WO2017043471A1 - Scroll fluid machine and refrigerating device in which same is used - Google Patents

Scroll fluid machine and refrigerating device in which same is used Download PDF

Info

Publication number
WO2017043471A1
WO2017043471A1 PCT/JP2016/076111 JP2016076111W WO2017043471A1 WO 2017043471 A1 WO2017043471 A1 WO 2017043471A1 JP 2016076111 W JP2016076111 W JP 2016076111W WO 2017043471 A1 WO2017043471 A1 WO 2017043471A1
Authority
WO
WIPO (PCT)
Prior art keywords
scroll
compression
pressure
fluid machine
chamber
Prior art date
Application number
PCT/JP2016/076111
Other languages
French (fr)
Japanese (ja)
Inventor
橋本 俊一
Original Assignee
サンデンホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンデンホールディングス株式会社 filed Critical サンデンホールディングス株式会社
Publication of WO2017043471A1 publication Critical patent/WO2017043471A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/02Rotary-piston machines or engines of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C20/00Control of, monitoring of, or safety arrangements for, machines or engines
    • F01C20/24Control of, monitoring of, or safety arrangements for, machines or engines characterised by using valves for controlling pressure or flow rate, e.g. discharge valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/04Lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/10Outer members for co-operation with rotary pistons; Casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/02Pumps characterised by combination with or adaptation to specific driving engines or motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/04Compression machines, plants or systems with non-reversible cycle with compressor of rotary type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression

Definitions

  • the present invention relates to a scroll type fluid machine that forms an expansion chamber and a compression chamber of a working fluid between wraps of fixed and movable scrolls, and a refrigeration apparatus using the scroll type fluid machine.
  • This type of scroll type fluid machine includes a scroll unit including a movable scroll provided with a lap on the base surface and a fixed scroll provided with a wrap meshing with the lap of the movable scroll on the base surface.
  • a single plate type compressor-integrated expander in which a working chamber of a unit is divided into an expansion chamber and a compression chamber by a partition wall to form a central expansion portion and an outer compression portion (for example, Patent Document 1).
  • a back pressure chamber is formed on the back surface opposite to the base surface of the movable scroll, and the working fluid maintained at the discharge pressure of the compression unit is supplied to the back pressure chamber via the communication path. Therefore, a configuration has been adopted in which the movable scroll is urged to be pressed against the fixed scroll by the pressure on the discharge side of the compression unit.
  • Such a scroll type fluid machine is used, for example, in a heat pump for heating a hot water heater or the like, and constitutes a refrigeration cycle of a refrigeration apparatus together with a high-stage compressor, a radiator, and a heat absorber (evaporator).
  • the working fluid compressed by the high-stage compressor flows into the radiator and radiates heat there.
  • This working fluid is sucked into the expansion portion from the center portion of the fixed scroll of the scroll type fluid machine while being kept at a high pressure, and is expanded in an expansion chamber formed between the wraps of the expansion portion, whereby the movable scroll is revolved. Power is recovered.
  • the working fluid (refrigerant) that has exited the expansion part of the scroll type fluid machine flows into the heat absorber and evaporates. After exerting the endothermic action, the working fluid is sucked into the compression part from the outer peripheral part of the fixed scroll of the scroll type fluid machine.
  • the working fluid sucked into the compression unit is compressed in the compression chamber formed between the wraps of the compression unit by the power recovered by the expansion unit. That is, the compression unit of the scroll type fluid machine is on the lower stage side, and the working fluid compressed by the lower stage compression unit is repeatedly circulated by being sucked into the higher stage compressor (for example, Patent Documents). 2).
  • the conventional refrigeration apparatus is provided with a bypass pipe that bypasses the suction side and the discharge side of the compression unit of the scroll type fluid machine.
  • the bypass pipe is provided with an opening / closing valve. By opening the opening / closing valve only when the high-stage compressor is started, the low-stage compression section is bypassed.
  • the purpose is to increase the discharge pressure of the high-stage compressor quickly and increase the power applied to the expansion part early by making the high-stage compressor easily suck the working fluid. It was intended to start the scroll fluid machine quickly.
  • the suction side and the discharge side of the compression unit (low-stage compression unit) of the scroll type fluid machine are bypassed by the bypass pipe. It is considered that it is easier to start the scroll type fluid machine if the working fluid is sucked from the compression part of the scroll type fluid machine than when the high stage compressor is started without providing such a bypass pipe.
  • the scroll type fluid machine has a structure in which the pressure on the discharge side of the compression unit is supplied as the back pressure of the movable scroll as described above, and the movable scroll is pressed against the fixed scroll by this back pressure, the high-stage compressor If the pressure on the discharge side of the compression part of the scroll type fluid machine becomes lower than the suction side of the compression part at the time of starting, the back pressure of the movable scroll is surely insufficient. For this reason, the movable scroll is separated from the fixed scroll, and the expansion chamber and the compression chamber cannot be formed between the wraps, and the scroll type fluid machine cannot be started.
  • the pressure in the back pressure chamber must be set to the pressure on the discharge side of the compression unit when it is stable after startup. If the pressure in the back pressure chamber remains high, the force to press the movable scroll against the fixed scroll will be excessive. Loss increases and in the worst case, driving becomes impossible. For this reason, when the check valve is constituted by, for example, a reed valve, it is necessary to make a fine work such as making a minute hole in the reed valve, but if this hole is clogged with foreign matter mixed in the working fluid No longer function as a hole. Furthermore, when this foreign matter is caught between the reed valve and the valve seat (biting), there is a problem that it becomes difficult to remove the foreign matter and it cannot be activated.
  • the present invention has been made to solve various conventional technical problems, and is a single plate type compressor integrated type that constitutes a low-stage compression section of a refrigeration apparatus together with a high-stage compressor.
  • a scroll type fluid machine that is an expander, an object is to easily and surely start it up and to operate stably.
  • a scroll type fluid machine is composed of a fixed scroll and a movable scroll each having a spiral wrap formed on each base surface of each substrate so as to face each other. Formed between each lap of both scrolls by expanding the working fluid in the expansion chamber formed between them, revolving the revolving motion of the movable scroll to recover the power, and the power recovered by this expansion section And a low-stage compression section that compresses the working fluid in the compressed chamber, and the working fluid compressed by the compression section is sucked into the high-stage compressor and compressed by the high-stage compressor.
  • the high pressure working fluid is sucked into the expansion part, and the back pressure chamber formed on the back side opposite to the base surface of the movable scroll, the discharge side and the back pressure chamber of the compression part, respectively Communication for communication And a relief part, and a check valve device provided in the communication part, in which the direction from the discharge side to the back pressure chamber side of the compression part is the forward direction, and provided in the relief part.
  • the relief part is always closed.
  • a relief valve device that opens the relief part when the pressure on the discharge side of the compression part is lower than the pressure in the back pressure chamber and the difference is larger than the first predetermined value D1.
  • the check valve device always closes the communication portion, and the pressure in the back pressure chamber becomes lower than the pressure on the discharge side of the compression portion. Is characterized in that the communication portion is opened when the value is larger than the second predetermined value D2.
  • the check valve device and the relief valve device are each constituted by a ball plug and a spring for pressing the ball plug against the valve seat. It is characterized in that it is in line contact.
  • the scroll type fluid machine of the invention of claim 4 is characterized in that, in the above invention, the check valve device and the relief valve device are located in a lubricating oil chamber in which lubricating oil is stored.
  • a scroll type fluid machine is characterized in that, in the above invention, the communicating portion and the relief portion are formed on a fixed shaft constituting a support mechanism of the movable scroll.
  • a scroll type fluid machine is characterized in that, in the above invention, the communicating portion is formed through the center of the fixed shaft.
  • a refrigeration apparatus comprises the scroll type fluid machine according to any one of the first to sixth aspects and a high-stage compressor, and the compression of the scroll type fluid machine.
  • the working fluid is sucked into the higher stage compressor than the discharge side of the part, the high pressure working fluid compressed by the higher stage compressor is sucked into the expansion part of the scroll type fluid machine, and the higher stage side The working fluid is sucked from the compression portion of the scroll type fluid machine from the start of the compressor.
  • the refrigeration apparatus of the invention of claim 8 is characterized in that carbon dioxide is used as a working fluid in the above invention.
  • a fixed scroll and a movable scroll each having a spiral wrap formed on each base surface of each substrate are opposed to each other, and the working fluid is supplied in an expansion chamber formed between the wraps of both scrolls.
  • the working fluid is compressed in the compression chamber formed between the laps of both scrolls.
  • a working fluid compressed by the compressor is sucked into the high-stage compressor, and a high-pressure working fluid compressed by the high-stage compressor is sucked into the expansion portion.
  • a back pressure chamber formed on the back side opposite to the base surface of the movable scroll, a communication portion for communicating the discharge side of the compression portion and the back pressure chamber, and the communication portion Provided in the pressure Since the check valve device in which the direction from the discharge side to the back pressure chamber side is the forward direction is provided, the higher-stage side than the discharge side of the compression part of the scroll type fluid machine as in the invention of claim 7 is provided.
  • the scroll type fluid machine of the present invention is used in a refrigeration apparatus that sucks a working fluid into a compressor and sucks the high pressure working fluid compressed by the high-stage side compressor into the expansion part of the scroll type fluid machine, and Even when the working fluid is sucked from the compression unit of the scroll type fluid machine from the time of starting the high stage side compressor, the scroll type fluid is also generated when the high stage side compressor is started by the check valve device. The inconvenience that the pressure in the back pressure chamber of the machine rapidly decreases is prevented.
  • the movable scroll is fixed even if the working fluid is sucked from the compression unit of the scroll type fluid machine from the start of the high-stage compressor without bypassing the compression unit of the scroll type fluid machine as in the prior art.
  • the scroll type fluid machine can be activated without being peeled off from the scroll and pressed against the fixed scroll. Then, by sucking the working fluid from the discharge side of the compression unit with the high-stage compressor, the pressure on the discharge side of the compression unit becomes lower than the pressure on the suction side of the compression unit. Thereby, since a starting torque is generated in the scroll type fluid machine, it is possible to start up more easily than in the prior art.
  • the relief part for communicating the discharge side of the compression part and the back pressure chamber is always closed, and the relief part is always closed, and the pressure on the discharge side of the compression part is lower than the pressure of the back pressure chamber. Since the relief valve device is provided in the relief portion for opening the relief portion when the difference is larger than the first predetermined value D1, the discharge side of the compression portion and the back pressure chamber are connected when the scroll fluid machine is started.
  • the communicating part is closed by a check valve device so that pressure does not escape from the back pressure chamber to the discharge side of the compression part, so that the pressure on the discharge side of the compression part decreases, and the pressure difference from the back pressure chamber
  • the relief valve device opens and the pressure in the back pressure chamber can be released to the discharge side of the compression unit.
  • the check valve device always closes the communication portion, the pressure in the back pressure chamber becomes lower than the pressure on the discharge side of the compression portion, and the difference is the second difference.
  • the pressure in the back pressure chamber is compressed by the pressure on the discharge side of the compression portion minus the second predetermined value D2 or more in cooperation with the relief valve device. It is possible to control within the range of the pressure on the discharge side of the section + the first predetermined value D1 or less, so that the scroll-type fluid machine can be started easily and reliably as a whole, and a stable operation can be realized. Become.
  • the check valve device and the relief valve device are respectively constituted by a ball stopper and a spring for pressing the ball stopper against the valve seat, and the ball stopper is in line contact with the valve seat.
  • the pressure in the back pressure chamber can be lowered to the pressure on the discharge side of the compression unit early after the scroll type fluid machine is started, and the back pressure applied to the movable scroll can be quickly set to an appropriate value. It becomes like this.
  • the communication portion and the relief portion are formed on the fixed shaft constituting the movable scroll support mechanism as in the invention of claim 5, and the check valve device and the relief valve device are stored in the lubricating oil as in the invention of claim 4.
  • hub part which comprises the support mechanism of the said movable scroll is normally protrudingly provided in the back of the movable scroll, if a communicating part is penetrated and formed in the center of a fixed axis like invention of Claim 6, it will be related Lubricating oil can be supplied to the inside of the boss part without any problem.
  • Each of the above inventions is particularly effective for a refrigeration apparatus using carbon dioxide as a working fluid as in the invention of claim 8.
  • FIG. 3 is a sectional view taken along line AA in FIG. 2. It is an expanded sectional view of the check valve device part of the scroll type fluid machine of FIG. It is a figure which shows the refrigerating cycle of the freezing apparatus of one Example using the scroll type fluid machine of FIG. It is a figure explaining the change of the pressure of each part of the scroll type fluid machine of FIG. It is a vertical side view of the scroll type fluid machine of other examples to which the present invention is applied.
  • FIG. 1 shows a vertical side view of a scroll type fluid machine 1 according to an embodiment of the present invention.
  • the scroll type fluid machine 1 of the embodiment is, for example, a vertically installed single-plate type compressor-integrated expander, and refrigeration of a refrigeration apparatus RC that uses carbon dioxide whose high pressure side is a supercritical pressure as a refrigerant (working fluid). Used in the cycle (FIG. 5).
  • the refrigeration apparatus RC is incorporated as a heat pump in an air conditioner or a heat pump type hot water heater (not shown).
  • the scroll fluid machine 1 includes an expansion unit 2 that performs an expansion operation by the pressure of the refrigerant, and a compression unit 3 (low stage side) that performs a compression operation by the expansion operation of the expansion unit 2 ( FIG. 1, FIG. 2).
  • the scroll fluid machine 1 includes a housing 4.
  • a scroll unit 8 mainly composed of a fixed scroll 6 and a movable scroll 7 that revolves with respect to the fixed scroll 6, and a frame that supports the movable scroll 7 so that it can revolve.
  • a main frame 9, and a lower flange portion 11 a are fixed to the bottom surface of the main frame 9, and a fixed shaft 11 provided with a central shaft portion 11 b protruding from the bottom surface of the main frame 9.
  • the outer peripheral portion of the main frame 9 is fixed to the inside of the housing 4, and the refrigerant (carbon dioxide) taken in from the refrigeration cycle of the refrigeration apparatus RC as the working fluid of the scroll fluid machine 1 is enclosed in the sealed housing 4. ) Is compressed by the compression unit 3.
  • an expansion side suction pipe 16 Connected to the housing 4 is an expansion side suction pipe 16 that sucks into the expansion section 2 the refrigerant taken from the refrigeration cycle of the refrigeration apparatus RC. Further, the housing 4 has an expansion side discharge pipe 17 (FIG. 3) for discharging the refrigerant expanded in the expansion unit 2 toward the refrigeration cycle of the refrigeration apparatus RC, and the refrigerant compressed in the compression unit 3 is frozen.
  • a compression-side discharge pipe 18 (FIG. 5) that discharges toward the refrigeration cycle of the device RC is connected.
  • the ends of the expansion side suction pipe 16 and the expansion side discharge pipe 17 are opened and communicated with an expansion side suction chamber 19 and an expansion side discharge chamber 21 formed in the substrate 6 a of the fixed scroll 6, respectively.
  • An end portion of the pipe 18 opens into the housing 4 and communicates with a compression side discharge chamber 22 as a discharge side of the compression portion 3 formed inside the upper portion of the housing 4.
  • the housing 4 is connected with a compression side suction pipe 23 (FIG. 3) for sucking refrigerant taken from the refrigeration cycle of the refrigeration apparatus RC into the compression section 3, and an end portion of the compression side suction pipe 23 is fixed scroll. 6 is communicated with a compression side suction chamber 24 as a suction side of a compression portion formed in the substrate 6a.
  • a lubricating oil chamber 26 is formed inside the bottom of the housing 4, and lubricating oil for lubricating the scroll unit 8 is stored in the lubricating oil chamber 26.
  • the compression side suction chamber 23 is provided with an oil feed hole 27 (FIG. 2) penetrating the substrate 6 a and the main frame 9 of the fixed scroll 6, and the lubricating oil chamber 26 is formed through the oil feed hole 27. Lubricating oil is sent to the compression side suction chamber 24.
  • the fixed scroll 6 is fixed to the upper surface portion 9a of the main frame 9, and a compression side discharge hole (not shown) is slightly located in the radial direction of the fixed scroll 6 with respect to the compression side suction chamber 24 of the substrate 6a of the fixed scroll 6 in the radial direction.
  • An oil separator (not shown) for separating the lubricating oil in the refrigerant is attached to the opening of the compression side discharge hole with respect to the compression side discharge chamber 22.
  • the movable scroll 7 is connected to a pedestal portion 9b of the main frame 9 through a rotation prevention mechanism (not shown) such as an Oldham ring at the outer peripheral portion of the back surface 7c which is the surface opposite to the base surface 7b of the substrate 7a. It is supported so that it can revolve without rotating. Further, a cylindrical boss portion (concave portion) 31 into which the eccentric bush 36 is slidably and rotatably fitted is projected on the back surface 7c of the movable scroll 7.
  • a rotation prevention mechanism such as an Oldham ring
  • the fixed shaft 11 described above constitutes a support mechanism 54 that supports the movable scroll 7 together with the main frame 9 so as to be capable of revolving and turning at the center of the back surface 7c.
  • the upper end portion of the shaft portion 11b of the fixed shaft 11 is inserted inside the slide bush 56 so as to be slidable and rotatable by the bearing 49.
  • the slide bush 56 is inserted into the eccentric bush 36 in the eccentric direction. It is stored movably. That is, the upper end portion of the shaft portion 11 b of the fixed shaft 11 is inserted into the eccentric bush 36 through the slide bush 56.
  • a spring (not shown) is interposed between the slide bush 56 and the eccentric bush 36. By this spring, the slide bush 56 is always urged in the eccentric direction, and thereby the misalignment of the scrolls 6 and 7 is adjusted.
  • the eccentric bush 36 is slidably inserted into the boss 31 via a bearing 48.
  • the bearing 48 receives a radial load that acts on the eccentric bush 36 as the orbiting scroll 7 revolves.
  • a bearing 51 is disposed between the lower end of the eccentric bush 36 and the main frame 9.
  • the fixed shaft 11 supports the movable scroll 7 through the bearing 49, the slide bush 56, the eccentric bush 36, the bearing 48, and the bearing 51 so as to be capable of revolving, and the support mechanism 54 includes the boss portion 31.
  • the scroll unit 8 of the embodiment is a compressor-integrated expander, and includes a compression chamber of the compression unit 3 and an expansion chamber of the expansion unit 2 as a refrigerant working chamber by a pair of fixed scroll 6 and movable scroll 7.
  • the fixed shaft 11 only supports the movable scroll 7 together with the main frame 9 so as to be capable of revolving, and the fixed shaft 11 itself is driven to rotate. There is no.
  • annular intermediate partition wall (annular wall) 38 and an annular outer partition wall 39 are erected on the base surface 6 b of the fixed scroll 6.
  • a spiral outer fixed scroll wrap (wrap) 40 is provided between the partition wall (annular wall) 39 and a spiral inner fixed scroll wrap (wrap) 41 is provided on the center side of the intermediate partition wall 38.
  • an annular groove 42 into which a seal ring (not shown) is inserted is recessed in the end surface of the intermediate partition wall 38 on the base surface 6b.
  • the above-described compression side suction chamber 24 is formed at the outer peripheral end of the compression portion 3 slightly inside the outer partition wall 39, and the inner peripheral end of the compression portion 3 slightly outside the intermediate partition wall 38.
  • a compression-side discharge hole 32 is formed in the upper part.
  • the expansion side discharge chamber 21 described above is formed on the outer peripheral end of the expansion portion 2 slightly inside the intermediate partition wall 38 on the substrate 6a, and the expansion side suction chamber 19 described above is the inner peripheral end of the expansion portion 2. It is formed at the center.
  • an annular oil groove 43 is formed on the substrate 6a slightly outside the outer partition wall 39, and is countersunk at a predetermined depth with a diameter larger than the groove width provided on the oil groove 43.
  • the oil feed hole 27 described above is formed on the bottom surface of the formed recess.
  • a spiral outer movable scroll wrap (wrap) 44 that meshes with the outer fixed scroll wrap 40 and a spiral inner movable scroll wrap (wrap) that meshes with the inner fixed scroll wrap 41. ) 46 is erected in the direction of the opposite spiral.
  • the expansion part 2 is formed inside the intermediate partition wall 38, and the compression part 3 is formed between the intermediate partition wall 38 and the outer partition wall 39.
  • the refrigerant sucked from the expansion side suction pipe 16 is taken into the central portion of the expansion portion 2 through the expansion side suction chamber 19, and the scrolls 6, 7 are mutually connected.
  • it is expanded in an expansion chamber (working chamber) formed between the laps 41 and 46.
  • the volume of the expansion chamber is increased while moving toward the outer peripheral side of each of the scrolls 6, 7, and accordingly, the movable scroll 7 is revolved around the axis of the fixed scroll 6.
  • the refrigerant used for the revolving orbiting motion of the movable scroll 7 is discharged toward the refrigeration cycle of the refrigeration apparatus RC outside the housing 4 through the expansion side discharge chamber 21 via the expansion side discharge chamber 21.
  • the refrigerant sucked from the compression side suction pipe 23 is taken into the compression section 3 through the compression side suction chamber 24 as shown by the arrow marked as low stage suction in FIG.
  • the scrolls 6 and 7 cooperate with each other to form a compression chamber (working chamber) formed between the wraps 40 and 44. It is compressed with. The volume of the compression chamber is reduced while moving toward the center of each of the scrolls 6 and 7 as the orbiting scroll 7 revolves.
  • the high-pressure refrigerant passes through the compression-side discharge hole 32 and the compression-side discharge chamber 22 and then passes through the compression-side discharge pipe 18 toward the refrigeration cycle of the refrigeration apparatus RC outside the housing 4. (Indicated by an arrow labeled low-stage discharge in FIG. 1).
  • the oil supply hole 28 penetrates the shaft portion 11 b in the axial direction of the shaft portion 11 b, and the lower end thereof is opened in the lubricating oil chamber 26, and the upper end opening is a back pressure inside the boss portion 31. It communicates with the chamber 52.
  • the oil supply hole (communication part) 28 functions as a hole which connects the discharge side (compression side discharge chamber 22) and the back pressure chamber 52 of the compression part 3 in this invention.
  • the lubricating oil stored in the lubricating oil chamber 26 rises in the oil supply hole 28 due to a differential pressure between a lubricating oil chamber 26 and a back pressure chamber 52, which will be described later, and the pedestal 9b of the main frame 9 and the back surface 7c of the movable scroll 7
  • the bearing 49, the bearing 48, and the bearing 51 are lubricated by being discharged into the back pressure chamber 52 formed between them.
  • a check valve device 66 (described later) is attached in the oil supply hole 28.
  • Relief part (Relief hole 33) A relief hole 33 constituting a relief portion in the present invention is further bored in the flange portion 11a at the lower portion of the fixed shaft 11. The lower end of the relief hole 33 is also opened in the lubricating oil chamber 26, and the upper end opening communicates with the back pressure chamber 52 (constitutes a second communicating portion). A relief valve device 67 described later is attached in the relief hole 33 and is always closed.
  • Check valve device 66 A check valve device 66 is mounted in the oil supply hole 28 formed through the center of the shaft portion 11b of the fixed shaft 11 as described above.
  • the check valve device 66 of this embodiment includes a ball plug 68, a valve seat 69 having a passage formed therein, and a spring (which presses the ball plug 68 from the back pressure chamber 52 side (upper side) to the upper surface of the valve seat 69. Coil spring) 71.
  • the upper surface of the valve seat 69 with which the ball stopper 68 abuts is a funnel-shaped inverted conical surface that is inclined inwardly as shown in FIG. 4, and the ball stopper 68 is in line contact (contact) with the valve seat 69.
  • the part is configured to be circular).
  • the ball stopper 68 and the valve seat 69 of the check valve device 66 are configured to be located in the lubricating oil of the lubricating oil chamber 26 (located below the oil level of the lubricating oil chamber 26). Further, the urging force of the spring 71 is set to, for example, 0.05 MPa, so that the ball plug 68 is always in contact with the valve seat 69 to close the oil supply hole 28.
  • the space between the back surface 7c of the movable scroll 7 and the base portion 9b of the main frame 9 is sealed with an O-ring 61 shown in FIG.
  • the pressure P4 in the back pressure chamber 52 is instantaneously reduced due to the low pressure.
  • the pressure P4 in the back pressure chamber 52 becomes lower than the pressure P3 on the discharge side of the compression section 3 (pressure in the lubricating oil chamber 26), and the difference (P3 ⁇ P4) is the second predetermined value D2 (0. 05 MPa + self-weight of the ball stopper 68.
  • the ball stopper 68 When the pressure is larger than a later-described first predetermined value D1, the ball stopper 68 is spaced upward from the valve seat 69 to open the oil supply hole 28, and the back pressure from the lubricating oil chamber 26 is increased. The lubricating oil is allowed to move to the chamber 52 and is supplied to the sliding portion as described above (indicated by a white arrow in FIG. 1).
  • the direction from the discharge side (lubricating oil chamber 26 side) to the back pressure chamber 52 side of the compression unit 3 is the forward direction, and the movement of the lubricating oil in the opposite direction is the ball plug 68.
  • the ball stopper 68 and the valve seat 69 are in the lubricating oil, the sealability between them is good.
  • the contact between the ball stopper 68 and the valve seat 69 is a line contact, even when the ball stopper 68 is in contact with the valve seat 69, the lubricating oil chamber 26 (compressing portion) is compressed from the back pressure chamber 52 side when stable. 3), a very small amount of lubricating oil (pressure) leaks.
  • the check valve device 67 is mounted in the relief hole 33 formed in the flange portion 11a below the fixed shaft 11.
  • the check valve device 67 of this embodiment also includes a ball plug 72, a valve seat 73 having a passage formed therein, and a spring that presses the ball plug 72 from the lubricating oil chamber 26 side (lower side) to the lower surface of the valve seat 73. (Coil spring) 74.
  • the structure of the relief valve device 67 is an upside down structure of the check valve device 66 shown in FIG. 4. In this case as well, the lower surface of the valve seat 73 with which the ball stopper 72 abuts is highly inclined inward.
  • the conical surface has a reverse funnel shape, and the ball stopper 72 is configured to be in line contact with the valve seat 73 (the contact portion is circular).
  • the ball stopper 72 and the lower surface of the valve seat 73 of the relief valve device 67 are configured to be located in the lubricating oil of the lubricating oil chamber 26 (located below the oil level of the lubricating oil chamber 26). Further, the urging force of the spring 74 is set to, for example, 0.3 to 0.5 MPa (0.5 MPa in the embodiment), whereby the ball stopper 72 always contacts the valve seat 73 and closes the relief hole 33. Yes.
  • the pressure P3 pressure in the lubricating oil chamber 26
  • the difference (P4 ⁇ P3) is a first predetermined value D1 (0.5 MPa ⁇
  • the sealing performance of the both is similarly good.
  • the ball plug 72 and the valve seat 73 are Since the contact is a line contact, even when the ball stopper 72 is in contact with the valve seat 73, a very small amount of pressure is applied from the back pressure chamber 52 side to the lubricating oil chamber 26 (the discharge side of the compression unit 3) when stable. It will leak.
  • FIG. 5 shows a refrigeration cycle of the refrigeration apparatus RC of one embodiment using the scroll type fluid machine 1 of the present invention.
  • the compression unit 3 driven by the power recovered by the expansion unit 2 of the scroll type fluid machine 1 constitutes a low-stage compressor (low-stage compression unit) in the refrigeration cycle of the refrigeration apparatus RC.
  • the above-described compression-side discharge pipe 18 of the compression unit 3 is connected to a high-stage side compression unit 70 a that is driven by an electric motor 70 b of a high-stage side compressor 70 that is located downstream of the compression unit 3.
  • a gas cooler 76 for cooling the refrigerant is connected to the subsequent stage of the compression unit 70 a, and the expansion unit 2 of the scroll fluid machine 1 is connected between the outlet of the gas cooler 76 and the inlet of the evaporator (heat absorber) 77. ing.
  • the refrigerant from the gas cooler 76 is sucked into the expansion side suction chamber 19 of the expansion portion 2 from the expansion side suction pipe 16 described above. Further, the refrigerant is sent from the expansion section 2 of the scroll type fluid machine 1 to the evaporator 77 via the expansion side discharge pipe 17.
  • the low-pressure refrigerant discharged from the evaporator 77 is sucked into the compression unit 3 of the scroll type fluid machine 1 from the compression side suction pipe 23.
  • the movable scroll 7 revolves and the power is recovered.
  • the revolving orbiting motion of the movable scroll 7 causes the compressor 3 to operate as a low-stage compressor.
  • the refrigerant expanded in the expansion unit 2 is heated by the evaporator 77 (or the object is thereby cooled), and is again sucked into the compression unit 3 of the scroll type fluid machine 1 through the compression side suction pipe 23.
  • the compression unit 3 of the scroll fluid machine 1 takes part of the compression process of the refrigeration cycle of the refrigeration apparatus RC (low stage side), and the compression part 70a of the compressor 70 on the high stage side remains the compression process ( Take the higher stage).
  • the compression power in the compression unit 3 is covered by the recovery power in the expansion unit 2.
  • the pressure P4 drops instantaneously, the pressure P4 in the back pressure chamber 52 becomes lower than the pressure P3 on the discharge side of the compression section 3 (pressure in the lubricating oil chamber 26), and the difference (P3 ⁇ P4) is the second mentioned above.
  • the pressure (back pressure) is the same as the pressure in the compression side discharge chamber 22 (pressure P3 on the discharge side of the compression unit 3).
  • the lubricating oil maintained at the discharge pressure of the compression unit 3 is supplied to the back pressure chamber 52 via the oil return path 47, the lubricating oil chamber 26, and the oil supply hole 28. 7 is urged against the fixed scroll 6 by the discharge pressure of the compression unit 3, and the expansion and compression (low stage) of the refrigerant is stably performed in the expansion unit 2 and the compression unit 3 of the scroll type fluid machine 1. .
  • the pressure P4 in the back pressure chamber 52 is set to the pressure P3 on the discharge side of the compression unit 3 in this way, the difference (P4 ⁇ P3) is smaller than the first predetermined value D1 described above.
  • the ball stopper 72 of the valve device 67 is pressed against the valve seat 73 by a spring 74, and the relief hole 33 is closed.
  • the discharge pressure P1 of the compressor 70 pressure at the inlet sucked into the expansion section 2 from the expansion-side suction pipe 16
  • the pressure P3 ( The pressure in the lubricating oil chamber 26 and the compression-side discharge chamber 22) decreases rapidly and becomes lower than the pressure P2 on the suction side of the compression unit 3. Due to this sudden pressure drop in the compression side discharge chamber 22, the pressure in the compression side discharge chamber 22 (the pressure in the lubricating oil chamber 26 which is the same as the pressure P3 on the discharge side of the compression unit 3) is lower than the pressure P4 in the back pressure chamber 52. Therefore, the ball stopper 68 of the check valve device 66 contacts the valve seat 69 and closes the oil supply hole 28.
  • the pressure P4 in the back pressure chamber 52 does not drop abruptly like the pressure P3 on the discharge side of the compression section 3, and the back pressure of the movable scroll 7 is secured, so that the scroll fluid machine 1 can be started.
  • the contact between the ball stopper 68 and the valve seat 69 is a line contact, the pressure P4 in the back pressure chamber 52 gradually leaks to the lubricating oil chamber 26 side and decreases.
  • the pressure P3 on the discharge side of the compression unit 3 (pressure on the compression side discharge chamber 22) is lower than the pressure on the suction side of the compression unit 3, so that the scroll unit 8 of the scroll type fluid machine 1 has Generates a starting torque. Thereby, the scroll type fluid machine 1 becomes easy to start and starts at time t2.
  • the scroll fluid machine 1 When the scroll fluid machine 1 is activated, the refrigerant starts to be compressed in the compression chamber of the compression unit 3, so that the pressure in the compression side discharge chamber 22 which is the pressure P3 on the discharge side of the compression unit 3 also rises, and eventually the compression unit 3 and the pressure P2 in the back pressure chamber 52 becomes the same as about 5 MPa. Thereafter, as described above, the ball plug 68 of the check valve device 66 opens the oil supply hole 28 in the suction process of the compression unit 3 so that the pressure P3 on the discharge side of the compression unit 3 is supplied as the back pressure P4. become.
  • An oil supply hole 28 serving as a communication portion for communicating the pressure pressure chamber 52 and the back pressure chamber 52, and the oil supply hole 28 is provided in the oil supply hole 28. Therefore, the refrigerant is sucked into the compressor 70 on the higher stage side than the discharge side of the compressor 3 of the scroll type fluid machine 1, and the compressor 70 on the higher stage side.
  • the scroll type fluid machine 1 of the present invention is used in the refrigeration apparatus RC that sucks the compressed high-pressure refrigerant into the expansion unit 2 of the scroll type fluid machine 1 and the scroll type is started from the start of the compressor 70 on the high stage side.
  • the refrigerant is sucked from the compression unit 3 of the fluid machine 1. Even if, disadvantage that the pressure (back pressure) is rapidly reduced in the back pressure chamber 52 of the scroll type fluid machine 1 at the start of the compressor 70 of the high-stage side is prevented by the check valve device 66.
  • the refrigerant is sucked from the compressor 3 of the scroll type fluid machine 1 from the start of the high-stage compressor 70 without bypassing the compressor 3 of the scroll type fluid machine 1 as in the prior art.
  • the movable scroll 7 is pressed against the fixed scroll 6 without being peeled off from the fixed scroll 6, and the scroll fluid machine 1 can be activated.
  • the pressure on the discharge side of the compression unit 3 becomes lower than the pressure on the suction side of the compression unit 3.
  • a relief hole 33 as a relief part that communicates the discharge side of the compression part 3 and the back pressure chamber 52 and the relief hole 33 are always closed, and the pressure P3 on the discharge side of the compression part 3 is the back pressure chamber.
  • the relief valve device 67 that opens the relief hole 33 when the difference (P4 ⁇ P3) is larger than the first predetermined value D1 is provided in the relief hole 33.
  • the pressure P3 on the discharge side of the compression section 3 decreases, the pressure difference with the back pressure chamber 52 increases, and the difference (P4-P3) exceeds the first predetermined value D1. Then, the relief valve device 67 is opened and the pressure in the back pressure chamber 52 is reduced to the compression unit 3. It is possible to escape to the discharge side (the lubricant chamber 26).
  • the check valve device 66 always closes the oil supply hole 28, the pressure P4 in the back pressure chamber 52 becomes lower than the pressure P3 on the discharge side of the compression section 3, and the difference (P3-P4) is the first. Since the oil supply hole 28 is opened when it is larger than the predetermined value D2 of 2, the pressure P4 in the back pressure chamber 52 is increased by the pressure P3 on the discharge side of the compression unit 3 in cooperation with the relief valve device 67. It is possible to control within the range of the predetermined value D2 of 2 or more and the pressure P3 on the discharge side of the compression unit 3 + the first predetermined value D1 or less, and generally the scroll type fluid machine 1 can be started easily and reliably and stably. Can be realized.
  • the check valve device 66 and the relief valve device 67 are constituted by ball plugs 68 and 72 and springs 71 and 74 that press the ball plugs 68 and 72 against the valve seats 69 and 73, respectively. Since the seats 69 and 73 are in line contact, after the high-stage compressor 70 is started, the ball plugs 68 and 72 of the check valve device 66 and the relief valve device 67 are inserted between the valve seats 69 and 73. The pressure gradually leaks to the discharge side (lubricant chamber 26 side) of the compression unit 3. That is, the pressure in the back pressure chamber 52 that has risen to an equilibrium pressure higher than the pressure on the discharge side of the compression unit 3 during the stop is gradually reduced after the high-stage compressor 70 is started. Become.
  • the pressure in the back pressure chamber 52 can be lowered to the pressure on the discharge side of the compression unit 3 at an early stage after the scroll type fluid machine 1 is started, and the back pressure applied to the movable scroll 7 is quickly set to an appropriate value. Will be able to.
  • the oil supply hole 28 and the relief hole 33 are formed in the fixed shaft 11 that constitutes the support mechanism 54 of the movable scroll 7, and the check valve device 66 and the relief valve device 67 are provided in the lubricating oil in which the lubricating oil is stored. Since it is located in the lubricating oil of the chamber 26, the sealing function is improved.
  • the oil supply hole 28 is formed at the center of the shaft portion 11 b of the fixed shaft 11 and opens inside the boss portion 31, so that the bearing 49 and the like positioned inside the boss portion 31 can be smoothly smoothed. Can be supplied with lubricating oil.
  • the scroll fluid machine 1 of the present invention is particularly effective for the refrigeration apparatus RC that uses carbon dioxide as a working fluid.
  • FIG. 7 shows a scroll type fluid machine 1 according to another embodiment of the present invention.
  • an oil supply hole 28 constituting the communication portion of the present invention is formed in the flange portion 11a at the lower portion of the fixed shaft 11.
  • the lower end of the oil supply hole 28 is located in the lubricating oil chamber 26 and is open, and the upper end opening communicates with the back pressure chamber 52, whereby the oil supply hole 28 is discharged from the compression section 3 in the present invention.
  • It functions as a hole (communication portion) that communicates the side (compression side discharge chamber 22) and the back pressure chamber 52.
  • the other configuration is basically the same as that of FIG. 1, and the check valve device 66 described above is attached to the oil supply hole 28 in this embodiment as well.
  • the boss portion 31 protruding from the back surface 7c of the movable scroll 7 becomes a so-called pocket, and the lubricating oil is applied to the bearing 49 and the like inside thereof. It is difficult to turn around and there is a danger.
  • the check valve device 66 may be arranged by forming the oil supply hole 28 in the flange portion 11a below the fixed shaft 11.
  • the ball stopper 68 of the check valve device 66 is pressed against the valve seat 69 by the spring 71.
  • the configuration is not limited thereto, and the configuration may be such that the weight of the ball stopper 68 contacts the valve seat 69.
  • the second predetermined value D2 is a value corresponding to the weight of the ball stopper 68.
  • the oil supply hole 28 and the relief hole 33 are formed in the fixed shaft 11.
  • the check valve device 66 is formed in the main frame 9, for example.
  • a relief valve device 67 may be attached.
  • each numerical value shown in the embodiment is not limited to that.

