WO2017043916A1 - 무선 통신 시스템에서 신호의 전송 방법 및 장치 - Google Patents

무선 통신 시스템에서 신호의 전송 방법 및 장치 Download PDF

Info

Publication number
WO2017043916A1
WO2017043916A1 PCT/KR2016/010169 KR2016010169W WO2017043916A1 WO 2017043916 A1 WO2017043916 A1 WO 2017043916A1 KR 2016010169 W KR2016010169 W KR 2016010169W WO 2017043916 A1 WO2017043916 A1 WO 2017043916A1
Authority
WO
WIPO (PCT)
Prior art keywords
dai
pdcch
ack
harq
cell
Prior art date
Application number
PCT/KR2016/010169
Other languages
English (en)
French (fr)
Inventor
양석철
안준기
황대성
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to CN201680051874.7A priority Critical patent/CN108028737A/zh
Priority to EP16844732.4A priority patent/EP3349387B1/en
Priority to US15/747,006 priority patent/US10498497B2/en
Publication of WO2017043916A1 publication Critical patent/WO2017043916A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present invention relates to a wireless communication system, and more particularly, to a method and apparatus for transmitting / receiving a signal.
  • the wireless communication system can support Carrier Aggregation (CA).
  • CA Carrier Aggregation
  • Wireless communication systems are widely deployed to provide various kinds of communication services such as voice and data.
  • a wireless communication system is a multiple access system capable of supporting communication with multiple users by sharing available system resources (bandwidth, transmission power, etc.).
  • multiple access systems include code division multiple access (CDMA) systems, frequency division multiple access (FDMA) systems, time division multiple access (TDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, and single carrier frequency (SC-FDMA). division multiple access) system.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • a physical downlink assignment index (DAI) and physical DCDC (PDCCH) having DAI group indication information receiving a downlink control channel) within a subframe (SF) #nk; Constructing a HARQ-ACK payload using the DAI and the DAI group indication information; And transmitting the HARQ-ACK payload in SF #n, wherein the value of the DAI indicates a scheduling order value of a cell / SF unit related to the first PDCCH in SF #nk.
  • the scheduling order value of is counted in a cell-first manner in a cell / SF domain, and the DAI group indication information indicates whether the PDCCH corresponds to the last DAI group, and one DAI group is composed of a plurality of consecutive DAI values.
  • K ⁇ k 0 , k 1 ,... In each cell.
  • k M -1 ⁇ can be provided as follows:
  • a terminal configured to transmit a hybrid automatic repeat request (HARQ-ACK) in a carrier aggregation (CA) wireless communication system, comprising: a radio frequency (RF) unit; And a processor, wherein the processor receives a physical downlink control channel (PDCCH) having a downlink assignment index (DAI) and DAI group indication information in subframe (SF) #nk, and the DAI and the DAI group indication information.
  • a physical downlink control channel having a downlink assignment index (DAI) and DAI group indication information in subframe (SF) #nk
  • the DAI and the DAI group indication information Is configured to transmit the HARQ-ACK payload and transmits the HARQ-ACK payload in SF #n, and the value of the DAI is a scheduling order value of a cell / SF unit related to the PDCCH in SF #nk.
  • the scheduling order value of the cell / SF unit is counted in a cell priority manner in the cell / SF domain, and the DAI group indication information indicates whether the PDCCH corresponds to the last DAI group, and one DAI group includes a plurality of DAI groups. Consisting of successive DAI values of K: ⁇ k 0 , k 1 ,... k M -1 ⁇ may be provided with a terminal given as follows:
  • the DAI value is repeated four times, the one DAI group may be composed of four consecutive DAI values.
  • the HARQ-ACK payload further includes a HARQ-ACK response corresponding to the last DAI group, and the HARQ-ACK response NACK (Negative Acknowledgement) or DTX (Discontinuous Transmission) can be set.
  • NACK Negative Acknowledgement
  • DTX Discontinuous Transmission
  • the PDCCH may be (i) a PDCCH for scheduling a physical downlink shared channel (PDSCH) or (ii) a PDCCH for indicating a semi-persistent scheduling release.
  • PDSCH physical downlink shared channel
  • PDCCH for indicating a semi-persistent scheduling release.
  • the HARQ-ACK payload may include a HARQ-ACK response for the PDSCH or a HARQ-ACK response for the PDCCH indicating the SPS release.
  • the present invention it is possible to efficiently transmit / receive a signal in a wireless communication system. In addition, it is possible to efficiently control the transmission of the uplink signal.
  • FIG. 1 illustrates physical channels used in a 3GPP LTE system, which is an example of a wireless communication system, and a general signal transmission method using the same.
  • FIG. 2 illustrates a structure of a radio frame.
  • FIG. 3 illustrates a resource grid of a downlink slot.
  • 5 illustrates a structure of an uplink subframe.
  • FIG. 6 shows an example of determining a PUCCH resource for ACK / NACK.
  • DAI downlink assignment index
  • CA 10 illustrates a Carrier Aggregation (CA) communication system.
  • 11 illustrates scheduling when a plurality of carriers are merged.
  • FIG. 16 illustrates ACK / NACK transmission according to an embodiment of the present invention.
  • FIG. 17 illustrates a base station and a terminal that can be applied to the present invention.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • CDMA may be implemented with a radio technology such as Universal Terrestrial Radio Access (UTRA) or CDMA2000.
  • TDMA may be implemented with wireless technologies such as Global System for Mobile communications (GSM) / General Packet Radio Service (GPRS) / Enhanced Data Rates for GSM Evolution (EDGE).
  • GSM Global System for Mobile communications
  • GPRS General Packet Radio Service
  • EDGE Enhanced Data Rates for GSM Evolution
  • OFDMA may be implemented in a wireless technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, Evolved UTRA (E-UTRA).
  • UTRA is part of the Universal Mobile Telecommunications System (UMTS).
  • 3rd Generation Partnership Project (3GPP) long term evolution (LTE) is part of Evolved UMTS (E-UMTS) using E-UTRA and LTE-A (Advanced) is an evolved version of 3GPP LTE.
  • 3GPP LTE / LTE-A the technical spirit of the present invention is not limited thereto.
  • a terminal receives information through a downlink (DL) from a base station, and the terminal transmits information through an uplink (UL) to the base station.
  • the information transmitted and received between the base station and the terminal includes data and various control information, and various physical channels exist according to the type / use of the information transmitted and received.
  • FIG. 1 is a diagram for explaining physical channels used in a 3GPP LTE system and a general signal transmission method using the same.
  • the terminal which is powered on again or enters a new cell while the power is turned off performs an initial cell search operation such as synchronizing with the base station in step S101.
  • the terminal receives a Primary Synchronization Channel (P-SCH) and a Secondary Synchronization Channel (S-SCH) from the base station, synchronizes with the base station, and provides information such as cell identity (cell identity). Acquire.
  • the terminal may receive a physical broadcast channel (PBCH) from the base station to obtain broadcast information in a cell.
  • PBCH physical broadcast channel
  • the terminal may check a downlink channel state by receiving a downlink reference signal (DL RS) in an initial cell search step.
  • DL RS downlink reference signal
  • the UE After completing the initial cell discovery, the UE receives a physical downlink control channel (PDSCH) according to physical downlink control channel (PDCCH) and physical downlink control channel information in step S102 to be more specific.
  • PDSCH physical downlink control channel
  • PDCCH physical downlink control channel
  • System information can be obtained.
  • the terminal may perform a random access procedure such as steps S103 to S106 to complete the access to the base station.
  • the UE transmits a preamble through a physical random access channel (PRACH) (S103), a response message to the preamble through a physical downlink control channel and a corresponding physical downlink shared channel. Can be received (S104).
  • contention resolution procedure such as transmission of an additional physical random access channel (S105) and reception of a physical downlink control channel and a corresponding physical downlink shared channel (S106). ) Can be performed.
  • the UE After performing the above-described procedure, the UE performs a general downlink control channel / physical downlink shared channel reception (S107) and a physical uplink shared channel (PUSCH) / as a general uplink / downlink signal transmission procedure.
  • Physical uplink control channel (PUCCH) transmission (S108) may be performed.
  • the control information transmitted from the terminal to the base station is collectively referred to as uplink control information (UCI).
  • UCI includes Hybrid Automatic Repeat and reQuest Acknowledgment / Negative-ACK (HARQ ACK / NACK), Scheduling Request (SR), Channel State Information (CSI), and the like.
  • HARQ ACK / NACK Hybrid Automatic Repeat and reQuest Acknowledgment / Negative-ACK
  • SR Scheduling Request
  • CSI Channel State Information
  • the CSI includes a Channel Quality Indicator (CQI), a Precoding Matrix Indicator (PMI), a Rank Indication (RI), and the like.
  • CQI Channel Quality Indicator
  • PMI Precoding Matrix Indicator
  • RI Rank Indication
  • UCI is generally transmitted through PUCCH, but may be transmitted through PUSCH when control information and traffic data should be transmitted at the same time. In addition, the UCI may be aperiodically transmitted through the PUSCH by the request / instruction of the network.
  • the uplink / downlink data packet transmission is performed in subframe units, and the subframe is defined as a time interval including a plurality of symbols.
  • the 3GPP LTE standard supports a type 1 radio frame structure applicable to frequency division duplex (FDD) and a type 2 radio frame structure applicable to time division duplex (TDD).
  • the downlink radio frame consists of 10 subframes, and one subframe consists of two slots in the time domain.
  • one subframe may have a length of 1 ms, and one slot may have a length of 0.5 ms.
  • One slot includes a plurality of OFDM symbols in the time domain and a plurality of resource blocks (RBs) in the frequency domain.
  • RB resource blocks
  • an OFDM symbol represents one symbol period.
  • An OFDM symbol may also be referred to as an SC-FDMA symbol or symbol period.
  • a resource block (RB) as a resource allocation unit may include a plurality of consecutive subcarriers in one slot.
  • the number of OFDM symbols included in the slot may vary depending on the configuration of a cyclic prefix (CP).
  • CP has an extended CP (normal CP) and a normal CP (normal CP).
  • normal CP when an OFDM symbol is configured by a normal CP, the number of OFDM symbols included in one slot may be seven.
  • extended CP since the length of one OFDM symbol is increased, the number of OFDM symbols included in one slot is smaller than that of the normal CP.
  • the number of OFDM symbols included in one slot may be six.
  • an extended CP may be used to further reduce intersymbol interference.
  • the subframe includes 14 OFDM symbols.
  • First up to three OFDM symbols of a subframe may be allocated to a physical downlink control channel (PDCCH), and the remaining OFDM symbols may be allocated to a physical downlink shared channel (PDSCH).
  • PDCCH physical downlink control channel
  • PDSCH physical downlink shared channel
  • Type 2 (b) illustrates the structure of a type 2 radio frame.
  • Type 2 radio frames consist of two half frames.
  • the half frame includes 4 (5) normal subframes and 1 (0) special subframes.
  • the general subframe is used for uplink or downlink according to the UL-Downlink configuration.
  • the subframe consists of two slots.
  • Table 1 illustrates a subframe configuration in a radio frame according to the UL-DL configuration.
  • D represents a downlink subframe
  • U represents an uplink subframe
  • S represents a special subframe.
  • the special subframe includes a downlink pilot time slot (DwPTS), a guard period (GP), and an uplink pilot time slot (UpPTS).
  • DwPTS is used for initial cell search, synchronization or channel estimation at the terminal.
  • UpPTS is used for channel estimation at the base station and synchronization of uplink transmission of the terminal.
  • the guard period is a period for removing interference generated in the uplink due to the multipath delay of the downlink signal between the uplink and the downlink.
  • the structure of the radio frame is merely an example, and the number of subframes, the number of slots, and the number of symbols in the radio frame may be variously changed.
  • FIG. 3 illustrates a resource grid for a downlink slot.
  • the downlink slot includes a plurality of OFDM symbols in the time domain.
  • one downlink slot includes 7 OFDM symbols and one resource block (RB) is illustrated as including 12 subcarriers in the frequency domain.
  • Each element on the resource grid is referred to as a resource element (RE).
  • One RB contains 12 * 7 REs.
  • the number N DL of RBs included in the downlink slot depends on the downlink transmission band.
  • the structure of the uplink slot may be the same as the structure of the downlink slot.
  • FIG. 4 illustrates a structure of a downlink subframe.
  • up to three (4) OFDM symbols located in front of the first slot in a subframe correspond to a control region to which a control channel is allocated.
  • the remaining OFDM symbol corresponds to a data region to which a physical downlink shared chance (PDSCH) is allocated, and a basic resource unit of the data region is RB.
  • Examples of downlink control channels used in LTE include a physical control format indicator channel (PCFICH), a physical downlink control channel (PDCCH), a physical hybrid ARQ indicator channel (PHICH), and the like.
  • the PCFICH is transmitted in the first OFDM symbol of a subframe and carries information on the number of OFDM symbols used for transmission of a control channel within the subframe.
  • the PHICH is a response to uplink transmission and carries an HARQ ACK / NACK (acknowledgment / negative-acknowledgment) signal.
  • Control information transmitted on the PDCCH is referred to as downlink control information (DCI).
  • DCI includes uplink or downlink scheduling information or an uplink transmit power control command for a certain group of terminals.
  • DCI downlink control information
  • the DCI format has formats 0, 3, 3A, 4 for uplink, formats 1, 1A, 1B, 1C, 1D, 2, 2A, 2B, 2C, etc. defined for downlink.
  • the type of the information field, the number of information fields, the number of bits of each information field, etc. vary according to the DCI format.
  • the DCI format may include a hopping flag, an RB assignment, a modulation coding scheme (MCS), a redundancy version (RV), a new data indicator (NDI), a transmit power control (TPC), It optionally includes information such as a HARQ process number and a precoding matrix indicator (PMI) confirmation.
  • MCS modulation coding scheme
  • RV redundancy version
  • NDI new data indicator
  • TPC transmit power control
  • PMI precoding matrix indicator
  • any DCI format may be used for transmitting two or more kinds of control information.
  • DCI format 0 / 1A is used to carry DCI format 0 or DCI format 1, which are distinguished by a flag field.
  • the PDCCH includes a transmission format and resource allocation of a downlink shared channel (DL-SCH), resource allocation information for an uplink shared channel (UL-SCH), paging information for a paging channel (PCH), and system information on the DL-SCH. ), Resource allocation information of a higher-layer control message such as a random access response transmitted on a PDSCH, transmission power control commands for individual terminals in an arbitrary terminal group, activation of voice over IP (VoIP), and the like. .
  • a plurality of PDCCHs may be transmitted in the control region.
  • the terminal may monitor the plurality of PDCCHs.
  • the PDCCH is transmitted on an aggregation of one or a plurality of consecutive CCEs (consecutive control channel elements).
  • the CCE is a logical allocation unit used to provide a PDCCH of a predetermined coding rate according to the state of a radio channel.
  • the CCE corresponds to a plurality of resource element groups (REGs).
  • the format of the PDCCH and the number of bits of the available PDCCH are determined according to the correlation between the number of CCEs and the code rate provided by the CCEs.
  • the base station determines the PDCCH format according to the DCI to be transmitted to the terminal, and adds a cyclic redundancy check (CRC) to the control information.
  • the CRC is masked with a unique identifier (referred to as a radio network temporary identifier (RNTI)) depending on the owner of the PDCCH or the intended use.
  • RNTI radio network temporary identifier
  • a unique identifier (eg, C-RNTI (cell-RNTI)) of the terminal is masked on the CRC.
  • C-RNTI cell-RNTI
  • a paging indication identifier eg, p-RNTI (p-RNTI)
  • SIB system information block
  • SI-RNTI system information RNTI
  • RA-RNTI random access-RNTI
  • the PDCCH carries a message known as DCI, and in general, a plurality of PDCCHs are transmitted in subframes. Each PDCCH is transmitted using one or more CCEs. One CCE corresponds to nine REGs and one REG corresponds to four REs. Four QPSK symbols are mapped to each REG. Resource elements occupied by the reference signal are not included in the REG. Thus, the number of REGs within a given OFDM symbol depends on the presence of a cell-specific reference signal. The REG concept is also used for other downlink control channels (ie, PDFICH and PHICH). Four PDCCH formats are supported as described in Table 2.
  • CCEs are numbered consecutively, and to simplify the decoding process, a PDCCH having a format composed of n CCEs can only be started in a CCE having a number corresponding to a multiple of n.
  • the number of CCEs used for transmission of a specific PDCCH is determined by the base station according to the channel state. For example, in case of a PDCCH for a UE having a good downlink channel (eg, adjacent to a base station), one CCE may be sufficient. However, in case of a PDCCH for a terminal having a poor channel (eg, near the cell boundary), eight CCEs may be required to obtain sufficient robustness.
  • the power level of the PDCCH may be adjusted according to the channel state.
  • a CCE set in which a PDCCH can be located is defined for each UE.
  • the CCE set in which the UE can discover its own PDCCH is referred to as a PDCCH search space, or simply a search space (SS).
  • An individual resource to which a PDCCH can be transmitted in a search space is referred to as a PDCCH candidate.
  • One PDCCH candidate corresponds to 1, 2, 4 or 8 CCEs according to the CCE aggregation level.
  • the base station transmits the actual PDCCH (DCI) on any PDCCH candidate in the search space, and the terminal monitors the search space to find the PDCCH (DCI). Specifically, the UE attempts blind decoding (BD) on PDCCH candidates in the search space.
  • DCI actual PDCCH
  • BD blind decoding
  • the search space for each PDCCH format may have a different size.
  • Dedicated (or UE-specific search space (UE-specific SS, USS)) and common search space (Common SS, CSS) are defined.
  • the dedicated search space is configured for each individual terminal, and all terminals are provided with information about the range of the common search space.
  • Dedicated and common search spaces may overlap for a given terminal.
  • the base station may not be able to find a CCE resource for sending a PDCCH to all desired terminals in a given subframe. This is because CCE resources are already allocated to other UEs, and therefore, there may be no more CCE resources for the UEs in the search space of the UEs (blocking).
  • a terminal-specific hopping sequence is applied to the start position of the dedicated search space. Table 3 shows the sizes of common and dedicated search spaces.
  • the UE does not search all defined DCI formats at the same time.
  • the terminal in a dedicated search space, the terminal always searches for formats 0 and 1A. Formats 0 and 1A have the same size and are separated by flags in the message.
  • the terminal may be further required to receive another format (ie, 1, 1B or 2 depending on the PDSCH transmission mode set by the base station).
  • the terminal searches for formats 1A and 1C.
  • the terminal may be configured to search for format 3 or 3A. Format 3 / 3A has the same size as format 0 / 1A and is distinguished by whether it has a CRC scrambled with a different (common) identifier.
  • Information contents of a transmission mode and a DCI format for configuring a multi-antenna technology are as follows.
  • Transmission mode 1 Transmission from a single base station antenna port
  • Transmission mode 3 Open-loop spatial multiplexing
  • Transmission mode 7 Transmission using UE-specific reference signals
  • Format 1D Compact resource assignments for PDSCH using multi-user MIMO (mode 5)
  • 5 illustrates a structure of an uplink subframe.
  • the subframe 500 includes two 0.5 ms slots 501.
  • each slot consists of seven symbols 502 and one symbol corresponds to one SC-FDMA symbol.
  • the resource block 503 is a resource allocation unit corresponding to 12 subcarriers in the frequency domain and one slot in the time domain.
  • the structure of an uplink subframe is largely divided into a data region 504 and a control region 505.
  • the data area refers to a communication resource used by the terminal to transmit data such as voice and packets, and includes a PUSCH (Physical Uplink Shared Channel).
  • the control region means a communication resource used by the UE to transmit uplink control information (UCI) and includes a PUCCH (Physical Uplink Control Channel).
  • PUCCH may be used to transmit the following uplink control information.
  • SR Service Request: Information used for requesting an uplink UL-SCH resource. It is transmitted using OOK (On-Off Keying) method.
  • HARQ-ACK A response to a downlink data packet (eg, a codeword) on a PDSCH. Indicates whether the downlink data packet was successfully received.
  • One bit of HARQ-ACK is transmitted in response to a single downlink codeword, and two bits of HARQ-ACK are transmitted in response to two downlink codewords.
  • HARQ-ACK responses include positive ACK (simply ACK), negative ACK (NACK), DTX or NACK / DTX.
  • HARQ-ACK is mixed with HARQ ACK / NACK, ACK / NACK.
  • CSI Channel State Information
  • MIMO Multiple Input Multiple Output
  • RI rank indicator
  • PMI precoding matrix indicator
  • the amount of control information that the UE can transmit in a subframe depends on the number of available SC-FDMA.
  • SC-FDMA available for transmission of control information means the remaining SC-FDMA symbol except for the SC-FDMA symbol for transmitting the reference signal in the subframe, and in the case of the subframe in which the Sounding Reference Signal (SRS) is set, the last of the subframe SC-FDMA symbols are also excluded.
  • the reference signal is used for coherent detection of the PUCCH.
  • PUCCH supports various formats according to the transmitted information.
  • Table 4 shows a mapping relationship between PUCCH format and UCI in LTE (-A).
  • the SRS is transmitted 506 on the last SC-FDMA symbol in the subframe.
  • SRSs of multiple terminals transmitted through the same SC-FDMA symbol can be distinguished according to frequency location / sequence.
  • SRS is transmitted aperiodically or periodically.
  • the PUCCH resources for ACK / NACK are not allocated to each UE in advance, and a plurality of PUCCH resources are divided and used at every time point by a plurality of UEs in a cell.
  • the PUCCH resource used by the UE to transmit ACK / NACK corresponds to a PDCCH carrying scheduling information about corresponding downlink data.
  • the entire region in which the PDCCH is transmitted in each downlink subframe consists of a plurality of control channel elements (CCEs), and the PDCCH transmitted to the UE consists of one or more CCEs.
  • the UE transmits ACK / NACK through a PUCCH resource corresponding to a specific CCE (eg, the first CCE) among the CCEs constituting the PDCCH received by the UE.
  • a specific CCE eg, the first CCE
  • each square represents a CCE in a downlink component carrier (DL CC), and each square represents a PUCCH resource in an uplink component carrier (UL CC).
  • Each PUCCH index corresponds to a PUCCH resource for ACK / NACK. If it is assumed that the information on the PDSCH is transmitted through the PDCCH configured to 4 ⁇ 6 CCE as shown in Figure 6, the UE ACK / NACK through the 4 PUCCH corresponding to the 4 CCE, the first CCE constituting the PDCCH Send it.
  • FIG. 6 illustrates a case in which up to M PUCCHs exist in a UL CC when there are up to N CCEs in a DL CC.
  • N may be M, but it is also possible to design M and N values differently and to overlap the mapping of CCE and PUCCH.
  • the PUCCH resource index in the LTE system is determined as follows.
  • n (1) PUCCH represents a resource index of PUCCH format 1a / 1b for transmitting ACK / NACK / DTX
  • N (1) PUCCH represents a signaling value received from a higher layer
  • n CCE is a PDCCH transmission Represents the smallest value among the CCE indexes used in.
  • UL ACK / NACK means ACK / NACK transmitted in uplink in response to DL data (eg, PDSCH).
  • the terminal may receive one or more PDSCH signals on M DL subframes (SF) (S502_0 to S502_M-1). Each PDSCH signal is used to transmit one or a plurality (eg, two) TBs according to a transmission mode.
  • a PDCCH signal indicating a Semi-Persistent Scheduling release may also be received in steps S502_0 to S502_M-1. If there are PDSCH signals and / or SPS release PDCCH signals in the M DL subframes, the UE goes through a process for transmitting ACK / NACK (eg, ACK / NACK (payload) generation, ACK / NACK resource allocation, etc.).
  • ACK / NACK is transmitted through one UL subframe corresponding to the M DL subframes.
  • the ACK / NACK includes reception response information for the PDSCH signal and / or the SPS release PDCCH signal of steps S502_0 to S502_M-1.
  • the ACK / NACK is basically transmitted through the PUCCH, but when there is a PUSCH transmission at the time of the ACK / NACK transmission, the ACK / NACK is transmitted through the PUSCH.
  • Various PUCCH formats shown in Table 4 may be used for ACK / NACK transmission.
  • various methods such as ACK / NACK bundling and ACK / NACK channel selection may be used to reduce the number of ACK / NACK bits transmitted through the PUCCH format.
  • ACK / NACK for data received in M DL subframes is transmitted through one UL subframe (that is, M DL SF (s): 1 UL SF), and the relationship between them is It is given by the Downlink Association Set Index (DASI).
  • DASI Downlink Association Set Index
  • Table 5 shows DASI (K: ⁇ k 0 , k 1 ,... K M -1 ⁇ ) defined in LTE (-A).
  • Table 3 shows the interval with the DL subframe associated with it in the UL subframe for transmitting ACK / NACK. Specifically, when there is a PDCCH indicating PDSCH transmission and / or semi-persistent scheduling release in subframe nk (k (K), the UE transmits ACK / NACK in subframe n.
  • SF # 0 to # 9 and SF # 10 to # 19 correspond to radio frames, respectively.
  • the number in the box in the figure represents the UL subframe associated with it in terms of DL subframes.
  • the following problems may occur when a terminal transmits an ACK / NACK signal to a base station in TDD.
  • the UE may not know that the PDSCH corresponding to the missed PDCCH is transmitted to itself, and thus an error may occur when generating the ACK / NACK.
  • the TDD system includes a Downlink Assignment Index (DAI) in the PDCCH.
  • DAI is a cumulative value (ie counting) of PDCCH (s) corresponding to PDSCH (s) and PDCCH (s) indicating downlink SPS release from DL subframe (s) nk (k K) to the current subframe. Value). For example, when three DL subframes correspond to one UL subframe, indexes are sequentially assigned (that is, counted sequentially) to PDSCHs transmitted in three DL subframe intervals and loaded on a PDCCH scheduling PDSCHs. send. The UE may know whether the PDCCH has been properly received until the DAI information in the PDCCH.
  • the UE cannot recognize that the last PDCCH is missed because the DAI value of the last detected PDCCH matches the number of PDCCHs detected up to that time.
  • the LTE-A system collects a plurality of uplink / downlink frequency blocks to use a wider frequency band and uses a carrier aggregation or bandwidth aggregation technique that uses a larger uplink / downlink bandwidth.
  • Each frequency block is transmitted using a component carrier (CC).
  • the component carrier may be understood as the carrier frequency (or center carrier, center frequency) for the corresponding frequency block.
  • a plurality of uplink / downlink component carriers may be collected to support a wider uplink / downlink bandwidth.
  • Each of the CCs may be adjacent or non-adjacent to each other in the frequency domain.
  • the bandwidth of each component carrier can be determined independently. It is also possible to merge asymmetric carriers in which the number of UL CCs and the number of DL CCs are different. For example, in case of two DL CCs and one UL CC, the configuration may be configured to correspond to 2: 1.
  • the DL CC / UL CC link may be fixed in the system or configured semi-statically.
  • the frequency band that a specific UE can monitor / receive may be limited to M ( ⁇ N) CCs.
  • Various parameters for carrier aggregation may be set in a cell-specific, UE group-specific or UE-specific manner.
  • the control information may be set to be transmitted and received only through a specific CC.
  • This particular CC may be referred to as a primary CC (or PCC) (or anchor CC), and the remaining CC may be referred to as a secondary CC (SCC).
  • PCC primary CC
  • SCC secondary CC
  • LTE-A uses the concept of a cell to manage radio resources.
  • a cell is defined as a combination of downlink resources and uplink resources, and uplink resources are not required. Accordingly, the cell may be configured with only downlink resources or with downlink resources and uplink resources. If carrier aggregation is supported, the linkage between the carrier frequency (or DL CC) of the downlink resource and the carrier frequency (or UL CC) of the uplink resource may be indicated by system information.
  • a cell operating on the primary frequency (or PCC) may be referred to as a primary cell (PCell), and a cell operating on the secondary frequency (or SCC) may be referred to as a secondary cell (SCell).
  • PCell primary cell
  • SCell secondary cell
  • the PCell is used by the terminal to perform an initial connection establishment process or to perform a connection re-establishment process.
  • PCell may refer to a cell indicated in the handover process.
  • the SCell is configurable after the RRC connection is established and can be used to provide additional radio resources.
  • PCell and SCell may be collectively referred to as a serving cell. Therefore, in the case of the UE that is in the RRC_CONNECTED state, but carrier aggregation is not configured or does not support carrier aggregation, there is only one serving cell configured only with the PCell.
  • the network may configure one or more SCells for the UE supporting carrier aggregation in addition to the PCell initially configured in the connection establishment process.
  • the PDCCH for downlink allocation may be transmitted on DL CC # 0, and the corresponding PDSCH may be transmitted on DL CC # 2.
  • the introduction of a carrier indicator field (CIF) may be considered.
  • the presence or absence of the CIF in the PDCCH may be set in a semi-static and terminal-specific (or terminal group-specific) manner by higher layer signaling (eg, RRC signaling).
  • RRC signaling eg, RRC signaling
  • PDCCH on DL CC allocates PDSCH resources on the same DL CC or PUSCH resources on one linked UL CC
  • PDCCH on DL CC can allocate PDSCH or PUSCH resource on a specific DL / UL CC among a plurality of merged DL / UL CCs using CIF
  • the base station may allocate the PDCCH monitoring DL CC set to reduce the BD complexity of the terminal side.
  • the PDCCH monitoring DL CC set includes one or more DL CCs as part of the merged total DL CCs, and the UE performs detection / decoding of the PDCCH only on the corresponding DL CCs. That is, when the base station schedules PDSCH / PUSCH to the UE, the PDCCH is transmitted only through the PDCCH monitoring DL CC set.
  • the PDCCH monitoring DL CC set may be configured in a UE-specific, UE-group-specific or cell-specific manner.
  • the term “PDCCH monitoring DL CC” may be replaced with equivalent terms such as a monitoring carrier, a monitoring cell, and the like.
  • the CC merged for the terminal may be replaced with equivalent terms such as a serving CC, a serving carrier, a serving cell, and the like.
  • DL CC A is set to PDCCH monitoring DL CC.
  • DL CC A to C may be referred to as a serving CC, a serving carrier, a serving cell, and the like.
  • each DL CC may transmit only the PDCCH scheduling its PDSCH without the CIF according to the LTE PDCCH rule.
  • DL CC A uses the CIF to schedule PDSCH of DL CC A.
  • the PDCCH scheduling the PDSCH of another CC may be transmitted. In this case, PDCCH is not transmitted in DL CC B / C that is not configured as PDCCH monitoring DL CC.
