WO2017045812A1 - Système de récupération de chaleur perdue présentant un circuit de fluide de travail - Google Patents

Système de récupération de chaleur perdue présentant un circuit de fluide de travail Download PDF

Info

Publication number
WO2017045812A1
WO2017045812A1 PCT/EP2016/067672 EP2016067672W WO2017045812A1 WO 2017045812 A1 WO2017045812 A1 WO 2017045812A1 EP 2016067672 W EP2016067672 W EP 2016067672W WO 2017045812 A1 WO2017045812 A1 WO 2017045812A1
Authority
WO
WIPO (PCT)
Prior art keywords
recovery system
waste heat
heat recovery
pump
heat exchanger
Prior art date
Application number
PCT/EP2016/067672
Other languages
German (de)
English (en)
Inventor
Eberhard Maier
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to US15/760,288 priority Critical patent/US20190048748A1/en
Publication of WO2017045812A1 publication Critical patent/WO2017045812A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/065Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle the combustion taking place in an internal combustion piston engine, e.g. a diesel engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle

Definitions

  • Waste heat recovery system with a working fluid circuit
  • the present invention relates to a waste heat recovery system with a working fluid circuit, comprising one in an exhaust pipe of a
  • Internal combustion engine switched first heat exchanger and a second heat exchanger used in a line which are part of the working fluid circuit with at least one expansion machine, a condenser and a fluid pump.
  • Heat exchanger in an exhaust pipe of the internal combustion engine and a second heat exchanger in an exhaust gas recirculation line of the internal combustion engine is turned on.
  • the working fluid circuit also has a
  • Expansion machine a condenser and a fluid pump, wherein the working fluid circuit downstream of the fluid pump is divided into two fluid branches, each to the first heat exchanger and the second
  • a double-stroke vane pump is known, which is used for example as a prefeed pump of a fuel injection system of an internal combustion engine.
  • the Vane pump has a stator with a rotatable therein
  • the invention has for its object to provide a waste heat recovery system, which is improved in particular with regard to an efficiency of the system.
  • each of the two heat exchangers is associated with a fluid pump. This is the working fluid circuit
  • the fluid pumps are combined in a double pump.
  • the two fluid pumps can in principle be designed as individual pumps, the preferred embodiment is shown in the form of a double pump.
  • Such a double pump requires only a drive and a pump housing, so that the construction costs compared to a
  • the double pump is a double-stroke vane pump.
  • a double-stroke vane pump is basically For example, known as a hydraulic pump for a fuel injection system or for a transmission. The construction cost of such a double-vane vane pump compared to a single-vane vane pump is only slightly higher, so that the cost of such a double-stroke
  • Vane pump are compared to a single-stroke vane pump with respect to the saved valves are neutral or possibly even a cost advantage is achieved.
  • a respective first displacement chamber of the double-stroke vane pump is connected via a first supply line to the first heat exchanger and a second displacement chamber of the vane pump via a second supply line to the second heat exchanger.
  • the two supply lines form the mentioned working fluid branches.
  • the vane pump is operable with respect to a flow rate distribution in the first displacement chamber and in the second displacement at constant or adjustable total delivery.
  • a flow rate distribution in the first displacement chamber is operable with respect to a flow rate distribution in the first displacement chamber and in the second displacement at constant or adjustable total delivery.
  • Displacer and the second displacement between 0 and 100% and vice versa between 100% and 0% or vice versa can be specified by a speed setting, for example by an electric drive.
  • the variable flow rate distribution can thus be displayed without a significant loss. This also leads to an increase in the efficiency of the system.
  • the double-stroke vane pump has a radially displaceable relative to a motor stator.
  • the vane pump thus formed can be easily adjusted with respect to the desired flow rate distribution.
  • a spindle adjustment is provided with a spindle for displacement of the stator.
  • a stepping motor for actuating the spindle is provided. Such a stepper motor is characterized by a high
  • the line with the second heat exchanger is an exhaust gas recirculation line of the internal combustion engine. If the second
  • Heat exchanger can be arranged in any heat energy leading line of the internal combustion engine, the preferred application is just given an exhaust gas recirculation line.
  • FIG 1 is a circuit diagram of an inventively designed
  • Figure 2 is a schematic sectional view of a double-stroke
  • the waste heat recovery system shown schematically in Figure 1 has a working fluid circuit 1 with a first heat exchanger 2a and a second heat exchanger 2b.
  • the heat exchangers 2a, 2b are designed as evaporators or act as such and are on an internal combustion engine 5 for the recovery of the operation of the