Abstract

[Problem] To make it possible for a scroll fluid machine that is a single-plate compressor-integrated expander to start easily and reliably and operate stably. [Solution] Coolant compressed in a compressing unit of a scroll fluid machine 1 is suctioned into a compressor on the high-pressure side, and high-pressure coolant compressed by the compressor on the high-pressure side is suctioned into the expander. The invention is provided with: a back pressure chamber 52 formed on a back surface 7c side of a moveable scroll 7, which is the opposite side from a substrate surface 7b; an oil-supply hole 28 and a relief hole 33 by which the back pressure chamber and the discharge side of the compressing unit communicate; a check valve device 66 provided in the supply hole 28, the direction from a compression-side discharge chamber 22 on the discharge side of the compressing unit to a lubricating oil chamber 26 on the rear pressure chamber side is the forward direction; and a relief valve 67 provided in the relief hole 33.

Description

スクロール型流体機械及びそれを用いた冷凍装置Scroll type fluid machine and refrigeration apparatus using the same
 本発明は、固定及び可動スクロールのラップ間に作動流体の膨張室と圧縮室を形成するスクロール型流体機械、及び、それを用いた冷凍装置に関するものである。 The present invention relates to a scroll type fluid machine that forms an expansion chamber and a compression chamber of a working fluid between wraps of fixed and movable scrolls, and a refrigeration apparatus using the scroll type fluid machine.
 この種のスクロール型流体機械としては、基面にラップを設けた可動スクロールと、基面にこの可動スクロールのラップと噛合うラップを設けた固定スクロールとから構成されるスクロールユニットを備え、このスクロールユニットの作動室を仕切り壁により膨張室と圧縮室とに仕切って、中心側の膨張部とその外側の圧縮部とを形成した単板式の圧縮機一体型膨張機が知られている(例えば、特許文献1参照)。 This type of scroll type fluid machine includes a scroll unit including a movable scroll provided with a lap on the base surface and a fixed scroll provided with a wrap meshing with the lap of the movable scroll on the base surface. There is known a single plate type compressor-integrated expander in which a working chamber of a unit is divided into an expansion chamber and a compression chamber by a partition wall to form a central expansion portion and an outer compression portion (for example, Patent Document 1).
 この場合、可動スクロールの基面とは反対側の背面には背圧室が構成されており、この背圧室には圧縮部の吐出圧力に保たれた作動流体を連通路を介して供給し、係る圧縮部の吐出側の圧力によって可動スクロールを固定スクロールに押し付けるように付勢する構成が採られていた。 In this case, a back pressure chamber is formed on the back surface opposite to the base surface of the movable scroll, and the working fluid maintained at the discharge pressure of the compression unit is supplied to the back pressure chamber via the communication path. Therefore, a configuration has been adopted in which the movable scroll is urged to be pressed against the fixed scroll by the pressure on the discharge side of the compression unit.
 そして、係るスクロール型流体機械は例えば給湯機等を加熱するヒートポンプに用いられ、高段側の圧縮機と、放熱器と、吸熱器(蒸発器)と共に冷凍装置の冷凍サイクルを構成する。この場合、高段側の圧縮機で圧縮された作動流体が放熱器に流入し、そこで放熱する。この作動流体は、高圧に保たれたままスクロール型流体機械の固定スクロール中心部から膨張部に吸入され、膨張部のラップ間に形成された膨張室で膨張することで可動スクロールが公転旋回運動されて動力が回収される。 Such a scroll type fluid machine is used, for example, in a heat pump for heating a hot water heater or the like, and constitutes a refrigeration cycle of a refrigeration apparatus together with a high-stage compressor, a radiator, and a heat absorber (evaporator). In this case, the working fluid compressed by the high-stage compressor flows into the radiator and radiates heat there. This working fluid is sucked into the expansion portion from the center portion of the fixed scroll of the scroll type fluid machine while being kept at a high pressure, and is expanded in an expansion chamber formed between the wraps of the expansion portion, whereby the movable scroll is revolved. Power is recovered.
 スクロール型流体機械の膨張部を出た作動流体(冷媒)は吸熱器に流入して蒸発し、吸熱作用を発揮した後、スクロール型流体機械の固定スクロールの外周部から圧縮部に吸入される。この圧縮部に吸入された作動流体は、膨張部で回収された動力により、圧縮部のラップ間に形成された圧縮室で圧縮される。即ち、スクロール型流体機械の圧縮部は低段側となり、この低段側の圧縮部で圧縮された作動流体が高段側の圧縮機に吸い込まれる循環を繰り返すものであった(例えば、特許文献2参照)。 The working fluid (refrigerant) that has exited the expansion part of the scroll type fluid machine flows into the heat absorber and evaporates. After exerting the endothermic action, the working fluid is sucked into the compression part from the outer peripheral part of the fixed scroll of the scroll type fluid machine. The working fluid sucked into the compression unit is compressed in the compression chamber formed between the wraps of the compression unit by the power recovered by the expansion unit. That is, the compression unit of the scroll type fluid machine is on the lower stage side, and the working fluid compressed by the lower stage compression unit is repeatedly circulated by being sucked into the higher stage compressor (for example, Patent Documents). 2).
 この場合、従来の冷凍装置では特許文献2の図4に示されるように、スクロール型流体機械の圧縮部の吸入側と吐出側とをバイパスするバイパス管を設けている。このバイパス管には開閉弁が介設されており、高段側の圧縮機の起動時のみこの開閉弁を開くことで低段側の圧縮部をバイパスするようにしていた。その目的は、高段側の圧縮機が作動流体を吸入し易くすることにより、当該高段側の圧縮機の吐出圧力を速やかに上昇させ、膨張部に加わる動力を早期に増大させることで、スクロール型流体機械の速やかな起動を企図することであった。 In this case, as shown in FIG. 4 of Patent Document 2, the conventional refrigeration apparatus is provided with a bypass pipe that bypasses the suction side and the discharge side of the compression unit of the scroll type fluid machine. The bypass pipe is provided with an opening / closing valve. By opening the opening / closing valve only when the high-stage compressor is started, the low-stage compression section is bypassed. The purpose is to increase the discharge pressure of the high-stage compressor quickly and increase the power applied to the expansion part early by making the high-stage compressor easily suck the working fluid. It was intended to start the scroll fluid machine quickly.
特許第5209764号公報Japanese Patent No. 5209964 特許第3953871号公報Japanese Patent No. 3953871
 上記の如く従来の冷凍装置では、高段側の圧縮機の起動時にスクロール型流体機械の圧縮部(低段側の圧縮部)の吸入側と吐出側とをバイパス管によりバイパスさせていたが、係るバイパス管を設けずに高段側の圧縮機の起動時より、スクロール型流体機械の圧縮部から作動流体を吸入したほうが、スクロール型流体機械が起動し易くなると考えられる。 As described above, in the conventional refrigeration system, when the high-stage compressor is started, the suction side and the discharge side of the compression unit (low-stage compression unit) of the scroll type fluid machine are bypassed by the bypass pipe. It is considered that it is easier to start the scroll type fluid machine if the working fluid is sucked from the compression part of the scroll type fluid machine than when the high stage compressor is started without providing such a bypass pipe.
 何故ならば、高段側の圧縮機によりスクロール型流体機械の圧縮部の吐出側から作動流体が吸入されることで、当該スクロール型流体機械の圧縮部の吐出側の圧力が当該圧縮部の吸入側よりも低くなり、その圧力差はスクロール型流体機械の圧縮部で作動流体を圧縮する方向の起動トルクをスクロール型流体機械に対し、発生させるからである。即ち、膨張部で回収される動力に加えて、圧縮部でも動力が発生し、スクロール型流体機械が起動し易くなる。 This is because when the working fluid is sucked in from the discharge side of the compression unit of the scroll type fluid machine by the high-stage compressor, the pressure on the discharge side of the compression unit of the scroll type fluid machine causes the suction of the compression unit. This is because the pressure difference is lower than the pressure side, and a starting torque is generated in the scroll type fluid machine in the direction of compressing the working fluid in the compression part of the scroll type fluid machine. That is, in addition to the power recovered in the expansion part, power is also generated in the compression part, and the scroll fluid machine is easily started.
 しかしながら、スクロール型流体機械は前述した如く可動スクロールの背圧として圧縮部の吐出側の圧力が供給され、この背圧によって可動スクロールが固定スクロールに押し付けられる構造であるため、高段側の圧縮機の起動時にスクロール型流体機械の圧縮部の吐出側の圧力が当該圧縮部の吸入側よりも低くなると、可動スクロールの背圧は確実に不足してしまう。そのため、可動スクロールが固定スクロールから引き離されてしまい、ラップ間に前述した膨張室や圧縮室を形成することができなくなって、スクロール型流体機械が起動不能に陥るという問題がある。 However, since the scroll type fluid machine has a structure in which the pressure on the discharge side of the compression unit is supplied as the back pressure of the movable scroll as described above, and the movable scroll is pressed against the fixed scroll by this back pressure, the high-stage compressor If the pressure on the discharge side of the compression part of the scroll type fluid machine becomes lower than the suction side of the compression part at the time of starting, the back pressure of the movable scroll is surely insufficient. For this reason, the movable scroll is separated from the fixed scroll, and the expansion chamber and the compression chamber cannot be formed between the wraps, and the scroll type fluid machine cannot be started.
 そこで、スクロール型流体機械の起動時には圧縮部の吐出側と背圧室とを連通する連通路を逆止弁によって塞ぎ、背圧室から圧縮部の吐出側に圧力が逃げないようにする方法が考えられる。しかしながら、起動時における背圧室と圧縮部の吐出側の圧力との差が大きくなり過ぎると、可動スクロールを固定スクロールに押し付ける力が過大となって、機械損が増大し、起動不能に陥る問題がある。 Therefore, at the time of starting the scroll type fluid machine, there is a method of blocking the communication path connecting the discharge side of the compression unit and the back pressure chamber with a check valve so that pressure does not escape from the back pressure chamber to the discharge side of the compression unit. Conceivable. However, if the difference between the back pressure chamber at the time of startup and the pressure on the discharge side of the compression section becomes too large, the force that presses the movable scroll against the fixed scroll becomes excessive, resulting in increased mechanical loss and inability to start up. There is.
 また、起動後の安定時には背圧室の圧力を圧縮部の吐出側の圧力としなければならず、背圧室の圧力が高いままでは、やはり可動スクロールを固定スクロールに押し付ける力が過大となり、機械損が増大して最悪の場合には運転不能に陥る。そのため、逆止弁を例えばリード弁などで構成した場合、当該リード弁に微小な孔を穿設するなどの細工を施さなければならなくなるが、この孔に作動流体中に混入した異物が詰まると、孔として機能しなくなる。更に、この異物がリード弁と弁座の間に挟まった場合(噛み込み)には、これを除去することが困難となってやはり起動できなくなる問題もある。 In addition, the pressure in the back pressure chamber must be set to the pressure on the discharge side of the compression unit when it is stable after startup. If the pressure in the back pressure chamber remains high, the force to press the movable scroll against the fixed scroll will be excessive. Loss increases and in the worst case, driving becomes impossible. For this reason, when the check valve is constituted by, for example, a reed valve, it is necessary to make a fine work such as making a minute hole in the reed valve, but if this hole is clogged with foreign matter mixed in the working fluid No longer function as a hole. Furthermore, when this foreign matter is caught between the reed valve and the valve seat (biting), there is a problem that it becomes difficult to remove the foreign matter and it cannot be activated.
 本発明は、係る従来の様々な技術的課題を解決するために成されたものであり、高段側の圧縮機と共に冷凍装置の低段側の圧縮部を構成する単板式の圧縮機一体型膨張機であるスクロール型流体機械において、その起動を容易且つ確実に行い、安定して運転することができるようにすることを目的とする。 The present invention has been made to solve various conventional technical problems, and is a single plate type compressor integrated type that constitutes a low-stage compression section of a refrigeration apparatus together with a high-stage compressor. In a scroll type fluid machine that is an expander, an object is to easily and surely start it up and to operate stably.
 上記課題を解決するために、本発明のスクロール型流体機械は、各基板の各基面にそれぞれ渦巻き状のラップが対向して形成された固定スクロール及び可動スクロールから構成され、両スクロールの各ラップ間に形成された膨張室で作動流体を膨張させることにより、可動スクロールを公転旋回運動させて動力を回収する膨張部と、この膨張部で回収された動力により、両スクロールの各ラップ間に形成された圧縮室で作動流体を圧縮する低段側の圧縮部とを備え、この圧縮部で圧縮された作動流体が高段側の圧縮機に吸入され、当該高段側の圧縮機で圧縮された高圧の作動流体を膨張部に吸入するものであって、可動スクロールの基面とは反対側である背面側に形成された背圧室と、圧縮部の吐出側と背圧室とをそれぞれ連通するための連通部及びリリーフ部と、連通部に設けられ、圧縮部の吐出側から背圧室側へ向かう方向が順方向とされた逆止弁装置と、リリーフ部に設けられ、常には当該リリーフ部を閉じており、圧縮部の吐出側の圧力が背圧室の圧力より低くなって、その差が第1の所定値D1より拡大した場合にリリーフ部を開くリリーフ弁装置と、を
備えたことを特徴とする。
In order to solve the above-mentioned problems, a scroll type fluid machine according to the present invention is composed of a fixed scroll and a movable scroll each having a spiral wrap formed on each base surface of each substrate so as to face each other. Formed between each lap of both scrolls by expanding the working fluid in the expansion chamber formed between them, revolving the revolving motion of the movable scroll to recover the power, and the power recovered by this expansion section And a low-stage compression section that compresses the working fluid in the compressed chamber, and the working fluid compressed by the compression section is sucked into the high-stage compressor and compressed by the high-stage compressor. The high pressure working fluid is sucked into the expansion part, and the back pressure chamber formed on the back side opposite to the base surface of the movable scroll, the discharge side and the back pressure chamber of the compression part, respectively Communication for communication And a relief part, and a check valve device provided in the communication part, in which the direction from the discharge side to the back pressure chamber side of the compression part is the forward direction, and provided in the relief part. The relief part is always closed. And a relief valve device that opens the relief part when the pressure on the discharge side of the compression part is lower than the pressure in the back pressure chamber and the difference is larger than the first predetermined value D1. And
 請求項2の発明のスクロール型流体機械は、上記発明において逆止弁装置は、常には連通部を閉じており、背圧室の圧力が圧縮部の吐出側の圧力より低くなって、その差が第2の所定値D2より拡大した場合に連通部を開くことを特徴とする。 In the scroll type fluid machine according to the second aspect of the present invention, in the above invention, the check valve device always closes the communication portion, and the pressure in the back pressure chamber becomes lower than the pressure on the discharge side of the compression portion. Is characterized in that the communication portion is opened when the value is larger than the second predetermined value D2.
 請求項3の発明のスクロール型流体機械は、上記各発明において逆止弁装置及びリリーフ弁装置は、ボール栓とこのボール栓を弁座に押し付けるバネによりそれぞれ構成されており、ボール栓は弁座に線接触することを特徴とする。 In the scroll type fluid machine of the invention of claim 3, in each of the above inventions, the check valve device and the relief valve device are each constituted by a ball plug and a spring for pressing the ball plug against the valve seat. It is characterized in that it is in line contact.
 請求項4の発明のスクロール型流体機械は、上記発明において逆止弁装置及びリリーフ弁装置は、潤滑油が貯留される潤滑油室に位置していることを特徴とする。 The scroll type fluid machine of the invention of claim 4 is characterized in that, in the above invention, the check valve device and the relief valve device are located in a lubricating oil chamber in which lubricating oil is stored.
 請求項5の発明のスクロール型流体機械は、上記発明において連通部及びリリーフ部は可動スクロールの支持機構を構成する固定軸に形成されていることを特徴とする。 A scroll type fluid machine according to a fifth aspect of the present invention is characterized in that, in the above invention, the communicating portion and the relief portion are formed on a fixed shaft constituting a support mechanism of the movable scroll.
 請求項6の発明のスクロール型流体機械は、上記発明において連通部は、固定軸の中心に貫通形成されていることを特徴とする。 A scroll type fluid machine according to a sixth aspect of the present invention is characterized in that, in the above invention, the communicating portion is formed through the center of the fixed shaft.
 請求項7の発明の冷凍装置は、請求項1乃至請求項6のうちの何れかに記載のスクロール型流体機械と、高段側の圧縮機とを備えて構成され、スクロール型流体機械の圧縮部の吐出側より高段側の圧縮機に作動流体を吸入し、当該高段側の圧縮機で圧縮された高圧の作動流体をスクロール型流体機械の膨張部に吸入させると共に、高段側の圧縮機の起動時からスクロール型流体機械の圧縮部より作動流体を吸入することを特徴とする。 A refrigeration apparatus according to a seventh aspect of the invention comprises the scroll type fluid machine according to any one of the first to sixth aspects and a high-stage compressor, and the compression of the scroll type fluid machine. The working fluid is sucked into the higher stage compressor than the discharge side of the part, the high pressure working fluid compressed by the higher stage compressor is sucked into the expansion part of the scroll type fluid machine, and the higher stage side The working fluid is sucked from the compression portion of the scroll type fluid machine from the start of the compressor.
 請求項8の発明の冷凍装置は、上記発明において作動流体として二酸化炭素を使用したことを特徴とする。 The refrigeration apparatus of the invention of claim 8 is characterized in that carbon dioxide is used as a working fluid in the above invention.
 本発明によれば、各基板の各基面にそれぞれ渦巻き状のラップが対向して形成された固定スクロール及び可動スクロールから構成され、両スクロールの各ラップ間に形成された膨張室で作動流体を膨張させることにより、可動スクロールを公転旋回運動させて動力を回収する膨張部と、この膨張部で回収された動力により、両スクロールの各ラップ間に形成された圧縮室で作動流体を圧縮する低段側の圧縮部とを備え、この圧縮部で圧縮された作動流体が高段側の圧縮機に吸入され、当該高段側の圧縮機で圧縮された高圧の作動流体を膨張部に吸入するスクロール型流体機械において、可動スクロールの基面とは反対側である背面側に形成された背圧室と、圧縮部の吐出側と背圧室とを連通するための連通部と、この連通部に設けられ、圧縮部の吐出側から背圧室側へ向かう方向が順方向とされた逆止弁装置を備えているので、請求項7の発明の如くスクロール型流体機械の圧縮部の吐出側より高段側の圧縮機に作動流体を吸入し、当該高段側の圧縮機で圧縮された高圧の作動流体をスクロール型流体機械の膨張部に吸入させる冷凍装置に本発明のスクロール型流体機械が使用され、且つ、高段側の圧縮機の起動時からスクロール型流体機械の圧縮部より作動流体が吸入されるように構成した場合にも、逆止弁装置によって高段側の圧縮機の起動時にスクロール型流体機械の背圧室の圧力が急激に低下する不都合が防止される。 According to the present invention, a fixed scroll and a movable scroll each having a spiral wrap formed on each base surface of each substrate are opposed to each other, and the working fluid is supplied in an expansion chamber formed between the wraps of both scrolls. By expanding, the expanding part that revolves the movable scroll to recover the power, and the power recovered by the expanding part, the working fluid is compressed in the compression chamber formed between the laps of both scrolls. And a working fluid compressed by the compressor is sucked into the high-stage compressor, and a high-pressure working fluid compressed by the high-stage compressor is sucked into the expansion portion. In the scroll type fluid machine, a back pressure chamber formed on the back side opposite to the base surface of the movable scroll, a communication portion for communicating the discharge side of the compression portion and the back pressure chamber, and the communication portion Provided in the pressure Since the check valve device in which the direction from the discharge side to the back pressure chamber side is the forward direction is provided, the higher-stage side than the discharge side of the compression part of the scroll type fluid machine as in the invention of claim 7 is provided. The scroll type fluid machine of the present invention is used in a refrigeration apparatus that sucks a working fluid into a compressor and sucks the high pressure working fluid compressed by the high-stage side compressor into the expansion part of the scroll type fluid machine, and Even when the working fluid is sucked from the compression unit of the scroll type fluid machine from the time of starting the high stage side compressor, the scroll type fluid is also generated when the high stage side compressor is started by the check valve device. The inconvenience that the pressure in the back pressure chamber of the machine rapidly decreases is prevented.
 これにより、従来の如くスクロール型流体機械の圧縮部をバイパスせず、高段側の圧縮機の起動時からスクロール型流体機械の圧縮部より作動流体を吸入するようにしても、可動スクロールは固定スクロールから剥がれること無く、当該固定スクロールに押し付けられるようになり、スクロール型流体機械は起動可能になる。そして、高段側の圧縮機で圧縮部の吐出側から作動流体を吸入することで、圧縮部の吐出側の圧力が当該圧縮部の吸入側の圧力より低くなる。これにより、スクロール型流体機械には起動トルクが発生するので、従来に比して容易に起動させることができるようになる。 As a result, the movable scroll is fixed even if the working fluid is sucked from the compression unit of the scroll type fluid machine from the start of the high-stage compressor without bypassing the compression unit of the scroll type fluid machine as in the prior art. The scroll type fluid machine can be activated without being peeled off from the scroll and pressed against the fixed scroll. Then, by sucking the working fluid from the discharge side of the compression unit with the high-stage compressor, the pressure on the discharge side of the compression unit becomes lower than the pressure on the suction side of the compression unit. Thereby, since a starting torque is generated in the scroll type fluid machine, it is possible to start up more easily than in the prior art.