  • the LTE-A system considers transmitting a plurality of ACK / NACK information / signals for a plurality of PDSCHs transmitted through a plurality of DL CCs through a specific UL CC.
  • a new PUCCH format is performed after joint coding (eg, Reed-Muller code, Tail-biting convolutional code, etc.) of a plurality of ACK / NACK information. It may be considered to transmit a plurality of ACK / NACK information / signals using E-PUCCH (enhanced PUCCH) format or PUCCH format M).
  • the E-PUCCH format includes the following block-spreading based PUCCH format. After joint coding, ACK / NACK transmission using the E-PUCCH format is an example, and the E-PUCCH format may be used without limitation for UCI transmission.
  • the E-PUCCH format may be used to transmit ACK / NACK, CSI (eg, CQI, PMI, RI, PTI, etc.), SR, or two or more of these information together. Therefore, in the present specification, the E-PUCCH format may be used to transmit a joint coded UCI codeword regardless of the type / number / size of the UCI.
  • PUCCH format 3 is used to transmit a plurality of ACK / NACK information / signals for a plurality of PDSCHs transmitted on a plurality of DL CCs.
  • PUCCH format 3 may be used to transmit ACK / NACK, CSI (eg, CQI, PMI, RI, PTI, etc.), SR, or two or more of these information together.
  • the symbol sequence ⁇ d1, d2, ...) may mean a modulation symbol sequence or a codeword bit sequence. If the symbol sequence ⁇ d1, d2, ...) means a codeword bit sequence, the block diagram of FIG. 12 further includes a modulation block.
  • the RS symbol may be generated from a CAZAC sequence with a particular cyclic shift.
  • the RS may be transmitted in a form (multiplied) in which a specific OCC is applied to a plurality of RS symbols in the time domain.
  • Block-spread UCI is transmitted to a network through a fast fourier transform (FFT) process and an inverse fast fourier transform (IFFT) process in SC-FDMA symbol units.
  • FFT fast fourier transform
  • IFFT inverse fast fourier transform
  • FIG. 13 illustrates a subframe level structure of PUCCH format 3.
  • a symbol sequence ⁇ d'0 to d'11 ⁇ is mapped to a subcarrier of one SC-FDMA symbol in slot 0, and five SCs are formed by block-spreading using OCC (C1 to C5). Mapped to the FDMA symbol.
  • the symbol sequence ⁇ d'12 to d'23 ⁇ ) in slot 1 is mapped to a subcarrier of one SC-FDMA symbol and five SC-FDMA symbols by block-spreading using OCC (C1 to C5). Is mapped to.
  • the symbol sequence ⁇ d'0 to d'11 ⁇ or ⁇ d'12 to d'23 ⁇ shown in each slot is FFT or FFT / IFFT in the symbol sequence ⁇ d1, d2, ...) of FIG. Indicates the applied form.
  • the entire symbol sequence ⁇ d'0 to d'23 ⁇ is generated by joint coding one or more UCIs.
  • the OCC may be changed in units of slots, and the UCI data may be scrambled in units of SC-FDMA symbols.
  • PUCCH format 3 resources may be given explicitly.
  • a PUCCH resource set may be configured by an upper layer (eg, RRC), and a PUCCH resource to be actually used may be indicated by using an ACK (NACK / NACK Resource Indicator) value of the PDCCH.
  • RRC Radio Resource Control
  • Table 6 shows an example of explicitly indicating a PUCCH resource for HARQ-ACK.
  • the upper layer includes an RRC layer, and an ARI value may be indicated through a PDCCH carrying a DL grant.
  • the ARI value may be indicated using a transmit power control (TPC) field of at least one PCell scheduling PDCCH that does not correspond to the SCell scheduling PDCCH and / or the DAI initial value.
  • TPC transmit power control
  • PUCCH format 4 is a PUCCH format that supports UCI transmission of a payload size larger than PUCCH format 3.
  • the structure of PUCCH format 4 is basically the same as that of PUCCH format 3 except that block-spreading is not applied.
  • PUCCH format 4 resources may also be given explicitly.
  • a PUCCH resource set may be configured by an upper layer (eg, RRC), and a PUCCH resource to be actually used may be indicated using an ARI value of PDCCH.
  • UCI is divided into two methods of simultaneously transmitting UL-SCH data.
  • the first method is a method of simultaneously transmitting a PUCCH and a PUSCH
  • the second method is a method of multiplexing UCI in a PUSCH as in the existing LTE. Whether simultaneous transmission of the PUCCH and the PUSCH is allowed may be set by an upper layer.
  • the first method is applied when PUCCH + PUSCH simultaneous transmission is enabled, and the second method is applied when PUCCH + PUSCH simultaneous transmission is disabled.
  • the existing LTE terminal cannot transmit the PUCCH and the PUSCH at the same time, when UCI (eg, CQI / PMI, HARQ-ACK, RI, etc.) transmission is required in the subframe in which the PUSCH is transmitted, a method of multiplexing the UCI in the PUSCH region is used. .
  • the UE when HARQ-ACK needs to be transmitted in a subframe to which PUSCH transmission is allocated, the UE multiplexes UL-SCH data and HARQ-ACK before DFT-spreading, and then transmits control information and data together through PUSCH. do.
  • the UE When transmitting control information in a subframe to which PUSCH transmission is allocated, the UE multiplexes the control information (UCI) and the UL-SCH data together before DFT-spreading.
  • the control information includes at least one of CQI / PMI, HARQ ACK / NACK, and RI.
  • Each RE number used for CQI / PMI, ACK / NACK, and RI transmissions is based on a Modulation and Coding Scheme (MCS) and an offset value allocated for PUSCH transmission.
  • MCS Modulation and Coding Scheme
  • the offset value allows different coding rates according to the control information and is set semi-statically by higher layer (eg RRC) signals.
  • UL-SCH data and control information are not mapped to the same RE. Control information is mapped to exist in both slots of the subframe.
  • CQI and / or PMI (CQI / PMI) resources are located at the beginning of UL-SCH data resources and are sequentially mapped to all SC-FDMA symbols on one subcarrier and then mapped on the next subcarrier. .
  • CQI / PMI is mapped in a subcarrier in a direction from left to right, that is, SC-FDMA symbol index increases.
  • PUSCH data (UL-SCH data) is rate-matched taking into account the amount of CQI / PMI resources (ie, the number of coded symbols). The same modulation order as the UL-SCH data is used for CQI / PMI.
  • the ACK / NACK is inserted through puncturing into a part of the SC-FDMA resource to which the UL-SCH data is mapped.
  • the ACK / NACK is located next to the RS and is filled in the direction of increasing up, i.e., subcarrier index, starting from the bottom in the corresponding SC-FDMA symbol.
  • an SC-FDMA symbol for ACK / NACK is located at SC-FDMA symbol # 2 / # 5 in each slot. Regardless of whether ACK / NACK actually transmits in a subframe, the coded RI is located next to the symbol for ACK / NACK.
  • control information may be scheduled to be transmitted on the PUSCH without UL-SCH data.
  • Control information (CQI / PMI, RI and / or ACK / NACK) is multiplexed before DFT-spreading to maintain low Cubic Metric (CM) single-carrier characteristics. Multiplexing ACK / NACK, RI and CQI / PMI is similar to that shown in FIG.
  • the SC-FDMA symbol for ACK / NACK is located next to the RS, and the resource to which the CQI is mapped may be punctured.
  • the number of REs for ACK / NACK and RI is based on the reference MCS (CQI / PMI MCS) and offset parameters.
  • the reference MCS is calculated from the CQI payload size and resource allocation.
  • Channel coding and rate matching for control signaling without UL-SCH data is the same as the case of control signaling with UL-SCH data described above.
  • the terminal may adjust the overall ACK / NACK payload size using a UL DAI value.
  • UL DAI refers to the DAI included in the UL Grant (UG) DCI. That is, the UL DAI is included in the PDCCH scheduling the PUSCH.
  • the UE may determine the size of the ACK / NACK payload (in other words, the ACK / NACK part) for each CC for each DL CC in consideration of the UL DAI value, the transmission mode of the corresponding CC, and whether the bundle is bundled.
  • the UE may determine the location of each ACK / NACK in the ACK / NACK payload for each CC using the DL DAI value (s) received in each DL CC.
  • DL DAI represents the DAI included in the DL Grant (DG) DCI. That is, the UL DAI is included in a PDCCH scheduling a PDSCH or a PDCCH indicating DL SPS release.
  • HARQ-ACK feedback bits for the c-th DL CC (or serving cell) Assume that we define ( c ⁇ 0). Denotes the number of bits (ie, size) of the HARQ-ACK payload for the c-th DL CC.
  • a transmission mode supporting single transport block transmission is set or spatial bundling is applied
  • a transmission mode supporting multiple e.g. 2 transport block transmission
  • maxPDCCHperCC is indicated by the value of the UL-DAI field.
  • maxPDCCHperCC M is given.
  • DAI DL DAI
  • the position of the HARQ-ACK for the SPS PDSCH is the position of the HARQ-ACK payload for the CC Located in The CC in which the SPS PDSCH is present may be limited to the DL PCC in the CC.
  • the UE concatenates a plurality of CC-specific HARQ-ACK payloads (ie, HARQ-ACK parts for each CC) sequentially and preferably in ascending order according to a cell index.
  • the entire HARQ-ACK payload configured by the concatenation may be transmitted through PUCCH or PUSCH after signal processing (eg, channel coding, modulation, scramble, etc.) for physical channel transmission.
  • a plurality of HARQ-ACK feedbacks for DL data reception in a plurality of cells may be transmitted through one UL SF.
  • the HARQ-ACK feedback corresponding to each cell may be composed of a plurality of HARQ-ACK (A / N) for DL data reception in a specific DL SF set (hereinafter, referred to as a bundling window) in the cell.
  • a counter value indicating how many times the corresponding DL data is scheduled in the bundling window of the corresponding cell may be transmitted to the DAI (ie, DL DAI).
  • a specific value selected from the base station may be transmitted to the DAI (ie, the UL DAI).
  • the terminal may arrange the A / N bits in the order of DL DAI values when configuring the A / N payload (per cell) on the PUCCH / PUSCH.
  • the A / N feedback size can be reduced by configuring payload only for DL DAI value of UL DAI or less. have.
  • the next system considers CAs for a large number of cells (eg, 32).
  • the A / N feedback size set in one UL SF may be very large in proportion to the number of CA cells.
  • DL scheduling may not be performed for all the cells that are CA every SF. In other words, when there is not a lot of DL traffic, DL scheduling may be performed only for a certain portion of CA cells. Therefore, reducing the overall A / N feedback size by omitting configuration / transmission for A / N corresponding to an unscheduled cell as much as possible may be efficient in terms of A / N feedback transmission performance and UCI transmission resource overhead. .
  • ACK / NACK that is, HARQ-ACK
  • a cell when a cell is set to non-MIMO mode, it is assumed that at most one transport block (TB) (transport block is equivalent to a codeword) can be transmitted in subframe k of the cell.
  • transport block transport block is equivalent to a codeword
  • up to m transport blocks (or codewords) can be transmitted in SF #k of the cell.
  • Whether the cell is set to the MIMO mode can be known using the transmission mode set by the higher layer.
  • the number of ACK / NACK ie, ACK / NACK bits, HARQ-ARQ bits
  • the number of ACK / NACK ie, ACK / NACK bits, HARQ-ARQ bits
  • ACK / NACK ie, ACK / NACK bits, HARQ-ARQ bits
  • HARQ-ACK This indicates a reception response result for downlink transmission (eg, PDSCH or DL SPS release PDCCH), that is, an ACK / NACK / DTX response (simply, an ACK / NACK response).
  • the ACK / NACK / DTX response means ACK, NACK, DTX, or NACK / DTX.
  • HARQ-ACK for a specific cell or HARQ-ACK for a specific cell indicates an ACK / NACK response to a downlink signal (eg, PDSCH) associated with the cell (eg, scheduled in the cell).
  • PDSCH may be replaced by a transport block or codeword.
  • HARQ-ACK is fed back for (i) SPS PDSCH, (ii) PDSCH scheduled by PDCCH (DG DCI) (hereinafter, usually PDSCH, non-SPS PDSCH), and (iii) DL SPS release PDCCH (DG DCI) .
  • DG DCI PDCCH
  • the SPS PDSCH is not accompanied by a corresponding PDCCH (DG DCI).
  • SPS PDSCH means a PDSCH transmitted DL using a resource semi-statically set by the SPS.
  • the SPS PDSCH does not have a corresponding DL grant PDCCH (DG DCI).
  • DG DCI DL grant PDCCH
  • the SPS PDSCH is mixed with a PDSCH w / o PDCCH and an SPS-based PDSCH.
  • SPS PUSCH This means a PUSCH transmitted UL using a resource semi-statically set by the SPS.
  • the SPS PUSCH does not have a corresponding UL grant PDCCH (UG DCI).
  • the SPS PUSCH is mixed with the PUSCH w / o PDCCH.
  • ACK / NACK Resource Indicator Used for indicating PUCCH resources.
  • the ARI may be used for indicating a resource variation value (eg, offset) for a specific PUCCH resource (group) (configured by a higher layer).
  • the ARI may be used for indicating a specific PUCCH resource (group) index in a PUCCH resource (group) set (configured by a higher layer).
  • the ARI may be included in a transmit power control (TPC) field of the PDCCH corresponding to the PDSCH on the SCell. PUCCH power control is performed through the TPC field in the PDCCH (ie, PDCCH corresponding to PDSCH on PCC) scheduling the PCell.
  • TPC transmit power control
  • the ARI may be included in the TPC field of the remaining PDCCH except for the PDCCH scheduling a specific cell (eg, PCell) while having an initial value of a Downlink Assignment Index (DAI). ARI is mixed with HARQ-ACK resource indication value.
  • PCell a specific cell
  • DAI Downlink Assignment Index
  • DAI Downlink Assignment Index
  • the DAI may indicate an order value or a counter value of the PDCCH. Used for TDD operation in the existing LTE / LTE-A.
  • the DAI of the DL grant PDCCH is referred to as the DL DAI and the UL DAI of the DAI in the UG PDCCH.
  • T-DAI Represents DAI signaling DL scheduling information on a time axis (ie, SF domain) in a bundling window for each cell. This corresponds to the existing DL DAI (see DAI-c of FIG. 15).
  • the t-DAI may be modified to signal other information than the existing one.
  • (A / N) bundling window The UE transmits HARQ-ACK feedback for DL data reception in the bundling window through the UL SF.
  • the bundling window is defined as SF #nk.
  • K 4 in FDD and k in TDD is defined by DASI of Table 5 (K: ⁇ k 0 , k 1 ,... K M -1 ⁇ ).
  • the bundling window may be defined for each cell.
  • Scheduling for cell #A, cell #A scheduling means PDSCH or DL SPS release PDCCH transmission on cell #A. Alternatively, this may mean an operation or a process related to transmitting a PDSCH or a DL SPS release PDCCH on cell #A. For example, for PDSCH transmission on cell #A, this may mean transmitting a PDCCH scheduling a corresponding PDSCH.
  • CSS-based scheduling (i) PDCCH corresponding to PDSCH or (ii) DL SPS release PDCCH is transmitted in CSS.
  • the CSS-based PDSCH means a PDSCH scheduled by a PDCCH transmitted in CSS.
  • SPS based scheduling may mean DL SPS release PDCCH transmission, or may mean SPS PDSCH transmission or SPS PUSCH transmission.
  • LCell refers to a cell operating in the licensed band
  • the cell refers to a cell operating in the UCell unlicensed band.
  • communication is performed based on carrier sensing.
  • a method for efficiently performing A / N feedback based on DAI signaling in a DL / UL grant DCI in a CA situation is proposed.
  • a DAI signaling scheme via DL / UL grant DCI
  • an A / N payload configuration method on PUCCH / PUSCH
  • the DAI may signal a (scheduling) counter value indicating how many times a cell scheduled by the corresponding DL grant DCI is scheduled among all the (scheduled) cells according to a specific reference (eg, cell index order). (Hereafter counter-DAI).
  • the counter-DAI may signal a (scheduling) counter value calculated in a cell first manner by combining a cell (ie, CC) domain and an SF domain.
  • the counter-DAI may indicate how many times a scheduled cell is scheduled (by DG DCI), that is, a scheduling order value in cell / SF units.
  • the scheduling order of a cell / SF unit may be calculated in order of increasing a cell index (ie, a CC) index in the bundling window, and then increasing the SF index.
  • TDD includes a case in which a PCell or a cell performing A / N transmission operates in a TDD (or FDD) manner
  • the DL SF may include an S SF set in TDD. Can be.
  • the counter-DAI may be signaled through a field consisting of a limited number of bits (eg, 2-bits) in the DL grant DCI (ie, a DAI field), whereby (scheduling) counter values are computed as appropriate modulo It can be mapped to one DAI bit combination (that is, DAI state or DAI value) through.
  • a field consisting of a limited number of bits (eg, 2-bits) in the DL grant DCI (ie, a DAI field), whereby (scheduling) counter values are computed as appropriate modulo It can be mapped to one DAI bit combination (that is, DAI state or DAI value) through.
  • the DAI group may mean a sequence of DAI states that are continuous on the counter and include each DAI state only once.
  • a base station may set whether to automatically configure a DAI group from a minimum DAI (e.g. state 00) to a maximum DAI (e.g. state 11), or to configure a DAI group from which DAI (state) to which DAI (state).
  • a sequence corresponding to 1/2/3/4 (00/01/10/11 based on the state) is set to DAI group (automatic) or 3 / based on the counter-DAI value.
  • a sequence corresponding to 4/1/2 (10/11/00/01 on a state basis) can be set as a DAI group (by a base station).
  • last-DG ON state the last (scheduling) DAI group on the (scheduling) counter
  • last-DG OFF state a last (scheduling) DAI group on the (scheduling) counter
  • last-DG OFF state the last-DG ON state
  • the first DAI corresponding to counter 1/2/3/4
  • the entire DAI state sequence (for example, 00/01/10/11 or 10/11/00 / on the basis of state) corresponding to the DAI group in which the last (pischeduling) DAI group was originally set at a specific time point according to the scheduling situation of the base station.
  • only the first (not the first) transmission type may be configured.
  • the entire DAI state sequence originally set to the last (pischeduling) DAI group is transmitted, whereas from the terminal perspective, only a part of the (first) portion of the corresponding DAI state sequence may be received due to a DL grant DCI detection failure. .
  • the terminal may transmit the A / N bits to the counter value corresponding to the remaining DAI status sequences not included in the last (scheduled) DAI group. It can be configured and transmitted (for example, in NACK or DTX state).
  • the "counter value corresponding to the rest of the DAI state sequence" is a maximum A / N payload size that can be transmitted in a given PUCCH format or a maximum A / N bit index corresponding to the maximum A / N payload size set in the UE. May be limited.
  • a sequence corresponding to 1/2/3/4 (00/01/10/11 based on the state) is set as the DAI group based on the counter-DAI value, and the terminal is configured in the last (pic scheduling) DAI group. Only the DL grant DCI corresponding to 1/2 based on the counter-DAI value may be detected.
  • the "counter value corresponding to the remaining DAI state sequence" is 3/4, and the A / N bits corresponding to them within the maximum A / N payload size may be configured as NACK or DTX.
  • the terminal fails to detect the DL grant DCI at the end (scheduling).
  • DL grant DCI ie, last-DG OFF
  • the terminal may add A / N bits to the counter value corresponding to the next DAI group in addition to the last DAI group indicated by last-DG OFF. Can be configured (eg, in the NACK or DTX state).
  • the counter value corresponding to the next DAI group is a maximum A / N payload size that can be transmitted in a given PUCCH format or the highest A / N bit index corresponding to the maximum A / N payload size set in the UE. May be limited.
  • the counter-DAI is not the cell / SF-level (scheduling) counter indicating the number of scheduled cells / SF, but the number of TBs scheduled on the cell domain (and / or SF domain). It can signal a (scheduling) counter of the indicating TB-level.
  • a / N configuration / transmission operation based on TB-level DAI group setup and last (pischeduling) DAI group indication may be performed by applying the same principle as the above proposal.
  • the proposed last DAI group indication based A / N configuration when DAI is independently signaled for each CG grouped by a specific criterion eg, the maximum number of TBs that can be transmitted or the same carrier type (eg, LCell or UCell) is the same.
  • a specific criterion eg, the maximum number of TBs that can be transmitted or the same carrier type (eg, LCell or UCell) is the same.
  • / Transmission scheme may be applied for each CG.
  • the number of scheduling corresponding to the DL grant DCI corresponds to (or equivalently, including scheduling corresponding to the DL grant DCI or how many scheduling remain there). Suggest a way to direct through. For example, scheduling corresponding to the DCI through 2-bit (four states) in the DL grant DCI is state-1) last scheduling (or one remaining scheduling), state-2) second to last Scheduling (or two remaining scheduling), State-3) Last to third scheduling (or three remaining scheduling), State-4) Last to third scheduling or earlier scheduling (or remaining scheduling) More than three) may be indicated (hereinafter, the last-order indicator).
  • the counter 1/2/3/4/5/6/7.
  • the DL grant DCIs corresponding to counters 1 and 2 may sequentially indicate state-2 and state-1, respectively.
  • the "counter value corresponding to the rest state” may be limited to the maximum A / N payload size that can be transmitted in a given PUCCH format or the highest A / N bit index corresponding to the maximum A / N payload size set in the UE. Can be.
  • a / N bits can be configured / transmitted for.
  • the counter-DAI is not the cell / SF-level (scheduling) counter indicating the number of scheduled cells / SF, but the number of TBs scheduled on the cell domain (and / or SF domain). It can signal a (scheduling) counter of the indicating TB-level.
  • the A / N configuration / transmission operation based on the TB-level last-order indication may be performed.
  • the proposed A / N configuration based on the last scheduling order indication / Transmission scheme may be applied for each CG.
  • a total of several scheduling is performed during a specific SF period (in a DL SF group corresponding to the same A / N transmission timing, ie, a bundling window), including scheduling corresponding to the DL grant DCI (in the TDD situation).
  • a bundling window a specific SF period (in a DL SF group corresponding to the same A / N transmission timing, ie, a bundling window), including scheduling corresponding to the DL grant DCI (in the TDD situation).
  • the SF section to be calculated for the total-DAI value may include at least a section from the first SF (in the bundled window) to the DL grant DCI transmission SF.
  • a SF immediately after the DCI transmission SF or a plurality of consecutive SF sections (hereinafter, expected SF) including the same may be further included.
  • the SF section for calculating the total-DAI in the DCI transmission SF further includes the expected SF
  • the total-DAI for DCI transmission in the expected SF is also calculated for the same section as the SF section for the total-DAI calculation. Can be.
  • the DL grant DCI corresponding to the first SF to the N-1th SF includes the number of scheduling times from the first SF to the SF immediately following the corresponding DCI transmission SF. The sum may be signaled as total-DAI.
  • the total sum of the scheduling numbers from the first SF to the corresponding DCI transmission SF may be signaled as total-DAI.
  • the counter-DAI is not the cell / SF-level (scheduling) counter indicating the number of scheduled cells / SF, but the number of TBs scheduled on the cell domain (and / or SF domain). It can signal a (scheduling) counter of the indicating TB-level.
  • a / N configuration / transmission operation based on TB-level total-DAI indication may be performed by applying the same principle as the above proposal.
  • the proposed total scheduling number indication-based A / N configuration / Transmission scheme may be applied for each CG.
  • the sum of the number of scheduling including the counter-DAI (and / or total-DAI or last-order indicator or last-DG indicator, the last scheduling counter value or information that can be inferred (hereinafter referred to as S-info indicator)
  • the minimum payload size i.e., minimum size
  • the actual payload size i.e., the actual A / N size
  • the counter-DAI and / or S-info indicator
  • an ARI or TPC command may be signaled (included in a TPC field in a corresponding DCI) through a DL grant DCI corresponding to a counter value of 1 through L, and through the corresponding DCI.
  • the S-info indicator may not be signaled.
  • the S-info indicator (including the counter-DAI) may be signaled (included in the TPC field in the DCI), and the corresponding DCI is transmitted. ARI or TPC command may not be signaled through.
  • a counter-DAI value represented by ceiling [log2 (M)] or ceiling [log2 (M / 2)] bits may be signaled in the DCI corresponding to the counters 1 to M.
  • N may be set to the total number of cells (or SF) constituting the CA, or may be fixed to a specific value (eg, 32).
  • ceiling [] represents the rounding function.
  • a counter value may be signaled through a combination of a counter-DAI field consisting of ceiling [log2 (M)] or ceiling [log2 (M / 2)] bits and a TPC field.
  • the number of bits representing one counter value or the size of the counter-DAI field added for signaling of the counter value may be set in proportion to the total number of cells (or SFs) constituting the CA, or the base station Can be set directly from
  • the number of bits representing one counter value or the size of the counter-DAI field added for signaling of the counter value may be set in proportion to the total number of cells (or SFs) constituting the CA, or the base station Can be set directly from
  • the number of bits representing one counter value or the size of the counter-DAI field added for signaling of the counter value may be set in proportion to the total number of cells (or SFs) constituting the CA, or the base station Can be set directly from
  • the number of bits representing the counter value signaled in the DL grant DCI transmitted through the USS or the counter-DAI field size eg N-bit
  • the existing t-DAI field size eg M-bit
  • the portion of the Most Significant Bit (MSB) corresponding to the NM bits is regarded as a fixed specific value (eg, bit 0) and is included in the t-DAI field.
  • the counter value can be determined by concatenating with the M-bit.
  • FIG. 16 illustrates ACK / NACK transmission according to an embodiment of the present invention. It is assumed that four cells of cells 1, 2, 3, and 4 have been merged with CA to the UE, and the bundling window is configured as SF # 1 to # 3. Referring to FIG. 16, (Cell 1, SF # 1), (Cell 2, SF # 1), (Cell 4, SF # 2), (Cell 1, SF # 3), (Cell 3, SF # 3) Cell / SF resources are scheduled, other cell / SF resources are not scheduled.
  • scheduling means that DL transmission requiring HARQ-ACK feedback is performed in a corresponding cell / SF resource, and DL transmission requiring HARQ-ACK feedback includes a PDSCH and an SPS release PDCCH.
  • the PDCCH scheduling the PDSCH may be transmitted in (Cell 2, SF # 1) according to a scheduling scheme (self-scheduling) or in (Cell X, SF # 1) (cross-carrier scheduling).
  • Cell X means a scheduling cell of cell 1.
  • the SPS PDSCH is not accompanied by a PDCCH, and the figure only illustrates a case where a PDSCH (and an SPS release PDCCH) corresponding to a PDCCH (DG DCI) is scheduled.
  • the PDCCH for scheduling each cell / SF further includes an S-info indicator (S-info).
  • S-info is (method 1) Last (scheduled) DAI group (last-DG) indication, (method 2) Last scheduling (grant) order indication, (method 3) Total scheduling (grant) number It can signal an indication.
  • count-DAI / S-info is used for HARQ-ACK transmission process (HARQ-ACK payload configuration, HARQ-ACK bit positioning, DTX detection, etc.).
  • the positions of the HARQ-ACK bits in the HARQ-ACK payload are determined in the order of counter-DAI, and the size of the HARQ-ACK payload is S-info, the maximum A / N payable in a given PUCCH format. It may be determined in consideration of the load size or the maximum A / N payload size set in the terminal, the minimum A / N payload size in a given PUCCH format, and the like.
  • the HARQ-ACK payload may include a real HARQ-ACK bit and zero or more non-actual HARQ-ACK bits.
  • the actual HARQ-ACK bits are arranged in order from the MSB to the counter-DAI, and the size of the non-real HARQ-ACK bits includes S-info, maximum A / N payload size, minimum A / N payload size, and the like. Can be determined in consideration of this.
  • the PUCCH transmission power is increased in proportion to the number of HARQ-ACK bits.
  • the non-real HARQ-ACK bits are dummy information added to prevent confusion about the A / N payload size between the base station and the terminal, the number of non-real HARQ-ACK bits is excluded in the PUCCH transmission power determination process. Can be. That is, only the actual number of HARQ-ACK bits may be reflected in the PUCCH transmission power determination process. Accordingly, even if the length of the HARQ-ACK payload is the same, more transmission power may be used for PUCCH transmission when the actual number of HARQ-ACK bits is large.
  • FIG. 17 illustrates a base station, a relay, and a terminal applicable to the present invention.
  • a wireless communication system includes a base station (BS) 110 and a terminal (UE) 120.
  • BS base station
  • UE terminal
  • the wireless communication system includes a relay
  • the base station or the terminal may be replaced with a relay.
  • Base station 110 includes a processor 112, a memory 114, and a radio frequency (RF) unit 116.
  • the processor 112 may be configured to implement the procedures and / or methods proposed in the present invention.
  • the memory 114 is connected to the processor 112 and stores various information related to the operation of the processor 112.
  • the RF unit 116 is connected with the processor 112 and transmits and / or receives a radio signal.
  • the terminal 120 includes a processor 122, a memory 124, and a radio frequency unit 126.
  • the processor 122 may be configured to implement the procedures and / or methods proposed by the present invention.
  • the memory 124 is connected with the processor 122 and stores various information related to the operation of the processor 122.
  • the RF unit 126 is connected with the processor 122 and transmits and / or receives a radio signal.
  • each component or feature is to be considered optional unless stated otherwise.
  • Each component or feature may be embodied in a form that is not combined with other components or features. It is also possible to combine some of the components and / or features to form an embodiment of the invention.
  • the order of the operations described in the embodiments of the present invention may be changed. Some components or features of one embodiment may be included in another embodiment or may be replaced with corresponding components or features of another embodiment. It is obvious that the claims may be combined to form an embodiment by combining claims that do not have an explicit citation relationship in the claims or as new claims by post-application correction.
  • a base station may in some cases be performed by an upper node thereof. That is, it is obvious that various operations performed for communication with the terminal in a network including a plurality of network nodes including a base station may be performed by the base station or other network nodes other than the base station.
  • a base station may be replaced by terms such as a fixed station, a Node B, an eNode B (eNB), an access point, and the like.
  • the terminal may be replaced with terms such as a user equipment (UE), a mobile station (MS), a mobile subscriber station (MSS), and the like.
  • Embodiments according to the present invention may be implemented by various means, for example, hardware, firmware, software, or a combination thereof.
  • an embodiment of the present invention may include one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), FPGAs ( field programmable gate arrays), processors, controllers, microcontrollers, microprocessors, and the like.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • processors controllers, microcontrollers, microprocessors, and the like.
  • an embodiment of the present invention may be implemented in the form of a module, procedure, function, etc. that performs the functions or operations described above.
  • the software code may be stored in a memory unit and driven by a processor.
  • the memory unit may be located inside or outside the processor, and may exchange data with the processor by various known means.
  • the present invention can be used in a terminal, base station, or other equipment of a wireless mobile communication system. Specifically, the present invention can be applied to a method for transmitting uplink control information and an apparatus therefor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 발명에 무선 통신 시스템에 관한 것으로서, DAI 및 DAI 그룹 지시 정보를 갖는 PDCCH를 SF #n-k 내에서 수신하는 단계; 상기 DAI 및 상기 DAI 그룹 지시 정보를 이용하여 HARQ-ACK 페이로드를 구성하는 단계; 및 상기 HARQ-ACK 페이로드를 SF #n에서 전송하는 단계를 포함하고, 상기 DAI의 값은 SF #n-k에서 상기 제1 PDCCH과 관련된 셀/SF 단위의 스케줄링 순서 값을 나타내며, 상기 셀/SF 단위의 스케줄링 순서 값은 셀/SF 도메인에서 셀 우선 방식으로 계수되고, 상기 DAI 그룹 지시 정보는 상기 PDCCH가 마지막 DAI 그룹에 해당하는지 여부를 나타내며, 하나의 DAI 그룹은 복수의 연속된 DAI 값으로 구성되는 방법 및 이를 위한 장치에 관한 것이다.

