WO2017045620A1 - 一种计算机断层成像方法与系统 - Google Patents

一种计算机断层成像方法与系统 Download PDF

Info

Publication number
WO2017045620A1
WO2017045620A1 PCT/CN2016/099069 CN2016099069W WO2017045620A1 WO 2017045620 A1 WO2017045620 A1 WO 2017045620A1 CN 2016099069 W CN2016099069 W CN 2016099069W WO 2017045620 A1 WO2017045620 A1 WO 2017045620A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
correction
air
artifact
data
Prior art date
Application number
PCT/CN2016/099069
Other languages
English (en)
French (fr)
Inventor
江一峰
刘颖彪
杜岩峰
Original Assignee
上海联影医疗科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201510598603.0A external-priority patent/CN106539590B/zh
Priority claimed from CN201510639797.4A external-priority patent/CN106551703B/zh
Application filed by 上海联影医疗科技有限公司 filed Critical 上海联影医疗科技有限公司
Priority to GB1710532.1A priority Critical patent/GB2550070B/en
Publication of WO2017045620A1 publication Critical patent/WO2017045620A1/zh
Priority to US15/638,610 priority patent/US10722204B2/en
Priority to US16/939,161 priority patent/US11191509B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5258Devices using data or image processing specially adapted for radiation diagnosis involving detection or reduction of artifacts or noise
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • A61B6/032Transmission computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/04Positioning of patients; Tiltable beds or the like
    • A61B6/0407Supports, e.g. tables or beds, for the body or parts of the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/46Arrangements for interfacing with the operator or the patient
    • A61B6/461Displaying means of special interest
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5205Devices using data or image processing specially adapted for radiation diagnosis involving processing of raw data to produce diagnostic data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/54Control of apparatus or devices for radiation diagnosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/58Testing, adjusting or calibrating thereof
    • A61B6/582Calibration
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/77Retouching; Inpainting; Scratch removal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • A61B6/037Emission tomography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5258Devices using data or image processing specially adapted for radiation diagnosis involving detection or reduction of artifacts or noise
    • A61B6/5264Devices using data or image processing specially adapted for radiation diagnosis involving detection or reduction of artifacts or noise due to motion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5258Devices using data or image processing specially adapted for radiation diagnosis involving detection or reduction of artifacts or noise
    • A61B6/5282Devices using data or image processing specially adapted for radiation diagnosis involving detection or reduction of artifacts or noise due to scatter
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • G06T2207/10081Computed x-ray tomography [CT]

