WO2017045214A1 - 基于白色子像素色偏的rgbw的补偿方法及装置 - Google Patents

基于白色子像素色偏的rgbw的补偿方法及装置 Download PDF

Info

Publication number
WO2017045214A1
WO2017045214A1 PCT/CN2015/090138 CN2015090138W WO2017045214A1 WO 2017045214 A1 WO2017045214 A1 WO 2017045214A1 CN 2015090138 W CN2015090138 W CN 2015090138W WO 2017045214 A1 WO2017045214 A1 WO 2017045214A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel
sub
point
color
white
Prior art date
Application number
PCT/CN2015/090138
Other languages
English (en)
French (fr)
Inventor
金羽峰
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US14/898,275 priority Critical patent/US9858846B2/en
Publication of WO2017045214A1 publication Critical patent/WO2017045214A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2003Display of colours
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/02Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators characterised by the way in which colour is displayed
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0439Pixel structures
    • G09G2300/0452Details of colour pixel setup, e.g. pixel composed of a red, a blue and two green components
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0666Adjustment of display parameters for control of colour parameters, e.g. colour temperature
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0693Calibration of display systems
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2340/00Aspects of display data processing
    • G09G2340/06Colour space transformation
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2360/00Aspects of the architecture of display systems
    • G09G2360/16Calculation or use of calculated indices related to luminance levels in display data