Description

무선 통신 시스템에서 신호의 전송 방법 및 장치
본 발명은 무선 통신 시스템에 관한 것으로, 보다 상세하게는 신호를 전송/수신하는 방법 및 장치에 관한 것이다. 무선 통신 시스템은 캐리어 병합(Carrier Aggregation, CA)을 지원할 수 있다.
무선 통신 시스템이 음성이나 데이터 등과 같은 다양한 종류의 통신 서비스를 제공하기 위해 광범위하게 전개되고 있다. 일반적으로 무선통신 시스템은 가용한 시스템 자원(대역폭, 전송 파워 등)을 공유하여 다중 사용자와의 통신을 지원할 수 있는 다중 접속(multiple access) 시스템이다. 다중 접속 시스템의 예들로는 CDMA(code division multiple access) 시스템, FDMA(frequency division multiple access) 시스템, TDMA(time division multiple access) 시스템, OFDMA(orthogonal frequency division multiple access) 시스템, SC-FDMA(single carrier frequency division multiple access) 시스템 등이 있다.
본 발명의 목적은 무선 통신 시스템에서 신호를 효율적으로 전송/수신하는 방법 및 이를 위한 장치를 제공하는데 있다. 본 발명의 다른 목적은 상향링크 신호의 전송을 효율적으로 제어하는 방법 및 이를 위한 장치를 제공하는데 있다.
본 발명에서 이루고자 하는 기술적 과제들은 상기 기술적 과제로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명의 일 양상으로, CA(carrier aggregation) 무선 통신 시스템에서 단말이 HARQ-ACK(hybrid automatic repeat request)을 전송하는 방법에 있어서, DAI(downlink assignment index) 및 DAI 그룹 지시 정보를 갖는 PDCCH(physical downlink control channel)를 SF(subframe) #n-k 내에서 수신하는 단계; 상기 DAI 및 상기 DAI 그룹 지시 정보를 이용하여 HARQ-ACK 페이로드를 구성하는 단계; 및 상기 HARQ-ACK 페이로드를 SF #n에서 전송하는 단계를 포함하고, 상기 DAI의 값은 SF #n-k에서 상기 제1 PDCCH과 관련된 셀/SF 단위의 스케줄링 순서 값을 나타내며, 상기 셀/SF 단위의 스케줄링 순서 값은 셀/SF 도메인에서 셀 우선 방식으로 계수되고, 상기 DAI 그룹 지시 정보는 상기 PDCCH가 마지막 DAI 그룹에 해당하는지 여부를 나타내며, 하나의 DAI 그룹은 복수의 연속된 DAI 값으로 구성되고, 각 셀에서 K:{k0,k1,…kM -1}는 아래와 같이 주어지는 방법이 제공될 수 있다:
Figure PCTKR2016010169-appb-I000001
.
본 발명의 다른 양상으로, CA(carrier aggregation) 무선 통신 시스템에서 HARQ-ACK(hybrid automatic repeat request)을 전송하도록 구성된 단말에 있어서, 무선 주파수(Radio Frequency, RF) 유닛; 및 프로세서를 포함하고, 상기 프로세서는, DAI(downlink assignment index) 및 DAI 그룹 지시 정보를 갖는 PDCCH(physical downlink control channel)를 SF(subframe) #n-k 내에서 수신하고, 상기 DAI 및 상기 DAI 그룹 지시 정보를 이용하여 HARQ-ACK 페이로드를 구성하며, 및 상기 HARQ-ACK 페이로드를 SF #n에서 전송하도록 구성되고, 상기 DAI의 값은 SF #n-k에서 상기 PDCCH과 관련된 셀/SF 단위의 스케줄링 순서 값을 나타내며, 상기 셀/SF 단위의 스케줄링 순서 값은 셀/SF 도메인에서 셀 우선 방식으로 계수되고, 상기 DAI 그룹 지시 정보는 상기 PDCCH가 마지막 DAI 그룹에 해당하는지 여부를 나타내며, 하나의 DAI 그룹은 복수의 연속된 DAI 값으로 구성되고, 각 셀에서 K:{k0,k1,…kM -1}는 아래와 같이 주어지는 단말이 제공될 수 있다:
Figure PCTKR2016010169-appb-I000002
.
바람직하게, 상기 DAI 값은 4개의 값이 순환 반복되며, 상기 하나의 DAI 그룹은 4개의 연속된 DAI 값으로 구성될 수 있다.
바람직하게, 상기 SF #n-k에서 상기 마지막 DAI 그룹에 해당하는 PDCCH가 검출되지 않은 경우, 상기 HARQ-ACK 페이로드 상기 마지막 DAI 그룹에 해당하는 HARQ-ACK 응답을 더 포함하고, 상기 HARQ-ACK 응답은 NACK(Negative Acknowledgement) 또는 DTX(Discontinuous Transmission)으로 설정될 수 있다.
바람직하게, 상기 PDCCH는 (i) PDSCH(physical downlink shared channel)를 스케줄링 하는 PDCCH 또는 (ii) SPS 해제(semi-persistent scheduling release)를 지시하는 PDCCH일 수 있다.
바람직하게, 상기 HARQ-ACK 페이로드는 상기 PDSCH에 대한 HARQ-ACK 응답 또는 상기 SPS 해제를 지시하는 PDCCH에 대한 HARQ-ACK 응답을 포함할 수 있다.
본 발명에 의하면, 무선 통신 시스템에서 신호를 효율적으로 전송/수신할 수 있다. 또한, 상향링크 신호의 전송을 효율적으로 제어할 수 있다.
본 발명에서 얻은 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도면은 본 발명에 대한 실시예를 제공하고, 상세한 설명과 함께 본 발명의 기술적 사상을 설명한다.
도 1은 무선 통신 시스템의 일례인 3GPP LTE 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 전송 방법을 예시한다.
도 2는 무선 프레임(radio frame)의 구조를 예시한다.
도 3은 하향링크 슬롯의 자원 그리드(resource grid)를 예시한다.
도 4는 하향링크 서브프레임의 구조를 나타낸다.
도 5는 상향링크 서브프레임의 구조를 예시한다.
도 6은 ACK/NACK을 위한 PUCCH 자원을 결정하는 예를 나타낸다.
도 7~8은 단일 셀 상황에서 TDD UL ACK/NACK(Uplink Acknowledgement/Negative Acknowledgement) 전송 타이밍을 나타낸다.
도 9는 DAI(Downlink Assignment Index)를 이용한 ACK/NACK 전송을 예시한다.
도 10은 캐리어 병합(Carrier Aggregation, CA) 통신 시스템을 예시한다.
도 11은 복수의 캐리어가 병합된 경우의 스케줄링을 예시한다.
도 12~13은 PUCCH 포맷 3을 예시한다.
도 14는 PUSCH 상에서 제어 정보와 UL-SCH 데이터의 다중화를 나타낸다.
도 15는 종래의 TDD CA에서 ACK/NACK 페이로드를 구성하는 예를 나타낸다.
도 16은 본 발명의 일 실시예에 따른 ACK/NACK 전송을 예시한다..
도 17은 본 발명에 적용될 수 있는 기지국 및 단말을 예시한다.
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access) 등과 같은 다양한 무선 접속 시스템에 사용될 수 있다. CDMA는 UTRA(Universal Terrestrial Radio Access)나 CDMA2000과 같은 무선 기술(radio technology)로 구현될 수 있다. TDMA는 GSM(Global System for Mobile communications)/GPRS(General Packet Radio Service)/EDGE(Enhanced Data Rates for GSM Evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(Evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. UTRA는 UMTS(Universal Mobile Telecommunications System)의 일부이다. 3GPP(3rd Generation Partnership Project) LTE(long term evolution)은 E-UTRA를 사용하는 E-UMTS(Evolved UMTS)의 일부이고 LTE-A(Advanced)는 3GPP LTE의 진화된 버전이다. 설명을 명확하게 하기 위해, 3GPP LTE/LTE-A를 위주로 기술하지만 본 발명의 기술적 사상이 이에 제한되는 것은 아니다.
무선 통신 시스템에서 단말은 기지국으로부터 하향링크(Downlink, DL)를 통해 정보를 수신하고, 단말은 기지국으로 상향링크(Uplink, UL)를 통해 정보를 전송한다. 기지국과 단말이 송수신하는 정보는 데이터 및 다양한 제어 정보를 포함하고, 이들이 송수신 하는 정보의 종류/용도에 따라 다양한 물리 채널이 존재한다.
도 1은 3GPP LTE 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 전송 방법을 설명하기 위한 도면이다.
전원이 꺼진 상태에서 다시 전원이 켜지거나, 새로이 셀에 진입한 단말은 단계 S101에서 기지국과 동기를 맞추는 등의 초기 셀 탐색(Initial cell search) 작업을 수행한다. 이를 위해 단말은 기지국으로부터 주동기 채널(Primary Synchronization Channel, P-SCH) 및 부동기 채널(Secondary Synchronization Channel, S-SCH)을 수신하여 기지국과 동기를 맞추고, 셀 ID (cell identity)등의 정보를 획득한다. 그 후, 단말은 기지국으로부터 물리 방송 채널(Physical Broadcast Channel, PBCH)을 수신하여 셀 내 방송 정보를 획득할 수 있다. 한편, 단말은 초기 셀 탐색 단계에서 하향링크 참조 신호(Downlink Reference Signal, DL RS)를 수신하여 하향링크 채널 상태를 확인할 수 있다.
초기 셀 탐색을 마친 단말은 단계 S102에서 물리 하향링크 제어 채널(Physical Downlink Control Channel, PDCCH) 및 물리 하향링크 제어 채널 정보에 따른 물리 하향링크 공유 채널(Physical Downlink Control Channel, PDSCH)을 수신하여 좀더 구체적인 시스템 정보를 획득할 수 있다.
이후, 단말은 기지국에 접속을 완료하기 위해 단계 S103 내지 단계 S106과 같은 임의 접속 과정(Random Access Procedure)을 수행할 수 있다. 이를 위해 단말은 물리 임의 접속 채널(Physical Random Access Channel, PRACH)을 통해 프리앰블(preamble)을 전송하고(S103), 물리 하향링크 제어 채널 및 이에 대응하는 물리 하향링크 공유 채널을 통해 프리앰블에 대한 응답 메시지를 수신할 수 있다(S104). 경쟁 기반 임의 접속(Contention based random access)의 경우 추가적인 물리 임의 접속 채널의 전송(S105) 및 물리 하향링크 제어 채널 및 이에 대응하는 물리 하향링크 공유 채널 수신(S106)과 같은 충돌 해결 절차(Contention Resolution Procedure)를 수행할 수 있다.
상술한 바와 같은 절차를 수행한 단말은 이후 일반적인 상향/하향링크 신호 전송 절차로서 물리 하향링크 제어 채널/물리 하향링크 공유 채널 수신(S107) 및 물리 상향링크 공유 채널(Physical Uplink Shared Channel, PUSCH)/물리 상향링크 제어 채널(Physical Uplink Control Channel, PUCCH) 전송(S108)을 수행할 수 있다. 단말이 기지국으로 전송하는 제어 정보를 통칭하여 상향링크 제어 정보(Uplink Control Information, UCI)라고 지칭한다. UCI는 HARQ ACK/NACK(Hybrid Automatic Repeat and reQuest Acknowledgement/Negative-ACK), SR(Scheduling Request), CSI(Channel State Information) 등을 포함한다. CSI는 CQI(Channel Quality Indicator), PMI(Precoding Matrix Indicator), RI(Rank Indication) 등을 포함한다. UCI는 일반적으로 PUCCH를 통해 전송되지만, 제어 정보와 트래픽 데이터가 동시에 전송되어야 할 경우 PUSCH를 통해 전송될 수 있다. 또한, 네트워크의 요청/지시에 의해 PUSCH를 통해 UCI를 비주기적으로 전송할 수 있다.
도 2는 무선 프레임(radio frame)의 구조를 예시한다. 상향/하향링크 데이터 패킷 전송은 서브프레임 단위로 이루어지며, 서브프레임은 다수의 심볼을 포함하는 시간 구간으로 정의된다. 3GPP LTE 표준에서는 FDD(Frequency Division Duplex)에 적용 가능한 타입 1 무선 프레임(radio frame) 구조와 TDD(Time Division Duplex)에 적용 가능한 타입 2의 무선 프레임 구조를 지원한다.
도 2(a)는 타입 1 무선 프레임의 구조를 예시한다. 하향링크 무선 프레임은 10개의 서브프레임으로 구성되고, 하나의 서브프레임은 시간 도메인(time domain)에서 2개의 슬롯(slot)으로 구성된다. 예를 들어 하나의 서브프레임의 길이는 1ms이고, 하나의 슬롯의 길이는 0.5ms 일 수 있다. 하나의 슬롯은 시간 영역에서 복수의 OFDM 심볼을 포함하고, 주파수 영역에서 다수의 자원블록(Resource Block, RB)을 포함한다. 3GPP LTE 시스템에서는 하향링크에서 OFDM을 사용하므로, OFDM 심볼이 하나의 심볼 구간을 나타낸다. OFDM 심볼은 또한 SC-FDMA 심볼 또는 심볼 구간으로 지칭될 수 있다. 자원 할당 단위로서의 자원 블록(RB)은 하나의 슬롯에서 복수의 연속적인 부반송파(subcarrier)를 포함할 수 있다.
슬롯에 포함되는 OFDM 심볼의 수는 CP(Cyclic Prefix)의 구성(configuration)에 따라 달라질 수 있다. CP에는 확장 CP(extended CP)와 노멀 CP(normal CP)가 있다. 예를 들어, OFDM 심볼이 노멀 CP에 의해 구성된 경우, 하나의 슬롯에 포함되는 OFDM 심볼의 수는 7개일 수 있다. OFDM 심볼이 확장된 CP에 의해 구성된 경우, 한 OFDM 심볼의 길이가 늘어나므로, 한 슬롯에 포함되는 OFDM 심볼의 수는 노멀 CP인 경우보다 적다. 예를 들어, 확장 CP의 경우, 하나의 슬롯에 포함되는 OFDM 심볼의 수는 6개일 수 있다. 단말이 빠른 속도로 이동하는 등의 경우와 같이 채널상태가 불안정한 경우, 심볼간 간섭을 더욱 줄이기 위해 확장 CP가 사용될 수 있다.
노멀 CP가 사용되는 경우, 슬롯은 7개의 OFDM 심볼을 포함하므로, 서브프레임은 14개의 OFDM 심볼을 포함한다. 서브프레임의 처음 최대 3 개의 OFDM 심볼은 PDCCH(physical downlink control channel)에 할당되고, 나머지 OFDM 심볼은 PDSCH(physical downlink shared channel)에 할당될 수 있다.
도 2(b)는 타입 2 무선 프레임의 구조를 예시한다. 타입 2 무선 프레임은 2개의 하프 프레임(half frame)으로 구성된다. 하프 프레임은 4(5)개의 일반 서브프레임과 1(0)개의 스페셜 서브프레임을 포함한다. 일반 서브프레임은 UL-DL 구성(Uplink-Downlink Configuration)에 따라 상향링크 또는 하향링크에 사용된다. 서브프레임은 2개의 슬롯으로 구성된다.
표 1은 UL-DL 구성에 따른 무선 프레임 내 서브프레임 구성을 예시한다.
표 1
Figure PCTKR2016010169-appb-T000001
표에서 D는 하향링크 서브프레임을, U는 상향링크 서브프레임을, S는 스페셜(special) 서브프레임을 나타낸다. 스페셜 서브프레임은 DwPTS(Downlink Pilot TimeSlot), GP(Guard Period), UpPTS(Uplink Pilot TimeSlot)를 포함한다. DwPTS는 단말에서의 초기 셀 탐색, 동기화 또는 채널 추정에 사용된다. UpPTS는 기지국에서의 채널 추정과 단말의 상향링크 전송 동기를 맞추는 데 사용된다. 보호 구간은 상향링크와 하향링크 사이에 하향링크 신호의 다중경로 지연으로 인해 상향링크에서 생기는 간섭을 제거하기 위한 구간이다.
무선 프레임의 구조는 예시에 불과하고, 무선 프레임에서 서브프레임의 수, 슬롯의 수, 심볼의 수는 다양하게 변경될 수 있다.
도 3은 하향링크 슬롯을 위한 자원 그리드를 예시한다.
도 3을 참조하면, 하향링크 슬롯은 시간 도메인에서 복수의 OFDM 심볼을 포함한다. 여기에서, 하나의 하향링크 슬롯은 7개의 OFDM 심볼을 포함하고, 하나의 자원블록(RB)은 주파수 도메인에서 12개의 부반송파를 포함하는 것으로 예시되었다. 그러나, 본 발명이 이로 제한되는 것은 아니다. 자원 그리드 상에서 각각의 요소는 자원요소(Resource Element, RE)로 지칭된다. 하나의 RB는 12*7 RE들을 포함한다. 하향링크 슬롯에 포함된 RB의 개수 NDL는 하향링크 전송 대역에 의존한다. 상향링크 슬롯의 구조는 하향링크 슬롯의 구조와 동일할 수 있다.
도 4는 하향링크 서브프레임의 구조를 예시한다.
도 4를 참조하면, 서브프레임 내에서 첫 번째 슬롯의 앞에 위치한 최대 3(4)개의 OFDM 심볼이 제어 채널이 할당되는 제어 영역에 해당한다. 남은 OFDM 심볼은 PDSCH(physical downlink shared chancel)가 할당되는 데이터 영역에 해당하며, 데이터 영역의 기본 자원 단위는 RB이다. LTE 에서 사용되는 하향링크 제어 채널의 예는 PCFICH(physical control format indicator channel), PDCCH(physical downlink control channel), PHICH(physical hybrid ARQ indicator channel) 등을 포함한다. PCFICH는 서브프레임의 첫 번째 OFDM 심볼에서 전송되며 서브프레임 내에서 제어 채널의 전송에 사용되는 OFDM 심볼의 개수에 관한 정보를 나른다. PHICH는 상향링크 전송에 대한 응답이고 HARQ ACK/NACK(acknowledgment/negative-acknowledgment) 신호를 나른다. PDCCH를 통해 전송되는 제어 정보는 DCI(downlink control information)라고 지칭된다. DCI는 상향링크 또는 하향링크 스케줄링 정보 또는 임의의 단말 그룹을 위한 상향링크 전송 전력 제어 명령(Transmit Power Control Command)를 포함한다.
PDCCH를 통해 전송되는 제어 정보를 DCI(Downlink Control Information)라고 한다. DCI 포맷(format)은 상향링크용으로 포맷 0, 3, 3A, 4, 하향링크용으로 포맷 1, 1A, 1B, 1C, 1D, 2, 2A, 2B, 2C 등의 포맷이 정의되어 있다. DCI 포맷에 따라 정보 필드의 종류, 정보 필드의 개수, 각 정보 필드의 비트 수 등이 달라진다. 예를 들어, DCI 포맷은 용도에 따라 호핑 플래그(hopping flag), RB 할당(assignment), MCS(modulation coding scheme), RV(redundancy version), NDI(new data indicator), TPC(transmit power control), HARQ 프로세스 번호, PMI(precoding matrix indicator) 확인(confirmation) 등의 정보를 선택적으로 포함한다. 따라서, DCI 포맷에 따라 DCI 포맷에 정합되는 제어 정보의 사이즈(size)가 달라진다. 한편, 임의의 DCI 포맷은 두 종류 이상의 제어 정보 전송에 사용될 수 있다. 예를 들어, DCI 포맷 0/1A는 DCI 포맷 0 또는 DCI 포맷 1을 나르는데 사용되며, 이들은 플래그 필드(flag field)에 의해 구분된다.
PDCCH는 DL-SCH(downlink shared channel)의 전송 포맷 및 자원 할당, UL-SCH(uplink shared channel)에 대한 자원 할당 정보, PCH(paging channel)에 대한 페이징 정보, DL-SCH 상의 시스템 정보(system information), PDSCH 상에서 전송되는 랜덤 접속 응답과 같은 상위-계층 제어 메시지의 자원 할당 정보, 임의의 단말 그룹 내에서 개별 단말에 대한 전송 전력 제어 명령, VoIP(voice over IP)의 활성화(activation) 등을 나른다. 제어 영역 내에서 복수의 PDCCH가 전송될 수 있다. 단말은 복수의 PDCCH를 모니터링 할 수 있다. PDCCH는 하나 또는 복수의 연속된 CCE(consecutive control channel element)의 집합(aggregation) 상에서 전송된다. CCE는 무선 채널의 상태에 따라 소정 부호율 (coding rate)의 PDCCH를 제공하기 위해 사용되는 논리적 할당 단위이다. CCE는 복수의 REG(resource element group)에 대응한다. PDCCH의 포맷 및 가용한 PDCCH의 비트 수는 CCE의 개수와 CCE에 의해 제공되는 부호율 사이의 상관 관계에 따라 결정된다. 기지국은 단말에게 전송될 DCI에 따라 PDCCH 포맷을 결정하고, CRC(cyclic redundancy check)를 제어 정보에 부가한다. CRC는 PDCCH의 소유자 또는 사용 용도에 따라 유일 식별자(RNTI(radio network temporary identifier)로 지칭됨)로 마스킹 된다. PDCCH가 특정 단말을 위한 것이면, 해당 단말의 유일 식별자(예, C-RNTI (cell-RNTI))가 CRC에 마스킹 된다. 다른 예로, PDCCH가 페이징 메시지를 위한 것이면, 페이징 지시 식별자(예, P-RNTI(paging-RNTI))가 CRC에 마스킹 된다. PDCCH가 시스템 정보 (보다 구체적으로, 후술하는 SIB(system information block))에 관한 것이면, 시스템 정보 식별자(예, SI-RNTI(system information RNTI))가 CRC에 마스킹 된다. 단말의 랜덤 접속 프리앰블의 전송에 대한 응답인, 랜덤 접속 응답을 지시하기 위해 RA-RNTI(random access-RNTI)가 CRC에 마스킹 된다.
PDCCH는 DCI로 알려진 메시지를 나르고, 일반적으로, 복수의 PDCCH가 서브프레임에서 전송된다. 각각의 PDCCH는 하나 이상의 CCE를 이용해서 전송된다. 하나의 CCE는 9개의 REG에 대응되고 하나의 REG는 네 개의 RE에 대응한다. 네 개의 QPSK 심볼이 각각의 REG에 맵핑된다. 참조 신호에 의해 점유된 자원 요소는 REG에 포함되지 않는다. 따라서, 주어진 OFDM 심볼 내에서 REG의 개수는 셀-특정 참조 신호의 존재 여부에 따라 달라진다. REG 개념은 다른 하향링크 제어 채널(즉, PDFICH 및 PHICH)에도 사용된다. 표 2의 기재와 같이 네 개의 PDCCH 포맷이 지원된다.
표 2
Figure PCTKR2016010169-appb-T000002
CCE들은 번호가 매겨져 연속적으로 사용되고, 디코딩 프로세스를 간단히 하기 위해, n CCEs로 구성된 포맷을 가지는 PDCCH는 n의 배수에 해당하는 번호를 가지는 CCE에서만 시작될 수 있다. 특정 PDCCH의 전송에 사용되는 CCE의 개수는 채널 상태에 따라 기지국에 의해 결정된다. 예를 들어, 좋은 하향링크 채널을 가지는 단말(예, 기지국에 인접함)을 위한 PDCCH의 경우 하나의 CCE로도 충분할 수 있다. 그러나, 열악한 채널을 가지는 단말(예, 셀 경계에 근처에 존재)을 위한 PDCCH의 경우 충분한 로버스트(robustness)를 얻기 위해서는 8개의 CCE가 요구될 수 있다. 또한, PDCCH의 파워 레벨은 채널 상태에 맞춰 조정될 수 있다.
LTE의 경우, 각각의 단말을 위해 PDCCH가 위치할 수 있는 CCE 세트를 정의하였다. 단말이 자신의 PDCCH를 발견할 수 있는 CCE 세트를 PDCCH 서치 스페이스, 간단히 서치 스페이스(Search Space, SS)라고 지칭한다. 서치 스페이스 내에서 PDCCH가 전송될 수 있는 개별 자원을 PDCCH 후보라고 지칭한다. 하나의 PDCCH 후보는 CCE 집합 레벨에 따라 1, 2, 4 또는 8개의 CCE에 대응한다. 기지국은 서치 스페이스 내의 임의의 PDCCH 후보 상의로 실제 PDCCH (DCI)를 전송하고, 단말은 PDCCH (DCI)를 찾기 위해 서치 스페이스를 모니터링 한다. 구체적으로, 단말은 서치 스페이스 내의 PDCCH 후보들에 대해 블라인드 디코딩(Blind Decoding, BD)을 시도한다.