 特に、本発明では圧縮部の吐出側と背圧室とを連通するためのリリーフ部と、常にはこのリリーフ部を閉じており、圧縮部の吐出側の圧力が背圧室の圧力より低くなって、その差が第1の所定値D1より拡大した場合にリリーフ部を開くリリーフ弁装置をリリーフ部に設けているので、スクロール型流体機械の起動時に圧縮部の吐出側と背圧室とを連通する連通部を逆止弁装置によって閉じ、背圧室から圧縮部の吐出側に圧力が逃げないようにしたことで、圧縮部の吐出側の圧力が低下し、背圧室との圧力差が拡大して、その差が第1の所定値D1を超えた場合には、リリーフ弁装置が開いて背圧室の圧力を圧縮部の吐出側に逃がすことができるようになる。 In particular, in the present invention, the relief part for communicating the discharge side of the compression part and the back pressure chamber is always closed, and the relief part is always closed, and the pressure on the discharge side of the compression part is lower than the pressure of the back pressure chamber. Since the relief valve device is provided in the relief portion for opening the relief portion when the difference is larger than the first predetermined value D1, the discharge side of the compression portion and the back pressure chamber are connected when the scroll fluid machine is started. The communicating part is closed by a check valve device so that pressure does not escape from the back pressure chamber to the discharge side of the compression part, so that the pressure on the discharge side of the compression part decreases, and the pressure difference from the back pressure chamber When the difference increases and the difference exceeds the first predetermined value D1, the relief valve device opens and the pressure in the back pressure chamber can be released to the discharge side of the compression unit.
 これにより、スクロール型流体機械の起動時における背圧室と圧縮部の吐出側の圧力との差が大きくなり過ぎ、可動スクロールを固定スクロールに押し付ける力が過大となって機械損が増大し、起動不能に陥る不都合も未然に回避することができるようになる。 As a result, the difference between the back pressure chamber and the pressure on the discharge side of the compression part at the time of starting the scroll type fluid machine becomes too large, and the force that presses the movable scroll against the fixed scroll becomes excessive, increasing the mechanical loss and starting. The inconvenience of being impossible can be avoided in advance.
 この場合、例えば請求項2の発明の如く、逆止弁装置が常には連通部を閉じており、背圧室の圧力が圧縮部の吐出側の圧力より低くなって、その差が第2の所定値D2より拡大した場合に連通部を開くようにすることで、リリーフ弁装置との協働により、背圧室の圧力を圧縮部の吐出側の圧力-第2の所定値D2以上、圧縮部の吐出側の圧力+第1の所定値D1以下の範囲内に制御することが可能となり、総じてスクロール型流体機械の起動を容易且つ確実に行い、安定した運転を実現することができるようになる。 In this case, for example, as in the invention of claim 2, the check valve device always closes the communication portion, the pressure in the back pressure chamber becomes lower than the pressure on the discharge side of the compression portion, and the difference is the second difference. By opening the communication portion when the pressure is larger than the predetermined value D2, the pressure in the back pressure chamber is compressed by the pressure on the discharge side of the compression portion minus the second predetermined value D2 or more in cooperation with the relief valve device. It is possible to control within the range of the pressure on the discharge side of the section + the first predetermined value D1 or less, so that the scroll-type fluid machine can be started easily and reliably as a whole, and a stable operation can be realized. Become.
 また、請求項3の発明の如く逆止弁装置及びリリーフ弁装置を、ボール栓とこのボール栓を弁座に押し付けるバネによりそれぞれ構成し、ボール栓が弁座に線接触するようにすることで、高段側の圧縮機の起動後、逆止弁装置やリリーフ弁装置のボール栓と弁座の間から少しずつ圧力が圧縮部の吐出側に漏れるようになる。即ち、停止中に圧縮部の吐出側の圧力より高い平衡圧まで上昇している背圧室の圧力は、高段側の圧縮機が起動した後、少しずつ低下していくことになる。 Further, as in the invention of claim 3, the check valve device and the relief valve device are respectively constituted by a ball stopper and a spring for pressing the ball stopper against the valve seat, and the ball stopper is in line contact with the valve seat. After the high-stage compressor is started, pressure gradually leaks from between the ball plug and the valve seat of the check valve device or relief valve device to the discharge side of the compression unit. That is, the pressure in the back pressure chamber that has risen to an equilibrium pressure higher than the pressure on the discharge side of the compressor during the stop is gradually reduced after the high-stage compressor is started.
 これにより、スクロール型流体機械の起動後に早期に背圧室の圧力を圧縮部の吐出側の圧力まで下げることができるようになり、可動スクロールに加わる背圧を迅速に適正値とすることができるようになる。 As a result, the pressure in the back pressure chamber can be lowered to the pressure on the discharge side of the compression unit early after the scroll type fluid machine is started, and the back pressure applied to the movable scroll can be quickly set to an appropriate value. It becomes like this.
 また、ボール栓と弁座の間には異物が挟まりにくく、仮に挟まったとしても圧力変化によるボール栓の移動で除去されることになる。特に、請求項5の発明の如く連通部及びリリーフ部を可動スクロールの支持機構を構成する固定軸に形成し、請求項4の発明の如く逆止弁装置及びリリーフ弁装置を、潤滑油が貯留される潤滑油室に位置させることで、シール機能と異物の除去機能を効果的に発揮させることができるようになる。 Also, foreign matter is hard to be caught between the ball stopper and the valve seat, and even if it is caught, it will be removed by the movement of the ball stopper due to pressure change. In particular, the communication portion and the relief portion are formed on the fixed shaft constituting the movable scroll support mechanism as in the invention of claim 5, and the check valve device and the relief valve device are stored in the lubricating oil as in the invention of claim 4. By being positioned in the lubricating oil chamber, the sealing function and the foreign substance removal function can be effectively exhibited.
 尚、可動スクロールの背面には当該可動スクロールの支持機構を構成するボス部が通常突設されているが、請求項6の発明の如く連通部を、固定軸の中心に貫通形成すれば、係るボス部の内側にも潤滑油を支障無く供給することが可能となる。 In addition, although the boss | hub part which comprises the support mechanism of the said movable scroll is normally protrudingly provided in the back of the movable scroll, if a communicating part is penetrated and formed in the center of a fixed axis like invention of Claim 6, it will be related Lubricating oil can be supplied to the inside of the boss part without any problem.
 そして、上記各発明は、請求項8の発明の如き二酸化炭素を作動流体として使用する冷凍装置に特に有効である。 Each of the above inventions is particularly effective for a refrigeration apparatus using carbon dioxide as a working fluid as in the invention of claim 8.
本発明を適用した一実施例のスクロール型流体機械の縦断側面図である。It is a vertical side view of the scroll type fluid machine of one example to which the present invention is applied. 図1の固定スクロールを基面側から見た平面図である。It is the top view which looked at the fixed scroll of FIG. 1 from the base surface side. 図2のA-A線断面図である。FIG. 3 is a sectional view taken along line AA in FIG. 2. 図1のスクロール型流体機械の逆止弁装置部分の拡大断面図である。It is an expanded sectional view of the check valve device part of the scroll type fluid machine of FIG. 図1のスクロール型流体機械を用いた一実施例の冷凍装置の冷凍サイクルを示す図である。It is a figure which shows the refrigerating cycle of the freezing apparatus of one Example using the scroll type fluid machine of FIG. 図1のスクロール型流体機械の各部の圧力の変化を説明する図である。It is a figure explaining the change of the pressure of each part of the scroll type fluid machine of FIG. 本発明を適用した他の実施例のスクロール型流体機械の縦断側面図である。It is a vertical side view of the scroll type fluid machine of other examples to which the present invention is applied.
 以下、本発明の実施の形態について、詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail.
 (1)スクロール型流体機械1の基本構造
 図1は、本発明の一実施例のスクロール型流体機械1の縦断側面図を示している。実施例のスクロール型流体機械1は、例えば、縦置き型単板式の圧縮機一体型膨張機であり、高圧側が超臨界圧力となる二酸化炭素を冷媒(作動流体)として使用した冷凍装置RCの冷凍サイクルに用いられる(図5)。この冷凍装置RCの構成については後に詳述するが、図示しない空気調和機やヒートポンプ式給湯機等にヒートポンプとして組み込まれるものである。そして、実施例のスクロール型流体機械1は冷媒の圧力によって膨張動作を行う膨張部2と、この膨張部2の膨張動作によって圧縮動作を行う圧縮部3(低段側)とを備えている(図1、図2)。
(1) Basic Structure of Scroll Type Fluid Machine 1 FIG. 1 shows a vertical side view of a scroll type fluid machine 1 according to an embodiment of the present invention. The scroll type fluid machine 1 of the embodiment is, for example, a vertically installed single-plate type compressor-integrated expander, and refrigeration of a refrigeration apparatus RC that uses carbon dioxide whose high pressure side is a supercritical pressure as a refrigerant (working fluid). Used in the cycle (FIG. 5). Although the configuration of the refrigeration apparatus RC will be described in detail later, the refrigeration apparatus RC is incorporated as a heat pump in an air conditioner or a heat pump type hot water heater (not shown). The scroll fluid machine 1 according to the embodiment includes an expansion unit 2 that performs an expansion operation by the pressure of the refrigerant, and a compression unit 3 (low stage side) that performs a compression operation by the expansion operation of the expansion unit 2 ( FIG. 1, FIG. 2).
 スクロール型流体機械1はハウジング4を備えている。このハウジング4内には、主として固定スクロール6とこの固定スクロール6に対し公転旋回運動される可動スクロール7とから構成されるスクロールユニット8と、可動スクロール7を公転旋回運動可能に支持するフレームとしてのメインフレーム9と、このメインフレーム9の底面に下部のフランジ部11aが固定され、中央の軸部11bが当該メインフレーム9の底面から突出して設けられた固定軸11とが配設されている。 The scroll fluid machine 1 includes a housing 4. In the housing 4, a scroll unit 8 mainly composed of a fixed scroll 6 and a movable scroll 7 that revolves with respect to the fixed scroll 6, and a frame that supports the movable scroll 7 so that it can revolve. A main frame 9, and a lower flange portion 11 a are fixed to the bottom surface of the main frame 9, and a fixed shaft 11 provided with a central shaft portion 11 b protruding from the bottom surface of the main frame 9.
 そして、メインフレーム9の外周部はハウジング4の内側に固定されており、密閉されたハウジング4内には、スクロール型流体機械1の作動流体として冷凍装置RCの冷凍サイクルから取り込んだ冷媒(二酸化炭素)を圧縮部3にて圧縮した圧力が作用している。 The outer peripheral portion of the main frame 9 is fixed to the inside of the housing 4, and the refrigerant (carbon dioxide) taken in from the refrigeration cycle of the refrigeration apparatus RC as the working fluid of the scroll fluid machine 1 is enclosed in the sealed housing 4. ) Is compressed by the compression unit 3.
 ハウジング4には、冷凍装置RCの冷凍サイクルから取り込んだ冷媒を膨張部2に吸入する膨張側吸入管16が接続されている。また、ハウジング4には、膨張部2にて膨張された冷媒を冷凍装置RCの冷凍サイクルに向けて吐出する膨張側吐出管17(図3)と、圧縮部3にて圧縮された冷媒を冷凍装置RCの冷凍サイクルに向けて吐出する圧縮側吐出管18(図5)が接続されている。膨張側吸入管16と膨張側吐出管17の端部は、固定スクロール6の基板6a内に形成された膨張側吸入室19と膨張側吐出室21とにそれぞれ開口して連通され、圧縮側吐出管18の端部はハウジング4内に開口し、このハウジング4上部の内側に形成された圧縮部3の吐出側としての圧縮側吐出室22に連通されている。 Connected to the housing 4 is an expansion side suction pipe 16 that sucks into the expansion section 2 the refrigerant taken from the refrigeration cycle of the refrigeration apparatus RC. Further, the housing 4 has an expansion side discharge pipe 17 (FIG. 3) for discharging the refrigerant expanded in the expansion unit 2 toward the refrigeration cycle of the refrigeration apparatus RC, and the refrigerant compressed in the compression unit 3 is frozen. A compression-side discharge pipe 18 (FIG. 5) that discharges toward the refrigeration cycle of the device RC is connected. The ends of the expansion side suction pipe 16 and the expansion side discharge pipe 17 are opened and communicated with an expansion side suction chamber 19 and an expansion side discharge chamber 21 formed in the substrate 6 a of the fixed scroll 6, respectively. An end portion of the pipe 18 opens into the housing 4 and communicates with a compression side discharge chamber 22 as a discharge side of the compression portion 3 formed inside the upper portion of the housing 4.
 また、ハウジング4には、冷凍装置RCの冷凍サイクルから取り込んだ冷媒を圧縮部3に吸入する圧縮側吸入管23(図3)が接続され、この圧縮側吸入管23の端部は、固定スクロール6の基板6a内に形成された圧縮部の吸入側としての圧縮側吸入室24に連通されている。 Further, the housing 4 is connected with a compression side suction pipe 23 (FIG. 3) for sucking refrigerant taken from the refrigeration cycle of the refrigeration apparatus RC into the compression section 3, and an end portion of the compression side suction pipe 23 is fixed scroll. 6 is communicated with a compression side suction chamber 24 as a suction side of a compression portion formed in the substrate 6a.
 一方、ハウジング4底部の内側には潤滑油室26が形成され、この潤滑油室26にはスクロールユニット8を潤滑するための潤滑油が貯留される。前述した圧縮側吸入室23には、固定スクロール6の基板6a及びメインフレーム9を貫通する送油孔27(図2)が開口されており、この送油孔27を介して潤滑油室26の潤滑油が圧縮側吸入室24に送られる構成とされている。 On the other hand, a lubricating oil chamber 26 is formed inside the bottom of the housing 4, and lubricating oil for lubricating the scroll unit 8 is stored in the lubricating oil chamber 26. The compression side suction chamber 23 is provided with an oil feed hole 27 (FIG. 2) penetrating the substrate 6 a and the main frame 9 of the fixed scroll 6, and the lubricating oil chamber 26 is formed through the oil feed hole 27. Lubricating oil is sent to the compression side suction chamber 24.
 固定スクロール6はメインフレーム9の上面部9aに固定され、固定スクロール6の基板6aの前述した圧縮側吸入室24よりも固定スクロール6の径方向で若干中心側には圧縮側吐出孔(図示せず)が貫通して形成されている。この圧縮側吐出孔の圧縮側吐出室22に対する開口部には、冷媒中の潤滑油を分離する図示しないオイルセパレータが装着されている。 The fixed scroll 6 is fixed to the upper surface portion 9a of the main frame 9, and a compression side discharge hole (not shown) is slightly located in the radial direction of the fixed scroll 6 with respect to the compression side suction chamber 24 of the substrate 6a of the fixed scroll 6 in the radial direction. Z). An oil separator (not shown) for separating the lubricating oil in the refrigerant is attached to the opening of the compression side discharge hole with respect to the compression side discharge chamber 22.
 可動スクロール7は、その基板7aの基面7bとは反対側の面である背面7cの外周部にてメインフレーム9の台座部9bにオルダムリング等の自転阻止機構(図示せず)を介して自転することなく公転旋回運動可能に支持されている。更に、可動スクロール7の背面7cには、偏心ブッシュ36が摺動且つ回動可能に嵌挿される円筒状のボス部(凹部)31が突設されている。 The movable scroll 7 is connected to a pedestal portion 9b of the main frame 9 through a rotation prevention mechanism (not shown) such as an Oldham ring at the outer peripheral portion of the back surface 7c which is the surface opposite to the base surface 7b of the substrate 7a. It is supported so that it can revolve without rotating. Further, a cylindrical boss portion (concave portion) 31 into which the eccentric bush 36 is slidably and rotatably fitted is projected on the back surface 7c of the movable scroll 7.
 上述した固定軸11はメインフレーム9と共に可動スクロール7をその背面7cの中心部にて公転旋回運動可能に支持する支持機構54を構成している。この場合、固定軸11の軸部11bの上端部はスライドブッシュ56の内側に、ベアリング49によって摺動且つ回転可能に挿入されており、このスライドブッシュ56は偏心ブッシュ36内に、その偏心方向に移動可能に収納されている。即ち、固定軸11の軸部11bの上端部は、スライドブッシュ56を介して偏心ブッシュ36内に挿入されたかたちとされている。また、スライドブッシュ56と偏心ブッシュ36間にはバネ(図示せず)が介設されている。このバネによりスライドブッシュ56は偏心方向に常時付勢され、これによって両スクロール6、7の芯ずれが調整されるよう構成されている。 The fixed shaft 11 described above constitutes a support mechanism 54 that supports the movable scroll 7 together with the main frame 9 so as to be capable of revolving and turning at the center of the back surface 7c. In this case, the upper end portion of the shaft portion 11b of the fixed shaft 11 is inserted inside the slide bush 56 so as to be slidable and rotatable by the bearing 49. The slide bush 56 is inserted into the eccentric bush 36 in the eccentric direction. It is stored movably. That is, the upper end portion of the shaft portion 11 b of the fixed shaft 11 is inserted into the eccentric bush 36 through the slide bush 56. A spring (not shown) is interposed between the slide bush 56 and the eccentric bush 36. By this spring, the slide bush 56 is always urged in the eccentric direction, and thereby the misalignment of the scrolls 6 and 7 is adjusted.
 そして、偏心ブッシュ36は、軸受48を介してボス部31に摺動且つ回転可能に嵌挿されている。軸受48は、可動スクロール7の公転旋回運動に伴い偏心ブッシュ36に作用するラジアル荷重を受容する。また、偏心ブッシュ36の下端の鍔部とメインフレーム9との間にベアリング51が配設されている。このように、固定軸11はベアリング49、スライドブッシュ56、偏心ブッシュ36、軸受48、ベアリング51を介して可動スクロール7を公転旋回運動可能に支持しており、支持機構54は、上記ボス部31、偏心ブッシュ36、スライドブッシュ56、固定軸11と、前述したバネにより構成される。 The eccentric bush 36 is slidably inserted into the boss 31 via a bearing 48. The bearing 48 receives a radial load that acts on the eccentric bush 36 as the orbiting scroll 7 revolves. Further, a bearing 51 is disposed between the lower end of the eccentric bush 36 and the main frame 9. As described above, the fixed shaft 11 supports the movable scroll 7 through the bearing 49, the slide bush 56, the eccentric bush 36, the bearing 48, and the bearing 51 so as to be capable of revolving, and the support mechanism 54 includes the boss portion 31. The eccentric bush 36, the slide bush 56, the fixed shaft 11, and the spring described above.
 ここで、実施形態のスクロールユニット8は、圧縮機一体型膨張機において、一組の固定スクロール6及び可動スクロール7によって冷媒の作動室としての圧縮部3の圧縮室と膨張部2の膨張室との両方を形成可能な、いわゆる単板式スクロールユニットであり、固定軸11は、メインフレーム9と共に可動スクロール7を公転旋回運動可能に支持するのみであって、固定軸11自体が回転駆動されることはない。 Here, the scroll unit 8 of the embodiment is a compressor-integrated expander, and includes a compression chamber of the compression unit 3 and an expansion chamber of the expansion unit 2 as a refrigerant working chamber by a pair of fixed scroll 6 and movable scroll 7. The fixed shaft 11 only supports the movable scroll 7 together with the main frame 9 so as to be capable of revolving, and the fixed shaft 11 itself is driven to rotate. There is no.
 詳しくは、図2に示すように、固定スクロール6の基面6bには、環状の中間仕切り壁(環状壁)38と、環状の外側仕切り壁39とが立設され、中間仕切り壁38と外側仕切り壁(環状壁)39との間には渦巻状の外側固定スクロールラップ(ラップ)40、中間仕切り壁38よりも中心側には渦巻状の内側固定スクロールラップ(ラップ)41がそれぞれ立設されている。また、基面6bには図示しないシールリングが嵌挿される環状溝42が中間仕切り壁38の端面に凹設されている。この環状溝42のシールリングによってスクロールユニット8内は内側の膨張部2側と外側の圧縮部3側とに仕切られることになる。 In detail, as shown in FIG. 2, an annular intermediate partition wall (annular wall) 38 and an annular outer partition wall 39 are erected on the base surface 6 b of the fixed scroll 6. A spiral outer fixed scroll wrap (wrap) 40 is provided between the partition wall (annular wall) 39 and a spiral inner fixed scroll wrap (wrap) 41 is provided on the center side of the intermediate partition wall 38. ing. Further, an annular groove 42 into which a seal ring (not shown) is inserted is recessed in the end surface of the intermediate partition wall 38 on the base surface 6b. By the seal ring of the annular groove 42, the inside of the scroll unit 8 is partitioned into an inner expansion portion 2 side and an outer compression portion 3 side.
 固定スクロール6の基板6aには、前述した圧縮側吸入室24が外側仕切り壁39の若干内側の圧縮部3の外周端に形成され、中間仕切り壁38の若干外側の圧縮部3の内周端
に圧縮側吐出孔32が形成されている。また、基板6aには、前述した膨張側吐出室21が中間仕切り壁38の若干内側の膨張部2の外周端に形成され、前述した膨張側吸入室19が膨張部2の内周端である中心部に形成されている。更に、基板6aには、外側仕切り壁39の若干外側に環状の油溝43が形成され、油溝43上に設けられた溝幅よりも大きい直径で所定の深さで座ぐり加工を施して形成した凹部の底面に前述した送油孔27が形成されている。
On the substrate 6 a of the fixed scroll 6, the above-described compression side suction chamber 24 is formed at the outer peripheral end of the compression portion 3 slightly inside the outer partition wall 39, and the inner peripheral end of the compression portion 3 slightly outside the intermediate partition wall 38. A compression-side discharge hole 32 is formed in the upper part. In addition, the expansion side discharge chamber 21 described above is formed on the outer peripheral end of the expansion portion 2 slightly inside the intermediate partition wall 38 on the substrate 6a, and the expansion side suction chamber 19 described above is the inner peripheral end of the expansion portion 2. It is formed at the center. Furthermore, an annular oil groove 43 is formed on the substrate 6a slightly outside the outer partition wall 39, and is countersunk at a predetermined depth with a diameter larger than the groove width provided on the oil groove 43. The oil feed hole 27 described above is formed on the bottom surface of the formed recess.
 一方、可動スクロール7の基面7bには、外側固定スクロールラップ40に噛合う渦巻状の外側可動スクロールラップ(ラップ)44と、内側固定スクロールラップ41に噛合う渦巻状の内側可動スクロールラップ(ラップ)46とが相反する渦巻の方向で立設されている。 On the other hand, on the base surface 7 b of the movable scroll 7, a spiral outer movable scroll wrap (wrap) 44 that meshes with the outer fixed scroll wrap 40 and a spiral inner movable scroll wrap (wrap) that meshes with the inner fixed scroll wrap 41. ) 46 is erected in the direction of the opposite spiral.
 上述したスクロールユニット8によれば、中間仕切り壁38よりも内側に膨張部2が形成され、中間仕切り壁38と外側仕切り壁39との間に圧縮部3が形成される。詳しくは、図1中に実線矢印で示すように、膨張側吸入管16から吸入された冷媒は、膨張側吸入室19を経て膨張部2の中心部に取り込まれ、各スクロール6、7が互いに協働することによって各ラップ41、46間に形成された膨張室(作動室)にて膨張される。膨張室は、各スクロール6、7の外周側に向けて移動しながらその容積が増大され、これに伴い可動スクロール7が固定スクロール6の軸心周りに公転旋回運動される。可動スクロール7の公転旋回運動に供した冷媒は、膨張側吐出室21を経て膨張側吐出管17を介しハウジング4外の冷凍装置RCの冷凍サイクルに向けて吐出される。 According to the scroll unit 8 described above, the expansion part 2 is formed inside the intermediate partition wall 38, and the compression part 3 is formed between the intermediate partition wall 38 and the outer partition wall 39. Specifically, as indicated by solid line arrows in FIG. 1, the refrigerant sucked from the expansion side suction pipe 16 is taken into the central portion of the expansion portion 2 through the expansion side suction chamber 19, and the scrolls 6, 7 are mutually connected. By cooperating, it is expanded in an expansion chamber (working chamber) formed between the laps 41 and 46. The volume of the expansion chamber is increased while moving toward the outer peripheral side of each of the scrolls 6, 7, and accordingly, the movable scroll 7 is revolved around the axis of the fixed scroll 6. The refrigerant used for the revolving orbiting motion of the movable scroll 7 is discharged toward the refrigeration cycle of the refrigeration apparatus RC outside the housing 4 through the expansion side discharge chamber 21 via the expansion side discharge chamber 21.