Definitions

  • the present application relates to the field of computer tomography (CT) technology, and in particular, to a computer tomography correction method and system.
  • CT computer tomography
  • artifacts are inevitable.
  • artifact correction can be performed on the scanned data or the reconstructed image.
  • reasons for artifacts such as different pixel unit gains, detector gains over time, and so on.
  • anomalies that occur during imaging can also cause artifacts, such as the temperature of the detector during the imaging process exceeding the applicable temperature of the air correction meter, sudden appearance of bad passages, and the like. Therefore, it is necessary to propose a computer tomography imaging method and system, which can perform real-time judgment and reminding on artifacts in the imaging process, and can quickly update the correction parameters, further reducing artifacts and improving image quality.
  • a computed tomography method may include: acquiring a first air correction table corresponding to a first temperature of the detector, the first air correction table including air correction parameters of the at least one set of scanning protocols at the first temperature, the at least a set of scanning protocols includes a first set of scanning protocols; acquiring a second temperature of the detector; and determining, according to the second temperature and the first air correction table, a second air correction table corresponding to the second temperature, The second air correction table includes air correction parameters of the at least one set of scanning protocols at a second temperature.
  • determining, according to the second temperature and the first air correction table, the second air correction table corresponding to the second temperature may include: determining that the second temperature is greater than the first temperature Get the first a determination result; and, based on the first determination result, determining a second air correction table corresponding to the second temperature according to the second temperature and the first air correction table.
  • the computed tomography method may further include: acquiring original data corresponding to the second temperature, the original data including original scan data or an original image obtained according to the original scan data, The raw data includes artifacts; and the artifact correction is performed on the original data according to the second air correction table.
  • the computed tomography method may further include: determining that the second temperature is equal to the first temperature to obtain a second determination result; and, based on the second determination result, according to the An air correction table performs artifact correction on the original data.
  • the artifacts may include ringing artifacts or arcing artifacts.
  • the computed tomography method may further include: determining that the second temperature is greater than the first temperature to obtain a third determination result; and, prompting a user based on the third determination result .
  • determining, according to the second temperature and the first air correction table, the second air correction table corresponding to the second temperature may include: performing air scanning at the second temperature, The air scanning includes performing an air scan based on the first set of scanning protocols; obtaining an air correction parameter of the first set of scanning protocols at a second temperature according to the air scan; and, according to the first air correction table, The air calibration parameter of the first group of scanning protocols at the second temperature determines a second air correction table corresponding to the second temperature.
  • a computed tomography method may include: a) acquiring raw data, the original data including original scan data or an original image obtained from the original scan data; b) pre-processing the original data to obtain a pre-processed result; c) Obtaining an artifact intensity according to the pre-processing result; and, d) updating the correction parameter according to the artifact intensity.
  • the artifacts may include ringing artifacts or arcing artifacts.
  • updating the correction parameter according to the artifact intensity may include: determining that the artifact intensity is equal to or greater than a first threshold to obtain a fourth determination result; and, based on the fourth determination result, Update the calibration parameters.
  • pre-processing the original data to obtain the pre-processing result may include: acquiring an original correction parameter; and performing artifact correction on the original data according to the original correction parameter to obtain a A correction data.
  • the correction parameters may include an air correction table or a marked bad channel.
  • updating the correction parameter according to the artifact intensity may include determining, according to the artifact intensity, a type of the correction parameter that needs to be updated.
  • determining, according to the artifact strength, the type of the correction parameter that needs to be updated may include: acquiring an average value of the scan data of the channel corresponding to the artifact in multiple viewing angles; The average value is greater than or equal to the second threshold or less than or equal to the third threshold to obtain a fifth determination result; and, based on the fifth determination result, performing a bad channel flag; determining that the average value is smaller than the second threshold and greater than Determining a deviation between the channel corresponding to the artifact and the scan data of the adjacent channel based on the sixth determination result; determining that the deviation is greater than or equal to the fourth The threshold value obtains a seventh determination result; based on the seventh determination result, performing a bad channel flag; and determining that the deviation is smaller than the fourth threshold value to obtain an eighth determination result; and updating the air correction parameter based on the eighth determination result .
  • the computed tomography method may further comprise: e) performing artifact correction on the original data according to updated correction parameters to obtain second correction data; and, f) according to the second Correct the data to get the image.
  • the computed tomography method may further include: g) determining that the artifact intensity is less than the first threshold to obtain a ninth determination result; and, h) based on the ninth determination result, An image is obtained based on the raw data or the pre-processed result.
  • the computed tomography method may further comprise: scanning N scan objects, performing the steps a) to h) on the Mth scan object, and performing other N-1 scans
  • the object performs the steps a), b) and h), M
  • N are integers
  • M is less than or equal to N
  • M is greater than one.
  • the computed tomography method may further include: determining that the artifact intensity is greater than or equal to the first threshold to obtain a tenth determination result; and, based on the tenth determination result, performing a user on the user prompt.
  • a computed tomography method can include: Acquiring original data, the original data includes original scan data or an original image obtained according to the original scan data; preprocessing the original data to obtain a pre-processed result; and obtaining an artifact strength according to the pre-processed result; And updating the bad channel or the air correction table according to the artifact intensity, wherein updating the air correction table comprises: acquiring a first air correction table corresponding to the first temperature of the detector, the first air correction table including at least a set of scanning protocol air correction parameters at the first temperature, the at least one set of scan protocols including a first set of scan protocols; acquiring a real-time temperature of the detector; and, based on the real-time temperature and the first air The calibration table obtains a second air correction table corresponding to the real-time temperature, the second air correction table including air correction parameters of the at least one set of scanning protocols at the real-time temperature.
  • a computed tomography system can include an update unit.
  • the update unit may update the correction parameters.
  • the update unit may include: a correction table acquisition subunit, a temperature acquisition subunit, and a correction table update subunit.
  • the calibration table acquisition subunit may acquire a first air correction table corresponding to the first temperature of the detector.
  • the first air correction table may include air correction parameters for the at least one set of scanning protocols at the first temperature.
  • the at least one set of scanning protocols can include a first set of scanning protocols.
  • the temperature acquisition subunit can acquire a second temperature of the detector.
  • the correction table update subunit may determine a second air correction table corresponding to the second temperature according to the second temperature and the first air correction table.
  • the second air correction table may include air correction parameters of the at least one set of scanning protocols at a second temperature.
  • a computed tomography system can include: an original data acquisition unit and an update unit.
  • the original data acquisition unit may acquire raw data.
  • the raw data may include raw scan data or an original image obtained from the original scan data.
  • the update unit may update the correction parameters.
  • the update unit may include: a pre-processing sub-unit, an artifact information extraction sub-unit, and a correction parameter update sub-unit.
  • the pre-processing sub-unit may perform pre-processing on the original data to obtain a pre-processing result.
  • the artifact information extraction subunit may obtain an artifact strength according to the preprocessing result.
  • the correction parameter update subunit may update the correction parameter according to the artifact intensity.
  • FIG. 1 is a schematic diagram of an imaging system 100, in accordance with some embodiments of the present application.
  • FIG. 2 is an exemplary flowchart of a process of generating an image, in accordance with some embodiments of the present application
  • FIG. 3 is a structure of a computer that can implement the particular system disclosed in this application, in accordance with some embodiments of the present application;
  • FIG. 4 is a schematic diagram of an image generator 150, in accordance with some embodiments of the present application.
  • FIG. 5 is a schematic diagram of a correction module 430, in accordance with some embodiments of the present application.
  • FIG. 6 is an exemplary flowchart of an artifact correction process, in accordance with some embodiments of the present application.
  • FIG. 7 is a schematic diagram of an update unit 520, in accordance with some embodiments of the present application.
  • FIG. 8 is an exemplary flowchart of updating an air correction table, in accordance with some embodiments of the present application.
  • FIG. 9 is an exemplary flowchart of artifact correction, in accordance with some embodiments of the present application.
  • FIG. 10 is a schematic diagram of an update unit 520, in accordance with some embodiments of the present application.
  • FIG. 11 is an exemplary flowchart of updating correction parameters, according to some embodiments of the present application.
  • Figure 12 is an exemplary flow diagram of artifact correction, in accordance with some embodiments of the present application.
  • imaging system 100 can scan a given target, obtain scan data, and generate an image associated therewith. In some embodiments, imaging system 100 can further process the scanned data or the generated image. For example, imaging system 100 can perform artifact correction processing on scanned data or generated images. In some embodiments, imaging system 100 can be a device or a group of devices. Specifically, the imaging system 100 may be a medical imaging system, for example, a PET (Positron Emission Tomography) device, a SPECT (Single Photon Emission Computed Tomography) device, a CT (Computed Tomography) device, and an MRI (Magnetic Resonance Imaging). Equipment, etc. Further, the medical imaging system may be used alone or in combination. For example, a PET-CT device, a PET-MRI device, or a SPECT-MRI device.
  • imaging system 100 can include a scanner that can scan a given target and obtain information related thereto (eg, scan data). Further, imaging system 100 can include a radiological scanning device.
  • the radiological scanning device can include a radioactive scanning source.
  • a radioactive scanning source can emit radioactive rays to a given target.
  • the radioactive rays may include one or a combination of particulate rays, photons, and the like.
  • the particulate radiation may include one or a combination of neutrons, protons, electrons, ⁇ medium, heavy ions, and the like.
  • the photon ray may include one or a combination of X-rays, gamma rays, alpha rays, beta rays, ultraviolet rays, lasers, and the like.
  • the photon ray may be an X-ray
  • the corresponding imaging system 100 may be a computed tomography system (CT), a digital radiography system (DR), a multimodal medical imaging system, and the like.
  • CT computed tomography system
  • DR digital radiography system
  • the multimodal medical imaging system can include one or more of a PET-CT system, a SPECT-MRI system, and the like.
  • imaging system 100 can include a cavity 110, a bed frame 120, a high voltage generator 130, an operational control computer device 140, an image generator 150, and a control display device 160.
  • the interior of the cavity 110 can house components for generating and detecting radioactive rays.
  • the cavity 110 can house a radiation generator 180 and a detector 170. Radiation occurs
  • the device 180 can emit radioactive rays.
  • the radioactive rays may be emitted to an object (eg, an object to be tested) placed in the cavity 110 and received by the detector 170 through the object.
  • the radiation generator 180 can be an X-ray tube.
  • the X-ray tube can emit X-rays that pass through an object placed inside the cavity 110 and are received by the detector 170.
  • the radioactive rays may be emitted to an object placed in the cavity 110 and received by the detector 170 after being reflected by the object.
  • the detector 170 can be one or a combination of a circular detector, a square detector, a curved detector, and the like.
  • the angle of rotation of the curved detector may be between 0 and 360 degrees.
  • the angle of rotation of the arcuate detector can be fixed.
  • the angle of rotation of the arcuate detector can be adjusted as needed.
  • the adjustment may be made according to the resolution of the desired image, the size of the image, the sensitivity of the detector, the stability of the detector, or a combination of one or more of them.
  • the detector 170 can be a one-dimensional detector, a two-dimensional detector, or a three-dimensional detector.
  • the detector 170 and the radiation generator 180 can be rotated about the Z axis.
  • the detector 170 can be coupled to one or more sensors that can be used to detect one or more parameters of the detector 170 (eg, detector temperature).
  • the type of sensor can include a temperature sensor, a gravity sensor, and the like.
  • the bed frame 120 can support an object to be detected (eg, a patient to be detected).
  • the bed frame 120 can move inside the cavity 110 during the inspection process.
  • the bed frame 120 is movable in the Z-axis direction during the detection process.
  • the patient can be supine, prone, with the head in front or the foot in front.
  • the bed frame 120 can move inside the cavity 110.
  • the speed at which the bed frame 120 moves can be constant or varied.
  • the speed at which the bed frame 120 moves can be related to factors such as scan time, scanning area, and the like.
  • the speed at which the bed frame 120 moves may be a system default value, set by a user (eg, a doctor, imaging technician, etc.), or a combination of the two.
  • the system has a default setting for the speed at which the bed frame 120 moves; when there is no user setting, the bed frame 120 can be moved according to the default setting of the system; when the user sets the moving speed of the bed frame 120, the default bed of the system is set.
  • the frame 120 moving speed can be ignored, and the bed frame 120 can be moved at a user-set moving speed.
  • imaging system 100 can perform a helical scan.
  • imaging system 100 can perform an axial scan.
  • the axial movement of the detector 170 and the radiation generator 180 about the Z-axis and the movement of the bed frame 120 along the Z-axis may be performed differently.
  • the bed frame 120 can be stationary.
  • the high voltage generator 130 can generate high voltage or high current.
  • the generated high voltage or high current can be transmitted to the radiation generator 180.
  • the high pressure generated can be 80kV-140kV, 75Kv-150kV or 120kV-140kV.
  • the current generated can be 20 mA to 500 mA.
  • the operational control computer device 140 can be associated with the cavity 110, the radiation generator 180, the detector 170, the high voltage generator 130, the bed frame 120, the image generator 150, and/or the display device 160.
  • the above devices can be connected directly or indirectly.
  • the operational control computer device 140 can control the radiation generator 180 and the detector 170 to rotate about the Z axis.
  • the operational control computer device 140 can control the bed frame 120 to move along the Z axis.
  • the operational control computer device 140 can control the cavity 110 to rotate to a certain position. This location can be a system default or can be set by a user (eg, a doctor, imaging technician, etc.).
  • the operational control computer device 140 can control the high voltage generator 130.
  • the operational control computer device 140 can control the strength of the voltage or current generated by the high voltage generator 130.
  • the operational control computer device 140 can control the display device 160.
  • the operational control computer device 140 can control the parameters associated with the display.
  • the parameters may include display size, display scale, display order, number of displays, and the like.
  • an image may be divided into several sub-pictures (eg, a head sub-picture, a neck sub-picture, a lower-limb sub-picture, etc.), and several sub-pictures may be displayed simultaneously or sequentially.
  • an image can be enlarged or reduced.
  • the image generator 150 can generate an image.
  • image generator 150 may perform operations such as image pre-processing, image reconstruction, and/or artifact correction.
  • Image generator 150 may be associated with detector 170, operational control computer device 140, display device 160, and/or an external data source (not shown).
  • image generator 150 may receive data from detector 170 or an external data source and generate an image based on the received data.
  • the external data source may be a hard disk, a floppy disk, a random access memory (RAM), a dynamic random access memory (DRAM), a static random access memory (SRAM), or a magnetic bubble memory ( Bubble memory), thin film memory, magnetic plated wire memory, phase change memory, flash memory, a cloud disk, etc.
  • image generator 150 can transmit the generated image to display device 160 for display.
  • Display device 160 can display the received scan data or images. Display device 160 can be coupled to operational control computer device 140 and image generator 150. In some embodiments, display device 160 The image generated by the image generator 150 can be displayed. In some embodiments, display device 160 can display a prompt to a user (eg, a doctor, imaging technician, etc.). For example, when the image generator 150 determines that it is necessary to update the correction parameters (eg, the air correction table, the marked bad channel, etc.), the display device 160 may prompt the user whether to update the correction parameters.
  • the correction parameters described herein may refer to parameters used by the image generator 150 to perform artifact correction on the scanned data or images.
  • the display device 160 can prompt the user by displaying a dialog box, and can prompt the user by means of a prompt tone or a voice, or a combination of the above.
  • the user can choose whether to reply to the prompt, and the reply can include one or a combination of manual input, voice input, and the like.
  • the user can click “confirm” on the display device 160, and then the user selects to update the correction parameter; otherwise, the user can click “cancel” on the display device 160, and the user selects not to update the correction. parameter.
  • display device 160 may display the type of correction parameters that need to be updated (eg, an air correction table, a labeled bad channel, etc.).
  • display device 160 can send instructions to image generator 150 and/or operational control computer device 140.
  • a user may set imaging parameters through display device 160, which may be sent to operational control computer device 140.
  • the imaging parameters may include scan protocols and image reconstruction parameters, and the like.
  • the scanning protocol may include one or more scanning parameters, such as one or more of scanning time, scanning target positioning information, rotation speed of the rack, strength of voltage/current, and the like. Different analytes can correspond to different scanning protocols.
  • the image reconstruction parameters may include one or more of reconstructing a field of view, a reconstruction matrix, a reconstruction algorithm, and the like.
  • imaging system 100 is merely for convenience of description, and the present application is not limited to the scope of the embodiments. It will be understood that, after understanding the principle of the system, it is possible for the various modules to be combined arbitrarily or the subsystems are connected to other modules without being deviated from the principle. Various modifications and changes in the form and details of the application of the method and system.
  • imaging system 100 may also include external devices (eg, databases, terminals, etc.) associated with imaging system 100.
  • FIG. 2 is an exemplary flow diagram of an image generation process.
  • a scan protocol can be set.
  • the settings of the scanning protocol can be implemented by the operational control computer device 140.
  • the scanning protocol can include one or more of scan time, scan target positioning information, position of the rack, rotational speed of the rack, intensity of voltage/current, and the like.
  • the bed frame 120 can be rotated to a particular location.
  • the cavity 110 can be moved to a particular location.
  • the particular location may be a system default, set by a user (eg, a doctor, imaging technician, etc.), or a combination of both.
  • the positions set are different depending on the object to be tested.
  • measured The object may be the entirety or a part of the object to be detected.
  • the detection object may include a human body, an animal, a non-biological object, or the like.
  • the test object may include an organ, a tissue, a lesion, a tumor site, or any combination of the above.
  • the test object may be a head, a chest, an abdomen, a heart, a liver, an upper limb, a lower limb, a spine, a bone, a blood vessel, or the like, or any combination of the above.
  • the object to be tested can be scanned.
  • scan data of the measured object can be acquired.
  • the scanning process and the process of acquiring the scan data can be performed by the radiation generator 180 and the detector 170 in common.
  • the radioactive rays may pass through the analyte and be absorbed by the analyte and received by the detector 170.
  • the radioactive rays may be reflected by the analyte to the detector 170 and received by the detector.
  • the scan data may be obtained in whole or in part from an external data source.
  • the scan data can be processed. Processing of the scanned data may include denoising, artifact correction, etc. of the scanned data.
  • an image may be generated based on the scan data.
  • step 210 can be implemented by image generator 150.
  • the generated image may include a CT image, an MRI image, a PET image, or any combination of the above.
  • a CT image can be calculated using a rendering algorithm.
  • the generated image may comprise a two-dimensional image or a three-dimensional image.
  • the generated image can also be processed. Processing of the image may include filtering denoising of the image, normalization of the grayscale, horizontal rotation of the image, adjustment of the size of the size, removal of partial obstructions (eg, removal of glasses), artifact correction, and the like.
  • an image can be output.
  • the image may be displayed by display device 160.
  • the images may be transmitted to any external device associated with imaging system 100, such as a database, terminal, or the like.
  • FIG. 3 is an architecture of a computer device that can be configured to implement a particular system disclosed in this application, in accordance with some embodiments of the present application.
  • a computer can be a general purpose computer or a computer with a specific purpose. Both computers can be configured to implement the particular system in this embodiment.
  • the computer 300 can be configured to implement the imaging system 100 disclosed in this application. Any component of the information needed to image.
  • image generator 150 can be implemented by a computer such as computer 300 through its hardware devices, software programs, firmware, and combinations thereof.
  • FIG. 3 only one computer is depicted in FIG. 3, but the related computer functions of the information required for imaging in the imaging system 100 described in this embodiment can be implemented in a distributed manner by a similar set of platforms. , the processing load of the decentralized system.
  • Computer 300 can include a communication port 350 to which a network that enables data communication can be implemented.
  • Computer 300 may also include a central processing system (CPU) unit 320 for executing program instructions, comprised of one or more processors.
  • An exemplary computer platform includes an internal communication bus 310, different forms of program storage units, and data storage units, such as a hard disk 370, a read only memory (ROM) 330, a random access memory (RAM) 340, which can be configured to be computerized and / or various data files used for communication, and possible program instructions executed by the CPU.
  • Computer 300 may also include an input/output component 360 that supports input/output data streams between the computer and other components, such as user interface 380.
  • Computer 300 can also accept programs and data over a communications network.
  • the image generator 150 may include a data receiving module 410, an image reconstruction module 420, a correction module 430, a storage module 440, a control module 450, and an image output module 460.
  • data receiving module 410 can be implemented by a computer such as computer 300 via input/output component 360 and/or communication port 350.
  • Output module 460 can be implemented by a computer such as computer 300 via input/output component 360 and/or communication port 350.
  • Image reconstruction module 420, correction module 430, and/or control module 450 may be implemented by a computer such as computer 300 via CPU 320 and/or hard disk 370.
  • the storage module 440 can be implemented by a computer such as the computer 300 via the ROM 330 and/or the RAM 340.
  • the data receiving module 410 can receive data related to the measured object or data related to the system.
  • the data received by the data receiving module 410 may include basic information of the measured object (eg, name, age, gender, height, weight, medical history, etc.), scanning protocol, scan data, image, detector temperature, calibration parameters, and the like.
  • the correction parameters can be used to correct scan data or images.
  • the scan data may be collected by the detector 170 and transmitted to the data receiving module 410.
  • after the scan data is collected by the detector 170 it may be transmitted to any of the system-related storage devices and then transferred to the data receiving module 410 by the storage device.
  • data receiving module 410 can receive a scanning protocol from operational control computer device 140.
  • the data receiving module 410 can receive basic information of the measured object from any of the system-related storage devices. In some embodiments, data receiving module 410 can acquire the detector temperature from detector 170. In some In an embodiment, a user (eg, a doctor, imaging technician, etc.) can set the detector temperature through display device 160 or an external device (eg, terminal, etc.) associated with imaging system 100, and then send the detector temperature data to the operational control computer Device 140, data receiving module 410 can acquire the detector temperature from operational control computer device 140. In some embodiments, data receiving module 410 can obtain calibration parameters from any of the system-related storage devices.
  • the data related to the object to be detected received by the data receiving module 410 may be stored in the storage module 440 or may be sent to other modules in the image generator 150 for processing.
  • the data receiving module 410 may send the received scan data to the image reconstruction module 420 for image reconstruction, or may send it to the correction module 430 for artifact correction.
  • the data receiving module 410 can send the received correction parameters to the correction module 430 for artifact correction, or the correction module 430 can update the correction parameters as appropriate.
  • the data receiving module 410 can transmit the received scanning protocol, detector temperature, etc. parameters to the correction module 430, which can update the correction parameters based on the scanning protocol and/or detector temperature.
  • Image reconstruction module 420 can generate an image.
  • the image reconstruction module 420 can receive the original scan data acquired by the data receiving module 410 or the scan data after the artifact correction by the correction module 430, and perform the artifact-corrected scan according to the original scan data. The data is generated as an image.
  • image reconstruction module 420 can retrieve raw scan data from the storage module 440 or perform artifact corrected scan data and generate an image.
  • image reconstruction module 420 can perform processing operations on the generated image. The processing operations may include one or more of filter denoising, grayscale normalization, image horizontal rotation, scale size adjustment, partial occlusion removal (eg, removal of glasses), and the like.
  • the image generated by image reconstruction module 420 can be sent to output module 460 or stored in storage module 440.
  • image reconstruction module 420 can be optional; the image can be read by data receiving module 410 from any of the system-related storage devices.
  • the correction module 430 can perform artifact correction on the scan data or image according to the correction parameters, and/or update the correction parameters.
  • the correction parameters may include an air correction table and/or a labeled bad channel.
  • the correction module 430 can acquire scan data from the data receiving module 410 or the storage module 440 and perform artifact correction on the scan data.
  • the correction module 430 can acquire images from the image reconstruction module 420 or the storage module 440 and perform artifact correction on the images.
  • the correction module 430 can update the correction parameters.
  • the correction module 430 can update the air correction table based on the air scan.
  • the air scan described herein refers to a scan that is performed when there is no object in the imaging system 100.
  • the air correction table may include calibration parameters (also referred to as "air correction parameters") corresponding to one or more scanning protocols obtained by air scanning.
  • the updated correction parameters may be stored in the storage module 440.
  • the correction module 430 Instructions may be sent to the operational control computer device 140 via the output module 460.
  • the correction module 430 can send an instruction to perform an air scan to the operation control computer device 140 through the output module 460, and the operation control computer device 140 controls the scanner to perform an air scan after receiving an instruction to perform an air scan.
  • the storage module 440 can store data, images, and/or related parameters, and the like.
  • the stored data can be in various forms of data. For example, one or more of a numerical value, a signal, related information of a predetermined target, a command, an algorithm, a program, and the like.
  • scan data, images, correction parameters may be stored in storage module 440.
  • storage module 440 can include a fixed storage system (eg, a magnetic disk), a mobile storage system (eg, a USB interface, an interface to a Firewire port, etc., and/or a drive of a disk drive type), and the like.
  • the storage module 440 can store raw scan data, original images, artifact-corrected scan data (also referred to as "pre-correction scan data"), based on artifact-corrected scan data.
  • An image also referred to as a "pre-corrected image”
  • an artifact-corrected image also referred to as a "post-corrected image”
  • original correction parameters updated correction parameters, and the like.
  • the storage module 440 can be temporary storage of data, that is, dumping data for the next data processing; the storage module 440 can be long-term storage of data, that is, storing the final data processing result.
  • the control module 450 can control the data receiving module 410, the image reconstruction module 420, the correction module 430, the storage module 440, and/or the output module 460. In some embodiments, control module 450 can control the time at which data receiving module 410 receives data and/or the path through which data is transmitted. In some embodiments, control module 450 can control data transmission speeds and data transmission modes (eg, real-time transmission or delayed transmission), and the like. In some embodiments, control module 450 can control image reconstruction module 420 for image reconstruction. As an example, control module 450 may select an algorithm selected for image reconstruction. In some embodiments, control module 450 can control correction module 430 to perform artifact correction and/or update correction parameters. In some embodiments, control module 450 can receive instructions from a user (eg, a doctor, imaging technician, etc.).
  • a user eg, a doctor, imaging technician, etc.
  • Output module 460 can output information.
  • the information may include data, images, and/or related parameters, and the like.
  • the information may be from data receiving module 410, image reconstruction module 420, correction module 430, storage module 440, and/or control module 450.
  • the information can be presented in a variety of ways, including one or more of audio, video, images, text, and the like.
  • information can be broadcast by a microphone, a loudspeaker, or the like.
  • information can be presented on the display screen.
  • the information may be in various forms of data, including one or more of values, signals, related information for a given target, commands, algorithms, programs, and the like.
  • the information may include an original image, updated correction parameters, artifact corrected scan data, artifact corrected images, and the like.
  • the information can be output to any external device (eg, database, terminal, etc.) associated with imaging system 100.
  • the information can be displayed on any of the display devices (eg, display device 160, computer display, mobile display, etc.).
  • various modules within image generator 150 may include one or more general purpose processors.
  • the processor may include a programmable logic device (PLD), a special integrated circuit (ASIC), a microprocessor, a system on chip (SoC), and a communication One or more of a digital signal processor (DSP) or the like.
  • PLD programmable logic device
  • ASIC special integrated circuit
  • SoC system on chip
  • DSP digital signal processor
  • the two or more processors can be combined on one hardware device.
  • the processor can implement data processing in a variety of ways, for example, by hardware, software, or a combination of hardware and software.
  • image generator 150 can be implemented by a computer such as computer 300 through its hardware devices, software programs, firmware, and combinations thereof.
  • image generator 150 is merely a specific example and should not be considered as the only feasible implementation. Obviously, various modifications and changes in the form and details of the specific embodiments and steps may be made by those skilled in the art after the basic principles are understood. The changes are still within the scope of the above description.
  • a storage unit may be added to each module in the image generator 150 for storing intermediate data or processing results generated during the operation of each module.
  • one or more modules can be integrated into the same module to implement the functionality of one or more modules.
  • the data receiving module 410 and the output module 460 can be integrated in one module while implementing input/output functions.
  • the image generator 150 may omit the storage module 440, and intermediate data or processing results generated during the operation of each module may be stored in the external data source through the output module 460.
  • FIG. 5 is a schematic diagram of a correction module 430, in accordance with some embodiments of the present application.
  • the correction module 430 can include an original data acquisition unit 510, an update unit 520, and an artifact correction unit 530.
  • the original data acquisition unit 510 can acquire the original data.
  • the raw data may include raw scan data and/or raw images.
  • the raw scan data or original image described herein may refer to scan data or images that have not been artifact corrected.
  • the raw data acquisition unit 510 can retrieve raw data from the data receiving module 410, the storage module 440, or the image reconstruction module 420.
  • the raw data acquisition unit 510 can retrieve raw data from any of the external devices (eg, databases, terminals) associated with the imaging system 100.
  • the raw data acquisition unit 510 can receive raw data entered by a user (eg, a doctor, an image engineer).
  • the update unit 520 can update the correction parameters.
  • the correction parameters may include an air correction table or a bad channel of the marker.
  • the air correction table described herein can be obtained from the air scan result. Air scanning may refer to imaging system 100 Scanning without the object being measured.
  • the air correction tables corresponding to different temperatures may be different.
  • the air correction table corresponding to a certain temperature may include air correction parameters corresponding to at least one set of scanning protocols.
  • the calibration parameters may have an expiration date (eg, 3 months, 6 months, or 1 year, etc.). The correction parameters may be updated when the correction parameters expire or the original calibration parameters are found to be unsuitable during operation of the imaging system 100.
  • the update unit 520 can transmit a prompt instruction to the operation control computer device 140 through the output module 460, and the display device 160 or an external device (eg, terminal, etc.) associated with the imaging system 100 is controlled by the operation control computer device 140. Prompt the user (for example, a doctor, imaging technician, etc.). For example, update unit 520 can prompt the user whether to update the correction parameters and/or update the type of correction parameters.
  • the artifact correction unit 530 may acquire the correction parameters and/or perform artifact correction on the original data according to the acquired correction parameters.
  • An artifact may refer to an image of various forms that does not exist in the original object but appears on the image of the object to be tested.
  • the cause of the artifact may include the cause associated with the device or the cause associated with the object being tested.
  • artifacts caused by equipment-related causes may include one or more of artifacts associated with system design, artifacts associated with the radiation generator, artifacts associated with the detector, and the like. .
  • the artifact may include one or more of strip artifacts, shadow artifacts, loop or arc artifacts, and the like.
  • Reasons for causing stripe artifacts may include one or more of improper sampling of data, partial volume effects, motion of the object under test, metal objects, beam hardening, noise, helical scanning, mechanical failure, and the like.
  • the cause of the shadow artifact may include one or more of a partial volume effect, a beam hardening, a helical scan, a scattered line, an out-of-focus radiation, a projection data incompleteness, and the like.
  • Causes of ringing or arcing artifacts may include one or more of different detector pixel unit gains, detector gain variations, detector channel failures, and the like.
  • the detector gain described herein may refer to the extent to which the detector current, voltage, or power is increased.
  • the artifact correction unit 530 may acquire raw scan data from the raw data acquisition unit 510, perform pre-correction (also referred to as "pre-processing") on the original scan data, and generate pre-correction scan data.
  • pre-processing also referred to as "pre-processing”
  • the artifact correction unit 530 may acquire the original image from the original data acquisition unit 510, perform post-correction (also referred to as "post-processing") on the original image, and generate a post-correction image.
  • post-correction also referred to as "post-processing”
  • the pre-production correction image may be reconstructed from the pre-correction scan data, and the artifact correction unit 530 may perform post-correction processing on the pre-correction image and generate a post-correction image.
  • Pre-correction here may refer to artifact correction of the scan data prior to image reconstruction to eliminate or attenuate artifacts.
  • Post-correction may refer to artifact correction of the image after image reconstruction to eliminate or attenuate artifacts.
  • the pre-correction scan data may refer to scan data obtained by performing pre-correction processing on the original scan data.
  • Pre-corrected image It may refer to an image obtained by image reconstruction from the front corrected scan data.
  • the post-correction image may refer to an image obtained by performing post-correction processing on the original image or the pre-corrected image.
  • FIG. 6 is an exemplary flow chart of an artifact correction process, in accordance with some embodiments of the present application.
  • raw data can be obtained.
  • the process of obtaining raw data may be implemented by the original data acquisition unit 510.
  • the raw data may include raw scan data and an original image.
  • the raw scan data or original image described herein may refer to scan data or images that have not been artifact corrected.
  • the correction parameters can be updated.
  • the process of updating the correction parameters can be implemented by the update unit 520.
  • the calibration parameters may have an expiration date (eg, 3 months, 6 months, or 1 year, etc.), and when the imaging system 100 detects that the correction parameters have expired, the calibration parameters may be updated.
  • imaging system 100 may update the calibration parameters at certain time intervals (eg, 1 month, 3 months, 6 months, 1 year, etc.).
  • the calibration parameters may be updated in real time as the actual situation occurs during operation of the imaging system 100.
  • the air correction table corresponding to the detector temperature may be updated and generated in real time, and the original data is performed according to the updated air correction table. Artifact correction.
  • the bad channel can be marked to perform artifact correction on the original data of the bad channel.
  • the original data may be subjected to artifact correction based on the updated correction parameters.
  • Artifact corrections may include pre-correction and post-correction.
  • Pre-correction may refer to artifact correction of the scan data prior to image reconstruction to eliminate or attenuate artifacts.
  • Post-correction may refer to artifact correction of the image after image reconstruction to eliminate or attenuate artifacts.
  • pre-correction or post-correction can be performed, or both pre-correction and post-correction can be performed.
  • different correction methods may be used to perform artifact correction on the scan data or image to eliminate or attenuate artifacts, depending on the cause of the artifact.
  • an air scan can be performed to obtain an air correction table and artifact correction of the scan data or image based on the air correction table to compensate for the gain of the detector.
  • the bad channel of the detector can be marked for further artifact correction of the scanned data or images acquired through the bad channel.
  • the scan data or image may be artifact corrected in conjunction with both air scanning and bad channel marking.
  • the step of updating the correction parameters may occur during the process of pre-correction, or during the process of post-correction.
  • the artifact correction process described in FIG. 6 may omit step 620, and artifact correction may be performed on the original data based only on the original correction parameters.
  • the artifact correction process can only perform pre-correction or only post-calibration Positive, or both pre-correction and post-correction.
  • the original scan data may be subjected to artifact correction according to the original correction parameters to generate pre-correction scan data, and then the pre-correction scan data is reconstructed to generate a pre-corrected image.
  • the original scan data may be reconstructed to generate an original image, and then the original image is subjected to artifact correction according to the original correction parameters to generate a corrected image.
  • the original scan data may be subjected to artifact correction according to the original correction parameters, the front corrected scan data is generated, and the front corrected scan data is reconstructed, and the front corrected image is generated, and then the original corrected image is generated.
  • the correction parameter performs artifact correction on the pre-corrected image to generate a corrected image.
  • the post-corrected image may include an image generated by artifact correction of the pre-corrected image or the original image.
  • the artifact correction process described in FIG. 6 may further include the step of prompting the user to prompt the user whether to update the correction parameters.
  • the process of prompting the user can be implemented by the update unit 520.
  • the manner of prompting may include one or a combination of display dialogs, prompts, voice prompts, and the like.
  • step 620 can be performed prior to step 610.
  • the air scan at the detector temperature can be initiated and an air correction table at the detector temperature can be generated.
  • FIG. 7 is a schematic diagram of the update unit 520, in accordance with some embodiments of the present application.
  • the update unit 520 may include a correction table acquisition sub-unit 705, a temperature acquisition sub-unit 710, and a correction table update sub-unit 720.
  • the correction table acquisition sub-unit 705 may acquire a first air correction table corresponding to the first temperature.
  • the first temperature described herein may refer to the normal operating temperature of the detector.
  • the first air correction table corresponding to the first temperature may include air correction parameters corresponding to at least one set of scan protocols at the first temperature.
  • the first air correction table may be stored in the storage module 440, and the correction table acquisition sub-unit 705 may acquire the first air correction table from the storage module 440.
  • the first air correction table may be stored in an external data source (not shown), and the correction table acquisition sub-unit 705 may obtain the first air correction table from the external data source through the data receiving module 410.
  • the correction table acquisition sub-unit 705 can be integrated in the artifact correction unit 530. In some embodiments, the correction table acquisition sub-unit 705 may be optional, and the process of acquiring the first air correction table may be implemented by the artifact correction unit 530.
  • the temperature acquisition sub-unit 710 can acquire the detector temperature (also referred to as the "detector second temperature").
  • the detector temperature can include a real time temperature or a set temperature of the detector.
  • the temperature acquisition sub-unit 710 can obtain the real-time temperature of the detector from the detector 170 via the data acquisition module 410.
  • a user eg, a doctor, imaging technician, etc.
  • Control computer device 140, temperature acquisition sub-unit 710 can obtain the set temperature from operational control computer device 140 via data acquisition module 410.
  • the correction table update subunit 720 can update the air correction table. Updating the air correction table herein may refer to updating the air correction parameters corresponding to at least one of the scan protocols in the first air correction table.
  • the calibration table update sub-unit 720 can send an air scan command to the operational control computer device 140 via the output module 460, which is controlled by the operational control computer device 140 for air scanning.
  • the correction table update sub-unit 720 can send a cueing instruction to the operation control computer device 140 via the output module 460, and the display device 160 or an external device (eg, a terminal) associated with the imaging system 100 is controlled by the operation control computer device 140. Etc.) Prompt the user (eg, doctor, imaging technician, etc.).
  • the correction table update subunit 720 can send a prompt instruction to the operation control computer device 140 through the output module 460, prompting the user whether to update Air correction table.
  • a first air correction table corresponding to the first temperature of the detector may be acquired.
  • the process of acquiring the first air correction table corresponding to the first temperature of the detector can be implemented by the correction table acquisition subunit 705.
  • the first air correction table corresponding to the first temperature may include air correction parameters corresponding to at least one set of scan protocols at the first temperature.
  • the first temperature can be the normal operating temperature of the detector.
  • the first temperature can be any temperature.
  • the first air correction table may be stored in the storage module 440, and the correction table acquisition sub-unit 705 may acquire the first air correction table from the storage module 440.
  • the first air correction table may be stored in an external data source (not shown), and the correction table acquisition sub-unit 705 may obtain the first air correction table from the external data source through the data receiving module 410.
  • the correction table acquisition sub-unit 705 when the correction table acquisition sub-unit 705 is integrated in the artifact correction unit 530 or the update unit 520 omits the correction table acquisition sub-unit 705, the process of acquiring the first air correction table may be implemented by the artifact correction unit 530. .
  • the second temperature of the detector can be acquired.
  • the process of obtaining the second temperature of the detector can be implemented by the temperature acquisition sub-unit 710.
  • the second temperature can be the real-time temperature of the detector, or a set temperature.
  • the set temperature may be determined according to a user's setting.
  • the second temperature is the real-time temperature of the detector
  • the real-time temperature may be transmitted according to one or more temperatures on the detector 170. Sensory determination. For example, the average of the temperatures measured by multiple temperature sensors can be taken as the real-time temperature of the detector. As another example, the average of the temperatures measured by the temperature sensor over a period of time (eg, 5 minutes, 10 minutes) can be taken as the real-time temperature of the detector.
  • a second air correction table corresponding to the second temperature may be obtained according to the second temperature of the detector and the first air correction table.
  • the process of obtaining the second air correction table can be implemented by the correction table update subunit 720.
  • the second air correction table corresponding to the second temperature may include air correction parameters corresponding to the at least one set of scanning protocols at the second temperature.
  • the air correction parameters of the at least one set of scanning protocols at the second temperature may be obtained first, and then may be obtained according to the air correction parameters and the first air correction table at the second temperature according to the at least one set of scanning protocols. Second air correction table.
  • the first temperature and the second temperature can be a temperature range, or a specific temperature value.
  • the first temperature can be 39 °C.
  • the second temperature may be the real time temperature of the detector.
  • the process of updating the air correction table can occur at any time, and the second temperature can be any temperature set by the system or user. For example, the system may obtain a second air correction table at a plurality of second temperatures based on the first air correction table.
  • FIG. 9 is an exemplary flow chart of artifact correction, in accordance with some embodiments of the present application.
  • raw data corresponding to the second temperature may be acquired.
  • the process of acquiring the original data corresponding to the second temperature may be implemented by the original data acquiring unit 510.
  • a first air correction table corresponding to the first temperature of the detector may be acquired.
  • the process of acquiring the first air correction table corresponding to the first temperature of the detector can be implemented by the correction table acquisition subunit 705.
  • a second temperature of the detector can be acquired.
  • the process of obtaining the second temperature of the detector can be implemented by the temperature acquisition sub-unit 710.
  • the process of determining whether the second temperature of the detector exceeds the first temperature may be implemented by the correction table update subunit 720.
  • an air scan may be performed at a second temperature of the detector, and a second air correction table corresponding to the second temperature is obtained based on the air scan and the first air correction table.
  • the process of obtaining the second air correction table corresponding to the second temperature may be implemented by the correction table update subunit 720.
  • the air scan described herein may refer to a scan performed when there is no object in the imaging system 100.
  • the calibration table update sub-unit 720 can send an air scan command to the operational control computer device 140 via the output module 460, which is controlled by the operational control computer device 140 for air scanning.
  • the reference correction value of the second temperature may be obtained according to the air scan at the second temperature, and the second air correction table is obtained based on the first air correction table and the reference correction value.
  • you can get at least one set of scanning protocols at The air correction parameter at the second temperature is used as a reference correction value, and a set of air correction parameters corresponding to the reference correction value is determined in the first air correction table (the scan protocol corresponding to the air correction parameter herein corresponds to the reference correction value)
  • the scanning protocol is the same), calculating a difference between the air correction parameter and the reference correction value, and determining an air correction parameter of the plurality of scanning protocols in the second air correction table at the second temperature according to the difference.
  • an air scan may be performed based on a certain scanning protocol at a second temperature to obtain scan data at a second temperature, a gain of the detector 170 is determined based on the scan data, and the scan protocol is determined at the second temperature based on the gain.
  • the air correction parameter is used as the reference correction value.
  • air calibration parameters of two or more sets of scanning protocols at a second temperature may be obtained by air scanning, in which case an air correction parameter of one of the scanning protocols may be selected as a reference correction value,
  • the difference between the air correction parameter of the scan protocol and the air correction parameter of the same scan protocol in the first air correction table may be separately calculated, and the plurality of scan protocols in the second air correction table are determined at the second temperature according to the average of the differences Under the air correction parameters.
  • the reference correction value may be denoted as A new , the corresponding scanning protocol is A, and the air correction of the scanning protocol A in the first air correction table
  • the parameter can be expressed as A normal .
  • the difference between A new and A normal can be calculated according to formula (1):
  • ⁇ A may represent the difference between the reference correction value and the corresponding air correction parameter in the first air correction table.
  • the difference of the air correction parameters corresponding to different scanning protocols may be consistent, and therefore, the second air correction table may be obtained according to formula (2):
  • B new , C new , Z new may represent air correction parameters of the second air correction table whose scanning protocols are B, C, and D, respectively.
  • a second air correction table can be obtained from A new , B new , C new , ..., Z new .
  • artifact correction may be performed on the raw data according to the second air correction table.
  • the process of artifact correction can be implemented by artifact correction unit 530.
  • the process depicted in FIG. 9 can also include prompting the user when the second temperature of the detector exceeds the first temperature. For example, the user may be prompted to detect if the second temperature exceeds the second temperature, and/or if the air correction table is updated.
  • steps 910, 920, and 930 may be in no particular order.
  • the detector temperature may be determined at intervals (step 940), and the detector temperature may be determined one at a time before each scan begins.
  • the flow depicted in FIG. 9 can be applied to update the air correction table in real time during operation of imaging system 100, or to generate an air correction table corresponding to one or more temperatures.
  • the flow described in FIG. 9 may omit step 910, step 960, and step 970.
  • the second temperature corresponding to the scan protocol set during the operation of the imaging system 100 may be first obtained according to the air scan.
  • the air correction parameters are then corrected for the raw data based on the air correction parameters.
  • the second air correction table corresponding to the second temperature may be generated according to the first air correction table and the air correction parameter at the second temperature corresponding to the scan protocol set during the operation of the imaging system 100.
  • the second temperature of the detector exceeds the first temperature, it may be determined whether there is an air correction table corresponding to the second temperature in the storage module 440 or the external data source. If the storage module 440 or the external data source has an air correction table corresponding to the second temperature, the air correction table corresponding to the second temperature may be obtained from the storage module 440 or the external data source, and the air correction table corresponding to the second temperature is obtained. Performing artifact correction on the original data; if there is no air correction table corresponding to the second temperature in the storage module 440 or the external data source, step 950 may be performed to perform air scanning at the second temperature.
  • the imaging system 100 can obtain a second corresponding to the second temperature based on the method described in FIG. Air correction table.
  • FIG. 10 is a schematic diagram of the update unit 520, in accordance with some embodiments of the present application.
  • the update unit 520 may include a pre-processing sub-unit 1010, an artifact information extraction sub-unit 1020, and a correction parameter update sub-unit 1030.
  • the pre-processing sub-unit 1010 can pre-process the original data.
  • the raw data may include raw scan data and/or raw images.
  • the pre-processing can include artifact correction of the raw data based on the original correction parameters.
  • the pre-processing sub-unit 1010 can further generate pre-processing results (also It may be referred to as "first correction data").
  • the pre-processing results may include artifact-corrected scan data (also referred to as "front-correction scan data") or artifact-corrected images (also referred to as "post-correction images”).
  • the artifact information extraction subunit 1020 can extract artifact information.
  • the artifact information herein may refer to artifact information contained in the original data. Artifact information can be obtained from the pre-processed results. For example, the artifact information extraction sub-unit 1020 can obtain artifact information by comparing the original data with the pre-processing result. For example, artifact information may refer to artifact information that is eliminated or attenuated from the original data. In some embodiments, the artifact information can include artifact intensities.
  • the correction parameter update subunit 1030 can update the correction parameters based on the artifact information.
  • the correction parameters may include an air correction table or a marked bad channel.
  • the correction parameter update sub-unit 1030 can send a cueing instruction to the operation control computer device 140 via the output module 460, and the display device 160 or an external device (eg, a terminal) associated with the imaging system 100 is controlled by the operation control computer device 140.
  • Etc.) Prompt the user (eg, doctor, imaging technician, etc.).
  • the instructions may be a type of correction parameter that prompts the user to update the correction parameters or prompt the user to update (eg, an air correction table, a bad channel of the marker, etc.).
  • the pre-processing sub-unit 1010 can be integrated in the artifact correction unit 530. In some embodiments, the pre-processing sub-unit 1010 may be optional, and the process of pre-processing the original data may be implemented by the artifact correction unit 530.
  • step 1110 raw data can be obtained.
  • the process of obtaining raw data may be implemented by the original data acquisition unit 510.
  • the raw data may be pre-processed to obtain a pre-processed result.
  • the pre-processing result may include artifact-corrected scan data or artifact-corrected images.
  • the process of pre-processing can be implemented by pre-processing sub-unit 1010.
  • the pre-processing can include artifact correction of the raw data based on the original correction parameters.
  • the raw data may be pre-corrected and/or post-corrected during the pre-processing.
  • the front correction described herein refers to correction of scan data before image reconstruction; the post correction refers to correction of an image after image reconstruction.
  • artifact information may be obtained according to the pre-processing result.
  • the process of obtaining artifact information can be implemented by the artifact information extraction sub-unit 1020.
  • the artifact information may refer to artifact information contained in the original data.
  • artifact information can be obtained from pre-processed results.
  • the artifact information extraction sub-unit 1020 can obtain artifact information by comparing the original data with the pre-processing result.
  • artifact information may refer to artifact information that is eliminated or attenuated from the original data.
  • the artifact information may refer to artifact information that is eliminated or attenuated by pre-correction of the original scan data, or artifact information that is eliminated or attenuated by post-correction of the original image.
  • the artifact information can include artifact intensities.
  • the correction parameters may be updated based on the artifact information.
  • the process of updating the correction parameters can be implemented by the correction parameter update subunit 1030.
  • the type of correction parameter that needs to be updated eg, an air correction table, a bad channel of the marker, etc.
  • the artifact information For example, it may be judged based on the artifact strength whether it is necessary to update the correction parameters and/or the types of correction parameters that need to be updated.
  • the method of updating correction parameters described in FIG. 11 can further include prompting a user step.
  • the correction parameter update subunit 1030 may send a prompt instruction to the operation control computer device 140 through the output control module 460, and the display device 160 or the external device related to the imaging system 100 is controlled by the operation control computer device 140. (eg, terminal, etc.) prompts the user whether to update the correction parameters, or prompts the user for the type of correction parameters that need to be updated (eg, air correction table, marked bad channel, etc.).
  • the manner of prompting may include one or a combination of display dialogs, prompts, voice prompts, and the like.
  • FIG. 12 is an exemplary flow diagram of artifact correction, in accordance with some embodiments of the present application.
  • raw data can be obtained.
  • the process of obtaining raw data may be implemented by the original data acquisition unit 510.
  • the original correction parameters can be obtained.
  • the original correction parameter described herein may refer to a first air correction table corresponding to the first temperature.
  • the process of obtaining the original correction parameters can be implemented by the pre-processing sub-unit 1010.
  • the update unit 520 omits the pre-processing sub-unit 1010 or the pre-processing sub-unit 1010 is integrated in the artifact correction unit 530
  • the process of acquiring the original correction parameters may be implemented by the artifact correction unit 530.
  • the original data may be subjected to artifact correction according to the original correction parameters to obtain first correction data.
  • the process of obtaining the first correction data can be implemented by the pre-processing sub-unit 1010.
  • the process of obtaining the first correction data may be implemented by the artifact correction unit 530.
  • performing artifact correction on the raw data based on the original correction parameters may include pre-correction and/or post-correction.
  • the first correction data may include data obtained by performing artifact correction on the original data according to the original correction parameters (for example, pre-correction scan data or post-correction image obtained by performing artifact correction based on the original correction parameters).
  • artifact intensity may be obtained from the first corrected data.
  • the process of obtaining artifact intensity can be implemented by the artifact information extraction sub-unit 1020.
  • the artifact intensity may be the intensity of artifact information that is eliminated or attenuated when artifact correction is performed based on the original correction parameters.
  • the artifact strength may refer to the intensity of artifact information that is eliminated or attenuated by pre-correction of the original data, or the intensity of artifact information that is eliminated or attenuated by post-correction of the original data, or the original data is performed. The intensity of the artifact information that is eliminated or attenuated by the pre-correction and post-correction.
  • the artifact intensity can be obtained by comparing the raw data with the first corrected data.
  • the artifact information extraction sub-unit 1020 can obtain artifacts by comparing the original scan data with the pre-correction data. degree.
  • the artifact information extraction sub-unit 1020 can obtain the artifact intensity by comparing the original image with the post-corrected image (for example, the image obtained by the post-correction processing of the original image).
  • step 1225 it may be determined whether the artifact strength exceeds a first threshold. If yes, proceed to step 1230; if no, proceed to step 1245.
  • the process of determining whether the artifact intensity exceeds a first threshold may be implemented by the correction parameter update sub-unit 1030.
  • an image may be obtained based on the raw data or the first corrected data.
  • the process of obtaining an image from the raw data or the first corrected data may be implemented by image reconstruction module 420.
  • the first threshold may refer to an upper limit of artifact intensity that the original correction parameter may process.
  • the unit of the first threshold may be a CT value (Hounsfield Unit, HU).
  • a channel corresponding to the artifact information that is eliminated or attenuated may be determined.
  • an average of the scan data of the channel over a plurality of viewing angles may be acquired.
  • the average value can be obtained according to formula (3):
  • V 0m may represent the average value
  • chan B (i) may represent scan data of the channel at an i-th view angle
  • VN may represent the total number of views.
  • the VN can be at least a half turn or a number of sampling views.
  • step 1240 it may be determined whether the average value is greater than or equal to a second threshold or less than or equal to a third threshold. If the average value is greater than or equal to the second threshold or less than or equal to the third threshold, then step 1265 may be entered to mark the channel as a bad channel; if the average value is less than the second threshold and greater than the third threshold, then the step may be entered. 1250.
  • the second threshold and the third threshold may be preset values based on detector performance. For example, the second threshold and the third threshold may respectively represent the maximum and minimum values of the detector within a certain output range.
  • a deviation between the channel and its adjacent channel scan data can be obtained.
  • linear interpolation of scan data at an angle of a plurality of viewing angles of the channel and its adjacent channels eg, respective viewing angles of adjacent channels
  • scan data at a plurality of viewing angles according to the channel may be obtained.
  • the linear interpolation obtains the deviation.
  • the linear interpolation can be obtained according to formula (4):
  • V 1 (i) 0.5*(chan BP (i)+chan BM (i)), i ⁇ [1,VN], (4)
  • V 1 (i) may represent the linear interpolation
  • chan BP (i) and chan BM (i) may represent scan data at an i-th viewing angle of an adjacent channel of the channel chan B (i).
  • var can represent the deviation
  • mA(i) can represent the nominal bulb flux value of the ith sample obtained from the scan data.
  • spline interpolation may be first obtained based on scan data of at least 3 channels around the channel, and then the deviation is obtained according to scan data of the channel at a plurality of viewing angles and the spline interpolation.
  • the spline interpolation can be obtained according to formula (6):
  • V 2 (i) spline(chan BP-2 (i), chan BP-1 (i), chan BM+1 (i)), (6)
  • V 2 (i) can represent the spline interpolation
  • spline(x) can represent a spline interpolation function
  • chan BP-2 (i) can represent a spline interpolation function
  • chan BM+1 (i) can Scan data representing the i-th viewing angle of the channel around the channel.
  • V 1m may represent the mean of V 1 (i) in the angle of view of VN.
  • V 1m can be obtained according to formula (8):
  • step 1255 it may be determined whether the deviation is greater than or equal to a fourth threshold. If the deviation is greater than or equal to the fourth threshold, then step 1265 may be entered to mark the bad channel; if the average is less than the fourth threshold, then step 1260 may be entered to mark the air correction parameters that need to be updated.
  • the fourth threshold may represent a deviation threshold between the signal strength of the channel having artifacts and the signal strength of the surrounding channel. In some embodiments, the fourth threshold can be a system default. For example, when the imaging system 100 can set the deviation of the signal strength of a certain channel from the signal strength of the surrounding channel beyond the fourth threshold, it is determined that the channel is a bad channel.
  • the correction parameters can be updated.
  • step 1225 - step 1270 can be implemented by correction parameter update sub-unit 1030.
  • the correction parameters can be updated by performing an air scan.
  • an air correction table corresponding to a certain temperature (for example, a first air correction table) may be updated to generate an air correction table corresponding to a new temperature.
  • an air scan may be performed to update an air correction table corresponding to a certain temperature.
  • an air correction table corresponding to a new temperature may be generated according to the method described in FIG. 8 or FIG.
  • updating the correction parameters can include updating the bad channels of the markers.
  • the original data may be subjected to artifact correction according to the updated correction parameters to obtain second correction data.
  • the process of obtaining the second correction data can be implemented by the artifact correction unit 530.
  • the second correction data may refer to data obtained by performing artifact correction based on the updated correction parameters (for example, pre-correction scan data or post-correction image obtained by performing artifact correction based on the updated correction parameters).
  • the original data may be subjected to artifact correction according to the updated air correction table, or the original data may be subjected to artifact correction according to the air correction table corresponding to the new temperature, or the original data corresponding to the bad channel may be pseudo according to the marked bad channel. Shadow correction.
  • an image may be obtained based on the second corrected data.
  • the process of obtaining an image can be implemented by image reconstruction module 420.
  • the artifact correction process depicted in FIG. 12 may omit step 1270, step 1275, and step 1280.
  • the calibration parameters that need to be updated may not be updated, and then updated when the next imaging process is performed.
  • the air correction parameters that need to be updated may be flagged at step 1260, and an air scan may be performed prior to the next scan to update the marked air correction parameters based on the air scan.
  • the bad channel can be marked at step 1265, and the original data corresponding to the marked bad channel is artifact corrected during the next imaging process.
  • the artifact correction process depicted in FIG. 12 may omit step 1260 or step 1265. After determining the calibration parameters that need to be updated, the steps of updating the calibration parameters can be directly performed without marking.
  • the method of artifact correction described in FIG. 12 may further include the step of prompting the user.
  • the correction parameter update subunit 1030 may send a prompt instruction to the operation control computer device 140 through the output control module 460, and the display device 160 or the external device related to the imaging system 100 is controlled by the operation control computer device 140.
  • the terminal or the like prompts the user whether to update the correction parameter, and may also prompt the user for the type of the correction parameter that needs to be updated (for example, an air correction table, a marked bad channel, etc.).
  • the manner of prompting may include one or a combination of display dialogs, prompts, voice prompts, and the like.
  • the method described in FIG. 8 or FIG. 9 can be performed in conjunction with the method described in FIG. 11 or FIG.
  • the correction parameters may include air correction parameters or marked bad passages. Updating the air correction parameter may include updating an air correction table corresponding to a certain temperature, or generating an air correction table corresponding to the new temperature. When it is necessary to generate an air correction table corresponding to the new temperature, an air correction table corresponding to the new temperature can be generated according to the method described in FIG. 8 or FIG. As still another example, before the scanning method of FIG. 11 or FIG. 12, the method described in FIG. 8 or FIG.
  • the determination of whether the real-time temperature of the detector is greater than the first temperature may be performed at intervals (eg, 5 minutes, 10 minutes, etc.) during the process of FIG. 11 or FIG. 12, if the detector is in real time.
  • the air correction table corresponding to the real-time temperature of the detector is generated according to the method described in FIG. 8 or FIG.
  • the correction parameters during imaging of N subjects (eg, imaging processes of different body parts of the same patient), it is not necessary to determine whether to update the correction parameters during imaging of each subject. For example, when scanning the Mth object to be tested, it may be determined whether the correction parameter needs to be updated (for example, the method described in FIG. 12 may be performed on the Mth object to be tested), and for other N-1 objects to be tested, The original data is subjected to artifact correction based on the original correction parameters or the updated correction parameters (for example, step 1205, step 1210, step 1215, and step 1245 may be performed on the other N-1 objects).
  • M and N may be integers, and M may be less than or equal to N, and M may be greater than 1 (eg, M may be equal to 2, that is, the method described in FIG. 12 is performed on the second object to be tested). In some embodiments, M may be equal to 1, ie, the method described in FIG. 12 is performed on the first object to be tested.
  • the first threshold, the second threshold, the third threshold, and the fourth threshold involved in the present application may be a range of values or a specific value.
  • the first threshold, the second threshold, the third threshold, and the fourth threshold may be determined based on historical data, default values of imaging system 100, or user (eg, doctor, imaging technician, etc.) instructions.
  • the present application uses specific words to describe embodiments of the present application.
  • a "one embodiment,” “an embodiment,” and/or “some embodiments” means a feature, structure, or feature associated with at least one embodiment of the present application. Therefore, it should be emphasized and noted that “an embodiment” or “an embodiment” or “an alternative embodiment” that is referred to in this specification two or more times in different positions does not necessarily refer to the same embodiment. . Furthermore, some of the features, structures, or characteristics of one or more embodiments of the present application can be combined as appropriate.
  • aspects of the present application can be illustrated and described by a number of patentable categories or conditions, including any new and useful process, machine, product, or combination of materials, or Any new and useful improvements. Accordingly, various aspects of the present application can be performed entirely by hardware, entirely by software (including firmware, resident software, microcode, etc.) or by a combination of hardware and software.
  • the above hardware or software may be referred to as a "data block,” “module,” “engine,” “unit,” “component,” or “system.”
  • aspects of the present application may be embodied in a computer product located in one or more computer readable medium(s) including a computer readable program code.
  • a computer readable signal medium may contain a propagated data signal containing a computer program code, for example, on a baseband or as part of a carrier.
  • the propagated signal may have a variety of manifestations, including electromagnetic forms, optical forms, and the like, or a suitable combination.
  • the computer readable signal medium may be any computer readable medium other than a computer readable storage medium that can be communicated, propagated, or transmitted for use by connection to an instruction execution system, apparatus, or device.
  • Program code located on a computer readable signal medium can be propagated through any suitable medium, including a radio, cable, fiber optic cable, RF, or similar medium, or a combination of any of the above.
  • the computer program code required for the operation of various parts of the application can be written in any one or more programming languages, including object oriented programming languages such as Java, Scala, Smalltalk, Eiffel, JADE, Emerald, C++, C#, VB.NET, Python. Etc., regular programming languages such as C, Visual Basic, Fortran 2003, Perl, COBOL 2002, PHP, ABAP, dynamic programming languages such as Python, Ruby and Groovy, or other programming languages.
  • the program code can run entirely on the user's computer, or run as a stand-alone software package on the user's computer, or partially on the user's computer, partly on a remote computer, or entirely on a remote computer or server.
  • the remote computer can be connected to the user's computer via any network, such as a local area network (LAN) or wide area network (WAN), or connected to an external computer (eg via the Internet), or in a cloud computing environment, or as a service.
  • LAN local area network
  • WAN wide area network
  • an external computer eg via the Internet
  • SaaS software as a service
  • numbers describing the number of components and attributes are used. It should be understood that such The numbers described in the examples are modified in some examples using the modifiers "about”, “approximately” or “substantially”. Unless otherwise stated, “about”, “approximately” or “substantially” indicates that the number is allowed to vary by ⁇ 20%. Accordingly, in some embodiments, numerical parameters used in the specification and claims are approximations that may vary depending upon the desired characteristics of the particular embodiments. In some embodiments, the numerical parameters should take into account the specified significant digits and employ a method of general digit retention. Although numerical fields and parameters used to confirm the breadth of its range in some embodiments of the present application are approximations, in certain embodiments, the setting of such values is as accurate as possible within the feasible range.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Veterinary Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Pulmonology (AREA)
  • Human Computer Interaction (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

一种计算机断层成像方法及系统。该方法可以包括获取原始数据(1110);对原始数据进行预处理,得到预处理结果(1120);根据预处理结果,得到伪影强度(1130);根据伪影强度,更新坏通道或空气校正表(1140)。更新空气校正表可以包括:获取探测器第一温度对应的第一空气校正表(810);获取探测器的实时温度(820);以及根据实时温度和第一空气校正表,得到实时温度对应的第二空气校正表(830)。

Description

一种计算机断层成像方法与系统
交叉引用
本申请要求以下申请的优先权:
2015年9月18日提交的编号为CN201510598603.0的中国申请;及
2015年9月30日提交的编号为CN201510639797.4的中国申请;
上述申请的内容以引用方式被包含于此。
技术领域
本申请涉及计算机断层成像(Computer Tomography,CT)技术领域,尤其涉及一种计算机断层成像校正方法及系统。
背景技术
在计算机断层成像过程中,不可避免的会出现伪影。为了消除或减弱这些伪影,可以对扫描数据或重建的图像进行伪影校正。造成伪影的原因有很多,例如,探测器像素单元增益不同、探测器增益随时间变化等。此外,成像过程中发生的异常也可以造成伪影,例如,在成像过程中探测器温度超过空气校正表的适用温度、突然出现坏通道等。因此,需要提出一种计算机断层成像方法及系统,能够在成像过程中对伪影进行实时判断和提醒,而且可以快速地更新校正参数,进一步减少伪影,提高图像质量。
简述
根据本申请的一个方面,提供了一种计算机断层成像方法。该计算机断层成像方法可以包括:获取探测器第一温度对应的第一空气校正表,所述第一空气校正表包括至少一组扫描协议在所述第一温度下的空气校正参数,所述至少一组扫描协议包括第一组扫描协议;获取探测器的第二温度;以及,根据所述第二温度和所述第一空气校正表,确定所述第二温度对应的第二空气校正表,所述第二空气校正表包括所述至少一组扫描协议在第二温度下的空气校正参数。
根据本申请的一些实施例,根据所述第二温度和所述第一空气校正表确定所述第二温度对应的第二空气校正表可以包括:判定所述第二温度大于所述第一温度得到第 一判定结果;以及,基于所述第一判定结果,根据所述第二温度和所述第一空气校正表确定所述第二温度对应的第二空气校正表。
根据本申请的一些实施例,所述计算机断层成像方法可以进一步包括:获取所述第二温度对应的原始数据,所述原始数据包括原始扫描数据或根据所述原始扫描数据得到的原始图像,所述原始数据包括伪影;以及,根据所述第二空气校正表对所述原始数据进行伪影校正。
根据本申请的一些实施例,所述计算机断层成像方法可以进一步包括:判定所述第二温度等于所述第一温度得到第二判定结果;以及,基于所述第二判定结果,根据所述第一空气校正表对所述原始数据进行伪影校正。
根据本申请的一些实施例,所述伪影可以包括环状伪影或弧状伪影。
根据本申请的一些实施例,所述计算机断层成像方法可以进一步包括:判定所述第二温度大于所述第一温度得到第三判定结果;以及,基于所述第三判定结果,对用户进行提示。
根据本申请的一些实施例,根据所述第二温度和所述第一空气校正表确定所述第二温度对应的第二空气校正表可以包括:在所述第二温度下进行空气扫描,所述空气扫描包括基于所述第一组扫描协议进行空气扫描;根据所述空气扫描获得所述第一组扫描协议在第二温度下的空气校正参数;以及,根据所述第一空气校正表以及所述第一组扫描协议在第二温度下的空气校正参数,确定所述第二温度对应的第二空气校正表。
根据本申请的一些实施例,所述至少一组扫描协议可以包括第二组扫描协议。根据所述第一空气校正表以及所述第一组扫描协议在第二温度下的空气校正参数,确定所述第二温度对应的第二空气校正表可以包括:获取所述第一组扫描协议在第一温度下的空气校正参数;获取所述第一组扫描协议在第二温度下的空气校正参数与所述第一组扫描协议在第一温度下的空气校正参数的差值;获取所述第二组扫描协议在第一温度下的空气校正参数;以及,根据所述差值和所述第二组扫描协议在第一温度下的空气校正参数,确定所述第二组扫描协议在第二温度下的空气校正参数。
根据本申请的另一个方面,提供了一种计算机断层成像方法。所述方法可以包括:a)获取原始数据,所述原始数据包括原始扫描数据或根据所述原始扫描数据得到的原始图像;b)对所述原始数据进行预处理,得到预处理结果;c)根据所述预处理结果,得到伪影强度;以及,d)根据所述伪影强度,更新校正参数。
根据本申请的一些实施例,所述伪影可以包括环状伪影或弧状伪影。
根据本申请的一些实施例,根据所述伪影强度更新所述校正参数可以包括:判定所述伪影强度等于或大于第一阈值得到第四判定结果;以及,基于所述第四判定结果,更新所述校正参数。
根据本申请的一些实施例,对所述原始数据进行预处理得到所述预处理结果可以包括:获取原始校正参数;以及,根据所述原始校正参数对所述原始数据进行伪影校正,得到第一校正数据。
根据本申请的一些实施例,所述校正参数可以包括空气校正表或标记的坏通道。
根据本申请的一些实施例,根据所述伪影强度更新所述校正参数可以包括:根据所述伪影强度,判断需要更新的所述校正参数的种类。
根据本申请的一些实施例,根据所述伪影强度判断需要更新的所述校正参数的种类可以包括:获取所述伪影对应的通道在多个视角上的所述扫描数据的平均值;判定所述平均值大于等于第二阈值或小于等于第三阈值得到第五判定结果;以及,基于所述第五判定结果,进行坏通道标记;判定所述平均值小于所述第二阈值并且大于所述第三阈值得到第六判定结果;基于所述第六判定结果,获取所述伪影对应的通道与其相邻的通道的所述扫描数据之间的偏差;判定所述偏差大于或等于第四阈值得到第七判定结果;基于所述第七判定结果,进行坏通道标记;以及,判定所述偏差小于第四阈值得到第八判定结果;以及,基于所述第八判定结果,更新空气校正参数。
根据本申请的一些实施例,所述计算机断层成像方法可以进一步包括:e)根据更新的校正参数对所述原始数据进行伪影校正,得到第二校正数据;以及,f)根据所述第二校正数据,得到图像。
根据本申请的一些实施例,所述计算机断层成像方法可以进一步包括:g)判定所述伪影强度小于所述第一阈值得到第九判定结果;以及,h)基于所述第九判定结果,根据所述原始数据或所述预处理结果,得到图像。
根据本申请的一些实施例,所述计算机断层成像方法可以进一步包括:对N个扫描对象进行扫描,对第M个扫描对象执行所述步骤a)至h),对其它的N-1个扫描对象执行所述步骤a),b)和h),M、N为整数,M小于或等于N,且M大于1。
根据本申请的一些实施例,所述计算机断层成像方法可以进一步包括:判定所述伪影强度大于等于所述第一阈值得到第十判定结果;以及,基于所述第十判定结果,对用户进行提示。
根据本申请的另一个方面,提供了一种计算机断层成像方法。该方法可以包括: 获取原始数据,所述原始数据包括原始扫描数据或根据所述原始扫描数据得到的原始图像;对所述原始数据进行预处理,得到预处理结果;根据所述预处理结果,得到伪影强度;以及,根据所述伪影强度,更新坏通道或空气校正表,其中,更新所述空气校正表包括:获取探测器第一温度对应的第一空气校正表,所述第一空气校正表包括至少一组扫描协议在所述第一温度下的空气校正参数,所述至少一组扫描协议包括第一组扫描协议;获取探测器的实时温度;以及,根据所述实时温度和所述第一空气校正表得到所述实时温度对应的第二空气校正表,所述第二空气校正表包括所述至少一组扫描协议在所述实时温度下的空气校正参数。
根据本申请的另一个方面,提供了一种计算机断层成像系统。该系统可以包括:更新单元。所述更新单元可以更新校正参数。所述更新单元可以包括:校正表获取子单元,温度获取子单元,以及,校正表更新子单元。所述校正表获取子单元可以获取探测器第一温度对应的第一空气校正表。所述第一空气校正表可以包括至少一组扫描协议在所述第一温度下的空气校正参数。所述至少一组扫描协议可以包括第一组扫描协议。所述温度获取子单元可以获取探测器的第二温度。所述校正表更新子单元可以根据所述第二温度和所述第一空气校正表确定所述第二温度对应的第二空气校正表。所述第二空气校正表可以包括所述至少一组扫描协议在第二温度下的空气校正参数。
根据本申请的另一个方面,提供了一种计算机断层成像系统。所述系统可以包括:原始数据获取单元和更新单元。所述原始数据获取单元可以获取原始数据。所述原始数据可以包括原始扫描数据或根据所述原始扫描数据得到的原始图像。所述更新单元可以更新校正参数。所述更新单元可以包括:预处理子单元,伪影信息提取子单元,以及,校正参数更新子单元。所述预处理子单元可以对所述原始数据进行预处理,得到预处理结果。所述伪影信息提取子单元可以根据所述预处理结果,得到伪影强度。所述校正参数更新子单元可以根据所述伪影强度,更新校正参数。
本申请的一部分附加特性可以在下面的描述中进行说明。通过对以下描述和相应附图的检查或者对实施例的生产或操作的了解,本申请的一部分附加特性对于本领域技术人员是明显的。本披露的特性可以通过对以下描述的具体实施例的各种方面的方法、手段和组合的实践或使用得以实现和达到。
附图描述
在此所述的附图用来提供对本申请的进一步理解,构成本申请的一部分,本 申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的限定。在各图中,相同标号表示相同部件。
根据本申请的一些实施例,图1是一个成像系统100的示意图;
根据本申请的一些实施例,图2是生成图像过程的一种示例性流程图;
根据本申请的一些实施例,图3是一个计算机的结构,该计算机可以实施本申请中披露的特定系统;
根据本申请的一些实施例,图4是图像生成器150的示意图;
根据本申请的一些实施例,图5是校正模块430的示意图;
根据本申请的一些实施例,图6是伪影校正过程的一种示例性流程图;
根据本申请的一些实施例,图7是更新单元520的示意图;
根据本申请的一些实施例,图8是更新空气校正表的一种示例性流程图;
根据本申请的一些实施例,图9是伪影校正的一种示例性流程图;
根据本申请的一些实施例,图10是更新单元520的示意图;
根据本申请的一些实施例,图11是更新校正参数的一种示例性流程图;以及
根据本申请的一些实施例,图12是伪影校正的一种示例性流程图。
具体描述
为了更清楚地说明本申请的实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单的介绍。显而易见地,下面描述中的附图仅仅是本申请的一些示例或实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图将本申请应用于其他类似情景。应当理解,给出这些示例性实施例仅仅是为了使相关领域的技术人员能够更好地理解进而实现本发明,而并非以任何方式限制本发明的范围。除非从语言环境中显而易见或另做说明,图中相同标号代表相同结构或操作。
如本申请和权利要求书中所示,除非上下文明确提示例外情形,“一”、“一个”、“一种”和/或“该”等词并非特指单数,也可包括复数。一般说来,术语“包括”与“包含”仅提示包括已明确标识的步骤和元素,而这些步骤和元素不构成一个排它性的罗列,方法或者设备也可能包含其他的步骤或元素。
虽然本申请对根据本申请的实施例的系统中的某些模块做出了各种引用,然而,任何数量的不同模块可以被使用并运行在客户端和/或服务器上。所述模块仅 是说明性的,并且所述系统和方法的不同方面可以使用不同模块。
本申请中使用了流程图用来说明根据本申请的实施例的系统所执行的操作。应当理解的是,前面或下面操作不一定按照顺序来精确地执行。相反,可以按照倒序或同时处理各种步骤。同时,也可以将其他操作添加到这些过程中,或从这些过程移除某一步或数步操作。
根据本申请的一些实施例,图1所示的是一个成像系统100的示意图。在一些实施例中,成像系统100可以对既定目标进行扫描,得到扫描数据并生成与之相关的图像。在一些实施例中,成像系统100可以对扫描数据或生成的图像进行进一步处理。例如,成像系统100可以对扫描数据或生成的图像进行伪影校正处理。在一些实施例中,成像系统100可以是一个设备或一个设备组。具体地,成像系统100可以是一个医学成像系统,例如,一个PET(Positron Emission Tomography)设备、一个SPECT(Single Photon Emission Computed Tomography)设备、一个CT(Computed Tomography)设备、一个MRI(Magnetic Resonance Imaging)设备等。进一步地,所述医学成像系统可以是单独使用,也可以结合使用。例如,一个PET-CT设备、一个PET-MRI设备或一个SPECT-MRI设备等。
在一些实施例中,成像系统100可以包括一个扫描仪,扫描仪可以对既定目标进行扫描,并获得与之相关的信息(例如扫描数据)。进一步地,成像系统100可以包括一个放射性扫描设备。该放射性扫描设备可以包括一个放射性扫描源。放射性扫描源可以向既定目标发射放射性射线。所述放射性射线可以包括微粒射线、光子射线等中的一种或其组合。所述微粒射线可以包括中子、质子、电子、μ介质、重离子等中的一种或其组合。光子射线可以包括X射线、γ射线、α射线、β射线、紫外线、激光等中的一种或其组合。作为示例,光子射线可能是X射线,其相应的成像系统100则可以是一个计算机断层扫描系统(CT)、一个数字式射线成像系统(DR)、一个多模态医学成像系统等其中的一种或多种。进一步地,在一些实施例中,多模态医学成像系统可以包括PET-CT系统、SPECT-MRI系统等中的一种或多种。
在一些实施例中,成像系统100可以包括一个腔体110、一个床架120、一个高压发生器130、一个操作控制计算机设备140、一个图像生成器150、和一个控制显示设备160。腔体110内部可以收容用来产生和检测放射性射线的组件。在一些实施例中,腔体110可以收容一个辐射发生器180和一个探测器170。辐射发生 器180可以发射放射性射线。在一些实施例中,放射性射线可以发射到置于腔体110中的物体(例如,被测物)处,并透过物体被探测器170接收。作为示例,所述辐射发生器180可以是一个X射线管。X射线管可以发射X射线,该射线透过置于腔体110内部的物体,并被探测器170接收。在一些实施例中,放射性射线可以发射到置于腔体110中物体,并经过物体反射后,被探测器170接收。在一些实施例中,探测器170可以是圆形探测器、方形探测器、弧形探测器等中的一种或其组合。所述弧形探测器的旋转角度可以是在0度到360度之间。在一些实施例中,弧形探测器的旋转角度可以是固定不变的。在一些实施例中,弧形探测器的旋转角度可以根据需要调整。例如,可以根据所需要的图像的分辨率、图像的大小、探测器的灵敏度、探测器的稳定性或其中的一种或者几种的组合,进行调整。在一些实施例中,探测器170可以是一维探测器、二维探测器、或三维探测器。在一些实施例中,探测器170和辐射发生器180可以绕Z轴旋转。在一些实施例中,探测器170可以与一个或多个传感器相连,传感器可以用于检测探测器170的一个或多个参数(例如,探测器温度)。在一些实施例中,传感器的类型可以包括温度传感器、重力传感器等。
床架120可以支撑待检测的物体(例如,待检测的病人)。在一些实施例中,床架120可以在检测过程中在腔体110内部移动。如图1所示,在检测过程中,床架120可以沿Z轴方向移动。根据检测的需要,病人可以仰卧、俯卧、头部在前或脚部在前。在一些实施例中,床架120可以在腔体110内部移动。床架120移动的速度可以是恒定的或变化的。床架120移动的速度可以和扫描时间、扫描区域等因素相关。在一些实施例中,床架120移动的速度可以是系统默认值,由用户(例如,医生、成像技师等)设定,或两者相结合。例如,系统对床架120移动的速度有默认设置;当没有用户设定时,床架120可以按照系统的默认设置移动;当用户设定床架120的移动速度时,系统的默认设置的床架120移动速度可以被忽略,并且床架120可以按照用户设定的移动速度移动。在一些实施例中,成像系统100可以进行螺旋扫描。具体地,在螺旋扫描期间,探测器170和辐射发生器180绕Z轴的轴向运动与床架120沿Z轴的运动可以同时进行。在一些实施例中,成像系统100可以进行轴向扫描。具体地,在轴向扫描期间,探测器170和辐射发生器180绕Z轴的轴向运动与床架120沿Z轴的运动可以不同时进行。例如,在探测器170和辐射发生器180绕Z轴旋转时,床架120可以静止不动。
高压发生器130可以产生高压或者强电流。在一些实施例中,所产生的高压或强电流可以传输至辐射发生器180。所产生的高压可以是80kV-140kV、75Kv-150kV或120kV-140kV。所产生的电流可以是20mA-500mA。
操作控制计算机设备140可以与腔体110、辐射发生器180、探测器170、高压发生器130、床架120、图像生成器150和/或显示设备160相关联。上述设备之间可以通过直接或者间接的方式相连接。在一些实施例中,操作控制计算机设备140可以控制辐射发生器180和探测器170绕Z轴旋转。在一些实施例中,操作控制计算机设备140可以控制床架120沿Z轴运动。在一些实施例中,操作控制计算机设备140可以控制腔体110旋转至某一位置。该位置可以是系统默认值,也可以由用户(例如,医生、成像技师等)设定。在一些实施例中,操作控制计算机设备140可以控制高压发生器130。例如,操作控制计算机设备140可以控制高压生成器130产生的电压或电流的强度。在一些实施例中,操作控制计算机设备140可以控制显示设备160。例如,操作控制计算机设备140可以控制与显示相关的参数。所述参数可以包括显示尺寸、显示比例、显示顺序、显示数量等。作为示例,可以控制显示图像的整体或部分。作为又一示例,可以将一个图像分为几个子图(例如头部子图、颈部子图、下肢子图等),同时或依次显示几个子图。作为进一步示例,可以放大或缩小某个图像。
图像生成器150可以生成图像。在一些实施例中,图像生成器150可以进行图像预处理、图像重建、和/或伪影校正等操作。图像生成器150可以和探测器170、操作控制计算机设备140、显示设备160和/或外部数据源(图中未体现)相关联。在一些实施例中,图像生成器150可以从探测器170或者外部数据源接收数据,并基于所接收的数据生成图像。所述的外部数据源可以是硬盘、软盘、随机存储器(random access memory,RAM)、动态随机存储器(dynamic random access memory,DRAM)、静态随机存储器(static random access memory,SRAM)、磁泡存储器(bubble memory)、薄膜存储器(thin film memory)、磁镀线存储器(magnetic plated wire memory)、相变存储器(phase change memory)、闪速存储器(flash memory)、云盘(a cloud disk)等中的一种或多种。在一些实施例中,图像生成器150可以将生成的图像传送至显示设备160进行显示。
显示设备160可以显示所接收的扫描数据或图像。显示设备160可以和操作控制计算机设备140和图像生成器150相连接。在一些实施例中,显示设备160 可以显示由图像生成器150所生成的图像。在一些实施例中,显示设备160可以显示对用户(例如,医生、成像技师等)的提示。例如,图像生成器150判断需要更新校正参数(例如,空气校正表、标记的坏通道等)时,可以通过显示设备160提示用户是否更新校正参数。此处所述校正参数可以指图像生成器150对扫描数据或图像进行伪影校正时所使用的参数。显示设备160可以通过显示对话框的形式提示用户,可以通过提示音或语音的方式提示用户,也可以是以上几种方式的结合。用户可以选择是否回复提示,回复的方式可以包括手动输入、语音输入等中的一种或几种的组合。例如,当提示用户是否更新校正参数时,用户可以在显示设备160上点击“确认”,则用户选择更新校正参数;反之,用户可以在显示设备160上点击“取消”,则用户选择不更新校正参数。在一些实施例中,显示设备160可以显示需要更新的校正参数的种类(例如,空气校正表、标记的坏通道等)。在一些实施例中,显示设备160可以向图像生成器150和/或操作控制计算机设备140发送指令。例如,用户可以通过显示设备160设置成像参数,该成像参数可以发送至操作控制计算机设备140。所述成像参数可以包括扫描协议和图像重建参数等。其中,扫描协议可以包括一个或多个扫描参数,例如,扫描时间、扫描目标定位信息、机架的旋转速度、电压/电流的强度等中的一个或多个。不同的被测物可以对应不同的扫描协议。图像重建参数可以包括重建视场、重建矩阵、重建算法等中的一个或多个。
需要说明的是,以上对于成像系统100的描述,仅为描述方便,并不能把本申请限制在所举实施例范围之内。可以理解,对于本领域的技术人员来说,在了解该系统的原理后,可能在不背离这一原理的情况下,对各个模块进行任意组合,或者构成子系统与其他模块连接,对实施上述方法和系统的应用领域形式和细节上的各种修正和改变。例如,成像系统100还可以包括与成像系统100相关的外部设备(例如,数据库、终端等)。
根据本申请的一些实施例,图2所示的是生成图像过程的一种示例性流程图。在步骤204中,可以设置扫描协议。扫描协议的设置可以由操作控制计算机设备140实现。在一些实施例中,扫描协议可以包括扫描时间、扫描目标定位信息、机架的位置、机架的旋转速度、电压/电流的强度等中的一个或多个。作为示例,可以旋转床架120至某一特定位置。作为又一示例,可以移动腔体110至某一特定位置。在一些实施例中,该特定位置可以是系统默认值,由用户(例如,医生、成像技师等)设定,或两者的结合。在一些实施例中,根据被测物的不同,设置的位置也不同。在一些实施例中,被测 物可以是检测对象的整体或其中的一部分。检测对象可以包括人体、动物、非生物物体等。作为示例,被测物可以包括器官、组织、病变部位、肿瘤部位或者上述部位的任意组合。例如,被测物可以是头部、胸部、腹部、心脏、肝脏、上肢、下肢、脊椎、骨骼、血管等,或者上述部位的任意组合。
在步骤206中,可以对被测物进行扫描。在步骤208中,可以获取被测物的扫描数据。扫描过程和获取扫描数据的过程可以由辐射发生器180和探测器170共同完成。在一些实施例中,放射性射线可以透过被测物,经过被测物吸收后,由探测器170接收。在一些实施例中,放射性射线可以由被测物反射至探测器170并由探测器接收。在一些实施例中,扫描数据可以全部或部分地从外部数据源获得。在一些实施例中,可以对扫描数据进行处理。对扫描数据的处理可以包括对扫描数据进行去噪、伪影校正等。
在步骤210,可以根据扫描数据,生成图像。在一些实施例中,步骤210可以由图像生成器150实现。生成的图像可以包括CT图像、MRI图像、PET图像或上述图像的任意组合。作为示例,可以利用再现算法计算得到CT图像。在一些实施例中,生成的图像可以包括二维图像或三维图像。在一些实施例中,还可以对生成的图像进行处理。对图像的处理可以包括对图像的滤波去噪、灰度的归一化、图像水平旋转、尺度大小的调整、部分遮挡物的去除(例如,眼镜的去除)、伪影校正等。
在步骤212中,可以输出图像。在一些实施例中,图像可以由显示设备160显示。在一些实施例中,图像可以传输至任何一个与成像系统100相关的外部设备,例如,数据库、终端等。
需要注意的是,以上对于图像生成过程的描述,仅为描述方便,并不能把本申请限制在所举实施例范围之内。可以理解,对于本领域的技术人员来说,在了解该系统的原理后,可能在不背离这一原理的情况下,对各个步骤进行调换或者任意组合,对实施上述方法和系统的应用领域形式和细节上的各种修正和改变。例如,可以在获取扫描数据步骤208和生成图像步骤210之间加入其他的选择或处理条件。例如,可以将获取的扫描数据进行存储备份。类似地,该存储备份步骤可以添加至流程图中的任何两个步骤之间。
根据本申请的一些实施例,图3是一种计算机设备的架构,这种计算机设备能够被配置为实现实施本申请中披露的特定系统。这种计算机可以是一个通用目的的计算机,或是一个有特定目的的计算机。两种计算机都可以被被配置为实现本实施例中的特定系统。计算机300可以被配置为实施本申请中披露的成像系统100中 成像所需要的信息的任何组件。例如:图像生成器150能够被如计算机300的计算机通过其硬件设备、软件程序、固件以及他们的组合所实现。为了方便起见,图3中只绘制了一台计算机,但是本实施例所描述的成像系统100中成像所需要的信息的相关计算机功能是可以以分布的方式、由一组相似的平台所实施的,分散系统的处理负荷。
计算机300可以包括通信端口350,与之相连的可以是实现数据通信的网络。计算机300还可以包括一个中央处理系统(CPU)单元320用于执行程序指令,由一个或多个处理器组成。示例的计算机平台包括一个内部通信总线310,不同形式的程序储存单元以及数据储存单元,例如硬盘370,只读存储器(ROM)330,随机存取存储器(RAM)340,能够被配置为计算机处理和/或通信使用的各种数据文件,以及CPU所执行的可能的程序指令。计算机300还可以包括一个输入/输出组件360,支持计算机与其他组件(如用户界面380)之间的输入/输出数据流。计算机300也可以通过通信网络接受程序及数据。
根据本申请的一些实施例,图4所示的是图像生成器150的示意图。图像生成器150可以包括一个数据接收模块410、一个图像重建模块420、一个校正模块430、一个存储模块440、一个控制模块450、和一个图像输出模块460。在一些实施例中,数据接收模块410可以被如计算机300的计算机通过输入/输出组件360和/或通信端口350所实现。输出模块460可以被如计算机300的计算机通过输入/输出组件360和/或通信端口350所实现。图像重建模块420、校正模块430和/或控制模块450可以被如计算机300的计算机通过CPU320和/或硬盘370所实现。存储模块440可以被如计算机300的计算机通过ROM330和/或RAM340所实现。
数据接收模块410可以接收与被测物相关的数据或与系统相关的数据。数据接收模块410接收的数据可以包括被测物的基本信息(例如,姓名、年龄、性别、身高、体重,病史等)、扫描协议、扫描数据、图像、探测器温度、校正参数等。所述校正参数可以用于校正扫描数据或图像。在一些实施例中,扫描数据可以由探测器170收集并传送至数据接收模块410。在一些实施例中,扫描数据由探测器170收集之后,可以先传送至任何一个与系统相关的存储设备,再由存储设备传送至数据接收模块410。在一些实施例中,数据接收模块410可以从操作控制计算机设备140接收扫描协议。在一些实施例中,数据接收模块410可以从任何一个与系统相关的存储设备接收被测物的基本信息。在一些实施例中,数据接收模块410可以从探测器170获取探测器温度。在一些 实施例中,用户(例如,医生、成像技师等)可以通过显示设备160或与成像系统100相关的外部设备(例如,终端等)设置探测器温度,之后将探测器温度数据发送至操作控制计算机设备140,数据接收模块410可以从操作控制计算机设备140获取探测器温度。在一些实施例中,数据接收模块410可以从任何一个与系统相关的存储设备获取校正参数。在一些实施例中,数据接收模块410接收的与被测物相关的数据可以存储在存储模块440中,也可以发送至图像生成器150中其它模块进行处理。例如,数据接收模块410可以将接收的扫描数据发送至图像重建模块420进行图像重建,也可以发送至校正模块430进行伪影校正。又例如,数据接收模块410可以将接收的校正参数发送至校正模块430用于伪影校正,或校正模块430可以根据情况更新校正参数。进一步例如,数据接收模块410可以将接收的扫描协议、探测器温度等参数发送至校正模块430,校正模块430可以基于所述扫描协议和/或探测器温度更新校正参数。
图像重建模块420可以生成图像。在一些实施例中,图像重建模块420可以接收由数据接收模块410所获取的原始扫描数据或由校正模块430进行伪影校正后的扫描数据,并根据原始扫描数据或进行伪影校正后的扫描数据生成图像。在一些实施例中,图像重建模块420可以从存储模块440中获取原始扫描数据或进行伪影校正后的扫描数据并生成图像。在一些实施例中,图像重建模块420可以对生成的图像进行处理操作。所述处理操作可以包括滤波去噪、灰度的归一化、图像水平旋转、尺度大小的调整、部分遮挡物的去除(例如,眼镜的去除)等中的一种或多种。在一些实施例中,图像重建模块420生成的图像可以发送至输出模块460,或存储在存储模块440中。在一些实施例中,图像重建模块420可以是可选的;图像可以由数据接收模块410从任何一个与系统相关的存储设备中读取。
校正模块430可以根据校正参数对扫描数据或图像进行伪影校正,和/或对校正参数进行更新。校正参数可以包括空气校正表和/或标记的坏通道。在一些实施例中,校正模块430可以从数据接收模块410或存储模块440中获取扫描数据并对所述扫描数据进行伪影校正。在一些实施例中,校正模块430可以从图像重建模块420或存储模块440中获取图像并对所述图像进行伪影校正。在一些实施例中,校正模块430可以更新校正参数。例如,校正模块430可以根据空气扫描,更新空气校正表。此处所述空气扫描是指在成像系统100中没有被测物时进行的扫描。所述空气校正表可以包括通过空气扫描获得的一个或多个扫描协议对应的校正参数(也称为“空气校正参数”)。在一些实施例中,更新的校正参数可以存储在存储模块440中。在一些实施例中,校正模块430 可以通过输出模块460向操作控制计算机设备140发送指令。例如,校正模块430可以通过输出模块460向操作控制计算机设备140发送进行空气扫描的指令,操作控制计算机设备140接收到进行空气扫描的指令后,控制扫描仪进行空气扫描。
存储模块440可以存储数据、图像和/或相关参数等。存储的数据可以是各种形式的数据。例如,数值、信号、既定目标的相关信息、命令、算法、程序等中的一种或多种。作为示例,扫描数据、图像、校正参数可以存储在存储模块440中。在一些实施例中,存储模块440可以包括固定的存储系统(例如,磁盘)、移动式的存储系统(例如,USB接口、火线端口等的接口和/或磁盘驱动类的驱动)等。具体地,在一些实施例中,存储模块440可以存储原始扫描数据、原始图像、经过伪影校正的扫描数据(也称为“前校正扫描数据”)、基于经过伪影校正的扫描数据得到的图像(也称为“前校正图像”)、经过伪影校正的图像(也称为“后校正图像”)、原始校正参数、更新的校正参数等。存储模块440可以是数据的临时存储,即为下一次的数据处理转存数据;存储模块440可以是数据的长期存储,即存储最终的数据处理结果。
控制模块450可以控制数据接收模块410、图像重建模块420、校正模块430、存储模块440、和/或输出模块460。在一些实施例中,控制模块450可以控制数据接收模块410接收数据的时间和/或传输数据的路径。在一些实施例中,控制模块450可以控制数据传输速度和数据传输模式(例如,实时传输或延时传输)等。在一些实施例中,控制模块450可以控制图像重建模块420进行图像重建。作为示例,控制模块450可以选择图像重建时所选用的算法。在一些实施例中,控制模块450可以控制校正模块430进行伪影校正和/或更新校正参数。在一些实施例中,控制模块450可以接收来自用户(例如,医生、成像技师等)的指令。
输出模块460可以输出信息。所述信息可以包括数据、图像和/或相关参数等。所述信息可以来自数据接收模块410、图像重建模块420、校正模块430、存储模块440、和/或控制模块450。所述信息可以有多种呈现方式,包括音频、视频、图像、文字等中的一种或多种。作为示例,可以通过麦克风、扩音器等播报信息。作为又一示例,可以在显示屏上呈现信息。在一些实施例中,所述信息可以是各种形式的数据,包括数值、信号、既定目标的相关信息、命令、算法、程序等中的一种或多种。作为示例,所述信息可以包括原始图像、更新的校正参数、经过伪影校正的扫描数据、经过伪影校正的图像等。在一些实施例中,所述信息可以输出至任何一个与成像系统100相关的外部设备(例如数据库、终端等)。在一些实施例中,所述信息可以显示在任何一个显示设备上 (例如,显示设备160、电脑显示屏、手机显示屏等)。
在一些实施例中,图像生成器150内部的各个模块可以包括一个或多个通用处理器。所述处理器可以包括可编程逻辑设备(programed programmable logic device,PLD)、专用集成电路(special integrated circuit,ASIC)、微处理器(microprocessor)、嵌入式芯片系统(system on chip,SoC)、通讯信号处理器(digital signal processor,DSP)等中的一种或多种。所述两个及以上的处理器可结合在一个硬件设备上。所述处理器可通过多种方式实现数据处理,例如,通过硬件、软件或硬件软件结合等方式。例如,图像生成器150能够被如计算机300的计算机通过其硬件设备、软件程序、固件以及他们的组合所实现。
以上对于图像生成器150的描述仅仅是具体的示例,不应被视为是唯一可行的实施方案。显然,对于本领域的专业人员来说,在了解基本原理后,可能在不背离这一原理的情况下,对具体实施方式与步骤进行形式和细节上的各种修正和改变,但是这些修正和改变仍在以上描述的范围之内。例如,图像生成器150中各个模块内可以添加一个存储单元,用于存储各模块运行过程中产生的中间数据或处理结果。又例如,一个或多个模块可以集成在同一个模块中,实现一个或多个模块的功能。再例如,数据接收模块410和输出模块460可以集成在一个模块中,同时实现输入/输出功能。进一步例如,图像生成器150可以省略存储模块440,各模块运行过程中产生的中间数据或处理结果可以通过输出模块460存储在外部数据源中。
根据本申请的一些实施例,图5是校正模块430的示意图。如图5所示,校正模块430可以包括一个原始数据获取单元510、一个更新单元520和一个伪影校正单元530。
原始数据获取单元510可以获取原始数据。原始数据可以包括原始扫描数据和/或原始图像。此处所述原始扫描数据或原始图像可以指没有经过伪影校正的扫描数据或图像。在一些实施例中,原始数据获取单元510可以从数据接收模块410、存储模块440或图像重建模块420获取原始数据。在一些实施例中,原始数据获取单元510可以从任何一个与成像系统100相关的外部设备(例如,数据库、终端)中获取原始数据。在一些实施例中,原始数据获取单元510可以接收由用户(例如医生、图像工程师)输入的原始数据。
更新单元520可以更新校正参数。校正参数可以包括空气校正表或标记的坏通道。此处所述空气校正表可以根据空气扫描结果获得。空气扫描可以指成像系统100中 没有被测物时进行的扫描。不同温度对应的空气校正表可以是不同的。某一温度对应的空气校正表可以包括至少一组扫描协议对应的空气校正参数。在一些实施例中,校正参数可以有一定时间的有效期(例如,3个月、6个月或1年等)。当校正参数过期或成像系统100运行过程中发现原始校正参数不适用时,可以对校正参数进行更新。例如,在成像系统100运行过程中发现探测器温度不同于原始校正参数对应的温度时,可以提示用户(例如,医生、成像技师等)是否更新校正参数,或自动更新校正参数。在一些实施例中,更新单元520可以可以通过输出模块460向操作控制计算机设备140发送提示指令,由操作控制计算机设备140控制显示设备160或与成像系统100相关的外部设备(例如,终端等)提示用户(例如,医生、成像技师等)。例如,更新单元520可以提示用户是否更新校正参数和/或更新校正参数的种类。
伪影校正单元530可以获取校正参数,和/或根据获取的校正参数对原始数据进行伪影校正。伪影可以指原本被测物中并不存在却在被测物的图像上出现的各种形态的影像。造成伪影的原因可以包括与设备相关的原因或与被测物相关的原因。以CT成像为例,与设备相关的原因所导致的伪影可以包括与系统设计相关的伪影、与辐射发生器相关的伪影、与探测器相关的伪影等中的一种或多种。根据伪影的形态,伪影可以包括条状伪影、阴影状伪影、环状或弧状伪影等中的一种或多种。造成条状伪影的原因可以包括数据采样不当、部分容积效应、被测物的运动、金属物、射线束硬化、噪声、螺旋扫描、机械故障等中的一种或多种。造成阴影状伪影的原因可以包括部分容积效应、射线束硬化、螺旋扫描、散射线、焦外辐射、投影数据不全等中的一种或多种。造成环状或弧状伪影的原因可以包括探测器像素单元增益不同、探测器增益变化、探测器通道故障等中的一种或多种。此处所述探测器增益可以指探测器电流、电压或功率增加的程度。
在一些实施例中,伪影校正单元530可以从原始数据获取单元510获取原始扫描数据,并对原始扫描数据进行前校正(也称为“前处理”),并生成前校正扫描数据。又例如,伪影校正单元530可以从原始数据获取单元510获取原始图像,并对原始图像进行后校正(也称为“后处理”),并生成后校正图像。进一步例如,可以根据前校正扫描数据重建生成前校正图像,伪影校正单元530可以对前校正图像进行后校正处理,并生成后校正图像。此处前校正可以指在图像重建前对扫描数据进行伪影校正,以消除或减弱伪影。后校正可以指在图像重建后对图像进行伪影校正,以消除或减弱伪影。在成像过程中,可以只进行前校正或只进行后校正,也可以既进行前校正又进行后校正。此处前校正扫描数据可以指对原始扫描数据进行前校正处理得到的扫描数据。前校正图像 可以指由前校正扫描数据经过图像重建得到的图像。后校正图像可以指对原始图像或前校正图像进行后校正处理得到的图像。
根据本申请的一些实施例,图6是伪影校正过程的一种示例性流程图。在步骤610中,可以获取原始数据。获取原始数据的过程可以由原始数据获取单元510实现。原始数据可以包括原始扫描数据和原始图像。此处所述原始扫描数据或原始图像可以指没有经过伪影校正的扫描数据或图像。在步骤620中,可以更新校正参数。更新校正参数的过程可以由更新单元520实现。在一些实施例中,校正参数可以有一定时间的有效期(例如,3个月、6个月或1年等),成像系统100检测到校正参数已过期时,可以更新校正参数。例如,某一温度对应的空气校正表过期后可以重新产生该温度对应的新的空气校正表。在一些实施例中,成像系统100可以以一定的时间间隔(例如,1个月、3个月、6个月、1年等)更新校正参数。在一些实施例中,可以在成像系统100运行的过程中根据实际情况实时更新校正参数。例如,在成像系统100运行的过程中,发现探测器温度不同于空气校正表对应的温度时,可以实时更新并生成探测器温度对应的空气校正表,并根据更新的空气校正表对原始数据进行伪影校正。又例如,在成像系统100运行的过程中,发现探测器通道发生故障时,可以标记坏通道,对坏通道的原始数据进行伪影校正。再例如,在成像系统100运行的过程中,发现设定温度对应的空气校正表中的空气校正参数出现错误,可以更新设定温度对应的空气校正表。
在步骤630中,可以根据更新的校正参数对原始数据进行伪影校正。伪影校正可以包括前校正和后校正。前校正可以指在图像重建前对扫描数据进行伪影校正,以消除或减弱伪影。后校正可以指在图像重建后对图像进行伪影校正,以消除或减弱伪影。在CT成像过程中,可以只进行前校正或只进行后校正,或既进行前校正又进行后校正。在一些实施例中,根据造成伪影原因的不同,可以使用不同校正方法对扫描数据或图像进行伪影校正,以消除或减弱伪影。例如,对于由探测器增益引起的伪影,可以进行空气扫描,获取空气校正表,根据空气校正表对扫描数据或图像进行伪影校正,以补偿探测器的增益。又例如,对于由探测器坏通道引起的伪影,可以标记探测器的坏通道,对通过坏通道采集的扫描数据或图像进行进一步伪影校正。在一些实施例中,可以结合空气扫描和坏通道标记两种方法对扫描数据或图像进行伪影校正。在一些实施例中,更新校正参数的步骤可以发生在前校正的过程中,或后校正的过程中。
在一些实施例中,图6中描述的伪影校正流程可以省略步骤620,可以只根据原始校正参数对原始数据进行伪影校正。伪影校正流程可以只进行前校正或只进行后校 正,或既进行前校正又进行后校正。具体地,对于只进行前校正的流程,可以先根据原始校正参数对原始扫描数据进行伪影校正,生成前校正扫描数据,之后对前校正扫描数据进行重建生成前校正图像。对于只进行后校正的流程,可以先对原始扫描数据进行重建生成原始图像,之后根据原始校正参数对原始图像进行伪影校正,生成后校正图像。对于既进行前校正又进行后校正的流程,可以先根据原始校正参数对原始扫描数据进行伪影校正,生成前校正扫描数据,再对前校正扫描数据进行重建,生成前校正图像,之后根据原始校正参数对前校正图像进行伪影校正,生成后校正图像。在一些实施例中,后校正图像可以包括对前校正图像或原始图像进行伪影校正生成的图像。
在一些实施例中,图6中描述的伪影校正流程可以进一步包括提示用户的步骤,用于提示用户是否更新校正参数。提示用户的过程可以由更新单元520实现。提示的方式可以包括显示对话框、提示音、语音提示等中的一种或几种的组合。
以上描述仅仅是具体的示例,不应被视为是唯一可行的实施方案。显然,对于本领域的专业人员来说,在了解基本原理后,可能在不背离这一原理的情况下,对具体实施方式与步骤进行形式和细节上的各种修正和改变,但是这些修正和改变仍在以上描述的范围之内。例如,步骤620可以在步骤610之前执行,当系统检测到探测器温度不同于空气校正表的适用温度时,可以启动探测器温度下的空气扫描并生成探测器温度下的空气校正表。
根据本申请的一些实施例,图7是更新单元520的示意图。如图7所示,更新单元520可以包括一个校正表获取子单元705、一个温度获取子单元710和一个校正表更新子单元720。
校正表获取子单元705可以获取第一温度对应的第一空气校正表。此处所述第一温度可以指探测器的正常工作温度。在一些实施例中,第一温度对应的第一空气校正表可以包括在第一温度下至少一组扫描协议对应的空气校正参数。在一些实施例中,第一空气校正表可以存储在存储模块440中,校正表获取子单元705可以从存储模块440中获取第一空气校正表。在一些实施例中,第一空气校正表可以存储在外部数据源(图中未体现)中,校正表获取子单元705可以通过数据接收模块410从外部数据源中获取第一空气校正表。在一些实施例中,校正表获取子单元705可以集成在伪影校正单元530中。在一些实施例中,校正表获取子单元705可以是可选的,获取第一空气校正表的过程可以由伪影校正单元530实现。
温度获取子单元710可以获取探测器温度(也称为“探测器第二温度”)。在一 些实施例中,探测器温度可以包括探测器的实时温度或设定温度。在一些实施例中,温度获取子单元710可以通过数据获取模块410从探测器170中获取探测器的实时温度。在一些实施例中,用户(例如,医生、成像技师等)可以通过显示设备160或与成像系统100相关的外部设备(例如,终端等)设定探测器温度,然后将设定温度发送至操作控制计算机设备140,温度获取子单元710可以通过数据获取模块410从操作控制计算机设备140中获取设定温度。
校正表更新子单元720可以更新空气校正表。此处所述更新空气校正表可以指更新第一空气校正表中至少一组扫描协议对应的空气校正参数。在一些实施例中,校正表更新子单元720可以通过输出模块460向操作控制计算机设备140发送空气扫描的指令,由操作控制计算机设备140控制扫描仪进行空气扫描。在一些实施例中,校正表更新子单元720可以通过输出模块460向操作控制计算机设备140发送提示指令,由操作控制计算机设备140控制显示设备160或与成像系统100相关的外部设备(例如,终端等)提示用户(例如,医生、成像技师等)。例如,当第一空气校正表不适用时(例如,探测器温度不同于第一温度时),校正表更新子单元720可以通过输出模块460向操作控制计算机设备140发送提示指令,提示用户是否更新空气校正表。
根据本申请的一些实施例,图8是更新空气校正表的一种示例性流程图。在步骤810中,可以获取探测器第一温度对应的第一空气校正表。获取探测器第一温度对应的第一空气校正表的过程可以由校正表获取子单元705实现。在一些实施例中,第一温度对应的第一空气校正表可以包括在第一温度下至少一组扫描协议对应的空气校正参数。在一些实施例中,第一温度可以是探测器的正常工作温度。在一些实施例中,第一温度可以是任意温度。在一些实施例中,第一空气校正表可以存储在存储模块440中,校正表获取子单元705可以从存储模块440中获取第一空气校正表。在一些实施例中,第一空气校正表可以存储在外部数据源中(图中未体现),校正表获取子单元705可以通过数据接收模块410从外部数据源中获取第一空气校正表。在一些实施例中,当校正表获取子单元705集成在伪影校正单元530中或更新单元520省略校正表获取子单元705时,获取第一空气校正表的过程可以由伪影校正单元530实现。
在步骤820,可以获取探测器第二温度。获取探测器第二温度的过程可以由温度获取子单元710实现。在一些实施中,第二温度可以是探测器的实时温度,或设定温度。在一些实施例中,当第二温度为设定温度时,设定温度可以根据用户的设定确定。当第二温度为探测器实时温度时,实时温度可以根据探测器170上的一个或多个温度传 感器确定。例如,可以取多个温度传感器所测温度的平均值作为探测器的实时温度。又例如,可以将一段时间内(例如,5分钟、10分钟)温度传感器测得的温度的平均值作为探测器的实时温度。
在步骤830,可以根据探测器的第二温度和第一空气校正表得到第二温度对应的第二空气校正表。得到第二空气校正表的过程可以由校正表更新子单元720实现。在一些实施例中,第二温度对应的第二空气校正表可以包括至少一组扫描协议在第二温度下对应的空气校正参数。在一些实施例中,可以先得到至少一组扫描协议在第二温度下的空气校正参数,之后可以根据所述至少一组扫描协议在第二温度下的空气校正参数和第一空气校正表得到第二空气校正表。
在一些实施例中,第一温度和第二温度可以是一个温度范围,或一个具体的温度值。作为示例,第一温度可以为39℃。在一些实施例中,当更新空气校正表的流程发生在图像重建过程中,第二温度可以是探测器的实时温度。在一些实施例中,更新空气校正表的过程可以发生在任意时间,第二温度可以是系统或用户设定的任意温度。例如,系统可以根据第一空气校正表得到多个第二温度下的第二空气校正表。
根据本申请的一些实施例,图9是伪影校正的一种示例性流程图。在步骤910中,可以获取第二温度对应的原始数据。获取第二温度对应的原始数据的过程可以由原始数据获取单元510实现。在步骤920,可以获取探测器第一温度对应的第一空气校正表。获取探测器第一温度对应的第一空气校正表的过程可以由校正表获取子单元705实现。在步骤930中,可以获取探测器的第二温度。获取探测器第二温度的过程可以由温度获取子单元710实现。在步骤940中,可以判断探测器的第二温度是否超过第一温度。如果是,则执行步骤950;如果否,则执行步骤970。判断探测器的第二温度是否超过第一温度的过程可以由校正表更新子单元720实现。
在步骤950中,可以在探测器的第二温度下进行空气扫描,根据空气扫描和第一空气校正表,得到第二温度对应的第二空气校正表。得到第二温度对应的第二空气校正表的过程可以由校正表更新子单元720实现。此处所述空气扫描可以指在成像系统100中没有被测物时进行的扫描。在一些实施例中,校正表更新子单元720可以通过输出模块460向操作控制计算机设备140发送空气扫描的指令,由操作控制计算机设备140控制扫描仪进行空气扫描。
具体地,可以根据第二温度下的空气扫描获得第二温度的基准校正值,基于第一空气校正表和基准校正值获得第二空气校正表。例如,可以获取至少一组扫描协议在 第二温度下的空气校正参数作为基准校正值,在第一空气校正表中确定一组与基准校正值对应的空气校正参数(此处所述空气校正参数对应的扫描协议与基准校正值对应的扫描协议相同),计算该空气校正参数与基准校正值之间的差值,并根据该差值确定第二空气校正表中多个扫描协议在第二温度下的空气校正参数。作为示例,可以在第二温度下基于某一扫描协议进行空气扫描,获得第二温度下的扫描数据,根据该扫描数据确定探测器170的增益,并根据该增益确定第二温度下该扫描协议的的空气校正参数,并将该空气校正参数作为基准校正值。
在一些实施例中,可以通过空气扫描获得两组或两组以上扫描协议在第二温度下的空气校正参数,这种情况下可以选择其中一组扫描协议的空气校正参数作为基准校正值,也可以分别计算这些扫描协议的空气校正参数与第一空气校正表中相同扫描协议的空气校正参数的差值,根据这些差值的平均值确定第二空气校正表中多个扫描协议在第二温度下的空气校正参数。
作为示例,以生成一组扫描协议在第二温度下的空气校正参数为例,基准校正值可以表示为Anew,其对应的扫描协议为A,第一空气校正表中扫描协议A的空气校正参数可以表示为Anormal。Anew和Anormal的差值可以根据公式(1)计算得到:
ΔA=Anew-Anormal,                      (1)
其中,ΔA可以表示基准校正值与第一空气校正表中对应的空气校正参数的差值。
对于第一空气校正表和第二空气校正表,不同扫描协议对应的空气校正参数的差值可以是一致的,因此,第二空气校正表可以根据公式(2)获得:
Figure PCTCN2016099069-appb-000001
其中,Bnew,Cnew,Znew可以表示第二空气校正表中扫描协议分别为B、C、D的空气校正参数。
在一些实施例中,根据Anew,Bnew,Cnew,…,Znew可以得到第二空气校正表。
在步骤960,可以根据第二空气校正表对原始数据进行伪影校正。伪影校正的过程可以由伪影校正单元530实现。
在一些实施例中,图9中描述的流程还可以包括当探测器第二温度超过第一温度时,对用户进行提示。例如,可以提示用户探测器第二温度超过第二温度,和/或是否更新空气校正表。
在一些实施例中,步骤910、步骤920和步骤930可以没有特定的顺序。在一些实施例中,在成像系统100运行的过程中,可以每隔一段时间对探测器温度进行一次判断(步骤940),可以在每一次扫描开始前对探测器温度进行一次判断。
在一些实施例中,图9中描述的流程可以应用于成像系统100运行过程中实时更新空气校正表,或应用于生成某一个或多个温度对应的空气校正表。当应用于生成某一温度对应的空气校正表中时,图9中描述的流程可以省略步骤910、步骤960和步骤970。
在一些实施例中,若在成像系统100运行过程中发现探测器的第二温度超过第一温度,可以先根据空气扫描得到成像系统100运行过程中设定的扫描协议对应的第二温度下的空气校正参数,之后根据该空气校正参数对原始数据进行校正。成像过程结束后,可以根据第一空气校正表和成像系统100运行过程中设定的扫描协议对应的第二温度下的空气校正参数生成第二温度对应的第二空气校正表。
在一些实施例中,当探测器的第二温度超过第一温度时,可以先判断存储模块440或外部数据源中是否有第二温度对应的空气校正表。如果存储模块440或外部数据源中有第二温度对应的空气校正表,可以从存储模块440或外部数据源中获取第二温度对应的空气校正表,并根据该第二温度对应的空气校正表对原始数据进行伪影校正;如果存储模块440或外部数据源中没有第二温度对应的空气校正表,可以执行步骤950,进行第二温度下的空气扫描。
在一些实施例中,当探测器的第二温度不同于第一温度时(例如,第二温度小于第一温度),成像系统100可以基于图9中所述方法得到第二温度对应的第二空气校正表。
根据本申请的一些实施例,图10是更新单元520的示意图。如图10所示,更新单元520可以包括一个预处理子单元1010、一个伪影信息提取子单元1020和一个校正参数更新子单元1030。
预处理子单元1010可以对原始数据进行预处理。所述原始数据可以包括原始扫描数据和/或原始图像。在一些实施例中,预处理可以包括根据原始校正参数对原始数据进行伪影校正。在一些实施例中,预处理子单元1010可以进一步生成预处理结果(也 可以称为“第一校正数据”)。所述预处理结果可以包括经过伪影校正的扫描数据(也称为“前校正扫描数据”)或经过伪影校正的图像(也称为“后校正图像”)。
伪影信息提取子单元1020可以提取伪影信息。此处所述伪影信息可以指原始数据中所包含的伪影信息。伪影信息可以从预处理结果中获得。例如,伪影信息提取子单元1020可以通过比较原始数据与预处理结果得到伪影信息。例如,伪影信息可以指从原始数据中消除或减弱的伪影信息。在一些实施例中,伪影信息可以包括伪影强度。
校正参数更新子单元1030可以根据伪影信息更新校正参数。在一些实施例中,校正参数可以包括空气校正表或标记的坏通道。在一些实施例中,校正参数更新子单元1030可以通过输出模块460向操作控制计算机设备140发送提示指令,由操作控制计算机设备140控制显示设备160或与成像系统100相关的外部设备(例如,终端等)提示用户(例如,医生、成像技师等)。所述指令可以是提示用户是否更新校正参数或提示用户需要更新的校正参数的种类(例如,空气校正表、标记的坏通道等)。
在一些实施例中,预处理子单元1010可以集成在伪影校正单元530中。在一些实施例中,预处理子单元1010可以是可选的,对原始数据进行预处理的过程可以由伪影校正单元530实现。
根据本申请的一些实施例,图11是更新校正参数的一种示例性流程图。在步骤1110中,可以获取原始数据。获取原始数据的过程可以由原始数据获取单元510实现。在步骤1120中,可以对原始数据进行预处理,得到预处理结果。所述预处理结果可以包括经过伪影校正的扫描数据或经过伪影校正的图像。预处理的过程可以由预处理子单元1010实现。在一些实施例中,预处理可以包括根据原始校正参数对原始数据进行伪影校正。在一些实施例中,在预处理过程中,可以对原始数据进行前校正和/或后校正。此处所述前校正指在图像重建前对扫描数据进行的校正;所述后校正指在图像重建后对图像进行的校正。
在步骤1130中,可以根据预处理结果,得到伪影信息。得到伪影信息的过程可以由伪影信息提取子单元1020实现。所述伪影信息可以指原始数据中所包含的伪影信息。在一些实施例中,伪影信息可以从预处理结果中获得。例如,伪影信息提取子单元1020可以通过比较原始数据与预处理结果得到伪影信息。例如,伪影信息可以指从原始数据中消除或减弱的伪影信息。作为示例,伪影信息可以指对原始扫描数据进行前校正所消除或减弱的伪影信息,或对原始图像进行后校正所消除或减弱的伪影信息。在一些实施例中,伪影信息可以包括伪影强度。
在步骤1140中,可以根据伪影信息更新校正参数。更新校正参数的过程可以由校正参数更新子单元1030实现。在一些实施例中,可以根据所述伪影信息判断需要更新的校正参数的种类(例如,空气校正表、标记的坏通道等)。例如,可以根据伪影强度判断是否需要更新校正参数和/或需要更新的校正参数的种类。
在一些实施例中,图11中描述的更新校正参数的方法可以进一步包括提示用户步骤。具体地,当需要更新校正参数时,校正参数更新子单元1030可以通过输出模块460向操作控制计算机设备140发送提示指令,由操作控制计算机设备140控制显示设备160或与成像系统100相关的外部设备(例如,终端等)提示用户是否更新校正参数,或提示用户需要更新的校正参数的种类(例如,空气校正表、标记的坏通道等)。提示的方式可以包括显示对话框、提示音、语音提示等中的一种或几种的组合。
根据本申请的一些实施例,图12是伪影校正的一种示例性流程图。在步骤1205中,可以获取原始数据。获取原始数据的过程可以由原始数据获取单元510实现。在步骤1210中,可以获取原始校正参数。此处所述原始校正参数可以指第一温度对应的第一空气校正表。获取原始校正参数的过程可以由预处理子单元1010实现。当更新单元520省略预处理子单元1010或预处理子单元1010集成在伪影校正单元530中时,获取原始校正参数的过程可以由伪影校正单元530实现。
在步骤1215中,可以根据原始校正参数对原始数据进行伪影校正,得到第一校正数据。得到第一校正数据的过程可以由预处理子单元1010实现。当更新单元520省略预处理子单元1010或预处理子单元1010集成在伪影校正单元530中时,得到第一校正数据的过程可以由伪影校正单元530实现。在一些实施例中,根据原始校正参数对原始数据进行伪影校正可以包括前校正和/或后校正。在一些实施例中,第一校正数据可以包括根据原始校正参数对原始数据进行伪影校正得到的数据(例如,根据原始校正参数进行伪影校正得到的前校正扫描数据或后校正图像)。
在步骤1220中,可以根据第一校正数据获得伪影强度。获得伪影强度的过程可以由伪影信息提取子单元1020实现。在一些实施例中,所述伪影强度可以是根据原始校正参数进行伪影校正时被消除或减弱的伪影信息的强度。作为示例,所述伪影强度可以指对原始数据进行前校正所消除或减弱的伪影信息的强度,或对原始数据进行后校正所消除或减弱的伪影信息的强度,或对原始数据进行前校正和后校正所消除或减弱的伪影信息的强度。在一些实施例中,伪影强度可以通过比较原始数据与第一校正数据获得。例如,伪影信息提取子单元1020可以通过比较原始扫描数据与前校正数据得到伪影强 度。又例如,伪影信息提取子单元1020可以通过比较原始图像与后校正图像(例如,原始图像经过后校正处理得到的图像)得到伪影强度。
在步骤1225中,可以判断所述伪影强度是否超过第一阈值。如果是,则可以进入步骤1230;如果否,则可以进入步骤1245。判断所述伪影强度是否超过第一阈值的过程可以由校正参数更新子单元1030实现。在步骤1245,可以根据原始数据或第一校正数据得到图像。根据原始数据或第一校正数据得到图像的过程可以由图像重建模块420实现。在一些实施例中,第一阈值可以指原始校正参数可以处理的伪影强度的上限。第一阈值的单位可以是CT值(Hounsfield Unit,HU)。在步骤1230中,可以确定被消除或减弱的伪影信息对应的通道。
在步骤1235中,可以获取所述通道在多个视角(例如,各个视角)角度上的扫描数据的平均值。作为示例,所述平均值可以根据公式(3)获得:
Figure PCTCN2016099069-appb-000002
其中,V0m可以表示所述平均值;chanB(i)可以表示所述通道在第i个视角角度上的扫描数据;VN可以表示总的视角的数量。在一些实施例中,VN可以是至少半圈或一圈的采样视角数量。
在步骤1240中,可以判断所述平均值是否大于等于第二阈值或小于等于第三阈值。若所述平均值大于等于第二阈值或小于等于第三阈值,则可以进入步骤1265,将该通道标记为坏通道;若所述平均值小于第二阈值并且大于第三阈值,则可以进入步骤1250。在一些实施例中,第二阈值和第三阈值可以是基于探测器性能的预设值。例如,第二阈值和第三阈值可以分别表示探测器在一定输出范围内的最大值和最小值。
在步骤1250中,可以获取所述通道与其相邻通道扫描数据之间的偏差。作为示例,可以先获得所述通道与其相邻通道的多个视角(例如,相邻通道的各个视角)角度上的扫描数据的线性插值,之后根据所述通道在多个视角角度上的扫描数据和所述线性插值获得所述偏差。具体地,所述线性插值可以根据公式(4)获得:
V1(i)=0.5*(chanBP(i)+chanBM(i)),i∈[1,VN],               (4)
其中,V1(i)可以表示所述线性插值;chanBP(i)和chanBM(i)可以表示通道chanB(i)的相邻通道的第i个视角角度上的扫描数据。
所述偏差可以根据公式(5)获得:
Figure PCTCN2016099069-appb-000003
其中,var可以表示所述偏差;mA(i)可以表示从扫描数据中获得的第i个采样的标称球管光通量值。
作为又一示例,可以先根据所述通道周围至少3个通道的扫描数据得到样条插值,之后根据所述通道在多个视角角度上的扫描数据和所述样条插值获得所述偏差。具体地,所述样条插值可以根据公式(6)获得:
V2(i)=spline(chanBP-2(i),chanBP-1(i),chanBM+1(i)),             (6)
其中,V2(i)可以表示所述样条插值;spline(x)可以表示样条插值函数;chanBP-2(i)、chanBP-1(i)和chanBM+1(i)可以表示所述通道周围的通道的第i个视角角度的扫描数据。
所述偏差可以根据公式(7)获得:
Figure PCTCN2016099069-appb-000004
其中,V1m可以表示V1(i)在VN个视角角度上的均值。在一些实施例中,V1m可以根据公式(8)得到:
Figure PCTCN2016099069-appb-000005
在步骤1255中,可以判断所述偏差是否大于等于第四阈值。若所述偏差大于等于第四阈值,则可以进入步骤1265,标记坏通道;若所述平均值小于第四阈值,则可以进入步骤1260,标记需要更新的空气校正参数。在一些实施例中,第四阈值可以表示有伪影的通道的信号强度与周围通道信号强度的偏差阈值。在一些实施例中,第四阈值可以是系统默认值。例如,成像系统100可以设定某一通道的信号强度与周围通道信号强度的偏差超过所述第四阈值时,判断该通道为坏通道。
在步骤1270,可以更新校正参数。在一些实施例中,步骤1225-步骤1270可以由校正参数更新子单元1030实现。在一些实施例中,可以通过进行空气扫描更新校正参数。在一些实施例中,可以更新某一温度对应的空气校正表(例如,第一空气校正表),生成新温度对应的空气校正表,例如,可以进行空气扫描更新某一温度对应的空气校正表。又例如,可以根据图8或图9中描述的方法生成新温度对应的空气校正表。在一些实施例中,更新校正参数可以包括更新标记的坏通道。
在步骤1275中,可以根据更新的校正参数对原始数据进行伪影校正,得到第二校正数据。得到第二校正数据的过程可以由伪影校正单元530实现。所述第二校正数据可以指根据更新的校正参数进行伪影校正得到的数据(例如,根据更新的校正参数进行伪影校正得到的前校正扫描数据或后校正图像)。作为示例,可以根据更新的空气校正表对原始数据进行伪影校正,或根据新温度对应的空气校正表对原始数据进行伪影校正,或根据标记的坏通道对坏通道对应的原始数据进行伪影校正。
在步骤1280中,可以根据第二校正数据,得到图像。得到图像的过程可以由图像重建模块420实现。
在一些实施例中,图12中描述的伪影校正流程可以省略步骤1270、步骤1275和步骤1280。在标记了需要更新的校正参数后,可以不进行更新,进行下一次成像过程时,再进行更新。例如,可以在步骤1260标记需要更新的空气校正参数,在下一次扫描进行前,进行一次空气扫描,根据该空气扫描更新标记的空气校正参数。又例如,可以在步骤1265标记坏通道,在下一次成像过程中,对标记的坏通道对应的原始数据进行伪影校正。
在一些实施例中,图12中描述的伪影校正流程可以省略步骤1260或步骤1265。确定需要更新的校正参数后,可以不进行标记,直接进行更新校正参数的步骤。
在一些实施例中,图12中描述的伪影校正的方法可以进一步包括提示用户的步骤。具体地,当需要更新校正参数时,校正参数更新子单元1030可以通过输出模块460向操作控制计算机设备140发送提示指令,由操作控制计算机设备140控制显示设备160或与成像系统100相关的外部设备(例如,终端等)提示用户是否更新校正参数,也可以提示用户需要更新的校正参数的种类(例如,空气校正表、标记的坏通道等)。提示的方式可以包括显示对话框、提示音、语音提示等中的一种或几种的组合。
在一些实施中,图8或图9中描述的方法可以与图11或图12中描述的方法结合进行。作为示例,在图11或图12描述的方法中,校正参数可以包括空气校正参数或标记的坏通道。更新空气校正参数可以包括更新某一温度对应的空气校正表,或生成新温度对应的空气校正表。当需要生成新温度对应的空气校正表时,可以根据图8或图9中描述的方法生成新温度对应的空气校正表。作为又一示例,可以在图11或图12描述的方法进行扫描前,根据图8或图9描述的方法判断探测器第二温度是否大于第一温度,如果探测器第二温度大于第一温度,则根据图8或图9描述方法生成第二温度对应的空气校正表,之后可以根据图11或图12描述的方法判断是否需要更新第二温度对应 的空气校正表或标记的坏通道。作为进一步的示例,可以在图11或图12描述的方法的过程中每隔一段时间(例如,5分钟、10分钟等)进行一次探测器实时温度是否大于第一温度的判断,如果探测器实时温度大于第一温度,则根据图8或图9描述方法生成探测器实时温度对应的空气校正表。
在一些实施例中,在N个被测物的成像过程中(例如,同一个患者的不同身体部位的成像过程),不必在每个对象的成像过程中都判断是否更新校正参数。例如,可以在扫描第M个被测物时,判断是否需要更新校正参数(例如,可以对第M个被测物执行图12中描述的方法),对其它N-1个被测物,可以根据原始校正参数或更新的校正参数对原始数据进行伪影校正(例如,可以对其它N-1个被测物执行步骤1205、步骤1210、步骤1215和步骤1245)。其中,M、N可以为整数,且M可以小于或等于N,,且M可以大于1(例如,M可以等于2,即对第2个被测物执行图12描述的方法)。在一些实施例中,M可以等于1,即对第1个被测物执行图12描述的方法。
在一些实施例中,本申请中涉及的第一阈值、第二阈值、第三阈值和第四阈值可以是一个数值范围,也可以是一个具体数值。第一阈值、第二阈值、第三阈值和第四阈值可以根据历史数据、成像系统100的默认值或用户(例如,医生、成像技师等)指令确定。
上文已对基本概念做了描述,显然,对于本领域技术人员来说,上述发明披露仅仅作为示例,而并不构成对本申请的限定。虽然此处并没有明确说明,本领域技术人员可能会对本申请进行各种修改、改进和修正。该类修改、改进和修正在本申请中被建议,所以该类修改、改进、修正仍属于本申请示范实施例的精神和范围。
同时,本申请使用了特定词语来描述本申请的实施例。如“一个实施例”、“一实施例”、和/或“一些实施例”意指与本申请至少一个实施例相关的某一特征、结构或特点。因此,应强调并注意的是,本说明书中在不同位置两次或多次提及的“一实施例”或“一个实施例”或“一替代性实施例”并不一定是指同一实施例。此外,本申请的一个或多个实施例中的某些特征、结构或特点可以进行适当的组合。
此外,本领域技术人员可以理解,本申请的各方面可以通过若干具有可专利性的种类或情况进行说明和描述,包括任何新的和有用的工序、机器、产品或物质的组合,或对他们的任何新的和有用的改进。相应地,本申请的各个方面可以完全由硬件执行、可以完全由软件(包括固件、常驻软件、微码等)执行、也可以由硬件和软件组合执行。以上硬件或软件均可被称为“数据块”、“模块”、“引擎”、“单元”、“组件”或“系统”。 此外,本申请的各方面可能表现为位于一个或多个计算机可读介质中的计算机产品,该产品包括计算机可读程序编码。
计算机可读信号介质可能包含一个内含有计算机程序编码的传播数据信号,例如在基带上或作为载波的一部分。该传播信号可能有多种表现形式,包括电磁形式、光形式等等、或合适的组合形式。计算机可读信号介质可以是除计算机可读存储介质之外的任何计算机可读介质,该介质可以通过连接至一个指令执行系统、装置或设备以实现通讯、传播或传输供使用的程序。位于计算机可读信号介质上的程序编码可以通过任何合适的介质进行传播,包括无线电、电缆、光纤电缆、RF、或类似介质、或任何上述介质的组合。
本申请各部分操作所需的计算机程序编码可以用任意一种或多种程序语言编写,包括面向对象编程语言如Java、Scala、Smalltalk、Eiffel、JADE、Emerald、C++、C#、VB.NET、Python等,常规程序化编程语言如C语言、Visual Basic、Fortran 2003、Perl、COBOL 2002、PHP、ABAP,动态编程语言如Python、Ruby和Groovy,或其他编程语言等。该程序编码可以完全在用户计算机上运行、或作为独立的软件包在用户计算机上运行、或部分在用户计算机上运行部分在远程计算机运行、或完全在远程计算机或服务器上运行。在后种情况下,远程计算机可以通过任何网络形式与用户计算机连接,比如局域网(LAN)或广域网(WAN),或连接至外部计算机(例如通过因特网),或在云计算环境中,或作为服务使用如软件即服务(SaaS)。
此外,除非权利要求中明确说明,本申请所述处理元素和序列的顺序、数字字母的使用、或其他名称的使用,并非用于限定本申请流程和方法的顺序。尽管上述披露中通过各种示例讨论了一些目前认为有用的发明实施例,但应当理解的是,该类细节仅起到说明的目的,附加的权利要求并不仅限于披露的实施例,相反,权利要求旨在覆盖所有符合本申请实施例实质和范围的修正和等价组合。例如,虽然以上所描述的系统组件可以通过硬件设备实现,但是也可以只通过软件的解决方案得以实现,如在现有的服务器或移动设备上安装所描述的系统。
同理,应当注意的是,为了简化本申请披露的表述,从而帮助对一个或多个发明实施例的理解,前文对本申请实施例的描述中,有时会将多种特征归并至一个实施例、附图或对其的描述中。但是,这种披露方法并不意味着本申请对象所需要的特征比权利要求中提及的特征多。实际上,实施例的特征要少于上述披露的单个实施例的全部特征。
一些实施例中使用了描述成分、属性数量的数字,应当理解的是,此类用于实 施例描述的数字,在一些示例中使用了修饰词“大约”、“近似”或“大体上”来修饰。除非另外说明,“大约”、“近似”或“大体上”表明所述数字允许有±20%的变化。相应地,在一些实施例中,说明书和权利要求中使用的数值参数均为近似值,该近似值根据个别实施例所需特点可以发生改变。在一些实施例中,数值参数应考虑规定的有效数位并采用一般位数保留的方法。尽管本申请一些实施例中用于确认其范围广度的数值域和参数为近似值,在具体实施例中,此类数值的设定在可行范围内尽可能精确。
针对本申请引用的每个专利、专利申请、专利申请公开物和其他材料,如文章、书籍、说明书、出版物、文档、物件等,特此将其全部内容并入本申请作为参考。与本申请内容不一致或产生冲突的申请历史文件除外,对本申请权利要求最广范围有限制的文件(当前或之后附加于本申请中的)也除外。需要说明的是,如果本申请附属材料中的描述、定义、和/或术语的使用与本申请所述内容有不一致或冲突的地方,以本申请的描述、定义和/或术语的使用为准。
最后,应当理解的是,本申请中所述实施例仅用以说明本申请实施例的原则。其他的变形也可能属于本申请的范围。因此,作为示例而非限制,本申请实施例的替代配置可视为与本申请的教导一致。相应地,本申请的实施例不仅限于本申请明确介绍和描述的实施例。

Claims (22)

  1. 一种计算机断层成像方法,包括:
    获取探测器第一温度对应的第一空气校正表,所述第一空气校正表包括至少一组扫描协议在所述第一温度下的空气校正参数,所述至少一组扫描协议包括第一组扫描协议;
    获取探测器的第二温度;以及
    根据所述第二温度和所述第一空气校正表,确定所述第二温度对应的第二空气校正表,所述第二空气校正表包括所述至少一组扫描协议在第二温度下的空气校正参数。
  2. 权利要求1所述的计算机断层成像方法,根据所述第二温度和所述第一空气校正表确定所述第二温度对应的第二空气校正表包括:
    判定所述第二温度大于所述第一温度得到第一判定结果;以及
    基于所述第一判定结果,根据所述第二温度和所述第一空气校正表确定所述第二温度对应的第二空气校正表。
  3. 权利要求2所述的计算机断层成像方法,进一步包括:
    获取所述第二温度对应的原始数据,所述原始数据包括原始扫描数据或根据所述原始扫描数据得到的原始图像,所述原始数据包括伪影;以及
    根据所述第二空气校正表对所述原始数据进行伪影校正。
  4. 权利要求3所述的计算机断层成像方法,进一步包括:
    判定所述第二温度等于所述第一温度得到第二判定结果;以及
    基于所述第二判定结果,根据所述第一空气校正表对所述原始数据进行伪影校正。
  5. 权利要求3所述的计算机断层成像方法,所述伪影包括环状伪影或弧状伪影。
  6. 权利要求2所述的计算机断层成像方法,进一步包括:
    判定所述第二温度大于所述第一温度得到第三判定结果;以及
    基于所述第三判定结果,对用户进行提示。
  7. 权利要求1所述的计算机断层成像方法,根据所述第二温度和所述第一空气校正表确定所述第二温度对应的第二空气校正表包括:
    在所述第二温度下进行空气扫描,所述空气扫描包括基于所述第一组扫描协议进行空气扫描;
    根据所述空气扫描获得所述第一组扫描协议在第二温度下的空气校正参数;以及根据所述第一空气校正表以及所述第一组扫描协议在第二温度下的空气校正参数,确定所述第二温度对应的第二空气校正表。
  8. 权利要求7所述的计算机断层成像方法,所述至少一组扫描协议包括第二组扫描协议,根据所述第一空气校正表以及所述第一组扫描协议在第二温度下的空气校正参数,确定所述第二温度对应的第二空气校正表包括:
    获取所述第一组扫描协议在第一温度下的空气校正参数;
    获取所述第一组扫描协议在第二温度下的空气校正参数与所述第一组扫描协议在第一温度下的空气校正参数的差值;
    获取所述第二组扫描协议在第一温度下的空气校正参数;以及
    根据所述差值和所述第二组扫描协议在第一温度下的空气校正参数,确定所述第二组扫描协议在第二温度下的空气校正参数。
  9. 一种计算机断层成像方法,包括:
    a)获取原始数据,所述原始数据包括原始扫描数据或根据所述原始扫描数据得到的原始图像;
    b)对所述原始数据进行预处理,得到预处理结果;
    c)根据所述预处理结果,得到伪影强度;以及
    d)根据所述伪影强度,更新校正参数。
  10. 权利要求9所述的计算机断层成像方法,所述伪影包括环状伪影或弧状伪影。
  11. 权利要求9所述的计算机断层成像方法,根据所述伪影强度更新所述校正参数包括:
    判定所述伪影强度等于或大于第一阈值得到第四判定结果;以及
    基于所述第四判定结果,更新所述校正参数。
  12. 权利要求9所述的计算机断层成像方法,对所述原始数据进行预处理得到所述预处理结果包括:
    获取原始校正参数;以及
    根据所述原始校正参数对所述原始数据进行伪影校正,得到第一校正数据。
  13. 权利要求9所述的计算机断层成像方法,所述校正参数包括空气校正表或标记的坏通道。
  14. 权利要求11所述的计算机断层成像方法,根据所述伪影强度更新所述校正参数包括:
    根据所述伪影强度,判断需要更新的所述校正参数的种类。
  15. 权利要求14所述的计算机断层成像方法,根据所述伪影强度判断需要更新的所述校正参数的种类包括:
    获取所述伪影对应的通道在多个视角上的所述扫描数据的平均值;
    判定所述平均值大于等于第二阈值或小于等于第三阈值得到第五判定结果;以及
    基于所述第五判定结果,进行坏通道标记;
    判定所述平均值小于所述第二阈值并且大于所述第三阈值得到第六判定结果;
    基于所述第六判定结果,获取所述伪影对应的通道与其相邻的通道的所述扫描数据之间的偏差;
    判定所述偏差大于或等于第四阈值得到第七判定结果;
    基于所述第七判定结果,进行坏通道标记;以及
    判定所述偏差小于第四阈值得到第八判定结果;以及
    基于所述第八判定结果,更新空气校正参数。
  16. 权利要求11所述的计算机断层成像方法,进一步包括:
    e)根据更新的校正参数对所述原始数据进行伪影校正,得到第二校正数据;以及
    f)根据所述第二校正数据,得到图像。
  17. 权利要求16所述的计算机断层成像方法,进一步包括:
    g)判定所述伪影强度小于所述第一阈值得到第九判定结果;以及
    h)基于所述第九判定结果,根据所述原始数据或所述预处理结果,得到图像。
  18. 权利要求17所述的计算机断层成像方法,进一步包括:对N个扫描对象进行扫描,对第M个扫描对象执行所述步骤a)至h),对其它的N-1个扫描对象执行所述步骤a),b)和h),M、N为整数,M小于或等于N,且M大于1。
  19. 权利要求11所述的计算机断层成像方法,进一步包括:
    判定所述伪影强度大于等于所述第一阈值得到第十判定结果;以及
    基于所述第十判定结果,对用户进行提示。
  20. 一种计算机断层成像方法,包括:
    获取原始数据,所述原始数据包括原始扫描数据或根据所述原始扫描数据得到的原始图像;
    对所述原始数据进行预处理,得到预处理结果;
    根据所述预处理结果,得到伪影强度;以及
    根据所述伪影强度,更新坏通道或空气校正表,其中,更新所述空气校正表包括:
    获取探测器第一温度对应的第一空气校正表,所述第一空气校正表包括至少一组扫描协议在所述第一温度下的空气校正参数,所述至少一组扫描协议包括第一组扫描协议;
    获取探测器的实时温度;以及
    根据所述实时温度和所述第一空气校正表得到所述实时温度对应的第二空气校正表,所述第二空气校正表包括所述至少一组扫描协议在所述实时温度下的空气校正参数。
  21. 一种计算机断层成像系统,包括:
    更新单元,用于更新校正参数,其中,所述更新单元包括:
    校正表获取子单元,用于获取探测器第一温度对应的第一空气校正表,所述第一空气校正表包括至少一组扫描协议在所述第一温度下的空气校正参数,所述至少一组扫描协议包括第一组扫描协议;
    温度获取子单元,用于获取探测器的第二温度;以及
    校正表更新子单元,用于根据所述第二温度和所述第一空气校正表确定所述第二温度对应的第二空气校正表,所述第二空气校正表包括所述至少一组扫描协议在第二温度下的空气校正参数。
  22. 一种计算机断层成像系统,包括:
    原始数据获取单元,用于获取原始数据,所述原始数据包括原始扫描数据或根据所述原始扫描数据得到的原始图像;以及
    更新单元,用于更新校正参数,其中,所述更新单元包括:
    预处理子单元,用于对所述原始数据进行预处理,得到预处理结果;
    伪影信息提取子单元,用于根据所述预处理结果,得到伪影强度;以及
    校正参数更新子单元,用于根据所述伪影强度,更新校正参数。
PCT/CN2016/099069 2015-09-18 2016-09-14 一种计算机断层成像方法与系统 WO2017045620A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
GB1710532.1A GB2550070B (en) 2015-09-18 2016-09-14 System and method for computer tomography
US15/638,610 US10722204B2 (en) 2015-09-18 2017-06-30 System and method for computer tomography
US16/939,161 US11191509B2 (en) 2015-09-18 2020-07-27 System and method for computed tomography

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201510598603.0A CN106539590B (zh) 2015-09-18 2015-09-18 计算机断层成像校正方法及计算机断层成像系统
CN201510598603.0 2015-09-18
CN201510639797.4A CN106551703B (zh) 2015-09-30 2015-09-30 计算机断层成像方法和计算机断层成像系统
CN201510639797.4 2015-09-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/638,610 Continuation US10722204B2 (en) 2015-09-18 2017-06-30 System and method for computer tomography

Publications (1)

Publication Number Publication Date
WO2017045620A1 true WO2017045620A1 (zh) 2017-03-23

Family

ID=58288055

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/099069 WO2017045620A1 (zh) 2015-09-18 2016-09-14 一种计算机断层成像方法与系统

Country Status (3)

Country Link
US (2) US10722204B2 (zh)
GB (2) GB2599504B (zh)
WO (1) WO2017045620A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108056785A (zh) * 2017-12-04 2018-05-22 上海奕瑞光电子科技股份有限公司 一种平板探测器增益校正模板的更新方法
CN110916704A (zh) * 2019-11-13 2020-03-27 上海联影医疗科技有限公司 校正方法、装置及存储介质
CN111883243A (zh) * 2020-07-31 2020-11-03 上海联影医疗科技有限公司 一种空气校正方法和系统

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106230816B (zh) * 2016-07-28 2019-05-21 东软医疗系统股份有限公司 一种实现pet系统中数据传输的系统及方法
CN109998578B (zh) * 2019-03-29 2023-07-14 上海联影医疗科技股份有限公司 预测计算机断层成像的空气校正表的方法和装置
CN112734877B (zh) * 2021-01-13 2023-04-07 上海联影医疗科技股份有限公司 一种校正伪影的方法和系统
CN117297634B (zh) * 2023-11-30 2024-02-09 苏州波影医疗技术有限公司 一种ct系统空气校准补偿方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003028554A1 (en) * 2001-10-01 2003-04-10 Koninklijke Philips Electronics N.V. Method and apparatus for calibrating x-ray detectors in a ct-imaging system
CN1450797A (zh) * 2002-03-27 2003-10-22 佳能株式会社 图像信号的增益修正以及用于增益修正的校准
CN1552288A (zh) * 2003-12-18 2004-12-08 沈阳东软数字医疗系统股份有限公司 校正ct机球管焦点偏移的方法
JP2010252951A (ja) * 2009-04-23 2010-11-11 Hitachi Medical Corp X線ct装置およびこれを用いたデータ取得方法
CN102727226A (zh) * 2011-03-31 2012-10-17 Ge医疗系统环球技术有限公司 检测器模块和辐射成像设备
JP5102953B2 (ja) * 2005-11-02 2012-12-19 株式会社日立メディコ X線ct装置
CN103596502A (zh) * 2011-04-05 2014-02-19 皇家飞利浦有限公司 针对断层摄影成像系统的自适应校准
US20140211910A1 (en) * 2013-01-31 2014-07-31 Analogic Corporation Correction of projection data in radiation system
WO2014119557A1 (ja) * 2013-01-29 2014-08-07 株式会社東芝 医用画像処理装置およびx線ct装置
CN104706371A (zh) * 2013-12-13 2015-06-17 通用电气公司 成像方法及成像系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS512953B1 (zh) * 1971-07-17 1976-01-30
JPH05154142A (ja) 1991-12-05 1993-06-22 Hitachi Medical Corp X線ct装置
US20070116183A1 (en) 2003-07-30 2007-05-24 Hironori Ueki Tomograph
US20120002858A1 (en) 2009-03-25 2012-01-05 Koninklijke Philips Electronics N.V. Motion detection and correction in magnetic resonance imaging for rigid, nonrigid, translational, rotational, and through-plane motion
WO2012173095A1 (ja) 2011-06-13 2012-12-20 株式会社東芝 磁気共鳴イメージング装置及びその制御装置
CN102768759B (zh) 2012-07-04 2014-11-26 深圳安科高技术股份有限公司 一种术中ct图像射束硬化伪影校正方法及装置
US9270959B2 (en) 2013-08-07 2016-02-23 Qualcomm Incorporated Dynamic color shading correction

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003028554A1 (en) * 2001-10-01 2003-04-10 Koninklijke Philips Electronics N.V. Method and apparatus for calibrating x-ray detectors in a ct-imaging system
CN1450797A (zh) * 2002-03-27 2003-10-22 佳能株式会社 图像信号的增益修正以及用于增益修正的校准
CN1552288A (zh) * 2003-12-18 2004-12-08 沈阳东软数字医疗系统股份有限公司 校正ct机球管焦点偏移的方法
JP5102953B2 (ja) * 2005-11-02 2012-12-19 株式会社日立メディコ X線ct装置
JP2010252951A (ja) * 2009-04-23 2010-11-11 Hitachi Medical Corp X線ct装置およびこれを用いたデータ取得方法
CN102727226A (zh) * 2011-03-31 2012-10-17 Ge医疗系统环球技术有限公司 检测器模块和辐射成像设备
CN103596502A (zh) * 2011-04-05 2014-02-19 皇家飞利浦有限公司 针对断层摄影成像系统的自适应校准
WO2014119557A1 (ja) * 2013-01-29 2014-08-07 株式会社東芝 医用画像処理装置およびx線ct装置
US20140211910A1 (en) * 2013-01-31 2014-07-31 Analogic Corporation Correction of projection data in radiation system
CN104706371A (zh) * 2013-12-13 2015-06-17 通用电气公司 成像方法及成像系统

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108056785A (zh) * 2017-12-04 2018-05-22 上海奕瑞光电子科技股份有限公司 一种平板探测器增益校正模板的更新方法
CN108056785B (zh) * 2017-12-04 2021-05-07 上海奕瑞光电子科技股份有限公司 一种平板探测器增益校正模板的更新方法
CN110916704A (zh) * 2019-11-13 2020-03-27 上海联影医疗科技有限公司 校正方法、装置及存储介质
CN110916704B (zh) * 2019-11-13 2023-09-01 上海联影医疗科技股份有限公司 校正方法、装置及存储介质
CN111883243A (zh) * 2020-07-31 2020-11-03 上海联影医疗科技有限公司 一种空气校正方法和系统

Also Published As

Publication number Publication date
GB201710532D0 (en) 2017-08-16
GB2599504A (en) 2022-04-06
US20170325775A1 (en) 2017-11-16
US11191509B2 (en) 2021-12-07
US20200352538A1 (en) 2020-11-12
GB202114512D0 (en) 2021-11-24
GB2550070B (en) 2021-11-24
GB2599504B (en) 2022-06-29
GB2550070A (en) 2017-11-08
US10722204B2 (en) 2020-07-28

Similar Documents

Publication Publication Date Title
WO2017045620A1 (zh) 一种计算机断层成像方法与系统
KR102302529B1 (ko) 환자 스캔 셋업을 위한 방법들 및 시스템들
US10561391B2 (en) Methods and systems for computed tomography
CN106725570B (zh) 成像方法及系统
US11497459B2 (en) Methods and system for optimizing an imaging scan based on a prior scan
US10111626B2 (en) X-ray CT apparatus
US10925554B2 (en) Outside-FOV activity estimation using surview and prior patient data in positron emission tomography
US20180247434A1 (en) Methods, systems, and media for noise reduction in computed tomography images
US20190059827A1 (en) System and method for imaging a subject
US9953440B2 (en) Method for tomographic reconstruction
US9858688B2 (en) Methods and systems for computed tomography motion compensation
US11432783B2 (en) Methods and systems for beam attenuation
EP4123572A2 (en) An apparatus and a method for x-ray image restoration
US20210233293A1 (en) Low-dose imaging method and apparatus
CN107341836B (zh) 一种ct螺旋扫描图像重建方法及装置
KR20160061555A (ko) 동적 시준을 이용한 임의의 형상을 가지는 관심 영역에 대한 단층촬영 방법 및 시스템
JP7443591B2 (ja) 医用画像診断装置、および医用画像診断方法
US20240078723A1 (en) Medical image processing apparatus and medical image processing method
US11127173B2 (en) Scaled radiography reconstruction
JP6245897B2 (ja) 放射線断層撮影装置及び放射線断層撮影システム並びにプログラム
JP6034155B2 (ja) 画像処理装置及びプログラム
JP6301096B2 (ja) 医用画像診断装置
CN116919434A (zh) Ct图像重建方法和设备
CN115530854A (zh) 一种成像方法和系统
JP2015152320A (ja) 医用画像処理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16845734

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 201710532

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20160914

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16845734

Country of ref document: EP

Kind code of ref document: A1