LTE에서 각각의 PDCCH 포맷을 위한 서치 스페이스는 다른 사이즈를 가질 수 있다. 전용(dedicated)(또는 단말-특정 서치 스페이스(UE-specific SS, USS))와 공통 서치 스페이스(Common SS, CSS)가 정의되어 있다. 전용 서치 스페이스는 각각의 개별 단말을 위해 구성되며, 모든 단말은 공통 서치 스페이스의 범위에 관해 정보를 제공받는다. 전용 및 공통 서치 스페이스는 주어진 단말에 대해 겹칠 수 있다.
서치 스페이스들은 사이즈가 작고 이들은 서로 겹칠 수 있으므로, 기지국은 주어진 서브프레임에서 원하는 모든 단말에게 PDCCH를 보내기 위한 CCE 자원을 찾는 것이 불가능할 수 있다. 이는 다른 단말에게 CCE 자원이 이미 할당되었으므로, 특정 단말의 서치 스페이스에는 해당 단말을 위한 CCE 자원이 더 이상 없을 수 있기 때문이다(블록킹). 다음 서브프레임에서 지속될 블록킹의 가능성을 최소화 하기 위해, 단말-특정 호핑 시퀀스가 전용 서치 스페이스의 시작 위치에 적용된다. 표 3은 공통 및 전용 서치 스페이스의 사이즈를 나타낸다.
표 3
Figure PCTKR2016010169-appb-T000003
블라인드 디코딩 시도에 따른 연산 부하를 제어 하에 두기 위해, 단말은 정의된 모든 DCI 포맷을 동시에 서치하지 않는다. 일반적으로, 전용 서치 스페이스에서 단말은 항상 포맷 0 및 1A를 서치한다. 포맷 0 및 1A는 동일한 사이즈를 가지며 메시지 내의 플래그에 의해 구분된다. 또한, 단말은 추가로 다른 포맷 (즉, 기지국에 의해 설정된 PDSCH 전송 모드에 따라 1, 1B 또는 2)을 수신하도록 요구될 수 있다. 공통 서치 스페이스에서 단말은 포맷 1A 및 1C를 서치한다. 또한, 단말은 포맷 3 또는 3A를 서치하도록 구성될 수 있다. 포맷 3/3A는 포맷 0/1A와 마찬가지로 동일한 사이즈를 가지며, 다른 (공통) 식별자로 스크램블링 된 CRC를 가지는 지에 따라 구분된다. 다중-안테나 기술을 구성하기 위한 전송 모드 및 DCI 포맷의 정보 컨텐츠는 다음과 같다.
전송 모드(Transmission Mode, TM )
● 전송 모드 1: Transmission from a single base station antenna port
● 전송 모드 2: Transmit diversity
● 전송 모드 3: Open-loop spatial multiplexing
● 전송 모드 4: Closed-loop spatial multiplexing
● 전송 모드 5: Multi-user MIMO
● 전송 모드 6: Closed-loop rank-1 precoding
● 전송 모드 7: Transmission using UE-specific reference signals
DCI 포맷
● 포맷 0: Resource grants for the PUSCH transmissions (uplink)
● 포맷 1: Resource assignments for single codeword PDSCH transmissions (transmission modes 1, 2 and 7)
● 포맷 1A: Compact signaling of resource assignments for single codeword PDSCH (all modes)
● 포맷 1B: Compact resource assignments for PDSCH using rank-1 closed loop precoding (mode 6)
● 포맷 1C: Very compact resource assignments for PDSCH (e.g. paging/broadcast system information)
● 포맷 1D: Compact resource assignments for PDSCH using multi-user MIMO (mode 5)
● 포맷 2: Resource assignments for PDSCH for closed-loop MIMO operation (mode 4)
● 포맷 2A: Resource assignments for PDSCH for open-loop MIMO operation (mode 3)
● 포맷 3/3A: Power control commands for PUCCH and PUSCH with 2-bit/1-bit power adjustments
도 5는 상향링크 서브프레임의 구조를 예시한다.
도 5를 참조하면, 서브프레임(500)은 두 개의 0.5ms 슬롯(501)을 포함한다. 노멀 CP가 사용되는 경우, 각 슬롯은 7개의 심볼(502)로 구성되며 하나의 심볼은 하나의 SC-FDMA 심볼에 대응된다. 자원블록(503)은 주파수 영역에서 12개의 부반송파, 그리고 시간영역에서 한 슬롯에 해당되는 자원 할당 단위이다. 상향링크 서브프레임의 구조는 크게 데이터 영역(504)과 제어 영역(505)으로 구분된다. 데이터 영역은 단말이 음성, 패킷 등의 데이터를 송신하는데 사용되는 통신 자원을 의미하며 PUSCH(Physical Uplink Shared Channel)을 포함한다. 제어 영역은 단말이 상향링크 제어 정보(Uplink Control Information, UCI)를 전송하는데 사용되는 통신 자원을 의미하며 PUCCH(Physical Uplink Control Channel)을 포함한다.
PUCCH는 다음의 상향링크 제어 정보를 전송하는데 사용될 수 있다.
- SR(Scheduling Request): 상향링크 UL-SCH 자원을 요청하는데 사용되는 정보이다. OOK(On-Off Keying) 방식을 이용하여 전송된다.
- HARQ-ACK: PDSCH 상의 하향링크 데이터 패킷(예, 코드워드)에 대한 응답이다. 하향링크 데이터 패킷이 성공적으로 수신되었는지 여부를 나타낸다. 단일 하향링크 코드워드에 대한 응답으로 HARQ-ACK 1비트가 전송되고, 두 개의 하향링크 코드워드에 대한 응답으로 HARQ-ACK 2비트가 전송된다. HARQ-ACK 응답은 포지티브 ACK(간단히, ACK), 네거티브 ACK(NACK), DTX 또는 NACK/DTX를 포함한다. 여기서, HARQ-ACK은 HARQ ACK/NACK, ACK/NACK과 혼용된다.
- CSI(Channel State Information): 하향링크 채널에 대한 피드백 정보이다. MIMO(Multiple Input Multiple Output)-관련 피드백 정보는 RI(Rank Indicator) 및 PMI(Precoding Matrix Indicator)를 포함한다. 서브프레임 당 20비트가 사용된다.
단말이 서브프레임에서 전송할 수 있는 제어 정보의 양은 가용한 SC-FDMA의 개수에 의존한다. 제어 정보 전송에 가용한 SC-FDMA는 서브프레임에서 참조 신호 전송을 위한 SC-FDMA 심볼을 제외하고 남은 SC-FDMA 심볼을 의미하고, SRS(Sounding Reference Signal)가 설정된 서브프레임의 경우 서브프레임의 마지막 SC-FDMA 심볼도 제외된다. 참조 신호는 PUCCH의 코히어런트 검출에 사용된다. PUCCH는 전송되는 정보에 따라 다양한 포맷을 지원한다.
표 4는 LTE(-A)에서 PUCCH 포맷과 UCI의 매핑 관계를 나타낸다.
표 4
Figure PCTKR2016010169-appb-T000004
SRS는 서브프레임에서 마지막 SC-FDMA 심볼을 통하여 전송된다(506). 동일한 SC-FDMA 심볼을 통해 전송되는 여러 단말의 SRS들은 주파수 위치/시퀀스에 따라 구분이 가능하다. SRS는 비주기적 또는 주기적으로 전송된다.
도 6은 ACK/NACK을 위한 PUCCH 자원을 결정하는 예를 나타낸다. LTE 시스템에서 ACK/NACK을 위한 PUCCH 자원은 각 단말에게 미리 할당되어 있지 않고, 복수의 PUCCH 자원을 셀 내의 복수의 단말들이 매 시점마다 나눠서 사용한다. 구체적으로, 단말이 ACK/NACK을 전송하는데 사용하는 PUCCH 자원은 해당 하향링크 데이터에 대한 스케줄링 정보를 나르는 PDCCH에 대응된다. 각각의 하향링크 서브프레임에서 PDCCH가 전송되는 전체 영역은 복수의 CCE(Control Channel Element)로 구성되고, 단말에게 전송되는 PDCCH는 하나 이상의 CCE로 구성된다. 단말은 자신이 수신한 PDCCH를 구성하는 CCE들 중 특정 CCE (예, 첫 번째 CCE)에 대응되는 PUCCH 자원을 통해 ACK/NACK을 전송한다.
도 6을 참조하면, 하향링크 콤포넌트 반송파(DownLink Component Carrier, DL CC)에서 각 사각형은 CCE를 나타내고, 상향링크 콤포넌트 반송파(UpLink Component Carrier, UL CC)에서 각 사각형은 PUCCH 자원을 나타낸다. 각각의 PUCCH 인덱스는 ACK/NACK을 위한 PUCCH 자원에 대응된다. 도 6에서와 같이 4~6 번 CCE로 구성된 PDCCH를 통해 PDSCH에 대한 정보가 전달된다고 가정할 경우, 단말은 PDCCH를 구성하는 첫 번째 CCE인 4번 CCE에 대응되는 4번 PUCCH를 통해 ACK/NACK을 전송한다. 도 6은 DL CC에 최대 N개의 CCE가 존재할 때에 UL CC에 최대 M개의 PUCCH가 존재하는 경우를 예시한다. N=M일 수도 있지만 M값과 N값을 다르게 설계하고 CCE와 PUCCH들의 맵핑이 겹치게 하는 것도 가능하다.
구체적으로, LTE 시스템에서 PUCCH 자원 인덱스는 다음과 같이 정해진다.
[수학식 1]
n(1) PUCCH = nCCE + N(1) PUCCH
여기에서, n(1) PUCCH는 ACK/NACK/DTX을 전송하기 위한 PUCCH 포맷 1a/1b의 자원 인덱스를 나타내고, N(1) PUCCH는 상위계층으로부터 전달받는 시그널링 값을 나타내며, nCCE는 PDCCH 전송에 사용된 CCE 인덱스 중에서 가장 작은 값을 나타낸다. n(1) PUCCH로부터 PUCCH 포맷 1a/1b를 위한 사이클릭 쉬프트, 직교 확산 코드 및 PRB(Physical Resource Block)가 얻어진다.
이하, 도 7~8을 참조하여 단일 캐리어 (혹은 셀) 상황에서 TDD 신호 전송 타이밍에 대해 설명한다.
도 7~8은 PDSCH-UL ACK/NACK 타이밍을 나타낸다. 여기서, UL ACK/NACK은 DL 데이터(예, PDSCH)에 대한 응답으로 상향링크로 전송되는 ACK/NACK을 의미한다.
도 7을 참조하면, 단말은 M개의 DL 서브프레임(Subframe, SF) 상에서 하나 이상의 PDSCH 신호를 수신할 수 있다(S502_0~S502_M-1). 각각의 PDSCH 신호는 전송 모드에 따라 하나 또는 복수(예, 2개)의 전송블록(TB)을 전송하는데 사용된다. 또한, 도시하지는 않았지만, 단계 S502_0~S502_M-1에서 SPS 해제(Semi-Persistent Scheduling release)를 지시하는 PDCCH 신호도 수신될 수 있다. M개의 DL 서브프레임에 PDSCH 신호 및/또는 SPS 해제 PDCCH 신호가 존재하면, 단말은 ACK/NACK을 전송하기 위한 과정(예, ACK/NACK (페이로드) 생성, ACK/NACK 자원 할당 등)을 거쳐, M개의 DL 서브프레임에 대응하는 하나의 UL 서브프레임을 통해 ACK/NACK을 전송한다(S504). ACK/NACK은 단계 S502_0~S502_M-1의 PDSCH 신호 및/또는 SPS 해제 PDCCH 신호에 대한 수신 응답 정보를 포함한다. ACK/NACK은 기본적으로 PUCCH를 통해 전송되지만, ACK/NACK 전송 시점에 PUSCH 전송이 있는 경우 ACK/NACK은 PUSCH를 통해 전송된다. ACK/NACK 전송을 위해 표 4의 다양한 PUCCH 포맷이 사용될 수 있다. 또한, PUCCH 포맷을 통해 전송되는 ACK/NACK 비트 수를 줄이기 위해 ACK/NACK 번들링(bundling), ACK/NACK 채널 선택(channel selection)과 같은 다양한 방법이 사용될 수 있다.
상술한 바와 같이, TDD에서는 M개의 DL 서브프레임에서 수신한 데이터에 대한 ACK/NACK이 하나의 UL 서브프레임을 통해 전송되며(즉, M DL SF(s):1 UL SF), 이들간의 관계는 DASI(Downlink Association Set Index)에 의해 주어진다.
표 5는 LTE(-A)에 정의된 DASI(K:{k0,k1,…kM -1})를 나타낸다. 표 3은 ACK/NACK을 전송하는 UL 서브프레임 입장에서 자신과 연관된 DL 서브프레임과의 간격을 나타낸다. 구체적으로, 서브프레임 n-k (k∈K)에 PDSCH 전송 및/또는 SPS 해제(Semi-Persistent Scheduling release)를 지시하는 PDCCH가 있는 경우, 단말은 서브프레임 n에서 ACK/NACK을 전송한다.
표 5
Figure PCTKR2016010169-appb-T000005
도 8은 UL-DL 구성 #1이 설정된 경우의 UL ACK/NACK 전송 타이밍을 예시한다. 도면에서 SF#0~#9 및 SF#10~#19는 각각 무선 프레임에 대응한다. 도면에서 박스 내의 숫자는 DL 서브프레임 관점에서 자신과 연관된 UL 서브프레임을 나타낸다. 예를 들어, SF#5의 PDSCH에 대한 ACK/NACK은 SF#5+7(=SF#12)에서 전송되고, SF#6의 PDSCH에 대한 ACK/NACK은 SF#6+6(=SF#12)에서 전송된다. 따라서, SF#5/SF#6의 하향링크 신호에 대한 ACK/NACK은 모두 SF#12에서 전송된다. 유사하게, SF#14의 PDSCH에 대한 ACK/NACK은 SF#14+4(=SF#18)에서 전송된다.
TDD에서 단말이 기지국에게 ACK/NACK 신호를 전송할 때에 다음과 같은 문제점이 발생할 수 있다.
● 여러 서브프레임 구간 동안 기지국이 보낸 PDCCH(들) 중 일부를 단말이 놓쳤을 경우 단말은 놓친 PDCCH에 해당되는 PDSCH가 자신에게 전송된 사실도 알 수 없으므로 ACK/NACK 생성 시에 오류가 발생할 수 있다.
이러한 오류를 해결하기 위해, TDD 시스템은 PDCCH에 DAI(Downlink Assignment Index)를 포함시킨다. DAI는 DL 서브프레임(들) n-k (k∈K) 내에서 현재 서브프레임까지 PDSCH(들)에 대응하는 PDCCH(들) 및 하향링크 SPS 해제를 지시하는 PDCCH(들)의 누적 값(즉, 카운팅 값)을 나타낸다. 예를 들어, 3개의 DL 서브프레임이 하나의 UL 서브프레임에 대응되는 경우, 3개의 DL 서브프레임 구간에 전송되는 PDSCH에 순차적으로 인덱스를 부여(즉 순차적으로 카운트)하여 PDSCH를 스케줄링 하는 PDCCH에 실어 보낸다. 단말은 PDCCH에 있는 DAI 정보를 보고 이전까지의 PDCCH를 제대로 수신했는지 알 수 있다.
도 9는 DAI를 이용한 ACK/NACK 전송을 예시한다. 본 예는 3 DL 서브프레임:1 UL 서브프레임으로 구성된 TDD 시스템을 가정한다. 편의상, 단말은 마지막으로 검출한 PDCCH에 대응하는 PUCCH 자원을 이용하여 ACK/NACK을 전송한다고 가정한다.
도 9를 참조하면, 첫 번째 예시와 같이 2번째 PDCCH를 놓친 경우, 단말은 세 번째 PDCCH의 DAI 값과 그때까지 검출된 PDCCH의 수가 다르므로 2번째 PDCCH를 놓친 것을 알 수 있다. 이 경우, 단말은 DAI=3에 대응되는 PUCCH 자원을 이용하여 ACK/NACK을 전송하며, 2번째 PDCCH에 대한 ACK/NACK 응답은 NACK (혹은 NACK/DTX)로 지시될 수 있다. 반면, 두 번째 예시와 같이 마지막 PDCCH를 놓친 경우, 단말은 마지막으로 검출한 PDCCH의 DAI 값과 그때까지 검출된 PDCCH 수가 일치하므로 마지막 PDCCH를 놓친 것을 인식할 수 없다. 따라서, 단말은 DL 서브프레임 구간 동안 2개의 PDCCH만을 스케줄링 받은 것으로 인식한다. 단말은 DAI=2에 대응되는 PUCCH 자원을 이용하여 ACK/NACK 정보를 전송하므로, 기지국은 단말이 DAI=3을 포함한 PDCCH를 놓친 것을 알 수 있다.
도 10은 캐리어 병합(Carrier Aggregation, CA) 통신 시스템을 예시한다. LTE-A 시스템은 보다 넓은 주파수 대역을 사용하기 위하여 복수의 상/하향링크 주파수 블록을 모다 더 큰 상/하향링크 대역폭을 사용하는 캐리어 병합(carrier aggregation 또는 bandwidth aggregation) 기술을 사용한다. 각각의 주파수 블록은 콤포넌트 캐리어(Component Carrier, CC)를 이용하여 전송된다. 콤포넌트 캐리어는 해당 주파수 블록을 위한 캐리어 주파수 (또는 중심 캐리어, 중심 주파수)로 이해될 수 있다.
도 10을 참조하면, 복수의 상/하향링크 콤포넌트 캐리어(Component Carrier, CC)들을 모아서 더 넓은 상/하향링크 대역폭을 지원할 수 있다. 각각의 CC들은 주파수 영역에서 서로 인접하거나 비-인접할 수 있다. 각 콤포넌트 캐리어의 대역폭은 독립적으로 정해질 수 있다. UL CC의 개수와 DL CC의 개수가 다른 비대칭 캐리어 병합도 가능하다. 예를 들어, DL CC 2개 UL CC 1개인 경우에는 2:1로 대응되도록 구성이 가능하다. DL CC/UL CC 링크는 시스템에 고정되어 있거나 반-정적으로 구성될 수 있다. 또한, 시스템 전체 대역이 N개의 CC로 구성되더라도 특정 단말이 모니터링/수신할 수 있는 주파수 대역은 M(<N)개의 CC로 한정될 수 있다. 캐리어 병합에 대한 다양한 파라미터는 셀 특정(cell-specific), 단말 그룹 특정(UE group-specific) 또는 단말 특정(UE-specific) 방식으로 설정될 수 있다. 한편, 제어 정보는 특정 CC를 통해서만 송수신 되도록 설정될 수 있다. 이러한 특정 CC를 프라이머리 CC(Primary CC, PCC)(또는 앵커 CC)로 지칭하고, 나머지 CC를 세컨더리 CC(Secondary CC, SCC)로 지칭할 수 있다.
LTE-A는 무선 자원을 관리하기 위해 셀(cell)의 개념을 사용한다. 셀은 하향링크 자원과 상향링크 자원의 조합으로 정의되며, 상향링크 자원은 필수 요소는 아니다. 따라서, 셀은 하향링크 자원 단독, 또는 하향링크 자원과 상향링크 자원으로 구성될 수 있다. 캐리어 병합이 지원되는 경우, 하향링크 자원의 캐리어 주파수(또는, DL CC)와 상향링크 자원의 캐리어 주파수(또는, UL CC) 사이의 링키지(linkage)는 시스템 정보에 의해 지시될 수 있다. 프라이머리 주파수(또는 PCC) 상에서 동작하는 셀을 프라이머리 셀(Primary Cell, PCell)로 지칭하고, 세컨더리 주파수(또는 SCC) 상에서 동작하는 셀을 세컨더리 셀(Secondary Cell, SCell)로 지칭할 수 있다. PCell은 단말이 초기 연결 설정(initial connection establishment) 과정을 수행하거나 연결 재-설정 과정을 수행하는데 사용된다. PCell은 핸드오버 과정에서 지시된 셀을 지칭할 수도 있다. SCell은 RRC 연결이 설정이 이루어진 이후에 구성 가능하고 추가적인 무선 자원을 제공하는데 사용될 수 있다. PCell과 SCell은 서빙 셀로 통칭될 수 있다. 따라서, RRC_CONNECTED 상태에 있지만 캐리어 병합이 설정되지 않았거나 캐리어 병합을 지원하지 않는 단말의 경우, PCell로만 구성된 서빙 셀이 단 하나 존재한다. 반면, RRC_CONNECTED 상태에 있고 캐리어 병합이 설정된 단말의 경우, 하나 이상의 서빙 셀이 존재하고, 전체 서빙 셀에는 PCell과 전체 SCell이 포함된다. 캐리어 병합을 위해, 네트워크는 초기 보안 활성화(initial security activation) 과정이 개시된 이후, 연결 설정 과정에서 초기에 구성되는 PCell에 부가하여 하나 이상의 SCell을 캐리어 병합을 지원하는 단말을 위해 구성할 수 있다.
크로스-캐리어 스케줄링 (또는 크로스-CC 스케줄링)이 적용될 경우, 하향링크 할당을 위한 PDCCH는 DL CC#0으로 전송되고, 해당 PDSCH는 DL CC#2로 전송될 수 있다. 크로스-CC 스케줄링을 위해, 캐리어 지시 필드(carrier indicator field, CIF)의 도입이 고려될 수 있다. PDCCH 내에서 CIF의 존재 여부는 상위 계층 시그널링(예, RRC 시그널링)에 의해 반-정적 및 단말-특정(또는 단말 그룹-특정) 방식으로 설정될 수 있다. PDCCH 전송의 베이스 라인을 요약하면 다음과 같다.
- CIF 디스에이블드(disabled): DL CC 상의 PDCCH는 동일한 DL CC 상의 PDSCH 자원을 할당하거나 하나의 링크된 UL CC 상의 PUSCH 자원을 할당
- CIF 이네이블드(enabled): DL CC 상의 PDCCH는 CIF를 이용하여 복수의 병합된 DL/UL CC 중에서 특정 DL/UL CC 상의 PDSCH 또는 PUSCH 자원을 할당 가능
CIF가 존재할 경우, 기지국은 단말 측의 BD 복잡도를 낮추기 위해 PDCCH 모니터링 DL CC 세트를 할당할 수 있다. PDCCH 모니터링 DL CC 세트는 병합된 전체 DL CC의 일부로서 하나 이상의 DL CC를 포함하고 단말은 해당 DL CC 상에서만 PDCCH의 검출/디코딩을 수행한다. 즉, 기지국이 단말에게 PDSCH/PUSCH를 스케줄링 할 경우, PDCCH는 PDCCH 모니터링 DL CC 세트를 통해서만 전송된다. PDCCH 모니터링 DL CC 세트는 단말-특정(UE-specific), 단말-그룹-특정 또는 셀-특정(cell-specific) 방식으로 설정될 수 있다. 용어 "PDCCH 모니터링 DL CC"는 모니터링 캐리어, 모니터링 셀 등과 같은 등가의 용어로 대체될 수 있다. 또한, 단말을 위해 병합된 CC는 서빙 CC, 서빙 캐리어, 서빙 셀 등과 같은 등가의 용어로 대체될 수 있다.
도 11은 복수의 캐리어가 병합된 경우의 스케줄링을 예시한다. 3개의 DL CC가 병합되었다고 가정한다. DL CC A가 PDCCH 모니터링 DL CC로 설정되었다고 가정한다. DL CC A~C는 서빙 CC, 서빙 캐리어, 서빙 셀 등으로 지칭될 수 있다. CIF가 디스에이블 된 경우, 각각의 DL CC는 LTE PDCCH 규칙에 따라 CIF 없이 자신의 PDSCH를 스케줄링 하는 PDCCH만을 전송할 수 있다. 반면, 단말-특정 (또는 단말-그룹-특정 또는 셀-특정) 상위 계층 시그널링에 의해 CIF가 이네이블 된 경우, DL CC A(모니터링 DL CC)는 CIF를 이용하여 DL CC A의 PDSCH를 스케줄링 하는 PDCCH뿐만 아니라 다른 CC의 PDSCH를 스케줄링 하는 PDCCH도 전송할 수 있다. 이 경우, PDCCH 모니터링 DL CC로 설정되지 않은 DL CC B/C에서는 PDCCH가 전송되지 않는다.
LTE-A 시스템에서는 복수의 DL CC를 통해 전송된 복수의 PDSCH에 대한 복수의 ACK/NACK 정보/신호를 특정 UL CC를 통해 전송하는 것을 고려하고 있다. 이를 위해 기존 LTE에서의 PUCCH 포맷 1a/1b를 이용한 ACK/NACK 전송과는 달리, 복수의 ACK/NACK 정보를 조인트 코딩(예, Reed-Muller code, Tail-biting convolutional code 등)한 후 새로운 PUCCH 포맷(E-PUCCH (Enhanced PUCCH) 포맷 혹은 PUCCH 포맷 M으로 지칭)을 이용하여 복수의 ACK/NACK 정보/신호를 전송하는 것을 고려할 수 있다. E-PUCCH 포맷은 아래와 같은 블록-확산(Block-spreading) 기반의 PUCCH 포맷을 포함한다. 조인트 코딩 후, E-PUCCH 포맷을 이용한 ACK/NACK 전송은 일 예로서, E-PUCCH 포맷은 UCI 전송에 제한 없이 사용될 수 있다. 예를 들어, E-PUCCH 포맷은 ACK/NACK, CSI(예, CQI, PMI, RI, PTI 등), SR, 또는 이들 중 2 이상의 정보를 함께 전송하는데 사용될 수 있다. 따라서, 본 명세서에서 E-PUCCH 포맷은 UCI의 종류/개수/사이즈에 상관없이 조인트 코딩된 UCI 코드워드를 전송하는데 사용될 수 있다.
도 12는 PUCCH 포맷 3의 슬롯 레벨 구조를 예시한다. PUCCH 포맷 3는 복수의 DL CC를 통해 전송된 복수의 PDSCH에 대한 복수의 ACK/NACK 정보/신호를 전송하는데 사용된다. PUCCH 포맷 3은 ACK/NACK, CSI(예, CQI, PMI, RI, PTI 등), SR, 또는 이들 중 2 이상의 정보를 함께 전송하는데 사용될 수 있다.
도 12를 참조하면, 길이-5 (SF(Spreading Factor)=5)의 OCC(C1~C5)를 이용하여, 하나의 심볼 시퀀스({d1,d2,…)로부터 5개의 SC-FDMA 심볼(즉, UCI 데이터 파트)이 생성된다. 심볼 시퀀스({d1,d2,…)는 변조 심볼 시퀀스 또는 코드워드 비트 시퀀스를 의미할 수 있다. 심볼 시퀀스({d1,d2,…)가 코드워드 비트 시퀀스를 의미할 경우, 도 12의 블록도는 변조 블록을 더 포함한다. RS 심볼은 특정 사이클릭 쉬프트를 갖는 CAZAC 시퀀스로부터 생성될 수 있다. RS는 시간 영역의 복수 RS 심볼에 특정 OCC가 적용된 (곱해진) 형태로 전송될 수 있다. 블록-확산된 UCI는 SC-FDMA 심볼 단위로 FFT(Fast Fourier Transform) 과정, IFFT(Inverse Fast Fourier Transform) 과정을 거쳐 네트워크로 전송된다.
