WO2016031278A1 - Scroll fluid machine and refrigeration machine with same - Google Patents

Scroll fluid machine and refrigeration machine with same Download PDF

Info

Publication number
WO2016031278A1
WO2016031278A1 PCT/JP2015/057799 JP2015057799W WO2016031278A1 WO 2016031278 A1 WO2016031278 A1 WO 2016031278A1 JP 2015057799 W JP2015057799 W JP 2015057799W WO 2016031278 A1 WO2016031278 A1 WO 2016031278A1
Authority
WO
WIPO (PCT)
Prior art keywords
scroll
compression
fluid machine
chamber
type fluid
Prior art date
Application number
PCT/JP2015/057799
Other languages
French (fr)
Japanese (ja)
Inventor
尚史 大谷
戸部隆久
康臣 松本
Original Assignee
サンデンホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンデンホールディングス株式会社 filed Critical サンデンホールディングス株式会社
Priority to DE112015003964.3T priority Critical patent/DE112015003964T5/en
Publication of WO2016031278A1 publication Critical patent/WO2016031278A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/02Rotary-piston machines or engines of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F01C1/0207Rotary-piston machines or engines of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F01C1/0215Rotary-piston machines or engines of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/02Rotary-piston machines or engines of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F01C1/0207Rotary-piston machines or engines of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F01C1/0246Details concerning the involute wraps or their base, e.g. geometry
    • F01C1/0269Details concerning the involute wraps
    • F01C1/0276Different wall heights
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C11/00Combinations of two or more machines or engines, each being of rotary-piston or oscillating-piston type
    • F01C11/002Combinations of two or more machines or engines, each being of rotary-piston or oscillating-piston type of similar working principle
    • F01C11/004Combinations of two or more machines or engines, each being of rotary-piston or oscillating-piston type of similar working principle and of complementary function, e.g. internal combustion engine with supercharger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0215Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0246Details concerning the involute wraps or their base, e.g. geometry
    • F04C18/0269Details concerning the involute wraps
    • F04C18/0276Different wall heights
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • F04C23/003Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle having complementary function
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/04Compression machines, plants or systems with non-reversible cycle with compressor of rotary type

