showing a lower brittle crack propagation stopping toughness value Kca at 1/6 of the plate thickness on both outer sides. It is a steel plate.
  • the brittle crack propagation stop toughness value Kca at each position in the plate thickness direction is a result obtained using a test piece with a plate thickness of 20 mm.
  • the brittle crack propagation stopping toughness value Kca of the full thickness is the brittle crack at each position in the plate thickness direction. It is much higher than the crack propagation stop toughness value.
  • This thick steel plate was tested from each position in the plate thickness direction (1/6 position of plate thickness, 1/3 position of plate thickness, 1/2 position of plate thickness) in accordance with the provisions of JIS Z 2242.
  • V-notch Charpy impact test pieces were collected so that the longitudinal direction of the piece was the rolling direction, and the fracture surface transition temperature vTrs at each position in the plate thickness direction was determined.
  • a specimen was taken so that each position in the plate thickness direction (1/6 position of the plate thickness, 1/3 position of the plate thickness, 1/2 position of the plate thickness) of this thick steel plate becomes the measurement surface.
  • the X-ray diffraction intensity ratio between the (100) plane and the (211) plane parallel to the rolling surface (plate surface) was determined by the line diffraction method.
  • the index Y (Y 1 / 6t , Y 1 / 3t , Y 1 / 2t ) at each position in the plate thickness direction is calculated using the above-described equation (A).
  • Y 1 / 6t ⁇ 129 ° C.
  • Y 1 / 3t ⁇ 168 ° C.
  • Y 1 / 2t ⁇ 170 ° C., which satisfies both the above formulas (1) and (2).
  • a thick steel plate having a thickness of 70 mm or more has a high brittleness having a thickness of 1/3 of the total thickness centering on the central position of the plate thickness so as to satisfy the above formulas (1) and (2).
  • An internal region having a crack propagation stopping performance and a region having a thickness of 1/3 of the total plate thickness having a brittle crack propagation stopping performance relatively lower than the internal region are arranged on both outer sides thereof, It is possible to adjust the distribution of brittle crack propagation stop performance at each position in the plate thickness direction so that there are three layers with different brittle crack propagation stop performance in the plate thickness direction. It was found that Kca is important for making a thick steel plate.
  • the present invention has been completed based on such knowledge and further investigation. That is, the gist of the present invention is as follows.
  • Plate thickness t 70 mm or more, and a brittle crack propagation stopping performance index Y 1 / 2t (° C.) at the plate thickness 1 / 2t position defined by the following equation (a), and the following equation (b)
  • Sheet thickness The structural high-strength thick steel sheet according to [1], which is 100 mm or less.
  • composition is further in terms of mass%, Ni: 0.05 to 3%, Cu: 0.05 to 1.5%, Cr: 0.02 to 1.0%, Mo: 0.005 to 1.0%, V: 0.002 to 0.10%, B: 0.0002
  • a manufacturing method of a structural high-strength thick steel plate in which a steel material is subjected to a heating step and a hot rolling step to obtain a steel plate having a thickness t: 70 mm or more,
  • the steel material is, in mass%, C: 0.03-0.20%, Si: 0.03-0.5%, Mn: 0.5-2.5%, P: 0.03% or less, S: 0.01% or less, Al: 0.005-0.08%, Nb : 0.005 to 0.05%, Ti: 0.005 to 0.03%, N: 0.0050% or less, steel material having a composition consisting of the balance Fe and inevitable impurities
  • the heating step is a step of heating the steel material to a heating temperature: 900 to 1200 ° C.
  • In the hot rolling process primary rolling is performed at a surface temperature of 1000 to 850 ° C.
  • Y 1 / 3t ⁇ 0.9Y 1 / 2t (1) Y 1 / 6t ⁇ 0.8 Y 1 / 2t (2)
  • Y 1 / 2t (vTrs) 1 / 2t ⁇ 12 ⁇ ⁇ I (100) ⁇ 1 / 2t ⁇ 22 ⁇ ⁇ I (211) ⁇ 1 / 2t
  • Y 1 / 3t (vTrs) 1 / 3t ⁇ 12 ⁇ ⁇ I (100) ⁇ 1 / 3t ⁇ 22 ⁇ ⁇ I (211) ⁇ 1 / 3t
  • Y 1 / 6t (vTrs) 1 / 6t ⁇ 12 ⁇ ⁇ I (100) ⁇ 1 / 6t ⁇ 22 ⁇ ⁇ I (211) ⁇ 1 / 6t
  • composition is further mass%, Ni: 0.05-3%, Cu: 0.05-1.5%, Cr: 0.02-1.0%, Mo: 0.005-1.0%, V: 0.002-0.10%, B: 0.0002
  • composition according to [7] or [8], wherein the composition further contains, by mass%, one or two selected from Ca: 0.0005 to 0.003% and REM: 0.0005 to 0.010% A manufacturing method for structural high-strength thick steel plates.
  • the plate thickness 70 mm or more, yield strength: 400 N / mm 2 or more, and hull design temperature: ⁇ 10 ° C.
  • the brittle crack propagation stop toughness value Kca ⁇ 10 ° C. is 9500 N / mm 3 /
  • a high-strength thick steel plate excellent in brittle crack propagation stopping performance of 2 or more can be easily produced, and has a remarkable industrial effect.
  • the high-strength thick steel plate according to the present invention to hatch side combing and deck members in the strong deck structure of large container ships and bulk carriers, there is also a great effect of contributing to the improvement of ship safety. is there.
  • the high-strength thick steel plate of the present invention has a high brittle crack propagation stopping performance in the plate thickness central section including the plate thickness center position and 1/3 of the plate thickness in the plate thickness direction cross section.
  • This is a thick steel plate having a distribution of brittle crack propagation stopping performance in the three-layer thickness direction, having relatively low brittle crack propagation stopping performance in each outer region having a thickness of 1/3 of the plate thickness.
  • the brittle crack propagation stopping toughness value of the entire thick steel plate is high.
  • the distribution of brittle crack propagation stopping performance in the three-layer thickness direction that is, the brittle crack propagation stopping performance index Y at each position in each sheet thickness direction is ,
  • First (1) Formula Y 1 / 3t ⁇ 0.9Y 1 / 2t (1)
  • Second (2) Y 1 / 6t ⁇ 0.8Y 1 / 2t (2) Satisfied.
  • Y 1 / 2t is a brittle crack propagation stoppage performance index at the thickness 1 / 2t position
  • the following equation (a) Y 1 / 2t (vTrs) 1 / 2t ⁇ 12 ⁇ ⁇ I (100) ⁇ 1 / 2t ⁇ 22 ⁇ ⁇ I (211) ⁇ 1 / 2t
  • Y 1 / 2t (vTrs) 1 / 2t ⁇
  • vTrs Fracture transition temperature
  • the brittle crack arrest performance Y 1 / 3t in the sheet thickness 1 / 3t position is preferably -150 ° C. or less.
  • the brittle crack propagation stopping performance at the 1 / 6th plate thickness will be too high, and the progress of the brittle crack will be the same as in the central region of the plate thickness. Since the brittle crack fracture surface branched into three layers is not formed, the desired brittle crack propagation stop toughness value Kca cannot be secured.
  • the brittle crack propagation stopping performance Y 1 / 6t at the / 6t position is limited to a thick steel plate that satisfies the above-described formulas (1) and (2).
  • Such a thick steel plate is a thick steel plate having the desired high brittle crack propagation stop toughness value Kca.
  • the composition and structure are not particularly limited, but in mass%, C: 0.03-0.20%, Si: 0.03-0.5%, Mn: 0.5- Containing 2.5%, P: 0.03% or less, S: 0.01% or less, Al: 0.005 to 0.08%, Nb: 0.005 to 0.05%, Ti: 0.005 to 0.03%, N: 0.0050% or less, or optionally Ni: One or two selected from 0.05 to 3%, Cu: 0.05 to 1.5%, Cr: 0.02 to 1.0%, Mo: 0.005 to 1.0%, V: 0.002 to 0.10%, B: 0.0002 to 0.003%
  • C 0.03-0.20%
  • C is an element that contributes to an increase in strength. In order to ensure the desired strength of the thick steel plate of the present invention, it is necessary to contain 0.03% or more. On the other hand, if the content exceeds 0.20%, the toughness of the weld heat-affected zone decreases. Therefore, the C content is limited to the range of 0.03 to 0.20%. Preferably, it is 0.05 to 0.09% from the viewpoint of texture control. More preferably, it is 0.05 to 0.07%.
  • Si 0.03-0.5%
  • Si is an element that acts as a deoxidizer and contributes to an increase in strength by solid solution. In order to obtain such an effect, the content of 0.03% or more is required. On the other hand, if the content exceeds 0.5%, the toughness of the weld heat-affected zone decreases. Therefore, the Si content is limited to the range of 0.03 to 0.5%. Preferably, the content is 0.14 to 0.28%. More preferably, it is 0.14 to 0.17%.
  • Mn 0.5-2.5%
  • Mn is an element that contributes to an increase in strength through solid solution strengthening and hardenability, as well as an improvement in toughness and further a transformation texture. In order to acquire such an effect, 0.5% or more of content is required. On the other hand, if the content exceeds 2.5%, there is a concern that the toughness of the base material will decrease. Therefore, the Mn content is limited to the range of 0.5 to 2.5%. It is preferably 1.5 to 2.4%. More preferably, it is 1.8 to 2.0%.
  • P 0.03% or less
  • P is an element that exists in steel as an impurity and segregates at grain boundaries and adversely affects the toughness of the base metal, and is desirably reduced as much as possible. However, up to 0.03% is acceptable. For this reason, the P content is limited to 0.03% or less. In addition, Preferably it is 0.006% or less. On the other hand, from the viewpoint of dephosphorization cost, it is 0.0001% or more industrially.
  • S 0.01% or less S is an element that exists as sulfide inclusions in steel and reduces hot workability, base material toughness, base material ductility, and the like, and is preferably reduced as much as possible. However, up to 0.01% is acceptable. For this reason, S content was limited to 0.01% or less. In addition, Preferably it is 0.003% or less. On the other hand, from the viewpoint of desulfurization cost, it is 0.0001% or more industrially.
  • Al acts as a deoxidizer and also has a function of binding to nitrogen and precipitating as AlN to suppress coarsening of crystal grains. In order to acquire such an effect, 0.005% or more of content is required. On the other hand, if the content exceeds 0.08%, the amount of oxide inclusions increases and the cleanliness of the steel decreases. For this reason, the Al content is limited to a range of 0.005 to 0.08%. Note that the content is preferably 0.02 to 0.04%.
  • Nb 0.005-0.05%
  • Nb contributes to strength increase through precipitation strengthening and has the effect of suppressing recrystallization of austenite, facilitates processing (rolling) in the austenite non-recrystallization temperature range, and contributes to refinement of crystal grains Element.
  • 0.005% or more of content is required.
  • the content exceeds 0.05%, the amount of precipitates becomes excessive and the toughness tends to decrease. Therefore, the Nb content is limited to a range of 0.005 to 0.05%. Note that the content is preferably 0.02 to 0.04%.
  • Ti forms a nitride, suppresses coarsening of austenite grains, contributes to refinement of crystal grains of the base material, improves base material toughness, and contributes to refinement of the structure of the heat affected zone of the weld, Improve toughness of weld heat affected zone.
  • 0.005% or more of content is required.
  • the content exceeds 0.03%, toughness is reduced.
  • the Ti content is limited to the range of 0.005 to 0.03%.
  • the content is 0.008 to 0.015%.
  • N 0.0050% or less
  • N combines with Ti, Nb, and the like, contributes to refinement of crystal grains as a nitride, and contributes to improvement of base material toughness and toughness of weld heat affected zone.
  • the content 0.002% or more is required.
  • the toughness of the welded portion is lowered. For this reason, N content was limited to 0.0050% or less.
  • Ni 0.05 to 3%
  • Cu 0.05 to 1.5%
  • Cr 0.02 to 1.0%
  • Mo One or more selected from 0.005 to 1.0%
  • V 0.002 to 0.10%
  • B 0.0002 to 0.003%
  • Ca 0.0005 to 0.003%
  • REM 0.0005 to 0.010% 1 type or 2 types chosen from these can be contained.
  • Ni 0.05-3%
  • Cu 0.05-1.5%
  • Cr 0.02-1.0%
  • Mo 0.005-1.0%
  • V 0.002-0.10%
  • B 0.0002-0.003%
  • Two or more types Ni, Cu, Cr, Mo, V, and B are all elements that increase the strength, and can be selected as necessary and contained in one or more types.
  • Ni is an element that has a function of solid solution to improve toughness in addition to increasing strength, and also to prevent hot cracking when Cu is contained. In order to acquire such an effect, 0.05% or more of content is required. On the other hand, if the content exceeds 3%, the material cost will rise. Therefore, when Ni is contained, the Ni content is preferably limited to a range of 0.05 to 3%. More preferably, the content is 0.2 to 1%.
  • Cu is an element that contributes to an increase in strength by solid solution. To obtain such an effect, it needs to be contained in an amount of 0.05% or more. On the other hand, if the content exceeds 1.5%, the strength increases excessively and the toughness decreases. For this reason, when Cu is contained, the Cu content is preferably limited to a range of 0.05 to 1.5%. More preferably, it is 0.2 to 0.5%.
  • ⁇ Cr is an element that contributes to the increase in strength by solid solution, and in order to obtain such an effect, the content of 0.02% or more is required. On the other hand, if the content exceeds 1.0%, the toughness of the heat affected zone decreases. Therefore, when Cr is contained, the Cr content is preferably limited to a range of 0.02 to 1.0%. More preferably, the content is 0.1 to 0.6%.
  • Mo has the effect of suppressing the decrease in strength by forming a solid solution or further forming carbides. In order to acquire such an effect, 0.005% or more of content is required. On the other hand, a large content exceeding 1.0% reduces the toughness of the weld heat affected zone. For this reason, when Mo is contained, the Mo content is preferably limited to a range of 0.005 to 1.0%. More preferably, it is 0.005 to 0.01%.
  • V is an element that contributes to an increase in strength by forming a solid solution or further forming a precipitate (carbide). In order to acquire such an effect, 0.002% or more of content is required. On the other hand, if the content exceeds 0.10%, the effect is saturated and an effect commensurate with the content cannot be expected, which is economically disadvantageous. For this reason, when V is contained, the V content is preferably limited to a range of 0.002 to 0.10%. More preferably, the content is 0.002 to 0.02%.
  • B is an element that segregates at the grain boundaries, improves the hardenability by containing a trace amount, and contributes to an increase in strength. In order to acquire such an effect, it is necessary to contain 0.0002% or more. On the other hand, if the content exceeds 0.003%, the toughness is decreased. For this reason, when B is contained, the B content is preferably limited to a range of 0.0002 to 0.003%. More preferably, the content is 0.0002 to 0.001%.
  • Ca 0.0005 to 0.003% and REM: 0.0005 to 0.010%.
  • Both Ca and REM can improve ductility and toughness through the form control action of sulfide inclusions. It is a contributing element. In order to obtain such an effect, it is necessary to contain Ca: 0.0005% or more and REM: 0.0005% or more. On the other hand, even if the content exceeds Ca: 0.003% and REM: 0.010%, the effect is saturated, and an effect commensurate with the content cannot be expected, which is economically disadvantageous. For this reason, when one or both of Ca and REM are contained, it is preferable to limit the range to Ca: 0.0005 to 0.003% and REM: 0.0005 to 0.010%.
  • the balance other than the above components is composed of Fe and inevitable impurities.
  • Inevitable impurities include As: 0.03% or less, Sb: 0.01% or less, Sn: 0.02% or less, Pb: 0.01% or less, Bi: 0.01% or less.
  • the high-strength thick steel sheet of the present invention has the above composition and the whole thickness direction, excluding the steel sheet surface layer, with a bainite phase of 80% or more in volume ratio as the main phase and a total volume ratio of 20% or less as the second phase. (Including 0%) ferrite phase, pearlite, and martensite.
  • the high-strength thick steel plate of the present invention has a bainite phase as the main phase in order to maintain a high strength and a high toughness with a plate thickness of 70 mm or more and a yield strength of 400 N / mm 2 or more.
  • the main phase is a phase other than the bainite phase, it becomes difficult to combine the above-described high strength and high toughness in a thick steel plate having a thickness of 70 mm or more.
  • the “main phase” refers to a phase occupying 80% or more by volume.
  • the second phase other than the main phase is one or two selected from ferrite phase, pearlite, and martensite having a total volume ratio of 20% or less (including 0%). That's it. If the second phase exceeds 20% by volume, the desired high strength cannot be ensured. For this reason, the second phase is limited to one or more selected from ferrite phase, pearlite, and martensite having a total volume ratio of 20% or less (including 0%). The second phase contains 0% by volume. That is, the bainite phase may be 100%.
  • the steel material having the above composition is subjected to a heating step and a hot rolling step to obtain a thick steel plate having a thickness of 70 mm or more.
  • the manufacturing method of the steel material is not particularly limited, the molten steel having the above composition is melted in a conventional melting furnace such as a converter, and a slab is formed by a conventional casting method such as a continuous casting method. A method using a steel material is preferable from the viewpoint of productivity. Needless to say, a steel material may be used as a steel slab by the ingot-bundling rolling method.
  • the obtained steel material is then subjected to a heating process for hot rolling.
  • the steel material is heated to a temperature of 900 to 1200 ° C.
  • Heating temperature 900 ⁇ 1200 °C
  • the heating temperature is less than 900 ° C.
  • the hot deformation resistance becomes too high, the load on the rolling mill increases, and it becomes difficult to obtain a thick steel plate having a predetermined shape.
  • the heating temperature is higher than 1200 ° C.
  • the oxidation becomes remarkable and the yield is lowered, and the crystal grains become coarse, and the desired high toughness cannot be ensured.
  • the heating temperature was limited to a temperature in the range of 900 to 1200 ° C.
  • the temperature is preferably 1050 to 1150 ° C. from the viewpoint of forming a transformation texture having a desired degree of accumulation.
  • Hot rolling may be performed.
  • the heated steel material is subjected to a hot rolling process.
  • the hot rolling step is a step consisting of primary rolling, secondary rolling and cooling after rolling.
  • Primary rolling is rolling with a cumulative rolling reduction of 9% or less in the surface temperature range of 1000 to 850 ° C.
  • the austenite grains are uniformized without being coarsened, so that the variation of the transformation texture is reduced.
  • the rolling temperature exceeds 1000 ° C. as the surface temperature, the austenite grains become too coarse and the desired structure cannot be obtained even by subsequent hot rolling.
  • the rolling temperature is less than 850 ° C. at the surface temperature, it becomes an austenite non-recrystallization temperature range, which adversely affects the uniformity of crystal grains. For this reason, primary rolling was performed in the temperature range of 1000 to 850 ° C. as the surface temperature.
  • the primary rolling is limited to rolling with a cumulative rolling reduction of 9% or less in the temperature range of 1000 to 850 ° C. at the surface temperature.
  • the rolling reduction per pass is preferably about 3 to 5% from the viewpoint of regulating the austenite grain size.
  • the secondary rolling is a rolling with a one-pass reduction ratio of 7% or more, a cumulative reduction ratio of 55% or more, and a rolling end temperature of 800 to 550 ° C in a surface temperature range of 900 to 600 ° C. .
  • the vicinity of the steel sheet surface is a two-phase temperature range, and inside the steel sheet is an austenite region.
  • rolling strain is generated inside the steel sheet. Is intensively introduced, and the development of the texture is promoted.
  • the X-ray diffraction intensity ratio of the (100) plane and (211) plane parallel to the plate surface (rolled surface) which is effective for improving the brittle crack propagation stopping performance, is increased in the central region of the plate thickness.
  • the one-pass rolling reduction is less than 7%, the introduction of rolling strain into the steel sheet is weak and a desired texture cannot be formed.
  • the one-pass reduction ratio is preferably 9% or more from the viewpoint of securing the width of the texture development region in the desired center portion of the plate thickness.
  • the secondary rolling was limited to rolling with a one-pass reduction ratio of 7% or more and a cumulative reduction ratio of 55% or more in a temperature range of 900 to 600 ° C. at the surface temperature.
  • the one-pass rolling reduction is 9% or more, and the cumulative rolling reduction is 60% or more.
  • the one-pass rolling reduction is preferably 15% or less, and the cumulative rolling reduction is preferably 75% or less.
  • the rolling end temperature of secondary rolling is 800 to 550 ° C.
  • the texture development is insufficient.
  • the rolling end temperature is less than 550 ° C., the plastic strain accumulated in the grains becomes too much and the toughness is lowered, so that it becomes difficult to ensure the desired brittle crack propagation stopping performance.
  • the structure up to the plate thickness 1 / 2t position is the structure in which the bainite phase is the main phase. I can't.
  • the upper limit of the cooling rate is not particularly limited, but is preferably 30 ° C./s or less from the viewpoint of suppressing the formation of the martensite phase.
  • the average cooling rate is preferably 5 to 15 ° C./s.
  • cooling stop temperature exceeds 450 ° C.
  • the amount of the second phase other than the bainite phase exceeds 20% by volume, and a desired thick steel plate structure cannot be secured.
  • it is less than 400 ° C. a martensite phase appears and a desired thick steel plate structure cannot be secured. For this reason, cooling after hot rolling was performed at a cooling rate of 5 ° C / s or more at an average temperature range of 790 to 540 ° C at the surface temperature to a cooling stop temperature of 450 to 400 ° C. .
  • Molten steel having the composition shown in Table 1 was melted in a converter, and was cast into a slab (thickness: 300 mm) by a continuous casting method to obtain a steel material. These steel materials were subjected to a heating step under the conditions shown in Table 2 and a hot rolling step consisting of primary rolling, secondary rolling and cooling to obtain thick steel plates having the thicknesses shown in Table 2.
  • test method is as follows.
  • the tissue fraction (volume%) of each phase is obtained for each visual field, the tissue fraction in each visual field is arithmetically averaged, and the thickness It was set as the structure fraction of the position of the steel plate.
  • the ratio between the obtained X-ray diffraction intensity and the X-ray diffraction intensity of the random specimen is obtained, and the (100) plane X-ray diffraction intensity ratio parallel to the plate plane at each position in the plate thickness direction, (211) plane X-ray diffraction intensity ratio.
  • Table 3 shows the results at the plate thickness 1 / 6t position
  • Table 4 shows the results at the plate thickness 1 / 3t position
  • Table 5 shows the results at the plate thickness 1 / 2t position.
  • the obtained index Y at each position in the plate thickness direction is also shown in Tables 3-5.
  • the following formula (1) formula (2) Y 1 / 3t ⁇ 0.9Y 1 / 2t (1) Y 1 / 6t ⁇ 0.8 Y 1 / 2t (2)
  • was evaluated, and “X” was evaluated otherwise.
  • Table 6 shows the obtained evaluation results.
  • ESSO test specimens full thickness
  • a temperature gradient type ESSO test is conducted in accordance with Annex A of the Brittle Crack Arrest Design Guidelines (Japan Maritime Association (2009)).
  • Ship hull design temperature The brittle crack propagation toughness value Kca -10 ° C at the full thickness at -10 ° C was determined.
  • the results of the obtained ESSO test are shown in Table 6 together with the results of the brittle crack propagation stopping performance index Y.
  • the brittle crack propagation stop performance index Y of the 1 / 3t thickness is high, and the brittle crack propagation stop performance index Y at each position in the thickness direction (1 / 6t, 1 / 3t, 1 / 2t) is (
  • the brittle crack propagation stopping performance is low at Kca- 10 ° C. of less than 9500 N / mm 3/2 .