도 13은 PUCCH 포맷 3의 서브프레임 레벨 구조를 예시한다. 도 13을 참조하면, 슬롯 0에서 심볼 시퀀스({d'0~d'11})는 한 SC-FDMA 심볼의 부반송파에 맵핑되며, OCC(C1~C5)를 이용한 블록-확산에 의해 5개의 SC-FDMA 심볼에 맵핑된다. 유사하게, 슬롯 1에서 심볼 시퀀스({d'12~d'23})는 한 SC-FDMA 심볼의 부반송파에 맵핑되며, OCC(C1~C5)를 이용한 블록-확산에 의해 5개의 SC-FDMA 심볼에 맵핑된다. 여기서, 각 슬롯에 도시된 심볼 시퀀스({d'0~d'11} 또는 {d'12~d'23})는 도 12의 심볼 시퀀스({d1,d2,…)에 FFT 또는 FFT/IFFT가 적용된 형태를 나타낸다. 전체 심볼 시퀀스({d'0~d'23})는 하나 이상의 UCI를 조인트 코딩함으로써 생성된다. OCC는 슬롯 단위로 변경될 수 있고, UCI 데이터는 SC-FDMA 심볼 단위로 스크램블 될 수 있다.
PUCCH 포맷 3 자원은 명시적으로 주어질 수 있다. 구체적으로, 상위 계층(예, RRC)에 의해 PUCCH 자원 세트가 구성되고, PDCCH의 ARI(ACK/NACK Resource Indicator) 값을 이용하여 실제 사용될 PUCCH 자원이 지시될 수 있다.
표 6은 HARQ-ACK을 위한 PUCCH 자원을 명시적으로 지시하는 예를 나타낸다.
표 6
PUCCH를 위한 HARQ-ACK 자원의 값 (ARI) nPUCCH
00 상위 계층에 의해 구성된 첫 번째 PUCCH 자원 값
01 상위 계층에 의해 구성된 두 번째 PUCCH 자원 값
10 상위 계층에 의해 구성된 세 번째 PUCCH 자원 값
11 상위 계층에 의해 구성된 네 번째 PUCCH 자원 값
ARI: ACK/NACK Resource Indicator. 표 6에서 상위 계층은 RRC 계층을 포함하고, ARI 값은 DL 그랜트를 나르는 PDCCH를 통해 지시될 수 있다. 예를 들어, ARI 값은 SCell 스케줄링 PDCCH 및/또는 DAI 초기 값에 대응되지 않는 하나 이상의 PCell 스케줄링 PDCCH 의 TPC(Transmit Power Control) 필드를 이용해 지시될 수 있다.
PUCCH 포맷 4는 PUCCH 포맷 3보다 더 큰 페이로드 사이즈의 UCI 전송을 지원하는 PUCCH 포맷이다. PUCCH 포맷 4의 구조는 블록-확산이 적용되지 않는 점을 제외하고는 기본적으로 PUCCH 포맷 3의 구조와 동일하다. 또한, PUCCH 포맷 4 자원도 명시적으로 주어질 수 있다. 구체적으로, 상위 계층(예, RRC)에 의해 PUCCH 자원 세트가 구성되고, PDCCH의 ARI 값을 이용하여 실제 사용될 PUCCH 자원이 지시될 수 있다.
LTE-A에서는 UCI를 UL-SCH 데이터와 동시에 전송하는 방법을 두 가지로 나누고 있다. 첫 번째 방법은 PUCCH와 PUSCH를 동시에 전송하는 방법이고, 두 번째 방법은 기존의 LTE와 마찬가지로 PUSCH에 UCI를 다중화 하는 방법이다. PUCCH와 PUSCH의 동시 전송 허용 여부는 상위 계층에 의해 설정될 수 있다. PUCCH+PUSCH 동시 전송이 이네이블(enable)되면 첫 번째 방법이 적용되고, PUCCH+PUSCH 동시 전송이 디스에이블(disable)되면 두 번째 방법이 적용된다. 기존 LTE 단말은 PUCCH와 PUSCH를 동시에 전송할 수 없으므로 PUSCH가 전송되는 서브프레임에서 UCI(예, CQI/PMI, HARQ-ACK, RI 등) 전송이 필요한 경우, UCI를 PUSCH 영역에 다중화 하는 방법을 사용한다. 일 예로, PUSCH 전송이 할당된 서브프레임에서 HARQ-ACK을 전송해야 할 경우, 단말은 UL-SCH 데이터와 HARQ-ACK를 DFT-확산 이전에 다중화한 뒤, PUSCH를 통해 제어 정보와 데이터를 함께 전송한다.
도 14는 PUSCH 상에서 제어 정보와 UL-SCH 데이터의 다중화를 나타낸다. PUSCH 전송이 할당된 서브프레임에서 제어 정보를 전송하고자 할 경우, 단말은 DFT-확산 이전에 제어 정보(UCI)와 UL-SCH 데이터를 함께 다중화 한다. 제어 정보는 CQI/PMI, HARQ ACK/NACK 및 RI 중에서 적어도 하나를 포함한다. CQI/PMI, ACK/NACK 및 RI 전송에 사용되는 각각의 RE 개수는 PUSCH 전송을 위해 할당된 MCS(Modulation and Coding Scheme) 및 오프셋 값에 기초한다. 오프셋 값은 제어 정보에 따라 서로 다른 코딩 레이트를 허용하며 상위 계층(예, RRC) 시그널에 의해 반-정적으로 설정된다. UL-SCH 데이터와 제어 정보는 동일한 RE에 맵핑되지 않는다. 제어 정보는 서브프레임의 두 슬롯에 모두 존재하도록 맵핑된다.
도 14를 참조하면, CQI 및/또는 PMI(CQI/PMI) 자원은 UL-SCH 데이터 자원의 시작 부분에 위치하고 하나의 부반송파 상에서 모든 SC-FDMA 심볼에 순차적으로 맵핑된 이후에 다음 부반송파에서 맵핑이 이뤄진다. CQI/PMI는 부반송파 내에서 왼쪽에서 오른쪽, 즉 SC-FDMA 심볼 인덱스가 증가하는 방향으로 맵핑된다. PUSCH 데이터(UL-SCH 데이터)는 CQI/PMI 자원의 양(즉, 부호화된 심볼의 개수)을 고려해서 레이트-매칭된다. UL-SCH 데이터와 동일한 변조 차수(modulation order)가 CQI/PMI에 사용된다. ACK/NACK은 UL-SCH 데이터가 맵핑된 SC-FDMA의 자원의 일부에 펑처링을 통해 삽입된다. ACK/NACK는 RS 옆에 위치하며 해당 SC-FDMA 심볼 내에서 아래쪽부터 시작해서 위쪽, 즉 부반송파 인덱스가 증가하는 방향으로 채워진다. 노멀 CP인 경우, 도면에서와 같이 ACK/NACK을 위한 SC-FDMA 심볼은 각 슬롯에서 SC-FDMA 심볼 #2/#5에 위치한다. 서브프레임에서 ACK/NACK이 실제로 전송하는지 여부와 관계 없이, 부호화된 RI는 ACK/NACK을 위한 심볼의 옆에 위치한다.
또한, 제어 정보(예, QPSK 변조 사용)는 UL-SCH 데이터 없이 PUSCH 상에서 전송되도록 스케줄링 될 수 있다. 제어 정보(CQI/PMI, RI 및/또는 ACK/NACK)는 낮은 CM(Cubic Metric) 단일-반송파 특성을 유지하기 위해 DFT-스프레딩 이전에 다중화된다. ACK/NACK, RI 및 CQI/PMI를 다중화 하는 것은 도 14에서 도시한 것과 유사하다. ACK/NACK를 위한 SC-FDMA 심볼은 RS 옆에 위치하며, CQI가 맵핑된 자원이 펑처링 될 수 있다. ACK/NACK 및 RI을 위한 RE의 개수는 레퍼런스 MCS(CQI/PMI MCS)와 오프셋 파라미터에 기초한다. 레퍼런스 MCS는 CQI 페이로드 사이즈 및 자원 할당으로부터 계산된다. UL-SCH 데이터가 없는 제어 시그널링을 위한 채널 코딩 및 레이트 매칭은 상술한 UL-SCH 데이터가 있는 제어 시그널링의 경우와 동일하다.
도 15는 종래의 TDD CA에서 ACK/NACK 페이로드를 구성하는 예를 나타낸다.
도 15를 참조하면, 단말은 UL DAI 값을 이용하여 전체 ACK/NACK 페이로드 사이즈를 조절할 수 있다. UL DAI는 UL 그랜트(UG) DCI에 포함된 DAI를 나타낸다. 즉 UL DAI는 PUSCH를 스케줄링 하는 PDCCH에 포함된다. 구체적으로, 단말은 UL DAI 값과, 해당 CC의 전송 모드 및 번들링 여부를 고려하여 각 DL CC를 위한 CC 별 ACK/NACK 페이로드(다른 말로, ACK/NACK 파트)의 사이즈를 결정할 수 있다. 또한, 단말은 각 DL CC에서 수신된 DL DAI 값(들)을 이용하여 CC 별 ACK/NACK 페이로드 내에서 각 ACK/NACK의 위치를 결정할 수 있다. DL DAI는 DL 그랜트(DG) DCI에 포함된 DAI를 나타낸다. 즉 UL DAI는 PDSCH를 스케줄링 하는 PDCCH에 포함되거나, DL SPS 해제를 지시하는 PDCCH에 포함된다.
구체적으로, c-번째 DL CC (혹은 서빙 셀)을 위한 HARQ-ACK 피드백 비트를
Figure PCTKR2016010169-appb-I000003
라고 정의한다고 가정한다(c≥0).
Figure PCTKR2016010169-appb-I000004
는 c-번째 DL CC를 위한 HARQ-ACK 페이로드의 비트 수 (즉, 사이즈)를 나타낸다. c-번째 DL CC에 대해, 단일 전송블록 전송을 지원하는 전송 모드가 설정되거나 공간 번들링이 적용되는 경우,
Figure PCTKR2016010169-appb-I000005
로 주어질 수 있다. 반면, c-번째 DL CC에 대해, 복수(예, 2)의 전송블록 전송을 지원하는 전송 모드가 설정되고 공간 번들링이 적용되지 않는 경우,
Figure PCTKR2016010169-appb-I000006
로 주어질 수 있다.
Figure PCTKR2016010169-appb-I000007
는 c-번째 DL CC에서 ACK/NACK 피드백이 필요한 DL 서브프레임의 개수(즉, maxPDCCHperCC)를 나타낸다. PDCCH에 의해 스케줄링 된 PUSCH를 통해 HARQ-ACK이 전송되는 경우, maxPDCCHperCC는 UL-DAI 필드의 값에 의해 지시된다. 본 예는 기지국이 maxPDCCHperCC 값 결정시 SPS PDSCH까지 고려하는 경우를 예시한다(즉, maxPDCCHperCC 값=3). 반면, PUCCH 또는 SPS PUSCH를 통해 HARQ-ACK이 전송되는 경우, maxPDCCHperCC=M으로 주어진다.
c-번째 DL CC에 대해, 단일 전송블록 전송을 지원하는 전송 모드가 설정되거나 공간 번들링이 적용되는 경우, CC별 HARA-ACK 페이로드 내에서 각 ACK/NACK의 위치는
Figure PCTKR2016010169-appb-I000008
로 주어진다. DAI(k)는 DL 서브프레임 n-k에서 검출된 PDCCH의 DL DAI (DAI-c) 값을 나타낸다. 반면, c-번째 DL CC에 대해, 복수(예, 2)의 전송블록 전송을 지원하는 전송 모드가 설정되고 공간 번들링이 적용되지 않는 경우, CC 별 HARA-ACK 페이로드 내에서 각 ACK/NACK의 위치는
Figure PCTKR2016010169-appb-I000009
Figure PCTKR2016010169-appb-I000010
로 주어진다.
Figure PCTKR2016010169-appb-I000011
는 코드워드 0을 위한 HARQ-ACK을 나타내고,
Figure PCTKR2016010169-appb-I000012
는 코드워드 1을 위한 HARQ-ACK을 나타낸다.
한편, SPS PDSCH가 존재하는 경우, SPS PDSCH에 대한 HARQ-ACK의 위치는 해당 CC를 위한 HARQ-ACK 페이로드의
Figure PCTKR2016010169-appb-I000013
에 위치한다. SPS PDSCH는 존재하는 CC는 CC는 DL PCC로 한정될 수 있다.
이후, 단말은 복수의 CC 별 HARQ-ACK 페이로드 (즉, 각 CC를 위한 HARQ-ACK 파트)를 셀 인덱스에 따라 순차적으로, 바람직하게는 오름차순으로 연접한다. 연접에 의해 구성된 전체 HARQ-ACK 페이로드는 물리 채널 전송을 위한 신호 처리(예, 채널 코딩, 변조, 스크램블 등)을 거친 뒤 PUCCH 또는 PUSCH를 통해 전송될 수 있다.
실시예 : eCA (enhanced CA)에서의 ACK / NACK (A/N) 전송
도 15를 참조하여 설명한 바와 같이, TDD 기반의 기존 CA 시스템에서는 하나의 UL SF를 통해 복수 셀에서의 DL 데이타 수신에 대한 복수 HARQ-ACK 피드백이 전송될 수 있다. 또한, 각 셀에 대응되는 HARQ-ACK 피드백은 해당 셀 내 특정 DL SF 집합(이하, 번들링 윈도우)에서의 DL 데이타 수신에 대한 복수의 HARQ-ACK(A/N)으로 구성될 수 있다. 또한, 각 셀을 스케줄링 하는 DL 그랜트(DG) DCI에는 대응되는 DL 데이타가 해당 셀의 번들링 윈도우 내에서 몇 번째로 스케줄링 된 것인지를 지시하는 카운터 값이 DAI(즉, DL DAI)로 전송될 수 있으며, UL 그랜트(UG) DCI에도 기지국으로부터 선택된 특정 값이 DAI(즉, UL DAI)로 전송될 수 있다. 이에 따라, 단말은 PUCCH/PUSCH 상의 (셀 별) A/N 페이로드를 구성할 때에 DL DAI 값의 순서대로 A/N 비트를 배치할 수 있다. 특히, PUSCH 상의 A/N 전송에 대해서는 (UL DAI를 DL DAI의 최대 값으로 간주, 각 셀 별로) UL DAI 이하의 DL DAI 값에 대해서만 페이로드를 구성하는 방식으로 A/N 피드백 사이즈를 줄일 수 있다.
한편, 차기 시스템에서는 기존보다 많은 수(예, 32)의 셀에 대한 CA를 고려하고 있다. 이 경우, 하나의 UL SF에 설정되는 A/N 피드백 사이즈는 CA된 셀 개수에 비례하여 매우 커질 수 있다. 한편, 많은 셀에 대해 CA가 설정된 단말이라 하더라도 매 SF마다 CA된 모든 셀에 대해 DL 스케줄링이 수행되지는 않을 수 있다. 다시 말해, DL 트래픽이 많지 않을 경우에는 CA된 셀 중 특정 일부에 대해서만 DL 스케줄링이 수행될 수 있다. 따라서, 스케줄링 되지 않은 셀에 대응되는 A/N에 대한 구성/전송을 가급적 생략함으로써 전체 A/N 피드백 사이즈를 줄이는 것이, A/N 피드백 전송 성능 및 UCI 전송 자원 오버헤드 등의 측면에서 효율적일 수 있다.
이하, 하나의 단말에게 복수의 셀이 병합된 경우에 상향링크 제어 정보, 바람직하게는 ACK/NACK(즉, HARQ-ACK)를 효율적으로 전송하는 방안을 설명한다.
설명의 편의상, 셀이 non-MIMO 모드로 설정된 경우, 해당 셀의 서브프레임 k에서 최대 한 개의 전송블록(Transport Block, TB)(전송블록은 코드워드와 등가이다)이 전송될 수 있다고 가정한다. 셀이 MIMO 모드로 설정된 경우, 해당 셀의 SF #k에서 최대 m개(예, 2개)의 전송블록(혹은 코드워드)이 전송될 수 있다고 가정한다. 셀이 MIMO 모드로 설정되었는지 여부는 상위 계층에 의해 설정된 전송 모드를 이용하여 알 수 있다. 해당 셀에 대한 ACK/NACK(즉, ACK/NACK 비트, HARQ-ARQ 비트)의 개수는 실제 전송된 전송블록(혹은 코드워드)의 개수와 관계없이, 해당 셀에 대해 설정된 전송 모드에 따라 1개(non-MIMO) 또는 m개(MIMO)가 된다고 가정한다.
먼저, 본 명세서에서 사용되는 용어에 대해 정리한다.
● HARQ-ACK: 하향링크 전송(예, PDSCH 혹은 DL SPS release PDCCH)에 대한 수신응답결과, 즉, ACK/NACK/DTX 응답(간단히, ACK/NACK 응답)을 나타낸다. ACK/NACK/DTX 응답은 ACK, NACK, DTX 또는 NACK/DTX를 의미한다. 특정 셀에 대한 HARQ-ACK 혹은 특정 셀의 HARQ-ACK은 해당 셀과 연관된(예, 해당 셀에 스케줄링된) 하향링크 신호(예, PDSCH)에 대한 ACK/NACK 응답을 나타낸다. PDSCH는 전송블록 혹은 코드워드로 대체될 수 있다. (i) SPS PDSCH, (ii) PDCCH (DG DCI)에 의해 스케줄링 되는 PDSCH (이하, 보통 PDSCH, 논-SPS PDSCH), (iii) DL SPS 해제 PDCCH (DG DCI)에 대해 HARQ-ACK이 피드백 된다. SPS PDSCH는 대응되는 PDCCH (DG DCI)가 수반되지 않는다.
● DL SPS 해제 PDCCH: DL SPS 해제를 지시하는 PDCCH를 의미한다.
● SPS PDSCH: SPS에 의해 반-정적으로 설정된 자원을 이용하여 DL 전송되는 PDSCH를 의미한다. SPS PDSCH는 대응되는 DL 그랜트 PDCCH (DG DCI)가 없다. 본 명세서에서 SPS PDSCH는 PDSCH w/o PDCCH, SPS 기반 PDSCH와 혼용된다.
● SPS PUSCH: SPS에 의해 반-정적으로 설정된 자원을 이용하여 UL 전송되는 PUSCH를 의미한다. SPS PUSCH는 대응되는 UL 그랜트 PDCCH (UG DCI)가 없다. 본 명세서에서 SPS PUSCH는 PUSCH w/o PDCCH와 혼용된다.
● ARI(ACK/NACK Resource Indicator): PUCCH 자원을 지시하기 위한 용도로 사용된다. 일 예로, ARI는 (상위 계층에 의해 구성된) 특정 PUCCH 자원 (그룹)에 대한 자원 변형 값(예, 오프셋)을 알려주는 용도로 사용될 수 있다. 다른 예로, ARI는 (상위 계층에 의해 구성된) PUCCH 자원(그룹) 세트 내에서 특정 PUCCH 자원 (그룹) 인덱스를 알려주는 용도로 사용될 수 있다. ARI는 SCell 상의 PDSCH에 대응하는 PDCCH의 TPC(Transmit Power Control) 필드에 포함될 수 있다. PUCCH 전력 제어는 PCell을 스케줄링 하는 PDCCH (즉, PCC 상의 PDSCH에 대응하는 PDCCH) 내의 TPC 필드를 통해 수행된다. 또한, ARI는 DAI(Downlink Assignment Index) 초기 값을 가지면서 특정 셀(예, PCell)을 스케줄링 하는 PDCCH를 제외하고 남은 PDCCH의 TPC 필드에 포함될 수 있다. ARI는 HARQ-ACK 자원 지시 값과 혼용된다.
● DAI(Downlink Assignment Index): PDCCH를 통해 전송되는 DCI에 포함된다. DAI는 PDCCH의 순서 값 또는 카운터 값을 나타낼 수 있다. 기존 LTE/LTE-A에서 TDD 동작을 위해 사용된다. 편의상, DL 그랜트 PDCCH의 DAI는 DL DAI라고 지칭하고, UG PDCCH 내의 DAI의 UL DAI라고 지칭한다.
● t-DAI: 각 셀 별로 번들링 윈도우 내에서의 시간 축 (즉, SF 도메인) 상의 DL 스케줄링 정보를 시그널링 하는 DAI를 나타낸다. 기존의 DL DAI에 해당한다(도 15의 DAI-c 참조). 본 발명에서 t-DAI는 기존과 다른 정보를 시그널링 하도록 변형될 수 있다.
● (A/N) 번들링 윈도우: 단말은 번들링 윈도우 내의 DL 데이타 수신에 대한 HARQ-ACK 피드백을 UL SF를 통해 전송한다. HARQ-ACK 피드백이 SF #n에서 전송되는 경우, 번들링 윈도우는 SF #n-k로 정의된다. FDD에서 k=4이고, TDD에서 k는 표 5의 DASI(K:{k0,k1,…kM -1})에 의해 정의된다. 번들링 윈도우는 셀 별로 정의될 수 있다.
● 셀 #A를 스케줄링 하는 PDCCH (DG DCI), 셀 #A 스케줄링 PDCCH (DG DCI): 셀 #A 상의 PDSCH를 스케줄링 하는 PDCCH (DG DCI)를 나타낸다. 즉, CC #A 상의 PDSCH에 대응하는 PDCCH (DG DCI)를 나타낸다. 또는, CC #A 상에서 전송되는 DL SPS 해제 PDCCH (DG DCI)를 나타낸다.
● 셀 #A에 대한 스케줄링, 셀 #A 스케줄링: 셀 #A 상의 PDSCH 또는 DL SPS 해제 PDCCH 전송을 의미한다. 또는, 셀 #A 상에서 PDSCH 또는 DL SPS 해제 PDCCH를 전송하는 것과 관련된 동작이나 과정을 의미할 수 있다. 예를 들어, 셀 #A 상의 PDSCH 전송을 위해, 해당 PDSCH를 스케줄링 하는 PDCCH를 전송하는 것을 의미할 수 있다.
● CSS 기반 스케줄링: (i) PDSCH에 대응되는 PDCCH 또는 (ii) DL SPS 해제 PDCCH가 CSS에서 전송되는 것을 의미한다. CSS 기반 PDSCH는 CSS에서 전송되는 PDCCH가 스케줄링 하는 PDSCH를 의미한다.
● SPS 기반 스케줄링: 문맥에 따라, DL SPS 해제 PDCCH 전송을 의미하거나, SPS PDSCH 전송 또는 SPS PUSCH 전송을 의미할 수 있다.
● LCell 및 UCell: LCell은 면허 밴드에서 동작하는 셀을 의미하고, UCell 비면허 밴드에서 동작하는 셀을 의미한다. UCell에서는 캐리어 센싱에 기반하여 통신이 수행된다.
이하, CA 상황에서 DL/UL 그랜트 DCI 내의 DAI 시그널링을 기반으로 A/N 피드백을 효율적으로 수행하는 방법(예, A/N 피드백 사이즈 감소)에 대하여 제안한다. 구체적으로, (DL/UL 그랜트 DCI를 통한) DAI 시그널링 방식 및 이에 기반한 (PUCCH/PUSCH 상의) A/N 페이로드 구성 방법 등에 대하여 제안한다. 여기서, DAI는 대응되는 DL 그랜트 DCI가 스케줄링 하는 셀이 특정 기준(예, 셀 인덱스 순서)으로 전체 (피스케줄링) 셀들 중에서 몇 번째로 스케줄링된 것인지를 지시하는 (스케줄링) 카운터 값을 시그널링 할 수 있다(이하, counter-DAI). TDD 상황에서 counter-DAI는 셀(즉, CC) 도메인과 SF 도메인을 결합하여 셀 first 방식으로 기산된 (스케줄링) 카운터 값을 시그널링 할 수 있다. 예를 들어, counter-DAI는 (DG DCI에 의해) 스케줄링 된 셀이 전체 셀들 중에서 몇 번째로 스케줄링 된 것인지, 즉 스케줄링 순서 값을 셀/SF 단위로 나타낼 수 있다. 셀 first 방식에서 셀/SF 단위의 스케줄링 순서는 번들링 윈도우 내에서 셀(즉, CC) 인덱스가 증가한 뒤, SF 인덱스를 증가하는 순으로 기산될 수 있다. 한편, 본 발명에서 TDD (또는 FDD)라 함은 PCell 혹은 A/N 전송을 수행하는 셀이 TDD (또는 FDD) 방식으로 동작하는 경우를 포함하며, DL SF는 TDD에 설정되는 S SF를 포함할 수 있다.
■ 방식 1: Last (scheduled) DAI group (last-DG) indication
counter-DAI에 추가적으로, DL 그랜트 DCI로부터의 스케줄링이 마지막 (피스케줄링) DAI 그룹에 해당하는지 여부를 해당 DL 그랜트 DCI를 통해 지시하는 방식을 제안한다. 설명에 앞서, counter-DAI는 DL 그랜트 DCI 내의 제한된 비트 수(예, 2-비트)로 구성된 필드(즉, DAI 필드)를 통해 시그널링 될 수 있으며, 이에 따라 (스케줄링) 카운터 값들은 적절한 모듈로 연산을 통해 하나의 DAI 비트 조합(즉, DAI 상태 또는 DAI 값)에 중복 매핑될 수 있다. 일 예로, DAI 필드가 2-비트로 구성된다고 가정할 경우 모듈로-4 연산을 통해 DAI = 1 혹은 DAI 상태 00에는 카운터 값 1/5/9가, DAI = 2 혹은 상태 01에는 카운터 = 2/6/10이, DAI = 3 혹은 상태 10에는 카운터 = 3/7/11이, DAI = 4 혹은 상태 11에는 카운터 = 0/4/8이 중복 매핑될 수 있다.
여기서, DAI 그룹은 카운터상으로 연속이면서 각 DAI 상태를 한번씩만 포함하는 DAI 상태 시퀀스를 의미할 수 있다. 예를 들어, 최소 DAI(예, 상태 00)부터 최대 DAI (예, 상태 11)까지 자동으로 DAI 그룹으로 설정되거나, 어느 DAI (상태)부터 어느 DAI (상태)까지 DAI 그룹으로 구성할지를 기지국이 설정할 수 있다. 구체적으로, counter-DAI 값 기준으로 1/2/3/4 (상태 기준으로 00/01/10/11)에 해당하는 시퀀스가 DAI 그룹으로 (자동) 설정되거나, counter-DAI 값 기준으로 3/4/1/2 (상태 기준으로 10/11/00/01)에 해당하는 시퀀스를 DAI 그룹으로 (기지국이) 설정할 수 있다.
위와 같은 조건에서, DL 그랜트 DCI로부터의 스케줄링이 (스케줄링) 카운터상으로 마지막 (피스케줄링) DAI 그룹에 해당되는지(이하, last-DG ON 상태), 해당되지 않는지(이하, last-DG OFF 상태)의 여부가 해당 DL 그랜트 DCI를 통해 (예, 1-비트 형태로) 지시될 수 있다. 일 예로, 1부터 12까지의 카운터 값에 대응되는 스케줄링이 수행되는 상황에서 상기 자동 설정 예시와 동일한 DAI 그룹을 가정할 경우, 제안 방법에 따르면 카운터 = 1/2/3/4에 대응되는 최초 DAI 그룹을 포함하는 4개의 DL 그랜트 DCI와 카운터 = 5/6/7/8에 대응되는 두 번째 DAI 그룹을 포함하는 4개의 DL 그랜트 DCI는 last-DG OFF(예, 비트 0)를 지시하는 반면, 카운터 = 9/10/11/12에 대응되는 마지막 DAI 그룹을 포함하는 4개의 DL 그랜트 DCI는 last-DG ON(예, 비트 1)을 지시할 수 있다.