Definitions

  • the present invention relates to a scroll type fluid machine that forms an expansion chamber and a compression chamber of a working fluid between wraps of fixed and movable scrolls, and a refrigeration apparatus using the scroll type fluid machine.
  • This type of scroll type fluid machine includes a scroll unit including a movable scroll provided with a lap on the base surface and a fixed scroll provided with a wrap meshing with the lap of the movable scroll on the base surface.
  • a single plate type compressor-integrated expander in which a working chamber of a unit is divided into an expansion chamber and a compression chamber by a partition wall to form a central expansion portion and an outer compression portion (for example, Patent Document 1).
  • a back pressure chamber is configured on the back side opposite to the base surface of the movable scroll.
  • the back pressure chamber is supplied with a working fluid maintained at the discharge pressure of the compression section, and is urged so that the movable scroll is pressed against the fixed scroll by the pressure on the discharge side of the compression section.
  • Such a scroll type fluid machine is used, for example, in a heat pump for heating a hot water heater or the like, and constitutes a refrigeration cycle of a refrigeration apparatus together with a high-stage compressor, a radiator, and a heat absorber (evaporator).
  • the working fluid compressed by the high-stage compressor flows into the radiator and radiates heat there.
  • This working fluid is sucked into the expansion portion from the center portion of the fixed scroll of the scroll type fluid machine while being kept at a high pressure, and is expanded in an expansion chamber formed between the wraps of the expansion portion, whereby the movable scroll is revolved. Power is recovered.
  • the working fluid (refrigerant) that has exited the expansion part of the scroll type fluid machine flows into the heat absorber and evaporates. After exerting the endothermic action, the working fluid is sucked into the compression part from the outer peripheral part of the fixed scroll of the scroll type fluid machine.
  • the working fluid sucked into the compression unit is compressed in the compression chamber formed between the wraps of the compression unit by the power recovered by the expansion unit. That is, the compression unit of the scroll type fluid machine is on the lower stage side, and the working fluid compressed by the lower stage compression unit is repeatedly circulated by being sucked into the higher stage compressor (for example, Patent Documents). 2).
  • the conventional refrigeration apparatus is provided with a bypass pipe that bypasses the suction side and the discharge side of the compression unit of the scroll type fluid machine.
  • the bypass pipe is provided with an opening / closing valve. By opening the opening / closing valve only when the high-stage compressor is started, the low-stage compression section is bypassed.
  • the purpose is to increase the discharge pressure of the high-stage compressor quickly and increase the power applied to the expansion part early by making the high-stage compressor easily suck the working fluid. It was intended to start the scroll fluid machine quickly.
  • the suction side and the discharge side of the compression unit (low-stage compression unit) of the scroll type fluid machine are bypassed by the bypass pipe. It is considered that it is easier to start the scroll type fluid machine if the working fluid is sucked from the compression part of the scroll type fluid machine than when the high stage compressor is started without providing such a bypass pipe.
  • the scroll type fluid machine has a structure in which the pressure on the discharge side of the compression unit is supplied as the back pressure of the movable scroll as described above, and the movable scroll is pressed against the fixed scroll by this back pressure, the high-stage compressor If the pressure on the discharge side of the compression part of the scroll type fluid machine becomes lower than the suction side of the compression part at the time of starting, the back pressure of the movable scroll is surely insufficient.
  • the present invention has been made in order to solve the conventional technical problem, and is a single plate type compressor-integrated expander that constitutes a low-stage compression section of a refrigeration apparatus together with a high-stage compressor. It is an object of the present invention to enable easy activation of the scroll type fluid machine.
  • a scroll type fluid machine is composed of a fixed scroll and a movable scroll each having a spiral wrap formed on each base surface of each substrate so as to face each other. Formed between each lap of both scrolls by expanding the working fluid in the expansion chamber formed between them, revolving the revolving motion of the movable scroll to recover the power, and the power recovered by this expansion section And a low-stage compression section that compresses the working fluid in the compressed chamber, and the working fluid compressed by the compression section is sucked into the high-stage compressor and compressed by the high-stage compressor.
  • the high-pressure working fluid is sucked into the expansion portion, and the back pressure chamber formed on the back side opposite to the base surface of the movable scroll is connected to the discharge side of the compression portion and the back pressure chamber.
  • a communication path to This provided the communication passage, the direction from the discharge side of the compression unit to the back pressure chamber side, characterized in that a forward and has been non-return valve device.
  • the scroll type fluid machine is characterized in that, in the above invention, the check valve device includes a narrow passage communicating the back pressure chamber side and the discharge side of the compression portion.
  • a scroll type fluid machine including a frame having a pedestal portion which supports the movable scroll so as to be capable of revolving orbiting at an outer peripheral portion of a rear surface of the movable scroll in each of the above inventions.
  • the check valve device is formed of a reed valve attached to the frame so as to close the outlet on the back pressure chamber side of the communication path.
  • a scroll type fluid machine is characterized in that a small hole is formed in the reed valve in the above invention.
  • the scroll type fluid machine of the invention of claim 5 is characterized in that, in the invention of claim 3, a small groove is formed in the valve seat of the reed valve.
  • a refrigeration apparatus comprises the scroll type fluid machine according to any one of the first to fifth aspects and a high-stage compressor, and the compression of the scroll type fluid machine.
  • the working fluid is sucked into the higher stage compressor than the discharge side of the part, the high pressure working fluid compressed by the higher stage compressor is sucked into the expansion part of the scroll type fluid machine, and the higher stage side The working fluid is sucked from the compression portion of the scroll type fluid machine from the start of the compressor.
  • the refrigeration apparatus of the invention of claim 7 is characterized in that carbon dioxide is used as the working fluid in the above invention.
  • the present invention is composed of a fixed scroll and a movable scroll in which spiral wraps are formed on each base surface of each substrate so as to face each other, and a working fluid is expanded in an expansion chamber formed between the wraps of both scrolls.
  • the low-stage side that compresses the working fluid in the compression chamber formed between the laps of the two scrolls by the expansion portion that revolves the orbiting scroll to recover the power and the power recovered by the expansion portion
  • a back pressure chamber formed on the back side opposite to the base surface of the movable scroll, a communication path for communicating the discharge side of the compression unit and the back pressure chamber, and a communication path provided in the communication path Of the compression part
  • a check valve device in which the direction from the outlet side toward the back pressure chamber side is a forward direction.
  • the compressor of the scroll type fluid machine is compressed at a higher stage than the discharge side.
  • the scroll type fluid machine of the present invention is used in a refrigeration apparatus that sucks the working fluid into the machine and sucks the high pressure working fluid compressed by the high stage side compressor into the expansion part of the scroll type fluid machine, and Even when the working fluid is sucked from the compressor of the scroll type fluid machine from the time of starting the high stage side compressor, the scroll type fluid machine is used at the time of starting the high stage side compressor by the check valve device. The inconvenience that the pressure in the back pressure chamber is suddenly reduced is prevented.
  • the movable scroll is fixed even if the working fluid is sucked from the compression unit of the scroll type fluid machine from the start of the high-stage compressor without bypassing the compression unit of the scroll type fluid machine as in the prior art.
  • the scroll type fluid machine can be activated without being peeled off from the scroll and pressed against the fixed scroll. Then, by sucking the working fluid from the discharge side of the compression unit with the high-stage compressor, the pressure on the discharge side of the compression unit becomes lower than the pressure on the suction side of the compression unit. Thereby, since a starting torque is generated in the scroll type fluid machine, it is possible to start up more easily than in the prior art.
  • the check valve device is provided with a narrow passage that communicates the back pressure chamber side and the discharge side of the compression portion as in the invention of claim 2 so that the check valve device is activated after the high-stage compressor is started.
  • the pressure gradually passes through the narrow passage to the discharge side of the compression section. That is, the pressure in the back pressure chamber that has risen to an equilibrium pressure higher than the pressure on the discharge side of the compressor during the stop is gradually reduced after the high-stage compressor is started.
  • the pressure in the back pressure chamber can be lowered to the pressure on the discharge side of the compression unit early after the scroll type fluid machine is started, and the back pressure applied to the movable scroll can be quickly set to an appropriate value. It becomes like this.
  • a frame having a pedestal portion that supports the movable scroll so as to be capable of revolving orbiting at the outer peripheral portion of the rear surface of the movable scroll, and the communication passage is formed in the frame, and the check valve device
  • the communication path and the check valve device can be realized with a simple configuration, and the structure can be simplified. It becomes possible.
  • a small hole is formed in the reed valve as in the invention of claim 4, or a small groove is formed in the valve seat of the reed valve as in the invention of claim 5, whereby the narrow passage of claim 2 is simply configured. Can be realized.
  • the above inventions are particularly effective for a refrigeration apparatus using carbon dioxide as a working fluid as in the invention of claim 7.
  • FIG. 3 is a sectional view taken along line AA in FIG. 2. It is an expanded sectional view of the check valve device part of the scroll type fluid machine of FIG. It is a figure which shows the refrigerating cycle of the freezing apparatus of one Example using the scroll type fluid machine of FIG. It is a figure explaining the change of the pressure of each part of the scroll type fluid machine of FIG.
  • FIG. 1 shows a vertical side view of a scroll type fluid machine 1 according to an embodiment of the present invention.
  • the scroll type fluid machine 1 of the embodiment is, for example, a vertically installed single-plate type compressor-integrated expander, and refrigeration of a refrigeration apparatus RC that uses carbon dioxide whose high pressure side is a supercritical pressure as a refrigerant (working fluid). Used in the cycle (FIG. 5).
  • the refrigeration apparatus RC is incorporated as a heat pump in an air conditioner, a heat pump hot water heater, or the like (not shown).
  • the scroll fluid machine 1 according to the embodiment includes an expansion unit 2 that performs an expansion operation by the pressure of the refrigerant, and a compression unit 3 (low stage side) that performs a compression operation by the expansion operation of the expansion unit 2 ( Figure 2).
  • the scroll fluid machine 1 includes a housing 4.
  • a scroll unit 8 mainly composed of a fixed scroll 6 and a movable scroll 7 that revolves with respect to the fixed scroll 6, and a frame that supports the movable scroll 7 so that it can revolve.
  • a main frame 9 and a fixed shaft 11 fixed to the bottom surface of the main frame 9 and protruding from the bottom surface of the main frame 9 are disposed.
  • the housing 4 includes a main shell 12 serving as a main body, a cap-shaped top shell 13 that covers the upper portion of the main shell 12, and a cap-shaped bottom shell 14 that covers the lower portion of the main shell 12.
  • the housing 4 is assembled by fastening the top shell 13 and the bottom shell 14 together with bolts so as to sandwich the main shell 12 via a sealing material such as an O-ring, and the inside is sealed from the outside.
  • the outer periphery of the main frame 9 is fixed inside the main shell 12.
  • a pressure obtained by compressing the refrigerant (carbon dioxide) taken in from the refrigeration cycle of the refrigeration apparatus RC as the working fluid of the scroll type fluid machine 1 by the compression unit 3 acts.
  • the top shell 13 is connected to an expansion side suction pipe 16 that sucks refrigerant taken from the refrigeration cycle of the refrigeration apparatus RC into the expansion section 2.
  • the main shell 12 includes an expansion side discharge pipe 17 that discharges the refrigerant expanded in the expansion unit 2 toward the refrigeration cycle of the refrigeration apparatus RC, and the refrigerant compressed in the compression unit 3 in the refrigeration cycle of the refrigeration apparatus RC.
  • a compression-side discharge pipe 18 that discharges toward is connected.
  • the ends of the expansion side suction pipe 16 and the expansion side discharge pipe 17 are opened and communicated with an expansion side suction chamber 19 and an expansion side discharge chamber 21 formed in the substrate 6 a of the fixed scroll 6, respectively.
  • An end portion of the pipe 18 opens into the main shell 12 and communicates with a compression side discharge chamber 22 as a discharge side of the compression portion 3 formed inside the top shell 13 through the main shell 12.
  • the main shell 12 is connected to a compression side suction pipe 23 (shown in FIG. 3, which is located on the front side in FIG. 1) that sucks the refrigerant taken from the refrigeration cycle of the refrigeration apparatus RC into the compression unit 3.
  • An end portion of the compression side suction pipe 23 is communicated with a compression side suction chamber 24 as a suction side of the compression portion formed in the substrate 6 a of the fixed scroll 6.
  • a lubricating oil chamber 26 is formed inside the bottom shell 14, and lubricating oil for lubricating the scroll unit 8 is stored in the lubricating oil chamber 26.
  • the compression side suction chamber 23 is provided with an oil feed hole 27 (FIG. 2) penetrating the substrate 6 a and the main frame 9 of the fixed scroll 6, and the lubricating oil chamber 26 is formed through the oil feed hole 27.
  • the lubricating oil is supplied to the compression side suction chamber 24.
  • an oil supply passage 28 is formed in the fixed shaft 11 along the axial direction of the fixed shaft 11.
  • the lower end of the oil supply passage 28 opens into the lubricating oil chamber 26, and the upper end is a boss (concave portion) 31. It is opened in the inner space.
  • the fixed scroll 6 is fixed to the upper surface portion 9 a of the main frame 9, and the compression side discharge hole 32 penetrates slightly in the center in the radial direction of the fixed scroll 6 with respect to the compression side suction chamber 24 of the substrate 6 a of the fixed scroll 6. Is formed.
  • An oil separator 33 for separating the lubricating oil in the refrigerant is attached to the opening of the compression side discharge hole 32 with respect to the compression side discharge chamber 22.
  • the movable scroll 7 is supported by the outer peripheral portion of the back surface 7c on the pedestal portion 9b of the main frame 9 so as to be capable of revolving without rotating through a rotation prevention mechanism 34 such as an Oldham ring.
  • This rotation prevention mechanism 34 is inserted into the pedestal portion 9b, and is slidably connected to the back surface 7c, which is the surface opposite to the base surface 7b of the substrate 7a, along with the revolving turning motion of the movable scroll 7.
  • the above-described cylindrical boss 31 into which the eccentric bush 36 is slidably and rotatably fitted is projected.
  • the fixed shaft 11 described above constitutes a support mechanism 54 that supports the movable scroll 7 together with the main frame 9 so as to be capable of revolving and turning at the center of the back surface 7c.
  • the upper end portion of the fixed shaft 11 is inserted inside the slide bush 56 so as to be slidable and rotatable by a bearing 49.
  • the slide bush 56 is accommodated in the eccentric bush 36 so as to be movable in the eccentric direction.
  • a spring 61 is interposed between the slide bush 56 and the eccentric bush 36.
  • the slide bush 56 is constantly urged in the eccentric direction by the spring 61, and thereby the misalignment of the scrolls 6 and 7 is adjusted.
  • the eccentric bush 36 is inserted into the boss 31 via a bearing 48 so as to be slidable and rotatable.
  • the bearing 48 receives a radial load that acts on the eccentric bush 36 as the orbiting scroll 7 revolves.
  • a bearing 51 is disposed between the lower end of the eccentric bush 36 and the main frame 9.
  • the fixed shaft 11 supports the movable scroll 7 through the bearing 49, the slide bush 56, the eccentric bush 36, the bearing 48, and the bearing 51 so as to be capable of revolving
  • the support mechanism 54 includes the boss 31, The eccentric bush 36, the slide bush 56, the fixed shaft 11, and the spring 61 are configured.
  • the scroll unit 8 of the embodiment is a compressor-integrated expander, and includes a compression chamber of the compression unit 3 and an expansion chamber of the expansion unit 2 as a refrigerant working chamber by a pair of fixed scroll 6 and movable scroll 7.
  • the fixed shaft 11 only supports the movable scroll 7 together with the main frame 9 so as to be capable of revolving, and the fixed shaft 11 itself is driven to rotate. There is no.
  • annular intermediate partition wall (annular wall) 38 and an annular outer partition wall 39 are erected on the base surface 6 b of the fixed scroll 6.
  • a spiral outer fixed scroll wrap (wrap) 40 is provided between the partition wall (annular wall) 39 and a spiral inner fixed scroll wrap (wrap) 41 is provided on the center side of the intermediate partition wall 38.
  • an annular groove 42 into which a seal ring (not shown) is inserted is recessed in the end surface of the intermediate partition wall 38 on the base surface 6b.
  • the above-described compression side suction chamber 24 is formed at the outer peripheral end of the compression portion 3 slightly inside the outer partition wall 39, and the inner peripheral end of the compression portion 3 slightly outside the intermediate partition wall 38.
  • a compression-side discharge hole 32 is formed in the upper part.
  • the expansion side discharge chamber 21 described above is formed on the outer peripheral end of the expansion portion 2 slightly inside the intermediate partition wall 38 on the substrate 6a, and the expansion side suction chamber 19 described above is the inner peripheral end of the expansion portion 2. It is formed at the center.
  • an annular oil groove 43 is formed on the substrate 6a slightly outside the outer partition wall 39, and is countersunk at a predetermined depth with a diameter larger than the groove width provided on the oil groove 43.
  • the oil feed hole 27 described above is formed on the bottom surface of the formed recess.
  • a spiral outer movable scroll wrap (wrap) 44 that meshes with the outer fixed scroll wrap 40 and a spiral inner movable scroll wrap (wrap) that meshes with the inner fixed scroll wrap 41. ) 46 is erected in the direction of the opposite spiral.
  • the expansion part 2 is formed inside the intermediate partition wall 38, and the compression part 3 is formed between the intermediate partition wall 38 and the outer partition wall 39.
  • the refrigerant sucked from the expansion side suction pipe 16 is taken into the central portion of the expansion portion 2 through the expansion side suction chamber 19, and the scrolls 6, 7 are mutually connected.
  • it is expanded in an expansion chamber (working chamber) formed between the laps 41 and 46.
  • the volume of the expansion chamber is increased while moving toward the outer peripheral side of each of the scrolls 6, 7, and accordingly, the movable scroll 7 is revolved around the axis of the fixed scroll 6.
  • the refrigerant used for the revolving orbiting motion of the movable scroll 7 is discharged toward the refrigeration cycle of the refrigeration apparatus RC outside the housing 4 through the expansion side discharge chamber 21 via the expansion side discharge chamber 21.
  • the refrigerant sucked from the compression side suction pipe 23 is taken into the compression section 3 through the compression side suction chamber 24, and the movable scroll 7 moves around the axis of the fixed scroll 6 along with the expansion of the refrigerant in the expansion chamber described above.
  • the scrolls 6 and 7 are compressed in a compression chamber (working chamber) formed between the laps 40 and 44 by cooperating with each other. The volume of the compression chamber is reduced while moving toward the center of each of the scrolls 6 and 7 as the orbiting scroll 7 revolves.
  • the high-pressure refrigerant passes through the compression-side discharge hole 32 and the compression-side discharge chamber 22 and then passes through the compression-side discharge pipe 18 toward the refrigeration cycle of the refrigeration apparatus RC outside the housing 4. Discharged.
  • Oil return path (communication path) 47 Further, in this process, as indicated by a dotted arrow in FIG. 1, the refrigerant discharged from the compression-side discharge hole 32 to the compression-side discharge chamber 22 causes the lubricating oil in the refrigerant to pass through the oil separator 33. To be separated.
  • the lubricating oil separated from the refrigerant is an oil return passage 47 as a communication passage for communicating the discharge side (compression side discharge chamber 22) of the compression section 3 formed in the main frame 9 and the back pressure chamber 52 with each other. Then, the oil is stored in the lubricating oil chamber 26.
  • the lubricating oil stored in the lubricating oil chamber 26 rises in the oil supply passage 28 due to the differential pressure between the lubricating oil chamber 26 and the back pressure chamber 52, is discharged from the upper end of the fixed shaft 11, and has a bearing 49, a bearing 48, and a bearing 51. After being lubricated, the pressure reaches the back pressure chamber 52 formed between the pedestal 9b of the main frame 9 and the back surface 7c of the movable scroll 7.
  • Check valve device 66 A check valve device 66 is attached to the lower surface of the main frame 9.
  • the check valve device 66 of this embodiment includes a reed valve 67 and a bolt 68 that fixes the reed valve 67 to the main frame 9.
  • the reed valve 67 is the back pressure chamber 56 of the oil return passage 47. It arrange
  • the outlet of the oil return passage 47 is also opened on the lower surface of the main frame 9, and a valve seat 47a of the reed valve 67 projects from the periphery of the outlet as shown in FIG.
  • the reed valve 67 abuts on the valve seat 47 a to close the outlet of the oil return path 47.
  • the reed valve 67 corresponding to the outlet of the oil return passage 47 is provided with a small hole 67a for forming a narrow passage (FIG. 4).
  • the reed valve 67 of the check valve device 66 has a forward direction from the compression side discharge chamber 22 on the discharge side of the compression unit 3 toward the lubricating oil chamber 26 on the back pressure chamber 52 side, and the compression side discharge chamber.
  • the passage of the lubricating oil in the direction from 22 to the lubricating oil chamber 26 is allowed, and the movement of the lubricating oil in the opposite direction is such that the reed valve 67 contacts the valve seat 47a and closes the outlet of the oil return passage 47. It is configured to be blocked by.
  • the reed valve 67 contacts the valve seat 47a and closes the outlet of the oil return passage 47.
  • the small hole 67a is formed in the reed valve 67, even when the reed valve 67 closes the outlet of the oil return passage 47, the discharge from the lubricating oil chamber 26 (on the back pressure chamber 52 side) is discharged. A very small amount of lubricating oil (pressure) is allowed to move to the chamber 22 (the discharge side of the compression unit 3).
  • FIG. 5 shows a refrigeration cycle of the refrigeration apparatus RC of one embodiment using the scroll type fluid machine 1 of the present invention.
  • the compression unit 3 driven by the power recovered by the expansion unit 2 of the scroll type fluid machine 1 constitutes a low-stage compressor (low-stage compression unit) in the refrigeration cycle of the refrigeration apparatus RC.
  • the above-described compression-side discharge pipe 18 of the compression unit 3 is connected to a high-stage side compression unit 70 a that is driven by an electric motor 70 b of a high-stage side compressor 70 that is located downstream of the compression unit 3.
  • a gas cooler 71 for cooling the refrigerant is connected to the subsequent stage of the compression unit 70a, and the expansion unit 2 of the scroll type fluid machine 1 is connected between the outlet of the gas cooler 71 and the inlet of the evaporator (heat absorber) 73. ing.
  • the refrigerant from the gas cooler 71 is sucked into the expansion side suction chamber 19 of the expansion unit 2 from the expansion side suction pipe 16 described above. Further, the refrigerant is sent from the expansion section 2 of the scroll type fluid machine 1 to the evaporator 73 via the expansion side discharge pipe 17.
  • the refrigerant discharged from the evaporator 73 is sucked into the compression unit 3 of the scroll type fluid machine 1 from the compression side suction pipe 23.
  • the movable scroll 7 revolves and the power is recovered.
  • the revolving orbiting motion of the movable scroll 7 causes the compressor 3 to operate as a low-stage compressor.
  • the refrigerant expanded in the expansion section 2 is heated by the evaporator 73 (or the object is thereby cooled), and is again sucked into the compression section 3 of the scroll type fluid machine 1 through the compression side suction pipe 23.
  • the compression unit 3 of the scroll fluid machine 1 takes part of the compression process of the refrigeration cycle of the refrigeration apparatus RC (low stage side), and the compression part 70a of the compressor 70 on the high stage side remains the compression process ( Take the higher stage).
  • the compression power in the compression unit 3 is covered by the recovery power in the expansion unit 2.
  • the reed valve 67 of the check valve device 66 is spaced from the valve seat 47a to open the outlet of the oil return passage 47, and allows the lubricating oil from the compression side discharge chamber 22 to the lubricating oil chamber 26 on the back pressure chamber 52 side to pass therethrough.
  • the lubricating oil maintained at the discharge pressure of the compression unit 3 is supplied to the back pressure chamber 52 through the oil return passage 47, the lubricating oil chamber 26, and the oil supply passage 28. 7 is urged against the fixed scroll 6 by the discharge pressure of the compression unit 3, and the expansion and compression (low stage) of the refrigerant is stably performed in the expansion unit 2 and the compression unit 3 of the scroll type fluid machine 1. .
  • the discharge pressure P1 of the compressor 70 pressure at the inlet sucked into the expansion section 2 from the expansion-side suction pipe 16
  • the pressure P3 ( The pressure in the compression side discharge chamber 22) decreases rapidly and becomes lower than the pressure P2 on the suction side of the compression unit 3. Due to the rapid pressure drop in the compression side discharge chamber 22, the pressure in the compression side discharge chamber 22 (compression unit 3) is higher than the pressure P 4 in the back pressure chamber 52 (pressure in the lubricating oil chamber 26 communicating with the back pressure chamber 52). Therefore, the reed valve 67 of the check valve device 66 contacts and closes the valve seat 47a at the outlet of the oil return passage 47.
  • the pressure P4 in the back pressure chamber 52 does not drop abruptly like the pressure P3 on the discharge side of the compression section 3, and the back pressure of the movable scroll 7 is secured, so that the scroll fluid machine 1 can be started. Become. However, due to the small hole 67a, the pressure P4 in the back pressure chamber 52 gradually decreases.
  • the pressure P3 on the discharge side of the compression unit 3 (pressure on the compression side discharge chamber 22) is lower than the pressure on the suction side of the compression unit 3, so that the scroll unit 8 of the scroll type fluid machine 1 has Generates a starting torque. Thereby, the scroll type fluid machine 1 becomes easy to start and starts at time t2.
  • the scroll fluid machine 1 When the scroll fluid machine 1 is activated, the refrigerant starts to be compressed in the compression chamber of the compression unit 3, so that the pressure in the compression side discharge chamber 22 which is the pressure P3 on the discharge side of the compression unit 3 also rises, and eventually the compression unit 3 and the pressure P2 in the back pressure chamber 52 becomes the same as about 5 MPa.
  • the reed valve 67 of the check valve device 66 opens the outlet of the oil return passage 47, and thereafter, the pressure P3 on the discharge side of the compression unit 3 is supplied as the back pressure P4.
  • an oil return path 47 as a communication path for communicating with the back pressure chamber 52, and a direction from the discharge side of the compression unit 3 to the lubricating oil chamber 26 on the back pressure chamber 52 side provided in the oil return path 47.
  • the scroll type fluid machine 1 of the present invention is used in the refrigeration apparatus RC that sucks the high-pressure refrigerant compressed in 70 into the expansion part 2 of the scroll type fluid machine 1 and the compressor 70 on the high stage side is started up.
  • the refrigerant is sucked from the compression unit 3 of the scroll type fluid machine 1. Even if, disadvantage that the pressure (back pressure) is rapidly reduced in the back pressure chamber 52 of the scroll type fluid machine 1 at the start of the compressor 70 of the high-stage side is prevented by the check valve device 66.
  • the refrigerant is sucked from the compressor 3 of the scroll type fluid machine 1 from the start of the high-stage compressor 70 without bypassing the compressor 3 of the scroll type fluid machine 1 as in the prior art.
  • the movable scroll 7 is pressed against the fixed scroll 6 without being peeled off from the fixed scroll 6, and the scroll fluid machine 1 can be activated.
  • the pressure on the discharge side of the compression unit 3 becomes lower than the pressure on the suction side of the compression unit 3.
  • the check valve device 66 is provided with a small hole 67a that communicates the lubricating oil chamber 26 on the back pressure chamber 52 side with the discharge side (compression side discharge chamber 22) of the compression section 3, After starting up the compressor 70, the pressure gradually passes through the small hole 67 a of the check valve device 66 into the compression side discharge chamber 22 that is the discharge side of the compression unit 3. That is, the pressure in the back pressure chamber 52 that has risen to an equilibrium pressure higher than the pressure on the discharge side of the compression unit 3 during the stop is gradually reduced after the high-stage compressor 70 is started. Become.
  • the pressure P4 in the back pressure chamber 52 can be lowered to the pressure P3 on the discharge side of the compression unit 3 at an early stage after the scroll type fluid machine 1 is started, and the back pressure applied to the movable scroll 7 is quickly and appropriately set. Value.
  • the main frame 9 is provided with a pedestal portion 9 b that supports the movable scroll 7 so as to be capable of revolving and turning at the outer peripheral portion of the back surface 7 c of the movable scroll 7, and an oil return path 47 is formed in the main frame 9.
  • the check valve device 66 is composed of the reed valve 67 attached to the main frame 9 so as to close the outlet of the oil return channel 47 on the back pressure chamber 52 side, the oil return channel 47 and the check valve device are configured. 66 can be realized with a simple configuration, and the structure can be simplified.
  • the small hole 67a is formed in the reed valve 67, the narrow passage of the check valve device 66 can be realized with a simple configuration.
  • the scroll fluid machine 1 of the present invention is particularly effective for the refrigeration apparatus RC that uses carbon dioxide as a working fluid.
  • a small hole 67a is formed in the reed valve 67 of the check valve device 66 to form a narrow passage.
  • the present invention is not limited thereto, and a small groove is provided in the valve seat 47a. Even when the reed valve 67 is in contact with the valve seat 47a, a narrow passage communicating the oil return passage 47 and the lubricating oil chamber 26 may be formed.