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a method and an apparatus for compensating RGBW based on white sub-pixel color shift.
  • LG Display innovatively adds white (W) sub-pixels to RGB to form RGBW 4K.
  • the addition of white sub-pixels has significantly improved the light transmittance of the RGBW 4K panel, and the brightness of the panel has been increased by 1.5 times on the basis of the conventional RGB 4K panel.
  • RGB signals there are various algorithms for converting RGB signals to RGBW signals, including traditional algorithms and new algorithms for research.
  • RGBW the RGB signal to the RGBW signal by these algorithms, especially in the organic electroluminescent display panel OLED, it is found that the color coordinate point of the actual white sub-pixel W-subpixel deviates from the standard white coordinate point under sRGB. The color deviation of white sub-pixels is large.
  • the technical problem to be solved by the present invention is to provide a method and a device for compensating RGBW based on white sub-pixel color shift, which can correct the color sub-pixel color shift and make the picture of the RGBW panel tend to be normal.
  • a technical solution adopted by the present invention is to provide a compensation method of RGBW based on white sub-pixel color shift, before the compensation, the color coordinate point W s of the white sub-pixel of the image pixel on the RGBW panel There is a deviation from the standard white color coordinate point W d under sRGB, the method includes: inputting the image pixel point based on the first data of the RGBW color space; analyzing the color of each sub-pixel of the image pixel point on the RGBW panel a coordinate, a triangle R surrounded by color coordinate points R s , G s , and B s of the red sub-pixel, the green sub-pixel, and the blue sub-pixel of the pixel point with the color coordinate point W s as a center point s G s B s is divided into three triangular regions R s G s W s , R s B s W s , B s G s W s ; according to the three triangular regions R s
  • G fo (i) G o (i)+W o (i)*G s Y(i)
  • R o (i), G o (i), B o (i), W o (i) are the first data of pixel point i
  • W fo (i) is the second data of pixel i
  • B s Y(i), G s Y(i), W s Y(i) is pixel sub-i blue sub-pixel, green sub-pixel and white Normalized ratio of brightness between sub-pixels
  • R fo (j) R o (j)+W o (j)*R s Y(j)
  • R o (j), G o (j), B o (j), the first data W o (j) is the pixel j
  • W fo (j) is the second data of the pixel point j
  • B s Y(j), R s Y(j), W s Y(j) is the pixel point j blue sub-pixel, red sub-pixel, and white Normalized ratio of brightness between sub-pixels;
  • R fo (k) R o (k)+W o (k)*R s Y(k)
  • G fo (k) G o (k)+W o (k)*G s Y(k)
  • R o (k), G o (k), B o (k), W o (k) are the first data of pixel point k
  • W fo (k) is the second data of pixel point k
  • R s Y(k), G s Y(k), W s Y(k) is pixel point k red sub-pixel, green sub-pixel and white sub-
  • the normalized ratio of the brightness between pixels are the first data of pixel point k
  • W fo (k) is the second data of pixel point k
  • R s Y(k), G s Y(k) is pixel point k red sub-pixel, green sub-pixel and white sub-
  • (B s x, B s y) is the coordinate of the color coordinate point B s of the blue sub-pixel of the pixel
  • (G s x, G s y) is the coordinate of the color coordinate point G s of the green sub-pixel of the pixel point
  • (W s x, W s y) is the coordinate of the color coordinate point W s of the pixel white sub-pixel
  • (W d x, W d y) is the coordinate of the standard white color coordinate point W d under sRGB.
  • (B s x, B s y) is the coordinate of the color coordinate point B s of the blue sub-pixel of the pixel
  • (G s x, G s y) is the coordinate of the color coordinate point G s of the green sub-pixel of the pixel point
  • (W s x, W s y) is the coordinate of the color coordinate point W s of the pixel white sub-pixel
  • (W d x, W d y) is the coordinate of the standard white color coordinate point W d under sRGB.
  • (B s x, B s y) is the coordinate of the color coordinate point B s of the blue sub-pixel of the pixel
  • (G s x, G s y) is the coordinate of the color coordinate point G s of the green sub-pixel of the pixel point
  • (W s x, W s y) is the coordinate of the color coordinate point W s of the pixel white sub-pixel
  • (W d x, W d y) is the coordinate of the standard white color coordinate point W d under sRGB.
  • another technical solution adopted by the present invention is to provide a compensation method for RGBW based on white sub-pixel color shift, before the compensation, the color coordinate point W of the white sub-pixel of the image pixel on the RGBW panel There is a deviation between s and the standard white color coordinate point W d under sRGB, the method comprising: inputting the image pixel point based on the first data of the RGBW color space; analyzing each sub-pixel of the image pixel point on the RGBW panel a color coordinate, a triangle surrounded by color coordinate points R s , G s , and B s of the red sub-pixel, the green sub-pixel, and the blue sub-pixel of the pixel point with the color coordinate point W s as a center point R s G s B s is divided into three triangular regions R s G s W s , R s B s W s , B s G s W s ; according to the three triangular regions R s G
  • G fo (i) G o (i)+W o (i)*G s Y(i)
  • R o (i), G o (i), B o (i), W o (i) are the first data of pixel point i
  • W fo (i) is the second data of pixel i
  • B s Y(i), G s Y(i), W s Y(i) is pixel sub-i blue sub-pixel, green sub-pixel and white
  • (B s x, B s y) are the coordinates of the color of the pixel coordinates of the point B s point blue sub-pixel
  • (G s x, G s y) are the coordinates of pixels the green subpixel has a color coordinate point of G s
  • (W s x, W s y) is the coordinate of the color coordinate point W s of the pixel white sub-pixel
  • (W d x, W d y) is the coordinate of the standard white color coordinate point W d under sRGB.
  • R fo (j) R o (j)+W o (j)*R s Y(j)
  • R o (j), G o (j), B o (j), W o (j) are the first data of pixel point j
  • W fo (j) is the second data of the pixel point j
  • R s Y(j) is the pixel point j blue sub-pixel, red sub-pixel, and white
  • (B s x, B s y) are the coordinates of the color of the pixel coordinates of the point B s point blue sub-pixel
  • (G s x, G s y) are the coordinates of pixels the green subpixel has a color coordinate point of G s
  • (W s x, W s y) is the coordinate of the color coordinate point W s of the pixel white sub-pixel
  • (W d x, W d y) is the coordinate of the standard white color coordinate point W d under sRGB.
  • the step of compensating the white sub-pixel corresponding to the center point W s includes: calculating the red sub-pixel and the green sub-pixel of the pixel point if the triangular region where the color coordinate point W d is located is R s G s W s
  • R fo (k) R o (k)+W o (k)*R s Y(k)
  • G fo (k) G o (k)+W o (k)*G s Y(k)
  • R o (k), G o (k), B o (k), W o (k) are the first data of pixel point k
  • W fo (k) is the second data of pixel point k
  • R s Y(k), G s Y(k), W s Y(k) is pixel point k red sub-pixel, green sub-pixel and white sub-
  • the normalized ratio of the brightness between pixels are the first data of pixel point k
  • W fo (k) is the second data of pixel point k
  • R s Y(k), G s Y(k) is pixel point k red sub-pixel, green sub-pixel and white sub-
  • (B s x, B s y) are the coordinates of the color of the pixel coordinates of the point B s point blue sub-pixel
  • (G s x, G s y) are the coordinates of pixels the green subpixel has a color coordinate point of G s
  • (W s x, W s y) is the coordinate of the color coordinate point W s of the pixel white sub-pixel
  • (W d x, W d y) is the coordinate of the standard white color coordinate point W d under sRGB.
  • the device includes: an input module for inputting the first data of the image pixel based on the RGBW color space; and a dividing module for analyzing the RGBW the sub-panel color coordinates of each pixel of the image pixel, the color coordinate point to the center point W s, the color coordinates of the red sub-pixel of the pixel, the green sub-pixel and blue sub-pixel points R s,
  • the triangle R s G s B s surrounded by G s and B s is divided into three triangular regions R s G s W s , R s B s W s , B s G s W s ; a range of three triangular regions R
  • a first calculating unit configured to calculate a blue sub-pixel, a green sub-pixel, and the pixel point when the triangular region where the color coordinate point W d is located is B s G s W s Normalized ratio of brightness between white sub-pixels B s Y, G s Y, W s Y
  • G fo (i) G o (i)+W o (i)*G s Y(i)
  • R o (i), G o (i), B o (i), W o (i) are the first data of pixel point i
  • W fo (i) is the second data of pixel i
  • B s Y(i), G s Y(i), W s Y(i) is pixel sub-i blue sub-pixel, green sub-pixel and white
  • (B s x, B s y) is the coordinate of the color coordinate point B s of the blue sub-pixel of the pixel
  • (G s x, G s y) is the coordinate of the color coordinate point G s of the green sub-pixel of the pixel point
  • (W s x, W s y) is the coordinate of the color coordinate point W s of the pixel white sub-pixel
  • (W d x, W d y) is the coordinate of the standard white color coordinate point W d under sRGB.
  • R fo (j) R o (j)+W s (j)*R s Y(j)
  • R o (j), G o (j), B o (j), W o (j) are the first data of pixel point j
  • W fo (j) is the second data of the pixel point j
  • R s Y(j) is the pixel point j blue sub-pixel, red sub-pixel, and white
  • (B s x, B s y) is the coordinate of the color coordinate point B s of the blue sub-pixel of the pixel
  • (G s x, G s y) is the coordinate of the color coordinate point G s of the green sub-pixel of the pixel point
  • (W s x, W s y) is the coordinate of the color coordinate point W s of the pixel white sub-pixel
  • (W d x, W d y) is the coordinate of the standard white color coordinate point W d under sRGB.
  • the compensation module includes: a third calculating unit, configured to calculate the red sub-pixel, the green sub-pixel, and the white of the pixel when the triangular region where the color coordinate point W d is located is R s G s W s
  • the normalized ratio R s Y, G s Y, W s Y, R s Y+G s Y+W s Y 1 of the luminance between the sub-pixels;
  • the third correction unit is configured to adopt the normalization a ratio R s Y, G s Y, W s Y, performing correction processing on the first data to obtain second data based on the RGBW color space of the image pixel point,
  • R fo (k) R o (k)+W o (k)*R s Y(k)
  • G fo (k) G o (k) + W o (k) * G s Y (k)
  • R o (k), G o (k), B o (k), W o (k) are the first data of pixel point k
  • W fo (k) is the second data of pixel point k
  • R s Y(k), G s Y(k), W s Y(k) is pixel point k red sub-pixel, green sub-pixel and white sub-
  • the normalized ratio of the brightness between pixels are the first data of pixel point k
  • W fo (k) is the second data of pixel point k
  • R s Y(k), G s Y(k) is pixel point k red sub-pixel, green sub-pixel and white sub-
  • (B s x, B s y) is the coordinate of the color coordinate point B s of the blue sub-pixel of the pixel
  • (G s x, G s y) is the coordinate of the color coordinate point G s of the green sub-pixel of the pixel point
  • (W s x, W s y) are the pixel coordinates of the white point of a color sub-pixel W s coordinates
  • (W d x, W d y) are the coordinates of a standard white color coordinate point of the sRGB W d.
  • the present invention analyzes the RGBW panel when there is a deviation between the color coordinate point W s of the white sub-pixel of the image pixel and the standard white color coordinate point W d under the sRGB
  • the enclosed triangle R s G s B s is divided into three triangular regions; according to the range of the three triangular regions, the triangular region where the color coordinate point W d is located is determined; and the triangular region where the color coordinate point W d is located is
  • the two sub-pixels corresponding to the other two color coordinate points except the center point W s compensate the white sub-pixel corresponding to the center point W s with a predetermined normalized ratio to correct the first data.
  • the white sub-pixel corresponding to the center point W s by a predetermined normalized ratio is obtained by two sub-pixels corresponding to the other two color coordinate points except the center point W s of the triangular region where the color forming coordinate point W d is located Compensation is performed to correct the first data, and therefore, the phenomenon of white sub-pixel color shift can be corrected in a targeted manner, thereby making the picture of the RGBW panel tend to be normal.
  • FIG. 1 is a flow chart of an embodiment of a method for compensating RGBW based on white sub-pixel color shift according to the present invention
  • FIG. 2 is a schematic diagram showing the position of four sub-pixels on a chromaticity diagram in an embodiment of the RGBW compensation method based on white sub-pixel color shift;
  • FIG. 3 is a flow chart of another embodiment of a method for compensating RGBW based on white sub-pixel color shift according to the present invention.
  • FIG. 4 is a schematic diagram of converting original data based on RGB color space into first data based on RGBW color space in the prior art
  • FIG. 5 is a flow chart of still another embodiment of the RGBW compensation method based on white sub-pixel color shift according to the present invention
  • FIG. 6 is a flow chart of still another embodiment of a method for compensating RGBW based on white sub-pixel color shift according to the present invention.
  • FIG. 7 is a schematic structural diagram of an embodiment of a compensation apparatus for RGBW based on white sub-pixel color shift according to the present invention.
  • FIG. 8 is a schematic structural diagram of another embodiment of a compensation apparatus for RGBW based on white sub-pixel color shift according to the present invention.
  • FIG. 9 is a schematic structural diagram of still another embodiment of a compensation apparatus for RGBW based on white sub-pixel color shift according to the present invention.
  • FIG. 10 is a schematic structural view of still another embodiment of a RGBW compensation apparatus based on white sub-pixel color shift according to the present invention.
  • FIG. 1 is a flowchart of an embodiment of a method for compensating RGBW based on white sub-pixel color shift according to the present invention.
  • Step S101 The input image pixel is based on the first data of the RGBW color space.
  • Step S102 analyzing the color coordinates of each sub-pixel of the image pixel on the RGBW panel, and using the color coordinate point W s as a center point, the color coordinate point R s of the red sub-pixel, the green sub-pixel, and the blue sub-pixel of the pixel
  • the triangle R s G s B s surrounded by G s and B s is divided into three triangular regions R s G s W s , R s B s W s , B s G s W s .
  • Each sub-pixel of an image pixel on the RGBW panel can be represented by a specific coordinate point on the chromaticity diagram, and has a specific color coordinate value (x, y).
  • the image pixel on the RGBW panel has four sub-pixels, which are a red sub-pixel, a green sub-pixel, a blue sub-pixel, and a white sub-pixel. Referring to FIG. 2, the four sub-pixels on the chromaticity diagram correspond to corresponding color coordinate points.