Abstract

Provided is a high-strength thick steel plate having a thickness of 70 mm or more and having excellent brittle crack arrestability. This high-strength thick steel plate comprises three layers consisting of an inner region (a center region in the thickness direction) having high brittle crack arrestability and regions having low brittle crack arrestability on both outer sides of the inner region. Specifically, the thickness t of the plate is 70 mm or more and brittle crack arrestability index Y (= vTrs - 12 × I(100) - 22 × I(211)) at positions 1/6t, 1/3t and 1/2t in the thickness direction satisfy Y1/3t ≤ 0.9Y1/2t and Y1/6t ≥ 0.8Y1/2t. vTrs is the fracture appearance transition temperature (ºC) obtained by the Charpy V-notch impact test. I(100) is an X-ray diffraction intensity ratio of the (100) plane parallel to the rolled surface (the surface of the plate). I(211) is an X-ray diffraction intensity ratio of the (211) plane parallel to the rolled surface (the surface of the plate).

Description

構造用高強度厚鋼板およびその製造方法Structural high-strength thick steel plate and method for producing the same
 本発明は、船舶、海洋構造物、低温貯蔵タンクおよび建築・土木構造物等の大型鋼構造物用として好適な構造用厚鋼板およびその製造方法に係り、とくに板厚:70mm以上の厚鋼板の脆性き裂伝播停止性能の向上に関する。 TECHNICAL FIELD The present invention relates to a structural steel plate suitable for large steel structures such as ships, marine structures, low-temperature storage tanks, and construction / civil engineering structures, and a method for producing the same. It relates to improvement of brittle crack propagation stopping performance.
 船舶、海洋構造物、低温貯蔵タンクおよび建築・土木構造物等の大型鋼構造物においては、脆性破壊に伴う大規模な損傷や損壊等の事故が発生すると、経済や環境に大きな影響を及ぼす。そのため、とくに大型鋼構造物では、脆性破壊の防止という観点から、構造物の安全性向上が常に求められている。 In large steel structures such as ships, offshore structures, low-temperature storage tanks, and construction / civil engineering structures, large-scale damage or damage associated with brittle fracture will have a significant impact on the economy and the environment. Therefore, especially in large steel structures, improvement of the safety of the structure is always required from the viewpoint of preventing brittle fracture.
 近年、例えばコンテナ船は大型化し、6000~20,000TEUといった大型船が建造され、あるいは計画されている。このような船の大型化に伴い、船体外板として使用される鋼板は、厚肉化するとともに高強度化して、板厚:50~100mmで、降伏強さ:390N/mm2級や、470N/mm2級の高強度厚鋼板が用いられるようになってきた。なお、TEU(Twenty feet Equivalent Unit)は、長さ20フィートのコンテナに換算した個数を表し、コンテナ船の積載能力の指数を示している。 In recent years, for example, container ships have become larger, and large ships of 6000 to 20,000 TEU have been built or planned. As the size of the ship increases, the steel plate used as the hull outer plate becomes thicker and stronger, with a thickness of 50 to 100 mm, yield strength of 390 N / mm class 2 , and 470 N. / mm 2 grade high strength thick steel plate has come to be used. TEU (Twenty feet Equivalent Unit) represents the number of containers converted into a 20-foot container and represents an index of the loading capacity of container ships.
 このような船舶等の大型鋼構造物に使用される厚鋼板等の鋼材には、構造物の安全性確保という観点から、使用温度において優れた低温靭性や優れた脆性き裂伝播停止靭性値を有することが要求されている。なかでも、万一、脆性き裂が発生した場合でも、脆性き裂の伝播を大規模破壊に至る前に停止させる必要があることから、使用される厚鋼板等の鋼材の脆性き裂伝播停止靭性値(以下、「アレスト性能」ともいう)が重要な特性となる。 Steel materials such as thick steel plates used in large steel structures such as ships have excellent low temperature toughness and excellent brittle crack propagation stop toughness values at operating temperatures from the viewpoint of ensuring the safety of the structure. It is required to have. In particular, even if a brittle crack occurs, it is necessary to stop the propagation of the brittle crack before it reaches a large-scale fracture. The toughness value (hereinafter also referred to as “arrest performance”) is an important characteristic.
 このような状況から、「アレスト性能」を向上させた鋼材あるいは大型溶接構造体が種々開発され、製造されている。 In this situation, various steel materials or large welded structures with improved “arrest performance” have been developed and manufactured.
 例えば、特許文献1には、脆性亀裂伝播停止特性に優れた構造用高強度厚鋼板が記載されている。特許文献1に記載された技術では、質量%で、C:0.03~0.20%、Si:0.03~0.5%、Mn:0.5~2.0%、Al:0.005~0.08%を含み、あるいはさらにTi:0.005~0.03%、Nb:0.005~0.05%、Cu:0.01~0.5%、Ni:0.01~1.0%、Cr:0.01~0.5%、Mo:0.01~0.5%、V:0.001~0.1%、B:0.003%以下、Ca:0.005%以下、REM:0.01%以下のいずれか1種または2種以上を含む鋼素材を、900~1200℃の温度に加熱し、板厚中央部の温度がAr3点以上の温度で累積圧下率:30%以上、板厚中央部の温度がAr3点以下Ar3点-60℃以上の温度域で累積圧下率:30%以上の圧延を行ったのち、2℃/s以上の冷却速度で600℃以下まで冷却することにより、板厚中央部における圧延面で(100)面X線強度比が2.0以上でかつ板厚1/4部における圧延面での(110)面X線強度比が1.5以上の集合組織を有する厚鋼板とすることができるとしている。このような厚鋼板をT字継手のフランジ部に適用すれば、ウェブ部から進展してきた脆性亀裂をフランジ部で停止させることが可能になるとしている。特許文献1に記載された技術では、板厚の1/2部、板厚の1/4部の各位置において圧延面に平行な特定面のX線強度比が高くなるように特定の集合組織を発達させて、脆性き裂の伝播方向を変化させて、アレスト性を向上させている。 For example, Patent Document 1 describes a structural high-strength thick steel plate having excellent brittle crack propagation stopping characteristics. The technology described in Patent Document 1 includes, in mass%, C: 0.03-0.20%, Si: 0.03-0.5%, Mn: 0.5-2.0%, Al: 0.005-0.08%, or Ti: 0.005- 0.03%, Nb: 0.005-0.05%, Cu: 0.01-0.5%, Ni: 0.01-1.0%, Cr: 0.01-0.5%, Mo: 0.01-0.5%, V: 0.001-0.1%, B: 0.003% or less , Ca: 0.005% or less, REM: 0.01% or less steel material containing one or more of them is heated to a temperature of 900-1200 ° C, and the temperature at the center of the plate thickness is Ar 3 or higher Cumulative rolling reduction: 30% or more, and rolling at a rolling temperature of 30% or more in the temperature range where the temperature at the center of the sheet thickness is Ar 3 points or less Ar 3 points -60 ° C or more, then 2 ° C / s or more By cooling to 600 ° C. or less at a cooling rate of (110) plane X on the rolled surface at the rolled surface at the plate thickness center portion, the (100) plane X-ray intensity ratio is 2.0 or more and the thickness is 1/4 portion. Thick steel plate with a texture with a wire strength ratio of 1.5 or more And you can. By applying such a thick steel plate to the flange portion of the T-shaped joint, it is possible to stop the brittle crack that has progressed from the web portion at the flange portion. In the technique described in Patent Document 1, a specific texture is set so that the X-ray intensity ratio of a specific surface parallel to the rolling surface is high at each position of 1/2 part of the plate thickness and 1/4 part of the plate thickness. To improve the arrestability by changing the propagation direction of brittle cracks.
 また、特許文献2には、長大脆性き裂伝播停止特性に優れる板厚50mm以上の厚鋼板およびその製造方法が記載されている。特許文献2に記載された技術では、質量%で、C:0.15%以下、Si:0.60%以下、Mn:0.80~1.80%、S:0.001~0.05%を含み、Ti:0.005~0.050%またはNb:0.001~0.1%のうちから選ばれた少なくとも1種を含み、更に、Cu:2.0%以下、V:0.2%以下、Ni:2.0%以下、Cr:0.6%以下、Mo:0.6%以下、W:0.5%以下、B:0.0050%以下、Zr:0.5%以下のうちから選ばれた1種または2種以上を含む鋼素材を、900~1300℃の温度に加熱し、表面温度で1000~850℃の温度域で累積圧下率で10%以上圧延したのち、表面温度が900~600℃でかつ内部温度が表面温度より50~150℃高温となる状態とし、その後、1パス圧下率7%以上、累積圧下率50%以上で圧延終了温度が表面温度で800~500℃となる熱間圧延を施すとしている。なお、熱間圧延終了後、400℃まで5℃/s以上の冷却速度で冷却してもよいとしている。これにより、板厚中央部で板厚の少なくとも20%の領域における部位の圧延面での(211)面もしくは(100)面のX線強度比が1.5以上、板厚の1/4~1/10となる領域または板厚の3/4~9/10となる領域の圧延面での(211)面もしくは(100)面のX線強度比が1.3以上であり、長大ESSO試験を行った場合の破面の板厚方向断面における脆性き裂伝播停止部の先端形状が、板厚中央部の20%の幅の領域における停止き裂長さが、鋼板表面から板厚の1/4~1/10または板厚の3/4~9/10となる領域の最大き裂長さに対し、少なくとも板厚の長さだけ脆性き裂の進行方向に対し短く、凹んだ凹陥部を形成する、厚鋼板が得られ、厚鋼板において従来困難であった長大脆性き裂を応力反射のない条件においても伝播停止させることができるとしている。特許文献2に記載された技術では、板厚の1/2部で板厚の少なくとも20%の領域と、板厚の1/4~1/10または板厚の3/4~9/10の領域で、圧延面に平行な特定面のX線強度比が高くなるように調整して、長大脆性き裂伝播停止特性を向上させている。 Further, Patent Document 2 describes a thick steel plate having a thickness of 50 mm or more, which is excellent in long brittle crack propagation stopping characteristics, and a manufacturing method thereof. The technique described in Patent Document 2 includes, in mass%, C: 0.15% or less, Si: 0.60% or less, Mn: 0.80 to 1.80%, S: 0.001 to 0.05%, Ti: 0.005 to 0.050%, or Nb : Containing at least one selected from 0.001 to 0.1%, Cu: 2.0% or less, V: 0.2% or less, Ni: 2.0% or less, Cr: 0.6% or less, Mo: 0.6% or less, W : A steel material containing one or more selected from 0.5% or less, B: 0.0050% or less, Zr: 0.5% or less is heated to a temperature of 900-1300 ° C, and a surface temperature of 1000-850 After rolling at a cumulative reduction ratio of 10% or more in the temperature range of ℃, the surface temperature is 900-600 ℃ and the internal temperature is 50-150 ℃ higher than the surface temperature, and then the one-pass reduction ratio is 7% or more In addition, hot rolling is performed in which the rolling reduction temperature is 800 to 500 ° C. with a cumulative reduction ratio of 50% or more. It should be noted that after hot rolling is completed, cooling to 400 ° C. may be performed at a cooling rate of 5 ° C./s or more. As a result, the X-ray intensity ratio of the (211) surface or (100) surface at the rolled surface in the region of at least 20% of the plate thickness at the center of the plate thickness is 1.5 or more, and 1/4 to 1/1 of the plate thickness. When the X-ray intensity ratio of the (211) plane or (100) plane at the rolled surface in the region of 10 or in the region of 3/4 to 9/10 of the plate thickness is 1.3 or more, and a long ESSO test is performed The tip shape of the brittle crack propagation stop in the cross section in the thickness direction of the fracture surface of the steel sheet is from 1/4 to 1/1 / of the plate thickness from the steel plate surface. Thick steel plate that forms a concave recess with a maximum crack length of 10 or 3/4 to 9/10 of the plate thickness, which is at least as long as the plate thickness and shorter than the direction of the brittle crack. It is said that long brittle cracks, which have been difficult in conventional thick steel plates, can be stopped even under conditions without stress reflection. In the technique described in Patent Document 2, an area of at least 20% of the plate thickness at 1/2 part of the plate thickness and 1/4 to 1/10 of the plate thickness or 3/4 to 9/10 of the plate thickness. By adjusting the X-ray intensity ratio of the specific surface parallel to the rolling surface to be high in the region, the long brittle crack propagation stopping property is improved.
 また、特許文献3には、板厚50mm以上の、脆性亀裂伝播停止特性に優れた構造用高強度厚鋼板の製造方法が記載されている。特許文献3に記載された技術では、質量%で、C:0.03~0.20%、Si:0.03~0.5%、Mn:0.5~2.2%、Al:0.005~0.08%、P:0.03%以下、S:0.01%以下、N:0.0050%以下、Ti:0.005~0.03%を含み、あるいはさらに、Nb:0.005~0.05%、Cu:0.01~0.5%、Ni:0.01~1.0%、Cr:0.01~0.5%、Mo:0.01~0.5%、V:0.001~0.10%、B:0.0030%以下、Ca:0.0050%以下、REM:0.010%以下のうちから選ばれた1種以上を含む鋼素材を、900~1150℃の温度に加熱し、オーステナイト再結晶温度域とオーステナイト未再結晶温度域での累積圧下率の合計を65%以上、板厚中央部がオーステナイト再結晶温度域にある状態で、累積圧下率を20%以上、かつ1パスあたりの平均圧下率を5.0%以下とする圧延を実施し、ついで、板厚中央部がオーステナイト未再結晶温度域にある状態で、累積圧下率を40%以上、かつ1パスあたりの平均圧下率を7.0%以上とする圧延を行い、その後4.0℃/s以上の冷却速度で600℃以下まで加速冷却するとしている。これにより、組織がフェライト主体で、表層部におけるRD//(110)面の集積度が1.3以上、板厚中央部におけるRD//(110)面の集積度が1.8以上の集合組織を有し、表層部のシャルピー破面遷移温度が-60℃以下、板厚中央部におけるシャルピー破面遷移温度が-50℃以下である、脆性亀裂伝播停止特性に優れる構造物用高強度厚鋼板を得ることができるとしている。特許文献3に記載された技術では、表層部と板厚中央部で、特定の集合組織を発達させて、厚鋼板の脆性亀裂伝播停止特性を向上させている。特許文献3では、「RD//(110)面の集積度」は、圧延方向(RD)に対して(110)面が平行になる方位の3次元結晶方位密度関数の値を積算して積算値を求め、積算した方位の個数で割った値を称する。 Further, Patent Document 3 describes a method for producing a structural high-strength thick steel plate having a plate thickness of 50 mm or more and excellent brittle crack propagation stopping characteristics. In the technique described in Patent Document 3, C: 0.03-0.20%, Si: 0.03-0.5%, Mn: 0.5-2.2%, Al: 0.005-0.08%, P: 0.03% or less, S: 0.01% or less, N: 0.0050% or less, Ti: 0.005-0.03%, or Nb: 0.005-0.05%, Cu: 0.01-0.5%, Ni: 0.01-1.0%, Cr: 0.01-0.5%, A steel material containing one or more selected from Mo: 0.01 to 0.5%, V: 0.001 to 0.10%, B: 0.0030% or less, Ca: 0.0050% or less, REM: 0.010% or less, 900 to 1150 ° C The total rolling reduction in the austenite recrystallization temperature range and the austenite non-recrystallization temperature range is 65% or more, and the cumulative reduction rate is 20 in the state where the center of the plate thickness is in the austenite recrystallization temperature range. % Rolling and the average reduction rate per pass is 5.0% or less, and then the cumulative reduction is performed in the state where the center of the plate thickness is in the austenite non-recrystallization temperature range. Rolling is performed with a reduction rate of 40% or more and an average reduction rate per pass of 7.0% or more, and then accelerated cooling to 600 ° C or less at a cooling rate of 4.0 ° C / s or more. As a result, the microstructure is mainly composed of ferrite, and the RD // (110) plane integration degree in the surface layer portion is 1.3 or more, and the RD // (110) plane integration degree in the central portion of the plate thickness is 1.8 or more. To obtain a high-strength steel plate for structures with excellent brittle crack propagation stopping characteristics, with a Charpy fracture surface transition temperature of -60 ° C or less at the surface layer and a Charpy fracture surface transition temperature of -50 ° C or less at the center of the plate thickness. I can do it. In the technique described in Patent Document 3, a specific texture is developed in the surface layer portion and the center portion of the plate thickness to improve the brittle crack propagation stop characteristic of the thick steel plate. In Patent Document 3, “RD // (110) plane accumulation degree” is calculated by integrating the values of the three-dimensional crystal orientation density function of the orientation in which the (110) plane is parallel to the rolling direction (RD). The value is obtained and referred to as the value divided by the number of accumulated azimuths.
 また、特許文献4には、板厚50mm以上の、脆性亀裂伝播停止特性に優れた構造用高強度厚鋼板の製造方法が記載されている。特許文献4に記載された技術では、質量%で、C:0.03~0.20%、Si:0.03~0.5%、Mn:0.5~2.5%、Al:0.005~0.08%、P:0.03%以下、S:0.01%以下、N:0.0050%以下、Ti:0.005~0.03%を含み、あるいはさらに、Nb:0.005~0.05%、Cu:0.01~0.5%、Ni:0.01~1.0%、Cr:0.01~0.5%、Mo:0.01~0.5%、V:0.001~0.10%、B:0.0030%以下、Ca:0.0050%以下、REM:0.010%以下のうちから選ばれた1種以上を含む鋼素材を、1000~1200℃の温度に加熱し、オーステナイト再結晶温度域およびオーステナイト未再結晶温度域における累積圧下率の合計を65%以上で、板厚中央部がオーステナイト再結晶温度域にある状態での累積圧下率を20%以上で、ついで、板厚中央部がオーステナイト未再結晶温度域にある状態での累積圧下率を40%以上とし、かつ板厚中央部がオーステナイト未再結晶温度域にある状態での圧延のうち最初のパスと最終のパスでの圧延温度の差が40℃以内とする圧延を実施し、その後、4℃/s以上の冷却速度で450℃以下まで冷却する、としている。これにより、組織がベイナイト主体で、表層部におけるRD//(110)面の集積度が1.5以上の集合組織を有し、表層部および板厚中央部におけるシャルピー破面遷移温度が-40℃以下である、脆性亀裂伝播停止特性に優れる構造物用高強度厚鋼板を得ることができるとしている。特許文献4に記載された技術では、表層部と板厚中央部で、特定の集合組織を発達させて、厚鋼板の脆性亀裂伝播停止特性を向上させているとしている。特許文献4では、「RD//(110)面の集積度」は、圧延方向(RD)に対して(110)面が平行になる方位の3次元結晶方位密度関数の値を積算して積算値を求め、積算した方位の個数で割った値を称する。 Patent Document 4 describes a method for producing a structural high-strength thick steel plate having a thickness of 50 mm or more and excellent brittle crack propagation stopping characteristics. In the technique described in Patent Document 4, C: 0.03-0.20%, Si: 0.03-0.5%, Mn: 0.5-2.5%, Al: 0.005-0.08%, P: 0.03% or less, S: 0.01% or less, N: 0.0050% or less, Ti: 0.005-0.03%, or Nb: 0.005-0.05%, Cu: 0.01-0.5%, Ni: 0.01-1.0%, Cr: 0.01-0.5%, A steel material containing at least one selected from Mo: 0.01 to 0.5%, V: 0.001 to 0.10%, B: 0.0030% or less, Ca: 0.0050% or less, REM: 0.010% or less, 1000 to 1200 ° C The total rolling reduction in the austenite recrystallization temperature range and the austenite non-recrystallization temperature range is 65% or more, and the cumulative reduction rate in the state where the center of the plate thickness is in the austenite recrystallization temperature range is 20%. %, And then the cumulative rolling reduction in the state where the center of the plate thickness is in the austenite non-recrystallization temperature range is set to 40% or more and the center of the plate thickness is austenite. Among the rollings in the unrecrystallized temperature range, rolling is performed so that the difference in rolling temperature between the first pass and the final pass is within 40 ° C, and then 450 ° C at a cooling rate of 4 ° C / s or more. It is supposed to cool to below ℃. As a result, the structure is mainly bainite, the RD // (110) surface has a texture of 1.5 or more in the surface layer, and the Charpy fracture surface transition temperature in the surface layer and the center of the plate thickness is -40 ° C or less. It is said that a high-strength thick steel sheet for a structure having excellent brittle crack propagation stopping characteristics can be obtained. In the technique described in Patent Document 4, a specific texture is developed at the surface layer portion and the center portion of the plate thickness to improve the brittle crack propagation stop characteristic of the thick steel plate. In Patent Document 4, “RD // (110) plane accumulation degree” is calculated by integrating the values of the three-dimensional crystal orientation density function of the orientation in which the (110) plane is parallel to the rolling direction (RD). The value is obtained and referred to as the value divided by the number of accumulated azimuths.