 一方、圧縮側吸入管23から吸入された冷媒は、図1中に低段吸入と記した矢印で示す如く圧縮側吸入室24を経て圧縮部3に取り込まれ、上述した膨張室での冷媒の膨張に伴い可動スクロール7が固定スクロール6の軸心周りに公転旋回運動することにより、各スクロール6、7が互いに協働することによって各ラップ40、44間に形成された圧縮室(作動室)にて圧縮される。圧縮室は、可動スクロール7の公転旋回運動に伴い各スクロール6、7の中心に向けて移動しながらその容積が減少される。そして、圧縮室の容積の減少に伴い、高圧にされた冷媒は圧縮側吐出孔32、圧縮側吐出室22を経て圧縮側吐出管18を介し、ハウジング4外の冷凍装置RCの冷凍サイクルに向けて吐出される(図1中に低段吐出と記した矢印で示す)。 On the other hand, the refrigerant sucked from the compression side suction pipe 23 is taken into the compression section 3 through the compression side suction chamber 24 as shown by the arrow marked as low stage suction in FIG. As the movable scroll 7 revolves around the axis of the fixed scroll 6 as it expands, the scrolls 6 and 7 cooperate with each other to form a compression chamber (working chamber) formed between the wraps 40 and 44. It is compressed with. The volume of the compression chamber is reduced while moving toward the center of each of the scrolls 6 and 7 as the orbiting scroll 7 revolves. As the volume of the compression chamber decreases, the high-pressure refrigerant passes through the compression-side discharge hole 32 and the compression-side discharge chamber 22 and then passes through the compression-side discharge pipe 18 toward the refrigeration cycle of the refrigeration apparatus RC outside the housing 4. (Indicated by an arrow labeled low-stage discharge in FIG. 1).
 (2)連通部(給油孔28)
 更に、この過程において圧縮側吐出孔32から圧縮側吐出室22に吐出される冷媒は、前述したオイルセパレータを通過する際に冷媒中の潤滑油が分離される。冷媒から分離された潤滑油は図1中白抜き矢印で示す如く、メインフレーム9とハウジング4との間に形成された油戻路47を経て潤滑油室26に流下し、貯留される。また、固定軸11の中心に位置する軸部11b内には、本発明の連通部を構成する給油孔28が穿設されている。この給油孔28は軸部11bの軸方向において当該軸部11bを貫通しており、その下端は潤滑油室26に位置して開口しており、上端の開口はボス部31の内側において背圧室52に連通している。これにより、給油孔(連通部)28は本発明における圧縮部3の吐出側(圧縮側吐出室22)と背圧室52とを連通する孔として機能することになる。
(2) Communication part (oil supply hole 28)
Further, in this process, the refrigerant discharged from the compression side discharge hole 32 to the compression side discharge chamber 22 is separated from the lubricating oil in the refrigerant when passing through the oil separator described above. The lubricating oil separated from the refrigerant flows down to the lubricating oil chamber 26 through an oil return passage 47 formed between the main frame 9 and the housing 4 and is stored, as indicated by the white arrow in FIG. Further, in the shaft portion 11b located at the center of the fixed shaft 11, an oil supply hole 28 constituting the communication portion of the present invention is formed. The oil supply hole 28 penetrates the shaft portion 11 b in the axial direction of the shaft portion 11 b, and the lower end thereof is opened in the lubricating oil chamber 26, and the upper end opening is a back pressure inside the boss portion 31. It communicates with the chamber 52. Thereby, the oil supply hole (communication part) 28 functions as a hole which connects the discharge side (compression side discharge chamber 22) and the back pressure chamber 52 of the compression part 3 in this invention.
 潤滑油室26に貯留された潤滑油は、後述する潤滑油室26と背圧室52との差圧によって給油孔28を上昇し、メインフレーム9の台座部9bと可動スクロール7の背面7cとの間に形成される上記背圧室52に吐出されて、ベアリング49、軸受48、ベアリング51を潤滑する。尚、この給油孔28内には後述する逆止弁装置66が取り付けられている。 The lubricating oil stored in the lubricating oil chamber 26 rises in the oil supply hole 28 due to a differential pressure between a lubricating oil chamber 26 and a back pressure chamber 52, which will be described later, and the pedestal 9b of the main frame 9 and the back surface 7c of the movable scroll 7 The bearing 49, the bearing 48, and the bearing 51 are lubricated by being discharged into the back pressure chamber 52 formed between them. A check valve device 66 (described later) is attached in the oil supply hole 28.
 (3)リリーフ部(リリーフ孔33)
 固定軸11の下部のフランジ部11aには更に本発明におけるリリーフ部を構成するリリーフ孔33が穿設されている。このリリーフ孔33の下端も潤滑油室26に位置して開口しており、上端の開口は背圧室52に連通している(第2の連通部を構成)。尚、このリリーフ孔33内には後述するリリーフ弁装置67が取り付けられ、常には閉じられている。
(3) Relief part (Relief hole 33)
A relief hole 33 constituting a relief portion in the present invention is further bored in the flange portion 11a at the lower portion of the fixed shaft 11. The lower end of the relief hole 33 is also opened in the lubricating oil chamber 26, and the upper end opening communicates with the back pressure chamber 52 (constitutes a second communicating portion). A relief valve device 67 described later is attached in the relief hole 33 and is always closed.
 (4)可動スクロール7の背圧
 このように、スクロール型流体機械1の背圧室52では、潤滑油によって前述した自転阻止機構と台座部9b及び可動スクロール7の背面7cとの摺動部などが潤滑される。また、ハウジング4内は圧縮側吐出孔32から圧縮側吐出室22に吐出された圧縮部3の吐出圧力に保たれるので、油戻路47、潤滑油室26、及び、給油孔28を経て背圧室52にはこの圧縮部3の吐出圧力に保たれた冷媒(作動流体)が潤滑油と共に供給される。従って、背圧室52から可動スクロール7は、圧縮部3の吐出圧力で固定スクロール6に対して押圧付勢され、押し付けられることになる。
(4) Back pressure of the movable scroll 7 As described above, in the back pressure chamber 52 of the scroll type fluid machine 1, the sliding portion between the rotation prevention mechanism described above and the base portion 9b and the back surface 7c of the movable scroll 7 by the lubricating oil, and the like. Is lubricated. Further, since the inside of the housing 4 is maintained at the discharge pressure of the compression unit 3 discharged from the compression side discharge hole 32 to the compression side discharge chamber 22, it passes through the oil return path 47, the lubricating oil chamber 26, and the oil supply hole 28. The back pressure chamber 52 is supplied with a refrigerant (working fluid) maintained at the discharge pressure of the compression unit 3 together with the lubricating oil. Accordingly, the movable scroll 7 from the back pressure chamber 52 is pressed and urged against the fixed scroll 6 by the discharge pressure of the compression unit 3.
 係る背圧室52からの圧力(背圧)により、可動スクロール7のラップ44、46の先端が固定スクロール6の基面6bに当接し、固定スクロール6のラップ40、41の先端は可動スクロール7の基面7bに当接する(何れも潤滑油を介して当接)。これにより、各ラップ間の膨張部2に膨張室を形成し、圧縮部3には圧縮室を形成しながら、固定スクロール6に対する可動スクロール7の円滑な公転旋回運動が可能となる。そして、スクロール型流体機械1では、膨張部2における冷媒の膨張エネルギーによってスクロールユニット8が駆動され、このスクロールユニット8の駆動力により、圧縮部3において冷媒を圧縮することになる。 Due to the pressure (back pressure) from the back pressure chamber 52, the tips of the wraps 44 and 46 of the movable scroll 7 abut against the base surface 6 b of the fixed scroll 6, and the tips of the wraps 40 and 41 of the fixed scroll 6 are the movable scroll 7. The base surface 7b of each other (both contact with the lubricating oil). As a result, an expansion chamber is formed in the expansion portion 2 between the laps, and a smooth revolving motion of the movable scroll 7 with respect to the fixed scroll 6 is possible while forming a compression chamber in the compression portion 3. In the scroll type fluid machine 1, the scroll unit 8 is driven by the expansion energy of the refrigerant in the expansion unit 2, and the refrigerant is compressed in the compression unit 3 by the driving force of the scroll unit 8.
 (5)逆止弁装置66
 固定軸11の軸部11bの中心に貫通形成された給油孔28内には、前述した如く逆止弁装置66が取り付けられている。この実施例の逆止弁装置66は、ボール栓68と、内部に通路が形成された弁座69と、ボール栓68を背圧室52側(上側)から弁座69の上面に押し付けるバネ(コイルバネ)71とから構成されている。この場合、ボール栓68が当接する弁座69の上面は、図4に示される如く内側に低く傾斜した漏斗状の逆円錐面とされており、ボール栓68は弁座69に線接触(接触部は円形)するように構成されている。
(5) Check valve device 66
A check valve device 66 is mounted in the oil supply hole 28 formed through the center of the shaft portion 11b of the fixed shaft 11 as described above. The check valve device 66 of this embodiment includes a ball plug 68, a valve seat 69 having a passage formed therein, and a spring (which presses the ball plug 68 from the back pressure chamber 52 side (upper side) to the upper surface of the valve seat 69. Coil spring) 71. In this case, the upper surface of the valve seat 69 with which the ball stopper 68 abuts is a funnel-shaped inverted conical surface that is inclined inwardly as shown in FIG. 4, and the ball stopper 68 is in line contact (contact) with the valve seat 69. The part is configured to be circular).
 また、逆止弁装置66の少なくともボール栓68及び弁座69は潤滑油室26の潤滑油中に位置する(潤滑油室26の油面より下に位置する)ように構成されている。更に、バネ71の付勢力は例えば0.05MPaとされており、これによって常にはボール栓68は弁座69に当接して給油孔28を閉じている。 Further, at least the ball stopper 68 and the valve seat 69 of the check valve device 66 are configured to be located in the lubricating oil of the lubricating oil chamber 26 (located below the oil level of the lubricating oil chamber 26). Further, the urging force of the spring 71 is set to, for example, 0.05 MPa, so that the ball plug 68 is always in contact with the valve seat 69 to close the oil supply hole 28.
 一方、可動スクロール7の背面7cとメインフレーム9の台座部9bとの間は図3に61で示すOリングでシールされているものの、スクロールユニット8の圧縮部3において後述する如く冷媒を吸入する際(圧縮部吸入過程)には、この低圧に引かれて背圧室52の圧力P4は瞬間的に低下する。このようにして背圧室52の圧力P4が圧縮部3の吐出側の圧力P3(潤滑油室26の圧力)より低くなり、その差(P3ーP4)が第2の所定値D2(0.05MPa+ボール栓68の自重。後述する第1の所定値D1より小さい値)より拡大した場合にボール栓68は弁座69から上に離間して給油孔28を開き、潤滑油室26から背圧室52への潤滑油の移動を許容し、前述した如く摺動部に給油されることになる(図1に白抜き矢印で示す)。 On the other hand, the space between the back surface 7c of the movable scroll 7 and the base portion 9b of the main frame 9 is sealed with an O-ring 61 shown in FIG. At this time (in the compression section suction process), the pressure P4 in the back pressure chamber 52 is instantaneously reduced due to the low pressure. In this way, the pressure P4 in the back pressure chamber 52 becomes lower than the pressure P3 on the discharge side of the compression section 3 (pressure in the lubricating oil chamber 26), and the difference (P3−P4) is the second predetermined value D2 (0. 05 MPa + self-weight of the ball stopper 68. When the pressure is larger than a later-described first predetermined value D1, the ball stopper 68 is spaced upward from the valve seat 69 to open the oil supply hole 28, and the back pressure from the lubricating oil chamber 26 is increased. The lubricating oil is allowed to move to the chamber 52 and is supplied to the sliding portion as described above (indicated by a white arrow in FIG. 1).
 即ち、逆止弁装置66は圧縮部3の吐出側(潤滑油室26側)から背圧室52側へ向かう方向が順方向となり、その逆の方向への潤滑油の移動は、ボール栓68が弁座69に当接して給油孔28を閉じることで阻止されるよう構成されている。特に、ボール栓68と弁座69は潤滑油中にあるので、両者のシール性は良好となる。しかしながら、ボール栓68と弁座69との接触は線接触である関係上、ボール栓68が弁座69に当接した状態においても、安定時には背圧室52側から潤滑油室26(圧縮部3の吐出側)へ極少量の潤滑油(圧力)が漏れることになる。 That is, in the check valve device 66, the direction from the discharge side (lubricating oil chamber 26 side) to the back pressure chamber 52 side of the compression unit 3 is the forward direction, and the movement of the lubricating oil in the opposite direction is the ball plug 68. Is configured to be blocked by abutting the valve seat 69 and closing the oil supply hole 28. In particular, since the ball stopper 68 and the valve seat 69 are in the lubricating oil, the sealability between them is good. However, since the contact between the ball stopper 68 and the valve seat 69 is a line contact, even when the ball stopper 68 is in contact with the valve seat 69, the lubricating oil chamber 26 (compressing portion) is compressed from the back pressure chamber 52 side when stable. 3), a very small amount of lubricating oil (pressure) leaks.
 (6)リリーフ弁装置67
 また、固定軸11の下部のフランジ部11aに形成されたリリーフ孔33内には、前述した如くリリーフ弁装置67が取り付けられている。この実施例の逆止弁装置67も、ボール栓72と、内部に通路が形成された弁座73と、ボール栓72を潤滑油室26側(下側)から弁座73の下面に押し付けるバネ(コイルバネ)74とから構成されている。このリリーフ弁装置67の構造は図4に示した逆止弁装置66の構造を上下逆としたものであり、この場合もボール栓72が当接する弁座73の下面は、内側に高く傾斜した逆漏斗状の円錐面とされており、ボール栓72は弁座73に線接触(接触部は円形)するように構成されている。
(6) Relief valve device 67
Further, as described above, the relief valve device 67 is mounted in the relief hole 33 formed in the flange portion 11a below the fixed shaft 11. The check valve device 67 of this embodiment also includes a ball plug 72, a valve seat 73 having a passage formed therein, and a spring that presses the ball plug 72 from the lubricating oil chamber 26 side (lower side) to the lower surface of the valve seat 73. (Coil spring) 74. The structure of the relief valve device 67 is an upside down structure of the check valve device 66 shown in FIG. 4. In this case as well, the lower surface of the valve seat 73 with which the ball stopper 72 abuts is highly inclined inward. The conical surface has a reverse funnel shape, and the ball stopper 72 is configured to be in line contact with the valve seat 73 (the contact portion is circular).
 また、リリーフ弁装置67の少なくともボール栓72及び弁座73の下面は潤滑油室26の潤滑油中に位置する(潤滑油室26の油面より下に位置する)ように構成されている。更に、バネ74の付勢力は例えば0.3~0.5MPa(実施例では0.5MPa)とされており、これによって常にはボール栓72は弁座73に当接してリリーフ孔33を閉じている。そして、圧縮部3の吐出側の圧力P3(潤滑油室26の圧力)が背圧室52の圧力P4より低くなり、その差(P4-P3)が第1の所定値D1(0.5MPa-ボール栓72の自重)より拡大した場合、ボール栓72は弁座73から下に離間してリリーフ孔33を開き、背圧室52から潤滑油室26に圧力を逃がす(図1にハッチング付き矢印で示す)。 Further, at least the ball stopper 72 and the lower surface of the valve seat 73 of the relief valve device 67 are configured to be located in the lubricating oil of the lubricating oil chamber 26 (located below the oil level of the lubricating oil chamber 26). Further, the urging force of the spring 74 is set to, for example, 0.3 to 0.5 MPa (0.5 MPa in the embodiment), whereby the ball stopper 72 always contacts the valve seat 73 and closes the relief hole 33. Yes. Then, the pressure P3 (pressure in the lubricating oil chamber 26) on the discharge side of the compression unit 3 becomes lower than the pressure P4 in the back pressure chamber 52, and the difference (P4−P3) is a first predetermined value D1 (0.5 MPa− When the ball plug 72 is larger than the dead weight of the ball plug 72, the ball plug 72 is spaced downward from the valve seat 73 to open the relief hole 33, and the pressure is released from the back pressure chamber 52 to the lubricating oil chamber 26 (the hatched arrow in FIG. 1). ).
 また、ボール栓72と弁座73の下面も潤滑油中にあるので、同様に両者のシール性は良好となるが、逆止弁装置66の場合と同様にボール栓72と弁座73との接触は線接触である関係上、ボール栓72が弁座73に当接した状態においても、安定時には背圧室52側から潤滑油室26(圧縮部3の吐出側)へ極少量の圧力が漏れることになる。 Further, since the bottom surfaces of the ball plug 72 and the valve seat 73 are also in the lubricating oil, the sealing performance of the both is similarly good. However, as in the case of the check valve device 66, the ball plug 72 and the valve seat 73 are Since the contact is a line contact, even when the ball stopper 72 is in contact with the valve seat 73, a very small amount of pressure is applied from the back pressure chamber 52 side to the lubricating oil chamber 26 (the discharge side of the compression unit 3) when stable. It will leak.
 (7)冷凍装置RC
 次に、図5は本発明のスクロール型流体機械1を用いた一実施例の冷凍装置RCの冷凍サイクルを示している。尚、この図では説明のため、スクロール型流体機械1の膨張部2と圧縮部3を分離して示している。スクロール型流体機械1の膨張部2で回収された動力で駆動される圧縮部3は、この冷凍装置RCの冷凍サイクルにおいて低段側の圧縮機(低段側の圧縮部)を構成する。この圧縮部3の前述した圧縮側吐出管18は、当該圧縮部3の後段に位置する高段側の圧縮機70の電動機70bで駆動される高段側の圧縮部70aに接続されている。
(7) Refrigeration equipment RC
Next, FIG. 5 shows a refrigeration cycle of the refrigeration apparatus RC of one embodiment using the scroll type fluid machine 1 of the present invention. In this figure, for the sake of explanation, the expansion portion 2 and the compression portion 3 of the scroll type fluid machine 1 are shown separately. The compression unit 3 driven by the power recovered by the expansion unit 2 of the scroll type fluid machine 1 constitutes a low-stage compressor (low-stage compression unit) in the refrigeration cycle of the refrigeration apparatus RC. The above-described compression-side discharge pipe 18 of the compression unit 3 is connected to a high-stage side compression unit 70 a that is driven by an electric motor 70 b of a high-stage side compressor 70 that is located downstream of the compression unit 3.
 この圧縮部70aの後段には、冷媒を冷却するガスクーラ76が接続されており、ガスクーラ76の出口と蒸発器(吸熱器)77の入口間に、スクロール型流体機械1の膨張部2が接続されている。このガスクーラ76からの冷媒は前述した膨張側吸入管16から膨張部2の膨張側吸入室19に吸入される。また、スクロール型流体機械1の膨張部2からは膨張側吐出管17を介して冷媒が蒸発器77に送られる。そして、この蒸発器77から出た低圧の冷媒が圧縮側吸入管23からスクロール型流体機械1の圧縮部3に吸入される構成とされている。 A gas cooler 76 for cooling the refrigerant is connected to the subsequent stage of the compression unit 70 a, and the expansion unit 2 of the scroll fluid machine 1 is connected between the outlet of the gas cooler 76 and the inlet of the evaporator (heat absorber) 77. ing. The refrigerant from the gas cooler 76 is sucked into the expansion side suction chamber 19 of the expansion portion 2 from the expansion side suction pipe 16 described above. Further, the refrigerant is sent from the expansion section 2 of the scroll type fluid machine 1 to the evaporator 77 via the expansion side discharge pipe 17. The low-pressure refrigerant discharged from the evaporator 77 is sucked into the compression unit 3 of the scroll type fluid machine 1 from the compression side suction pipe 23.
 (8)冷凍装置RCの動作
 次に、スクロール型流体機械1を含む冷凍装置RCの動作について説明する。尚、冷凍装置RCの起動時の動作については後述する。スクロール型流体機械1の膨張部2が駆動する低段側の圧縮部3で昇圧された中間圧の冷媒(二酸化炭素冷媒)は、圧縮側吐出管18から高段側の圧縮機70に送られ、電動機70bで駆動される圧縮部70aによって更に昇圧され、高圧(超臨界)となる。この高圧の冷媒は超臨界状態のままガスクーラ76で冷却された後、膨張側吸入管16からスクロール型流体機械1の膨張部2に取り込まれ、膨張減圧される。
(8) Operation of Refrigeration Apparatus RC Next, the operation of the refrigeration apparatus RC including the scroll fluid machine 1 will be described. In addition, operation | movement at the time of starting of freezing apparatus RC is mentioned later. The intermediate pressure refrigerant (carbon dioxide refrigerant) boosted by the low-stage compression section 3 driven by the expansion section 2 of the scroll type fluid machine 1 is sent from the compression-side discharge pipe 18 to the high-stage compressor 70. Further, the pressure is further increased by the compression unit 70a driven by the electric motor 70b, and becomes high pressure (supercritical). The high-pressure refrigerant is cooled by the gas cooler 76 in the supercritical state, and then taken into the expansion portion 2 of the scroll type fluid machine 1 from the expansion side suction pipe 16 and decompressed.
 膨張部2において冷媒が等エントロピ的に膨張することによって可動スクロール7が公転旋回運動し、動力が回収される。この可動スクロール7の公転旋回運動によって圧縮部3が低段側の圧縮機として作動することになる。膨張部2で膨張した冷媒は、蒸発器77で加熱された後(或いは、それによって対象を冷却)、圧縮側吸入管23より再びスクロール型流体機械1の圧縮部3に吸引される。 When the refrigerant expands isentropically in the expansion section 2, the movable scroll 7 revolves and the power is recovered. The revolving orbiting motion of the movable scroll 7 causes the compressor 3 to operate as a low-stage compressor. The refrigerant expanded in the expansion unit 2 is heated by the evaporator 77 (or the object is thereby cooled), and is again sucked into the compression unit 3 of the scroll type fluid machine 1 through the compression side suction pipe 23.
 このように、スクロール流体機械1の圧縮部3で冷凍装置RCの冷凍サイクルの圧縮過程の一部(低段側)を担い、高段側の圧縮機70の圧縮部70aで圧縮過程の残り(高段側)を担う。圧縮部3における圧縮動力は、膨張部2における回収動力によって賄われることになる。 In this way, the compression unit 3 of the scroll fluid machine 1 takes part of the compression process of the refrigeration cycle of the refrigeration apparatus RC (low stage side), and the compression part 70a of the compressor 70 on the high stage side remains the compression process ( Take the higher stage). The compression power in the compression unit 3 is covered by the recovery power in the expansion unit 2.
 (8-1)冷凍装置RCの運転中の逆止弁装置66及びリリーフ弁装置67の状態
 前述したように、スクロール型流体機械1の運転中、背圧室52を含むハウジング4内は圧縮側吐出孔32から圧縮側吐出室22に吐出された圧縮部3の吐出圧力(P3)に保たれる。また、前述した如くスクロールユニット8の圧縮部3において冷媒を吸入する際(圧縮部吸入過程)に、この低圧(後述する圧縮部3の吸入側の圧力P2)に引かれて背圧室52の圧力P4は瞬間的に低下し、背圧室52の圧力P4が圧縮部3の吐出側の圧力P3(潤滑油室26の圧力)より低くなってその差(P3ーP4)が前述した第2の所定値D2より拡大した場合にボール栓68が弁座69から上に離間し、給油孔28を開いて潤滑油室26から背圧室52へ潤滑油を通過させるため、背圧室52の圧力(背圧)は圧縮側吐出室22の圧力(圧縮部3の吐出側の圧力P3)と同じとなる。
(8-1) State of Check Valve Device 66 and Relief Valve Device 67 During Operation of Refrigeration Device RC As described above, the housing 4 including the back pressure chamber 52 is compressed on the compression side during the operation of the scroll fluid machine 1. The discharge pressure (P3) of the compression unit 3 discharged from the discharge hole 32 to the compression side discharge chamber 22 is maintained. Further, as described above, when the refrigerant is sucked in the compression section 3 of the scroll unit 8 (compression section suction process), the low pressure (pressure P2 on the suction side of the compression section 3 to be described later) is attracted to the back pressure chamber 52. The pressure P4 drops instantaneously, the pressure P4 in the back pressure chamber 52 becomes lower than the pressure P3 on the discharge side of the compression section 3 (pressure in the lubricating oil chamber 26), and the difference (P3−P4) is the second mentioned above. When the ball plug 68 is spaced apart from the valve seat 69 and the oil supply hole 28 is opened to allow the lubricating oil to pass from the lubricating oil chamber 26 to the back pressure chamber 52. The pressure (back pressure) is the same as the pressure in the compression side discharge chamber 22 (pressure P3 on the discharge side of the compression unit 3).