  • R s G s B s W s , G s is located inside the triangle enclosed by R s G s B s , with W s as the center point, and the triangle R s G s B s is divided into three triangular regions R s G s W s , R s B s W s , B s G s W s .
  • Step S103 Determine a triangular region where the color coordinate point W d is located according to the range of the three triangular regions R s G s W s , R s B s W s , B s G s W s .
  • the triangular region where the color coordinate point W d is located can be determined, as shown in FIG. 2 .
  • the coordinate value of the standard white color coordinate point W d under sRGB is (0.3127, 0.329) (shown by a white circle in the triangle R s G s B s ), and the color coordinates of the white sub-pixel of the image pixel point.
  • the coordinate value of the point W s is (0.34, 0.35) (shown by the white square in the triangle R s G s B s ), and the triangle area where W d is located is B s G s W s .
  • Step S104 passing the two sub-pixels corresponding to the other two color coordinate points except the center point W s of the triangular region where the color coordinate point W d is located, the white corresponding to the center point W s with a predetermined normalized ratio The sub-pixels are compensated to correct the first data.
  • W d is a standard white color coordinate point
  • W d is located in a specific triangular region
  • there is a deviation between W s and W d indicating that W s needs to be corrected
  • other sub-pixels in the triangular region are corrected.
  • the effect on white is the largest. Therefore, two sub-pixels corresponding to two other color coordinate points other than W s of the triangular region where W d is located are corrected.
  • the size of the influence of the two sub-pixels is predetermined to be normalized. The ratio is determined.
  • the normalized ratio can be determined by the coordinate values of the color coordinate points and the standard optical calculation formula, or can be determined based on empirical data.
  • Step S105 Outputting the compensated image pixel points based on the second data of the RGBW color space.
  • the color coordinates of each sub-pixel of the image pixel on the RGBW panel are analyzed,
  • the color coordinate point W s is a center point, and the triangle R s G s B s surrounded by the color coordinate points R s , G s , and B s of the red sub-pixel, the green sub-pixel, and the blue sub-pixel of the pixel is divided into Three triangular regions; according to the range of the three triangular regions, the triangular region where the color coordinate point W d is located; the other two color coordinate points except the center point W s of the triangular region where the color forming coordinate point W d is located Corresponding two sub-pixels compensate the white sub-pixel corresponding to the center point W s with a predetermined normalized ratio to correct the first data.
  • the white sub-pixel corresponding to the center point W s by a predetermined normalized ratio is obtained by two sub-pixels corresponding to the other two color coordinate points except the center point W s of the triangular region where the color forming coordinate point W d is located Compensation is performed to correct the first data, and therefore, the phenomenon of white sub-pixel color shift can be corrected in a targeted manner, thereby making the picture of the RGBW panel tend to be normal.
  • step S104 may specifically include: sub-step S1041 and sub-step S1042.
  • Sub-step S1042 correcting the first data by using a normalized ratio B s Y, G s Y, W s Y to obtain second data of the image pixel based on the RGBW color space.
  • G fo (i) G o (i)+W o (i)*G s Y(i)
  • B fo (i) B o (i) + W o (i) * B s Y (i)
  • R o (i), G o (i), B o (i), W o (i) are the first data of pixel point i
  • W fo (i) is the second data of pixel i
  • B s Y(i), G s Y(i), W s Y(i) is pixel sub-i blue sub-pixel, green sub-pixel and white
  • the blue sub-pixel and the green sub-pixel of the pixel point can be corrected by using the blue sub-pixel and the green sub-pixel of the pixel.
  • the first data is data based on the RGBW color space.
  • the original data R i , G i , B i based on the RGB color space is converted into a basis by a conventional RGBW conversion algorithm or other different RGBW conversion algorithms.
  • the first data R o , G o , B o , W o of the RGBW color space is converted into a basis by a conventional RGBW conversion algorithm or other different RGBW conversion algorithms.
  • the first data R o , G o , B o , W o of the RGBW color space by implementing the method of the present invention, the phenomenon of color shift of the white sub-pixel can be corrected, so that the picture of the RGBW panel tends to be normal.
  • the original data R i , G i , B i based on the RGB color space is converted into the first data R o , G o , B o , W o based on the RGBW color space by a conventional RGBW conversion algorithm.
  • (B s x, B s y) is the coordinate of the color coordinate point B s of the blue sub-pixel of the pixel
  • (G s x, G s y) is the coordinate of the color coordinate point G s of the green sub-pixel of the pixel point
  • (W s x, W s y) is the coordinate of the color coordinate point W s of the pixel white sub-pixel
  • (W d x, W d y) is the coordinate of the standard white color coordinate point W d under sRGB.
  • X, Y, Z are tristimulus values, where Y represents brightness; x, y are color coordinate values;
  • W s X, W s Y, W s Z are the tristimulus values of the white sub-pixels of a certain pixel point, respectively, and are unknown numbers to be solved; G s X, G s Y, G s Z respectively green sub-pixel for pixel tristimulus values, are to be solved unknowns; B s X, B s Y , B s Z for each pixel of the blue sub-pixel tristimulus values, are to be solved unknowns.
  • (B s x, B s y) is the blue sub-pixel coordinate value of the pixel on the RGBW panel, which is a known value in the RGBW panel;
  • (G s x, G s y) is the green point of the pixel on the RGBW panel
  • the pixel coordinate value is a known value in the RGBW panel;
  • (W s x, W s y) is the white sub-pixel coordinate value of the pixel on the RGBW panel, which is a known value in the RGBW panel;
  • (W d x, W d y) is the standard white coordinate under sRGB and is a known value.
  • step S104 may specifically include: sub-step S1043 and sub-step S1044.
  • Sub-step S1044 correcting the first data by using a normalized ratio B s Y, R s Y, W s Y to obtain second data of the image pixel based on the RGBW color space.
  • R fo (j) R o (j)+W o (j)*R s Y(j)
  • R fo (j) B o (j) + W o (j) * B s Y (j)
  • R o (j), G o (j), B o (j), W o (j) are the first data of pixel point j, R fo (j), G fo (j), B fo (j ), the second data W fo (j) of the pixel j, B s Y (j), R s Y (j), W s Y (j) is a pixel point j blue sub-pixel, the red sub-pixel and white
  • the normalized ratio B s Y, R s Y, W s Y is calculated according to formula 2, and the formula 2 is:
  • (B s x, B s y) are the coordinates of the color of the pixel coordinates of the point B s point blue sub-pixel
  • (G s x, G s y) are the coordinates of pixels the green subpixel has a color coordinate point of G s
  • (W s x, W s y) is the coordinate of the color coordinate point W s of the pixel white sub-pixel
  • (W d x, W d y) is the coordinate of the standard white color coordinate point W d under sRGB.
  • step S104 may specifically include: sub-step S1045 and sub-step S1046.
  • Sub-step S1046 correcting the first data by using a normalized ratio R s Y, G s Y, W s Y to obtain second data of the image pixel based on the RGBW color space.
  • R fo (k) R o (k)+W o (k)*R s Y(k)
  • G fo (k) G o (k) + W o (k) * G s Y (k)
  • R o (k), G o (k), B o (k), W o (k) are the first data of pixel point k
  • W fo (k) is the second data of pixel point k
  • R s Y(k), G s Y(k), W s Y(k) is pixel point k red sub-pixel, green sub-pixel and white sub-
  • the normalized ratio of the brightness between pixels are the first data of pixel point k
  • W fo (k) is the second data of pixel point k
  • R s Y(k), G s Y(k) is pixel point k red sub-pixel, green sub-pixel and white sub-
  • (B s x, B s y) are the coordinates of the color of the pixel coordinates of the point B s point blue sub-pixel
  • (G s x, G s y) are the coordinates of pixels the green subpixel has a color coordinate point of G s
  • (W s x, W s y) is the coordinate of the color coordinate point W s of the pixel white sub-pixel
  • (W d x, W d y) is the coordinate of the standard white color coordinate point W d under sRGB.
  • FIG. 7 is a schematic structural diagram of an embodiment of a RGBW compensation apparatus based on white sub-pixel color shift according to the present invention.
  • the apparatus can perform the steps in the foregoing method.
  • the device Before the compensation, there is a deviation between the color coordinate point W s of the white sub-pixel of the image pixel on the RGBW panel and the standard white color coordinate point W d under the sRGB.
  • the device includes: an input module 101, a dividing module 102, and a determining module 103.
  • the compensation module 104 and the output module 105 are included in the input module 101, a dividing module 102, and a determining module 103.
  • the input module 101 is configured to input image data points based on the first data of the RGBW color space.
  • the dividing module 102 is configured to analyze the color coordinates of each sub-pixel of the image pixel on the RGBW panel, and use the color coordinate point W s as a center point to set the color coordinate points of the red sub-pixel, the green sub-pixel, and the blue sub-pixel of the pixel
  • the triangle R s G s B s surrounded by R s , G s and B s is divided into three triangular regions R s G s W s , R s B s W s , B s G s W s .
  • the determining module 103 is configured to determine the triangular region where the color coordinate point W d is located according to the range of the three triangular regions R s G s W s , R s B s W s , B s G s W s .
  • the compensation module 104 is configured to correspond to the center point W s by a predetermined normalized ratio by two sub-pixels corresponding to the other two color coordinate points except the center point W s of the triangular area where the color coordinate point W d is located The white subpixel is compensated to correct the first data.
  • the output module 105 is configured to output the compensated image pixel points based on the second data of the RGBW color space.
  • the color coordinates of each sub-pixel of the image pixel on the RGBW panel are analyzed,
  • the color coordinate point W s is a center point, and the triangle R s G s B s surrounded by the color coordinate points R s , G s , and B s of the red sub-pixel, the green sub-pixel, and the blue sub-pixel of the pixel is divided into Three triangular regions; according to the range of the three triangular regions, the triangular region where the color coordinate point W d is located; the other two color coordinate points except the center point W s of the triangular region where the color forming coordinate point W d is located Corresponding two sub-pixels compensate the white sub-pixel corresponding to the center point W s with a predetermined normalized ratio to correct the first data.
  • the white sub-pixel corresponding to the center point W s by a predetermined normalized ratio is obtained by two sub-pixels corresponding to the other two color coordinate points except the center point W s of the triangular region where the color forming coordinate point W d is located Compensation is performed to correct the first data, and therefore, the phenomenon of white sub-pixel color shift can be corrected in a targeted manner, thereby making the picture of the RGBW panel tend to be normal.
  • the compensation module 104 includes: a first calculating unit 1041 and a first correcting unit 1042.
  • the first correcting unit 1042 is configured to perform correction processing on the first data by using a normalized ratio B s Y, G s Y, W s Y to obtain second data of the image pixel based on the RGBW color space.
  • G fo (i) G o (i)+W o (i)*G s Y(i)
  • B fo (i) B o (i) + W o (i) * B s Y (i)
  • R o (i), G o (i), B o (i), W o (i) are the first data of pixel point i
  • W fo (i) is the second data of pixel i
  • B s Y(i), G s Y(i), W s Y(i) is pixel sub-i blue sub-pixel, green sub-pixel and white
  • (B s x, B s y) are the coordinates of the color of the pixel coordinates of the point B s point blue sub-pixel
  • (G s x, G s y) are the coordinates of pixels the green subpixel has a color coordinate point of G s
  • (W s x, W s y) is the coordinate of the color coordinate point W s of the pixel white sub-pixel
  • (W d x, W d y) is the coordinate of the standard white color coordinate point W d under sRGB.
  • the compensation module 104 includes: a second calculating unit 1043 and a second correcting unit 1044.
  • the second correcting unit 1044 is configured to perform correction processing on the first data by using a normalized ratio B s Y, R s Y, W s Y to obtain second data of the image pixel point based on the RGBW color space.
  • R fo (j) R o (j)+W o (j)*R s Y(j)
  • R o (j), G o (j), B o (j), W o (j) are the first data of pixel point j, R fo (j), G fo (j), B fo (j ), the second data W fo (j) of the pixel j, B s Y (j), R s Y (j), W s Y (j) is a pixel point j blue sub-pixel, the red sub-pixel and white
  • the normalized ratio B s Y, R s Y, W s Y is calculated according to formula 2, and the formula 2 is:
  • (B s x, B s y) are the coordinates of the color of the pixel coordinates of the point B s point blue sub-pixel
  • (G s x, G s y) are the coordinates of pixels the green subpixel has a color coordinate point of G s
  • (W s x, W s y) is the coordinate of the color coordinate point W s of the pixel white sub-pixel
  • (W d x, W d y) is the coordinate of the standard white color coordinate point W d under sRGB.
  • the compensation module 104 includes: a third calculating unit 1045 and a third correcting unit 1046.
  • the third correcting unit 1046 is configured to perform correction processing on the first data by using a normalized ratio R s Y, G s Y, W s Y to obtain second data of the image pixel based on the RGBW color space.
  • R fo (k) R o (k)+W o (k)*R s Y(k)
  • G fo (k) G o (k) + W o (k) * G s Y (k)
  • R o (k), G o (k), B o (k), W o (k) are the first data of pixel point k
  • W fo (k) is the second data of pixel point k
  • R s Y(k), G s Y(k), W s Y(k) is pixel point k red sub-pixel, green sub-pixel and white sub-
  • the normalized ratio of the brightness between pixels are the first data of pixel point k
  • W fo (k) is the second data of pixel point k
  • R s Y(k), G s Y(k) is pixel point k red sub-pixel, green sub-pixel and white sub-
  • (B s x, B s y) are the coordinates of the color of the pixel coordinates of the point B s point blue sub-pixel
  • (G s x, G s y) are the coordinates of pixels the green subpixel has a color coordinate point of G s
  • (W s x, W s y) is the coordinate of the color coordinate point W s of the pixel white sub-pixel
  • (W d x, W d y) is the coordinate of the standard white color coordinate point W d under sRGB.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Color Image Communication Systems (AREA)
  • Facsimile Image Signal Circuits (AREA)
  • Processing Of Color Television Signals (AREA)