한편, 기지국의 스케줄링 상황에 따라 특정 시점에서 마지막 (피스케줄링) DAI 그룹이 원래 설정된 DAI 그룹에 대응되는 DAI 상태 시퀀스 전체(예, 상태 기준으로 00/01/10/11 또는 10/11/00/01)가 아닌 (최초) 일부만 전송된 형태로 구성되는 경우가 생길 수 있다. 또는, 기지국 관점에서는 마지막 (피스케줄링) DAI 그룹에 원래 설정된 DAI 상태 시퀀스 전체가 전송된 반면, 단말 관점에서는 DL 그랜트 DCI 검출 실패로 인해 해당 DAI 상태 시퀀스 중 (최초) 일부만 수신된 형태로 나타날 수 있다. 이 경우, A/N 페이로드 길이/구성상 단말과 기지국간의 불일치를 피하기 위하여 단말은 마지막 (피스케줄링) DAI 그룹에 포함되지 않은 나머지 DAI 상태 시퀀스에 대응되는 카운터 값까지에 대해 A/N 비트를 (예, NACK 혹은 DTX 상태로) 구성하여 전송할 수 있다. 여기서, "나머지 DAI 상태 시퀀스에 대응되는 카운터 값"은 주어진 PUCCH 포맷으로 전송 가능한 최대 A/N 페이로드 사이즈 혹은 단말에게 설정된 최대 A/N 페이로드 사이즈에 대응되는 가장 높은 A/N 비트 인덱스까지로 제한될 수 있다. 예를 들어, counter-DAI 값 기준으로 1/2/3/4 (상태 기준으로 00/01/10/11)에 해당하는 시퀀스가 DAI 그룹으로 설정되고, 단말이 마지막 (피스케줄링) DAI 그룹에서 counter-DAI 값 기준으로 1/2에 해당하는 DL 그랜트 DCI만을 검출할 수 있다. 이 경우, "나머지 DAI 상태 시퀀스에 대응되는 카운터 값"은 3/4이고, 최대 A/N 페이로드 사이즈 내에서 이들에 대응되는 A/N 비트를 NACK 또는 DTX로 구성할 수 있다.
한편, 기지국에서는 마지막 (피스케줄링) DAI 그룹을 지시하는 DL 그랜트 DCI(들)(즉, last-DG ON)을 전송했음에도 불구하고, 단말에서 해당 DL 그랜트 DCI의 검출에 실패하여 마지막 (피스케줄링) DAI 그룹에 해당되지 않는 DL 그랜트 DCI(즉, last-DG OFF)만 존재하는 경우가 발생할 수 있다. 이 경우, A/N 페이로드 길이/구성상 단말과 기지국간의 불일치를 피하기 위해 단말은 last-DG OFF로 지시된 마지막 DAI 그룹에 추가적으로 바로 다음 DAI 그룹에 대응되는 카운터 값까지에 대해 A/N 비트를 (예, NACK 혹은 DTX 상태로) 구성하여 전송할 수 있다. 단말이 (카운터상으로 연속된) 4개의 DL 그랜트 DCI 검출에 실패하는 경우는 없다고 간주/가정할 경우 마지막으로 검출된 DAI 그룹(last-DG OFF)의 다음 DAI 그룹을 last-DG ON로 가정할 수 있기 때문이다. 여기서, "바로 다음 DAI 그룹에 대응되는 카운터 값"은 주어진 PUCCH 포맷으로 전송 가능한 최대 A/N 페이로드 사이즈 혹은 단말에게 설정된 최대 A/N 페이로드 사이즈에 대응되는 가장 높은 A/N 비트 인덱스까지로 제한될 수 있다.
본 발명에서 counter-DAI는 몇 번째로 스케줄링된 셀/SF인지를 지시하는 셀/SF-레벨의 (스케줄링) 카운터가 아닌, 셀 도메인 (및/또는 SF 도메인)상에서 몇 번째로 스케줄링된 TB인지를 지시하는 TB-레벨의 (스케줄링) 카운터를 시그널링 할 수 있다. 이 경우, 앞의 제안과 동일한 원리를 적용하여 TB-레벨의 DAI 그룹 설정 및 마지막 (피스케줄링) DAI 그룹 지시 기반의 A/N 구성/전송 동작이 수행될 수 있다. 또한, 특정 기준(예, 최대 전송 가능 TB 수가 동일, 혹은 캐리어 타입(예, LCell 또는 UCell)이 동일)으로 그룹핑한 CG별로 DAI를 독립적으로 시그널링 하는 경우, 제안한 last DAI 그룹 지시 기반 A/N 구성/전송 방식이 CG별로 적용될 수 있다.
■ 방식 2: Last scheduling (grant) order indication
counter-DAI에 추가적으로, DL 그랜트 DCI에 대응되는 스케줄링이 마지막 스케줄링으로부터 몇 번째에 해당하는지 (혹은 등가적으로, DL 그랜트 DCI에 대응되는 스케줄링 포함 또는 이후 몇 개의 스케줄링이 남아있는지)를 해당 DL 그랜트 DCI를 통해 지시하는 방식을 제안한다. 일 예로, DL 그랜트 DCI 내의 2-비트(4개 상태)를 통해 해당 DCI에 대응되는 스케줄링이, 상태-1) 마지막 스케줄링인지 (혹은 남은 스케줄링이 1개인지), 상태-2) 마지막에서 2번째 스케줄링인지 (혹은 남은 스케줄링이 2개인지), 상태-3) 마지막에서 3번째 스케줄링인지 (혹은 남은 스케줄링이 3개인지), 상태-4) 마지막에서 3번째 스케줄링 그 이전의 스케줄링인지 (혹은 남은 스케줄링이 3개를 초과하는지)가 지시될 수 있다(이하, last-order 지시자).
일 예로, 1부터 10까지의 카운터 값에 대응되는 총 10개의 스케줄링이 수행되는 상황에서 2-비트 last-order 지시자를 적용할 경우, 카운터 = 1/2/3/4/5/6/7에 대응되는 7개의 DL 그랜트 DCI는 상태-4를 지시하는 반면, 카운터 = 8, 9, 10에 대응되는 DL 그랜트 DCI는 각각 상태-3, 상태-2, 상태-1을 순차적으로 지시할 수 있다. 다른 예로, 1부터 2까지의 카운터 값에 대응되는 총 2개의 스케줄링만이 수행되는 경우, 카운터 = 1, 2에 대응되는 DL 그랜트 DCI는 각각 상태-2, 상태-1을 순차적으로 지시할 수 있다.
last-order 시그널링을 기반으로 하여, 단말은 (카운터상으로 연속된) 4개의 DL 그랜트 DCI 검출에 실패하는 경우는 없다고 간주/가정한 상태에서 A/N 페이로드 (사이즈)를 결정/구성할 수 있다. 만약 상태-4로 지시된 DL 그랜트 DCI만을 수신한 경우, 단말은 (카운터 = 1부터) 수신된 마지막 카운터 값 바로 다음 (상태-4 이후 나머지 상태-3, 상태-2, 상태-1의 3개 상태에 상응하는) 3개의 카운터 값 (이중 최대값)까지에 대해 A/N 비트를 (예, NACK 혹은 DTX 상태로) 구성하여 전송할 수 있다. 또한, 상태 순서를 상태-4, 상태-3, 상태-2, 상태-1의 순서로 고려할 때, 상태-4가 아닌 다른 상태로 지시된 DL 그랜트 DCI만을 수신한 경우, 단말은 (카운터 = 1부터) 수신된 마지막 상태 이후의 나머지 상태에 대응되는 카운터 값 중 최대값까지에 대해 A/N 비트를 (예, NACK 혹은 DTX 상태로) 구성하여 전송할 수 있다. 여기서, "나머지 상태에 대응되는 카운터 값"은 주어진 PUCCH 포맷으로 전송 가능한 최대 A/N 페이로드 사이즈 혹은 단말에게 설정된 최대 A/N 페이로드 사이즈에 대응되는 가장 높은 A/N 비트 인덱스까지로 제한될 수 있다.
일 예로, 카운터 = 2이면서 상태-1로 지시된 DL 그랜트 DCI만을 수신한 경우, 단말은 해당 상태 이후의 나머지 상태가 없으므로 (카운터 = 1부터) 해당 카운터 = 2까지에 대해서만 A/N 비트를 구성/전송할 수 있다. 다른 예로, 카운터 = 1이면서 상태-3인 DL 그랜트 DCI만을 수신한 경우, 단말은 해당 상태 이후의 나머지 상태-2와 상태-1에 대응되는 카운터 값 중 최대값, 즉 카운터 = 3까지에 대해 A/N 비트를 구성/전송할 수 있다. 또 다른 일 예로, 카운터 = 3이고 상태-3인 DCI와 카운터 = 4이고 상태-2인 DCI를 수신한 경우, 단말은 수신된 마지막 상태-2 이후의 나머지 상태-1에 대응되는 카운터 = 5까지에 대해 A/N 비트를 구성/전송할 수 있다.
본 발명에서 counter-DAI는 몇 번째로 스케줄링된 셀/SF인지를 지시하는 셀/SF-레벨의 (스케줄링) 카운터가 아닌, 셀 도메인 (및/또는 SF 도메인)상에서 몇 번째로 스케줄링된 TB인지를 지시하는 TB-레벨의 (스케줄링) 카운터를 시그널링 할 수 있다. 이 경우, 앞의 제안과 동일한 원리를 적용하여 TB-레벨의 last-order 지시 기반의 A/N 구성/전송 동작이 수행될 수 있다. 또한, 특정 기준(예, 최대 전송 가능 TB 수가 동일, 혹은 캐리어 타입(예, LCell 또는 UCell)이 동일)으로 그룹핑한 CG별로 DAI를 독립적으로 시그널링 하는 경우, 제안한 last scheduling order 지시 기반 A/N 구성/전송 방식이 CG별로 적용될 수 있다.
■ 방식 3: Total scheduling (grant) number indication
counter-DAI에 추가적으로, (TDD 상황에서) DL 그랜트 DCI에 대응되는 스케줄링을 포함하여 (동일한 A/N 전송 타이밍에 대응되는 DL SF 그룹, 즉 번들링 윈도우 내) 특정 SF 구간 동안 총 몇 개의 스케줄링이 수행되는지 (혹은 등가적으로, 해당 SF 구간에서 마지막 (스케줄링) 카운터 값 (이에 대응되는 DAI 값)이 무엇인지)를 해당 DL 그랜트 DCI를 통해 지시하는 방식을 제안한다(이하, total-DAI). 여기서, total-DAI 값 산출의 대상이 되는 SF 구간에는 적어도 (번들링 윈도우 내) 최초 SF부터 DL 그랜트 DCI 전송 SF까지의 구간이 포함될 수 있다. 또한, DCI 전송 SF 바로 다음 SF 혹은 이를 포함한 복수의 연속적인 SF 구간(이하, expected SF)이 추가적으로 더 포함될 수 있다. 또한, DCI 전송 SF에서의 total-DAI 산출 대상 SF 구간이 expected SF를 추가로 포함하는 경우, expected SF에서의 DCI 전송을 위한 total-DAI도 total-DAI 산출 대상 SF 구간과 동일한 구간을 대상으로 산출될 수 있다.
일 예로, SF #1, #2, #3, #4를 통해 각각 7개, 6개, 5개, 1개의 스케줄링이 수행되는 상황을 가정할 경우, 제안 방법에 따라 SF #1에서의 total-DAI를 위한 SF 구간은 SF #1 하나로 (따라서 total-DAI = 7로), SF #2를 위한 SF 구간은 SF #1부터 #2까지로 (따라서 total-DAI = 13로) 각각 설정되는 반면, SF #3에서의 total-DAI를 위한 SF 구간은 expected SF #4를 포함한 SF #1부터 SF #4까지로 (따라서 total-DAI = 19로), SF #4의 경우 SF #3에서와 동일한 SF 구간인 SF #1부터 SF #4까지로 (따라서 total-DAI = 19로) 각각 설정될 수 있다. 다른 예로, SF #1, #2, #3를 통해 각각 2개, 3개, 7개의 스케줄링이 수행되는 경우, SF #1에서의 total-DAI를 위한 SF 구간은 expected SF #2를 포함한 SF #1부터 SF #2까지로 (따라서 total-DAI = 5로), SF #2의 경우 SF #1에서와 동일한 SF 구간인 SF #1부터 SF #2까지로 (따라서 total-DAI = 5로) 각각 설정되는 반면, SF #3을 위한 SF 구간은 SF #1부터 #3까지로 (따라서 total-DAI = 12로) 설정될 수 있다.
또 다른 방법으로, (전체 N개 SF로 구성된 번들링 윈도우를 가정했을 때에) 최초 SF부터 N-1번째 SF까지에 대응되는 DL 그랜트 DCI에는 최초 SF부터 해당 DCI 전송 SF 바로 다음 SF까지의 스케줄링 개수의 총합이 total-DAI로 시그널링 될 수 있다. 한편, 마지막 N번째 SF에 대응되는 DL 그랜트 DCI에는 최초 SF부터 해당 DCI 전송 SF까지의 스케줄링 개수의 총합이 total-DAI로 시그널링 될 수 있다.
본 발명에서 counter-DAI는 몇 번째로 스케줄링된 셀/SF인지를 지시하는 셀/SF-레벨의 (스케줄링) 카운터가 아닌, 셀 도메인 (및/또는 SF 도메인)상에서 몇 번째로 스케줄링된 TB인지를 지시하는 TB-레벨의 (스케줄링) 카운터를 시그널링 할 수 있다. 이 경우, 앞의 제안과 동일한 원리를 적용하여 TB-레벨의 total-DAI 지시 기반의 A/N 구성/전송 동작이 수행될 수 있다. 또한, 특정 기준(예, 최대 전송 가능 TB 수가 동일, 혹은 캐리어 타입(예, LCell 또는 UCell)이 동일)으로 그룹핑한 CG별로 DAI를 독립적으로 시그널링 하는 경우, 제안한 total scheduling number 지시 기반 A/N 구성/전송 방식이 CG별로 적용될 수 있다.
한편, counter-DAI (및/또는, total-DAI 또는 last-order 지시자 또는 last-DG 지시자를 포함하여 스케줄링 개수의 총합, 마지막 스케줄링 카운터 값 혹은 이를 유추할 수 있는 정보(이하, S-info 지시자로 통칭))를 기반으로 하는 A/N 페이로드 구성/전송 방식의 경우, 채널 코딩 기법의 특성 및 성능 등을 고려했을 때 주어진 PUCCH 포맷상의 최소 페이로드 사이즈(즉, 최소 사이즈)에 제한 (하한)을 두는 것이 필요할 수 있다. 이에 따라, counter-DAI (및/또는 S-info 지시자)를 기반으로 결정된 실제 페이로드 사이즈(즉, 실제 A/N 사이즈)와 상기 최소 사이즈를 비교하여 두 사이즈 중 큰 사이즈에 맞추어 A/N 페이로드를 구성 및 전송하는 것을 고려할 수 있다(예, max(실제 A/N 사이즈, 최소 사이즈)). 이때, 최소 사이즈 > 실제 A/N 사이즈인 경우에는 A/N 페이로드에서 (최소 사이즈 - 실제 A/N 사이즈)에 해당하는 나머지 A/N 비트를 NACK 혹은 DTX로 구성/매핑할 수 있다.
추가적으로, (카운터상으로 연속된) L개의 DL 그랜트 DCI 검출에 실패하는 확률이 매우 낮아 무시할 수 있고, 단말 또한 그러한 경우는 발생되지 않는다고 간주/가정하여 동작하는 경우, 다음과 같은 방법을 고려할 수 있다. 먼저, 1부터 L까지의 카운터 값에 대응되는 DL 그랜트 DCI를 통해서는 (counter-DAI를 포함하여) ARI 또는 TPC 커맨드가 (해당 DCI 내 TPC 필드에 포함되어) 시그널링 될 수 있으며, 해당 DCI를 통해서는 S-info 지시자가 시그널링 되지 않을 수 있다. 다음, (L + 1)부터의 카운터 값에 대응되는 DL 그랜트 DCI를 통해서는 (counter-DAI를 포함하여) S-info 지시자가 (DCI 내 TPC 필드에 포함되어) 시그널링 될 수 있으며, 해당 DCI를 통해서는 ARI 또는 TPC 커맨드가 시그널링 되지 않을 수 있다. 이 경우, 카운터 = 1 ~ L에 대응되는 DCI에는 S-info 지시자가 없고, 카운터 = (L + 1) ~ K (여기서 L < K < 최대 카운터 값, 예를 들어 K = 2L - 1 혹은 K = 2L)에 대응되는 DCI 검출에 모두 실패할 경우를 고려하여, (카운터 = 1부터) 카운터 = K까지를 최소 사이즈로 설정/적용할 수 있다(예, L = 4로 설정/적용될 수 있음).
보다 구체적으로, Case #1) PCell을 제외한 나머지 SCell에 대해서만 counter-DAI가 시그널링/적용되는 경우, PCell을 스케줄링 하는 DL 그랜트 DCI에는 TPC 커맨드가, 카운터 = 1 ~ L까지에 대응되는 DCI에는 ARI가, 카운터 = (L + 1) 포함 나머지에 대응되는 DCI에는 S-info 지시자가 시그널링 될 수 있다. 이 경우, PCell에 대응되는 A/N을 포함하여 (카운터 = 1부터) 카운터 = K까지가 최소 사이즈로 설정될 수 있다. 또한, Case #2) PCell을 포함한 모든 셀에 대하여 counter-DAI가 시그널링/적용되는 경우, PCell을 스케줄링 하면서 카운터 = 1에 대응되는 DL 그랜트 DCI에는 TPC 커맨드가, SCell을 스케줄링 하면서 카운터 = 1에 대응되는 DCI 혹은 카운터 = 2부터 L까지에 대응되는 DCI에는 ARI가, 카운터 = (L + 1) 포함 나머지에 대응되는 DCI에는 S-info 지시자가 시그널링 될 수 있다. 이 경우, (카운터 = 1부터) 카운터 = K까지가 최소 사이즈로 설정될 수 있다.
다른 방법으로, 카운터 = 1 ~ M에 대응되는 DCI에는 ceiling [log2(M)] 혹은 ceiling [log2(M/2)]개의 비트로 표현되는 counter-DAI 값이 시그널링 될 수 있다. 나머지 카운터, 즉 카운터 = M+1 ~ N (최대 카운터 값)에 대응되는 DCI에는 ceiling [log2(N)] 혹은 ceiling [log2(N/2)]개의 비트로 표현되는 counter-DAI 값이 시그널링 될 수 있다. 여기서, N은 CA를 구성하는 전체 셀 (또는 SF) 수로 설정되거나, 특정 값(예, 32)으로 고정될 수 있다. ceiling []은 올림 함수를 나타낸다. 일 구현 예로, 카운터 = 1 ~ M에 대응되는 DCI의 경우 ARI 또는 TPC 커맨드가 TPC 필드를 통해 시그널링 되는 반면, 카운터 = M+1 ~ N에 대응되는 DCI의 경우에는 ARI 또는 TPC 커맨드가 시그널링 되지 않을 수 있다. 이에 따라, 카운터 = 1부터 M까지는 ceiling [log2(M)] 혹은 ceiling [log2(M/2)]개의 비트로 구성된 counter-DAI 필드를 통해 해당 카운터 값이 시그널링 되는 반면, 카운터 = M+1부터 N까지는 ceiling [log2(M)] 혹은 ceiling [log2(M/2)]개의 비트로 구성된 counter-DAI 필드와 TPC 필드의 조합을 통해 카운터 값이 시그널링 될 수 있다.
또 다른 방법으로, 하나의 카운터 값을 표현하는 비트 수 혹은 카운터 값의 시그널링을 위해 추가되는 counter-DAI 필드의 사이즈는, CA를 구성하는 전체 셀 (또는 SF) 수에 비례적으로 설정되거나, 기지국으로부터 직접 설정될 수 있다. 한편, CSS를 통해 전송되는 DL 그랜트 DCI에 대해서는 FDD의 경우에는 카운터 값에 대한 시그널링이 없고 TDD의 경우에는 기존 t-DAI 필드를 통해 카운터 값을 시그널링 하는 방법을 고려할 수 있다. 이때, USS를 통해 전송되는 DL 그랜트 DCI 내에 시그널링 되는 카운터 값을 표현하는 비트 수 혹은 counter-DAI 필드 사이즈(예, N-비트)가 기존 t-DAI 필드 사이즈(예, M-비트)보다 클 수 있다. 이 경우, CSS 기반의 DL 그랜트 DCI에 대응되는 카운터 값 결정 시, N-M개 비트에 해당하는 MSB(Most Significant Bit) 부분을 고정된 특정 값(예, 비트 0)으로 간주하고 이를 t-DAI 필드 내의 M-비트와 연접하여 해당 카운터 값을 결정할 수 있다.
도 16은 본 발명의 일 실시예에 따른 ACK/NACK 전송을 예시한다. 셀 1, 2, 3, 4의 4개 셀이 단말에게 CA 병합되었다고 가정하고, 번들링 윈도우는 SF #1~#3으로 구성되었다고 가정한다. 도 16을 참조하면, (Cell 1, SF #1), (Cell 2, SF #1), (Cell 4, SF #2), (Cell 1, SF #3), (Cell 3, SF #3)의 셀/SF 자원이 스케줄링 되고, 그 외의 셀/SF 자원은 스케줄링이 되지 않았다. 여기서, 스케줄링은 해당 셀/SF 자원에서 HARQ-ACK 피드백이 요구되는 DL 전송이 수행되는 것을 의미하며, HARQ-ACK 피드백이 요구되는 DL 전송은 PDSCH 및 SPS 해제 PDCCH를 포함한다. 예를 들어, (Cell 2, SF #1)에서 PDSCH 전송이 있을 수 있다. PDSCH를 스케줄링 하는 PDCCH는 스케줄링 방식에 따라 (Cell 2, SF #1)에서 전송되거나(셀프-스케줄링), (Cell X, SF #1)에서 전송될 수 있다(크로스-캐리어 스케줄링). Cell X는 셀 1의 스케줄링 셀을 의미한다. SPS PDSCH는 PDCCH가 수반되지 않으며, 도면은 PDCCH (DG DCI)에 대응되는 PDSCH (및 SPS 해제 PDCCH)가 스케줄링된 경우만을 예시한다. count-DAI(c-DAI)는 셀 first 방식으로 (스케줄링) 카운터 값을 지시하므로, (Cell 1, SF #1) => (Cell 2, SF #1) => (Cell 4, SF #2) => (Cell 1, SF #3) => (Cell 3, SF #3)의 순서로 1~5를 나타낸다.
또한, 각각의 셀/SF를 스케줄링 하는 PDCCH는 추가로 S-info 지시자(S-info)를 더 포함한다. 본 발명에 제안에 따라, S-info는 (방식 1) Last (scheduled) DAI group (last-DG) indication, (방식 2) Last scheduling (grant) order indication, (방식 3) Total scheduling (grant) number indication을 시그널링 할 수 있다. count-DAI/S-info 는 HARQ-ACK 전송 과정(HARQ-ACK 페이로드 구성, HARQ-ACK 비트 위치 결정, DTX 검출 등)에 사용된다. 예를 들어, HARQ-ACK 페이로드 내에서 HARQ-ACK 비트의 위치는 counter-DAI의 순서대로 결정되며, HARQ-ACK 페이로드의 사이즈는 S-info, 주어진 PUCCH 포맷으로 전송 가능한 최대 A/N 페이로드 사이즈 혹은 단말에게 설정된 최대 A/N 페이로드 사이즈, 주어진 PUCCH 포맷상의 최소 A/N 페이로드 사이즈 등을 고려하여 결정될 수 있다. 구체적으로, HARQ-ACK 페이로드는 실제 HARQ-ACK 비트와 0 이상의 논-실제 HARQ-ACK 비트를 포함할 수 있다. 여기서, 실제 HARQ-ACK 비트는 MSB부터 counter-DAI의 순서대로 배치되며, 논-실제 HARQ-ACK 비트의 사이즈는 S-info, 최대 A/N 페이로드 사이즈, 최소 A/N 페이로드 사이즈 등을 고려하여 결정될 수 있다.
HARQ-ACK을 PUCCH를 통해 전송하는 경우, PUCCH 전송 전력은 HARQ-ACK 비트의 개수에 비례하여 증가된다. 한편, 논-실제 HARQ-ACK 비트는 기지국과 단말간의 A/N 페이로드 사이즈에 대한 혼동을 방지하기 위해 부가되는 더미 정보이므로, 논-실제 HARQ-ACK 비트의 개수는 PUCCH 전송 전력 결정 과정에서 제외될 수 있다. 즉, 실제HARQ-ACK 비트의 개수만이 PUCCH 전송 전력 결정 과정에 반영될 수 있다. 이에 따라, HARQ-ACK 페이로드의 길이가 동일하더라도 실제HARQ-ACK 비트의 개수가 많은 경우에 더 많은 전송 전력이 PUCCH 전송에 사용될 수 있다.
도 17은 본 발명에 적용될 수 있는 기지국, 릴레이 및 단말을 예시한다.
도 17을 참조하면, 무선 통신 시스템은 기지국(BS, 110) 및 단말(UE, 120)을 포함한다. 무선 통신 시스템이 릴레이를 포함하는 경우, 기지국 또는 단말은 릴레이로 대체될 수 있다.
기지국(110)은 프로세서(112), 메모리(114) 및 무선 주파수(Radio Frequency: RF) 유닛(116)을 포함한다. 프로세서(112)는 본 발명에서 제안한 절차 및/또는 방법들을 구현하도록 구성될 수 있다. 메모리(114)는 프로세서(112)와 연결되고 프로세서(112)의 동작과 관련한 다양한 정보를 저장한다. RF 유닛(116)은 프로세서(112)와 연결되고 무선 신호를 송신 및/또는 수신한다. 단말(120)은 프로세서(122), 메모리(124) 및 무선 주파수 유닛(126)을 포함한다. 프로세서(122)는 본 발명에서 제안한 절차 및/또는 방법들을 구현하도록 구성될 수 있다. 메모리(124)는 프로세서(122)와 연결되고 프로세서(122)의 동작과 관련한 다양한 정보를 저장한다. RF 유닛(126)은 프로세서(122)와 연결되고 무선 신호를 송신 및/또는 수신한다.
이상에서 설명된 실시예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성하는 것도 가능하다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.
본 문서에서 본 발명의 실시예들은 주로 단말과 기지국 간의 신호 송수신 관계를 중심으로 설명되었다. 이러한 송수신 관계는 단말과 릴레이 또는 기지국과 릴레이간의 신호 송수신에도 동일/유사하게 확장된다. 본 문서에서 기지국에 의해 수행된다고 설명된 특정 동작은 경우에 따라서는 그 상위 노드(upper node)에 의해 수행될 수 있다. 즉, 기지국을 포함하는 복수의 네트워크 노드들(network nodes)로 이루어지는 네트워크에서 단말과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수행될 수 있음은 자명하다. 기지국은 고정국(fixed station), Node B, eNode B(eNB), 억세스 포인트(access point) 등의 용어에 의해 대체될 수 있다. 또한, 단말은 UE(User Equipment), MS(Mobile Station), MSS(Mobile Subscriber Station) 등의 용어로 대체될 수 있다.
본 발명에 따른 실시예는 다양한 수단, 예를 들어, 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다. 하드웨어에 의한 구현의 경우, 본 발명의 일 실시예는 하나 또는 그 이상의 ASICs(application specific integrated circuits), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays), 프로세서, 콘트롤러, 마이크로 콘트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 일 실시예는 이상에서 설명된 기능 또는 동작들을 수행하는 모듈, 절차, 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리 유닛에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리 유닛은 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.
본 발명은 본 발명의 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
본 발명은 무선 이동 통신 시스템의 단말기, 기지국, 또는 기타 다른 장비에 사용될 수 있다. 구체적으로, 본 발명은 상향링크 제어 정보를 전송하는 방법 및 이를 위한 장치에 적용될 수 있다.