 これにより、油戻路47、潤滑油室26、及び、給油孔28を経て背圧室52に圧縮部3の吐出圧力に保たれた潤滑油が供給されるので、背圧室52から可動スクロール7は、圧縮部3の吐出圧力で固定スクロール6に対して押圧付勢され、スクロール型流体機械1の膨張部2及び圧縮部3では安定して冷媒の膨張と圧縮(低段)が行われる。 As a result, the lubricating oil maintained at the discharge pressure of the compression unit 3 is supplied to the back pressure chamber 52 via the oil return path 47, the lubricating oil chamber 26, and the oil supply hole 28. 7 is urged against the fixed scroll 6 by the discharge pressure of the compression unit 3, and the expansion and compression (low stage) of the refrigerant is stably performed in the expansion unit 2 and the compression unit 3 of the scroll type fluid machine 1. .
 また、このように背圧室52の圧力P4は圧縮部3の吐出側の圧力P3とされることから、その差(P4-P3)は前述した第1の所定値D1よりも小さいので、リリーフ弁装置67のボール栓72はバネ74により弁座73に押し付けられ、リリーフ孔33は閉じられている。 Further, since the pressure P4 in the back pressure chamber 52 is set to the pressure P3 on the discharge side of the compression unit 3 in this way, the difference (P4−P3) is smaller than the first predetermined value D1 described above. The ball stopper 72 of the valve device 67 is pressed against the valve seat 73 by a spring 74, and the relief hole 33 is closed.
 (8-2)冷凍装置RCの起動時の動作(逆止弁装置66及びリリーフ弁装置67の作用)
 次に、図6を参照しながら冷凍装置RCの起動時の動作について説明する。図6のt1以前の状態で高段側の圧縮機70及びスクロール型流体機械1が停止しているものとすると、スクロール型流体機械1のハウジング4やスクロールユニット8内を含む冷凍装置RCの冷凍サイクル内は全て約6MPa程の平衡圧となっている。
(8-2) Operation at the time of starting the refrigeration apparatus RC (action of the check valve device 66 and the relief valve device 67)
Next, the operation at the time of starting the refrigeration apparatus RC will be described with reference to FIG. Assuming that the high-stage compressor 70 and the scroll type fluid machine 1 are stopped before t1 in FIG. 6, the freezing of the refrigeration apparatus RC including the housing 4 and the scroll unit 8 of the scroll type fluid machine 1 is performed. The entire cycle has an equilibrium pressure of about 6 MPa.
 この平衡圧状態から図6の時刻t1で高段側の圧縮機70が起動されると、圧縮機70の吐出圧力P1(膨張側吸入管16から膨張部2に吸入される入口の圧力)は平衡圧から上昇していき、運転中は10MPa程になる。また、膨張部2で膨張して膨張側出口管17から出て行く冷媒の圧力P2(膨張部2の出口の圧力=圧縮部3の吸入側の圧力)は平衡圧から低下していく。 When the high-stage compressor 70 is started at time t1 in FIG. 6 from this equilibrium pressure state, the discharge pressure P1 of the compressor 70 (pressure at the inlet sucked into the expansion section 2 from the expansion-side suction pipe 16) is It rises from the equilibrium pressure and reaches about 10 MPa during operation. Further, the pressure P2 of the refrigerant that expands in the expansion section 2 and exits from the expansion side outlet pipe 17 (pressure at the outlet of the expansion section 2 = pressure on the suction side of the compression section 3) decreases from the equilibrium pressure.
 一方、高段側の圧縮機70が起動した時点より圧縮側吐出室22からは圧縮側吐出管18を介して冷媒が圧縮機70に吸引されるので、圧縮部3の吐出側の圧力P3(潤滑油室26や圧縮側吐出室22の圧力)は急激に低下し、圧縮部3の吸入側の圧力P2よりも低くなる。この圧縮側吐出室22の急激な圧力低下により、背圧室52の圧力P4よりも圧縮側吐出室22の圧力(圧縮部3の吐出側の圧力P3と同じ潤滑油室26の圧力)が低くなるので、逆止弁装置66のボール栓68は弁座69に当接して給油孔28を塞ぐ。 On the other hand, since the refrigerant is sucked into the compressor 70 from the compression side discharge chamber 22 through the compression side discharge pipe 18 from the time when the high stage side compressor 70 is started up, the pressure P3 ( The pressure in the lubricating oil chamber 26 and the compression-side discharge chamber 22) decreases rapidly and becomes lower than the pressure P2 on the suction side of the compression unit 3. Due to this sudden pressure drop in the compression side discharge chamber 22, the pressure in the compression side discharge chamber 22 (the pressure in the lubricating oil chamber 26 which is the same as the pressure P3 on the discharge side of the compression unit 3) is lower than the pressure P4 in the back pressure chamber 52. Therefore, the ball stopper 68 of the check valve device 66 contacts the valve seat 69 and closes the oil supply hole 28.
 これにより、背圧室52の圧力P4は圧縮部3の吐出側の圧力P3のように急激に低下しなくなり、可動スクロール7の背圧は確保されるので、スクロール型流体機械1は起動可能となる。但し、ボール栓68と弁座69との接触は線接触であるので、背圧室52の圧力P4は少しずつ潤滑油室26側に漏れて低下していくことになる。 As a result, the pressure P4 in the back pressure chamber 52 does not drop abruptly like the pressure P3 on the discharge side of the compression section 3, and the back pressure of the movable scroll 7 is secured, so that the scroll fluid machine 1 can be started. Become. However, since the contact between the ball stopper 68 and the valve seat 69 is a line contact, the pressure P4 in the back pressure chamber 52 gradually leaks to the lubricating oil chamber 26 side and decreases.
 尚、係る圧縮側吐出室22(圧縮部3の吐出側の圧力P3)の急激な圧力低下により、同圧となっている潤滑油室26の圧力(P3)と背圧室52の圧力P4との差(P4-P3)が前述した第1の所定値D1より拡大した場合、リリーフ弁装置67のボール栓72が弁座73から離間してリリーフ孔33を開く。これにより、背圧室52から圧力が潤滑油室26側に逃げるので、それ以上の圧力差の拡大は阻止される。 Note that the pressure (P3) of the lubricating oil chamber 26 and the pressure P4 of the back pressure chamber 52, which are the same pressure, due to a sudden pressure drop in the compression side discharge chamber 22 (pressure P3 on the discharge side of the compression unit 3). When the difference (P4−P3) is larger than the first predetermined value D1, the ball stopper 72 of the relief valve device 67 is separated from the valve seat 73 and opens the relief hole 33. As a result, the pressure escapes from the back pressure chamber 52 to the lubricating oil chamber 26 side, and further expansion of the pressure difference is prevented.
 そして、上述したように圧縮部3の吐出側の圧力P3(圧縮側吐出室22の圧力)は、圧縮部3の吸入側の圧力よりも低くなるので、スクロール型流体機械1のスクロールユニット8には起動トルクが発生する。これにより、スクロール型流体機械1は起動し易くなり、時刻t2で起動することになる。 As described above, the pressure P3 on the discharge side of the compression unit 3 (pressure on the compression side discharge chamber 22) is lower than the pressure on the suction side of the compression unit 3, so that the scroll unit 8 of the scroll type fluid machine 1 has Generates a starting torque. Thereby, the scroll type fluid machine 1 becomes easy to start and starts at time t2.
 スクロール型流体機械1が起動すると、圧縮部3の圧縮室では冷媒が圧縮され始めるので、圧縮部3の吐出側の圧力P3である圧縮側吐出室22の圧力も上昇していき、やがて圧縮部3の吸入側の圧力P2を超え、5MPa程で背圧室52の圧力P4と同じになる。以後は、前述したように圧縮部3の吸入過程で逆止弁装置66のボール栓68が給油孔28を開くことで、圧縮部3の吐出側の圧力P3が背圧P4として供給されるようになる。 When the scroll fluid machine 1 is activated, the refrigerant starts to be compressed in the compression chamber of the compression unit 3, so that the pressure in the compression side discharge chamber 22 which is the pressure P3 on the discharge side of the compression unit 3 also rises, and eventually the compression unit 3 and the pressure P2 in the back pressure chamber 52 becomes the same as about 5 MPa. Thereafter, as described above, the ball plug 68 of the check valve device 66 opens the oil supply hole 28 in the suction process of the compression unit 3 so that the pressure P3 on the discharge side of the compression unit 3 is supplied as the back pressure P4. become.
 以上のように、スクロール型流体機械1の可動スクロール7の基面7bとは反対側である背面7c側に形成された背圧室52と、圧縮部3の吐出側(圧縮側吐出室22)と背圧室52とを連通するための連通部としての給油孔28と、この給油孔28に設けられ、圧縮部3の吐出側から背圧室52側の潤滑油室26への方向が順方向とされた逆止弁装置66を備えているので、スクロール型流体機械1の圧縮部3の吐出側より高段側の圧縮機70に冷媒を吸入し、当該高段側の圧縮機70で圧縮された高圧の冷媒をスクロール型流体機械1の膨張部2に吸入させる冷凍装置RCに本発明のスクロール型流体機械1が使用され、且つ、高段側の圧縮機70の起動時からスクロール型流体機械1の圧縮部3より冷媒が吸入されるように構成した場合にも、逆止弁装置66によって高段側の圧縮機70の起動時にスクロール型流体機械1の背圧室52の圧力(背圧)が急激に低下する不都合が防止される。 As described above, the back pressure chamber 52 formed on the back surface 7c side opposite to the base surface 7b of the movable scroll 7 of the scroll type fluid machine 1, and the discharge side (compression side discharge chamber 22) of the compression unit 3 An oil supply hole 28 serving as a communication portion for communicating the pressure pressure chamber 52 and the back pressure chamber 52, and the oil supply hole 28 is provided in the oil supply hole 28. Therefore, the refrigerant is sucked into the compressor 70 on the higher stage side than the discharge side of the compressor 3 of the scroll type fluid machine 1, and the compressor 70 on the higher stage side. The scroll type fluid machine 1 of the present invention is used in the refrigeration apparatus RC that sucks the compressed high-pressure refrigerant into the expansion unit 2 of the scroll type fluid machine 1 and the scroll type is started from the start of the compressor 70 on the high stage side. The refrigerant is sucked from the compression unit 3 of the fluid machine 1. Even if, disadvantage that the pressure (back pressure) is rapidly reduced in the back pressure chamber 52 of the scroll type fluid machine 1 at the start of the compressor 70 of the high-stage side is prevented by the check valve device 66.
 これにより、従来の如くスクロール型流体機械1の圧縮部3をバイパスせず、高段側の圧縮機70の起動時からスクロール型流体機械1の圧縮部3より冷媒を吸入するようにしても、可動スクロール7は固定スクロール6から剥がれること無く、当該固定スクロール6に押し付けられるようになり、スクロール型流体機械1は起動可能になる。そして、高段側の圧縮機70で圧縮部3の吐出側から冷媒を吸入することで、圧縮部3の吐出側の圧力が当該圧縮部3の吸入側の圧力より低くなる。これにより、スクロール型流体機械1には起動トルクが発生するので、従来に比して容易に起動させることができるようになる。 As a result, the refrigerant is sucked from the compressor 3 of the scroll type fluid machine 1 from the start of the high-stage compressor 70 without bypassing the compressor 3 of the scroll type fluid machine 1 as in the prior art. The movable scroll 7 is pressed against the fixed scroll 6 without being peeled off from the fixed scroll 6, and the scroll fluid machine 1 can be activated. Then, by sucking the refrigerant from the discharge side of the compression unit 3 with the high-stage compressor 70, the pressure on the discharge side of the compression unit 3 becomes lower than the pressure on the suction side of the compression unit 3. Thereby, since the starting torque is generated in the scroll type fluid machine 1, it is possible to start up more easily than in the prior art.
 特に、圧縮部3の吐出側と背圧室52とを連通するリリーフ部としてのリリーフ孔33と、常にはこのリリーフ孔33を閉じており、圧縮部3の吐出側の圧力P3が背圧室52の圧力P4より低くなって、その差(P4-P3)が第1の所定値D1より拡大した場合にリリーフ孔33を開くリリーフ弁装置67をリリーフ孔33に設けているので、スクロール型流体機械1の起動時に圧縮部3の吐出側と背圧室52とを連通する給油孔28を逆止弁装置66によって閉じ、背圧室52から圧縮部3の吐出側に圧力が逃げないようにしたことで、圧縮部3の吐出側の圧力P3が低下し、背圧室52との圧力差が拡大して、その差(P4-P3)が第1の所定値D1を超えた場合には、リリーフ弁装置67が開いて背圧室52の圧力を圧縮部3の吐出側(潤滑油室26)に逃がすことができるようになる。 In particular, a relief hole 33 as a relief part that communicates the discharge side of the compression part 3 and the back pressure chamber 52 and the relief hole 33 are always closed, and the pressure P3 on the discharge side of the compression part 3 is the back pressure chamber. The relief valve device 67 that opens the relief hole 33 when the difference (P4−P3) is larger than the first predetermined value D1 is provided in the relief hole 33. When the machine 1 is started, the oil supply hole 28 that connects the discharge side of the compression unit 3 and the back pressure chamber 52 is closed by the check valve device 66 so that pressure does not escape from the back pressure chamber 52 to the discharge side of the compression unit 3. As a result, the pressure P3 on the discharge side of the compression section 3 decreases, the pressure difference with the back pressure chamber 52 increases, and the difference (P4-P3) exceeds the first predetermined value D1. Then, the relief valve device 67 is opened and the pressure in the back pressure chamber 52 is reduced to the compression unit 3. It is possible to escape to the discharge side (the lubricant chamber 26).
 これにより、スクロール型流体機械1の起動時における背圧室52と圧縮部3の吐出側の圧力との差(P4-P3)が大きくなり過ぎ、可動スクロール7を固定スクロール6に押し付ける力が過大となって機械損が増大し、起動不能に陥る不都合も未然に回避することができるようになる。 As a result, the difference (P4-P3) between the back pressure chamber 52 and the pressure on the discharge side of the compression unit 3 at the time of starting the scroll fluid machine 1 becomes too large, and the force pressing the movable scroll 7 against the fixed scroll 6 is excessive. As a result, the mechanical loss increases and the inconvenience of being unable to start can be avoided.
 この場合、逆止弁装置66が常には給油孔28を閉じており、背圧室52の圧力P4が圧縮部3の吐出側の圧力P3より低くなって、その差(P3-P4)が第2の所定値D2より拡大した場合に給油孔28を開くようにしているので、リリーフ弁装置67との協働により、背圧室52の圧力P4を圧縮部3の吐出側の圧力P3-第2の所定値D2以上、圧縮部3の吐出側の圧力P3+第1の所定値D1以下の範囲内に制御することが可能となり、総じてスクロール型流体機械1の起動を容易且つ確実に行い、安定した運転を実現することができるようになる。 In this case, the check valve device 66 always closes the oil supply hole 28, the pressure P4 in the back pressure chamber 52 becomes lower than the pressure P3 on the discharge side of the compression section 3, and the difference (P3-P4) is the first. Since the oil supply hole 28 is opened when it is larger than the predetermined value D2 of 2, the pressure P4 in the back pressure chamber 52 is increased by the pressure P3 on the discharge side of the compression unit 3 in cooperation with the relief valve device 67. It is possible to control within the range of the predetermined value D2 of 2 or more and the pressure P3 on the discharge side of the compression unit 3 + the first predetermined value D1 or less, and generally the scroll type fluid machine 1 can be started easily and reliably and stably. Can be realized.
 また、逆止弁装置66及びリリーフ弁装置67を、ボール栓68、72とこれらボール栓68、72を弁座69、73に押し付けるバネ71、74によりそれぞれ構成し、ボール栓68、72が弁座69、73に線接触するようにしているので、高段側の圧縮機70の起動後、逆止弁装置66やリリーフ弁装置67のボール栓68、72と弁座69、73の間から少しずつ圧力が圧縮部3の吐出側(潤滑油室26側)に漏れるようになる。即ち、停止中に圧縮部3の吐出側の圧力より高い平衡圧まで上昇している背圧室52の圧力は、高段側の圧縮機70が起動した後、少しずつ低下していくことになる。 Further, the check valve device 66 and the relief valve device 67 are constituted by ball plugs 68 and 72 and springs 71 and 74 that press the ball plugs 68 and 72 against the valve seats 69 and 73, respectively. Since the seats 69 and 73 are in line contact, after the high-stage compressor 70 is started, the ball plugs 68 and 72 of the check valve device 66 and the relief valve device 67 are inserted between the valve seats 69 and 73. The pressure gradually leaks to the discharge side (lubricant chamber 26 side) of the compression unit 3. That is, the pressure in the back pressure chamber 52 that has risen to an equilibrium pressure higher than the pressure on the discharge side of the compression unit 3 during the stop is gradually reduced after the high-stage compressor 70 is started. Become.
 これにより、スクロール型流体機械1の起動後に早期に背圧室52の圧力を圧縮部3の吐出側の圧力まで下げることができるようになり、可動スクロール7に加わる背圧を迅速に適正値とすることができるようになる。 As a result, the pressure in the back pressure chamber 52 can be lowered to the pressure on the discharge side of the compression unit 3 at an early stage after the scroll type fluid machine 1 is started, and the back pressure applied to the movable scroll 7 is quickly set to an appropriate value. Will be able to.
 ここで、ボール栓68、72と弁座69、73の間には異物が挟まり難い。また、仮に挟まったとしても圧力変化によるボール栓68、72の移動で除去されるようになる。特に、実施例では給油孔28及びリリーフ孔33を可動スクロール7の支持機構54を構成する固定軸11に形成し、逆止弁装置66及びリリーフ弁装置67を、潤滑油が貯留される潤滑油室26の潤滑油中に位置させているので、シール機能が向上する。 Here, it is difficult for foreign matter to get caught between the ball stoppers 68 and 72 and the valve seats 69 and 73. Even if the ball plugs 68 and 72 are moved due to a change in pressure, they are removed. In particular, in the embodiment, the oil supply hole 28 and the relief hole 33 are formed in the fixed shaft 11 that constitutes the support mechanism 54 of the movable scroll 7, and the check valve device 66 and the relief valve device 67 are provided in the lubricating oil in which the lubricating oil is stored. Since it is located in the lubricating oil of the chamber 26, the sealing function is improved.
 特に、この実施例では給油孔28は固定軸11の軸部11bの中心に形成されてボス部31の内側にて開口しているので、ボス部31の内側に位置するベアリング49等にも円滑に潤滑油を供給することができる。 In particular, in this embodiment, the oil supply hole 28 is formed at the center of the shaft portion 11 b of the fixed shaft 11 and opens inside the boss portion 31, so that the bearing 49 and the like positioned inside the boss portion 31 can be smoothly smoothed. Can be supplied with lubricating oil.
 また、ボール栓68、72と弁座69、73の間に挟まった異物も、潤滑油の移動と共に除去できるようになるので、異物の除去機能も効果的に発揮させることができるようになる。そして、二酸化炭素を作動流体として使用する冷凍装置RCに本発明のスクロール型流体機械1は特に有効である。 In addition, since the foreign matter sandwiched between the ball plugs 68 and 72 and the valve seats 69 and 73 can be removed along with the movement of the lubricating oil, the foreign matter removing function can be effectively exhibited. The scroll fluid machine 1 of the present invention is particularly effective for the refrigeration apparatus RC that uses carbon dioxide as a working fluid.
 尚、図7は本発明の他の実施例のスクロール型流体機械1を示している。この実施例では、固定軸11の下部のフランジ部11aに本発明の連通部を構成する給油孔28が穿設されている。この場合にも、給油孔28の下端は潤滑油室26に位置して開口しており、上端の開口は背圧室52に連通し、これにより給油孔28は本発明における圧縮部3の吐出側(圧縮側吐出室22)と背圧室52とを連通する孔(連通部)として機能する。他の構成は図1の場合と基本的に同様であり、この実施例でも給油孔28には前述した逆止弁装置66が取り付けられる。 FIG. 7 shows a scroll type fluid machine 1 according to another embodiment of the present invention. In this embodiment, an oil supply hole 28 constituting the communication portion of the present invention is formed in the flange portion 11a at the lower portion of the fixed shaft 11. Also in this case, the lower end of the oil supply hole 28 is located in the lubricating oil chamber 26 and is open, and the upper end opening communicates with the back pressure chamber 52, whereby the oil supply hole 28 is discharged from the compression section 3 in the present invention. It functions as a hole (communication portion) that communicates the side (compression side discharge chamber 22) and the back pressure chamber 52. The other configuration is basically the same as that of FIG. 1, and the check valve device 66 described above is attached to the oil supply hole 28 in this embodiment as well.
 図7の如く固定軸11のフランジ部11aに給油孔28を形成した場合、可動スクロール7の背面7cに突設されたボス部31が所謂ポケットとなり、それより内側のベアリング49等に潤滑油が回り難く危険性がある。前述した実施例の如く軸部11bの中心に給油孔28を形成することで、係る問題は解消されるが、ボス部31内側への潤滑油の供給に支障が生じない構成の場合には、この実施例の如く固定軸11の下部のフランジ部11aに給油孔28を形成して逆止弁装置66を配置するようにしてもよい。 When the oil supply hole 28 is formed in the flange portion 11a of the fixed shaft 11 as shown in FIG. 7, the boss portion 31 protruding from the back surface 7c of the movable scroll 7 becomes a so-called pocket, and the lubricating oil is applied to the bearing 49 and the like inside thereof. It is difficult to turn around and there is a danger. By forming the oil supply hole 28 at the center of the shaft portion 11b as in the embodiment described above, such a problem is solved, but in the case of a configuration that does not hinder the supply of lubricating oil to the inside of the boss portion 31, As in this embodiment, the check valve device 66 may be arranged by forming the oil supply hole 28 in the flange portion 11a below the fixed shaft 11.
 ここで、上記各実施例では逆止弁装置66のボール栓68をバネ71により弁座69に押し付けるようにしたが、それに限らず、ボール栓68の自重で弁座69に当接する構成でも良い。その場合、第2の所定値D2はボール栓68の自重相当の値となる。 Here, in each of the above-described embodiments, the ball stopper 68 of the check valve device 66 is pressed against the valve seat 69 by the spring 71. However, the configuration is not limited thereto, and the configuration may be such that the weight of the ball stopper 68 contacts the valve seat 69. . In this case, the second predetermined value D2 is a value corresponding to the weight of the ball stopper 68.
 また、実施例では給油孔28やリリーフ孔33を固定軸11に形成したが、請求項5、請求項6の発明以外では、例えばメインフレーム9等に形成して、そこに逆止弁装置66やリリーフ弁装置67を取り付けても良い。更に、実施例で示した各数値はそれに限られるものでは無い。 Further, in the embodiment, the oil supply hole 28 and the relief hole 33 are formed in the fixed shaft 11. However, except for the inventions of claims 5 and 6, the check valve device 66 is formed in the main frame 9, for example. Alternatively, a relief valve device 67 may be attached. Furthermore, each numerical value shown in the embodiment is not limited to that.
 1 スクロール型流体機械
 2 膨張部
 3 圧縮部(低段側)
 6 固定スクロール
 6a、7a 基板
 6b、7b 基面
 7 可動スクロール
 8 スクロールユニット
 9 メインフレーム
 11 固定軸
 22 圧縮側吐出室
 26 潤滑油室
 28 給油孔(連通部)
 31 ボス部
 33 リリーフ孔(リリーフ部)
 47 油戻路
 52 背圧室
 66 逆止弁装置
 67 リリーフ弁装置
 68、72 ボール栓
 69、73 弁座
 71、74 バネ
 RC 冷凍装置
DESCRIPTION OF SYMBOLS 1 Scroll type fluid machine 2 Expansion part 3 Compression part (low stage side)
6 Fixed scroll 6a, 7a Substrate 6b, 7b Base surface 7 Movable scroll 8 Scroll unit 9 Main frame 11 Fixed shaft 22 Compression side discharge chamber 26 Lubricating oil chamber 28 Oil supply hole (communication portion)
31 Boss part 33 Relief hole (Relief part)
47 Oil return path 52 Back pressure chamber 66 Check valve device 67 Relief valve device 68, 72 Ball stopper 69, 73 Valve seat 71, 74 Spring RC Refrigeration device