Abstract

一种基于白色子像素色偏的RGBW的补偿方法及装置,补偿方法包括:在图像像素点的白色子像素的色坐标点W s与sRGB下标准白色色坐标点W d之间存在偏差时,分析RGBW面板上图像像素点的各子像素的色坐标,以色坐标点W s为中心点,将像素点的红色子像素、绿色子像素以及蓝色子像素的色坐标点R s、G s以及B s所围成的三角形R sG sB s划分为三个三角形区域(S102);根据三个三角形区域的范围,确定色坐标点W d所在的三角形区域(S103);通过围成色坐标点W d所在的三角形区域的除中心点W s外的其它两个色坐标点对应的两个子像素,以预定归一化配比对中心点W s对应的白色子像素进行补偿,以校正第一数据(S104)。补偿方法能够校正白色子像素色偏,使RGBW面板的画面趋于正常。

Description

基于白色子像素色偏的RGBW的补偿方法及装置 【技术领域】
本发明涉及显示技术领域,特别是涉及一种基于白色子像素色偏的RGBW的补偿方法及装置。
【背景技术】
随着人们节能意识的加强,产品功耗的高低逐步成为产品的一项重要因素。在此节能意识的驱动下,随之而来的是RGBW面板的兴起。LG Display创新性地在RGB基础上增加白色(W)子像素,形成RGBW 4K。白色子像素的加入,使得RGBW 4K面板的透光率得到明显提升,面板的亮度也在传统RGB 4K面板的基础上提升1.5倍。
目前,在RGB信号到RGBW信号的转换中有各种各样的算法,包括传统算法和研究的新算法。但是,通过这些算法将RGB信号转换到RGBW信号后,特别是在有机电致发光显示面板OLED中,发现实际的白色子像素W-subpixel的色坐标点与sRGB下的标准白色坐标点有偏差,白色子像素的颜色偏差较大。
【发明内容】
本发明主要解决的技术问题是提供一种基于白色子像素色偏的RGBW的补偿方法及装置,能够校正白色子像素色偏,使RGBW面板的画面趋于正常。
为解决上述技术问题,本发明采用的一个技术方案是:提供一种基于白色子像素色偏的RGBW的补偿方法,在补偿前,RGBW面板上图像像素点的白色子像素的色坐标点Ws与sRGB下标准白色色坐标点Wd之间存在偏差,所述方法包括:输入所述图像像素点基于RGBW颜色空间的第一数据;分析所述RGBW面板上图像像素点的各子像素的色坐标,以所述色坐标点Ws为中心点,将所述像素点的红色子像素、绿色子像素以及蓝色子像素的色坐标点Rs、Gs以及Bs所围成的三角形RsGsBs划分为三个三角形区域RsGsWs,RsBsWs,BsGsWs;根据所述三个三角形区域RsGsWs,RsBsWs,BsGsWs的范围,确定所述色坐标点Wd所在的三角形区域;通过围成所述色坐标点Wd所在的三角形区域的除所述中心点Ws外的其它两个色坐标点对应的两个子像素,以预定归一化配比对所述中心点Ws对应的所述白色 子像素进行补偿,以校正所述第一数据;输出补偿后的所述图像像素点基于RGBW颜色空间的第二数据;
其中,所述通过围成所述色坐标点Wd所在的三角形区域的除所述中心点Ws外的其它两个色坐标点对应的两个子像素,以预定归一化配比对所述中心点Ws对应的所述白色子像素进行补偿的步骤,包括:若所述色坐标点Wd所在的三角形区域为BsGsWs,则计算所述像素点蓝色子像素、绿色子像素以及白色子像素之间亮度的归一化配比BsY,GsY,WsY,BsY+GsY+WsY=1;采用所述归一化配比BsY,GsY,WsY,对所述第一数据进行校正处理,获得所述图像像素点基于RGBW颜色空间的第二数据,
Rfo(i)=Ro(i)
Gfo(i)=Go(i)+Wo(i)*GsY(i)
                   ,
Bfo(i)=Bo(i)+Wo(i)*BsY(i)
Wfo(i)=Wo(i)*WsY(i)
其中,Ro(i),Go(i),Bo(i),Wo(i)为像素点i的第一数据,Rfo(i),Gfo(i),Bfo(i),Wfo(i)为像素点i的第二数据,BsY(i),GsY(i),WsY(i)为像素点i蓝色子像素、绿色子像素以及白色子像素之间亮度的归一化配比;
若所述色坐标点Wd所在的三角形区域为BsRsWs,则计算所述像素点蓝色子像素、红色子像素以及白色子像素之间亮度的归一化配比BsY,RsY,WsY,BsY+RsY+WsY=1;
采用所述归一化配比BsY,RsY,WsY,对所述第一数据进行校正处理,获得所述图像像素点基于RGBW颜色空间的第二数据,
Rfo(j)=Ro(j)+Wo(j)*RsY(j)
Gfo(j)=Go(j)
                 ,
Bfo(j)=Bo(j)+Wo(j)*BsY(j)
Wfo(j)=Wo(j)*WsY(j)
其中,Ro(j),Go(j),Bo(j),Wo(j)为像素点j的第一数据,Rfo(j),Gfo(j),Bfo(j),Wfo(j)为像素点j的第二数据,BsY(j),RsY(j),WsY(j)为像素点j蓝色子像素、红色子像素以及白色子像素之间亮度的归一化配比;
若所述色坐标点Wd所在的三角形区域为RsGsWs,则计算所述像素点红色子像素、绿色子像素以及白色子像素之间亮度的归一化配比RsY,GsY,WsY, RsY+GsY+WsY=1;
采用所述归一化配比RsY,GsY,WsY,对所述第一数据进行校正处理,获得所述图像像素点基于RGBW颜色空间的第二数据,
Rfo(k)=Ro(k)+Wo(k)*RsY(k)
Gfo(k)=Go(k)+Wo(k)*GsY(k)
                   ,
Bfo(k)=Bo(k)
Wfo(k)=Wo(k)*WsY(k)
其中,Ro(k),Go(k),Bo(k),Wo(k)为像素点k的第一数据,Rfo(k),Gfo(k),Bfo(k),Wfo(k)为像素点k的第二数据,RsY(k),GsY(k),WsY(k)为像素点k红色子像素、绿色子像素以及白色子像素之间亮度的归一化配比。
其中,所述归一化配比BsY,GsY,WsY按照公式一计算获得,所述公式一是:
Figure PCTCN2015090138-appb-000001
其中,(Bsx,Bsy)是像素点蓝色子像素的色坐标点Bs的坐标,(Gsx,Gsy)是像素点绿色子像素的色坐标点Gs的坐标,(Wsx,Wsy)是像素点白色子像素的色坐标点Ws的坐标,(Wdx,Wdy)是sRGB下标准白色色坐标点Wd的坐标。
其中,所述归一化配比BsY,RsY,WsY按照公式二计算获得,所述公式二是:
Figure PCTCN2015090138-appb-000002
其中,(Bsx,Bsy)是像素点蓝色子像素的色坐标点Bs的坐标,(Gsx,Gsy)是像素点绿色子像素的色坐标点Gs的坐标,(Wsx,Wsy)是像素点白色子像素的色坐标点Ws的坐标,(Wdx,Wdy)是sRGB下标准白色色坐标点Wd的坐标。
其中,所述归一化配比RsY,GsY,WsY按照公式三计算获得,所述公式三是:
Figure PCTCN2015090138-appb-000003
其中,(Bsx,Bsy)是像素点蓝色子像素的色坐标点Bs的坐标,(Gsx,Gsy)是像素点绿色子像素的色坐标点Gs的坐标,(Wsx,Wsy)是像素点白色子像素的色坐标点Ws的坐标,(Wdx,Wdy)是sRGB下标准白色色坐标点Wd的坐标。
为解决上述技术问题,本发明采用的另一个技术方案是:提供一种基于白色子像素色偏的RGBW的补偿方法,在补偿前,RGBW面板上图像像素点的白色子像素的色坐标点Ws与sRGB下标准白色色坐标点Wd之间存在偏差,所述方法包括:输入所述图像像素点基于RGBW颜色空间的第一数据;分析所述RGBW面板上图像像素点的各子像素的色坐标,以所述色坐标点Ws为中心点,将所述像素点的红色子像素、绿色子像素以及蓝色子像素的色坐标点Rs、Gs以及Bs所围成的三角形RsGsBs划分为三个三角形区域RsGsWs,RsBsWs,BsGsWs;根据所述三个三角形区域RsGsWs,RsBsWs,BsGsWs的范围,确定所述色坐标点Wd所在的三角形区域;通过围成所述色坐标点Wd所在的三角形区域的除所述中心点Ws外的其它两个色坐标点对应的两个子像素,以预定归一化配比对所述中心点Ws对应的所述白色子像素进行补偿,以校正所述第一数据;输出补偿后的所述图像像素点基于RGBW颜色空间的第二数据。
其中,所述通过围成所述色坐标点Wd所在的三角形区域的除所述中心点Ws外的其它两个色坐标点对应的两个子像素,以预定归一化配比对所述中心点Ws对应的所述白色子像素进行补偿的步骤,包括:若所述色坐标点Wd所在的三角形区域为BsGsWs,则计算所述像素点蓝色子像素、绿色子像素以及白色子像素之间亮度的归一化配比BsY,GsY,WsY,BsY+GsY+WsY=1;采用所述归一化配比BsY,GsY,WsY,对所述第一数据进行校正处理,获得所述图像像素点基于RGBW颜色空间的第二数据,
Rfo(i)=Ro(i)
Gfo(i)=Go(i)+Wo(i)*GsY(i)
                  ,
Bfo(i)=Bo(i)+Wo(i)*BsY(i)
Wfo(i)=Wo(i)*WsY(i)
其中,Ro(i),Go(i),Bo(i),Wo(i)为像素点i的第一数据,Rfo(i),Gfo(i),Bfo(i),Wfo(i)为像素点i的第二数据,BsY(i),GsY(i),WsY(i)为像素点i蓝色子像素、绿色子像素以及白色子像素之间亮度的归一化配比。
其中,所述归一化配比BsY,GsY,WsY按照公式一计算获得,所述公式一是:
Figure PCTCN2015090138-appb-000004
其中,(Bsx,Bsy)是像素点蓝色子像素的色坐标点Bs的坐标,(Gsx,Gsy)是像素点绿色子像素的色坐标点Gs的坐标,(Wsx,Wsy)是像素点白色子像素的色坐标点Ws的坐标,(Wdx,Wdy)是sRGB下标准白色色坐标点Wd的坐标。
其中,所述通过围成所述色坐标点Wd所在的三角形区域的除所述中心点Ws外的其它两个色坐标点对应的两个子像素,以预定归一化配比对所述中心点Ws对应的所述白色子像素进行补偿的步骤,包括:若所述色坐标点Wd所在的三角形区域为BsRsWs,则计算所述像素点蓝色子像素、红色子像素以及白色子像素之间亮度的归一化配比BsY,RsY,WsY,BsY+RsY+WsY=1;采用所述归一化配比BsY,RsY,WsY,对所述第一数据进行校正处理,获得所述图像像素点基于RGBW颜色空间的第二数据,
Rfo(j)=Ro(j)+Wo(j)*RsY(j)
Gfo(j)=Go(j)
                ,
Bfo(j)=Bo(j)+Wo(j)*BsY(j)
Wfo(j)=Wo(j)*WsY(j)
其中,Ro(j),Go(j),Bo(j),Wo(j)为像素点j的第一数据,Rfo(j),Gfo(j),Bfo(j),Wfo(j)为像素点j的第二数据,BsY(j),RsY(j),WsY(j)为像素点j蓝色子像素、红色子像素以及白色子像素之间亮度的归一化配比。
其中,所述归一化配比BsY,RsY,WsY按照公式二计算获得,所述公式二是:
Figure PCTCN2015090138-appb-000005
其中,(Bsx,Bsy)是像素点蓝色子像素的色坐标点Bs的坐标,(Gsx,Gsy)是像素点绿色子像素的色坐标点Gs的坐标,(Wsx,Wsy)是像素点白色子像素的色坐标点Ws的坐标,(Wdx,Wdy)是sRGB下标准白色色坐标点Wd的坐标。
其中,所述通过围成所述色坐标点Wd所在的三角形区域的除所述中心点Ws外的其它两个色坐标点对应的两个子像素,以预定归一化配比对所述中心点Ws对应的所述白色子像素进行补偿的步骤,包括:若所述色坐标点Wd所在的三角形区域为RsGsWs,则计算所述像素点红色子像素、绿色子像素以及白色子像素之间亮度的归一化配比RsY,GsY,WsY,RsY+GsY+WsY=1;采用所述归一化配比RsY,GsY,WsY,对所述第一数据进行校正处理,获得所述图像像素点基于RGBW颜色空间的第二数据,
Rfo(k)=Ro(k)+Wo(k)*RsY(k)
Gfo(k)=Go(k)+Wo(k)*GsY(k)
                   ,
Bfo(k)=Bo(k)
Wfo(k)=Wo(k)*WsY(k)
其中,Ro(k),Go(k),Bo(k),Wo(k)为像素点k的第一数据,Rfo(k),Gfo(k),Bfo(k),Wfo(k)为像素点k的第二数据,RsY(k),GsY(k),WsY(k)为像素点k红色子像素、绿色子像素以及白色子像素之间亮度的归一化配比。
其中,所述归一化配比RsY,GsY,WsY按照公式三计算获得,所述公式三是:
Figure PCTCN2015090138-appb-000006
其中,(Bsx,Bsy)是像素点蓝色子像素的色坐标点Bs的坐标,(Gsx,Gsy)是像素点绿色子像素的色坐标点Gs的坐标,(Wsx,Wsy)是像素点白色子像素的色坐标点Ws的坐标,(Wdx,Wdy)是sRGB下标准白色色坐标点Wd的坐标。
为解决上述技术问题,本发明采用的又一个技术方案是:提供一种基于白色子像素色偏的RGBW的补偿装置,在补偿前,RGBW面板上图像像素点的白色子像素的色坐标点Ws与sRGB下标准白色色坐标点Wd之间存在偏差,所述装置包括:输入模块,用于输入所述图像像素点基于RGBW颜色空间的第一数据;划分模块,用于分析所述RGBW面板上图像像素点的各子像素的色坐标,以所述色坐标点Ws为中心点,将所述像素点的红色子像素、绿色子像素以及蓝色子像素的色坐标点Rs、Gs以及Bs所围成的三角形RsGsBs划分为三个三角形区域RsGsWs,RsBsWs,BsGsWs;确定模块,用于根据所述三个三角形区域 RsGsWs,RsBsWs,BsGsWs的范围,确定所述色坐标点Wd所在的三角形区域;补偿模块,用于通过围成所述色坐标点Wd所在的三角形区域的除所述中心点Ws外的其它两个色坐标点对应的两个子像素,以预定归一化配比对所述中心点Ws对应的所述白色子像素进行补偿,以校正所述第一数据;输出模块,用于输出补偿后的所述图像像素点基于RGBW颜色空间的第二数据。
其中,所述补偿模块包括:第一计算单元,用于在所述色坐标点Wd所在的三角形区域为BsGsWs时,计算所述像素点蓝色子像素、绿色子像素以及白色子像素之间亮度的归一化配比BsY,GsY,WsY,BsY+GsY+WsY=1;第一校正单元,用于采用所述归一化配比BsY,GsY,WsY,对所述第一数据进行校正处理,获得所述图像像素点基于RGBW颜色空间的第二数据,
Rfo(i)=Ro(i)
Gfo(i)=Go(i)+Wo(i)*GsY(i)
                    ,
Bfo(i)=Bo(i)+Wo(i)*BsY(i)
Wfo(i)=Wo(i)*WsY(i)
其中,Ro(i),Go(i),Bo(i),Wo(i)为像素点i的第一数据,Rfo(i),Gfo(i),Bfo(i),Wfo(i)为像素点i的第二数据,BsY(i),GsY(i),WsY(i)为像素点i蓝色子像素、绿色子像素以及白色子像素之间亮度的归一化配比。
其中,所述归一化配比BsY,GsY,WsY按照公式一计算获得,所述公式一是:
Figure PCTCN2015090138-appb-000007
其中,(Bsx,Bsy)是像素点蓝色子像素的色坐标点Bs的坐标,(Gsx,Gsy)是像素点绿色子像素的色坐标点Gs的坐标,(Wsx,Wsy)是像素点白色子像素的色坐标点Ws的坐标,(Wdx,Wdy)是sRGB下标准白色色坐标点Wd的坐标。
其中,所述补偿模块包括:第二计算单元,用于在所述色坐标点Wd所在的三角形区域为BsRsWs时,计算所述像素点蓝色子像素、红色子像素以及白色子像素之间亮度的归一化配比BsY,RsY,WsY,BsY+RsY+WsY=1;第二校正单元,用于采用所述归一化配比BsY,RsY,WsY,对所述第一数据进行校正处理,获得所述图像像素点基于RGBW颜色空间的第二数据,
Rfo(j)=Ro(j)+Ws(j)*RsY(j)
Gfo(j)=Go(j)
                 ,
Bfo(j)=Bo(j)+Wo(j)*BsY(j)
Wfo(j)=Wo(j)*WsY(j)
其中,Ro(j),Go(j),Bo(j),Wo(j)为像素点j的第一数据,Rfo(j),Gfo(j),Bfo(j),Wfo(j)为像素点j的第二数据,BsY(j),RsY(j),WsY(j)为像素点j蓝色子像素、红色子像素以及白色子像素之间亮度的归一化配比。
其中,所述归一化配比BsY,RsY,WsY按照公式二计算获得,所述公式二是:
Figure PCTCN2015090138-appb-000008
其中,(Bsx,Bsy)是像素点蓝色子像素的色坐标点Bs的坐标,(Gsx,Gsy)是像素点绿色子像素的色坐标点Gs的坐标,(Wsx,Wsy)是像素点白色子像素的色坐标点Ws的坐标,(Wdx,Wdy)是sRGB下标准白色色坐标点Wd的坐标。
其中,所述补偿模块包括:第三计算单元,用于在所述色坐标点Wd所在的三角形区域为RsGsWs时,计算所述像素点红色子像素、绿色子像素以及白色子像素之间亮度的归一化配比RsY,GsY,WsY,RsY+GsY+WsY=1;第三校正单元,用于采用所述归一化配比RsY,GsY,WsY,对所述第一数据进行校正处理,获得所述图像像素点基于RGBW颜色空间的第二数据,
Rfo(k)=Ro(k)+Wo(k)*RsY(k)
Gfo(k)=Go(k)+Wo(k)*GsY(k)
                        ,
Bfo(k)=Bo(k)
Wfo(k)=Wo(k)*WsY(k)
其中,Ro(k),Go(k),Bo(k),Wo(k)为像素点k的第一数据,Rfo(k),Gfo(k),Bfo(k),Wfo(k)为像素点k的第二数据,RsY(k),GsY(k),WsY(k)为像素点k红色子像素、绿色子像素以及白色子像素之间亮度的归一化配比。
其中,所述归一化配比RsY,GsY,WsY按照公式三计算获得,所述公式三是:
Figure PCTCN2015090138-appb-000009
其中,(Bsx,Bsy)是像素点蓝色子像素的色坐标点Bs的坐标,(Gsx,Gsy)是像素点绿色子像素的色坐标点Gs的坐标,(Wsx,Wsy)是像素点白色子像素的色坐标点Ws的坐标,(Wdx,Wdy)是sRGB下标准白色色坐标点Wd的坐标。
本发明的有益效果是:区别于现有技术的情况,本发明在图像像素点的白色子像素的色坐标点Ws与sRGB下标准白色色坐标点Wd之间存在偏差时,分析RGBW面板上图像像素点的各子像素的色坐标,以色坐标点Ws为中心点,将像素点的红色子像素、绿色子像素以及蓝色子像素的色坐标点Rs、Gs以及Bs所围成的三角形RsGsBs划分为三个三角形区域;根据三个三角形区域的范围,确定色坐标点Wd所在的三角形区域;通过围成色坐标点Wd所在的三角形区域的除中心点Ws外的其它两个色坐标点对应的两个子像素,以预定归一化配比对中心点Ws对应的白色子像素进行补偿,以校正第一数据。由于通过围成色坐标点Wd所在的三角形区域的除中心点Ws外的其它两个色坐标点对应的两个子像素,以预定归一化配比对中心点Ws对应的白色子像素进行补偿,以校正第一数据,因此,能够有针对性地校正白色子像素色偏的现象,从而使RGBW面板的画面趋于正常。
【附图说明】
图1是本发明基于白色子像素色偏的RGBW的补偿方法一实施方式的流程图;
图2是本发明基于白色子像素色偏的RGBW的补偿方法一实施方式中四个子像素在色度图上的位置示意图;
图3是本发明基于白色子像素色偏的RGBW的补偿方法另一实施方式的流程图;
图4是现有技术中将基于RGB颜色空间的原始数据转换为基于RGBW颜色空间的第一数据的示意图;
图5是本发明基于白色子像素色偏的RGBW的补偿方法又一实施方式的流 程图;
图6是本发明基于白色子像素色偏的RGBW的补偿方法又一实施方式的流程图;
图7是本发明基于白色子像素色偏的RGBW的补偿装置一实施方式的结构示意图;
图8是本发明基于白色子像素色偏的RGBW的补偿装置另一实施方式的结构示意图;
图9是本发明基于白色子像素色偏的RGBW的补偿装置又一实施方式的结构示意图;
图10是本发明基于白色子像素色偏的RGBW的补偿装置又一实施方式的结构示意图。
【具体实施方式】
下面结合附图和实施方式对本发明进行详细说明。
参阅图1,图1是本发明基于白色子像素色偏的RGBW的补偿方法一实施方式的流程图,在采用本发明的方法进行补偿前,RGBW面板上图像像素点的白色子像素的色坐标点Ws与sRGB下标准白色色坐标点Wd之间存在偏差,该方法包括:
步骤S101:输入图像像素点基于RGBW颜色空间的第一数据。
步骤S102:分析RGBW面板上图像像素点的各子像素的色坐标,以色坐标点Ws为中心点,将像素点的红色子像素、绿色子像素以及蓝色子像素的色坐标点Rs、Gs以及Bs所围成的三角形RsGsBs划分为三个三角形区域RsGsWs,RsBsWs,BsGsWs
RGBW面板上图像像素点的各子像素在色度图上均可以用一个具体的坐标点代表,具有具体的色坐标值(x,y)。RGBW面板上图像像素点有四个子像素,分别是红色子像素、绿色子像素、蓝色子像素以及白色子像素,参见图2,这四个子像素在色度图上,对应相应的色坐标点RsGsBsWs,Gs位于RsGsBs所围成的三角形的里面,以Ws为中心点,将三角形RsGsBs划分为三个三角形区域RsGsWs,RsBsWs,BsGsWs
步骤S103:根据三个三角形区域RsGsWs,RsBsWs,BsGsWs的范围,确定色坐标点 Wd所在的三角形区域。
在三个三角形区域RsGsWs,RsBsWs,BsGsWs的范围确定后,即可确定色坐标点Wd所在的三角形区域,如图2所示,在一个具体的例子中,sRGB下标准白色色坐标点Wd的坐标值为(0.3127,0.329)(三角形RsGsBs中白色圆圈所示),而图像像素点的白色子像素的色坐标点Ws的坐标值为(0.34,0.35)(三角形RsGsBs中白色方块所示),Wd所在的三角形区域为BsGsWs
步骤S104:通过围成色坐标点Wd所在的三角形区域的除中心点Ws外的其它两个色坐标点对应的两个子像素,以预定归一化配比对中心点Ws对应的白色子像素进行补偿,以校正第一数据。
Wd是标准白色色坐标点,Wd位于某一个具体的三角形区域内,且Ws与Wd之间存在偏差,说明Ws需要校正,且在校正时,该三角形区域内的其它子像素对白色的影响最大,因此,采用Wd所在的三角形区域的除Ws外的其它两个色坐标点对应的两个子像素进行校正,在校正时,两个子像素影响的大小,以预定归一化配比确定。
该归一化配比可以通过色坐标点的坐标值、以及标准光学计算公式进行计算确定,也可以根据经验数据确定。
步骤S105:输出补偿后的图像像素点基于RGBW颜色空间的第二数据。
本发明实施方式在图像像素点的白色子像素的色坐标点Ws与sRGB下标准白色色坐标点Wd之间存在偏差时,分析RGBW面板上图像像素点的各子像素的色坐标,以色坐标点Ws为中心点,将像素点的红色子像素、绿色子像素以及蓝色子像素的色坐标点Rs、Gs以及Bs所围成的三角形RsGsBs划分为三个三角形区域;根据三个三角形区域的范围,确定色坐标点Wd所在的三角形区域;通过围成色坐标点Wd所在的三角形区域的除中心点Ws外的其它两个色坐标点对应的两个子像素,以预定归一化配比对中心点Ws对应的白色子像素进行补偿,以校正第一数据。由于通过围成色坐标点Wd所在的三角形区域的除中心点Ws外的其它两个色坐标点对应的两个子像素,以预定归一化配比对中心点Ws对应的白色子像素进行补偿,以校正第一数据,因此,能够有针对性地校正白色子像素色偏的现象,从而使RGBW面板的画面趋于正常。
其中,如图3所示,步骤S104具体可以包括:子步骤S1041和子步骤S1042。
子步骤S1041:若色坐标点Wd所在的三角形区域为BsGsWs,则计算像素点蓝色子像素、绿色子像素以及白色子像素之间亮度的归一化配比BsY,GsY,WsY,BsY+GsY+WsY=1。
子步骤S1042:采用归一化配比BsY,GsY,WsY,对第一数据进行校正处理,获得图像像素点基于RGBW颜色空间的第二数据,
Rfo(i)=Ro(i)
Gfo(i)=Go(i)+Wo(i)*GsY(i)
                      ,
Bfo(i)=Bo(i)+Wo(i)*BsY(i)
Wfo(i)=Wo(i)*WsY(i)
其中,Ro(i),Go(i),Bo(i),Wo(i)为像素点i的第一数据,Rfo(i),Gfo(i),Bfo(i),Wfo(i)为像素点i的第二数据,BsY(i),GsY(i),WsY(i)为像素点i蓝色子像素、绿色子像素以及白色子像素之间亮度的归一化配比。
如果色坐标点Wd所在的三角形区域为BsGsWs,说明校正时,可以采用该像素点的蓝色子像素、绿色子像素对白色子像素进行校正。具体来说,可以计算像素点蓝色子像素、绿色子像素以及白色子像素之间亮度的归一化配比BsY,GsY,WsY,其中,BsY+GsY+WsY=1。当归一化配比BsY,GsY,WsY确定后,即可对第一数据进行校正处理,获得图像像素点基于RGBW颜色空间的第二数据。