 また、特許文献5には、「アレスト性に優れた高強度厚鋼板」が記載されている。特許文献5に記載された厚鋼板は、質量%で、C:0.04~0.16%、Si:0.01~0.5%、Mn:0.75~2.5%、Al:0.001~0.1%、Nb:0.003~0.05%、Ti:0.005~0.05%、N:0.001~0.008%を含み、P、S、Cu、Ni、Mo、V、B、Ca、Mg、REMを特定値以下に制限し、残部Feおよび不可避的不純物からなり、炭素当量Ceqが0.30~0.50%である組成を有し、面積率で70%以下のフェライトと、30%以上のベイナイトを含むミクロ組織を有し、板厚の1/4部では、結晶方位差が15°以上の結晶粒界の単位面積あたりの総長さである結晶粒界密度が400~1000mm/mm2で、主圧延方向に対し垂直な面に対し15°以内の角度を有する(100)面の面積率が10~40%であり、板厚の1/2部では、結晶粒界密度が300~900mm/mm2で、主圧延方向に対し垂直な面に対し15°以内の角度を有する(110)面の面積率が40~70%である高強度厚鋼板である。なお、特許文献5に記載された技術では、製造方法として、上記した組成の鋼片を、雰囲気温度:1000~1250℃の加熱炉に装入したのち、板厚中心温度で850℃超え1150℃以下で、1パス圧下率が3~30%を4~15パス、3%未満を3パス以内、累積圧下率が15~70%の粗圧延と、板厚中心温度で750~850℃で4~15パス、形状比の平均値が0.5~1、累積圧下率が40~80%の仕上圧延を施し、引き続いて、板厚中心温度が700℃以上から、2~10℃/sの板厚中心冷却速度で550℃以下まで冷却することが好ましいとしている。特許文献5に記載された技術では、板厚の1/2部と板厚の1/4部とで、発達させる集合組織を変化させて、脆性き裂の伝播を抑制している。 Patent Document 5 describes “a high-strength thick steel plate excellent in arrestability”. The thick steel sheet described in Patent Document 5 is mass%, C: 0.04 to 0.16%, Si: 0.01 to 0.5%, Mn: 0.75 to 2.5%, Al: 0.001 to 0.1%, Nb: 0.003 to 0.05%, Ti: 0.005 ~ 0.05%, N: 0.001 ~ 0.008% included, P, S, Cu, Ni, Mo, V, B, Ca, Mg, REM are restricted to below specified values, and the remainder from Fe and inevitable impurities And having a composition with a carbon equivalent Ceq of 0.30 to 0.50%, a ferrite with an area ratio of 70% or less, and a microstructure containing 30% or more of bainite. The grain boundary density, which is the total length per unit area of grain boundaries with an orientation difference of 15 ° or more, is 400 to 1000 mm / mm 2 and has an angle within 15 ° with respect to the plane perpendicular to the main rolling direction ( The area ratio of the (100) plane is 10 to 40%, and at 1/2 part of the plate thickness, the grain boundary density is 300 to 900 mm / mm 2 and within 15 ° to the plane perpendicular to the main rolling direction. The area ratio of (110) plane with angle is 40-7 It is a 0% high strength thick steel plate. In the technique described in Patent Document 5, a steel slab having the composition described above is charged as a manufacturing method in a heating furnace having an atmospheric temperature of 1000 to 1250 ° C., and then exceeds a center thickness of 850 ° C. to 1150 ° C. Below, rough rolling with a 1-pass reduction ratio of 3 to 30% for 4 to 15 passes, less than 3% within 3 passes, and a cumulative reduction ratio of 15 to 70%, 4 at a center thickness of 750 to 850 ° C. Finishing with ~ 15 passes, shape ratio average of 0.5 ~ 1, cumulative reduction ratio of 40 ~ 80%, and then the sheet thickness center temperature is over 700 ℃, and the thickness is 2 ~ 10 ℃ / s It is preferable to cool to 550 ° C. or lower at the center cooling rate. In the technique described in Patent Document 5, the propagation of brittle cracks is suppressed by changing the texture to be developed between 1/2 part of the plate thickness and 1/4 part of the plate thickness.
特開2008-045174号公報JP 2008-045174 特開2012-180590号公報JP 2012-180590 A 特開2013-151731号公報JP 2013-151731 A 特開2013-151732号公報JP 2013-151732 A 特許第5445720号公報Japanese Patent No. 5445720
 特許文献1~5に記載された技術では、板厚方向の特定位置において集合組織を発達させて、脆性き裂の伝播を抑制して、厚鋼板における脆性き裂伝播停止特性を向上させるとしている。しかしながら、特許文献1~5に記載された技術によってもまだ、板厚70mm以上の高強度厚鋼板においては、実構造における最も厳しい条件である、完全溶込み溶接部を介してき裂が突入してくる応力反射等のない条件においても長大脆性き裂を停止させることができるような、十分に優れた脆性き裂伝播停止特性を保持するまでに至っていないという問題があった。 In the techniques described in Patent Documents 1 to 5, a texture is developed at a specific position in the plate thickness direction to suppress the propagation of a brittle crack and improve the brittle crack propagation stop property in a thick steel plate. . However, even with the techniques described in Patent Documents 1 to 5, in high-strength thick steel plates with a thickness of 70 mm or more, cracks have entered through the full penetration welds, which is the most severe condition in the actual structure. There has been a problem that a sufficiently excellent brittle crack propagation stop property has not been maintained so that a long brittle crack can be stopped even under conditions where there is no stress reflection.
 本発明は、かかる従来技術の問題に鑑み、板厚:70mm以上で、脆性き裂伝播停止性能に優れた高強度厚鋼板およびその製造方法を提供することを目的とする。なお、ここでいう「高強度」とは、降伏強さ:400N/mm2以上である場合をいうものとする。また、ここでいう「脆性き裂伝播停止性能に優れた」とは、船体設計温度:-10℃での脆性き裂伝播停止靭性値Kca-10℃が9500N/mm3/2以上である場合をいうものとする。 The present invention has been made in view of the problems of the prior art, and an object thereof is to provide a high-strength thick steel plate having a plate thickness of 70 mm or more and excellent brittle crack propagation stopping performance and a method for producing the same. Here, “high strength” refers to the case where the yield strength is 400 N / mm 2 or more. The term “excellent in brittle crack propagation stopping performance” here means that the brittle crack propagation stopping toughness value Kca -10 ° C at the hull design temperature of -10 ° C is 9500 N / mm 3/2 or more. It shall be said.
 本発明者らは、上記した目的を達成するため、厚鋼板における板厚方向各位置における脆性き裂伝播停止性能の違いに着目し、板厚方向の各位置における脆性き裂伝播停止性能の分布状態と厚鋼板全体の脆性き裂伝播停止性能との関係について鋭意検討した。その結果、板厚:70mm以上の厚鋼板において、厚鋼板全体の脆性き裂伝播停止性能を著しく向上させることができる、板厚方向の各位置における脆性き裂伝播停止性能の適正な分布状態が存在することを見出した。 In order to achieve the above-mentioned object, the present inventors paid attention to the difference in brittle crack propagation stopping performance at each position in the plate thickness direction in the thick steel plate, and distributed the brittle crack propagation stopping performance at each position in the plate thickness direction. The relationship between the state and the brittle crack propagation stopping performance of the entire thick steel plate was studied. As a result, in a thick steel plate with a thickness of 70 mm or more, the brittle crack propagation stopping performance of the entire thick steel plate can be remarkably improved. Found it to exist.
 すなわち、厚鋼板全体の脆性き裂伝播停止性能を高めるためには、まず、高い脆性き裂伝播停止性能を有する内部領域(板厚中心部領域)と、その両外側に、それに比べて相対的に脆性き裂伝播停止性能の低い領域を有する、3層からなる厚鋼板とする必要があることを知見した。このような厚鋼板では、脆性き裂が進展(伝播)する場合には、板厚中心部とその両外側の部位との境界近傍で段差が生じ、き裂先端が3層に分岐した脆性き裂として進展するため、各層の厚さおよびその特性の組み合わせに応じて、厚鋼板全体の脆性き裂伝播停止性能が大きく変化することを知見した。 That is, in order to improve the brittle crack propagation stopping performance of the entire thick steel plate, first, an inner region (plate thickness central region) having a high brittle crack propagation stopping performance and the outer sides thereof are relatively compared with each other. It was found that a thick steel plate consisting of three layers having a region with low brittle crack propagation stopping performance is required. In such a thick steel plate, when a brittle crack propagates (propagates), a step occurs in the vicinity of the boundary between the central portion of the plate thickness and the outer portions thereof, and the brittle crack in which the crack tip branches into three layers. It has been found that the brittle crack propagation stopping performance of the entire thick steel plate changes greatly depending on the combination of the thickness of each layer and its characteristics, since it propagates as a crack.
 そこで、本発明者らは、板厚方向各位置の脆性き裂伝播停止性能を、次式
    Y=vTrs-12×I(100)-22×I(211)     ・・・(A)
 ここで、vTrs:Vノッチシャルピー衝撃試験の破面遷移温度(℃)、
     I(100):圧延面(板面)に平行な(100)面のX線回折強度比、
     I(211):圧延面(板面)に平行な(211)面のX線回折強度比、
で定義される指標Y(℃)を利用して簡便に、評価できることに思い至った。この指標Yは、シャルピー衝撃試験の破面遷移温度(vTrs)を基にし、脆性き裂伝播停止性能の向上に影響する集合組織の発達の程度を加味して、脆性き裂伝播停止靭性を向上させるために必要な破面遷移温度(vTrs)を定義するために、本発明者らの一部が導入したパラメータである。脆性き裂伝播停止性能の向上に有利な集合組織が発達し、I(100)、I(211)が大きくなれば、指標Yは低温となる。
Therefore, the present inventors have determined the brittle crack propagation stopping performance at each position in the plate thickness direction by the following equation: Y = vTrs-12 × I (100) −22 × I (211) (A)
Where, vTrs: V notch Charpy impact test fracture surface transition temperature (° C),
I (100) : X-ray diffraction intensity ratio of (100) plane parallel to the rolling surface (plate surface),
I (211) : X-ray diffraction intensity ratio of (211) plane parallel to the rolling surface (plate surface),
I came up with the idea that it can be evaluated easily using the index Y (° C) defined in. This index Y is based on the fracture surface transition temperature (vTrs) of the Charpy impact test and improves the brittle crack propagation stop toughness by taking into account the degree of texture development that affects the improvement of brittle crack propagation stop performance. This is a parameter introduced by some of the present inventors in order to define the fracture surface transition temperature (vTrs) necessary to achieve this. If a texture favorable for improving the brittle crack propagation stopping performance develops and I (100) and I (211) become large, the index Y becomes low temperature.
 本発明者らは、この指標Yを、板厚方向各位置の脆性き裂伝播停止性能の指標として使用し、とくに板厚の1/6位置における脆性き裂伝播停止性能指標Y1/6t、板厚の1/3位置における脆性き裂伝播停止性能指標Y1/3t、および板厚の1/2位置における脆性き裂伝播停止性能指標Y1/2tが、次(1)式および(2)式
    Y1/3t≦0.9Y1/2t                  ・・・(1)
    Y1/6t≧0.8Y1/2t                  ・・・(2)
を満足するように調整することにより、全厚での脆性き裂伝播停止靭性値Kcaが顕著に向上した厚鋼板となることを新規に見出した。式(1)は、高い脆性き裂伝播停止性能を有する内部領域(板厚中心部領域)が、少なくとも2つの板厚1/3位置間の領域にわたって存在することを意味する。また、式(2)は、当該内部領域の両外側に、相対的に低い脆性き裂伝播停止性能を有する領域が存在することを意味する。ここで、Y1/2t、Y1/3tおよびY1/6tは、ゼロ未満である。
The present inventors use this index Y as an index of brittle crack propagation stopping performance at each position in the plate thickness direction, and in particular, brittle crack propagation stopping performance index Y 1 / 6t at 1/6 position of the plate thickness, The brittle crack propagation stopping performance index Y 1 / 3t at the 1/3 position of the plate thickness and the brittle crack propagation stopping performance index Y 1 / 2t at the 1/2 position of the sheet thickness are expressed by the following equations (1) and (2 ) Formula Y 1 / 3t ≦ 0.9Y 1 / 2t (1)
Y 1 / 6t ≧ 0.8 Y 1 / 2t (2)
It was newly found out that by adjusting so as to satisfy the above, a steel plate having a significantly improved brittle crack propagation stop toughness value Kca in the entire thickness was obtained. Formula (1) means that an internal region (plate thickness central region) having high brittle crack propagation stopping performance exists over a region between at least two plate thickness 1/3 positions. Moreover, Formula (2) means that the area | region which has a relatively low brittle crack propagation stop performance exists in the both outer sides of the said internal area | region. Here, Y 1 / 2t , Y 1 / 3t and Y 1 / 6t are less than zero.
 まず、本発明の基礎となった実験結果について説明する。 First, the experimental results that are the basis of the present invention will be described.
 板厚方向各位置の特性が変化するように、組成、製造条件等を種々変更して、板厚70mm以上の各種厚鋼板を作製した。得られた各厚鋼板から、全厚のESSO試験片(大きさ:t×500×500mm)、および板厚方向各位置を中心として、板厚20mmの減厚ESSO試験片(大きさ:20×500×500mm)を採取した。 Various types of thick steel plates with a thickness of 70 mm or more were prepared by changing the composition, manufacturing conditions, and the like so that the characteristics at each position in the thickness direction changed. From each of the obtained thick steel plates, a full thickness ESSO test piece (size: t × 500 × 500 mm) and a reduced thickness ESSO test piece (size: 20 × centered on each position in the plate thickness direction) 500 × 500 mm) was collected.
 そして、それら試験片を用いて、脆性亀裂アレスト設計指針(財団法人 日本海事協会、2009年9月)付属書Aに準拠して、温度勾配型ESSO試験を実施し、各厚鋼板の全厚および板厚方向各位置における、き裂停止温度と脆性き裂伝播停止靭性値Kcaとの関係を求めた。 Using these specimens, a temperature gradient type ESSO test was conducted in accordance with Annex A of Brittle Crack Arrest Design Guidelines (Nippon Kaiji Kyokai, September 2009). The relationship between the crack stop temperature and the brittle crack propagation stop toughness value Kca at each position in the plate thickness direction was obtained.
 得られた結果のなかから、板厚85mmの厚鋼板の例を図1に示す。 From the obtained results, an example of a thick steel plate having a thickness of 85 mm is shown in FIG.
 図1に脆性き裂伝播停止性能を示した厚鋼板は、板厚の1/2位置と板厚の1/3位置の板厚内部領域では、高い脆性き裂伝播停止靭性値Kcaを示し、その両外側の板厚の1/6位置では、それより低い脆性き裂伝播停止靭性値Kcaを示す、三層からなる、板厚方向各位置での脆性き裂伝播停止性能の分布を示す厚鋼板である。 Figure 1 shows a steel plate with brittle crack propagation stopping performance, which shows a high brittle crack propagation stopping toughness value Kca in the plate thickness internal region at 1/2 the plate thickness and 1/3 the plate thickness. Thickness indicating the distribution of brittle crack propagation stopping performance at each position in the plate thickness direction, consisting of three layers, showing a lower brittle crack propagation stopping toughness value Kca at 1/6 of the plate thickness on both outer sides. It is a steel plate.
 なお、板厚方向各位置での脆性き裂伝播停止靭性値Kcaは、板厚20mmの試験片を用いて得られた結果であり、板厚の影響を排除するため、日本溶接協会規格WES 3003に準拠して、次式
    f(t)=1-0.05(t-30);t≦35mm
        =54/65-3t/1300;35mm≦t≦100mm
で定義される板厚効果係数f(t)を用いて、板厚20mmの試験片を用いて得られたKca(以下、Kcat=20mm)から、次式
    Kcat=85mm=Kcat=20mm×f(85)/f(20)
により、板厚85mmのKcat=85mmに換算して、図1に示した。
The brittle crack propagation stop toughness value Kca at each position in the plate thickness direction is a result obtained using a test piece with a plate thickness of 20 mm. In order to eliminate the influence of the plate thickness, the Japan Welding Association standard WES 3003 In accordance with the following formula: f (t) = 1−0.05 (t−30); t ≦ 35 mm
= 54 / 65-3t / 1300; 35mm ≦ t ≦ 100mm
Using the plate thickness effect coefficient f (t) defined by the following equation, from the Kca obtained by using a test piece with a plate thickness of 20 mm (hereinafter referred to as Kca t = 20 mm ), the following formula Kca t = 85 mm = Kcat = 20 mm × f (85) / f (20)
Thus, Kcat = 85 mm with a plate thickness of 85 mm is converted into that shown in FIG.
 図1から、このような板厚方向各位置での脆性き裂伝播停止性能の分布を示す厚鋼板では、全厚の脆性き裂伝播停止靭性値Kcaが、板厚方向各位置での脆性き裂伝播停止靭性値より格段に高い値を示している。 From FIG. 1, in the thick steel plate showing the distribution of brittle crack propagation stopping performance at each position in the plate thickness direction, the brittle crack propagation stopping toughness value Kca of the full thickness is the brittle crack at each position in the plate thickness direction. It is much higher than the crack propagation stop toughness value.
 なお、この厚鋼板について、板厚方向各位置(板厚の1/6位置、板厚の1/3位置、板厚の1/2位置)から、JIS Z 2242の規定に準拠して、試験片長手方向が圧延方向となるように、Vノッチシャルピー衝撃試験片を採取し、板厚方向各位置における破面遷移温度vTrsを求めた。また、この厚鋼板の板厚方向各位置(板厚の1/6位置、板厚の1/3位置、板厚の1/2位置)が測定面となるように試験片を採取し、X線回折法により、圧延面(板面)に平行な(100)面および(211)面のX線回折強度比を求めた。これらの値から、上記した(A)式を用いて板厚方向各位置での指標Y(Y1/6t、Y1/3t、Y1/2t)を算出すると、Y1/6t=-129℃、Y1/3t=-168℃、Y1/2t=-170℃であり、上記した(1)式、(2)式をともに満足する。 This thick steel plate was tested from each position in the plate thickness direction (1/6 position of plate thickness, 1/3 position of plate thickness, 1/2 position of plate thickness) in accordance with the provisions of JIS Z 2242. V-notch Charpy impact test pieces were collected so that the longitudinal direction of the piece was the rolling direction, and the fracture surface transition temperature vTrs at each position in the plate thickness direction was determined. In addition, a specimen was taken so that each position in the plate thickness direction (1/6 position of the plate thickness, 1/3 position of the plate thickness, 1/2 position of the plate thickness) of this thick steel plate becomes the measurement surface. The X-ray diffraction intensity ratio between the (100) plane and the (211) plane parallel to the rolling surface (plate surface) was determined by the line diffraction method. From these values, the index Y (Y 1 / 6t , Y 1 / 3t , Y 1 / 2t ) at each position in the plate thickness direction is calculated using the above-described equation (A). Y 1 / 6t = −129 ° C., Y 1 / 3t = −168 ° C., Y 1 / 2t = −170 ° C., which satisfies both the above formulas (1) and (2).
 すなわち、板厚70mm以上の厚鋼板では、上記した(1)式および(2)式を満足するように、板厚中央位置を中心として全板厚の1/3の厚さを有する高い脆性き裂伝播停止性能を有する内部領域と、その両外側に、内部領域に比べ相対的に低い脆性き裂伝播停止性能を有する全板厚の1/3の厚さを有する領域と、を配した、板厚方向に脆性き裂伝播停止性能が異なる3層となるように、板厚方向各位置における脆性き裂伝播停止性能の分布状態を調整することが、全厚の脆性き裂伝播停止靭性値Kcaが高い厚鋼板とするために重要であることを知見した。 That is, a thick steel plate having a thickness of 70 mm or more has a high brittleness having a thickness of 1/3 of the total thickness centering on the central position of the plate thickness so as to satisfy the above formulas (1) and (2). An internal region having a crack propagation stopping performance and a region having a thickness of 1/3 of the total plate thickness having a brittle crack propagation stopping performance relatively lower than the internal region are arranged on both outer sides thereof, It is possible to adjust the distribution of brittle crack propagation stop performance at each position in the plate thickness direction so that there are three layers with different brittle crack propagation stop performance in the plate thickness direction. It was found that Kca is important for making a thick steel plate.
 本発明は、かかる知見に基づき、さらに検討を加えて完成されたものである。すなわち、本発明の要旨はつぎのとおりである。 The present invention has been completed based on such knowledge and further investigation. That is, the gist of the present invention is as follows.