Claims (8)

  1.  各基板の各基面にそれぞれ渦巻き状のラップが対向して形成された固定スクロール及び可動スクロールから構成され、両スクロールの前記各ラップ間に形成された膨張室で作動流体を膨張させることにより、前記可動スクロールを公転旋回運動させて動力を回収する膨張部と、該膨張部で回収された動力により、前記両スクロールの前記各ラップ間に形成された圧縮室で前記作動流体を圧縮する低段側の圧縮部とを備え、該圧縮部で圧縮された前記作動流体が高段側の圧縮機に吸入され、当該高段側の圧縮機で圧縮された高圧の前記作動流体を前記膨張部に吸入するスクロール型流体機械において、
     前記可動スクロールの基面とは反対側である背面側に形成された背圧室と、
     前記圧縮部の吐出側と前記背圧室とをそれぞれ連通するための連通部及びリリーフ部と、
     前記連通部に設けられ、前記圧縮部の吐出側から前記背圧室側へ向かう方向が順方向とされた逆止弁装置と、
     前記リリーフ部に設けられ、常には当該リリーフ部を閉じており、前記圧縮部の吐出側の圧力が前記背圧室の圧力より低くなって、その差が第1の所定値D1より拡大した場合に前記リリーフ部を開くリリーフ弁装置と、
     を備えたことを特徴とするスクロール型流体機械。
    It is composed of a fixed scroll and a movable scroll each formed with a spiral wrap facing each base surface of each substrate, and by expanding the working fluid in an expansion chamber formed between the wraps of both scrolls, An expansion part that collects power by revolving orbiting the movable scroll, and a low stage that compresses the working fluid in a compression chamber formed between the laps of the scrolls by the power recovered by the expansion part. The working fluid compressed by the compression portion is sucked into a high-stage compressor, and the high-pressure working fluid compressed by the high-stage compressor is supplied to the expansion portion. In the scroll type fluid machine
    A back pressure chamber formed on the back side opposite to the base surface of the movable scroll;
    A communication part and a relief part for communicating the discharge side of the compression part and the back pressure chamber respectively;
    A check valve device provided in the communication part, wherein the direction from the discharge side of the compression part toward the back pressure chamber side is a forward direction;
    Provided in the relief part, the relief part is always closed, and the pressure on the discharge side of the compression part is lower than the pressure in the back pressure chamber, and the difference is larger than the first predetermined value D1 A relief valve device for opening the relief part to
    A scroll type fluid machine characterized by comprising:
  2.  前記逆止弁装置は、常には前記連通部を閉じており、前記背圧室の圧力が前記圧縮部の吐出側の圧力より低くなって、その差が第2の所定値D2より拡大した場合に前記連通部を開くことを特徴とする請求項1に記載のスクロール型流体機械。 The check valve device always closes the communication portion, and the pressure in the back pressure chamber becomes lower than the pressure on the discharge side of the compression portion, and the difference is larger than a second predetermined value D2. The scroll type fluid machine according to claim 1, wherein the communication portion is opened at the same time.
  3.  前記逆止弁装置及びリリーフ弁装置は、ボール栓と該ボール栓を弁座に押し付けるバネによりそれぞれ構成されており、前記ボール栓は前記弁座に線接触することを特徴とする請求項1又は請求項2に記載のスクロール型流体機械。 The check valve device and the relief valve device are each configured by a ball stopper and a spring that presses the ball stopper against the valve seat, and the ball stopper is in line contact with the valve seat. The scroll type fluid machine according to claim 2.
  4.  前記逆止弁装置及びリリーフ弁装置は、潤滑油が貯留される潤滑油室に位置していることを特徴とする請求項3に記載のスクロール型流体機械。 The scroll type fluid machine according to claim 3, wherein the check valve device and the relief valve device are located in a lubricating oil chamber in which lubricating oil is stored.
  5.  前記連通部及びリリーフ部は前記可動スクロールの支持機構を構成する固定軸に形成されていることを特徴とする請求項4に記載のスクロール型流体機械。 5. The scroll fluid machine according to claim 4, wherein the communication part and the relief part are formed on a fixed shaft constituting a support mechanism of the movable scroll.
  6.  前記連通部は、前記固定軸の中心に貫通形成されていることを特徴とする請求項5に記載のスクロール型流体機械。 6. The scroll type fluid machine according to claim 5, wherein the communication portion is formed through the center of the fixed shaft.
  7.  請求項1乃至請求項6のうちの何れかに記載のスクロール型流体機械と、前記高段側の圧縮機とを備えて構成され、前記スクロール型流体機械の圧縮部の吐出側より前記高段側の圧縮機に前記作動流体を吸入し、当該高段側の圧縮機で圧縮された高圧の前記作動流体を前記スクロール型流体機械の膨張部に吸入させると共に、
     前記高段側の圧縮機の起動時から前記スクロール型流体機械の圧縮部より前記作動流体を吸入することを特徴とする冷凍装置。
    A scroll-type fluid machine according to any one of claims 1 to 6 and the high-stage compressor, wherein the high-stage from a discharge side of a compression unit of the scroll-type fluid machine. The working fluid is sucked into the compressor on the side, the high-pressure working fluid compressed by the high-stage compressor is sucked into the expansion portion of the scroll type fluid machine, and
    A refrigerating apparatus, wherein the working fluid is sucked from a compression section of the scroll type fluid machine from the time of starting the high stage compressor.
  8.  前記作動流体として二酸化炭素を使用したことを特徴とする請求項7に記載の冷凍装置。 The refrigeration apparatus according to claim 7, wherein carbon dioxide is used as the working fluid.
PCT/JP2016/076111 2015-09-09 2016-09-06 Scroll fluid machine and refrigerating device in which same is used WO2017043471A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-177464 2015-09-09
JP2015177464A JP2017053266A (en) 2015-09-09 2015-09-09 Scroll type fluid machine and refrigerator using it