Abstract

The purpose of the present invention is to facilitate the starting of a scroll fluid machine (1) which is a single plate-type compression machine-integrated expansion machine in which the low-stage-side compression section of a refrigeration device is configured together with a high-stage-side compressor. A refrigerant compressed by the compression section (3) of the scroll fluid machine (1) is sucked into a high-stage-side compression machine, and the high-pressure refrigerant compressed by the high-pressure-side compression machine is sucked into an expansion section (2). The scroll fluid machine (1) is provided with: a back-pressure chamber (52) formed on the rear surface (7c) side of a movable scroll (7), which is on the reverse side of the base surface (7b) of the movable scroll (7); an oil return passage (47) for causing the back-pressure chamber (52) and the discharge side of the compression section to be in communication with each other; and a check valve device (66) provided in the oil return passage (47) and configured so that the direction leading from a compression-side discharge chamber (22), which is on the discharge side of the compression section, to a lubricating oil chamber (26), which is on the back-pressure chamber side, is the flow-permitted direction.

Description

スクロール型流体機械及びそれを用いた冷凍装置Scroll type fluid machine and refrigeration apparatus using the same
 本発明は、固定及び可動スクロールのラップ間に作動流体の膨張室と圧縮室を形成するスクロール型流体機械、及び、それを用いた冷凍装置に関するものである。 The present invention relates to a scroll type fluid machine that forms an expansion chamber and a compression chamber of a working fluid between wraps of fixed and movable scrolls, and a refrigeration apparatus using the scroll type fluid machine.
 この種のスクロール型流体機械としては、基面にラップを設けた可動スクロールと、基面にこの可動スクロールのラップと噛合うラップを設けた固定スクロールとから構成されるスクロールユニットを備え、このスクロールユニットの作動室を仕切り壁により膨張室と圧縮室とに仕切って、中心側の膨張部とその外側の圧縮部とを形成した単板式の圧縮機一体型膨張機が知られている(例えば、特許文献1参照)。 This type of scroll type fluid machine includes a scroll unit including a movable scroll provided with a lap on the base surface and a fixed scroll provided with a wrap meshing with the lap of the movable scroll on the base surface. There is known a single plate type compressor-integrated expander in which a working chamber of a unit is divided into an expansion chamber and a compression chamber by a partition wall to form a central expansion portion and an outer compression portion (for example, Patent Document 1).
 また、可動スクロールの基面とは反対側の背面には背圧室が構成されている。この背圧室には圧縮部の吐出圧力に保たれた作動流体が供給され、係る圧縮部の吐出側の圧力によって可動スクロールが固定スクロールに対して押し付けられるように付勢していた。 Also, a back pressure chamber is configured on the back side opposite to the base surface of the movable scroll. The back pressure chamber is supplied with a working fluid maintained at the discharge pressure of the compression section, and is urged so that the movable scroll is pressed against the fixed scroll by the pressure on the discharge side of the compression section.
 そして、係るスクロール型流体機械は例えば給湯機等を加熱するヒートポンプに用いられ、高段側の圧縮機と、放熱器と、吸熱器(蒸発器)と共に冷凍装置の冷凍サイクルを構成する。この場合、高段側の圧縮機で圧縮された作動流体が放熱器に流入し、そこで放熱する。この作動流体は、高圧に保たれたままスクロール型流体機械の固定スクロール中心部から膨張部に吸入され、膨張部のラップ間に形成された膨張室で膨張することで可動スクロールが公転旋回運動されて動力が回収される。 Such a scroll type fluid machine is used, for example, in a heat pump for heating a hot water heater or the like, and constitutes a refrigeration cycle of a refrigeration apparatus together with a high-stage compressor, a radiator, and a heat absorber (evaporator). In this case, the working fluid compressed by the high-stage compressor flows into the radiator and radiates heat there. This working fluid is sucked into the expansion portion from the center portion of the fixed scroll of the scroll type fluid machine while being kept at a high pressure, and is expanded in an expansion chamber formed between the wraps of the expansion portion, whereby the movable scroll is revolved. Power is recovered.
 スクロール型流体機械の膨張部を出た作動流体(冷媒)は吸熱器に流入して蒸発し、吸熱作用を発揮した後、スクロール型流体機械の固定スクロールの外周部から圧縮部に吸入される。この圧縮部に吸入された作動流体は、膨張部で回収された動力により、圧縮部のラップ間に形成された圧縮室で圧縮される。即ち、スクロール型流体機械の圧縮部は低段側となり、この低段側の圧縮部で圧縮された作動流体が高段側の圧縮機に吸い込まれる循環を繰り返すものであった(例えば、特許文献2参照)。 The working fluid (refrigerant) that has exited the expansion part of the scroll type fluid machine flows into the heat absorber and evaporates. After exerting the endothermic action, the working fluid is sucked into the compression part from the outer peripheral part of the fixed scroll of the scroll type fluid machine. The working fluid sucked into the compression unit is compressed in the compression chamber formed between the wraps of the compression unit by the power recovered by the expansion unit. That is, the compression unit of the scroll type fluid machine is on the lower stage side, and the working fluid compressed by the lower stage compression unit is repeatedly circulated by being sucked into the higher stage compressor (for example, Patent Documents). 2).
 この場合、従来の冷凍装置では特許文献2の図4に示されるように、スクロール型流体機械の圧縮部の吸入側と吐出側とをバイパスするバイパス管を設けている。このバイパス管には開閉弁が介設されており、高段側の圧縮機の起動時のみこの開閉弁を開くことで低段側の圧縮部をバイパスするようにしていた。その目的は、高段側の圧縮機が作動流体を吸入し易くすることにより、当該高段側の圧縮機の吐出圧力を速やかに上昇させ、膨張部に加わる動力を早期に増大させることで、スクロール型流体機械の速やかな起動を企図することであった。 In this case, as shown in FIG. 4 of Patent Document 2, the conventional refrigeration apparatus is provided with a bypass pipe that bypasses the suction side and the discharge side of the compression unit of the scroll type fluid machine. The bypass pipe is provided with an opening / closing valve. By opening the opening / closing valve only when the high-stage compressor is started, the low-stage compression section is bypassed. The purpose is to increase the discharge pressure of the high-stage compressor quickly and increase the power applied to the expansion part early by making the high-stage compressor easily suck the working fluid. It was intended to start the scroll fluid machine quickly.
特許第5209764号公報Japanese Patent No. 5209964 特許第3953871号公報Japanese Patent No. 3953871
 上記に如く従来の冷凍装置では、高段側の圧縮機の起動時にスクロール型流体機械の圧縮部(低段側の圧縮部)の吸入側と吐出側とをバイパス管によりバイパスさせていたが、係るバイパス管を設けずに高段側の圧縮機の起動時より、スクロール型流体機械の圧縮部から作動流体を吸入したほうが、スクロール型流体機械が起動し易くなると考えられる。 As described above, in the conventional refrigeration apparatus, when the high-stage compressor is started, the suction side and the discharge side of the compression unit (low-stage compression unit) of the scroll type fluid machine are bypassed by the bypass pipe. It is considered that it is easier to start the scroll type fluid machine if the working fluid is sucked from the compression part of the scroll type fluid machine than when the high stage compressor is started without providing such a bypass pipe.
 何故ならば、高段側の圧縮機によりスクロール型流体機械の圧縮部の吐出側から作動流体が吸入されることで、当該スクロール型流体機械の圧縮部の吐出側の圧力が当該圧縮部の吸入側よりも低くなり、その圧力差はスクロール型流体機械の圧縮部で作動流体を圧縮する方向の起動トルクをスクロール型流体機械に対し、発生させるからである。即ち、膨張部で回収される動力に加えて、圧縮部でも動力が発生し、スクロール型流体機械が起動し易くなる。 This is because when the working fluid is sucked in from the discharge side of the compression unit of the scroll type fluid machine by the high-stage compressor, the pressure on the discharge side of the compression unit of the scroll type fluid machine causes the suction of the compression unit. This is because the pressure difference is lower than the pressure side, and a starting torque is generated in the scroll type fluid machine in the direction of compressing the working fluid in the compression part of the scroll type fluid machine. That is, in addition to the power recovered in the expansion part, power is also generated in the compression part, and the scroll fluid machine is easily started.
 しかしながら、スクロール型流体機械は前述した如く可動スクロールの背圧として圧縮部の吐出側の圧力が供給され、この背圧によって可動スクロールが固定スクロールに押し付けられる構造であるため、高段側の圧縮機の起動時にスクロール型流体機械の圧縮部の吐出側の圧力が当該圧縮部の吸入側よりも低くなると、可動スクロールの背圧は確実に不足してしまう。 However, since the scroll type fluid machine has a structure in which the pressure on the discharge side of the compression unit is supplied as the back pressure of the movable scroll as described above, and the movable scroll is pressed against the fixed scroll by this back pressure, the high-stage compressor If the pressure on the discharge side of the compression part of the scroll type fluid machine becomes lower than the suction side of the compression part at the time of starting, the back pressure of the movable scroll is surely insufficient.
 そのため、可動スクロールが固定スクロールから引き離されてしまい、ラップ間に前述した膨張室や圧縮室を形成することができなくなって、スクロール型流体機械が機能不能に陥るという問題がある。 Therefore, there is a problem that the movable scroll is pulled away from the fixed scroll, the above-described expansion chamber and compression chamber cannot be formed between the wraps, and the scroll type fluid machine becomes inoperable.
 本発明は、係る従来の技術的課題を解決するために成されたものであり、高段側の圧縮機と共に冷凍装置の低段側の圧縮部を構成する単板式の圧縮機一体型膨張機であるスクロール型流体機械において、その起動を容易に行えるようにすることを目的とする。 SUMMARY OF THE INVENTION The present invention has been made in order to solve the conventional technical problem, and is a single plate type compressor-integrated expander that constitutes a low-stage compression section of a refrigeration apparatus together with a high-stage compressor. It is an object of the present invention to enable easy activation of the scroll type fluid machine.
 上記課題を解決するために、本発明のスクロール型流体機械は、各基板の各基面にそれぞれ渦巻き状のラップが対向して形成された固定スクロール及び可動スクロールから構成され、両スクロールの各ラップ間に形成された膨張室で作動流体を膨張させることにより、可動スクロールを公転旋回運動させて動力を回収する膨張部と、この膨張部で回収された動力により、両スクロールの各ラップ間に形成された圧縮室で作動流体を圧縮する低段側の圧縮部とを備え、この圧縮部で圧縮された作動流体が高段側の圧縮機に吸入され、当該高段側の圧縮機で圧縮された高圧の作動流体を膨張部に吸入するものであって、可動スクロールの基面とは反対側である背面側に形成された背圧室と、圧縮部の吐出側と背圧室とを連通するための連通路と、この連通路に設けられ、圧縮部の吐出側から背圧室側へ向かう方向が順方向とされた逆止弁装置とを備えたことを特徴とする。 In order to solve the above-mentioned problems, a scroll type fluid machine according to the present invention is composed of a fixed scroll and a movable scroll each having a spiral wrap formed on each base surface of each substrate so as to face each other. Formed between each lap of both scrolls by expanding the working fluid in the expansion chamber formed between them, revolving the revolving motion of the movable scroll to recover the power, and the power recovered by this expansion section And a low-stage compression section that compresses the working fluid in the compressed chamber, and the working fluid compressed by the compression section is sucked into the high-stage compressor and compressed by the high-stage compressor. The high-pressure working fluid is sucked into the expansion portion, and the back pressure chamber formed on the back side opposite to the base surface of the movable scroll is connected to the discharge side of the compression portion and the back pressure chamber. And a communication path to This provided the communication passage, the direction from the discharge side of the compression unit to the back pressure chamber side, characterized in that a forward and has been non-return valve device.
 請求項2の発明のスクロール型流体機械は、上記発明において逆止弁装置は、背圧室側と圧縮部の吐出側とを連通する細通路を備えたことを特徴とする。 The scroll type fluid machine according to a second aspect of the invention is characterized in that, in the above invention, the check valve device includes a narrow passage communicating the back pressure chamber side and the discharge side of the compression portion.
 請求項3の発明のスクロール型流体機械は、上記各発明において可動スクロールの背面の外周部にて当該可動スクロールを公転旋回運動可能に支持する台座部を有するフレームを備え、連通路は、フレームに形成されており、逆止弁装置は、連通路の背圧室側の出口を塞ぐようにフレームに取り付けられたリード弁から構成されていることを特徴とする。 According to a third aspect of the present invention, there is provided a scroll type fluid machine including a frame having a pedestal portion which supports the movable scroll so as to be capable of revolving orbiting at an outer peripheral portion of a rear surface of the movable scroll in each of the above inventions. The check valve device is formed of a reed valve attached to the frame so as to close the outlet on the back pressure chamber side of the communication path.
 請求項4の発明のスクロール型流体機械は、上記発明においてリード弁に小孔を形成したことを特徴とする。 A scroll type fluid machine according to a fourth aspect of the present invention is characterized in that a small hole is formed in the reed valve in the above invention.
 請求項5の発明のスクロール型流体機械は、請求項3の発明においてリード弁の弁座に小溝を形成したことを特徴とする。 The scroll type fluid machine of the invention of claim 5 is characterized in that, in the invention of claim 3, a small groove is formed in the valve seat of the reed valve.
 請求項6の発明の冷凍装置は、請求項1乃至請求項5のうちの何れかに記載のスクロール型流体機械と、高段側の圧縮機とを備えて構成され、スクロール型流体機械の圧縮部の吐出側より高段側の圧縮機に作動流体を吸入し、当該高段側の圧縮機で圧縮された高圧の作動流体をスクロール型流体機械の膨張部に吸入させると共に、高段側の圧縮機の起動時からスクロール型流体機械の圧縮部より作動流体を吸入することを特徴とする。 A refrigeration apparatus according to a sixth aspect of the invention comprises the scroll type fluid machine according to any one of the first to fifth aspects and a high-stage compressor, and the compression of the scroll type fluid machine. The working fluid is sucked into the higher stage compressor than the discharge side of the part, the high pressure working fluid compressed by the higher stage compressor is sucked into the expansion part of the scroll type fluid machine, and the higher stage side The working fluid is sucked from the compression portion of the scroll type fluid machine from the start of the compressor.
 請求項7の発明の冷凍装置は、上記発明において作動流体として二酸化炭素を使用したことを特徴とする。 The refrigeration apparatus of the invention of claim 7 is characterized in that carbon dioxide is used as the working fluid in the above invention.
 本発明は、各基板の各基面にそれぞれ渦巻き状のラップが対向して形成された固定スクロール及び可動スクロールから構成され、両スクロールの各ラップ間に形成された膨張室で作動流体を膨張させることにより、可動スクロールを公転旋回運動させて動力を回収する膨張部と、この膨張部で回収された動力により、両スクロールの各ラップ間に形成された圧縮室で作動流体を圧縮する低段側の圧縮部とを備え、この圧縮部で圧縮された作動流体が高段側の圧縮機に吸入され、当該高段側の圧縮機で圧縮された高圧の作動流体を膨張部に吸入するスクロール型流体機械において、可動スクロールの基面とは反対側である背面側に形成された背圧室と、圧縮部の吐出側と背圧室とを連通するための連通路と、この連通路に設けられ、圧縮部の吐出側から背圧室側へ向かう方向が順方向とされた逆止弁装置とを備えているので、請求項6の発明の如くスクロール型流体機械の圧縮部の吐出側より高段側の圧縮機に作動流体を吸入し、当該高段側の圧縮機で圧縮された高圧の作動流体をスクロール型流体機械の膨張部に吸入させる冷凍装置に本発明のスクロール型流体機械が使用され、且つ、高段側の圧縮機の起動時からスクロール型流体機械の圧縮部より作動流体が吸入されるように構成した場合にも、逆止弁装置によって高段側の圧縮機の起動時にスクロール型流体機械の背圧室の圧力が急激に低下する不都合が防止される。 The present invention is composed of a fixed scroll and a movable scroll in which spiral wraps are formed on each base surface of each substrate so as to face each other, and a working fluid is expanded in an expansion chamber formed between the wraps of both scrolls. The low-stage side that compresses the working fluid in the compression chamber formed between the laps of the two scrolls by the expansion portion that revolves the orbiting scroll to recover the power and the power recovered by the expansion portion A scroll type in which the working fluid compressed by the compression unit is sucked into the high-stage compressor, and the high-pressure working fluid compressed by the high-stage compressor is sucked into the expansion unit In a fluid machine, a back pressure chamber formed on the back side opposite to the base surface of the movable scroll, a communication path for communicating the discharge side of the compression unit and the back pressure chamber, and a communication path provided in the communication path Of the compression part And a check valve device in which the direction from the outlet side toward the back pressure chamber side is a forward direction. Thus, the compressor of the scroll type fluid machine is compressed at a higher stage than the discharge side. The scroll type fluid machine of the present invention is used in a refrigeration apparatus that sucks the working fluid into the machine and sucks the high pressure working fluid compressed by the high stage side compressor into the expansion part of the scroll type fluid machine, and Even when the working fluid is sucked from the compressor of the scroll type fluid machine from the time of starting the high stage side compressor, the scroll type fluid machine is used at the time of starting the high stage side compressor by the check valve device. The inconvenience that the pressure in the back pressure chamber is suddenly reduced is prevented.