Claims (10)

  1. CA(carrier aggregation) 무선 통신 시스템에서 단말이 HARQ-ACK(hybrid automatic repeat request)을 전송하는 방법에 있어서,
    DAI(downlink assignment index) 및 DAI 그룹 지시 정보를 갖는 PDCCH(physical downlink control channel)를 SF(subframe) #n-k 내에서 수신하는 단계;
    상기 DAI 및 상기 DAI 그룹 지시 정보를 이용하여 HARQ-ACK 페이로드를 구성하는 단계; 및
    상기 HARQ-ACK 페이로드를 SF #n에서 전송하는 단계를 포함하고,
    상기 DAI의 값은 SF #n-k에서 상기 제1 PDCCH과 관련된 셀/SF 단위의 스케줄링 순서 값을 나타내며, 상기 셀/SF 단위의 스케줄링 순서 값은 셀/SF 도메인에서 셀 우선 방식으로 계수되고,
    상기 DAI 그룹 지시 정보는 상기 PDCCH가 마지막 DAI 그룹에 해당하는지 여부를 나타내며, 하나의 DAI 그룹은 복수의 연속된 DAI 값으로 구성되고,
    각 셀에서 K:{k0,k1,…kM -1}는 아래와 같이 주어지는 방법:
    Figure PCTKR2016010169-appb-I000014
    .
  2. 제1 있어서,
    상기 DAI 값은 4개의 값이 순환 반복되며, 상기 하나의 DAI 그룹은 4개의 연속된 DAI 값으로 구성되는 방법.
  3. 제1 있어서,
    상기 SF #n-k에서 상기 마지막 DAI 그룹에 해당하는 PDCCH가 검출되지 않은 경우, 상기 HARQ-ACK 페이로드 상기 마지막 DAI 그룹에 해당하는 HARQ-ACK 응답을 더 포함하고, 상기 HARQ-ACK 응답은 NACK(Negative Acknowledgement) 또는 DTX(Discontinuous Transmission)으로 설정되는 방법.
  4. 제1항에 있어서,
    상기 PDCCH는 (i) PDSCH(physical downlink shared channel)를 스케줄링 하는 PDCCH 또는 (ii) SPS 해제(semi-persistent scheduling release)를 지시하는 PDCCH인 방법.
  5. 제4항에 있어서,
    상기 HARQ-ACK 페이로드는 상기 PDSCH에 대한 HARQ-ACK 응답 또는 상기 SPS 해제를 지시하는 PDCCH에 대한 HARQ-ACK 응답을 포함하는 방법.
  6. CA(carrier aggregation) 무선 통신 시스템에서 HARQ-ACK(hybrid automatic repeat request)을 전송하도록 구성된 단말에 있어서,
    무선 주파수(Radio Frequency, RF) 유닛; 및
    프로세서를 포함하고, 상기 프로세서는,
    DAI(downlink assignment index) 및 DAI 그룹 지시 정보를 갖는 PDCCH(physical downlink control channel)를 SF(subframe) #n-k 내에서 수신하고,
    상기 DAI 및 상기 DAI 그룹 지시 정보를 이용하여 HARQ-ACK 페이로드를 구성하며, 및
    상기 HARQ-ACK 페이로드를 SF #n에서 전송하도록 구성되고,
    상기 DAI의 값은 SF #n-k에서 상기 PDCCH과 관련된 셀/SF 단위의 스케줄링 순서 값을 나타내며, 상기 셀/SF 단위의 스케줄링 순서 값은 셀/SF 도메인에서 셀 우선 방식으로 계수되고,
    상기 DAI 그룹 지시 정보는 상기 PDCCH가 마지막 DAI 그룹에 해당하는지 여부를 나타내며, 하나의 DAI 그룹은 복수의 연속된 DAI 값으로 구성되고,
    각 셀에서 K:{k0,k1,…kM -1}는 아래와 같이 주어지는 단말:
    Figure PCTKR2016010169-appb-I000015
    .
  7. 제6항에 있어서,
    상기 DAI 값은 4개의 값이 순환 반복되며, 상기 하나의 DAI 그룹은 4개의 연속된 DAI 값으로 구성되는 단말.
  8. 제6항에 있어서,
    상기 SF #n-k에서 상기 마지막 DAI 그룹에 해당하는 PDCCH가 검출되지 않은 경우, 상기 HARQ-ACK 페이로드 상기 마지막 DAI 그룹에 해당하는 HARQ-ACK 응답을 더 포함하고, 상기 HARQ-ACK 응답은 NACK(Negative Acknowledgement) 또는 DTX(Discontinuous Transmission)으로 설정되는 단말.
  9. 제6항에 있어서,
    상기 PDCCH는 (i) PDSCH(physical downlink shared channel)를 스케줄링 하는 PDCCH 또는 (ii) SPS 해제(semi-persistent scheduling release)를 지시하는 PDCCH인 단말.
  10. 제9항에 있어서,
    상기 HARQ-ACK 페이로드는 상기 PDSCH에 대한 HARQ-ACK 응답 또는 상기 SPS 해제를 지시하는 PDCCH에 대한 HARQ-ACK 응답을 포함하는 단말.
PCT/KR2016/010169 2015-09-09 2016-09-09 무선 통신 시스템에서 신호의 전송 방법 및 장치 WO2017043916A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680051874.7A CN108028737A (zh) 2015-09-09 2016-09-09 广播信号发送设备、广播信号接收设备、广播信号发送方法以及广播信号接收方法
EP16844732.4A EP3349387B1 (en) 2015-09-09 2016-09-09 Method and apparatus for transmitting signal in wireless communication system
US15/747,006 US10498497B2 (en) 2015-09-09 2016-09-09 Broadcast signal transmitting device, broadcast signal receiving device, broadcast signal transmitting method and broadcast signal receiving method