 [1]板厚t:70mm以上であって、下記(a)式で定義される板厚1/2t位置における脆性き裂伝播停止性能指標Y1/2t(℃)と、下記(b)式で定義される板厚1/3t位置における脆性き裂伝播停止性能指標Y1/3t(℃)と、下記(c)式で定義される板厚1/6t位置における脆性き裂伝播停止性能指標Y1/6t(℃)とが、下記(1)式および(2)式を満足することを特徴とする構造用高強度厚鋼板。
                 記
       Y1/3t≦0.9Y1/2t                 ・・・(1)
       Y1/6t≧0.8Y1/2t                 ・・・(2)
 Y1/2t=(vTrs)1/2t-12×{I(100)1/2t-22×{I(211)1/2t ‥(a)
 Y1/3t=(vTrs)1/3t-12×{I(100)1/3t-22×{I(211)1/3t ‥(b)
 Y1/6t=(vTrs)1/6t-12×{I(100)1/6t-22×{I(211)1/6t ‥(c)
ここで、(vTrs)1/2t、(vTrs)1/3t、(vTrs)1/6t:板厚各位置におけるVノッチシャルピー衝撃試験の破面遷移温度(℃)、
{I(100)1/2t、{I(100)1/3t、{I(100)1/6t:板厚各位置における板面に平行な(100)面のX線回折強度比、
{I(211)1/2t、{I(211)1/3t、{I(211)1/6t:板厚各位置における板面に平行な(211)面のX線回折強度比
[1] Plate thickness t: 70 mm or more, and a brittle crack propagation stopping performance index Y 1 / 2t (° C.) at the plate thickness 1 / 2t position defined by the following equation (a), and the following equation (b) The brittle crack propagation stoppage performance index Y 1 / 3t (° C) at the plate thickness 1 / 3t position defined by, and the brittle crack propagation stoppage performance index at the plate thickness 1 / 6t position defined by the following formula (c) Y 1 / 6t (° C) satisfies the following formulas (1) and (2): a high strength thick steel sheet for structural use.
Y 1 / 3t ≦ 0.9Y 1 / 2t (1)
Y 1 / 6t ≧ 0.8 Y 1 / 2t (2)
Y 1 / 2t = (vTrs) 1 / 2t −12 × {I (100) } 1 / 2t −22 × {I (211) } 1 / 2t (a)
Y 1 / 3t = (vTrs) 1 / 3t −12 × {I (100) } 1 / 3t −22 × {I (211) } 1 / 3t (b)
Y 1 / 6t = (vTrs) 1 / 6t −12 × {I (100) } 1 / 6t −22 × {I (211) } 1 / 6t (c)
Here, (vTrs) 1 / 2t , (vTrs) 1 / 3t , (vTrs) 1 / 6t : Fracture surface transition temperature (° C) of V notch Charpy impact test at each thickness position,
{I (100) } 1 / 2t , {I (100) } 1 / 3t , {I (100) } 1 / 6t : X-ray diffraction intensity ratio of (100) plane parallel to the plate surface at each plate thickness position ,
{I (211) } 1 / 2t , {I (211) } 1 / 3t , {I (211) } 1 / 6t : X-ray diffraction intensity ratio of (211) plane parallel to the plate surface at each thickness position
 [2]板厚:100mm以下である上記[1]に記載の構造用高強度厚鋼板。 [2] Sheet thickness: The structural high-strength thick steel sheet according to [1], which is 100 mm or less.
 [3]前記脆性き裂伝播停止性能指標Y1/3t(℃)が、-150℃以下である上記[1]または[2]に記載の構造用高強度厚鋼板。 [3] The structural high-strength thick steel plate according to the above [1] or [2], wherein the brittle crack propagation stopping performance index Y 1 / 3t (° C.) is −150 ° C. or less.
 [4]質量%で、C:0.03~0.20%、Si:0.03~0.5%、Mn:0.5~2.5%、P:0.03%以下、S:0.01%以下、Al:0.005~0.08%、Nb:0.005~0.05%、Ti:0.005~0.03%、N:0.0050%以下を含有し、残部Feおよび不可避的不純物からなる組成と、
 体積率で80%以上のベイナイト相を主体とし、第二相として合計で体積率20%以下(0%を含む)のフェライト相、パーライト、マルテンサイトのうちから選ばれた1種または2種以上からなる組織と、
を有する上記[1]~[3]のいずれか一項に記載の構造用高強度厚鋼板。
[4] By mass%, C: 0.03-0.20%, Si: 0.03-0.5%, Mn: 0.5-2.5%, P: 0.03% or less, S: 0.01% or less, Al: 0.005-0.08%, Nb: 0.005 -0.05%, Ti: 0.005-0.03%, N: 0.0050% or less, the composition comprising the balance Fe and inevitable impurities,
One or more selected from ferrite phase, pearlite, and martensite with a volume ratio of 80% or more as the main component and a total volume ratio of 20% or less (including 0%) as the second phase. An organization consisting of
The structural high-strength thick steel plate according to any one of the above [1] to [3].
 [5]前記組成がさらに、質量%で、Ni:0.05~3%、Cu:0.05~1.5%、Cr:0.02~1.0%、Mo:0.005~1.0%、V:0.002~0.10%、B:0.0002~0.003%のうちから選ばれた1種または2種以上を含有する上記[4]に記載の構造用高強度厚鋼板。 [5] The composition is further in terms of mass%, Ni: 0.05 to 3%, Cu: 0.05 to 1.5%, Cr: 0.02 to 1.0%, Mo: 0.005 to 1.0%, V: 0.002 to 0.10%, B: 0.0002 The structural high-strength thick steel plate according to the above-mentioned [4], which contains one or more selected from ˜0.003%.
 [6]前記組成がさらに、質量%で、Ca:0.0005~0.003%、REM:0.0005~0.010%のうちから選ばれた1種または2種を含有する上記[4]または[5]に記載の構造用高強度厚鋼板。 [6] The above composition according to [4] or [5], wherein the composition further contains, by mass%, one or two selected from Ca: 0.0005 to 0.003% and REM: 0.0005 to 0.010% Structural high-strength thick steel plate.
 [7]鋼素材に加熱工程と熱間圧延工程とを施して、板厚t:70mm以上の厚鋼板とする、構造用高強度厚鋼板の製造方法であって、
 前記鋼素材を、質量%で、C:0.03~0.20%、Si:0.03~0.5%、Mn:0.5~2.5%、P:0.03%以下、S:0.01%以下、Al:0.005~0.08%、Nb:0.005~0.05%、Ti:0.005~0.03%、N:0.0050%以下を含有し、残部Feおよび不可避的不純物からなる組成を有する鋼素材とし、
 前記加熱工程を、該鋼素材を加熱温度:900~1200℃の温度に加熱する工程とし、
 前記熱間圧延工程を、表面温度で1000~850℃の温度域で累積圧下率:9%以下の一次圧延を施し、ついで、表面温度で900~600℃の温度域で、1パス圧下率:7%以上、累積圧下率:55%以上で、圧延終了温度:表面温度で800~550℃とする二次圧延を施し、ついで、表面温度で790~540℃の温度域の平均で5℃/s以上の冷却速度で冷却停止温度:450~400℃まで冷却する工程とし、
 板厚方向各位置の脆性き裂伝播停止性能指標Yが下記(1)式および下記(2)式を満足する厚鋼板とする、ことを特徴とする構造用高強度厚鋼板の製造方法。
                  記
      Y1/3t≦0.9Y1/2t                  ・・・(1)
      Y1/6t≧0.8Y1/2t                  ・・・(2)
 ここで、Y1/2t=(vTrs)1/2t-12×{I(100)1/2t-22×{I(211)1/2t ‥(a)
     Y1/3t=(vTrs)1/3t-12×{I(100)1/3t-22×{I(211)1/3t ‥(b)
     Y1/6t=(vTrs)1/6t-12×{I(100)1/6t-22×{I(211)1/6t ‥(c)
なお、(vTrs)1/2t、(vTrs)1/3t、(vTrs)1/6t:板厚各位置におけるVノッチシャルピー試験の破面遷移温度(℃)、
{I(100)1/2t、{I(100)1/3t、{I(100)1/6t:板厚各位置における板面に平行な(100)面のX線回折強度比、
{I(211)1/2t、{I(211)1/3t、{I(211)1/6t:板厚各位置における板面に平行な(211)面のX線回折強度比
[7] A manufacturing method of a structural high-strength thick steel plate, in which a steel material is subjected to a heating step and a hot rolling step to obtain a steel plate having a thickness t: 70 mm or more,
The steel material is, in mass%, C: 0.03-0.20%, Si: 0.03-0.5%, Mn: 0.5-2.5%, P: 0.03% or less, S: 0.01% or less, Al: 0.005-0.08%, Nb : 0.005 to 0.05%, Ti: 0.005 to 0.03%, N: 0.0050% or less, steel material having a composition consisting of the balance Fe and inevitable impurities,
The heating step is a step of heating the steel material to a heating temperature: 900 to 1200 ° C.,
In the hot rolling process, primary rolling is performed at a surface temperature of 1000 to 850 ° C. in a temperature range of 9% or less, and then the surface temperature is 900 to 600 ° C. in a temperature range of 1 pass: Secondary rolling at 7% or more, cumulative rolling reduction: 55% or more, rolling finish temperature: 800 to 550 ° C at surface temperature, then 5 ° C / average on the surface temperature range of 790 to 540 ° C Cooling stop temperature: at a cooling rate of over s
A method for producing a structural high-strength thick steel plate, characterized in that a brittle crack propagation stopping performance index Y at each position in the thickness direction satisfies the following formula (1) and the following formula (2).
Y 1 / 3t ≦ 0.9Y 1 / 2t (1)
Y 1 / 6t ≧ 0.8 Y 1 / 2t (2)
Here, Y 1 / 2t = (vTrs) 1 / 2t −12 × {I (100) } 1 / 2t −22 × {I (211) } 1 / 2t (a)
Y 1 / 3t = (vTrs) 1 / 3t −12 × {I (100) } 1 / 3t −22 × {I (211) } 1 / 3t (b)
Y 1 / 6t = (vTrs) 1 / 6t −12 × {I (100) } 1 / 6t −22 × {I (211) } 1 / 6t (c)
(VTrs) 1 / 2t , (vTrs) 1 / 3t , (vTrs) 1 / 6t : Fracture transition temperature (° C) of V-notch Charpy test at each thickness position,
{I (100) } 1 / 2t , {I (100) } 1 / 3t , {I (100) } 1 / 6t : X-ray diffraction intensity ratio of (100) plane parallel to the plate surface at each plate thickness position ,
{I (211) } 1 / 2t , {I (211) } 1 / 3t , {I (211) } 1 / 6t : X-ray diffraction intensity ratio of (211) plane parallel to the plate surface at each thickness position
 [8]前記組成がさらに、質量%で、Ni:0.05~3%、Cu:0.05~1.5%、Cr:0.02~1.0%、Mo:0.005~1.0%、V:0.002~0.10%、B:0.0002~0.003%のうちから選ばれた1種または2種以上を含有する上記[7]に記載の構造用高強度厚鋼板の製造方法。 [8] The composition is further mass%, Ni: 0.05-3%, Cu: 0.05-1.5%, Cr: 0.02-1.0%, Mo: 0.005-1.0%, V: 0.002-0.10%, B: 0.0002 The method for producing a structural high-strength thick steel plate according to the above [7], which contains one or more selected from ˜0.003%.
 [9]前記組成がさらに、質量%で、Ca:0.0005~0.003%、REM:0.0005~0.010%のうちから選ばれた1種または2種を含有する上記[7]または[8]に記載の構造用高強度厚鋼板の製造方法。 [9] The composition according to [7] or [8], wherein the composition further contains, by mass%, one or two selected from Ca: 0.0005 to 0.003% and REM: 0.0005 to 0.010% A manufacturing method for structural high-strength thick steel plates.
 本発明によれば、板厚:70mm以上、降伏強さ:400N/mm2以上で、かつ船体設計温度:-10℃での脆性き裂伝播停止靭性値Kca-10℃が9500N/mm3/2以上である脆性き裂伝播停止性能に優れた高強度厚鋼板を、容易に製造でき、産業上格段の効果を奏する。また、本発明になる高強度厚鋼板を、大型のコンテナ船やバルクキャリアーの強力甲板部構造におけるハッチサイドコーミングや甲板部材へ適用することにより、船舶の安全性向上に寄与するという多大な効果もある。 According to the present invention, the plate thickness: 70 mm or more, yield strength: 400 N / mm 2 or more, and hull design temperature: −10 ° C., the brittle crack propagation stop toughness value Kca −10 ° C. is 9500 N / mm 3 / A high-strength thick steel plate excellent in brittle crack propagation stopping performance of 2 or more can be easily produced, and has a remarkable industrial effect. In addition, by applying the high-strength thick steel plate according to the present invention to hatch side combing and deck members in the strong deck structure of large container ships and bulk carriers, there is also a great effect of contributing to the improvement of ship safety. is there.
ESSO試験結果を、脆性き裂伝播停止靭性値Kcaと脆性き裂伝播停止温度Tkとの関係で示すグラフである。It is a graph which shows an ESSO test result by the relationship between the brittle crack propagation stop toughness value Kca and the brittle crack propagation stop temperature Tk.
 本発明の高強度厚鋼板は、板厚方向断面で、板厚中央位置を含み板厚の1/3厚さの板厚中央部領域では高い脆性き裂伝播停止性能を有し、その両外側の板厚の1/3厚さの各外側領域では相対的に低い脆性き裂伝播停止性能を有する、3層の板厚方向に脆性き裂伝播停止性能の分布を示す厚鋼板である。板厚中央部の両外側の領域に、板厚中央部の領域とは異なる脆性き裂の進展を示す領域を存在させることにより、脆性き裂の進展が各層で異なり、その結果として、例えば、全厚で板厚中央部と同じ脆性き裂伝播停止性能を有する均一な厚鋼板に比べて、厚鋼板全体の脆性き裂伝播停止靭性値が高くなる。 The high-strength thick steel plate of the present invention has a high brittle crack propagation stopping performance in the plate thickness central section including the plate thickness center position and 1/3 of the plate thickness in the plate thickness direction cross section. This is a thick steel plate having a distribution of brittle crack propagation stopping performance in the three-layer thickness direction, having relatively low brittle crack propagation stopping performance in each outer region having a thickness of 1/3 of the plate thickness. The presence of a region exhibiting the development of a brittle crack different from the region of the center of the plate thickness in the regions on both outer sides of the plate thickness center, the development of the brittle crack is different in each layer, and as a result, for example, Compared to a uniform thick steel plate that has the same brittle crack propagation stopping performance as the central portion of the plate thickness, the brittle crack propagation stopping toughness value of the entire thick steel plate is high.
 本発明の高強度厚鋼板では、上記したように、3層の板厚方向に脆性き裂伝播停止性能の分布を示すこと、すなわち各板厚方向各位置における脆性き裂伝播停止性能指標Yが、
次(1)式
    Y1/3t≦0.9Y1/2t                  ・・・(1)
および、次(2)式
    Y1/6t≧0.8Y1/2t                  ・・・(2)
を満足する。
In the high-strength thick steel sheet of the present invention, as described above, the distribution of brittle crack propagation stopping performance in the three-layer thickness direction, that is, the brittle crack propagation stopping performance index Y at each position in each sheet thickness direction is ,
Next (1) Formula Y 1 / 3t ≦ 0.9Y 1 / 2t (1)
And the following formula (2) Y 1 / 6t ≧ 0.8Y 1 / 2t (2)
Satisfied.
 ここで、Y1/2tは、板厚1/2t位置における脆性き裂伝播停止性能指標であり、次(a)式
    Y1/2t=(vTrs)1/2t-12×{I(100)1/2t-22×{I(211)1/2t ‥(a)
 (ここで、(vTrs)1/2t:板厚1/2t位置におけるVノッチシャルピー試験の破面遷移温度(℃)、{I(100)1/2t:板厚1/2t位置における板面に平行な(100)面のX線回折強度比、{I(211)1/2t:板厚1/2t位置における板面に平行な(211)面のX線回折強度比)で定義される。なお、本発明高強度厚鋼板では、全厚での高い脆性き裂伝播靭性値を確保するためには、Y1/2tは-150℃以下を満足することが好ましい。
Here, Y 1 / 2t is a brittle crack propagation stoppage performance index at the thickness 1 / 2t position, and the following equation (a) Y 1 / 2t = (vTrs) 1 / 2t −12 × {I (100) } 1 / 2t −22 × {I (211) } 1 / 2t (a)
(Where (vTrs) 1 / 2t : Fracture surface transition temperature (° C) of V-notch Charpy test at plate thickness 1 / 2t position, {I (100) } 1 / 2t : Plate surface at plate thickness 1 / 2t position X-ray diffraction intensity ratio of the (100) plane parallel to the surface, {I (211) } 1 / 2t : X-ray diffraction intensity ratio of the (211) plane parallel to the plate surface at the plate thickness 1 / 2t position) The In the high-strength thick steel sheet of the present invention, Y 1 / 2t preferably satisfies −150 ° C. or less in order to ensure a high brittle crack propagation toughness value in the entire thickness.
 また、Y1/3tは、板厚1/3t位置における脆性き裂伝播停止性能指標であり、次(b)式
    Y1/3t=(vTrs)1/3t-12×{I(100)1/3t-22×{I(211)1/3t ‥(b)
 (ここで、(vTrs)1/3t:板厚1/3t位置におけるVノッチシャルピー試験の破面遷移温度(℃)、{I(100)1/3t:板厚1/3t位置における板面に平行な(100)面のX線回折強度比、{I(211)1/3t:板厚1/3t位置における板面に平行な(211)面のX線回折強度比)で定義される。
Y 1 / 3t is a brittle crack propagation stop performance index at the position of the plate thickness 1 / 3t, and the following equation (b) Y 1 / 3t = (vTrs) 1 / 3t −12 × {I (100) } 1 / 3t -22 x {I (211) } 1 / 3t (b)
(Where, (vTrs) 1 / 3t : Fracture transition temperature (° C) of V-notch Charpy test at 1 / 3t plate thickness, {I (100) } 1 / 3t : Plate surface at 1 / 3t plate thickness X-ray diffraction intensity ratio of (100) plane parallel to, {I (211) } 1 / 3t : X-ray diffraction intensity ratio of (211) plane parallel to plate at 1 / 3t thickness The
 また、Y1/6tは、板厚1/6t位置における脆性き裂伝播停止性能指標であり、次(c)式
    Y1/6t=(vTrs)1/6t-12×{I(100)1/6t-22×{I(211)1/6t ‥(c)
 (ここで、(vTrs)1/6t:板厚1/6t位置におけるVノッチシャルピー試験の破面遷移温度(℃)、{I(100)1/6t:板厚1/6t位置における板面に平行な(100)面のX線回折強度比、{I(211)1/6t:板厚1/6t位置における板面に平行な(211)面のX線回折強度比)で定義される。
Y 1 / 6t is a brittle crack propagation stoppage performance index at a thickness of 1 / 6t, and the following formula (c) Y 1 / 6t = (vTrs) 1 / 6t −12 × {I (100) } 1 / 6t -22 × {I (211) } 1 / 6t ...... (c)
(Here, (vTrs) 1 / 6t : Fracture transition temperature of V-notch Charpy test at 1 / 6t thickness (° C), {I (100) } 1 / 6t : Plate thickness at 1 / 6t thickness X-ray diffraction intensity ratio of (100) plane parallel to, {I (211) } 1 / 6t : X-ray diffraction intensity ratio of (211) plane parallel to plate at 1 / 6t thickness The
 上記した(1)式が満足されない場合には、板厚1/3位置の脆性き裂伝播停止性能が低下し、高い脆性き裂伝播停止性能を有する板厚中央部領域の厚さが薄くなるため、所望の全厚の脆性き裂伝播停止靭性値Kcaを確保できなくなる。なお、板厚1/3t位置における脆性き裂伝播停止性能Y1/3tは、-150℃以下であることが好ましい。 If the above formula (1) is not satisfied, the brittle crack propagation stopping performance at the 1/3 position of the plate thickness is lowered, and the thickness of the central portion of the plate thickness having high brittle crack propagation stopping capability is reduced. Therefore, the desired brittle crack propagation stop toughness value Kca cannot be secured. Incidentally, the brittle crack arrest performance Y 1 / 3t in the sheet thickness 1 / 3t position is preferably -150 ° C. or less.
 一方、上記した(2)式が満足されない場合には、板厚1/6位置の脆性き裂伝播停止性能が高くなりすぎて、脆性き裂の進展が板厚中央部領域と同じようになり3層に分岐した脆性き裂破面を形成しなくなるため、所望の全厚の脆性き裂伝播停止靭性値Kcaを確保できなくなる。 On the other hand, if the above equation (2) is not satisfied, the brittle crack propagation stopping performance at the 1 / 6th plate thickness will be too high, and the progress of the brittle crack will be the same as in the central region of the plate thickness. Since the brittle crack fracture surface branched into three layers is not formed, the desired brittle crack propagation stop toughness value Kca cannot be secured.
 このようなことから、本発明では、板厚1/3t位置における脆性き裂伝播停止性能Y1/3t、板厚1/2t位置における脆性き裂伝播停止性能Y1/2t、および板厚1/6t位置における脆性き裂伝播停止性能Y1/6tが、上記した(1)式および(2)式を満足する厚鋼板に限定した。このような厚鋼板は、全厚で、所望の高い脆性き裂伝播停止靭性値Kcaを有する厚鋼板となる。さらに、安定してき裂先端が3層に分岐した脆性き裂破面を呈し、全厚での高い脆性き裂伝播靭性値を有する厚鋼板とするためには、さらにY1/6t≦0.7Y1/2tを満足することが望ましい。 For this reason, in the present invention, the thickness 1 / 3t brittle crack propagation in position stopping performance Y 1 / 3t, stop brittle crack propagation in the sheet thickness 1 / 2t position Performance Y 1 / 2t, and the plate thickness 1 The brittle crack propagation stopping performance Y 1 / 6t at the / 6t position is limited to a thick steel plate that satisfies the above-described formulas (1) and (2). Such a thick steel plate is a thick steel plate having the desired high brittle crack propagation stop toughness value Kca. Furthermore, in order to obtain a thick steel plate having a brittle crack fracture surface with the crack tip branched into three layers stably and having a high brittle crack propagation toughness value in the entire thickness, Y 1 / 6t ≦ 0.7Y 1 / It is desirable to satisfy 2t .
 なお、上記した条件を満足する厚鋼板であれば、とくに、その組成、組織は限定する必要はないが、質量%で、C:0.03~0.20%、Si:0.03~0.5%、Mn:0.5~2.5%、P:0.03%以下、S:0.01%以下、Al:0.005~0.08%、Nb:0.005~0.05%、Ti:0.005~0.03%、N:0.0050%以下を含有し、あるいは任意にNi:0.05~3%、Cu:0.05~1.5%、Cr:0.02~1.0%、Mo:0.005~1.0%、V:0.002~0.10%、B:0.0002~0.003%のうちから選ばれた1種または2種以上、および/または、Ca:0.0005~0.003%、REM:0.0005~0.010%のうちから選ばれた1種または2種、を含有し、残部Feおよび不可避的不純物からなる組成と、体積率で80%以上のベイナイト相を主相とし、第二相として体積率で合計で20%以下(0%を含む)のフェライト相、パーライト、マルテンサイトのうちから選ばれた1種または2種以上からなる組織と、を有する高強度厚鋼板とすることが好ましい。 In addition, if it is a thick steel plate that satisfies the above-mentioned conditions, the composition and structure are not particularly limited, but in mass%, C: 0.03-0.20%, Si: 0.03-0.5%, Mn: 0.5- Containing 2.5%, P: 0.03% or less, S: 0.01% or less, Al: 0.005 to 0.08%, Nb: 0.005 to 0.05%, Ti: 0.005 to 0.03%, N: 0.0050% or less, or optionally Ni: One or two selected from 0.05 to 3%, Cu: 0.05 to 1.5%, Cr: 0.02 to 1.0%, Mo: 0.005 to 1.0%, V: 0.002 to 0.10%, B: 0.0002 to 0.003% The composition containing one or two selected from the above and / or Ca: 0.0005 to 0.003% and REM: 0.0005 to 0.010%, with the balance consisting of Fe and unavoidable impurities, and a volume ratio of 80 % Selected from ferrite phase, pearlite, and martensite with a total volume ratio of 20% or less (including 0%) as the second phase. It is preferable to use a high-strength thick steel plate having a seed or two or more kinds of structures.