 これにより、従来の如くスクロール型流体機械の圧縮部をバイパスせず、高段側の圧縮機の起動時からスクロール型流体機械の圧縮部より作動流体を吸入するようにしても、可動スクロールは固定スクロールから剥がれること無く、当該固定スクロールに押し付けられるようになり、スクロール型流体機械は起動可能になる。そして、高段側の圧縮機で圧縮部の吐出側から作動流体を吸入することで、圧縮部の吐出側の圧力が当該圧縮部の吸入側の圧力より低くなる。これにより、スクロール型流体機械には起動トルクが発生するので、従来に比して容易に起動させることができるようになる。 As a result, the movable scroll is fixed even if the working fluid is sucked from the compression unit of the scroll type fluid machine from the start of the high-stage compressor without bypassing the compression unit of the scroll type fluid machine as in the prior art. The scroll type fluid machine can be activated without being peeled off from the scroll and pressed against the fixed scroll. Then, by sucking the working fluid from the discharge side of the compression unit with the high-stage compressor, the pressure on the discharge side of the compression unit becomes lower than the pressure on the suction side of the compression unit. Thereby, since a starting torque is generated in the scroll type fluid machine, it is possible to start up more easily than in the prior art.
 この場合、請求項2の発明の如く逆止弁装置に背圧室側と圧縮部の吐出側とを連通する細通路を設けることで、高段側の圧縮機の起動後、逆止弁装置の細通路を経て少しずつ圧力が圧縮部の吐出側に抜けるようになる。即ち、停止中に圧縮部の吐出側の圧力より高い平衡圧まで上昇している背圧室の圧力は、高段側の圧縮機が起動した後、少しずつ低下していくことになる。これにより、スクロール型流体機械の起動後に早期に背圧室の圧力を圧縮部の吐出側の圧力まで下げることができるようになり、可動スクロールに加わる背圧を迅速に適正値とすることができるようになる。 In this case, the check valve device is provided with a narrow passage that communicates the back pressure chamber side and the discharge side of the compression portion as in the invention of claim 2 so that the check valve device is activated after the high-stage compressor is started. The pressure gradually passes through the narrow passage to the discharge side of the compression section. That is, the pressure in the back pressure chamber that has risen to an equilibrium pressure higher than the pressure on the discharge side of the compressor during the stop is gradually reduced after the high-stage compressor is started. As a result, the pressure in the back pressure chamber can be lowered to the pressure on the discharge side of the compression unit early after the scroll type fluid machine is started, and the back pressure applied to the movable scroll can be quickly set to an appropriate value. It becomes like this.
 また、請求項3の発明の如く可動スクロールの背面の外周部にて当該可動スクロールを公転旋回運動可能に支持する台座部を有するフレームを備え、連通路をこのフレームに形成し、逆止弁装置を連通路の背圧室側の出口を塞ぐようにフレームに取り付けられたリード弁から構成することにより、連通路と逆止弁装置を簡単な構成で実現し、構造の簡素化を図ることが可能となる。 According to a third aspect of the present invention, there is provided a frame having a pedestal portion that supports the movable scroll so as to be capable of revolving orbiting at the outer peripheral portion of the rear surface of the movable scroll, and the communication passage is formed in the frame, and the check valve device By using a reed valve attached to the frame so as to close the outlet on the back pressure chamber side of the communication path, the communication path and the check valve device can be realized with a simple configuration, and the structure can be simplified. It becomes possible.
 そして、請求項4の発明の如くリード弁に小孔を形成し、或いは、請求項5の発明の如くリード弁の弁座に小溝を形成することで、請求項2の細通路を簡単な構成で実現することが可能となる。 Further, a small hole is formed in the reed valve as in the invention of claim 4, or a small groove is formed in the valve seat of the reed valve as in the invention of claim 5, whereby the narrow passage of claim 2 is simply configured. Can be realized.
 そして、上記各発明は、請求項7の発明の如き二酸化炭素を作動流体として使用する冷凍装置に特に有効である。 The above inventions are particularly effective for a refrigeration apparatus using carbon dioxide as a working fluid as in the invention of claim 7.
本発明を適用した一実施例のスクロール型流体機械の縦断側面図である。It is a vertical side view of the scroll type fluid machine of one example to which the present invention is applied. 図1の固定スクロールを基面側から見た平面図である。It is the top view which looked at the fixed scroll of FIG. 1 from the base surface side. 図2のA-A線断面図である。FIG. 3 is a sectional view taken along line AA in FIG. 2. 図1のスクロール型流体機械の逆止弁装置部分の拡大断面図である。It is an expanded sectional view of the check valve device part of the scroll type fluid machine of FIG. 図1のスクロール型流体機械を用いた一実施例の冷凍装置の冷凍サイクルを示す図である。It is a figure which shows the refrigerating cycle of the freezing apparatus of one Example using the scroll type fluid machine of FIG. 図1のスクロール型流体機械の各部の圧力の変化を説明する図である。It is a figure explaining the change of the pressure of each part of the scroll type fluid machine of FIG.
 以下、本発明の実施の形態について、詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail.
 (1)スクロール型流体機械1の基本構造
 図1は、本発明の一実施例のスクロール型流体機械1の縦断側面図を示している。実施例のスクロール型流体機械1は、例えば、縦置き型単板式の圧縮機一体型膨張機であり、高圧側が超臨界圧力となる二酸化炭素を冷媒(作動流体)として使用した冷凍装置RCの冷凍サイクルに用いられる(図5)。この冷凍装置RCの構成については後に詳述するが、図示しない空気調和機やヒートポンプ式給湯機等にヒートポンプとして組み込まれるものである。そして、実施例のスクロール型流体機械1は冷媒の圧力によって膨張動作を行う膨張部2と、この膨張部2の膨張動作によって圧縮動作を行う圧縮部3(低段側)とを備えている(図2)。
(1) Basic Structure of Scroll Type Fluid Machine 1 FIG. 1 shows a vertical side view of a scroll type fluid machine 1 according to an embodiment of the present invention. The scroll type fluid machine 1 of the embodiment is, for example, a vertically installed single-plate type compressor-integrated expander, and refrigeration of a refrigeration apparatus RC that uses carbon dioxide whose high pressure side is a supercritical pressure as a refrigerant (working fluid). Used in the cycle (FIG. 5). Although the configuration of the refrigeration apparatus RC will be described in detail later, the refrigeration apparatus RC is incorporated as a heat pump in an air conditioner, a heat pump hot water heater, or the like (not shown). The scroll fluid machine 1 according to the embodiment includes an expansion unit 2 that performs an expansion operation by the pressure of the refrigerant, and a compression unit 3 (low stage side) that performs a compression operation by the expansion operation of the expansion unit 2 ( Figure 2).
 スクロール型流体機械1はハウジング4を備えている。このハウジング4内には、主として固定スクロール6とこの固定スクロール6に対し公転旋回運動される可動スクロール7とから構成されるスクロールユニット8と、可動スクロール7を公転旋回運動可能に支持するフレームとしてのメインフレーム9と、このメインフレーム9の底面に固定され、当該メインフレーム9の底面から突出して設けられた固定軸11とが配設されている。 The scroll fluid machine 1 includes a housing 4. In the housing 4, a scroll unit 8 mainly composed of a fixed scroll 6 and a movable scroll 7 that revolves with respect to the fixed scroll 6, and a frame that supports the movable scroll 7 so that it can revolve. A main frame 9 and a fixed shaft 11 fixed to the bottom surface of the main frame 9 and protruding from the bottom surface of the main frame 9 are disposed.
 ハウジング4は、本体となるメインシェル12と、このメインシェル12の上部を覆うキャップ状のトップシェル13と、メインシェル12の下部を覆うキャップ状のボトムシェル14とから構成されている。ハウジング4は、トップシェル13とボトムシェル14を、Oリング等のシール材を介し、メインシェル12を挟み込むようにしてボルトで互いに締結することにより組み立てられ、外部から内部が密閉されている。そして、メインフレーム9の外周部はメインシェル12の内側に固定されている。密閉されたハウジング4内には、スクロール型流体機械1の作動流体として冷凍装置RCの冷凍サイクルから取り込んだ冷媒(二酸化炭素)を圧縮部3にて圧縮した圧力が作用している。 The housing 4 includes a main shell 12 serving as a main body, a cap-shaped top shell 13 that covers the upper portion of the main shell 12, and a cap-shaped bottom shell 14 that covers the lower portion of the main shell 12. The housing 4 is assembled by fastening the top shell 13 and the bottom shell 14 together with bolts so as to sandwich the main shell 12 via a sealing material such as an O-ring, and the inside is sealed from the outside. The outer periphery of the main frame 9 is fixed inside the main shell 12. In the sealed housing 4, a pressure obtained by compressing the refrigerant (carbon dioxide) taken in from the refrigeration cycle of the refrigeration apparatus RC as the working fluid of the scroll type fluid machine 1 by the compression unit 3 acts.
 トップシェル13には、冷凍装置RCの冷凍サイクルから取り込んだ冷媒を膨張部2に吸入する膨張側吸入管16が接続されている。メインシェル12には、膨張部2にて膨張された冷媒を冷凍装置RCの冷凍サイクルに向けて吐出する膨張側吐出管17と、圧縮部3にて圧縮された冷媒を冷凍装置RCの冷凍サイクルに向けて吐出する圧縮側吐出管18が接続されている。膨張側吸入管16と膨張側吐出管17の端部は、固定スクロール6の基板6a内に形成された膨張側吸入室19と膨張側吐出室21とにそれぞれ開口して連通され、圧縮側吐出管18の端部はメインシェル12内に開口し、このメインシェル12内を介してトップシェル13の内側に形成された圧縮部3の吐出側としての圧縮側吐出室22に連通されている。 The top shell 13 is connected to an expansion side suction pipe 16 that sucks refrigerant taken from the refrigeration cycle of the refrigeration apparatus RC into the expansion section 2. The main shell 12 includes an expansion side discharge pipe 17 that discharges the refrigerant expanded in the expansion unit 2 toward the refrigeration cycle of the refrigeration apparatus RC, and the refrigerant compressed in the compression unit 3 in the refrigeration cycle of the refrigeration apparatus RC. A compression-side discharge pipe 18 that discharges toward is connected. The ends of the expansion side suction pipe 16 and the expansion side discharge pipe 17 are opened and communicated with an expansion side suction chamber 19 and an expansion side discharge chamber 21 formed in the substrate 6 a of the fixed scroll 6, respectively. An end portion of the pipe 18 opens into the main shell 12 and communicates with a compression side discharge chamber 22 as a discharge side of the compression portion 3 formed inside the top shell 13 through the main shell 12.
 また、メインシェル12には、冷凍装置RCの冷凍サイクルから取り込んだ冷媒を圧縮部3に吸入する圧縮側吸入管23(図3に示す。図1では手前側に位置する。)が接続され、この圧縮側吸入管23の端部は、固定スクロール6の基板6a内に形成された圧縮部の吸入側としての圧縮側吸入室24に連通されている。 Further, the main shell 12 is connected to a compression side suction pipe 23 (shown in FIG. 3, which is located on the front side in FIG. 1) that sucks the refrigerant taken from the refrigeration cycle of the refrigeration apparatus RC into the compression unit 3. An end portion of the compression side suction pipe 23 is communicated with a compression side suction chamber 24 as a suction side of the compression portion formed in the substrate 6 a of the fixed scroll 6.
 一方、ボトムシェル14の内側には潤滑油室26が形成され、この潤滑油室26にはスクロールユニット8を潤滑するための潤滑油が貯留される。前述した圧縮側吸入室23には、固定スクロール6の基板6a及びメインフレーム9を貫通する送油孔27(図2)が開口されており、この送油孔27を介して潤滑油室26の潤滑油が圧縮側吸入室24に送油される構成とされている。 Meanwhile, a lubricating oil chamber 26 is formed inside the bottom shell 14, and lubricating oil for lubricating the scroll unit 8 is stored in the lubricating oil chamber 26. The compression side suction chamber 23 is provided with an oil feed hole 27 (FIG. 2) penetrating the substrate 6 a and the main frame 9 of the fixed scroll 6, and the lubricating oil chamber 26 is formed through the oil feed hole 27. The lubricating oil is supplied to the compression side suction chamber 24.
 また、固定軸11内には、固定軸11の軸方向に沿って給油路28が穿設されており、この給油路28の下端は潤滑油室26に開口し、上端はボス(凹部)31内の空間に開口されている。 Further, an oil supply passage 28 is formed in the fixed shaft 11 along the axial direction of the fixed shaft 11. The lower end of the oil supply passage 28 opens into the lubricating oil chamber 26, and the upper end is a boss (concave portion) 31. It is opened in the inner space.
 固定スクロール6はメインフレーム9の上面部9aに固定され、固定スクロール6の基板6aの前述した圧縮側吸入室24よりも固定スクロール6の径方向で若干中心側には圧縮側吐出孔32が貫通して形成されている。この圧縮側吐出孔32の圧縮側吐出室22に対する開口部には、冷媒中の潤滑油を分離するオイルセパレータ33が装着されている。 The fixed scroll 6 is fixed to the upper surface portion 9 a of the main frame 9, and the compression side discharge hole 32 penetrates slightly in the center in the radial direction of the fixed scroll 6 with respect to the compression side suction chamber 24 of the substrate 6 a of the fixed scroll 6. Is formed. An oil separator 33 for separating the lubricating oil in the refrigerant is attached to the opening of the compression side discharge hole 32 with respect to the compression side discharge chamber 22.
 可動スクロール7は、その背面7cの外周部にてメインフレーム9の台座部9bにオルダムリング等の自転阻止機構34を介して自転することなく公転旋回運動可能に支持されている。この自転阻止機構34は台座部9bに嵌挿され、可動スクロール7の公転旋回運動に伴い基板7aの基面7bとは反対側の面である背面7cに摺動可能に通接される。更に、可動スクロール7の背面7cには、偏心ブッシュ36が摺動且つ回動可能に嵌挿される円筒状の前述したボス31が突設されている。 The movable scroll 7 is supported by the outer peripheral portion of the back surface 7c on the pedestal portion 9b of the main frame 9 so as to be capable of revolving without rotating through a rotation prevention mechanism 34 such as an Oldham ring. This rotation prevention mechanism 34 is inserted into the pedestal portion 9b, and is slidably connected to the back surface 7c, which is the surface opposite to the base surface 7b of the substrate 7a, along with the revolving turning motion of the movable scroll 7. Further, on the back surface 7c of the movable scroll 7, the above-described cylindrical boss 31 into which the eccentric bush 36 is slidably and rotatably fitted is projected.
 上述した固定軸11はメインフレーム9と共に可動スクロール7をその背面7cの中心部にて公転旋回運動可能に支持する支持機構54を構成している。この場合、固定軸11の上端部はスライドブッシュ56の内側に、ベアリング49によって摺動且つ回転可能に挿入されており、このスライドブッシュ56は偏心ブッシュ36内に、その偏心方向に移動可能に収納されている。即ち、固定軸11の上端部は、スライドブッシュ56を介して偏心ブッシュ36内に挿入されたかたちとされている。また、スライドブッシュ56と偏心ブッシュ36間にはバネ61が介設されている。このバネ61によりスライドブッシュ56は偏心方向に常時付勢され、これによって両スクロール6、7の芯ずれが調整されるよう構成されている。 The fixed shaft 11 described above constitutes a support mechanism 54 that supports the movable scroll 7 together with the main frame 9 so as to be capable of revolving and turning at the center of the back surface 7c. In this case, the upper end portion of the fixed shaft 11 is inserted inside the slide bush 56 so as to be slidable and rotatable by a bearing 49. The slide bush 56 is accommodated in the eccentric bush 36 so as to be movable in the eccentric direction. Has been. That is, the upper end portion of the fixed shaft 11 is inserted into the eccentric bush 36 via the slide bush 56. A spring 61 is interposed between the slide bush 56 and the eccentric bush 36. The slide bush 56 is constantly urged in the eccentric direction by the spring 61, and thereby the misalignment of the scrolls 6 and 7 is adjusted.
 そして、偏心ブッシュ36は、軸受48を介してボス31に摺動且つ回転可能に嵌挿されている。軸受48は、可動スクロール7の公転旋回運動に伴い偏心ブッシュ36に作用するラジアル荷重を受容する。また、偏心ブッシュ36の下端の鍔部とメインフレーム9との間にベアリング51が配設されている。このように、固定軸11はベアリング49、スライドブッシュ56、偏心ブッシュ36、軸受48、ベアリング51を介して可動スクロール7を公転旋回運動可能に支持しており、支持機構54は、上記ボス31、偏心ブッシュ36、スライドブッシュ56、固定軸11と、バネ61により構成される。 The eccentric bush 36 is inserted into the boss 31 via a bearing 48 so as to be slidable and rotatable. The bearing 48 receives a radial load that acts on the eccentric bush 36 as the orbiting scroll 7 revolves. Further, a bearing 51 is disposed between the lower end of the eccentric bush 36 and the main frame 9. As described above, the fixed shaft 11 supports the movable scroll 7 through the bearing 49, the slide bush 56, the eccentric bush 36, the bearing 48, and the bearing 51 so as to be capable of revolving, and the support mechanism 54 includes the boss 31, The eccentric bush 36, the slide bush 56, the fixed shaft 11, and the spring 61 are configured.
 ここで、実施形態のスクロールユニット8は、圧縮機一体型膨張機において、一組の固定スクロール6及び可動スクロール7によって冷媒の作動室としての圧縮部3の圧縮室と膨張部2の膨張室との両方を形成可能な、いわゆる単板式スクロールユニットであり、固定軸11は、メインフレーム9と共に可動スクロール7を公転旋回運動可能に支持するのみであって、固定軸11自体が回転駆動されることはない。 Here, the scroll unit 8 of the embodiment is a compressor-integrated expander, and includes a compression chamber of the compression unit 3 and an expansion chamber of the expansion unit 2 as a refrigerant working chamber by a pair of fixed scroll 6 and movable scroll 7. The fixed shaft 11 only supports the movable scroll 7 together with the main frame 9 so as to be capable of revolving, and the fixed shaft 11 itself is driven to rotate. There is no.