  • the second heat exchanger 2b is in a conduit in the form of a
  • Intake system 8 of the internal combustion engine 5 is supplied.
  • the intake system 8 can also be designed as a charge air line system. The two
  • Heat exchangers 2a, 2b may optionally not shown
  • the internal combustion engine 5 is supplied during operation of fuel and combustion air in combustion chambers of the internal combustion engine 5 to generate
  • the exhaust gas stream 4 is finally discharged through the exhaust pipe 3, from which the exhaust gas recirculation line 6 branches off, into the environment.
  • exhaust silencers 9 and devices 10 for aftertreatment of the exhaust gas in the form of, for example, a catalyst and / or a filter may be installed before and / or behind the first heat exchanger 2a.
  • the internal combustion engine 5 is
  • a self-igniting internal combustion engine which is operated with diesel fuel.
  • the diesel fuel is injected into the combustion chambers, for example by means of a common rail injection system.
  • Internal combustion engine can also be a spark-ignited gasoline-powered internal combustion engine, which may also have a common rail injection system.
  • the first heat exchanger 2a and the second heat exchanger 2b are, as stated above, in turn part of the working fluid circuit 1, in addition to the
  • Heat exchangers 2a, 2b has an expansion machine 11, a condenser 12, optionally a condensate pump 13, a surge tank 14 and two fluid pumps 15a, 15b.
  • the fluid pump 15a is connected via a first supply line 25a to the first heat exchanger 2a and the second fluid pump 15b is connected via a second supply line 25b to the second heat exchanger 2b in terms of flow.
  • the fluid pump 15a, 15b are shown in the illustration of Figure 1 for clarity as independent pumps, but in fact preferably combined in a double-stroke vane pump 16 (see Figure 2).
  • This double-stroke vane pump 16 is adjustable so that at a constant or preferably adjustable total delivery
  • Flow rate distribution to the first heat exchanger 2a and the second heat exchanger 2b can be set increasingly and correspondingly decreasing between 0% and 100%.
  • the total delivery rate can be adjusted for example by a speed change of the electrically driven vane pump 16.
  • the expansion engine 11 may be, for example, a reciprocating engine or a turbine.
  • a turbine In the case of a turbine is usually a
  • Downstream reduction gear to reduce the high turbine speeds and adapt them to the speeds of a downstream machine or other customer.
  • a fluid suitable for a Rankine process is pressurized to a high pressure by the double-stroke vane pump 16 and supplied to the heat exchangers 2a, 2b.
  • the fluid is heated in the heat exchangers 2a, 2b and transferred to the vapor state under a high pressure.
  • the steam thus generated becomes the
  • a bypass line 17 with a bypass valve 18 can be provided, via which the expansion machine 11 can be bypassed.
  • the expansion of the machine 11 supplied working fluid relaxes in this under the provision of mechanical shaft work, which is discharged via an output shaft 19. Thereafter, the "cold" vapor in the condenser 12 is condensed and ultimately returned to the double-stroke vane pump 16.
  • the surge tank 14 Into the connecting line between the condenser 12 and the double-stroke vane pump 16 is the surge tank 14
  • any other components in particular sensors for determining temperatures and pressures in different sections of the
  • Figure 2 shows a schematic sectional view of the double-stroke
  • the double-stroke vane pump 16 has a stator 20 which is arranged axially displaceably in a housing, not shown, of the double-stroke vane pump 16. This will be
  • a rotor 21 is rotatably arranged, wherein the rotor has a number of slots in which wings 22 are arranged longitudinally displaceable.
  • a first one (represented by a respective arcuate arrow) is shown
  • Suction region 23b and a second displacement chamber 24b formed.
  • the first suction region 23a and the second suction region 23b are connected to one another inside or outside the pump housing and connected to the working fluid circuit 1 on the output side of the condenser 12 or the condenser pump
  • the first displacer 24a is above the first one
  • Working fluid branch forming supply line 25a connected to the first heat exchanger 2a and the second displacement chamber 24b via the second supply line 25b with the second heat exchanger 2b.
  • the stator 20 is connected, for example, to a spindle 26, which in turn is connected to a stepping motor 27.
  • the spindle 26 can be adjusted according to the double arrow above the stator 20.
  • the stator 20 is adjusted radially relative to the rotor 21 and thus increases the first suction region 23a and the first displacement chamber 24a and at the same time the second suction region 23b and the second displacement chamber 24b reduced or vice versa. This will be a stepless
  • Adjustment of the flow rate distribution in the first supply line 25a and the second supply line 25b set.
  • the thus formed working fluid circuit 1 comes out without conventionally installed valves in the first supply line 25a and the second supply line 25b. This will increase the efficiency of the

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

Système de récupération de chaleur perdue présentant un circuit de fluide de travail (1) pour un moteur à combustion interne, comprenant un premier échangeur de chaleur (2a) monté dans une conduite de gaz d'échappement (3) du moteur à combustion interne (5) et un deuxième échangeur de chaleur (2b) introduit dans une conduite, ces échangeurs de chaleur faisant partie du circuit de fluide de travail (1) qui comprend en outre au moins une machine à expansion (11), un condenseur (12) et une pompe à fluide. L'objectif de l'invention est d'améliorer en particulier l'efficacité d'un tel système de récupération de chaleur perdue. A cet effet, une pompe à fluide (15a, 15b) est associée à chacun des deux échangeurs de chaleur (2a, 2b). Ces pompes à fluide (15a, 15b) sont regroupées dans une pompe à palettes (16) à double course.
PCT/EP2016/067672 2015-09-16 2016-07-25 Système de récupération de chaleur perdue présentant un circuit de fluide de travail WO2017045812A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/760,288 US20190048748A1 (en) 2015-09-16 2016-07-25 Waste heat recovery system having a working fluid circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015217737.8A DE102015217737A1 (de) 2015-09-16 2015-09-16 Abwärmerückgewinnungssystem mit einem Arbeitsfluidkreislauf
DE102015217737.8 2015-09-16

Publications (1)

Publication Number Publication Date
WO2017045812A1 true WO2017045812A1 (fr) 2017-03-23

Family

ID=56511583

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2016/067672 WO2017045812A1 (fr) 2015-09-16 2016-07-25 Système de récupération de chaleur perdue présentant un circuit de fluide de travail

Country Status (3)

Country Link
US (1) US20190048748A1 (fr)
DE (1) DE102015217737A1 (fr)
WO (1) WO2017045812A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017211450A1 (de) * 2017-07-05 2019-01-10 Robert Bosch Gmbh Leistungsoptimierer für Abwärmerückgewinnungssystem
EP3546709A1 (fr) * 2018-03-29 2019-10-02 Volvo Car Corporation Véhicule doté d'un système de récupération de la chaleur perdue
US20240102416A1 (en) * 2022-09-23 2024-03-28 Raytheon Technologies Corporation Steam injected inter-turbine burner engine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4276747A (en) * 1978-11-30 1981-07-07 Fiat Societa Per Azioni Heat recovery system
US20080053095A1 (en) * 2006-08-31 2008-03-06 Kalex, Llc Power system and apparatus utilizing intermediate temperature waste heat
DE102008032186A1 (de) * 2008-07-09 2010-02-25 Amovis Gmbh Gesteuerter Dampfkreisprozess
US20120131919A1 (en) * 2010-11-29 2012-05-31 Echogen Power Systems, Llc Driven starter pump and start sequence
DE102013211398A1 (de) * 2013-06-18 2014-12-18 Robert Bosch Gmbh Abwärmerückgewinnungssystem für eine Brennkraftmaschine