 以下、まず、好ましい組成の限定理由について説明する。以下、組成に関する質量%は、単に%で記す。 Hereinafter, the reason for limiting the preferred composition will be described first. Hereinafter, the mass% related to the composition is simply expressed as%.
 C:0.03~0.20%
 Cは、強度増加に寄与する元素であり、本発明の厚鋼板の所望の強度を確保するためには、0.03%以上の含有を必要とする。一方、0.20%を超えて含有すると、溶接熱影響部の靭性が低下する。このため、C含有量は0.03~0.20%の範囲に限定した。なお、好ましくは集合組織制御の観点から0.05~0.09%である。さらに好ましくは0.05~0.07%である。
C: 0.03-0.20%
C is an element that contributes to an increase in strength. In order to ensure the desired strength of the thick steel plate of the present invention, it is necessary to contain 0.03% or more. On the other hand, if the content exceeds 0.20%, the toughness of the weld heat-affected zone decreases. Therefore, the C content is limited to the range of 0.03 to 0.20%. Preferably, it is 0.05 to 0.09% from the viewpoint of texture control. More preferably, it is 0.05 to 0.07%.
 Si:0.03~0.5%
 Siは、脱酸剤として作用するとともに、固溶して強度増加に寄与する元素である。このような効果を得るためには、0.03%以上の含有を必要とする。一方、0.5%を超える多量の含有は、溶接熱影響部の靭性が低下する。このため、Si含有量は、0.03~0.5%の範囲に限定した。なお、好ましくは0.14~0.28%である。さらに好ましくは0.14~0.17%である。
Si: 0.03-0.5%
Si is an element that acts as a deoxidizer and contributes to an increase in strength by solid solution. In order to obtain such an effect, the content of 0.03% or more is required. On the other hand, if the content exceeds 0.5%, the toughness of the weld heat-affected zone decreases. Therefore, the Si content is limited to the range of 0.03 to 0.5%. Preferably, the content is 0.14 to 0.28%. More preferably, it is 0.14 to 0.17%.
 Mn:0.5~2.5%
 Mnは、固溶強化、焼入れ性の向上を介して強度増加に寄与するとともに、靭性の向上、さらには変態集合組織の発達にも寄与する元素である。このような効果を得るためには、0.5%以上の含有を必要とする。一方、2.5%を超えて含有すると、母材靭性の低下が懸念される。このため、Mn含有量は0.5~2.5%の範囲に限定した。なお、好ましくは1.5~2.4%である。さらに好ましくは1.8~2.0%である。
Mn: 0.5-2.5%
Mn is an element that contributes to an increase in strength through solid solution strengthening and hardenability, as well as an improvement in toughness and further a transformation texture. In order to acquire such an effect, 0.5% or more of content is required. On the other hand, if the content exceeds 2.5%, there is a concern that the toughness of the base material will decrease. Therefore, the Mn content is limited to the range of 0.5 to 2.5%. It is preferably 1.5 to 2.4%. More preferably, it is 1.8 to 2.0%.
 P:0.03%以下
 Pは、不純物として鋼中に存在し、粒界等に偏析して母材靭性に悪影響を及ぼす元素であり、できるだけ低減することが望ましい。しかし、0.03%までは許容できる。このため、P含有量は0.03%以下に限定した。なお、好ましくは0.006%以下である。一方、脱リンコストの観点から、工業的には0.0001%以上となる。
P: 0.03% or less P is an element that exists in steel as an impurity and segregates at grain boundaries and adversely affects the toughness of the base metal, and is desirably reduced as much as possible. However, up to 0.03% is acceptable. For this reason, the P content is limited to 0.03% or less. In addition, Preferably it is 0.006% or less. On the other hand, from the viewpoint of dephosphorization cost, it is 0.0001% or more industrially.
 S:0.01%以下
 Sは、鋼中では硫化物系介在物として存在し、熱間加工性、母材靭性、母材延性等を低下させる元素であり、できるだけ低減することが望ましい。しかし、0.01%までは許容できる。このため、S含有量は0.01%以下に限定した。なお、好ましくは0.003%以下である。一方、脱硫コストの観点から、工業的には0.0001%以上となる。
S: 0.01% or less S is an element that exists as sulfide inclusions in steel and reduces hot workability, base material toughness, base material ductility, and the like, and is preferably reduced as much as possible. However, up to 0.01% is acceptable. For this reason, S content was limited to 0.01% or less. In addition, Preferably it is 0.003% or less. On the other hand, from the viewpoint of desulfurization cost, it is 0.0001% or more industrially.
 Al:0.005~0.08%
 Alは、脱酸剤として作用するとともに、窒素と結合してAlNとして析出し、結晶粒の粗大化を抑制する作用を有する。このような効果を得るためには0.005%以上の含有を必要とする。一方、0.08%を超えて多量に含有すると、酸化物系介在物量が増加し、鋼の清浄度が低下する。このため、Al含有量は0.005~0.08%の範囲に限定した。なお、好ましくは0.02~0.04%である。
Al: 0.005-0.08%
Al acts as a deoxidizer and also has a function of binding to nitrogen and precipitating as AlN to suppress coarsening of crystal grains. In order to acquire such an effect, 0.005% or more of content is required. On the other hand, if the content exceeds 0.08%, the amount of oxide inclusions increases and the cleanliness of the steel decreases. For this reason, the Al content is limited to a range of 0.005 to 0.08%. Note that the content is preferably 0.02 to 0.04%.
 Nb:0.005~0.05%
 Nbは、析出強化を介して強度増加に寄与するとともに、オーステナイトの再結晶を抑制する作用を有し、オーステナイト未再結晶温度域での加工(圧延)を容易にし、結晶粒の微細化に寄与する元素である。このような効果を得るためには、0.005%以上の含有を必要とする。一方、0.05%を超える多量の含有は、析出物量が過剰となり靭性が低下する傾向となる。このため、Nb含有量は0.005~0.05%の範囲に限定した。なお、好ましくは0.02~0.04%である。
Nb: 0.005-0.05%
Nb contributes to strength increase through precipitation strengthening and has the effect of suppressing recrystallization of austenite, facilitates processing (rolling) in the austenite non-recrystallization temperature range, and contributes to refinement of crystal grains Element. In order to acquire such an effect, 0.005% or more of content is required. On the other hand, if the content exceeds 0.05%, the amount of precipitates becomes excessive and the toughness tends to decrease. Therefore, the Nb content is limited to a range of 0.005 to 0.05%. Note that the content is preferably 0.02 to 0.04%.
 Ti:0.005~0.03%
 Tiは、窒化物を形成し、オーステナイト粒の粗大化を抑制し、母材の結晶粒微細化に寄与し、母材靭性を向上させるとともに、溶接熱影響部の組織微細化にも寄与し、溶接熱影響部の靭性を向上させる。このような効果を得るためには、0.005%以上の含有を必要とする。一方、0.03%を超えて含有すると、靭性の低下を招く。このため、Ti含有量は0.005~0.03%の範囲に限定した。なお、好ましくは0.008~0.015%である。
Ti: 0.005-0.03%
Ti forms a nitride, suppresses coarsening of austenite grains, contributes to refinement of crystal grains of the base material, improves base material toughness, and contributes to refinement of the structure of the heat affected zone of the weld, Improve toughness of weld heat affected zone. In order to acquire such an effect, 0.005% or more of content is required. On the other hand, if the content exceeds 0.03%, toughness is reduced. For this reason, the Ti content is limited to the range of 0.005 to 0.03%. Preferably, the content is 0.008 to 0.015%.
 N:0.0050%以下
 Nは、Ti、Nb等と結合し、窒化物として結晶粒の微細化に寄与し、母材靭性、溶接熱影響部の靭性の向上に寄与する。このような効果を得るためには、0.002%以上の含有を必要とするが、0.0050%を超えて含有すると、溶接部の靭性の低下を招く。このため、N含有量は0.0050%以下に限定した。
N: 0.0050% or less N combines with Ti, Nb, and the like, contributes to refinement of crystal grains as a nitride, and contributes to improvement of base material toughness and toughness of weld heat affected zone. In order to obtain such an effect, the content of 0.002% or more is required. However, if the content exceeds 0.0050%, the toughness of the welded portion is lowered. For this reason, N content was limited to 0.0050% or less.
 上記した成分が基本の成分であるが、本発明では、基本の組成に加えてさらに、選択元素として、Ni:0.05~3%、Cu:0.05~1.5%、Cr:0.02~1.0%、Mo:0.005~1.0%、V:0.002~0.10%、B:0.0002~0.003%のうちから選ばれた1種または2種以上、および/または、Ca:0.0005~0.003%、REM:0.0005~0.010%のうちから選ばれた1種または2種、を含有することができる。 The above-described components are basic components. In the present invention, in addition to the basic composition, Ni: 0.05 to 3%, Cu: 0.05 to 1.5%, Cr: 0.02 to 1.0%, Mo: One or more selected from 0.005 to 1.0%, V: 0.002 to 0.10%, B: 0.0002 to 0.003%, and / or Ca: 0.0005 to 0.003%, REM: 0.0005 to 0.010% 1 type or 2 types chosen from these can be contained.
 Ni:0.05~3%、Cu:0.05~1.5%、Cr:0.02~1.0%、Mo:0.005~1.0%、V:0.002~0.10%、B:0.0002~0.003%のうちから選ばれた1種または2種以上
 Ni、Cu、Cr、Mo、V、Bはいずれも、強度を増加させる元素であり、必要に応じて選択して1種または2種以上含有できる。
One selected from Ni: 0.05-3%, Cu: 0.05-1.5%, Cr: 0.02-1.0%, Mo: 0.005-1.0%, V: 0.002-0.10%, B: 0.0002-0.003% Two or more types Ni, Cu, Cr, Mo, V, and B are all elements that increase the strength, and can be selected as necessary and contained in one or more types.
 Niは、固溶して強度の増加に加えて靭性の向上、さらにはCuが含有される場合には熱間割れを防止する作用も有する元素である。このような効果を得るためには、0.05%以上の含有を必要とする。一方、3%を超える多量の含有は、材料コストの高騰を招く。このため、Niを含有する場合には、Ni含有量は0.05~3%の範囲に限定することが好ましい。なお、より好ましくは0.2~1%である。 Ni is an element that has a function of solid solution to improve toughness in addition to increasing strength, and also to prevent hot cracking when Cu is contained. In order to acquire such an effect, 0.05% or more of content is required. On the other hand, if the content exceeds 3%, the material cost will rise. Therefore, when Ni is contained, the Ni content is preferably limited to a range of 0.05 to 3%. More preferably, the content is 0.2 to 1%.
 Cuは、固溶して強度の増加に寄与する元素であり、このような効果を得るためには0.05%以上の含有を必要とする。一方、1.5%を超えて含有すると、強度が増加しすぎて靭性が低下する。このため、Cuを含有する場合には、Cu含有量は0.05~1.5%の範囲に限定することが好ましい。なお、より好ましくは0.2~0.5%である。 Cu is an element that contributes to an increase in strength by solid solution. To obtain such an effect, it needs to be contained in an amount of 0.05% or more. On the other hand, if the content exceeds 1.5%, the strength increases excessively and the toughness decreases. For this reason, when Cu is contained, the Cu content is preferably limited to a range of 0.05 to 1.5%. More preferably, it is 0.2 to 0.5%.
 Crは、固溶して強度の増加に寄与する元素であり、このような効果を得るためには0.02%以上の含有を必要とする。一方、1.0%を超えて多量に含有すると、溶接熱影響部の靭性が低下する。このため、Crを含有する場合には、Cr含有量は0.02~1.0%の範囲に限定することが好ましい。なお、より好ましくは0.1~0.6%である。 ¡Cr is an element that contributes to the increase in strength by solid solution, and in order to obtain such an effect, the content of 0.02% or more is required. On the other hand, if the content exceeds 1.0%, the toughness of the heat affected zone decreases. Therefore, when Cr is contained, the Cr content is preferably limited to a range of 0.02 to 1.0%. More preferably, the content is 0.1 to 0.6%.
 Moは、固溶してあるいはさらに炭化物を形成して、強度の低下を抑制する作用を有する。このような効果を得るためには0.005%以上の含有を必要とする。一方、1.0%を超える多量の含有は、溶接熱影響部の靭性を低下させる。このため、Moを含有する場合には、Mo含有量は0.005~1.0%の範囲に限定することが好ましい。なお、より好ましくは0.005~0.01%である。 Mo has the effect of suppressing the decrease in strength by forming a solid solution or further forming carbides. In order to acquire such an effect, 0.005% or more of content is required. On the other hand, a large content exceeding 1.0% reduces the toughness of the weld heat affected zone. For this reason, when Mo is contained, the Mo content is preferably limited to a range of 0.005 to 1.0%. More preferably, it is 0.005 to 0.01%.
 Vは、固溶してあるいはさらに析出物(炭化物)を形成して、強度の増加に寄与する元素である。このような効果を得るためには、0.002%以上の含有を必要とする。一方、0.10%を超えて含有しても、効果が飽和し、含有量に見合う効果が期待できないため、経済的に不利となる。このため、Vを含有する場合には、V含有量は0.002~0.10%の範囲に限定することが好ましい。なお、より好ましくは0.002~0.02%である。 V is an element that contributes to an increase in strength by forming a solid solution or further forming a precipitate (carbide). In order to acquire such an effect, 0.002% or more of content is required. On the other hand, if the content exceeds 0.10%, the effect is saturated and an effect commensurate with the content cannot be expected, which is economically disadvantageous. For this reason, when V is contained, the V content is preferably limited to a range of 0.002 to 0.10%. More preferably, the content is 0.002 to 0.02%.
 Bは、結晶粒界に偏析し、微量の含有で焼入れ性を向上させ、強度増加に寄与する元素である。このような効果を得るためには、0.0002%以上含有する必要がある。一方、0.003%を超えて多量に含有すると、逆に靭性が低下する。このため、Bを含有する場合には、B含有量は0.0002~0.003%の範囲に限定することが好ましい。なお、より好ましくは0.0002~0.001%である。 B is an element that segregates at the grain boundaries, improves the hardenability by containing a trace amount, and contributes to an increase in strength. In order to acquire such an effect, it is necessary to contain 0.0002% or more. On the other hand, if the content exceeds 0.003%, the toughness is decreased. For this reason, when B is contained, the B content is preferably limited to a range of 0.0002 to 0.003%. More preferably, the content is 0.0002 to 0.001%.
 Ca:0.0005~0.003%、REM:0.0005~0.010%のうちから選ばれた1種または2種
 Ca、REMはいずれも、硫化物系介在物の形態制御作用を介して、延性、靭性の向上に寄与する元素である。このような効果を得るためには、Ca:0.0005%以上、REM:0.0005%以上の含有を必要とする。一方、Ca:0.003%、REM:0.010%をそれぞれ超えて含有しても効果が飽和し、含有量に見合う効果が期待できないため、経済的に不利となる。このため、Ca、REMの一方または両方を含有する場合には、Ca:0.0005~0.003%、REM:0.0005~0.010%の範囲に限定することが好ましい。
One or two types selected from Ca: 0.0005 to 0.003% and REM: 0.0005 to 0.010%. Both Ca and REM can improve ductility and toughness through the form control action of sulfide inclusions. It is a contributing element. In order to obtain such an effect, it is necessary to contain Ca: 0.0005% or more and REM: 0.0005% or more. On the other hand, even if the content exceeds Ca: 0.003% and REM: 0.010%, the effect is saturated, and an effect commensurate with the content cannot be expected, which is economically disadvantageous. For this reason, when one or both of Ca and REM are contained, it is preferable to limit the range to Ca: 0.0005 to 0.003% and REM: 0.0005 to 0.010%.
 上記した成分以外の残部は、Feおよび不可避的不純物からなる。なお、不可避的不純物としてはAs:0.03%以下、Sb:0.01%以下、Sn:0.02%以下、Pb:0.01%以下、Bi:0.01%以下が許容できる。 The balance other than the above components is composed of Fe and inevitable impurities. Inevitable impurities include As: 0.03% or less, Sb: 0.01% or less, Sn: 0.02% or less, Pb: 0.01% or less, Bi: 0.01% or less.
 次に、本発明の高強度厚鋼板の組織限定の理由について説明する。 Next, the reason for limiting the structure of the high-strength thick steel plate of the present invention will be described.
 本発明の高強度厚鋼板は、上記した組成と、鋼板表層を除く、板厚方向全域で、体積率で80%以上のベイナイト相を主相とし、第二相として合計で体積率20%以下(0%を含む)のフェライト相、パーライト、マルテンサイトのうちから選ばれた1種または2種以上からなる組織と、を有する。 The high-strength thick steel sheet of the present invention has the above composition and the whole thickness direction, excluding the steel sheet surface layer, with a bainite phase of 80% or more in volume ratio as the main phase and a total volume ratio of 20% or less as the second phase. (Including 0%) ferrite phase, pearlite, and martensite.
 本発明の高強度厚鋼板は、板厚70mm以上で、降伏強さ:400N/mm2以上の高強度と高靭性とを保持するため、ベイナイト相を主相とする。主相が、ベイナイト相以外の相では、板厚70mm以上という厚鋼板において、上記した高強度と高靭性を兼備させることが難しくなる。なお、ここでいう「主相」とは体積率で80%以上を占める相をいう。 The high-strength thick steel plate of the present invention has a bainite phase as the main phase in order to maintain a high strength and a high toughness with a plate thickness of 70 mm or more and a yield strength of 400 N / mm 2 or more. When the main phase is a phase other than the bainite phase, it becomes difficult to combine the above-described high strength and high toughness in a thick steel plate having a thickness of 70 mm or more. Here, the “main phase” refers to a phase occupying 80% or more by volume.
 本発明の高強度厚鋼板では、主相以外の第二相は、合計で体積率20%以下(0%を含む)のフェライト相、パーライト、マルテンサイトのうちから選ばれた1種または2種以上とする。第二相が、体積率で20%を超えて多量になると、所望の高強度を確保できなくなる。このため、第二相は、合計で体積率20%以下(0%を含む)のフェライト相、パーライト、マルテンサイトのうちから選ばれた1種または2種以上に限定した。なお、第二相は、体積率で0%を含む。すなわちベイナイト相100%であってもよい。 In the high-strength thick steel plate of the present invention, the second phase other than the main phase is one or two selected from ferrite phase, pearlite, and martensite having a total volume ratio of 20% or less (including 0%). That's it. If the second phase exceeds 20% by volume, the desired high strength cannot be ensured. For this reason, the second phase is limited to one or more selected from ferrite phase, pearlite, and martensite having a total volume ratio of 20% or less (including 0%). The second phase contains 0% by volume. That is, the bainite phase may be 100%.
 つぎに、本発明の高強度厚鋼板の好ましい製造方法について説明する。 Next, a preferred method for producing the high strength thick steel plate of the present invention will be described.
 本発明では、上記した組成の鋼素材に、加熱工程と熱間圧延工程とを施して板厚70mm以上の厚鋼板とする。なお、鋼素材の製造方法はとくに限定する必要はなく、上記した組成の溶鋼を、転炉等の常用の溶製炉で溶製し、連続鋳造法等の常用の鋳造方法で鋳片とし、鋼素材とする方法が生産性の観点から好ましい。なお、造塊-分塊圧延法により鋼片として、鋼素材としてもよいことはいうまでもない。 In the present invention, the steel material having the above composition is subjected to a heating step and a hot rolling step to obtain a thick steel plate having a thickness of 70 mm or more. In addition, the manufacturing method of the steel material is not particularly limited, the molten steel having the above composition is melted in a conventional melting furnace such as a converter, and a slab is formed by a conventional casting method such as a continuous casting method. A method using a steel material is preferable from the viewpoint of productivity. Needless to say, a steel material may be used as a steel slab by the ingot-bundling rolling method.
 得られた鋼素材は、ついで熱間圧延のための加熱工程を施される。加熱工程では、鋼素材を加熱温度:900~1200℃の温度に加熱する。 The obtained steel material is then subjected to a heating process for hot rolling. In the heating process, the steel material is heated to a temperature of 900 to 1200 ° C.
 加熱温度:900~1200℃
 加熱温度が900℃未満では、熱間変形抵抗が高くなりすぎて、圧延機への負荷が増大し、所定形状の厚鋼板とすることが難しくなる。一方、加熱温度が、1200℃を超えて高温となると、酸化が著しくなり歩留が低下するとともに、結晶粒が粗大化し、所望の高靭性を確保できなくなる。このため、加熱温度は900~1200℃の範囲の温度に限定した。なお、好ましくは所望の集積度を有する変態集合組織の形成という観点から、1050~1150℃である。また、鋼素材の温度が、熱間圧延を実施できる程度に高温を保持している場合には、当該鋼素材を別途加熱することなくそのまま、あるいは短時間の炉内装入を行ったのち、熱間圧延を施してもよい。
Heating temperature: 900 ~ 1200 ℃
When the heating temperature is less than 900 ° C., the hot deformation resistance becomes too high, the load on the rolling mill increases, and it becomes difficult to obtain a thick steel plate having a predetermined shape. On the other hand, when the heating temperature is higher than 1200 ° C., the oxidation becomes remarkable and the yield is lowered, and the crystal grains become coarse, and the desired high toughness cannot be ensured. For this reason, the heating temperature was limited to a temperature in the range of 900 to 1200 ° C. The temperature is preferably 1050 to 1150 ° C. from the viewpoint of forming a transformation texture having a desired degree of accumulation. In addition, when the temperature of the steel material is high enough to enable hot rolling, the steel material is left as it is without being heated separately, or after a short time inside the furnace, Hot rolling may be performed.
 加熱された鋼素材は、熱間圧延工程を施される。熱間圧延工程は、一次圧延、二次圧延および圧延後の冷却からなる工程とする。 The heated steel material is subjected to a hot rolling process. The hot rolling step is a step consisting of primary rolling, secondary rolling and cooling after rolling.
 一次圧延は、表面温度で1000~850℃の温度域で累積圧下率:9%以下の圧延とする。 Primary rolling is rolling with a cumulative rolling reduction of 9% or less in the surface temperature range of 1000 to 850 ° C.
 この温度域で、一次圧延を施すことにより、オーステナイト粒が粗大化することなく均一化するため変態集合組織のばらつきが低減される。圧延温度が、表面温度で1000℃を超える温度では、オーステナイト粒が粗大化しすぎて、その後の熱間圧延によっても所望の組織とすることができない。一方、圧延温度が、表面温度で850℃未満では、オーステナイト未再結晶温度域となり、結晶粒の均一化に悪影響を及ぼす。このため、一次圧延は、表面温度で1000~850℃の温度域で行うことにした。 In this temperature range, by performing primary rolling, the austenite grains are uniformized without being coarsened, so that the variation of the transformation texture is reduced. When the rolling temperature exceeds 1000 ° C. as the surface temperature, the austenite grains become too coarse and the desired structure cannot be obtained even by subsequent hot rolling. On the other hand, if the rolling temperature is less than 850 ° C. at the surface temperature, it becomes an austenite non-recrystallization temperature range, which adversely affects the uniformity of crystal grains. For this reason, primary rolling was performed in the temperature range of 1000 to 850 ° C. as the surface temperature.
 また、この温度域での累積圧下率が9%を超えて大きくなると、二次圧延での所望の圧下率を確保できなくなり、所望の板厚方向の脆性き裂伝播停止性能の分布を達成できなくなる。このようなことから、一次圧延は、表面温度で1000~850℃の温度域で累積圧下率:9%以下の圧延に限定する。なお、一次圧延では、1パス当たりの圧下率はオーステナイト粒の整粒化という観点から3~5%程度とすることが好ましい。 Also, if the cumulative rolling reduction in this temperature range exceeds 9%, the desired rolling reduction in the secondary rolling cannot be secured, and the desired distribution of brittle crack propagation stopping performance in the thickness direction can be achieved. Disappear. For this reason, the primary rolling is limited to rolling with a cumulative rolling reduction of 9% or less in the temperature range of 1000 to 850 ° C. at the surface temperature. In primary rolling, the rolling reduction per pass is preferably about 3 to 5% from the viewpoint of regulating the austenite grain size.
 また、二次圧延は、表面温度で900~600℃の温度域で、1パス圧下率:7%以上、累積圧下率:55%以上で、圧延終了温度:800~550℃とする圧延とする。 The secondary rolling is a rolling with a one-pass reduction ratio of 7% or more, a cumulative reduction ratio of 55% or more, and a rolling end temperature of 800 to 550 ° C in a surface temperature range of 900 to 600 ° C. .
 この温度域で二次圧延を施すことにより、板厚内部領域に脆性き裂伝播停止性能を向上させる集合組織の発達を促すことができる。 By performing secondary rolling in this temperature range, it is possible to promote the development of a texture that improves brittle crack propagation stopping performance in the inner region of the plate thickness.
 表面温度で900~600℃の温度域では、鋼板表面近傍は二相温度域となり、鋼板内部では、オーステナイト域であり、1パス圧下率:7%以上の圧延を施すと、鋼板内部に圧延歪が集中的に導入され、集合組織の発達が促進される。その結果、板厚中央部領域で、脆性き裂伝播停止性能の向上に有効な、板面(圧延面)に平行な(100)面、(211)面のX線回折強度比が高くなる。1パス圧下率が7%未満では、圧延歪の鋼板内部への導入が弱く、所望の集合組織を形成することができなくなる。なお、1パス圧下率は、所望の板厚中央部における集合組織発達領域の幅を確保するという観点から9%以上とすることが好ましい。 In the surface temperature range of 900 to 600 ° C, the vicinity of the steel sheet surface is a two-phase temperature range, and inside the steel sheet is an austenite region. When rolling at a 1-pass reduction ratio of 7% or more, rolling strain is generated inside the steel sheet. Is intensively introduced, and the development of the texture is promoted. As a result, the X-ray diffraction intensity ratio of the (100) plane and (211) plane parallel to the plate surface (rolled surface), which is effective for improving the brittle crack propagation stopping performance, is increased in the central region of the plate thickness. If the one-pass rolling reduction is less than 7%, the introduction of rolling strain into the steel sheet is weak and a desired texture cannot be formed. The one-pass reduction ratio is preferably 9% or more from the viewpoint of securing the width of the texture development region in the desired center portion of the plate thickness.
 また、この温度域での圧下率が累積で55%未満では、板厚中央部領域で脆性き裂伝播停止性能の向上に有効な、変態後に板面(圧延面)に平行な(100)面、(211)面のX線回折強度比が所望の値に比べて低く、所望の脆性き裂伝播停止性能を確保することができにくくなる。このため、二次圧延は、表面温度で900~600℃の温度域で、1パス圧下率:7%以上、累積圧下率:55%以上の圧延に限定した。なお、好ましくは1パス圧下率は9%以上、また、累積圧下率は60%以上である。一方で、圧延機への過大荷重負荷の観点から、1パス圧下率は15%以下、また、累積圧下率は75%以下とすることが好ましい。 In addition, if the rolling reduction in this temperature range is less than 55%, the (100) plane parallel to the plate surface (rolled surface) after transformation is effective in improving the brittle crack propagation stopping performance in the central region of the plate thickness. The X-ray diffraction intensity ratio of the (211) plane is lower than the desired value, making it difficult to ensure the desired brittle crack propagation stopping performance. For this reason, the secondary rolling was limited to rolling with a one-pass reduction ratio of 7% or more and a cumulative reduction ratio of 55% or more in a temperature range of 900 to 600 ° C. at the surface temperature. Preferably, the one-pass rolling reduction is 9% or more, and the cumulative rolling reduction is 60% or more. On the other hand, from the viewpoint of overloading the rolling mill, the one-pass rolling reduction is preferably 15% or less, and the cumulative rolling reduction is preferably 75% or less.
 なお、二次圧延の圧延終了温度は、800~550℃の温度とする。圧延終了温度が800℃を超える高温では、集合組織の発達が不十分となる。一方、圧延終了温度が550℃未満では、粒内に蓄積される塑性歪が多くなりすぎ靭性が低下するため、所望の脆性き裂伝播停止性能を確保することができにくくなる。 The rolling end temperature of secondary rolling is 800 to 550 ° C. When the rolling end temperature is higher than 800 ° C., the texture development is insufficient. On the other hand, if the rolling end temperature is less than 550 ° C., the plastic strain accumulated in the grains becomes too much and the toughness is lowered, so that it becomes difficult to ensure the desired brittle crack propagation stopping performance.
 熱間圧延後は、表面温度で790~540℃の温度域の平均で5℃/s以上の冷却速度で冷却停止温度:450~400℃まで冷却する。 After hot rolling, cool down to a cooling stop temperature of 450-400 ° C at a cooling rate of 5 ° C / s or more on average in the temperature range of 790-540 ° C at the surface temperature.
 熱間圧延後の冷却速度が、5℃/s未満では、冷却が遅すぎて、本発明範囲内の組成においても板厚1/2t位置までの組織をベイナイト相が主相である組織とすることができない。なお、冷却速度の上限は、とくに限定する必要はないが、マルテンサイト相の生成を抑制するという観点から30℃/s以下とすることが好ましい。また、平均冷却速度は、好ましくは5~15℃/sである。 When the cooling rate after hot rolling is less than 5 ° C./s, the cooling is too slow, and even in the composition within the scope of the present invention, the structure up to the plate thickness 1 / 2t position is the structure in which the bainite phase is the main phase. I can't. The upper limit of the cooling rate is not particularly limited, but is preferably 30 ° C./s or less from the viewpoint of suppressing the formation of the martensite phase. The average cooling rate is preferably 5 to 15 ° C./s.
 また、冷却停止温度が450℃超えでは、ベイナイト相以外の第二相の量が体積率で20%を超え、所望の厚鋼板組織を確保できなくなる。一方、400℃未満では、マルテンサイト相が出現し、所望の厚鋼板組織を確保できなくなる。このようなことから、熱間圧延後の冷却は、表面温度で790~540℃の温度域の平均で5℃/s以上の冷却速度で冷却停止温度:450~400℃まで冷却することとした。 Also, if the cooling stop temperature exceeds 450 ° C., the amount of the second phase other than the bainite phase exceeds 20% by volume, and a desired thick steel plate structure cannot be secured. On the other hand, if it is less than 400 ° C., a martensite phase appears and a desired thick steel plate structure cannot be secured. For this reason, cooling after hot rolling was performed at a cooling rate of 5 ° C / s or more at an average temperature range of 790 to 540 ° C at the surface temperature to a cooling stop temperature of 450 to 400 ° C. .
 表1に示す組成の溶鋼を転炉で溶製し、連続鋳造法で鋳片(肉厚:300mm)とし、鋼素材とした。これら鋼素材に、表2に示す条件の加熱工程と、一次圧延、二次圧延および冷却からなる熱間圧延工程とを施し、表2に示す板厚の厚鋼板とした。 Molten steel having the composition shown in Table 1 was melted in a converter, and was cast into a slab (thickness: 300 mm) by a continuous casting method to obtain a steel material. These steel materials were subjected to a heating step under the conditions shown in Table 2 and a hot rolling step consisting of primary rolling, secondary rolling and cooling to obtain thick steel plates having the thicknesses shown in Table 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 得られた厚鋼板から試験片を採取し、組織観察、引張試験、衝撃試験、集合組織測定試験を実施し、各厚鋼板の強度、脆性き裂伝播停止性能指標Yを評価した。なお、試験方法は次のとおりである。 Specimens were collected from the obtained thick steel plates and subjected to a structure observation, a tensile test, an impact test, and a texture measurement test, and the strength and brittle crack propagation stoppage performance index Y of each thick steel plate were evaluated. The test method is as follows.
(1)組織観察
 得られた厚鋼板の板厚方向各位置(板厚の1/6t、1/3t、1/2t)から、組織観察用試験片を採取し、板厚方向断面で圧延方向に平行な断面が観察面となるように、研磨し、腐食(腐食液:ナイタール液)して、光学顕微鏡(倍率:500倍)または走査型電子顕微鏡(倍率:1000倍)を用いて、組織を観察し、撮像した。なお、組織の観察は各2視野以上とした。
(1) Structure observation From each position (1 / 6t, 1 / 3t, 1 / 2t) of the thickness direction of the obtained thick steel plate, specimens for structure observation were collected and rolled in the thickness direction cross section. Grind and corrode (corrosion solution: nital solution) so that the cross section parallel to the observation surface becomes an observation surface, and use an optical microscope (magnification: 500 times) or a scanning electron microscope (magnification: 1000 times) Were observed and imaged. The tissue was observed at least 2 fields of view.
 得られた組織写真を利用して、組織の同定と、画像解析により、各相の組織分率(体積%)を、各視野ごとに求め、各視野における組織分率を算術平均し、当該厚鋼板の当該位置の組織分率とした。 Using the obtained tissue photograph, by tissue identification and image analysis, the tissue fraction (volume%) of each phase is obtained for each visual field, the tissue fraction in each visual field is arithmetically averaged, and the thickness It was set as the structure fraction of the position of the steel plate.
(2)引張試験
 得られた厚鋼板の板厚方向各位置(板厚の1/6t、1/3t、1/2t)から、試験片長手方向が圧延方向となるように、JIS 4号試験片を採取し、JIS Z 2241 の規定に準拠して引張試験を行い、引張特性(降伏強さYS、引張強さTS)を求めた。
(2) Tensile test JIS 4 test so that the longitudinal direction of the specimen is the rolling direction from each position (1 / 6t, 1 / 3t, 1 / 2t of the thickness) of the obtained thick steel plate Pieces were collected and subjected to a tensile test in accordance with the provisions of JIS Z 2241 to determine tensile properties (yield strength YS, tensile strength TS).
(3)衝撃試験
 得られた厚鋼板の板厚方向各位置(板厚の1/6t、1/3t、1/2t)から、JIS Z 2242 の規定に準拠して、試験片長手方向が圧延方向と平行になるように、Vノッチシャルピー衝撃試験片を採取し、JIS Z 2242 の規定に準拠して、シャルピー衝撃試験を実施し、破面遷移温度vTrs(℃)を求めた。
(3) Impact test From each position in the plate thickness direction (1 / 6t, 1 / 3t, 1 / 2t of plate thickness) of the obtained thick steel plate, the test piece longitudinal direction is rolled in accordance with the provisions of JIS Z 2242. A V-notch Charpy impact test piece was collected so as to be parallel to the direction, and a Charpy impact test was performed in accordance with the provisions of JIS Z 2242 to determine the fracture surface transition temperature vTrs (° C.).
(4)集合組織測定試験
 得られた厚鋼板の板厚方向各位置(板厚の1/6t、1/3t、1/2t)から板面に平行に、X線回折用試験片(大きさ:1.5mm厚さ×24mm幅×25mm長さ)を採取し、測定面(24×25mm)が板厚方向各位置となるように、機械研磨および化学研磨を施して、加工層を除去したのち、X線回折法で(100)面、(211)面のX線回折強度を測定した。なお、ランダム試験片を用意し、同様に、X線回折強度を測定した。得られたX線回折強度とランダム試験片のX線回折強度との比をそれぞれ求め、板厚方向各位置における板面に平行な(100)面のX線回折強度比、(211)面のX線回折強度比とした。
(4) Texture measurement test X-ray diffraction specimen (size) parallel to the plate surface from each position (1 / 6t, 1 / 3t, 1 / 2t of the plate thickness) of the obtained thick steel plate : 1.5mm thickness x 24mm width x 25mm length), and after removing the processed layer by applying mechanical polishing and chemical polishing so that the measurement surface (24x25mm) is at each position in the plate thickness direction The X-ray diffraction intensity of the (100) plane and (211) plane was measured by X-ray diffraction. In addition, the random test piece was prepared and the X-ray diffraction intensity was measured similarly. The ratio between the obtained X-ray diffraction intensity and the X-ray diffraction intensity of the random specimen is obtained, and the (100) plane X-ray diffraction intensity ratio parallel to the plate plane at each position in the plate thickness direction, (211) plane X-ray diffraction intensity ratio.
 得られた結果について、板厚1/6t位置の結果を表3に、板厚1/3t位置の結果を表4に、板厚1/2t位置の結果を表5に示す。 Regarding the obtained results, Table 3 shows the results at the plate thickness 1 / 6t position, Table 4 shows the results at the plate thickness 1 / 3t position, and Table 5 shows the results at the plate thickness 1 / 2t position.
 つぎに、得られた結果から、次式
    Y=vTrs-12×I(100)-22×I(211)     ・・・(A)
 ここで、vTrs:シャルピー衝撃試験の破面遷移温度(℃)、
    I(100):圧延面(板面)に平行な(100)面のX線回折強度比、
    I(211):圧延面(板面)に平行な(211)面のX線回折強度比、
を用いて、各厚鋼板の板厚方向各位置(板厚の1/6t、1/3t、1/2t各位置)の脆性き裂伝播停止性能指標Yを評価した。得られた板厚方向各位置における指標Yを表3~5に併記した。つぎに、得られた板厚方向各位置における指標Yを用いて、次(1)式、(2)式
    Y1/3t≦0.9Y1/2t                  ・・・(1)
    Y1/6t≧0.8Y1/2t                  ・・・(2)
の適合の有無を、適合している場合は「○」、それ以外は「×」として評価した。得られた評価結果を表6に示す。
Next, from the results obtained, the following equation Y = vTrs−12 × I (100) −22 × I (211) (A)
Where, vTrs: Fracture surface transition temperature (° C) of Charpy impact test,
I (100) : X-ray diffraction intensity ratio of (100) plane parallel to the rolling surface (plate surface),
I (211) : X-ray diffraction intensity ratio of (211) plane parallel to the rolling surface (plate surface),
Was used to evaluate the brittle crack propagation stopping performance index Y at each position in the plate thickness direction (1 / 6t, 1 / 3t, 1 / 2t of the plate thickness) of each steel plate. The obtained index Y at each position in the plate thickness direction is also shown in Tables 3-5. Next, using the obtained index Y at each position in the plate thickness direction, the following formula (1), formula (2) Y 1 / 3t ≦ 0.9Y 1 / 2t (1)
Y 1 / 6t ≧ 0.8 Y 1 / 2t (2)
In the case of conformity, “○” was evaluated, and “X” was evaluated otherwise. Table 6 shows the obtained evaluation results.
 また、各厚鋼板からESSO試験片(全厚)を採取し、脆性き裂アレスト設計指針(財団法人 日本海事協会(2009))の付属書Aに準拠して、温度勾配型ESSO試験を実施し、船体設計温度:-10℃における全厚での脆性き裂伝播停止靭性値Kca-10℃を求めた。得られたESSO試験の結果を、脆性き裂伝播停止性能指標Yの結果とともに表6に示す。 In addition, ESSO test specimens (full thickness) are collected from each steel plate, and a temperature gradient type ESSO test is conducted in accordance with Annex A of the Brittle Crack Arrest Design Guidelines (Japan Maritime Association (2009)). Ship hull design temperature: The brittle crack propagation toughness value Kca -10 ° C at the full thickness at -10 ° C was determined. The results of the obtained ESSO test are shown in Table 6 together with the results of the brittle crack propagation stopping performance index Y.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 板厚方向各位置(1/6t、1/3t、1/2t)の脆性き裂伝播停止性能指標Yが(1)式および(2)式の特定の関係を満足する本発明例はいずれも、降伏強さYS:400N/mm2以上でかつ温度:-10℃における全厚での脆性き裂伝播停止靭性値Kca-10℃が9500N/mm3/2以上と、高い脆性き裂伝播停止性能を有する高強度厚鋼板となっている。一方、板厚1/3t部の脆性き裂伝播停止性能指標Yが高温となり、板厚方向各位置(1/6t、1/3t、1/2t)の脆性き裂伝播停止性能指標Yが(1)および(2)式の特定の関係を満足しない比較例は、Kca-10℃が9500N/mm3/2未満と、脆性き裂伝播停止性能が低下している。 Any of the examples of the present invention in which the brittle crack propagation stopping performance index Y at each position in the plate thickness direction (1 / 6t, 1 / 3t, 1 / 2t) satisfies the specific relationship of the formulas (1) and (2) , yield strength YS: 400 N / mm 2 or more and temperature and the brittle crack arrest toughness Kca -10 ° C. in total thickness is 9500N / mm 3/2 or more at -10 ° C.,-out high brittle crack propagation stop It is a high-strength thick steel plate with performance. On the other hand, the brittle crack propagation stop performance index Y of the 1 / 3t thickness is high, and the brittle crack propagation stop performance index Y at each position in the thickness direction (1 / 6t, 1 / 3t, 1 / 2t) is ( In the comparative example that does not satisfy the specific relationship of the formulas (1) and (2), the brittle crack propagation stopping performance is low at Kca- 10 ° C. of less than 9500 N / mm 3/2 .