 詳しくは、図2に示すように、固定スクロール6の基面6bには、環状の中間仕切り壁(環状壁)38と、環状の外側仕切り壁39とが立設され、中間仕切り壁38と外側仕切り壁(環状壁)39との間には渦巻状の外側固定スクロールラップ(ラップ)40、中間仕切り壁38よりも中心側には渦巻状の内側固定スクロールラップ(ラップ)41がそれぞれ立設されている。また、基面6bには図示しないシールリングが嵌挿される環状溝42が中間仕切り壁38の端面に凹設されている。この環状溝42のシールリングによってスクロールユニット8内は内側の膨張部2側と外側の圧縮部3側とに仕切られることになる。 In detail, as shown in FIG. 2, an annular intermediate partition wall (annular wall) 38 and an annular outer partition wall 39 are erected on the base surface 6 b of the fixed scroll 6. A spiral outer fixed scroll wrap (wrap) 40 is provided between the partition wall (annular wall) 39 and a spiral inner fixed scroll wrap (wrap) 41 is provided on the center side of the intermediate partition wall 38. ing. Further, an annular groove 42 into which a seal ring (not shown) is inserted is recessed in the end surface of the intermediate partition wall 38 on the base surface 6b. By the seal ring of the annular groove 42, the inside of the scroll unit 8 is partitioned into an inner expansion portion 2 side and an outer compression portion 3 side.
 固定スクロール6の基板6aには、前述した圧縮側吸入室24が外側仕切り壁39の若干内側の圧縮部3の外周端に形成され、中間仕切り壁38の若干外側の圧縮部3の内周端に圧縮側吐出孔32が形成されている。また、基板6aには、前述した膨張側吐出室21が中間仕切り壁38の若干内側の膨張部2の外周端に形成され、前述した膨張側吸入室19が膨張部2の内周端である中心部に形成されている。更に、基板6aには、外側仕切り壁39の若干外側に環状の油溝43が形成され、油溝43上に設けられた溝幅よりも大きい直径で所定の深さで座ぐり加工を施して形成した凹部の底面に前述した送油孔27が形成されている。 On the substrate 6 a of the fixed scroll 6, the above-described compression side suction chamber 24 is formed at the outer peripheral end of the compression portion 3 slightly inside the outer partition wall 39, and the inner peripheral end of the compression portion 3 slightly outside the intermediate partition wall 38. A compression-side discharge hole 32 is formed in the upper part. In addition, the expansion side discharge chamber 21 described above is formed on the outer peripheral end of the expansion portion 2 slightly inside the intermediate partition wall 38 on the substrate 6a, and the expansion side suction chamber 19 described above is the inner peripheral end of the expansion portion 2. It is formed at the center. Furthermore, an annular oil groove 43 is formed on the substrate 6a slightly outside the outer partition wall 39, and is countersunk at a predetermined depth with a diameter larger than the groove width provided on the oil groove 43. The oil feed hole 27 described above is formed on the bottom surface of the formed recess.
 一方、可動スクロール7の基面7bには、外側固定スクロールラップ40に噛合う渦巻状の外側可動スクロールラップ(ラップ)44と、内側固定スクロールラップ41に噛合う渦巻状の内側可動スクロールラップ(ラップ)46とが相反する渦巻の方向で立設されている。 On the other hand, on the base surface 7 b of the movable scroll 7, a spiral outer movable scroll wrap (wrap) 44 that meshes with the outer fixed scroll wrap 40 and a spiral inner movable scroll wrap (wrap) that meshes with the inner fixed scroll wrap 41. ) 46 is erected in the direction of the opposite spiral.
 上述したスクロールユニット8によれば、中間仕切り壁38よりも内側に膨張部2が形成され、中間仕切り壁38と外側仕切り壁39との間に圧縮部3が形成される。詳しくは、図1中に実線矢印で示すように、膨張側吸入管16から吸入された冷媒は、膨張側吸入室19を経て膨張部2の中心部に取り込まれ、各スクロール6、7が互いに協働することによって各ラップ41、46間に形成された膨張室(作動室)にて膨張される。膨張室は、各スクロール6、7の外周側に向けて移動しながらその容積が増大され、これに伴い可動スクロール7が固定スクロール6の軸心周りに公転旋回運動される。可動スクロール7の公転旋回運動に供した冷媒は、膨張側吐出室21を経て膨張側吐出管17を介しハウジング4外の冷凍装置RCの冷凍サイクルに向けて吐出される。 According to the scroll unit 8 described above, the expansion part 2 is formed inside the intermediate partition wall 38, and the compression part 3 is formed between the intermediate partition wall 38 and the outer partition wall 39. Specifically, as indicated by solid line arrows in FIG. 1, the refrigerant sucked from the expansion side suction pipe 16 is taken into the central portion of the expansion portion 2 through the expansion side suction chamber 19, and the scrolls 6, 7 are mutually connected. By cooperating, it is expanded in an expansion chamber (working chamber) formed between the laps 41 and 46. The volume of the expansion chamber is increased while moving toward the outer peripheral side of each of the scrolls 6, 7, and accordingly, the movable scroll 7 is revolved around the axis of the fixed scroll 6. The refrigerant used for the revolving orbiting motion of the movable scroll 7 is discharged toward the refrigeration cycle of the refrigeration apparatus RC outside the housing 4 through the expansion side discharge chamber 21 via the expansion side discharge chamber 21.
 一方、圧縮側吸入管23から吸入された冷媒は、圧縮側吸入室24を経て圧縮部3に取り込まれ、上述した膨張室での冷媒の膨張に伴い可動スクロール7が固定スクロール6の軸心周りに公転旋回運動することにより、各スクロール6、7が互いに協働することによって各ラップ40、44間に形成された圧縮室(作動室)にて圧縮される。圧縮室は、可動スクロール7の公転旋回運動に伴い各スクロール6、7の中心に向けて移動しながらその容積が減少される。そして、圧縮室の容積の減少に伴い、高圧にされた冷媒は圧縮側吐出孔32、圧縮側吐出室22を経て圧縮側吐出管18を介し、ハウジング4外の冷凍装置RCの冷凍サイクルに向けて吐出される。 On the other hand, the refrigerant sucked from the compression side suction pipe 23 is taken into the compression section 3 through the compression side suction chamber 24, and the movable scroll 7 moves around the axis of the fixed scroll 6 along with the expansion of the refrigerant in the expansion chamber described above. , The scrolls 6 and 7 are compressed in a compression chamber (working chamber) formed between the laps 40 and 44 by cooperating with each other. The volume of the compression chamber is reduced while moving toward the center of each of the scrolls 6 and 7 as the orbiting scroll 7 revolves. As the volume of the compression chamber decreases, the high-pressure refrigerant passes through the compression-side discharge hole 32 and the compression-side discharge chamber 22 and then passes through the compression-side discharge pipe 18 toward the refrigeration cycle of the refrigeration apparatus RC outside the housing 4. Discharged.
 (2)油戻路(連通路)47
 更に、この過程において図1中にて点線矢印で示されるように、圧縮側吐出孔32から圧縮側吐出室22に吐出される冷媒は、オイルセパレータ33を通過する際に冷媒中の潤滑油が分離される。冷媒から分離された潤滑油はメインフレーム9に形成された本発明における圧縮部3の吐出側(圧縮側吐出室22)と背圧室52とを連通するための連通路としての油戻路47を経て潤滑油室26に貯留される。
(2) Oil return path (communication path) 47
Further, in this process, as indicated by a dotted arrow in FIG. 1, the refrigerant discharged from the compression-side discharge hole 32 to the compression-side discharge chamber 22 causes the lubricating oil in the refrigerant to pass through the oil separator 33. To be separated. The lubricating oil separated from the refrigerant is an oil return passage 47 as a communication passage for communicating the discharge side (compression side discharge chamber 22) of the compression section 3 formed in the main frame 9 and the back pressure chamber 52 with each other. Then, the oil is stored in the lubricating oil chamber 26.
 潤滑油室26に貯留された潤滑油は、潤滑油室26と背圧室52の差圧によって給油路28を上昇し、固定軸11の上端から吐出されて、ベアリング49、軸受48、ベアリング51を潤滑した後に、メインフレーム9の台座部9bと可動スクロール7の背面7cとの間に形成される背圧室52に至る。 The lubricating oil stored in the lubricating oil chamber 26 rises in the oil supply passage 28 due to the differential pressure between the lubricating oil chamber 26 and the back pressure chamber 52, is discharged from the upper end of the fixed shaft 11, and has a bearing 49, a bearing 48, and a bearing 51. After being lubricated, the pressure reaches the back pressure chamber 52 formed between the pedestal 9b of the main frame 9 and the back surface 7c of the movable scroll 7.
 (3)可動スクロール7の背圧
 このように、スクロール型流体機械1の背圧室52では、潤滑油によって自転阻止機構34と台座部9b及び可動スクロール7の背面7cとの摺動部などが潤滑される。また、ハウジング4内は圧縮側吐出孔32から圧縮側吐出室22に吐出された圧縮部3の吐出圧力に保たれるので、油戻路47、潤滑油室26、及び、給油路28を経て背圧室52にはこの圧縮部3の吐出圧力に保たれた冷媒(作動流体)が潤滑油と共に供給される。従って、背圧室52から可動スクロール7は、圧縮部3の吐出圧力で固定スクロール6に対して押圧付勢され、押し付けられることになる。
(3) Back pressure of movable scroll 7 As described above, in the back pressure chamber 52 of the scroll type fluid machine 1, a sliding portion between the rotation prevention mechanism 34 and the base portion 9b and the back surface 7c of the movable scroll 7 is caused by the lubricating oil. Lubricated. Further, since the inside of the housing 4 is maintained at the discharge pressure of the compression section 3 discharged from the compression side discharge hole 32 to the compression side discharge chamber 22, it passes through the oil return passage 47, the lubricating oil chamber 26, and the oil supply passage 28. The back pressure chamber 52 is supplied with a refrigerant (working fluid) maintained at the discharge pressure of the compression unit 3 together with the lubricating oil. Accordingly, the movable scroll 7 from the back pressure chamber 52 is pressed and urged against the fixed scroll 6 by the discharge pressure of the compression unit 3.
 係る背圧室52からの圧力(背圧)により、可動スクロール7のラップ44、46の先端が固定スクロール6の基面6bに当接し、固定スクロール6のラップ40、41の先端は可動スクロール7の基面7bに当接する(何れも潤滑油を介して当接)。これにより、各ラップ間の膨張部2に膨張室を形成し、圧縮部3には圧縮室を形成しながら、固定スクロール6に対する可動スクロール7の円滑な公転旋回運動が可能となる。そして、スクロール型流体機械1では、膨張部2における冷媒の膨張エネルギーによってスクロールユニット8が駆動され、このスクロールユニット8の駆動力により、圧縮部3において冷媒を圧縮することになる。 Due to the pressure (back pressure) from the back pressure chamber 52, the tips of the wraps 44 and 46 of the movable scroll 7 abut against the base surface 6 b of the fixed scroll 6, and the tips of the wraps 40 and 41 of the fixed scroll 6 are the movable scroll 7. The base surface 7b of each other (both contact with the lubricating oil). As a result, an expansion chamber is formed in the expansion portion 2 between the laps, and a smooth revolving motion of the movable scroll 7 with respect to the fixed scroll 6 is possible while forming a compression chamber in the compression portion 3. In the scroll type fluid machine 1, the scroll unit 8 is driven by the expansion energy of the refrigerant in the expansion unit 2, and the refrigerant is compressed in the compression unit 3 by the driving force of the scroll unit 8.
 (4)逆止弁装置66
 また、メインフレーム9の下面には逆止弁装置66が取り付けられている。この実施例の逆止弁装置66は、リード弁67と、このリード弁67をメインフレーム9に固定するボルト68とから構成されており、リード弁67は油戻路47の前記背圧室56側となる出口を塞ぐように配設されている(図4)。
(4) Check valve device 66
A check valve device 66 is attached to the lower surface of the main frame 9. The check valve device 66 of this embodiment includes a reed valve 67 and a bolt 68 that fixes the reed valve 67 to the main frame 9. The reed valve 67 is the back pressure chamber 56 of the oil return passage 47. It arrange | positions so that the exit used as a side may be plugged up (FIG. 4).
 この場合、油戻路47の出口もメインフレーム9の下面に開口しており、その周囲には図4に拡大して示す如くリード弁67の弁座47aが突設されている。そして、リード弁67はこの弁座47aに当接することで、油戻路47の出口を塞ぐ。また、この油戻路47の出口に対応する部分のリード弁67には、細通路を構成するための小孔67aが穿設されている(図4)。 In this case, the outlet of the oil return passage 47 is also opened on the lower surface of the main frame 9, and a valve seat 47a of the reed valve 67 projects from the periphery of the outlet as shown in FIG. The reed valve 67 abuts on the valve seat 47 a to close the outlet of the oil return path 47. The reed valve 67 corresponding to the outlet of the oil return passage 47 is provided with a small hole 67a for forming a narrow passage (FIG. 4).
 逆止弁装置66のリード弁67は、圧縮部3の吐出側である圧縮側吐出室22から背圧室52側の潤滑油室26に向かう方向が順方向とされており、圧縮側吐出室22から潤滑油室26に向かう方向の潤滑油の通過は許容し、その逆の方向への潤滑油の移動は、リード弁67が弁座47aに当接して油戻路47の出口を塞ぐことで阻止されるよう構成されている。 The reed valve 67 of the check valve device 66 has a forward direction from the compression side discharge chamber 22 on the discharge side of the compression unit 3 toward the lubricating oil chamber 26 on the back pressure chamber 52 side, and the compression side discharge chamber. The passage of the lubricating oil in the direction from 22 to the lubricating oil chamber 26 is allowed, and the movement of the lubricating oil in the opposite direction is such that the reed valve 67 contacts the valve seat 47a and closes the outlet of the oil return passage 47. It is configured to be blocked by.
 即ち、圧縮側吐出室22の圧力(圧縮部3の吐出側の圧力)が給油路28を介して潤滑油室26と連通している背圧室52の圧力(背圧)以上であるとき、逆止弁装置66のリード弁67は弁座47aから離間して油戻路47の出口を開き、圧縮側吐出室22から背圧室52側の潤滑油室26に向かう潤滑油を通過させる。 That is, when the pressure in the compression side discharge chamber 22 (pressure on the discharge side of the compression unit 3) is equal to or higher than the pressure (back pressure) in the back pressure chamber 52 communicating with the lubricating oil chamber 26 via the oil supply passage 28. The reed valve 67 of the check valve device 66 is spaced from the valve seat 47a to open the outlet of the oil return passage 47, and allows the lubricating oil from the compression side discharge chamber 22 to the lubricating oil chamber 26 on the back pressure chamber 52 side to pass therethrough.
 一方、圧縮側吐出室22の圧力が背圧室52の圧力(潤滑油室26の圧力)よりも低くなった場合、リード弁67は弁座47aに当接して油戻路47の出口を塞ぐ。しかしながら、リード弁67には小孔67aが形成されている関係上、リード弁67が油戻路47の出口を塞いだ状態においても、潤滑油室26(背圧室52側)から圧縮側吐出室22(圧縮部3の吐出側)への極少量の潤滑油(圧力)の移動は許容される構成とされている。 On the other hand, when the pressure in the compression side discharge chamber 22 becomes lower than the pressure in the back pressure chamber 52 (pressure in the lubricating oil chamber 26), the reed valve 67 contacts the valve seat 47a and closes the outlet of the oil return passage 47. . However, since the small hole 67a is formed in the reed valve 67, even when the reed valve 67 closes the outlet of the oil return passage 47, the discharge from the lubricating oil chamber 26 (on the back pressure chamber 52 side) is discharged. A very small amount of lubricating oil (pressure) is allowed to move to the chamber 22 (the discharge side of the compression unit 3).
 (5)冷凍装置RC
 次に、図5は本発明のスクロール型流体機械1を用いた一実施例の冷凍装置RCの冷凍サイクルを示している。尚、この図では説明のため、スクロール型流体機械1の膨張部2と圧縮部3を分離して示している。スクロール型流体機械1の膨張部2で回収された動力で駆動される圧縮部3は、この冷凍装置RCの冷凍サイクルにおいて低段側の圧縮機(低段側の圧縮部)を構成する。この圧縮部3の前述した圧縮側吐出管18は、当該圧縮部3の後段に位置する高段側の圧縮機70の電動機70bで駆動される高段側の圧縮部70aに接続されている。
(5) Refrigeration equipment RC
Next, FIG. 5 shows a refrigeration cycle of the refrigeration apparatus RC of one embodiment using the scroll type fluid machine 1 of the present invention. In this figure, for the sake of explanation, the expansion portion 2 and the compression portion 3 of the scroll type fluid machine 1 are shown separately. The compression unit 3 driven by the power recovered by the expansion unit 2 of the scroll type fluid machine 1 constitutes a low-stage compressor (low-stage compression unit) in the refrigeration cycle of the refrigeration apparatus RC. The above-described compression-side discharge pipe 18 of the compression unit 3 is connected to a high-stage side compression unit 70 a that is driven by an electric motor 70 b of a high-stage side compressor 70 that is located downstream of the compression unit 3.
 この圧縮部70aの後段には、冷媒を冷却するガスクーラ71が接続されており、ガスクーラ71の出口と蒸発器(吸熱器)73の入口間に、スクロール型流体機械1の膨張部2が接続されている。このガスクーラ71からの冷媒は前述した膨張側吸入管16から膨張部2の膨張側吸入室19に吸入される。また、スクロール型流体機械1の膨張部2からは膨張側吐出管17を介して冷媒が蒸発器73に送られる。そして、この蒸発器73から出た冷媒が圧縮側吸入管23からスクロール型流体機械1の圧縮部3に吸入される構成とされている。 A gas cooler 71 for cooling the refrigerant is connected to the subsequent stage of the compression unit 70a, and the expansion unit 2 of the scroll type fluid machine 1 is connected between the outlet of the gas cooler 71 and the inlet of the evaporator (heat absorber) 73. ing. The refrigerant from the gas cooler 71 is sucked into the expansion side suction chamber 19 of the expansion unit 2 from the expansion side suction pipe 16 described above. Further, the refrigerant is sent from the expansion section 2 of the scroll type fluid machine 1 to the evaporator 73 via the expansion side discharge pipe 17. The refrigerant discharged from the evaporator 73 is sucked into the compression unit 3 of the scroll type fluid machine 1 from the compression side suction pipe 23.
 (6)冷凍装置RCの動作
 次に、スクロール型流体機械1を含む冷凍装置RCの動作について説明する。尚、冷凍装置RCの起動時の動作については後述する。スクロール型流体機械1の膨張部2が駆動する低段側の圧縮部3で昇圧された中間圧の冷媒(二酸化炭素冷媒)は、圧縮側吐出管18から高段側の圧縮機70に送られ、電動機70bで駆動される圧縮部70aによって更に昇圧され、高圧(超臨界)となる。この高圧の冷媒は超臨界状態のままガスクーラ71で冷却された後、膨張側吸入管16からスクロール型流体機械1の膨張部2に取り込まれ、膨張減圧される。
(6) Operation of Refrigeration Apparatus RC Next, the operation of the refrigeration apparatus RC including the scroll fluid machine 1 will be described. In addition, operation | movement at the time of starting of freezing apparatus RC is mentioned later. The intermediate pressure refrigerant (carbon dioxide refrigerant) boosted by the low-stage compression section 3 driven by the expansion section 2 of the scroll type fluid machine 1 is sent from the compression-side discharge pipe 18 to the high-stage compressor 70. Further, the pressure is further increased by the compression unit 70a driven by the electric motor 70b, and becomes high pressure (supercritical). This high-pressure refrigerant is cooled by the gas cooler 71 in the supercritical state, and then taken into the expansion section 2 of the scroll type fluid machine 1 from the expansion side suction pipe 16 and expanded and depressurized.
 膨張部2において冷媒が等エントロピ的に膨張することによって可動スクロール7が公転旋回運動し、動力が回収される。この可動スクロール7の公転旋回運動によって圧縮部3が低段側の圧縮機として作動することになる。膨張部2で膨張した冷媒は、蒸発器73で加熱された後(或いは、それによって対象を冷却)、圧縮側吸入管23より再びスクロール型流体機械1の圧縮部3に吸引される。 When the refrigerant expands isentropically in the expansion section 2, the movable scroll 7 revolves and the power is recovered. The revolving orbiting motion of the movable scroll 7 causes the compressor 3 to operate as a low-stage compressor. The refrigerant expanded in the expansion section 2 is heated by the evaporator 73 (or the object is thereby cooled), and is again sucked into the compression section 3 of the scroll type fluid machine 1 through the compression side suction pipe 23.
 このように、スクロール流体機械1の圧縮部3で冷凍装置RCの冷凍サイクルの圧縮過程の一部(低段側)を担い、高段側の圧縮機70の圧縮部70aで圧縮過程の残り(高段側)を担う。圧縮部3における圧縮動力は、膨張部2における回収動力によって賄われることになる。 In this way, the compression unit 3 of the scroll fluid machine 1 takes part of the compression process of the refrigeration cycle of the refrigeration apparatus RC (low stage side), and the compression part 70a of the compressor 70 on the high stage side remains the compression process ( Take the higher stage). The compression power in the compression unit 3 is covered by the recovery power in the expansion unit 2.
 (6-1)冷凍装置RCの運転中の逆止弁装置66の状態
 前述したように、スクロール型流体機械1の運転中、背圧室52を含むハウジング4内は圧縮側吐出孔32から圧縮側吐出室22に吐出された圧縮部3の吐出圧力に保たれる。従って、圧縮側吐出室22の圧力(圧縮部3の吐出側の圧力)は給油路28を介して潤滑油室26と連通している背圧室52の圧力(背圧)と同じであり、逆止弁装置66のリード弁67は弁座47aから離間して油戻路47の出口を開き、圧縮側吐出室22から背圧室52側の潤滑油室26に向かう潤滑油を通過させる。
(6-1) State of the check valve device 66 during operation of the refrigeration apparatus RC As described above, the interior of the housing 4 including the back pressure chamber 52 is compressed from the compression side discharge hole 32 during operation of the scroll type fluid machine 1. The discharge pressure of the compression unit 3 discharged into the side discharge chamber 22 is maintained. Therefore, the pressure of the compression side discharge chamber 22 (pressure on the discharge side of the compression unit 3) is the same as the pressure (back pressure) of the back pressure chamber 52 communicating with the lubricating oil chamber 26 via the oil supply passage 28. The reed valve 67 of the check valve device 66 is spaced from the valve seat 47a to open the outlet of the oil return passage 47, and allows the lubricating oil from the compression side discharge chamber 22 to the lubricating oil chamber 26 on the back pressure chamber 52 side to pass therethrough.
 これにより、油戻路47、潤滑油室26、及び、給油路28を経て背圧室52に圧縮部3の吐出圧力に保たれた潤滑油が供給されるので、背圧室52から可動スクロール7は、圧縮部3の吐出圧力で固定スクロール6に対して押圧付勢され、スクロール型流体機械1の膨張部2及び圧縮部3では安定して冷媒の膨張と圧縮(低段)が行われる。 Accordingly, the lubricating oil maintained at the discharge pressure of the compression unit 3 is supplied to the back pressure chamber 52 through the oil return passage 47, the lubricating oil chamber 26, and the oil supply passage 28. 7 is urged against the fixed scroll 6 by the discharge pressure of the compression unit 3, and the expansion and compression (low stage) of the refrigerant is stably performed in the expansion unit 2 and the compression unit 3 of the scroll type fluid machine 1. .
 (6-2)冷凍装置RCの起動時の動作(逆止弁装置66の作用)
 次に、図6を参照しながら冷凍装置RCの起動時の動作について説明する。図6のt1以前の状態で高段側の圧縮機70及びスクロール型流体機械1が停止しているものとすると、スクロール型流体機械1のハウジング4やスクロールユニット8内を含む冷凍装置RCの冷凍サイクル内は全て約6MPa程の平衡圧となっている。
(6-2) Operation at the time of starting the refrigeration apparatus RC (action of the check valve device 66)
Next, the operation at the time of starting the refrigeration apparatus RC will be described with reference to FIG. Assuming that the high-stage compressor 70 and the scroll type fluid machine 1 are stopped before t1 in FIG. 6, the freezing of the refrigeration apparatus RC including the housing 4 and the scroll unit 8 of the scroll type fluid machine 1 is performed. The entire cycle has an equilibrium pressure of about 6 MPa.
 この平衡圧状態から図6の時刻t1で高段側の圧縮機70が起動されると、圧縮機70の吐出圧力P1(膨張側吸入管16から膨張部2に吸入される入口の圧力)は平衡圧から上昇していき、運転中は10MPa程になる。また、膨張部2で膨張して膨張側出口管17から出て行く冷媒の圧力P2(膨張部2の出口の圧力=圧縮部3の吸入側の圧力)は平衡圧から低下していく。 When the high-stage compressor 70 is started at time t1 in FIG. 6 from this equilibrium pressure state, the discharge pressure P1 of the compressor 70 (pressure at the inlet sucked into the expansion section 2 from the expansion-side suction pipe 16) is It rises from the equilibrium pressure and reaches about 10 MPa during operation. Further, the pressure P2 of the refrigerant that expands in the expansion section 2 and exits from the expansion side outlet pipe 17 (pressure at the outlet of the expansion section 2 = pressure on the suction side of the compression section 3) decreases from the equilibrium pressure.
 一方、高段側の圧縮機70が起動した時点より圧縮側吐出室22からは圧縮側吐出管18を介して冷媒が圧縮機70に吸引されるので、圧縮部3の吐出側の圧力P3(圧縮側吐出室22の圧力)は急激に低下し、圧縮部3の吸入側の圧力P2よりも低くなる。この圧縮側吐出室22の急激な圧力低下により、背圧室52の圧力P4(背圧室52と連通している潤滑油室26の圧力)よりも圧縮側吐出室22の圧力(圧縮部3の吐出側の圧力P3)が低くなるので、逆止弁装置66のリード弁67は油戻路47の出口の弁座47aに当接して塞ぐ。 On the other hand, since the refrigerant is sucked into the compressor 70 from the compression side discharge chamber 22 through the compression side discharge pipe 18 from the time when the high stage side compressor 70 is started up, the pressure P3 ( The pressure in the compression side discharge chamber 22) decreases rapidly and becomes lower than the pressure P2 on the suction side of the compression unit 3. Due to the rapid pressure drop in the compression side discharge chamber 22, the pressure in the compression side discharge chamber 22 (compression unit 3) is higher than the pressure P 4 in the back pressure chamber 52 (pressure in the lubricating oil chamber 26 communicating with the back pressure chamber 52). Therefore, the reed valve 67 of the check valve device 66 contacts and closes the valve seat 47a at the outlet of the oil return passage 47.
 これにより、背圧室52の圧力P4は圧縮部3の吐出側の圧力P3のように急激に低下しなくなり、可動スクロール7の背圧は確保されるので、スクロール型流体機械1は起動可能となる。但し、小孔67aがあることにより、背圧室52の圧力P4は少しずつ低下していくことになる。 As a result, the pressure P4 in the back pressure chamber 52 does not drop abruptly like the pressure P3 on the discharge side of the compression section 3, and the back pressure of the movable scroll 7 is secured, so that the scroll fluid machine 1 can be started. Become. However, due to the small hole 67a, the pressure P4 in the back pressure chamber 52 gradually decreases.
 また、上述したように圧縮部3の吐出側の圧力P3(圧縮側吐出室22の圧力)は、圧縮部3の吸入側の圧力よりも低くなるので、スクロール型流体機械1のスクロールユニット8には起動トルクが発生する。これにより、スクロール型流体機械1は起動し易くなり、時刻t2で起動することになる。 Further, as described above, the pressure P3 on the discharge side of the compression unit 3 (pressure on the compression side discharge chamber 22) is lower than the pressure on the suction side of the compression unit 3, so that the scroll unit 8 of the scroll type fluid machine 1 has Generates a starting torque. Thereby, the scroll type fluid machine 1 becomes easy to start and starts at time t2.
 スクロール型流体機械1が起動すると、圧縮部3の圧縮室では冷媒が圧縮され始めるので、圧縮部3の吐出側の圧力P3である圧縮側吐出室22の圧力も上昇していき、やがて圧縮部3の吸入側の圧力P2を超え、5MPa程で背圧室52の圧力P4と同じになる。これにより、逆止弁装置66のリード弁67は油戻路47の出口を開き、以後は圧縮部3の吐出側の圧力P3が背圧P4として供給されるようになる。 When the scroll fluid machine 1 is activated, the refrigerant starts to be compressed in the compression chamber of the compression unit 3, so that the pressure in the compression side discharge chamber 22 which is the pressure P3 on the discharge side of the compression unit 3 also rises, and eventually the compression unit 3 and the pressure P2 in the back pressure chamber 52 becomes the same as about 5 MPa. As a result, the reed valve 67 of the check valve device 66 opens the outlet of the oil return passage 47, and thereafter, the pressure P3 on the discharge side of the compression unit 3 is supplied as the back pressure P4.
 以上のように、スクロール型流体機械1の可動スクロール7の基面7bとは反対側である背面7c側に形成された背圧室52と、圧縮部3の吐出側(圧縮側吐出室22)と背圧室52とを連通するための連通路としての油戻路47と、この油戻路47に設けられ、圧縮部3の吐出側から背圧室52側の潤滑油室26への方向が順方向とされた逆止弁装置66を備えているので、スクロール型流体機械1の圧縮部3の吐出側より高段側の圧縮機70に冷媒を吸入し、当該高段側の圧縮機70で圧縮された高圧の冷媒をスクロール型流体機械1の膨張部2に吸入させる冷凍装置RCに本発明のスクロール型流体機械1が使用され、且つ、高段側の圧縮機70の起動時からスクロール型流体機械1の圧縮部3より冷媒が吸入されるように構成した場合にも、逆止弁装置66によって高段側の圧縮機70の起動時にスクロール型流体機械1の背圧室52の圧力(背圧)が急激に低下する不都合が防止される。 As described above, the back pressure chamber 52 formed on the back surface 7c side opposite to the base surface 7b of the movable scroll 7 of the scroll type fluid machine 1, and the discharge side (compression side discharge chamber 22) of the compression unit 3 And an oil return path 47 as a communication path for communicating with the back pressure chamber 52, and a direction from the discharge side of the compression unit 3 to the lubricating oil chamber 26 on the back pressure chamber 52 side provided in the oil return path 47. Is provided with the check valve device 66 in the forward direction, so that the refrigerant is sucked into the compressor 70 on the higher stage side than the discharge side of the compression unit 3 of the scroll type fluid machine 1, and the compressor on the higher stage side. The scroll type fluid machine 1 of the present invention is used in the refrigeration apparatus RC that sucks the high-pressure refrigerant compressed in 70 into the expansion part 2 of the scroll type fluid machine 1 and the compressor 70 on the high stage side is started up. The refrigerant is sucked from the compression unit 3 of the scroll type fluid machine 1. Even if, disadvantage that the pressure (back pressure) is rapidly reduced in the back pressure chamber 52 of the scroll type fluid machine 1 at the start of the compressor 70 of the high-stage side is prevented by the check valve device 66.
 これにより、従来の如くスクロール型流体機械1の圧縮部3をバイパスせず、高段側の圧縮機70の起動時からスクロール型流体機械1の圧縮部3より冷媒を吸入するようにしても、可動スクロール7は固定スクロール6から剥がれること無く、当該固定スクロール6に押し付けられるようになり、スクロール型流体機械1は起動可能になる。そして、高段側の圧縮機70で圧縮部3の吐出側から冷媒を吸入することで、圧縮部3の吐出側の圧力が当該圧縮部3の吸入側の圧力より低くなる。これにより、スクロール型流体機械1には起動トルクが発生するので、従来に比して容易に起動させることができるようになる。 As a result, the refrigerant is sucked from the compressor 3 of the scroll type fluid machine 1 from the start of the high-stage compressor 70 without bypassing the compressor 3 of the scroll type fluid machine 1 as in the prior art. The movable scroll 7 is pressed against the fixed scroll 6 without being peeled off from the fixed scroll 6, and the scroll fluid machine 1 can be activated. Then, by sucking the refrigerant from the discharge side of the compression unit 3 with the high-stage compressor 70, the pressure on the discharge side of the compression unit 3 becomes lower than the pressure on the suction side of the compression unit 3. Thereby, since the starting torque is generated in the scroll type fluid machine 1, it is possible to start up more easily than in the prior art.
 この場合、逆止弁装置66に背圧室52側の潤滑油室26と圧縮部3の吐出側(圧縮側吐出室22)とを連通する小孔67aを設けているので、高段側の圧縮機70の起動後、逆止弁装置66の小孔67aを経て少しずつ圧力が圧縮部3の吐出側である圧縮側吐出室22に抜けるようになる。即ち、停止中に圧縮部3の吐出側の圧力より高い平衡圧まで上昇している背圧室52の圧力は、高段側の圧縮機70が起動した後、少しずつ低下していくことになる。これにより、スクロール型流体機械1の起動後に早期に背圧室52の圧力P4を圧縮部3の吐出側の圧力P3まで下げることができるようになり、可動スクロール7に加わる背圧を迅速に適正値とすることができるようになる。 In this case, since the check valve device 66 is provided with a small hole 67a that communicates the lubricating oil chamber 26 on the back pressure chamber 52 side with the discharge side (compression side discharge chamber 22) of the compression section 3, After starting up the compressor 70, the pressure gradually passes through the small hole 67 a of the check valve device 66 into the compression side discharge chamber 22 that is the discharge side of the compression unit 3. That is, the pressure in the back pressure chamber 52 that has risen to an equilibrium pressure higher than the pressure on the discharge side of the compression unit 3 during the stop is gradually reduced after the high-stage compressor 70 is started. Become. As a result, the pressure P4 in the back pressure chamber 52 can be lowered to the pressure P3 on the discharge side of the compression unit 3 at an early stage after the scroll type fluid machine 1 is started, and the back pressure applied to the movable scroll 7 is quickly and appropriately set. Value.
 また、実施例では可動スクロール7の背面7cの外周部にて当該可動スクロール7を公転旋回運動可能に支持する台座部9bを有するメインフレーム9を備え、油戻路47をこのメインフレーム9に形成し、逆止弁装置66を油戻路47の背圧室52側の出口を塞ぐようにメインフレーム9に取り付けられたリード弁67から構成しているので、油戻路47と逆止弁装置66を簡単な構成で実現し、構造の簡素化を図ることが可能となる。また、実施例ではリード弁67に小孔67aを形成しているので、逆止弁装置66の細通路を簡単な構成で実現することが可能となる。そして、二酸化炭素を作動流体として使用する冷凍装置RCに本発明のスクロール型流体機械1は特に有効である。 Further, in the embodiment, the main frame 9 is provided with a pedestal portion 9 b that supports the movable scroll 7 so as to be capable of revolving and turning at the outer peripheral portion of the back surface 7 c of the movable scroll 7, and an oil return path 47 is formed in the main frame 9. Since the check valve device 66 is composed of the reed valve 67 attached to the main frame 9 so as to close the outlet of the oil return channel 47 on the back pressure chamber 52 side, the oil return channel 47 and the check valve device are configured. 66 can be realized with a simple configuration, and the structure can be simplified. In the embodiment, since the small hole 67a is formed in the reed valve 67, the narrow passage of the check valve device 66 can be realized with a simple configuration. The scroll fluid machine 1 of the present invention is particularly effective for the refrigeration apparatus RC that uses carbon dioxide as a working fluid.
 (7)逆止弁装置66の他の例
 上記実施例では逆止弁装置66のリード弁67に小孔67aを形成して細通路となしたが、それに限らず、弁座47aに小溝を形成してリード弁67が弁座47aに当接した状態でも油戻路47と潤滑油室26を連通する細通路が構成されるようにしてもよい。
(7) Other Examples of Check Valve Device 66 In the above embodiment, a small hole 67a is formed in the reed valve 67 of the check valve device 66 to form a narrow passage. However, the present invention is not limited thereto, and a small groove is provided in the valve seat 47a. Even when the reed valve 67 is in contact with the valve seat 47a, a narrow passage communicating the oil return passage 47 and the lubricating oil chamber 26 may be formed.
 1 スクロール型流体機械
 2 膨張部
 3 圧縮部(低段側)
 6 固定スクロール
 6a、7a 基板
 6b、7b 基面
 7 可動スクロール
 8 スクロールユニット
 9 メインフレーム
 22 圧縮側吐出室
 26 潤滑油室
 47 油戻路(連通路)
 47a 弁座
 52 背圧室
 66 逆止弁装置
 67 リード弁
 67a 小孔(細通路)
 RC 冷凍サイクル
DESCRIPTION OF SYMBOLS 1 Scroll type fluid machine 2 Expansion part 3 Compression part (low stage side)
6 Fixed scroll 6a, 7a Substrate 6b, 7b Base surface 7 Movable scroll 8 Scroll unit 9 Main frame 22 Compression side discharge chamber 26 Lubricating oil chamber 47 Oil return path (communication path)
47a Valve seat 52 Back pressure chamber 66 Check valve device 67 Reed valve 67a Small hole (narrow passage)
RC refrigeration cycle

Claims (7)

  1.  各基板の各基面にそれぞれ渦巻き状のラップが対向して形成された固定スクロール及び可動スクロールから構成され、両スクロールの前記各ラップ間に形成された膨張室で作動流体を膨張させることにより、前記可動スクロールを公転旋回運動させて動力を回収する膨張部と、該膨張部で回収された動力により、前記両スクロールの前記各ラップ間に形成された圧縮室で前記作動流体を圧縮する低段側の圧縮部とを備え、該圧縮部で圧縮された前記作動流体が高段側の圧縮機に吸入され、当該高段側の圧縮機で圧縮された高圧の前記作動流体を前記膨張部に吸入するスクロール型流体機械において、
     前記可動スクロールの基面とは反対側である背面側に形成された背圧室と、
     前記圧縮部の吐出側と前記背圧室とを連通するための連通路と、
     該連通路に設けられ、前記圧縮部の吐出側から前記背圧室側へ向かう方向が順方向とされた逆止弁装置とを備えたことを特徴とするスクロール型流体機械。
    It is composed of a fixed scroll and a movable scroll each formed with a spiral wrap facing each base surface of each substrate, and by expanding the working fluid in an expansion chamber formed between the wraps of both scrolls, An expansion part that collects power by revolving orbiting the movable scroll, and a low stage that compresses the working fluid in a compression chamber formed between the laps of the scrolls by the power recovered by the expansion part. The working fluid compressed by the compression portion is sucked into a high-stage compressor, and the high-pressure working fluid compressed by the high-stage compressor is supplied to the expansion portion. In the scroll type fluid machine
    A back pressure chamber formed on the back side opposite to the base surface of the movable scroll;
    A communication path for communicating the discharge side of the compression section and the back pressure chamber;
    A scroll type fluid machine, comprising: a check valve device provided in the communication path and having a forward direction from the discharge side of the compression unit toward the back pressure chamber side.
  2.  前記逆止弁装置は、前記背圧室側と前記圧縮部の吐出側とを連通する細通路を備えたことを特徴とする請求項1に記載のスクロール型流体機械。 The scroll type fluid machine according to claim 1, wherein the check valve device includes a narrow passage communicating the back pressure chamber side and the discharge side of the compression unit.
  3.  前記可動スクロールの背面の外周部にて当該可動スクロールを公転旋回運動可能に支持する台座部を有するフレームを備え、
     前記連通路は、前記フレームに形成されており、
     前記逆止弁装置は、前記連通路の前記背圧室側の出口を塞ぐように前記フレームに取り付けられたリード弁から構成されていることを特徴とする請求項1又は請求項2に記載のスクロール型流体機械。
    A frame having a pedestal for supporting the movable scroll so as to be capable of revolving orbiting at the outer peripheral portion of the back surface of the movable scroll;
    The communication path is formed in the frame,
    The said check valve apparatus is comprised from the reed valve attached to the said flame | frame so that the exit by the side of the said back pressure chamber of the said communicating path may be plugged up. Scroll type fluid machine.
  4.  前記リード弁に小孔を形成したことを特徴とする請求項3に記載のスクロール型流体機械。 The scroll fluid machine according to claim 3, wherein a small hole is formed in the reed valve.
  5.  前記リード弁の弁座に小溝を形成したことを特徴とする請求項3に記載のスクロール型流体機械。 4. The scroll type fluid machine according to claim 3, wherein a small groove is formed in a valve seat of the reed valve.
  6.  請求項1乃至請求項5のうちの何れかに記載のスクロール型流体機械と、前記高段側の圧縮機とを備えて構成され、前記スクロール型流体機械の圧縮部の吐出側より前記高段側の圧縮機に前記作動流体を吸入し、当該高段側の圧縮機で圧縮された高圧の前記作動流体を前記スクロール型流体機械の膨張部に吸入させると共に、
     前記高段側の圧縮機の起動時から前記スクロール型流体機械の圧縮部より前記作動流体を吸入することを特徴とする冷凍装置。
    A scroll type fluid machine according to any one of claims 1 to 5 and a high stage side compressor, wherein the high stage is configured to be higher than a discharge side of a compression unit of the scroll type fluid machine. The working fluid is sucked into the compressor on the side, the high-pressure working fluid compressed by the high-stage compressor is sucked into the expansion portion of the scroll type fluid machine, and
    A refrigerating apparatus, wherein the working fluid is sucked from a compression section of the scroll type fluid machine from the time of starting the high stage compressor.
  7.  前記作動流体として二酸化炭素を使用したことを特徴とする請求項6に記載の冷凍装置。 The refrigeration apparatus according to claim 6, wherein carbon dioxide is used as the working fluid.
PCT/JP2015/057799 2014-08-28 2015-03-17 Scroll fluid machine and refrigeration machine with same WO2016031278A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112015003964.3T DE112015003964T5 (en) 2014-08-28 2015-03-17 Helical fluid machine and chiller with the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014173877A JP2016048056A (en) 2014-08-28 2014-08-28 Scroll type fluid machine and freezer unit using the same
JP2014-173877 2014-08-28

Publications (1)

Publication Number Publication Date
WO2016031278A1 true WO2016031278A1 (en) 2016-03-03

Family

ID=55399185

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/057799 WO2016031278A1 (en) 2014-08-28 2015-03-17 Scroll fluid machine and refrigeration machine with same

Country Status (3)

Country Link
JP (1) JP2016048056A (en)
DE (1) DE112015003964T5 (en)
WO (1) WO2016031278A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017043471A1 (en) * 2015-09-09 2017-03-16 サンデンホールディングス株式会社 Scroll fluid machine and refrigerating device in which same is used

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58167893A (en) * 1982-03-29 1983-10-04 Toyoda Autom Loom Works Ltd Volumetric fluid compressing device
JPH0510701U (en) * 1991-07-22 1993-02-12 三菱重工業株式会社 Scroll type fluid machinery
JPH07286587A (en) * 1995-04-28 1995-10-31 Matsushita Electric Ind Co Ltd Scroll cooling medium compressor provided with suply oil control means
JP2000249086A (en) * 1999-02-25 2000-09-12 Nippon Soken Inc Scroll type compressor
JP2006220143A (en) * 2005-01-14 2006-08-24 Hitachi Ltd Displacement fluid machine and refrigerating cycle by use of it
US20070092390A1 (en) * 2005-10-26 2007-04-26 Copeland Corporation Scroll compressor
JP2010096059A (en) * 2008-10-15 2010-04-30 Toyota Industries Corp Scroll compressor
JP2011027076A (en) * 2009-07-29 2011-02-10 Panasonic Corp Scroll compressor
JP5209764B2 (en) * 2010-08-04 2013-06-12 サンデン株式会社 Scroll type fluid machinery
WO2013140458A1 (en) * 2012-03-23 2013-09-26 日立アプライアンス株式会社 Scroll compressor

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58167893A (en) * 1982-03-29 1983-10-04 Toyoda Autom Loom Works Ltd Volumetric fluid compressing device
JPH0510701U (en) * 1991-07-22 1993-02-12 三菱重工業株式会社 Scroll type fluid machinery
JPH07286587A (en) * 1995-04-28 1995-10-31 Matsushita Electric Ind Co Ltd Scroll cooling medium compressor provided with suply oil control means
JP2000249086A (en) * 1999-02-25 2000-09-12 Nippon Soken Inc Scroll type compressor
JP2006220143A (en) * 2005-01-14 2006-08-24 Hitachi Ltd Displacement fluid machine and refrigerating cycle by use of it
US20070092390A1 (en) * 2005-10-26 2007-04-26 Copeland Corporation Scroll compressor
JP2010096059A (en) * 2008-10-15 2010-04-30 Toyota Industries Corp Scroll compressor
JP2011027076A (en) * 2009-07-29 2011-02-10 Panasonic Corp Scroll compressor
JP5209764B2 (en) * 2010-08-04 2013-06-12 サンデン株式会社 Scroll type fluid machinery
WO2013140458A1 (en) * 2012-03-23 2013-09-26 日立アプライアンス株式会社 Scroll compressor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017043471A1 (en) * 2015-09-09 2017-03-16 サンデンホールディングス株式会社 Scroll fluid machine and refrigerating device in which same is used

Also Published As

Publication number Publication date
DE112015003964T5 (en) 2017-05-11
JP2016048056A (en) 2016-04-07

Similar Documents

Publication Publication Date Title
JP6241605B2 (en) Scroll type fluid machinery
JP4709076B2 (en) Positive displacement fluid machine
JP4584306B2 (en) Scroll expander
JP2008190377A (en) Multistage compressor
WO2006013959A1 (en) Displacement type expansion machine and fluid machine
JP2004190559A (en) Displacement expander and fluid machine
JP4866887B2 (en) Scroll compressor
EP2871365B1 (en) Scroll compressor and air conditioner including the same
WO2017043471A1 (en) Scroll fluid machine and refrigerating device in which same is used
JP4974851B2 (en) Refrigeration air conditioner
JP2004197640A (en) Positive displacement expander and fluid machinery
JP2006220143A (en) Displacement fluid machine and refrigerating cycle by use of it
WO2016031278A1 (en) Scroll fluid machine and refrigeration machine with same
JP5771739B2 (en) Scroll compressor
JP6393115B2 (en) Scroll type fluid machinery
JP6393116B2 (en) Scroll type fluid machinery
WO2017163836A1 (en) Scroll compressor
JP2009299523A (en) Scroll type fluid machine
JP2010150926A (en) Scroll expander and refrigerating/air-conditioning device including the same
JP4888222B2 (en) Fluid machine and refrigeration cycle apparatus including the same
JP2014077353A (en) Scroll expander and refrigeration cycle device equipped with the scroll expander
JP4879078B2 (en) Compressor
JP2005048654A (en) Compressor
JP2011047567A (en) Refrigerating device
JP5484604B2 (en) Refrigeration air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15836165

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112015003964

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15836165

Country of ref document: EP

Kind code of ref document: A1