其中,第一数据是基于RGBW颜色空间的数据,在获得第一数据之前,基于RGB颜色空间的原始数据Ri,Gi,Bi通过传统RGBW转换算法或者其它不同的RGBW转换算法转换为基于RGBW颜色空间的第一数据Ro,Go,Bo,Wo。然后,再实施本发明的方法,即可对白色子像素色偏的现象进行校正,从而使RGBW面板的画面趋于正常。
例如,如图4所示,通过传统RGBW转换算法将基于RGB颜色空间的原始数据Ri,Gi,Bi转换为基于RGBW颜色空间的第一数据Ro,Go,Bo,Wo后,可以得到:
Figure PCTCN2015090138-appb-000010
然后再实施本发明的方法,即可对白色子像素色偏的现象进行校正,从而使RGBW面板的画面趋于正常。
其中,归一化配比BsY,GsY,WsY按照公式一计算获得,公式一是:
Figure PCTCN2015090138-appb-000011
其中,(Bsx,Bsy)是像素点蓝色子像素的色坐标点Bs的坐标,(Gsx,Gsy)是像素点绿色子像素的色坐标点Gs的坐标,(Wsx,Wsy)是像素点白色子像素的色坐标点Ws的坐标,(Wdx,Wdy)是sRGB下标准白色色坐标点Wd的坐标。
上述公式一的推导过程如下:
X、Y、Z为三刺激值,其中Y代表亮度;x、y为色坐标值;
X、Y、Z与x、y两者之间存在固定的联系公式:
x=X/(X+Y+Z)
y=Y/(X+Y+Z)
根据上述联系公式,因此可以获得如下方程式:
WsX/(WsX+WsY+WsZ)=Wsx  (1)
WsY/(WsX+WsY+WsZ)=Wsy  (2)
GsX/(GsX+GsY+GsZ)=Gsx  (3)
GsY/(GsX+GsY+GsZ)=Gsy  (4)
BsX/(BsX+BsY+BsZ)=Bsx  (5)
BsY/(BsX+BsY+BsZ)=Bsy  (6)
WsY+GsY+BsY=1  (7)
(WsX+GsX+BsX)/(WsX+GsX+BsX+WsY+GsY+BsY+WsZ+GsZ+BsZ)=Wdx  (8)
(WsY+GsY+BsY)/(WsX+GsX+BsX+WsY+GsY+BsY+WsZ+GsZ+BsZ)=Wdy  (9)
上述9个式子中,WsX、WsY、WsZ分别为某一像素点白色子像素的三刺激值,是待求解的未知数;GsX、GsY、GsZ分别为该像素点绿色子像素的三刺激值,是待求解的未知数;BsX、BsY、BsZ分别为该像素点蓝色子像素的三刺激值,是待求解的未知数。(Bsx,Bsy)为RGBW面板上该像素点蓝色子像素坐标值,是RGBW面板中的已知值;(Gsx,Gsy)为RGBW面板上该像素点绿色子像素坐标值,是RGBW面板中的已知值;(Wsx,Wsy)为RGBW面板上该像素点白色子像素坐标值,是RGBW面板中的已知值;(Wdx,Wdy)为sRGB 下的标准白色坐标,是已知值。
上述9个方程式,求解9个未知数,最后即可求出其中的亮度信息:WsY、GsY、BsY,也就是归一化配比。
其中,如图5所示,步骤S104具体可以包括:子步骤S1043和子步骤S1044。
子步骤S1043:若色坐标点Wd所在的三角形区域为BsRsWs,则计算像素点蓝色子像素、红色子像素以及白色子像素之间亮度的归一化配比BsY,RsY,WsY,BsY+RsY+WsY=1。
子步骤S1044:采用归一化配比BsY,RsY,WsY,对第一数据进行校正处理,获得图像像素点基于RGBW颜色空间的第二数据,
Rfo(j)=Ro(j)+Wo(j)*RsY(j)
Gfo(j)=Gs(j)
                  ,
Rfo(j)=Bo(j)+Wo(j)*BsY(j)
Wfo(j)=Wo(j)*WsY(j)
其中,Ro(j),Go(j),Bo(j),Wo(j)为像素点j的第一数据,Rfo(j),Gfo(j),Bfo(j),Wfo(j)为像素点j的第二数据,BsY(j),RsY(j),WsY(j)为像素点j蓝色子像素、红色子像素以及白色子像素之间亮度的归一化配比。
其中,归一化配比BsY,RsY,WsY按照公式二计算获得,公式二是:
Figure PCTCN2015090138-appb-000012
其中,(Bsx,Bsy)是像素点蓝色子像素的色坐标点Bs的坐标,(Gsx,Gsy)是像素点绿色子像素的色坐标点Gs的坐标,(Wsx,Wsy)是像素点白色子像素的色坐标点Ws的坐标,(Wdx,Wdy)是sRGB下标准白色色坐标点Wd的坐标。
其中,如图6所示,步骤S104具体可以包括:子步骤S1045和子步骤S1046。
子步骤S1045:若色坐标点Wd所在的三角形区域为RsGsWs,则计算像素点红色子像素、绿色子像素以及白色子像素之间亮度的归一化配比RsY,GsY,WsY,RsY+GsY+WsY=1。
子步骤S1046:采用归一化配比RsY,GsY,WsY,对第一数据进行校正处理,获得图像像素点基于RGBW颜色空间的第二数据,
Rfo(k)=Ro(k)+Wo(k)*RsY(k)
Gfo(k)=Go(k)+Wo(k)*GsY(k)
                     ,
Bfo(k)=Bo(k)
Wfo(k)=Wo(k)*WsY(k)
其中,Ro(k),Go(k),Bo(k),Wo(k)为像素点k的第一数据,Rfo(k),Gfo(k),Bfo(k),Wfo(k)为像素点k的第二数据,RsY(k),GsY(k),WsY(k)为像素点k红色子像素、绿色子像素以及白色子像素之间亮度的归一化配比。
其中,归一化配比RsY,GsY,WsY按照公式三计算获得,公式三是:
Figure PCTCN2015090138-appb-000013
其中,(Bsx,Bsy)是像素点蓝色子像素的色坐标点Bs的坐标,(Gsx,Gsy)是像素点绿色子像素的色坐标点Gs的坐标,(Wsx,Wsy)是像素点白色子像素的色坐标点Ws的坐标,(Wdx,Wdy)是sRGB下标准白色色坐标点Wd的坐标。
参见图7,图7是本发明基于白色子像素色偏的RGBW的补偿装置一实施方式的结构示意图,该装置可以执行上述方法中的步骤,相关内容的详细说明请参见上述方法中对应的说明,在此不再赘叙。
在补偿前,RGBW面板上图像像素点的白色子像素的色坐标点Ws与sRGB下标准白色色坐标点Wd之间存在偏差,该装置包括:输入模块101、划分模块102、确定模块103、补偿模块104以及输出模块105。
输入模块101用于输入图像像素点基于RGBW颜色空间的第一数据。
划分模块102用于分析RGBW面板上图像像素点的各子像素的色坐标,以色坐标点Ws为中心点,将像素点的红色子像素、绿色子像素以及蓝色子像素的色坐标点Rs、Gs以及Bs所围成的三角形RsGsBs划分为三个三角形区域RsGsWs,RsBsWs,BsGsWs
确定模块103用于根据三个三角形区域RsGsWs,RsBsWs,BsGsWs的范围,确定色坐标点Wd所在的三角形区域。
补偿模块104用于通过围成色坐标点Wd所在的三角形区域的除中心点Ws外的其它两个色坐标点对应的两个子像素,以预定归一化配比对中心点Ws对应的 白色子像素进行补偿,以校正第一数据。
输出模块105用于输出补偿后的图像像素点基于RGBW颜色空间的第二数据。
本发明实施方式在图像像素点的白色子像素的色坐标点Ws与sRGB下标准白色色坐标点Wd之间存在偏差时,分析RGBW面板上图像像素点的各子像素的色坐标,以色坐标点Ws为中心点,将像素点的红色子像素、绿色子像素以及蓝色子像素的色坐标点Rs、Gs以及Bs所围成的三角形RsGsBs划分为三个三角形区域;根据三个三角形区域的范围,确定色坐标点Wd所在的三角形区域;通过围成色坐标点Wd所在的三角形区域的除中心点Ws外的其它两个色坐标点对应的两个子像素,以预定归一化配比对中心点Ws对应的白色子像素进行补偿,以校正第一数据。由于通过围成色坐标点Wd所在的三角形区域的除中心点Ws外的其它两个色坐标点对应的两个子像素,以预定归一化配比对中心点Ws对应的白色子像素进行补偿,以校正第一数据,因此,能够有针对性地校正白色子像素色偏的现象,从而使RGBW面板的画面趋于正常。
其中,参见图8,补偿模块104包括:第一计算单元1041和第一校正单元1042。
第一计算单元1041用于在色坐标点Wd所在的三角形区域为BsGsWs时,计算像素点蓝色子像素、绿色子像素以及白色子像素之间亮度的归一化配比BsY,GsY,WsY,BsY+GsY+WsY=1。
第一校正单元1042用于采用归一化配比BsY,GsY,WsY,对第一数据进行校正处理,获得图像像素点基于RGBW颜色空间的第二数据,
Rfo(i)=Ro(i)
Gfo(i)=Go(i)+Wo(i)*GsY(i)
                   ,
Bfo(i)=Bo(i)+Wo(i)*BsY(i)
Wfo(i)=Wo(i)*WsY(i)
其中,Ro(i),Go(i),Bo(i),Wo(i)为像素点i的第一数据,Rfo(i),Gfo(i),Bfo(i),Wfo(i)为像素点i的第二数据,BsY(i),GsY(i),WsY(i)为像素点i蓝色子像素、绿色子像素以及白色子像素之间亮度的归一化配比。
其中,归一化配比BsY,GsY,WsY按照公式一计算获得,公式一是:
Figure PCTCN2015090138-appb-000014
其中,(Bsx,Bsy)是像素点蓝色子像素的色坐标点Bs的坐标,(Gsx,Gsy)是像素点绿色子像素的色坐标点Gs的坐标,(Wsx,Wsy)是像素点白色子像素的色坐标点Ws的坐标,(Wdx,Wdy)是sRGB下标准白色色坐标点Wd的坐标。
其中,参见图9,补偿模块104包括:第二计算单元1043和第二校正单元1044。
第二计算单元1043用于在色坐标点Wd所在的三角形区域为BsRsWs时,计算像素点蓝色子像素、红色子像素以及白色子像素之间亮度的归一化配比BsY,RsY,WsY,BsY+RsY+WsY=1。
第二校正单元1044用于采用归一化配比BsY,RsY,WsY,对第一数据进行校正处理,获得图像像素点基于RGBW颜色空间的第二数据,
Rfo(j)=Ro(j)+Wo(j)*RsY(j)
Gfo(j)=Go(j)
                  ,
Bfo(j)=Bo(j)+Wo(j)*BsY(j)
Wfo(j)=Wo(j)*WsY(j)
其中,Ro(j),Go(j),Bo(j),Wo(j)为像素点j的第一数据,Rfo(j),Gfo(j),Bfo(j),Wfo(j)为像素点j的第二数据,BsY(j),RsY(j),WsY(j)为像素点j蓝色子像素、红色子像素以及白色子像素之间亮度的归一化配比。
其中,归一化配比BsY,RsY,WsY按照公式二计算获得,公式二是:
Figure PCTCN2015090138-appb-000015
其中,(Bsx,Bsy)是像素点蓝色子像素的色坐标点Bs的坐标,(Gsx,Gsy)是像素点绿色子像素的色坐标点Gs的坐标,(Wsx,Wsy)是像素点白色子像素的色坐标点Ws的坐标,(Wdx,Wdy)是sRGB下标准白色色坐标点Wd的坐标。
其中,参见图10,补偿模块104包括:第三计算单元1045和第三校正单元1046。
第三计算单元1045用于在色坐标点Wd所在的三角形区域为RsGsWs时,计算像素点红色子像素、绿色子像素以及白色子像素之间亮度的归一化配比RsY,GsY,WsY,RsY+GsY+WsY=1。
第三校正单元1046用于采用归一化配比RsY,GsY,WsY,对第一数据进行校正处理,获得图像像素点基于RGBW颜色空间的第二数据,
Rfo(k)=Ro(k)+Wo(k)*RsY(k)
Gfo(k)=Go(k)+Wo(k)*GsY(k)
                    ,
Bfo(k)=Bo(k)
Wfo(k)=Wo(k)*WsY(k)
其中,Ro(k),Go(k),Bo(k),Wo(k)为像素点k的第一数据,Rfo(k),Gfo(k),Bfo(k),Wfo(k)为像素点k的第二数据,RsY(k),GsY(k),WsY(k)为像素点k红色子像素、绿色子像素以及白色子像素之间亮度的归一化配比。
其中,归一化配比RsY,GsY,WsY按照公式三计算获得,公式三是:
Figure PCTCN2015090138-appb-000016
其中,(Bsx,Bsy)是像素点蓝色子像素的色坐标点Bs的坐标,(Gsx,Gsy)是像素点绿色子像素的色坐标点Gs的坐标,(Wsx,Wsy)是像素点白色子像素的色坐标点Ws的坐标,(Wdx,Wdy)是sRGB下标准白色色坐标点Wd的坐标。
以上所述仅为本发明的实施方式,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (18)

  1. 一种基于白色子像素色偏的RGBW的补偿方法,其中,在补偿前,RGBW面板上图像像素点的白色子像素的色坐标点Ws与sRGB下标准白色色坐标点Wd之间存在偏差,所述方法包括:
    输入所述图像像素点基于RGBW颜色空间的第一数据;
    分析所述RGBW面板上图像像素点的各子像素的色坐标,以所述色坐标点Ws为中心点,将所述像素点的红色子像素、绿色子像素以及蓝色子像素的色坐标点Rs、Gs以及Bs所围成的三角形RsGsBs划分为三个三角形区域RsGsWs,RsBsWs,BsGsWs
    根据所述三个三角形区域RsGsWs,RsBsWs,BsGsWs的范围,确定所述色坐标点Wd所在的三角形区域;
    通过围成所述色坐标点Wd所在的三角形区域的除所述中心点Ws外的其它两个色坐标点对应的两个子像素,以预定归一化配比对所述中心点Ws对应的所述白色子像素进行补偿,以校正所述第一数据;
    输出补偿后的所述图像像素点基于RGBW颜色空间的第二数据;
    其中,所述通过围成所述色坐标点Wd所在的三角形区域的除所述中心点Ws外的其它两个色坐标点对应的两个子像素,以预定归一化配比对所述中心点Ws对应的所述白色子像素进行补偿的步骤,包括:
    若所述色坐标点Wd所在的三角形区域为BsGsWs,则计算所述像素点蓝色子像素、绿色子像素以及白色子像素之间亮度的归一化配比BsY,GsY,WsY,BsY+GsY+WsY=1;
    采用所述归一化配比BsY,GsY,WsY,对所述第一数据进行校正处理,获得所述图像像素点基于RGBW颜色空间的第二数据,
    Rfo(i)=Ro(i)
    Gfo(i)=Go(i)+Wo(i)*GsY(i)
                             ,
    Bfo(i)=Bo(i)+Wo(i)*BsY(i)
    Wfo(i)=Wo(i)*WsY(i)
    其中,Ro(i),Go(i),Bo(i),Wo(i)为像素点i的第一数据,Rfo(i),Gfo(i),Bfo(i),Wfo(i)为像素点i的第二数据,BsY(i),GsY(i),WsY(i)为像素点i蓝色子像素、绿色子像素以及白色子 像素之间亮度的归一化配比;
    若所述色坐标点Wd所在的三角形区域为BsRsWs,则计算所述像素点蓝色子像素、红色子像素以及白色子像素之间亮度的归一化配比BsY,RsY,WsY,BsY+RsY+WsY=1;
    采用所述归一化配比BsY,RsY,WsY,对所述第一数据进行校正处理,获得所述图像像素点基于RGBW颜色空间的第二数据,
    Rfo(j)=Ro(j)+Wo(j)*RsY(j)
    Gfo(j)=Go(j)
                            ,
    Bfo(j)=Bo(j)+Wo(j)*BsY(j)
    Wfo(j)=Wo(j)*WsY(j)
    其中,Ro(j),Go(j),Bo(j),Wo(j)为像素点j的第一数据,Rfo(j),Gfo(j),Bfo(j),Wfo(j)为像素点j的第二数据,BsY(j),RsY(j),WsY(j)为像素点j蓝色子像素、红色子像素以及白色子像素之间亮度的归一化配比;
    若所述色坐标点Wd所在的三角形区域为RsGsWs,则计算所述像素点红色子像素、绿色子像素以及白色子像素之间亮度的归一化配比RsY,GsY,WsY,RsY+GsY+WsY=1;
    采用所述归一化配比RsY,GsY,WsY,对所述第一数据进行校正处理,获得所述图像像素点基于RGBW颜色空间的第二数据,
    Rfo(k)=Ro(k)+Wo(k)*RsY(k)
    Gfo(k)=Go(k)+Wo(k)*GsY(k)
                              ,
    Bfo(k)=Bo(k)
    Wfo(k)=Wo(k)*WsY(k)
    其中,Ro(k),Go(k),Bo(k),Wo(k)为像素点k的第一数据,Rfo(k),Gfo(k),Bfo(k),Wfo(k)为像素点k的第二数据,RsY(k),GsY(k),WsY(k)为像素点k红色子像素、绿色子像素以及白色子像素之间亮度的归一化配比。
  2. 根据权利要求1所述的方法,其中,所述归一化配比BsY,GsY,WsY按照公式一计算获得,所述公式一是:
    Figure PCTCN2015090138-appb-100001
    Figure PCTCN2015090138-appb-100002
    Figure PCTCN2015090138-appb-100003
    其中,(Bsx,Bsy)是像素点蓝色子像素的色坐标点Bs的坐标,(Gsx,Gsy)是像素点绿色子像素的色坐标点Gs的坐标,(Wsx,Wsy)是像素点白色子像素的色坐标点Ws的坐标,(Wdx,Wdy)是sRGB下标准白色色坐标点Wd的坐标。
  3. 根据权利要求1所述的方法,其中,所述归一化配比BsY,RsY,WsY按照公式二计算获得,所述公式二是:
    Figure PCTCN2015090138-appb-100004
    Figure PCTCN2015090138-appb-100005
    Figure PCTCN2015090138-appb-100006
    其中,(Bsx,Bsy)是像素点蓝色子像素的色坐标点Bs的坐标,(Gsx,Gsy)是像素点绿色子像素的色坐标点Gs的坐标,(Wsx,Wsy)是像素点白色子像素的色坐标点Ws的坐标,(Wdx,Wdy)是sRGB下标准白色色坐标点Wd的坐标。
  4. 根据权利要求1所述的方法,其中,所述归一化配比RsY,GsY,WsY按照公式三计算获得,所述公式三是:
    Figure PCTCN2015090138-appb-100007
    Figure PCTCN2015090138-appb-100008
    Figure PCTCN2015090138-appb-100009
    其中,(Bsx,Bsy)是像素点蓝色子像素的色坐标点Bs的坐标,(Gsx,Gsy)是像素点绿色子像素的色坐标点Gs的坐标,(Wsx,Wsy)是像素点白色子像素的色坐标点Ws的坐标,(Wdx,Wdy)是sRGB下标准白色色坐标点Wd的坐标。
  5. 一种基于白色子像素色偏的RGBW的补偿方法,其中,在补偿前,RGBW面板上图像像素点的白色子像素的色坐标点Ws与sRGB下标准白色色坐标点Wd之间存在偏差,所述方法包括:
    输入所述图像像素点基于RGBW颜色空间的第一数据;
    分析所述RGBW面板上图像像素点的各子像素的色坐标,以所述色坐标点Ws为中心点,将所述像素点的红色子像素、绿色子像素以及蓝色子像素的色坐标点Rs、Gs以及Bs所围成的三角形RsGsBs划分为三个三角形区域RsGsWs,RsBsWs,BsGsWs
    根据所述三个三角形区域RsGsWs,RsBsWs,BsGsWs的范围,确定所述色坐标点Wd 所在的三角形区域;
    通过围成所述色坐标点Wd所在的三角形区域的除所述中心点Ws外的其它两个色坐标点对应的两个子像素,以预定归一化配比对所述中心点Ws对应的所述白色子像素进行补偿,以校正所述第一数据;
    输出补偿后的所述图像像素点基于RGBW颜色空间的第二数据。
  6. 根据权利要求5所述的方法,其中,所述通过围成所述色坐标点Wd所在的三角形区域的除所述中心点Ws外的其它两个色坐标点对应的两个子像素,以预定归一化配比对所述中心点Ws对应的所述白色子像素进行补偿的步骤,包括:
    若所述色坐标点Wd所在的三角形区域为BsGsWs,则计算所述像素点蓝色子像素、绿色子像素以及白色子像素之间亮度的归一化配比BsY,GsY,WsY,BsY+GsY+WsY=1;
    采用所述归一化配比BsY,GsY,WsY,对所述第一数据进行校正处理,获得所述图像像素点基于RGBW颜色空间的第二数据,
    Rfo(i)=Ro(i)
    Gfo(i)=Go(i)+Wo(i)*GsY(i)
                                      ,
    Bfo(i)=Bo(i)+Wo(i)*BsY(i)
    Wfo(i)=Wo(i)*WsY(i)
    其中,Ro(i),Go(i),Bo(i),Wo(i)为像素点i的第一数据,Rfo(i),Gfo(i),Bfo(i),Wfo(i)为像素点i的第二数据,BsY(i),GsY(i),WsY(i)为像素点i蓝色子像素、绿色子像素以及白色子像素之间亮度的归一化配比。
  7. 根据权利要求6所述的方法,其中,所述归一化配比BsY,GsY,WsY按照公式一计算获得,所述公式一是:
    Figure PCTCN2015090138-appb-100010
    Figure PCTCN2015090138-appb-100011
    Figure PCTCN2015090138-appb-100012
    其中,(Bsx,Bsy)是像素点蓝色子像素的色坐标点Bs的坐标,(Gsx,Gsy)是像素点绿色子像素的色坐标点Gs的坐标,(Wsx,Wsy)是像素点白色子像素的色坐标点Ws的坐标,(Wdx,Wdy)是sRGB下标准白色色坐标点Wd的坐标。
  8. 根据权利要求5所述的方法,其中,所述通过围成所述色坐标点Wd所在的 三角形区域的除所述中心点Ws外的其它两个色坐标点对应的两个子像素,以预定归一化配比对所述中心点Ws对应的所述白色子像素进行补偿的步骤,包括:
    若所述色坐标点Wd所在的三角形区域为BsRsWs,则计算所述像素点蓝色子像素、红色子像素以及白色子像素之间亮度的归一化配比BsY,RsY,WsY,BsY+RsY+WsY=1;
    采用所述归一化配比BsY,RsY,WsY,对所述第一数据进行校正处理,获得所述图像像素点基于RGBW颜色空间的第二数据,
    Rfo(j)=Ro(j)+Wo(j)*RsY(j)
    Gfo(j)=Go(j)
                            ,
    Rfo(j)=Bo(j)+Wo(j)*BsY(j)
    Wfo(j)=Wo(j)*WsY(j)
    其中,Ro(j),Go(j),Bo(j),Wo(j)为像素点j的第一数据,Rfo(j),Gfo(j),Bfo(j),Wfo(j)为像素点j的第二数据,BsY(j),BsY(j),WsY(j)为像素点j蓝色子像素、红色子像素以及白色子像素之间亮度的归一化配比。
  9. 根据权利要求8所述的方法,其中,所述归一化配比BsY,RsY,WsY按照公式二计算获得,所述公式二是:
    Figure PCTCN2015090138-appb-100013
    Figure PCTCN2015090138-appb-100014
    Figure PCTCN2015090138-appb-100015
    其中,(Bsx,Bsy)是像素点蓝色子像素的色坐标点Bs的坐标,(Gsx,Gsy)是像素点绿色子像素的色坐标点Gs的坐标,(Wsx,Wsy)是像素点白色子像素的色坐标点Ws的坐标,(Wdx,Wdy)是sRGB下标准白色色坐标点Wd的坐标。
  10. 根据权利要求5所述的方法,其中,所述通过围成所述色坐标点Wd所在的三角形区域的除所述中心点Ws外的其它两个色坐标点对应的两个子像素,以预定归一化配比对所述中心点Ws对应的所述白色子像素进行补偿的步骤,包括:
    若所述色坐标点Wd所在的三角形区域为RsGsWs,则计算所述像素点红色子像素、绿色子像素以及白色子像素之间亮度的归一化配比RsY,GsY,WsY,RsY+GsY+WsY=1;
    采用所述归一化配比RsY,GsY,WsY,对所述第一数据进行校正处理,获得所 述图像像素点基于RGBW颜色空间的第二数据,
    Rfo(k)=Ro(k)+Wo(k)*RsY(k)
    Gfo(k)=Go(k)+Wo(k)*GsY(k)
                              ,
    Bfo(k)=Bo(k)
    Wfo(k)=Wo(k)*WsY(k)
    其中,Ro(k),Go(k),Bo(k),Wo(k)为像素点k的第一数据,Rfo(k),Gfo(k),Bfo(k),Wfo(k)为像素点k的第二数据,RsY(k),GsY(k),WsY(k)为像素点k红色子像素、绿色子像素以及白色子像素之间亮度的归一化配比。
  11. 根据权利要求10所述的方法,其中,所述归一化配比RsY,GsY,WsY按照公式三计算获得,所述公式三是:
    Figure PCTCN2015090138-appb-100016
    Figure PCTCN2015090138-appb-100017
    Figure PCTCN2015090138-appb-100018
    其中,(Bsx,Bsy)是像素点蓝色子像素的色坐标点Bs的坐标,(Gsx,Gsy)是像素点绿色子像素的色坐标点Gs的坐标,(Wsx,Wsy)是像素点白色子像素的色坐标点Ws的坐标,(Wdx,Wdy)是sRGB下标准白色色坐标点Wd的坐标。
  12. 一种基于白色子像素色偏的RGBW的补偿装置,其中,在补偿前,RGBW面板上图像像素点的白色子像素的色坐标点Ws与sRGB下标准白色色坐标点Wd之间存在偏差,所述装置包括:
    输入模块,用于输入所述图像像素点基于RGBW颜色空间的第一数据;
    划分模块,用于分析所述RGBW面板上图像像素点的各子像素的色坐标,以所述色坐标点Ws为中心点,将所述像素点的红色子像素、绿色子像素以及蓝色子像素的色坐标点Rs、Gs以及Bs所围成的三角形BsGsBs划分为三个三角形区域RsGsWs,RsBsWs,BsGsWs
    确定模块,用于根据所述三个三角形区域BsGsWs,BsBsWs,BsGsWs的范围,确定所述色坐标点Wd所在的三角形区域;
    补偿模块,用于通过围成所述色坐标点Wd所在的三角形区域的除所述中心点Ws外的其它两个色坐标点对应的两个子像素,以预定归一化配比对所述中心点Ws对应的所述白色子像素进行补偿,以校正所述第一数据;
    输出模块,用于输出补偿后的所述图像像素点基于RGBW颜色空间的第二数据。
  13. 根据权利要求12所述的装置,其中,所述补偿模块包括:
    第一计算单元,用于在所述色坐标点Wd所在的三角形区域为BsGsWs时,计算所述像素点蓝色子像素、绿色子像素以及白色子像素之间亮度的归一化配比BsY,GsY,WsY,BsY+GsY+WsY=1;
    第一校正单元,用于采用所述归一化配比BsY,GsY,WsY,对所述第一数据进行校正处理,获得所述图像像素点基于RGBW颜色空间的第二数据,
    Rfo(i)=Ro(i)
    Gfo(i)=Go(i)+Wo(i)*GsY(i)
                             ,
    Bfo(i)=Bo(i)+Wo(i)*BsY(i)
    Wfo(i)=Wo(i)*WsY(i)
    其中,Ro(i),Go(i),Bo(i),Wo(i)为像素点i的第一数据,Rfo(i),Gfo(i),Bfo(i),Wfo(i)为像素点i的第二数据,BsY(i),GsY(i),WsY(i)为像素点i蓝色子像素、绿色子像素以及白色子像素之间亮度的归一化配比。
  14. 根据权利要求13所述的装置,其中,所述归一化配比BsY,GsY,WsY按照公式一计算获得,所述公式一是:
    Figure PCTCN2015090138-appb-100019
    Figure PCTCN2015090138-appb-100020
    Figure PCTCN2015090138-appb-100021
    其中,(Bsx,Bsy)是像素点蓝色子像素的色坐标点Bs的坐标,(Gsx,Gsy)是像素点绿色子像素的色坐标点Gs的坐标,(Wsx,Wsy)是像素点白色子像素的色坐标点Ws的坐标,(Wdx,Wdy)是sRGB下标准白色色坐标点Wd的坐标。
  15. 根据权利要求12所述的装置,其中,所述补偿模块包括:
    第二计算单元,用于在所述色坐标点Wd所在的三角形区域为BsRsWs时,计算所述像素点蓝色子像素、红色子像素以及白色子像素之间亮度的归一化配比BsY,RsY,WsY,BsY+RsY+WsY=1;
    第二校正单元,用于采用所述归一化配比BsY,RsY,WsY,对所述第一数据进行校正处理,获得所述图像像素点基于RGBW颜色空间的第二数据,
    Rfo(j)=Ro(j)+Wo(j)*RsY(j)
    Gfo(j)=Go(j)
                                ,
    Bfo(j)=Bo(j)+Wo(j)*BsY(j)
    Wfo(j)=Wo(j)*WsY(j)
    其中,Ro(j),Go(j),Bo(j),Wo(j)为像素点j的第一数据,Rfo(j),Gfo(j),Bfo(j),Wfo(j)为像素点j的第二数据,BsY(j),RsY(j),WsY(j)为像素点j蓝色子像素、红色子像素以及白色子像素之间亮度的归一化配比。
  16. 根据权利要求15所述的装置,其中,所述归一化配比BsY,RsY,WsY按照公式二计算获得,所述公式二是:
    Figure PCTCN2015090138-appb-100022
    Figure PCTCN2015090138-appb-100023
    Figure PCTCN2015090138-appb-100024
    其中,(Bsx,Bsy)是像素点蓝色子像素的色坐标点Bs的坐标,(Gsx,Gsy)是像素点绿色子像素的色坐标点Gs的坐标,(Wsx,Wsy)是像素点白色子像素的色坐标点Ws的坐标,(Wdx,Wdy)是sRGB下标准白色色坐标点Wd的坐标。
  17. 根据权利要求12所述的装置,其中,所述补偿模块包括:
    第三计算单元,用于在所述色坐标点Wd所在的三角形区域为RsGsWs时,计算所述像素点红色子像素、绿色子像素以及白色子像素之间亮度的归一化配比RsY,GsY,WsY,RsY+GsY+WsY=1;
    第三校正单元,用于采用所述归一化配比RsY,GsY,WsY,对所述第一数据进行校正处理,获得所述图像像素点基于RGBW颜色空间的第二数据,
    Rfo(k)=Ro(k)+Wo(k)*RsY(k)
    Gfo(k)=Go(k)+Wo(k)*GsY(k)
                             ,
    Bfo(k)=Bo(k)
    Wfo(k)=Wo(k)*WsY(k)
    其中,Ro(k),Go(k),Bo(k),Wo(k)为像素点k的第一数据,Rfo(k),Gfo(k),Bfo(k),Wfo(k)为像素点k的第二数据,RsY(k),GsY(k),WsY(k)为像素点k红色子像素、绿色子像素以及白色子像素之间亮度的归一化配比。
  18. 根据权利要求17所述的装置,其中,所述归一化配比RsY,GsY,WsY按照公式三计算获得,所述公式三是:
    Figure PCTCN2015090138-appb-100025
    Figure PCTCN2015090138-appb-100026
    Figure PCTCN2015090138-appb-100027
    其中,(Bsx,Bsy)是像素点蓝色子像素的色坐标点Bs的坐标,(Gsx,Gsy)是像素点绿色子像素的色坐标点Gs的坐标,(Wsx,Wsy)是像素点白色子像素的色坐标点Ws的坐标,(Wdx,Wdy)是sRGB下标准白色色坐标点Wd的坐标。
PCT/CN2015/090138 2015-09-17 2015-09-21 基于白色子像素色偏的rgbw的补偿方法及装置 WO2017045214A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/898,275 US9858846B2 (en) 2015-09-17 2015-09-21 Method of RGBW compensation based on color aberrations of white subpixels and apparatus thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510593712.3 2015-09-17
CN201510593712.3A CN105118413B (zh) 2015-09-17 2015-09-17 基于白色子像素色偏的rgbw的补偿方法及装置