Publications (1)

Publication Number Publication Date
WO2017043471A1 true WO2017043471A1 (en) 2017-03-16

Family

ID=58239719

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/076111 WO2017043471A1 (en) 2015-09-09 2016-09-06 Scroll fluid machine and refrigerating device in which same is used

Country Status (2)

Country Link
JP (1) JP2017053266A (en)
WO (1) WO2017043471A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111206963A (en) * 2018-11-22 2020-05-29 艾默生环境优化技术(苏州)有限公司 Scroll expander
CN111794960A (en) * 2019-04-09 2020-10-20 艾默生环境优化技术(苏州)有限公司 Scroll compressor having a plurality of scroll members
US11391154B2 (en) * 2018-11-22 2022-07-19 Emerson Climate Technologies (Suzhou) Co., Ltd. Scroll expander with back pressure chamber

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0510701U (en) * 1991-07-22 1993-02-12 三菱重工業株式会社 Scroll type fluid machinery
JP2000249086A (en) * 1999-02-25 2000-09-12 Nippon Soken Inc Scroll type compressor
JP2006220143A (en) * 2005-01-14 2006-08-24 Hitachi Ltd Displacement fluid machine and refrigerating cycle by use of it
JP2012207655A (en) * 2011-03-15 2012-10-25 Toyota Industries Corp Rankine cycle apparatus
JP5209764B2 (en) * 2010-08-04 2013-06-12 サンデン株式会社 Scroll type fluid machinery
JP2013241869A (en) * 2012-05-18 2013-12-05 Toyota Industries Corp Driven crank type scroll expander
WO2015087908A1 (en) * 2013-12-11 2015-06-18 サンデンホールディングス株式会社 Scroll-type fluid machine
WO2016031278A1 (en) * 2014-08-28 2016-03-03 サンデンホールディングス株式会社 Scroll fluid machine and refrigeration machine with same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0510701U (en) * 1991-07-22 1993-02-12 三菱重工業株式会社 Scroll type fluid machinery
JP2000249086A (en) * 1999-02-25 2000-09-12 Nippon Soken Inc Scroll type compressor
JP2006220143A (en) * 2005-01-14 2006-08-24 Hitachi Ltd Displacement fluid machine and refrigerating cycle by use of it
JP5209764B2 (en) * 2010-08-04 2013-06-12 サンデン株式会社 Scroll type fluid machinery
JP2012207655A (en) * 2011-03-15 2012-10-25 Toyota Industries Corp Rankine cycle apparatus
JP2013241869A (en) * 2012-05-18 2013-12-05 Toyota Industries Corp Driven crank type scroll expander
WO2015087908A1 (en) * 2013-12-11 2015-06-18 サンデンホールディングス株式会社 Scroll-type fluid machine
WO2016031278A1 (en) * 2014-08-28 2016-03-03 サンデンホールディングス株式会社 Scroll fluid machine and refrigeration machine with same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111206963A (en) * 2018-11-22 2020-05-29 艾默生环境优化技术(苏州)有限公司 Scroll expander
US11391154B2 (en) * 2018-11-22 2022-07-19 Emerson Climate Technologies (Suzhou) Co., Ltd. Scroll expander with back pressure chamber
CN111794960A (en) * 2019-04-09 2020-10-20 艾默生环境优化技术(苏州)有限公司 Scroll compressor having a plurality of scroll members

Also Published As

Publication number Publication date
JP2017053266A (en) 2017-03-16

Similar Documents

Publication Publication Date Title
JP6241605B2 (en) Scroll type fluid machinery
JP2006266170A (en) Hermetic scroll compressor and refrigeration air conditioning device
JP2010190074A (en) Scroll type fluid machine
WO2016052503A1 (en) Scroll compressor and refrigeration cycle device using same
CN101846074A (en) Scroll compressor
JP2008101559A (en) Scroll compressor and refrigeration cycle using the same
CN101196191A (en) Scroll compressor
WO2017043471A1 (en) Scroll fluid machine and refrigerating device in which same is used
JP4067497B2 (en) Scroll compressor
JP2006220143A (en) Displacement fluid machine and refrigerating cycle by use of it
JP4991255B2 (en) Refrigeration cycle equipment
JP2009109158A (en) Refrigeration air conditioner
WO2016031278A1 (en) Scroll fluid machine and refrigeration machine with same
JP2009299523A (en) Scroll type fluid machine
JP6393115B2 (en) Scroll type fluid machinery
JP2008267345A (en) Electric compressor
JPH11303776A (en) Scroll compressor and refrigeration cycle with it
JP6393116B2 (en) Scroll type fluid machinery
WO2020162394A1 (en) Scroll compressor
JP4879078B2 (en) Compressor
JP2007154805A (en) Refrigerating cycle apparatus
WO2024029177A1 (en) Scroll compressor and refrigerating device
JP2006037896A (en) Scroll compressor
JP4888222B2 (en) Fluid machine and refrigeration cycle apparatus including the same
JP2006214335A (en) Scroll compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16844332

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16844332

Country of ref document: EP

Kind code of ref document: A1