Claims (9)

  1.  板厚t:70mm以上であって、下記(a)式で定義される板厚1/2t位置における脆性き裂伝播停止性能指標Y1/2t(℃)と、下記(b)式で定義される板厚1/3t位置における脆性き裂伝播停止性能指標Y1/3t(℃)と、下記(c)式で定義される板厚1/6t位置における脆性き裂伝播停止性能指標Y1/6t(℃)とが、下記(1)式および(2)式を満足することを特徴とする構造用高強度厚鋼板。
                     記
           Y1/3t≦0.9Y1/2t                 ・・・(1)
           Y1/6t≧0.8Y1/2t                 ・・・(2)
     Y1/2t=(vTrs)1/2t-12×{I(100)1/2t-22×{I(211)1/2t ‥(a)
     Y1/3t=(vTrs)1/3t-12×{I(100)1/3t-22×{I(211)1/3t ‥(b)
     Y1/6t=(vTrs)1/6t-12×{I(100)1/6t-22×{I(211)1/6t ‥(c)
    ここで、(vTrs)1/2t、(vTrs)1/3t、(vTrs)1/6t:板厚各位置におけるVノッチシャルピー衝撃試験の破面遷移温度(℃)、
    {I(100)1/2t、{I(100)1/3t、{I(100)1/6t:板厚各位置における板面に平行な(100)面のX線回折強度比、
    {I(211)1/2t、{I(211)1/3t、{I(211)1/6t:板厚各位置における板面に平行な(211)面のX線回折強度比
    Plate thickness t: 70 mm or more, and is defined by the brittle crack propagation stop performance index Y 1 / 2t (° C) at the plate thickness 1 / 2t position defined by the following equation (a) and the following equation (b): The brittle crack propagation stoppage performance index Y 1 / 3t (° C) at the 1 / 3t thickness position and the brittle crack propagation stoppage performance index Y 1 / 6t (° C.) satisfies the following formulas (1) and (2): a structural high strength thick steel plate.
    Y 1 / 3t ≦ 0.9Y 1 / 2t (1)
    Y 1 / 6t ≧ 0.8 Y 1 / 2t (2)
    Y 1 / 2t = (vTrs) 1 / 2t −12 × {I (100) } 1 / 2t −22 × {I (211) } 1 / 2t (a)
    Y 1 / 3t = (vTrs) 1 / 3t −12 × {I (100) } 1 / 3t −22 × {I (211) } 1 / 3t (b)
    Y 1 / 6t = (vTrs) 1 / 6t −12 × {I (100) } 1 / 6t −22 × {I (211) } 1 / 6t (c)
    Here, (vTrs) 1 / 2t , (vTrs) 1 / 3t , (vTrs) 1 / 6t : Fracture surface transition temperature (° C) of V notch Charpy impact test at each thickness position,
    {I (100) } 1 / 2t , {I (100) } 1 / 3t , {I (100) } 1 / 6t : X-ray diffraction intensity ratio of (100) plane parallel to the plate surface at each plate thickness position ,
    {I (211) } 1 / 2t , {I (211) } 1 / 3t , {I (211) } 1 / 6t : X-ray diffraction intensity ratio of (211) plane parallel to the plate surface at each thickness position
  2.  板厚:100mm以下である請求項1に記載の構造用高強度厚鋼板。 Plate thickness: 100 mm or less The structural high-strength thick steel plate according to claim 1.
  3.  前記脆性き裂伝播停止性能指標Y1/3t(℃)が、-150℃以下である請求項1または2に記載の構造用高強度厚鋼板。 The structural high-strength thick steel plate according to claim 1 or 2, wherein the brittle crack propagation stopping performance index Y 1 / 3t (° C) is -150 ° C or less.
  4.  質量%で、C:0.03~0.20%、Si:0.03~0.5%、Mn:0.5~2.5%、P:0.03%以下、S:0.01%以下、Al:0.005~0.08%、Nb:0.005~0.05%、Ti:0.005~0.03%、N:0.0050%以下を含有し、残部Feおよび不可避的不純物からなる組成と、
     体積率で80%以上のベイナイト相を主体とし、第二相として合計で体積率20%以下(0%を含む)のフェライト相、パーライト、マルテンサイトのうちから選ばれた1種または2種以上からなる組織と、
    を有する請求項1~3のいずれか一項に記載の構造用高強度厚鋼板。
    In mass%, C: 0.03-0.20%, Si: 0.03-0.5%, Mn: 0.5-2.5%, P: 0.03% or less, S: 0.01% or less, Al: 0.005-0.08%, Nb: 0.005-0.05% , Ti: 0.005 to 0.03%, N: 0.0050% or less, the composition comprising the balance Fe and inevitable impurities,
    One or more selected from ferrite phase, pearlite, and martensite with a volume ratio of 80% or more as the main component and a total volume ratio of 20% or less (including 0%) as the second phase. An organization consisting of
    The structural high-strength thick steel plate according to any one of claims 1 to 3, wherein
  5.  前記組成がさらに、質量%で、Ni:0.05~3%、Cu:0.05~1.5%、Cr:0.02~1.0%、Mo:0.005~1.0%、V:0.002~0.10%、B:0.0002~0.003%のうちから選ばれた1種または2種以上を含有する請求項4に記載の構造用高強度厚鋼板。 The composition is further in terms of mass%, Ni: 0.05-3%, Cu: 0.05-1.5%, Cr: 0.02-1.0%, Mo: 0.005-1.0%, V: 0.002-0.10%, B: 0.0002-0.003% The structural high-strength thick steel plate according to claim 4, comprising one or more selected from among the above.
  6.  前記組成がさらに、質量%で、Ca:0.0005~0.003%、REM:0.0005~0.010%のうちから選ばれた1種または2種を含有する請求項4または5に記載の構造用高強度厚鋼板。 The structural high-strength thick steel plate according to claim 4 or 5, wherein the composition further contains, by mass%, one or two selected from Ca: 0.0005 to 0.003% and REM: 0.0005 to 0.010%. .
  7.  鋼素材に加熱工程と熱間圧延工程とを施して、板厚t:70mm以上の厚鋼板とする、構造用高強度厚鋼板の製造方法であって、
     前記鋼素材を、質量%で、C:0.03~0.20%、Si:0.03~0.5%、Mn:0.5~2.5%、P:0.03%以下、S:0.01%以下、Al:0.005~0.08%、Nb:0.005~0.05%、Ti:0.005~0.03%、N:0.0050%以下を含有し、残部Feおよび不可避的不純物からなる組成を有する鋼素材とし、
     前記加熱工程を、該鋼素材を加熱温度:900~1200℃の温度に加熱する工程とし、
     前記熱間圧延工程を、表面温度で1000~850℃の温度域で累積圧下率:9%以下の一次圧延を施し、ついで、表面温度で900~600℃の温度域で、1パス圧下率:7%以上、累積圧下率:55%以上で、圧延終了温度:表面温度で800~550℃とする二次圧延を施し、ついで、表面温度で790~540℃の温度域の平均で5℃/s以上の冷却速度で冷却停止温度:450~400℃まで冷却する工程とし、
     板厚方向各位置の脆性き裂伝播停止性能指標Yが下記(1)式および下記(2)式を満足する厚鋼板とする、ことを特徴とする構造用高強度厚鋼板の製造方法。
                      記
          Y1/3t≦0.9Y1/2t                  ・・・(1)
          Y1/6t≧0.8Y1/2t                  ・・・(2)
     ここで、Y1/2t=(vTrs)1/2t-12×{I(100)1/2t-22×{I(211)1/2t ‥(a)
         Y1/3t=(vTrs)1/3t-12×{I(100)1/3t-22×{I(211)1/3t ‥(b)
         Y1/6t=(vTrs)1/6t-12×{I(100)1/6t-22×{I(211)1/6t ‥(c)
    なお、(vTrs)1/2t、(vTrs)1/3t、(vTrs)1/6t:板厚各位置におけるVノッチシャルピー試験の破面遷移温度(℃)、
    {I(100)1/2t、{I(100)1/3t、{I(100)1/6t:板厚各位置における板面に平行な(100)面のX線回折強度比、
    {I(211)1/2t、{I(211)1/3t、{I(211)1/6t:板厚各位置における板面に平行な(211)面のX線回折強度比
    A steel material is subjected to a heating process and a hot rolling process to obtain a steel sheet having a thickness t of 70 mm or more, and a manufacturing method of a structural high-strength thick steel sheet,
    The steel material is, in mass%, C: 0.03-0.20%, Si: 0.03-0.5%, Mn: 0.5-2.5%, P: 0.03% or less, S: 0.01% or less, Al: 0.005-0.08%, Nb : 0.005 to 0.05%, Ti: 0.005 to 0.03%, N: 0.0050% or less, steel material having a composition consisting of the balance Fe and inevitable impurities,
    The heating step is a step of heating the steel material to a heating temperature: 900 to 1200 ° C.,
    In the hot rolling process, primary rolling is performed at a surface temperature of 1000 to 850 ° C. in a temperature range of 9% or less, and then the surface temperature is 900 to 600 ° C. in a temperature range of 1 pass: Secondary rolling at 7% or more, cumulative rolling reduction: 55% or more, rolling finish temperature: 800 to 550 ° C at surface temperature, then 5 ° C / average on the surface temperature range of 790 to 540 ° C Cooling stop temperature: at a cooling rate of over s
    A method for producing a structural high-strength thick steel plate, characterized in that a brittle crack propagation stopping performance index Y at each position in the thickness direction satisfies the following formula (1) and the following formula (2).
    Y 1 / 3t ≦ 0.9Y 1 / 2t (1)
    Y 1 / 6t ≧ 0.8 Y 1 / 2t (2)
    Here, Y 1 / 2t = (vTrs) 1 / 2t −12 × {I (100) } 1 / 2t −22 × {I (211) } 1 / 2t (a)
    Y 1 / 3t = (vTrs) 1 / 3t −12 × {I (100) } 1 / 3t −22 × {I (211) } 1 / 3t (b)
    Y 1 / 6t = (vTrs) 1 / 6t −12 × {I (100) } 1 / 6t −22 × {I (211) } 1 / 6t (c)
    (VTrs) 1 / 2t , (vTrs) 1 / 3t , (vTrs) 1 / 6t : Fracture transition temperature (° C) of V-notch Charpy test at each thickness position,
    {I (100) } 1 / 2t , {I (100) } 1 / 3t , {I (100) } 1 / 6t : X-ray diffraction intensity ratio of (100) plane parallel to the plate surface at each plate thickness position ,
    {I (211) } 1 / 2t , {I (211) } 1 / 3t , {I (211) } 1 / 6t : X-ray diffraction intensity ratio of (211) plane parallel to the plate surface at each thickness position
  8.  前記組成がさらに、質量%で、Ni:0.05~3%、Cu:0.05~1.5%、Cr:0.02~1.0%、Mo:0.005~1.0%、V:0.002~0.10%、B:0.0002~0.003%のうちから選ばれた1種または2種以上を含有する請求項7に記載の構造用高強度厚鋼板の製造方法。 The composition is further in terms of mass%, Ni: 0.05-3%, Cu: 0.05-1.5%, Cr: 0.02-1.0%, Mo: 0.005-1.0%, V: 0.002-0.10%, B: 0.0002-0.003% The manufacturing method of the structural high strength thick steel plate of Claim 7 containing 1 type, or 2 or more types chosen from these.
  9.  前記組成がさらに、質量%で、Ca:0.0005~0.003%、REM:0.0005~0.010%のうちから選ばれた1種または2種を含有する請求項7または8に記載の構造用高強度厚鋼板の製造方法。 The structural high-strength thick steel plate according to claim 7 or 8, wherein the composition further contains, by mass%, one or two selected from Ca: 0.0005 to 0.003% and REM: 0.0005 to 0.010%. Manufacturing method.
PCT/JP2016/004223 2015-09-18 2016-09-15 High-strength thick steel plate for structural use and manufacturing method therefor WO2017047088A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680052939.XA CN108026618B (en) 2015-09-18 2016-09-15 High-strength thick steel plate for structural use and method for producing same
KR1020187006623A KR102092000B1 (en) 2015-09-18 2016-09-15 High-strength thick steel plate for structural use and manufacturing method therefor
JP2016568462A JP6245384B2 (en) 2015-09-18 2016-09-15 Structural high-strength thick steel plate and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-185050 2015-09-18
JP2015185050 2015-09-18