Publications (1)

Publication Number Publication Date
WO2017045214A1 true WO2017045214A1 (zh) 2017-03-23

Family

ID=54666377

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/090138 WO2017045214A1 (zh) 2015-09-17 2015-09-21 基于白色子像素色偏的rgbw的补偿方法及装置

Country Status (3)

Country Link
US (2) US9858846B2 (zh)
CN (1) CN105118413B (zh)
WO (1) WO2017045214A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112133197A (zh) * 2020-09-29 2020-12-25 厦门天马微电子有限公司 显示屏、显示屏中屏下摄像头的光补偿方法及光补偿系统

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104091578B (zh) * 2014-06-25 2016-03-02 京东方科技集团股份有限公司 一种rgb信号到rgbw信号的图像转换方法及装置
CN106652937B (zh) * 2016-12-14 2019-06-25 武汉华星光电技术有限公司 一种rgb转rgbw的转换方法
US10417976B2 (en) 2017-03-22 2019-09-17 Wuhan China Star Optoelectronics Technology Co., Ltd. Pixel rendering method and pixel rendering device
CN106875923B (zh) * 2017-03-22 2019-02-01 武汉华星光电技术有限公司 一种像素渲染方法及像素渲染装置
CN107146574B (zh) * 2017-07-19 2019-06-07 京东方科技集团股份有限公司 一种woled显示装置的补色方法、显示装置
CN107316609B (zh) * 2017-08-21 2019-05-24 京东方科技集团股份有限公司 一种woled显示装置的补色方法、woled显示装置
CN108962167B (zh) * 2018-07-23 2021-01-22 京东方科技集团股份有限公司 数据处理方法及装置、驱动方法、显示面板和存储介质
CN109119046B (zh) * 2018-09-10 2020-06-05 深圳市华星光电技术有限公司 灰阶亮度的调节系统及调节方法、存储器
CN109410875B (zh) * 2018-12-17 2021-03-19 惠科股份有限公司 三色数据到四色数据的转换方法及装置
CN110459176A (zh) * 2019-08-16 2019-11-15 合肥工业大学 一种amoled显示器的色域转换方法
CN110782854B (zh) * 2019-10-08 2020-09-08 深圳市华星光电半导体显示技术有限公司 电子设备及其阅读模式的识别方法
CN112185317A (zh) * 2020-08-17 2021-01-05 深圳市广和通无线股份有限公司 色彩校准方法、装置、计算机设备和存储介质
CN114203093B (zh) * 2021-12-23 2022-10-11 长沙惠科光电有限公司 显示面板色偏的补偿方法及显示模组、电子设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101923828A (zh) * 2009-06-16 2010-12-22 伊格尼斯创新公司 对显示器中的颜色偏移的补偿技术
WO2012049845A1 (ja) * 2010-10-12 2012-04-19 パナソニック株式会社 色信号処理装置
CN103218988A (zh) * 2013-03-25 2013-07-24 京东方科技集团股份有限公司 一种rgb信号到rgbw信号的图像转换方法及装置
CN103489400A (zh) * 2013-03-14 2014-01-01 友达光电股份有限公司 将rgb数据信号转换成rgbw数据信号的处理器与方法
CN103747223A (zh) * 2014-01-15 2014-04-23 京东方科技集团股份有限公司 色域调整装置、方法及显示系统
CN104091578A (zh) * 2014-06-25 2014-10-08 京东方科技集团股份有限公司 一种rgb信号到rgbw信号的图像转换方法及装置
KR20140122119A (ko) * 2013-04-09 2014-10-17 엘지전자 주식회사 영상 처리 장치 및 그 방법
CN104269138A (zh) * 2014-10-24 2015-01-07 京东方科技集团股份有限公司 白光oled显示装置及其显示控制方法、显示控制装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101588336B1 (ko) * 2009-12-17 2016-01-26 삼성디스플레이 주식회사 데이터 처리 방법 및 이를 수행하기 위한 표시 장치
CN103147223B (zh) 2013-04-02 2016-01-27 浙江联洋新材料股份有限公司 一种玻璃纤维薄毡连续生产线及其使用方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101923828A (zh) * 2009-06-16 2010-12-22 伊格尼斯创新公司 对显示器中的颜色偏移的补偿技术
WO2012049845A1 (ja) * 2010-10-12 2012-04-19 パナソニック株式会社 色信号処理装置
CN103489400A (zh) * 2013-03-14 2014-01-01 友达光电股份有限公司 将rgb数据信号转换成rgbw数据信号的处理器与方法
CN103218988A (zh) * 2013-03-25 2013-07-24 京东方科技集团股份有限公司 一种rgb信号到rgbw信号的图像转换方法及装置
KR20140122119A (ko) * 2013-04-09 2014-10-17 엘지전자 주식회사 영상 처리 장치 및 그 방법
CN103747223A (zh) * 2014-01-15 2014-04-23 京东方科技集团股份有限公司 色域调整装置、方法及显示系统
CN104091578A (zh) * 2014-06-25 2014-10-08 京东方科技集团股份有限公司 一种rgb信号到rgbw信号的图像转换方法及装置
CN104269138A (zh) * 2014-10-24 2015-01-07 京东方科技集团股份有限公司 白光oled显示装置及其显示控制方法、显示控制装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112133197A (zh) * 2020-09-29 2020-12-25 厦门天马微电子有限公司 显示屏、显示屏中屏下摄像头的光补偿方法及光补偿系统
CN112133197B (zh) * 2020-09-29 2022-09-13 厦门天马微电子有限公司 显示屏、显示屏中屏下摄像头的光补偿方法及光补偿系统

Also Published As

Publication number Publication date
US10037727B2 (en) 2018-07-31
US9858846B2 (en) 2018-01-02
CN105118413A (zh) 2015-12-02
CN105118413B (zh) 2018-06-12
US20170256190A1 (en) 2017-09-07
US20180012532A1 (en) 2018-01-11

Similar Documents

Publication Publication Date Title
WO2017045214A1 (zh) 基于白色子像素色偏的rgbw的补偿方法及装置
RU2660628C1 (ru) Жидкокристаллическая панель и способ управления такой панелью
CN104809994B (zh) 一种rgbw类型四基色显示器灰阶组合转换方法
WO2016070433A1 (zh) 一种三色数据到四色数据的转换系统及转换方法
WO2017045218A1 (zh) 一种图像的自适应转换方法
WO2017045286A1 (zh) 一种像素渲染方法、像素渲染装置和显示器
KR101919720B1 (ko) Rgb 에서 rgbw 로의 색상 전환 시스템 및 방법
US10291892B2 (en) White balance method of four-color pixel system
WO2017004817A1 (zh) 一种图像显示方法以及显示系统
WO2016070447A1 (zh) 一种rgb数据到wrgb数据的转换系统及转换方法
WO2015196608A1 (zh) 一种rgb信号到rgbw信号的图像转换方法及装置
JP6410279B2 (ja) Wrgb方式の液晶表示パネルの表示駆動方法
CN104243946B (zh) 用于显示器的图像色彩增强方法及装置
CN105070270B (zh) Rgbw面板子像素的补偿方法及装置
JP6440338B2 (ja) 画像データ処理方法及び装置
US20180211633A1 (en) Display apparatus and brightness adjustment method thereof
WO2016095294A1 (zh) 一种rgb数据的转换方法及转换系统
JP2017538148A (ja) 液晶パネル及びその画素単位の設定方法
CN106098009B (zh) 一种液晶显示面板的驱动方法及装置
JP6375437B2 (ja) 液晶表示装置・四色変換器及びrgbデータからrgbwデータへの変換方法
JP6373478B2 (ja) 液晶表示装置及びその駆動方法
US9305519B2 (en) Image color adjusting method and electronic device using the same
JP2013061446A5 (ja) 画像表示装置、画像処理装置
TWI627624B (zh) 影像資料處理方法以及時序控制器
US20150356901A1 (en) Four color converter, display apparatus and method for converting three color data to four color data

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14898275

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15903903

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15903903

Country of ref document: EP

Kind code of ref document: A1