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006138459A2 (fr) * 2005-06-16 2006-12-28 Utc Power Corporation Cycle organique de rankine couple mecaniquement et thermiquement a un moteur entrainant une charge commune
DE102013211875A1 (de) 2013-06-24 2015-01-08 Robert Bosch Gmbh Abwärmerückgewinnungssystem für eine Brennkraftmaschine
CN104279158B (zh) 2013-07-09 2017-04-12 罗伯特·博世有限公司 叶片泵

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4276747A (en) * 1978-11-30 1981-07-07 Fiat Societa Per Azioni Heat recovery system
US20080053095A1 (en) * 2006-08-31 2008-03-06 Kalex, Llc Power system and apparatus utilizing intermediate temperature waste heat
DE102008032186A1 (de) * 2008-07-09 2010-02-25 Amovis Gmbh Gesteuerter Dampfkreisprozess
US20120131919A1 (en) * 2010-11-29 2012-05-31 Echogen Power Systems, Llc Driven starter pump and start sequence
DE102013211398A1 (de) * 2013-06-18 2014-12-18 Robert Bosch Gmbh Abwärmerückgewinnungssystem für eine Brennkraftmaschine

Also Published As

Publication number Publication date
DE102015217737A1 (de) 2017-03-16
US20190048748A1 (en) 2019-02-14

Similar Documents

Publication Publication Date Title
EP2789839A2 (fr) Système et procédé d'injection d'eau pour un moteur à combustion interne
DE2529171A1 (de) Mehrfachturboladeranordnung
DE102010021449B4 (de) Verfahren zum Betreiben eines Verbrennungsmotors und Verbrennungsmotor
WO2014206708A1 (fr) Système de récupération de chaleur perdue, pour un moteur à combustion interne
EP2808500A1 (fr) Pompe à chaleur dotée d'une première machine thermique à énergie fluidique et d'une seconde machine thermique à énergie fluidique
DE112014004823T5 (de) Asymmetrische zweiflutige Spirale
WO2017045812A1 (fr) Système de récupération de chaleur perdue présentant un circuit de fluide de travail
DE3021691A1 (de) Verbundmaschine mit einer vorverdichtung
EP2530274A2 (fr) Moteur à combustion interne chargé
WO2010000284A2 (fr) Utilisation de l'énergie des gaz d'échappement au moyen d'un cycle fermé à vapeur
DE2609389A1 (de) Abgasturboladeraggregat
DE102006004092B3 (de) Großmotor
DD153718A1 (de) Arbeitsverfahren fuer eine selbstzuendende brennkraftmaschine
DE2719668A1 (de) Mehrzylinder-viertakt-dieselmotor
WO2017097623A1 (fr) Système de récupération de chaleur d'un moteur à combustion interne
EP2886806B1 (fr) Turbomachine
WO2015007527A2 (fr) Machine à expansion
WO2015106981A1 (fr) Turbine à gaz
WO2017016720A1 (fr) Dispositif d'entraînement pour véhicule à moteur, procédé de fonctionnement d'un dispositif d'entraînement
DE102008026025A1 (de) Antriebsstrang mit zwei Strömungsmaschinen, insbesondere Turboladern
WO2017084800A1 (fr) Procédé de fonctionnement d'un système de récupération de chaleur perdue d'un moteur à combustion interne et système de récupération de chaleur perdue de ce type
DE102016217314A1 (de) Expansionsmaschine
WO2017092956A1 (fr) Système de récupération de chaleur perdue d'un moteur à combustion interne et procédé permettant de faire fonctionner un système de récupération de chaleur perdue d'un moteur à combustion interne
AT515936B1 (de) Brennkraftmaschine
DE102013205740A1 (de) Abwärmerückgewinnungssystem für eine Brennkraftmaschine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16741954

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16741954

Country of ref document: EP

Kind code of ref document: A1