Publications (1)

Publication Number Publication Date
WO2017047088A1 true WO2017047088A1 (en) 2017-03-23

Family

ID=58288434

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/004223 WO2017047088A1 (en) 2015-09-18 2016-09-15 High-strength thick steel plate for structural use and manufacturing method therefor

Country Status (4)

Country Link
JP (1) JP6245384B2 (en)
KR (1) KR102092000B1 (en)
CN (2) CN110878404B (en)
WO (1) WO2017047088A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7468814B1 (en) 2022-11-14 2024-04-16 Jfeスチール株式会社 High strength extra thick steel plate and its manufacturing method

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101989251B1 (en) * 2017-12-22 2019-09-30 현대제철 주식회사 Structural steel and method of manufacturing the same
CN108531810B (en) * 2018-05-15 2019-11-12 马鞍山钢铁股份有限公司 A kind of super-high strength steel hot-rolled substrate and preparation method thereof
CN108546882B (en) * 2018-06-01 2020-03-20 钢铁研究总院 Cu precipitation enhanced high-strength refractory corrosion-resistant steel and manufacturing method thereof
CN109023137A (en) * 2018-09-04 2018-12-18 南京钢铁股份有限公司 A kind of high-strength steel sheet that brittle crack crack arrest characteristic is excellent and its manufacturing method
CN111500931A (en) * 2020-05-22 2020-08-07 包头钢铁(集团)有限责任公司 Preparation method of Q460 hot-rolled round steel for rare earth low-temperature-resistant automobile parts

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008169468A (en) * 2006-12-14 2008-07-24 Nippon Steel Corp High-strength thick steel plate having excellent brittle crack propagation-stopping performance
JP2012180590A (en) * 2011-02-08 2012-09-20 Jfe Steel Corp Thick steel sheet of at least 50 mm in thickness with excellent long brittle fracture propagation stopping property, method for production thereof, method for evaluating long brittle fracture propagation stopping performance, and test apparatus
WO2013099179A1 (en) * 2011-12-27 2013-07-04 Jfeスチール株式会社 High strength steel plate having excellent brittle crack arrestability and method for manufacturing same

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3255790B2 (en) * 1994-03-18 2002-02-12 新日本製鐵株式会社 Method for producing thick steel sheet with excellent brittle crack arrestability and low temperature toughness
CN100360698C (en) * 2003-04-21 2008-01-09 杰富意钢铁株式会社 High strength hot rolled steel sheet and method for manufacturing the same
JP4449388B2 (en) * 2003-09-25 2010-04-14 Jfeスチール株式会社 Manufacturing method of high-strength thick steel plates with excellent brittle crack propagation stop properties and super high heat input welding heat-affected zone toughness
JP5151090B2 (en) 2006-08-18 2013-02-27 Jfeスチール株式会社 Structural high-strength thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same
KR101140097B1 (en) * 2010-03-04 2012-06-14 신닛뽄세이테쯔 카부시키카이샤 Method for determination of brittle crack propagation stopping performance in high-intensity thick steel plate
JP5304924B2 (en) * 2011-12-27 2013-10-02 Jfeスチール株式会社 Structural high-strength thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same
JP5304925B2 (en) 2011-12-27 2013-10-02 Jfeスチール株式会社 Structural high-strength thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same
TWI463018B (en) 2012-04-06 2014-12-01 Nippon Steel & Sumitomo Metal Corp High strength steel plate with excellent crack arrest property
CN102888565A (en) * 2012-09-22 2013-01-23 内蒙古包钢钢联股份有限公司 High-strength steel plate with yield strength at 690MPa level and manufacture method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008169468A (en) * 2006-12-14 2008-07-24 Nippon Steel Corp High-strength thick steel plate having excellent brittle crack propagation-stopping performance
JP2012180590A (en) * 2011-02-08 2012-09-20 Jfe Steel Corp Thick steel sheet of at least 50 mm in thickness with excellent long brittle fracture propagation stopping property, method for production thereof, method for evaluating long brittle fracture propagation stopping performance, and test apparatus
WO2013099179A1 (en) * 2011-12-27 2013-07-04 Jfeスチール株式会社 High strength steel plate having excellent brittle crack arrestability and method for manufacturing same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KAZUKUNI HASE: "Development of YP460 N/mm2 Class Heavy Thick Plate with Excellent Brittle Crack Arrestability for Mega Container", JFE GIHO, February 2014 (2014-02-01), pages 13 - 18 *
SEISHI TSUYAMA: "Development of YP460 N/mm2 Class Heavy Thick Plate with Excellent Brittle Crack Arrestability for Mega Container", JOURNAL OF THE JAPAN WELDING SOCIETY, vol. 30, no. 2, 2012, pages 188 - 195 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7468814B1 (en) 2022-11-14 2024-04-16 Jfeスチール株式会社 High strength extra thick steel plate and its manufacturing method

Also Published As

Publication number Publication date
CN110878404A (en) 2020-03-13
JP6245384B2 (en) 2017-12-13
KR20180038029A (en) 2018-04-13
CN108026618B (en) 2020-03-06
JPWO2017047088A1 (en) 2017-09-14
CN108026618A (en) 2018-05-11
KR102092000B1 (en) 2020-03-23
CN110878404B (en) 2022-03-04

Similar Documents

Publication Publication Date Title
JP6245384B2 (en) Structural high-strength thick steel plate and method for producing the same
EP3042976B1 (en) Steel sheet for thick-walled high-strength line pipe having exceptional corrosion resistance, crush resistance properties, and low-temperature ductility, and line pipe
EP2309014B1 (en) Thick, high tensile-strength hot-rolled steel sheets with excellent low temperature toughness and manufacturing method therefor
KR101686257B1 (en) Heavy gauge, high tensile strength, hot rolled steel sheet with excellent hic resistance and manufacturing method therefor
KR101584235B1 (en) Thick steel plate having thickness of 50mm or more with excellent long brittle crack arrestability, method for manufacturing the same and method and testing apparatus for evaluating long brittle crack arresting performance
WO2013147197A1 (en) High-strength steel pipe for line pipe having excellent hydrogen-induced cracking resistance, high-strength steel pipe for line pipe using same, and method for manufacturing same
JP7147960B2 (en) Steel plate and its manufacturing method
JP6682967B2 (en) Steel plate and method of manufacturing the same
JP6856129B2 (en) Manufacturing method of high Mn steel
JP6620575B2 (en) Thick steel plate and manufacturing method thereof
KR20170118899A (en) Steel plate for high-strength line pipe with excellent low temperature toughness and steel pipe for high strength line pipe
JP5515353B2 (en) Hot rolled T-section steel and manufacturing method thereof
JP7348948B2 (en) High-strength structural steel material with excellent cold bendability and method for producing the same
JP6112265B2 (en) High-strength extra heavy steel plate and method for producing the same
WO2013175745A1 (en) High-strength thick steel plate for structural use which has excellent brittle crack arrestability, and method for producing same
JP7099653B1 (en) Steel plate and its manufacturing method
JP2011068952A (en) High-strength thick steel plate superior in arrest properties
CN113840933B (en) Thick steel plate and method for producing same
JP7396322B2 (en) steel plate
JP7323091B1 (en) Steel plate and its manufacturing method
JP7396512B2 (en) Thick steel plate and method for manufacturing thick steel plate
KR102506231B1 (en) welded structure
JP7388371B2 (en) ERW steel pipe and method for manufacturing ERW steel pipe
WO2017145651A1 (en) High strength ultra-thick steel plate having excellent brittle crack propagation stopping characteristics and manufaturing method of same
WO2024041820A1 (en) Hot-rolled high-strength steel sheet with excellent low-temperature impact toughness and method for manufacture the same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016568462

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16845962

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187006623

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16845962

Country of ref document: EP

Kind code of ref document: A1