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US201562216356P 2015-09-09 2015-09-09
US62/216,356 2015-09-09
US201562219645P 2015-09-16 2015-09-16
US62/219,645 2015-09-16
US201562250497P 2015-11-03 2015-11-03
US62/250,497 2015-11-03

Publications (1)

Publication Number Publication Date
WO2017043916A1 true WO2017043916A1 (ko) 2017-03-16

Family

ID=58240211

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/010169 WO2017043916A1 (ko) 2015-09-09 2016-09-09 무선 통신 시스템에서 신호의 전송 방법 및 장치

Country Status (4)

Country Link
US (1) US10498497B2 (ko)
EP (1) EP3349387B1 (ko)
CN (1) CN108028737A (ko)
WO (1) WO2017043916A1 (ko)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019013548A1 (ko) * 2017-07-12 2019-01-17 엘지전자 주식회사 Harq ack/nack 정보를 전송하기 위한 방법 및 사용자 장치
WO2019108340A1 (en) * 2017-12-01 2019-06-06 Qualcomm Incorporated Physical uplink control channel (pucch) resource allocation
KR20200014091A (ko) * 2018-07-31 2020-02-10 삼성전자주식회사 무선 통신 시스템에서 송신 시간을 결정하기 위한 방법 및 장치
CN110933761A (zh) * 2018-09-20 2020-03-27 成都华为技术有限公司 资源调度方法及设备
WO2020222624A1 (ko) * 2019-05-02 2020-11-05 주식회사 윌러스표준기술연구소 무선 통신 시스템에서 하향링크 데이터 수신 및 harq-ack 전송 방법, 장치 및 시스템
CN112088516A (zh) * 2018-05-10 2020-12-15 高通股份有限公司 为超可靠低等待时间通信(urllc)分配物理上行链路控制信道(pucch)资源
WO2021206398A1 (ko) * 2020-04-07 2021-10-14 엘지전자 주식회사 하향링크 제어 정보를 송수신하는 방법 및 이를 위한 장치
US20210352704A1 (en) * 2018-09-21 2021-11-11 Lg Electronics Inc. Method and device for transmitting and receiving wireless signal in wireless communication system
CN116057969A (zh) * 2020-08-05 2023-05-02 三星电子株式会社 无线通信系统中用于发送/接收用于组播的信号的方法和装置

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6092347B1 (ja) * 2015-11-05 2017-03-08 株式会社Nttドコモ ユーザ端末、無線基地局及び無線通信方法
CN113328842B (zh) * 2016-01-07 2024-05-31 诺基亚通信公司 用于分配确认资源的方法和装置
US10667324B2 (en) * 2016-03-16 2020-05-26 Telefonaktiebolaget Lm Ericsson (Publ) Determining DTX cause
CN110463106A (zh) * 2017-03-31 2019-11-15 摩托罗拉移动有限责任公司 确定承载反馈信息的资源字段
JP6908135B2 (ja) * 2017-06-16 2021-07-21 富士通株式会社 フィードバック情報の送受信方法、装置及び通信システム
US10771225B2 (en) * 2017-11-17 2020-09-08 Qualcomm Incorporated Techniques and apparatuses for using mini-slots for hybrid automatic repeat request (HARQ) transmissions
WO2020026292A1 (ja) * 2018-07-30 2020-02-06 株式会社Nttドコモ 基地局
KR102610857B1 (ko) * 2019-07-19 2023-12-06 엘지전자 주식회사 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
US11729801B2 (en) * 2019-08-16 2023-08-15 Qualcomm Incorporated Dynamic HARQ-ACK codebook construction for multiple active semi-persistent scheduling configurations
CN113056020B (zh) * 2019-12-26 2022-05-10 大唐高鸿智联科技(重庆)有限公司 一种资源重选的判定方法及终端
US11877292B2 (en) * 2020-07-29 2024-01-16 Qualcomm Incorporated Techniques for activating and releasing resources across multiple component carriers
WO2022029295A1 (en) * 2020-08-07 2022-02-10 Telefonaktiebolaget Lm Ericsson (Publ) Dai and harq codebook for multi-cell scheduling

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120101370A (ko) * 2009-10-30 2012-09-13 소니 주식회사 통신 네트워크에서의 리소스 할당 방법 및 장치
KR20130113917A (ko) * 2010-09-30 2013-10-16 엘지전자 주식회사 제어 정보를 전송하는 방법 및 이를 위한 장치
KR20140070526A (ko) * 2011-10-06 2014-06-10 엘지전자 주식회사 제어 정보를 전송하는 방법 및 이를 위한 장치
KR20150051063A (ko) * 2013-11-01 2015-05-11 주식회사 아이티엘 하향링크 harq-ack와 sr동시 전송 방법 및 장치
KR20150089002A (ko) * 2012-11-14 2015-08-04 엘지전자 주식회사 반송파 집성 시스템에서 단말의 동작 방법 및 이러한 방법을 이용하는 장치

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9686064B2 (en) 2015-01-21 2017-06-20 Intel IP Corporation Devices and methods for HARQ-ACK feedback scheme on PUSCH in wireless communication systems
US9888465B2 (en) * 2015-04-06 2018-02-06 Samsung Electronics Co., Ltd. Codeword determination for acknowledgement information
EP3335349B1 (en) * 2015-08-14 2020-06-10 Telefonaktiebolaget LM Ericsson (PUBL) Methods for determining a harq-ack codebook size for a user equipment and base station
EP3320637B1 (en) * 2015-08-14 2023-11-08 Lenovo Innovations Limited (Hong Kong) Determining a harq-ack response codebook in a wireless communication system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120101370A (ko) * 2009-10-30 2012-09-13 소니 주식회사 통신 네트워크에서의 리소스 할당 방법 및 장치
KR20130113917A (ko) * 2010-09-30 2013-10-16 엘지전자 주식회사 제어 정보를 전송하는 방법 및 이를 위한 장치
KR20140070526A (ko) * 2011-10-06 2014-06-10 엘지전자 주식회사 제어 정보를 전송하는 방법 및 이를 위한 장치
KR20150089002A (ko) * 2012-11-14 2015-08-04 엘지전자 주식회사 반송파 집성 시스템에서 단말의 동작 방법 및 이러한 방법을 이용하는 장치
KR20150051063A (ko) * 2013-11-01 2015-05-11 주식회사 아이티엘 하향링크 harq-ack와 sr동시 전송 방법 및 장치

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3349387A4 *

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019013548A1 (ko) * 2017-07-12 2019-01-17 엘지전자 주식회사 Harq ack/nack 정보를 전송하기 위한 방법 및 사용자 장치
EP3829247A1 (en) * 2017-12-01 2021-06-02 QUALCOMM Incorporated Physical uplink control channel (pucch) resource allocation
WO2019108340A1 (en) * 2017-12-01 2019-06-06 Qualcomm Incorporated Physical uplink control channel (pucch) resource allocation
CN111418246B (zh) * 2017-12-01 2024-05-24 高通股份有限公司 物理上行链路控制信道(pucch)资源分配
US11723018B2 (en) 2017-12-01 2023-08-08 Qualcomm Incorporated Physical uplink control channel (PUCCH) resource allocation
CN111418246A (zh) * 2017-12-01 2020-07-14 高通股份有限公司 物理上行链路控制信道(pucch)资源分配
TWI803533B (zh) * 2017-12-01 2023-06-01 美商高通公司 實體上行鏈路控制頻道(pucch)資源分配
CN112088516A (zh) * 2018-05-10 2020-12-15 高通股份有限公司 为超可靠低等待时间通信(urllc)分配物理上行链路控制信道(pucch)资源
CN112088516B (zh) * 2018-05-10 2023-11-14 高通股份有限公司 为超可靠低等待时间通信(urllc)分配物理上行链路控制信道(pucch)资源
KR102494015B1 (ko) * 2018-07-31 2023-01-31 삼성전자주식회사 무선 통신 시스템에서 송신 시간을 결정하기 위한 방법 및 장치
KR102671797B1 (ko) 2018-07-31 2024-06-03 삼성전자주식회사 무선 통신 시스템에서 송신 시간을 결정하기 위한 방법 및 장치
KR20230019907A (ko) * 2018-07-31 2023-02-09 삼성전자주식회사 무선 통신 시스템에서 송신 시간을 결정하기 위한 방법 및 장치
KR20200014091A (ko) * 2018-07-31 2020-02-10 삼성전자주식회사 무선 통신 시스템에서 송신 시간을 결정하기 위한 방법 및 장치
US11652578B2 (en) 2018-07-31 2023-05-16 Samsung Electronics Co., Ltd. Method and apparatus for determining transmission timing in wireless communication system
CN110933761A (zh) * 2018-09-20 2020-03-27 成都华为技术有限公司 资源调度方法及设备
CN110933761B (zh) * 2018-09-20 2022-02-15 成都华为技术有限公司 资源调度方法及设备
US12022481B2 (en) * 2018-09-21 2024-06-25 Lg Electronics Inc. Method and device for transmitting and receiving wireless signal in wireless communication system
US20210352704A1 (en) * 2018-09-21 2021-11-11 Lg Electronics Inc. Method and device for transmitting and receiving wireless signal in wireless communication system
WO2020222624A1 (ko) * 2019-05-02 2020-11-05 주식회사 윌러스표준기술연구소 무선 통신 시스템에서 하향링크 데이터 수신 및 harq-ack 전송 방법, 장치 및 시스템
US11737091B2 (en) 2019-05-02 2023-08-22 Wilus Institute Of Standards And Technology Inc. Method, device, and system for downlink data reception and HARQ-ACK transmission in wireless communication system
US11653353B2 (en) 2019-05-02 2023-05-16 Wilus Institute Of Standards And Technology Inc. Method, device, and system for downlink data reception and HARQ-ACK transmission in wireless communication system
US11490406B2 (en) 2019-05-02 2022-11-01 Wilus Institute Of Standards And Technology Inc. Method, device, and system for downlink data reception and HARQ-ACK transmission in wireless communication system
WO2021206398A1 (ko) * 2020-04-07 2021-10-14 엘지전자 주식회사 하향링크 제어 정보를 송수신하는 방법 및 이를 위한 장치
CN116057969A (zh) * 2020-08-05 2023-05-02 三星电子株式会社 无线通信系统中用于发送/接收用于组播的信号的方法和装置

Also Published As

Publication number Publication date
US10498497B2 (en) 2019-12-03
EP3349387A4 (en) 2019-05-08
EP3349387A1 (en) 2018-07-18
CN108028737A (zh) 2018-05-11
US20180212717A1 (en) 2018-07-26
EP3349387B1 (en) 2021-10-27

Similar Documents

Publication Publication Date Title
WO2017043916A1 (ko) 무선 통신 시스템에서 신호의 전송 방법 및 장치
WO2017003264A1 (ko) 무선 통신 시스템에서 신호의 전송 방법 및 장치
WO2017135713A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2017146556A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2016111599A1 (ko) 제어 정보를 전송하는 방법 및 이를 위한 장치
WO2017078501A1 (ko) 신호를 전송하는 방법 및 이를 위한 장치
WO2013105838A1 (ko) 무선 통신 시스템에서 제어 정보 전송 방법 및 장치
WO2017150942A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2013105837A1 (ko) 무선 통신 시스템에서 제어 정보 전송 방법 및 장치
WO2017119791A2 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2015012665A1 (ko) Mtc를 위한 신호 전송 방법 및 이를 위한 장치
WO2012124969A2 (ko) 신호 송수신 방법 및 이를 위한 장치
WO2016018046A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2013191519A1 (ko) 제어 신호 송수신 방법 및 이를 위한 장치
WO2017082696A1 (ko) 무선 신호를 전송하는 방법 및 이를 위한 장치
WO2010123331A2 (ko) 반송파 병합 전송을 위한 제어신호 송수신 방법 및 장치
WO2013109109A1 (ko) 제어 정보 송수신 방법 및 이를 위한 장치
WO2012124996A2 (ko) 신호 송수신 방법 및 이를 위한 장치
WO2016036100A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2016021992A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2013015632A2 (ko) 무선 통신 시스템에서 제어 정보의 전송 방법 및 장치
WO2014142593A1 (ko) 제어 채널의 송수신 방법 및 이를 위한 장치
WO2014088371A1 (ko) 제어 신호 송수신 방법 및 이를 위한 장치
WO2018012910A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2013176531A1 (ko) 신호 송수신 방법 및 이를 위한 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16844732

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15747006

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE