WO2017043460A1 - Laser processing method and laser processing device for minimizing incidence of self-burning - Google Patents

Laser processing method and laser processing device for minimizing incidence of self-burning Download PDF

Info

Publication number
WO2017043460A1
WO2017043460A1 PCT/JP2016/076072 JP2016076072W WO2017043460A1 WO 2017043460 A1 WO2017043460 A1 WO 2017043460A1 JP 2016076072 W JP2016076072 W JP 2016076072W WO 2017043460 A1 WO2017043460 A1 WO 2017043460A1
Authority
WO
WIPO (PCT)
Prior art keywords
workpiece
laser beam
laser
laser processing
cutting
Prior art date
Application number
PCT/JP2016/076072
Other languages
French (fr)
Japanese (ja)
Inventor
明彦 杉山
市川 智也
真梨奈 齋藤
Original Assignee
株式会社アマダホールディングス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=58239807&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2017043460(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 株式会社アマダホールディングス filed Critical 株式会社アマダホールディングス
Publication of WO2017043460A1 publication Critical patent/WO2017043460A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/04Automatically aligning, aiming or focusing the laser beam, e.g. using the back-scattered light
    • B23K26/046Automatically focusing the laser beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/12Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • B23K26/142Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor for the removal of by-products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • B23K26/382Removing material by boring or cutting by boring

Definitions

  • the present invention relates to a laser processing method and a laser processing apparatus, and more particularly to a laser processing method and a laser processing apparatus that control laser light when laser processing is performed on a workpiece.
  • the energy density is increased by condensing the laser beam 303 into a spot size (condensed diameter) of 100 ⁇ m to 1000 ⁇ m using a condensing lens 301, and metal (soft steel).
  • a portion of the plate (workpiece) 305 is instantaneously melted, and cutting is performed while removing the molten metal with an auxiliary gas (not shown in FIG. 13) as an assist gas.
  • the focal position 307 is in a defocused state after being adjusted to an optically appropriate condensing diameter (the focal position 307 is positioned above the upper surface of the workpiece 305). In general, it is common sense to use a method of processing in a state where
  • Patent Document 1 can be listed as a conventional technical document.
  • laser light with a wavelength of 1 ⁇ m band such as DDL (Direct Diode Laser) or fiber laser has a very high power intensity distribution near the center of the beam as compared with a CO2 laser (see FIG. 14B) (FIG. 14).
  • a CO2 laser see FIG. 14B
  • the mild steel plate (work) using oxygen as an assist gas since the light absorptance with respect to the metal (work) is very high compared with the light of 10 ⁇ m band such as CO2 laser, the mild steel plate (work) using oxygen as an assist gas.
  • the present invention can cut a workpiece with stable quality by suppressing the occurrence of self-burning in the laser beam machining method and laser machining apparatus using a laser beam having a wavelength of 1 ⁇ m.
  • An object is to provide a laser processing method and a laser processing apparatus.
  • a laser processing method for cutting a plate-shaped workpiece using a laser beam having a wavelength of 1 ⁇ m, and the focal point of the laser beam when the workpiece is cut. Is positioned between the center of the workpiece in the plate thickness direction of the workpiece and the end surface of the workpiece on the rear side in the traveling direction of the laser beam in the optical axis direction of the laser beam; There is provided a laser processing method including cutting the workpiece using the laser beam having a focal point at the focal position.
  • the workpiece is a thick plate and is made of iron, steel, an iron alloy, or a material that generates heat by an oxidation reaction
  • the cutting processing by the workpiece includes oxygen.
  • Assist gas is sprayed from the small-diameter nozzle toward the workpiece, and the inner diameter of the small-diameter nozzle is not less than 0.6 mm and not more than 15% of the thickness of the workpiece. ing.
  • the workpiece is a thick plate and is made of iron, steel, an iron alloy, or a material that generates heat by an oxidation reaction
  • the cutting processing by the workpiece includes oxygen.
  • Assist gas is sprayed from the small-diameter nozzle toward the workpiece, and when the workpiece is cut, the assist gas is placed inside the holes and grooves formed by the cutting. Spray.
  • the position of the focal point of the laser beam when the piercing processing is performed in the plate thickness direction of the workpiece.
  • the position of the focal point of the laser beam when the piercing processing is performed in the plate thickness direction of the workpiece.
  • a laser processing head that emits laser light having a wavelength of 1 ⁇ m toward a plate-shaped workpiece and is capable of changing a focal position of the laser light, and the workpiece is installed.
  • a laser including a control unit that controls the laser processing head so as to be positioned between the center of the workpiece and an end surface of the workpiece that is in the optical axis direction of the laser beam and is behind the laser beam traveling direction.
  • a processing apparatus is provided.
  • the cutting process with the workpiece is performed using oxygen. It is comprised so that it may be made using the assist gas sprayed toward the said workpiece
  • the internal diameter of the said small diameter nozzle is 0.6 mm or more, and the value of 15% or less of the plate
  • the cutting process with the workpiece is performed using oxygen.
  • the position of the focal point of the laser light emitted from the laser processing head is determined.
  • the plate thickness direction of the workpiece it is between the center of the workpiece and the end surface of the workpiece in the optical axis direction of the laser beam and on the front side in the traveling direction of the laser beam, or in the optical axis direction of the laser beam.
  • the end surface of the workpiece on the front side in the traveling direction of the laser beam, and the position near the end surface of the workpiece on the front side in the traveling direction of the laser beam and slightly separated from the end surface of the workpiece on the front side in the traveling direction of the laser beam The laser processing head is controlled so as to be positioned between the two.
  • FIG. 1 It is a figure which shows schematic structure of the laser processing apparatus which concerns on embodiment of this invention. It is a figure which shows the laser beam which passed the condensing lens of the laser processing apparatus which concerns on embodiment of this invention.
  • (A) is a figure which shows the state when cut
  • (b) is the laser processing apparatus which concerns on embodiment of this invention. It is a figure which shows the state when carrying out the cutting process of the workpiece
  • (A) is a figure which shows schematically the case where assist gas is supplied with the conventional nozzle
  • (b) is the case where assist gas is supplied with the small diameter nozzle of the laser processing apparatus which concerns on embodiment of this invention.
  • FIG. 1 It is a figure shown roughly. It is a figure which shows roughly the state which is cutting the workpiece
  • (A) is a figure which shows roughly the state which is cutting the workpiece
  • (b) schematically shows a state in which the workpiece is cut and processed in a state where the focal position of the laser beam coincides with the center of the thickness of the workpiece in the laser processing apparatus according to the embodiment of the present invention.
  • (A) shows the focus position and the collection of laser light when a small-diameter nozzle of the laser processing apparatus according to the embodiment of the present invention is used to cut a workpiece having a thickness of 12 mm while changing the focus position. It is a figure which shows the relationship between an optical diameter and the possibility of a process (good or bad of a process), (b) is a figure which shows the form of the processed surface of the workpiece
  • FIG. 1 It is a figure which shows the presence or absence of generation
  • A is a state of occurrence of self-burning when a single workpiece is cut in a defocus area by a laser processing apparatus according to an embodiment of the present invention to cut out 10 triangular products or semi-finished products.
  • (B) is an enlarged view of one product or semi-finished product in which self-burning has occurred, and
  • (c) is a diagram showing a processing failure state of what is shown in (b). .
  • (A) is a state of occurrence of self-burning when a single workpiece is cut in an in-focus area by a laser processing apparatus according to an embodiment of the present invention and 10 triangular products or semi-finished products are cut out.
  • (B) is an enlarged view of one product or semi-finished product in which self-burning has not occurred.
  • the laser processing apparatus which concerns on embodiment of this invention, it is a figure which shows the range which can be cut in the relationship between a laser output and a processing speed. It is a figure which shows the state of the process surface of a cutting process in the case of changing the focus position and processing speed of a laser beam with the laser processing apparatus which concerns on embodiment of this invention. It is a figure which shows the conventional laser processing.
  • (A) is a figure which shows the profile of a fiber laser
  • (b) is a figure which shows the profile of CO2 laser.
  • the laser processing apparatus 1 is configured to include a laser processing head 3, a workpiece setting unit 5 (see FIG. 5), and a control unit 7.
  • the laser processing head 3 emits laser light 9 having a wavelength of 1 ⁇ m (for example, 0.7 ⁇ m to 1.2 ⁇ m) toward a thick plate workpiece W installed in the workpiece installation unit 5 (FIG. 5). See also).
  • the laser beam 9 for example, a laser beam of a fiber laser, DDL (direct focusing semiconductor laser) or YAG laser can be listed.
  • the position of the focal point (condensing point) 11 of the laser light 9 can be changed (changed and adjusted).
  • the laser processing apparatus 1 is further provided with an oscillator 13 and a process fiber 15.
  • the laser light 9 oscillated by the oscillator 13 passes through the process fiber 15 and passes through the process fiber 15.
  • the light is emitted toward the laser processing head 3 from the emission end 17 provided at the end.
  • the laser processing head 3 includes a casing 23 that includes a cylindrical main body 19 and a nozzle 21, a collimation lens 25, and a condenser lens 27.
  • the collimation lens 25 is provided in the cylindrical main body 19 above the cylindrical main body 19, and the condensing lens 27 is provided in the cylindrical main body 19 below the cylindrical main body 19. Is provided.
  • the nozzle 21 is provided at the lower end of the cylindrical main body 19.
  • An assist gas supply unit 36 is provided below the cylindrical main body 19, and an assist gas (for example, an assist gas containing a large amount of oxygen) 37 is supplied from the assist gas supply unit 36 into the nozzle 21.
  • an assist gas for example, an assist gas containing a large amount of oxygen
  • the laser beam 9 emitted from the emission end 17 passes through the collimation lens 25 and the condenser lens 27 in this order, and is emitted downward, for example, from the opening 29 at the end (lower end) of the nozzle 21. Then, the workpiece W installed in the workpiece installation unit 5 is irradiated and laser processing (piercing processing and cutting processing) is performed on the workpiece W. Note that the optical axis of the laser beam 9 emitted from the emission end 17 and applied to the workpiece W extends, for example, in the vertical direction.
  • the laser light 9 emitted from the emission end 17 is converted into a substantially parallel light beam by passing through the collimation lens 25, and then becomes convergent light by passing through the condenser lens 27.
  • the assist gas 37 supplied into the nozzle 21 is supplied (sprayed) toward the workpiece W from the opening 29 at the end of the nozzle 21.
  • the condensing lens 27 is provided integrally with the housing 23, but the collimation lens 25 is movable and positionable in a direction approaching or separating from the condensing lens 27 (housing 23). It can be moved and positioned with respect to the vertical direction). Thereby, the position of the focal point 11 of the laser light 9 (the distance LZ between the lower end of the nozzle 21 and the focal point 11 in the vertical direction) can be changed (change adjustment).
  • the condenser lens 27 is made movable and positionable in the vertical direction with respect to the housing 23.
  • the position of the focal point 11 of the laser light 9 may be changed (change adjustment).
  • the workpiece setting unit 5 is provided, for example, on the lower side of the laser processing head 3, and the plate-like workpiece W installed (placed) on the workpiece setting unit 5 has a thickness direction of the workpiece W in the vertical direction. It has become.
  • the laser processing head 3 can be moved and positioned relatively in the horizontal direction with respect to the workpiece W installed in the workpiece setting section 5, and can be moved and positioned in the vertical direction. A predetermined interval is provided in the vertical direction between the workpiece W installed in the section 5 and the laser processing head 3.
  • the position of the focal point 11 is changed (change adjustment) by changing the positions of the collimation lens 25 and the condensing lens 27 of the laser processing head 3, but the collimation lens 25 and the condensing lens 27 are changed.
  • the position of the focal point 11 may be changed (change adjustment) by changing the height position of the laser processing head 3 with respect to the workpiece setting unit 5.
  • the distance (in the height direction) between the lower end of the nozzle 21 of the laser processing head 3 and the focal point 11 is changed.
  • the distance LZ does not change, but the distance between the lower end of the nozzle 21 of the laser processing head 3 and the workpiece placement unit 5 changes.
  • the control unit 7 includes a memory 31 and a CPU 33, and appropriately changes the position of the focal point 11 of the laser light 9 emitted from the laser processing head 3 according to an operation program stored in advance in the memory 31. For example, the operation of the laser processing apparatus 1 is controlled.
  • the control unit 7 controls the laser machining head 3 to change the position of the focal point 11 of the laser beam 9 emitted from the laser machining head 3 in the thickness direction of the workpiece W.
  • Opposite end face; bottom face Located between WU.
  • the end surface of the work on the rear side in the traveling direction of the laser light means the end surface of the work on the side where the laser light passes through the work and is emitted from the work.
  • the position of the focal point 11 of the laser light 9 may be coincident with the center CL of the workpiece W, but it is desirable that the position is higher than the lower surface WU of the workpiece W.
  • the control unit 7 determines the position of the focal point 11 of the laser beam 9 emitted from the laser processing head 3 as the plate of the workpiece W.
  • the laser processing head 3 is positioned so as to be positioned between the end surface (upper surface) of the workpiece in the optical axis direction and the front side of the traveling direction of the laser light 9 and a location near the upper surface and slightly away from the upper surface. Control.
  • the end face of the workpiece on the front side in the traveling direction of the laser beam means the end surface of the workpiece on the side where the laser beam enters the workpiece.
  • the in-focus area is located above the focal point 11 of the laser light 9 that has passed through the condenser lens 27 (on the laser processing head 3 side).
  • the area below the focal point 11 is the defocus area.
  • FIG. 6A since the focal point 11 is positioned on the upper surface of the workpiece W, the workpiece W is cut in the defocus area.
  • FIG. 6B since the focal point 11 is located at the center CL of the workpiece W (a plane located at the center in the thickness direction) CL, the workpiece 11 is cut into the workpiece W in the in-focus area above the center CL. Machining is performed, and the work W is cut in the defocus area below the center CL.
  • the workpiece W is pierced with the laser beam 9 and then moved relative to the laser processing head 3 starting from the through hole formed by the piercing processing.
  • the workpiece W is cut with the laser light 9, and a product or semi-finished product having a predetermined shape is cut out from the workpiece W.
  • Work W is made of, for example, mild steel.
  • an assist gas 37 composed of substantially oxygen is blown from the nozzle (small diameter nozzle) 21 toward the workpiece W.
  • the inner diameter of the small-diameter nozzle 21 is 0 in order to suppress the occurrence of self-burning in the workpiece W due to an oxidation reaction occurring in a wide range. .6 mm or more and 15% or less of the thickness of the workpiece W.
  • the plate thickness of the workpiece W is a thick plate as a workpiece to be processed by laser processing, and is, for example, in the range of 6 mm to 18 mm (may be 4 mm to 22 mm).
  • a frustoconical through-hole 35 is formed in the center of the small-diameter nozzle 21, and the small-diameter end of the frustoconical through-hole 35 (the upper surface having a small diameter on the truncated cone; the opening 29) is on the workpiece W side (lower side).
  • the large-diameter end of the frustoconical through hole 35 (the large-diameter lower surface of the truncated cone) is located on the opposite side (upper side) of the workpiece W.
  • the laser beam 9 is shaped like a truncated cone of the nozzle 21 so that the optical axis of the laser beam 9 and the central axis of the frustoconical through hole 35 coincide with each other (extend in the vertical direction).
  • the through-hole 35 is emitted from the small-diameter opening 29 of the truncated cone-shaped through-hole 35 toward the workpiece W.
  • the inner diameter (opening diameter) of the small-diameter nozzle 21 is the inner diameter of the through-hole 35 at the small-diameter end (opening 29) of the frustoconical through-hole 35.
  • the assist gas 37 supplied to the small-diameter nozzle 21 is blown downward toward the workpiece W from the circular opening 29 of the frustoconical through hole 35.
  • the through hole 35 of the small diameter nozzle 21 is formed in a truncated cone shape, the through hole 35 of the small diameter nozzle 21 is gradually throttled downward (approaching the workpiece W), and the assist gas 37
  • the supply amount of the assist gas 37 can be changed as appropriate according to the thickness of the workpiece W.
  • the pressure of the assist gas 37 (the supply pressure of the assist gas 37 to the small-diameter nozzle 21 or the pressure of the assist gas 37 in the opening 29 of the small-diameter nozzle 21) may be a gauge pressure. 0.05 MPa to 0.10 MPa.
  • iron, carbon steel, an iron alloy, or a material that generates heat by an oxidation reaction and promotes piercing or cutting by other than mild steel can be listed.
  • the assist gas 37 is used for laser processing (for example, cutting processing).
  • the assist gas 37 May be configured to be sprayed into the hole or groove formed.
  • the surface of the workpiece W is sprayed by spraying the assist gas 37 on the inside of the holes and grooves formed by the laser processing (side surfaces of the holes and grooves; cut surfaces by laser processing).
  • the assist gas 37 may not be directly blown onto the (upper surface) (the assist gas 37 blown from the small diameter nozzle 21 may not directly reach the surface of the workpiece W).
  • the assist gas 37 may be blown into a hole or groove formed by laser machining at supersonic speed.
  • the workpiece W is placed on the workpiece placement unit 5, and the laser machining head 3 is positioned at a predetermined position (laser machining start position) with respect to the workpiece W placed on the workpiece placement unit 5. It shall be.
  • the laser beam 9 is irradiated from the laser processing head 3 toward the workpiece W, and the assist gas (oxygen) 37 is blown to perform laser processing (piercing processing) on the workpiece W.
  • the focal point (condensing point) 11 of the laser beam 9 is positioned between the upper surface of the workpiece W and the center CL of the workpiece W in the plate thickness direction (vertical direction) of the workpiece W.
  • 9 (focusing point) 11 is located above the upper surface of the workpiece W and in the vicinity of the upper surface of the workpiece W (a position where an energy density capable of melting the workpiece W can be obtained).
  • the focal point (condensing point) 11 of the laser beam 9 may be positioned between the center CL of the workpiece W and the lower surface WU of the workpiece W in the plate thickness direction (vertical direction) of the workpiece W. .
  • the workpiece W is cut relative to the laser machining head 3 with the through-hole formed by the piercing as a starting point, so that the workpiece W is cut and processed. Cut out products and semi-finished products from the shape. Also at this time, the focal point 11 of the laser light 9 is located between the center CL of the workpiece W and the lower surface WU of the workpiece W in the plate thickness direction (vertical direction) of the workpiece W.
  • the cutting process when the cutting process is started from the end of the workpiece W, the cutting process may be performed without piercing the workpiece W.
  • the workpiece W is melted by irradiating the workpiece W with the laser light 9 and the melted metal is removed by injecting the assist gas 37. Further, by using oxygen as the assist gas 37, it is possible to process a thick workpiece (a workpiece having a thickness of about 6 mm to 18 mm) W that generates heat of oxidation reaction and is difficult to cut with only laser output.
  • the position of the focal point 11 of the laser light 9 is positioned between the center CL of the workpiece W and the lower surface WU of the workpiece W in the plate thickness direction of the workpiece W. Therefore, the heat input to the workpiece W is reduced, the occurrence of self-burning in the workpiece W is suppressed, and the workpiece W can be cut with stable quality.
  • FIG. 3A shows an aspect corresponding to the above-described operation.
  • the focal point 11 of the laser light 9 is located on the lower end side of the workpiece W.
  • the mode shown in FIG. 3B shows a comparative example.
  • the focal point 11 of the laser light 9 is located above the upper surface of the workpiece W. What is indicated by a broken line L ⁇ b> 1 in FIG. 3 is the wavefront of the laser light 9.
  • the wavefront L1 of the laser beam 9 narrows downward at the workpiece W (convex upwards; the wavefront L1 is formed by a part of a spherical surface, and the center of this spherical surface is It is located below the wavefront L1).
  • the component (vector component in the traveling direction of the laser beam 9) 42 at the wavefront L1 of the laser beam 9 is orthogonal to the X direction (horizontal direction; side surface 39 of the hole or groove formed in the workpiece W).
  • the Z direction vertical direction
  • the X-direction component 41 becomes inward, multiple reflection of the laser light 9 hardly occurs, and the amount of heat input to the side surface (cut surface) 39 decreases. The occurrence of self-burning is suppressed.
  • the component 43 in the Z direction is from top to bottom.
  • the wavefront L1 of the laser light 9 spreads downward at the workpiece W (projects downward; the wavefront L1 is formed as a part of a spherical surface, The center of this spherical surface is located above the wavefront L1).
  • the component 42 in the wavefront L1 of the laser beam 9 is decomposed into the X direction and the Z direction, the component 41 in the X direction becomes outward, and multiple reflection of the laser beam 9 is likely to occur.
  • the amount of heat input to 39 increases, and self-burning tends to occur.
  • the laser processing apparatus 1 since the laser processing is performed using the assist gas 37 sprayed from the small diameter nozzle 21 toward the workpiece W, the range in which oxygen acts can be narrowed. It is suppressed that the range where the oxidation reaction occurs is suppressed, and self-burning generated due to excessive heat input is further suppressed by a synergistic effect with the position of the focal point 11 of the laser light 9 being lowered in the thickness direction of the workpiece W. can do.
  • the assist gas 37 is blown into the holes and grooves formed by the laser processing, so that the range in which oxygen acts can be narrowed. Further, it is possible to suppress the range in which the oxidation reaction occurs in the workpiece W from being widened, and to further suppress self-burning that occurs due to excessive heat input.
  • the position of the focal point 11 of the laser light 9 is positioned between the center CL of the workpiece W and the lower surface WU of the workpiece W in the thickness direction of the workpiece W.
  • the energy density on the upper surface (surface) is reduced, the oxidation action on the upper surface of the workpiece W is suppressed, and the occurrence of self-burning on the workpiece W is suppressed.
  • FIG. 4A shows a conventional mode
  • FIG. 4B shows a mode in the laser processing apparatus 1.
  • FIG. 7A shows a focal position (distance between the upper surface of the workpiece W and the focal point 11) and a focused diameter (workpiece) when a plate-shaped workpiece W (soft steel; SS400) having a thickness of 12 mm is cut.
  • the diameter of the laser beam 9 on the upper surface of W) and whether or not processing is possible (O; acceptable, x; impossible) are shown.
  • the focal position is “+” when moving upward from the upper surface of the workpiece W, and “ ⁇ ” when moving downward from the upper surface of the workpiece W.
  • the condensing diameter is 0.463 mm, and the processing status is impossible. It is.
  • the condensing diameter is 0.540 mm, and the processing situation is acceptable.
  • the condensed light diameters are 0.613 mm, 0.677 mm, 0.751 mm,. They are 817 mm and 0.916 mm, and the processing status is acceptable.
  • the focal position is ⁇ 12 mm (when the focal position is located at the lower surface WU of the workpiece W), the condensing diameter is 0.987 mm, and the processing situation is impossible.
  • FIG. 7B shows a state of the side surface (cut surface) 39 of the workpiece W when the processing is possible.
  • FIG. 7 (b) six photographs showing the side surface 39 of the workpiece W are shown, but in order from the top, the focal positions are cut at ⁇ 6 mm, ⁇ 7 mm, ⁇ 8 mm, ⁇ 9 mm, ⁇ 10 mm, and ⁇ 11 mm. The case where it processed is shown.
  • the converging diameter appropriate for cutting the workpiece W having a thickness of 12 mm is obtained.
  • the position of the focal point 11 is higher than ⁇ 6 mm, the processing accuracy is deteriorated.
  • the position of the focal point 11 is in the vicinity of ⁇ 12 mm, the processing accuracy of the cutting process deteriorates due to the decrease in energy density and the limit of the condensing diameter of the cutting, which is not practical.
  • FIG. 8 (a) shows a shape when cutting a plate-like workpiece W (soft steel; SS400) having a thickness of 12 mm, and shows a state in which the workpiece W is viewed from this thickness direction.
  • a right triangle product or semi-finished product is cut out from the workpiece W.
  • FIG. 8B shows a case where the workpiece W is cut in the mode shown in FIG. 8A in the defocus area (the state where the focal point 11 is positioned above the workpiece center of the workpiece W), and in-focus.
  • a mode shown in FIG. 8A on the workpiece W in an area a state in which the focal point 11 includes the center CL of the workpiece W and is located below the center CL of the workpiece W and above the lower surface WU of the workpiece W). The presence or absence of the occurrence of self-burning in the case where the cutting process is performed is shown.
  • FIG. 9A ten products or semi-finished products are cut out from one workpiece W by cutting in the defocus area. Self-burning occurs in all 10 products or semi-finished products shown in FIG.
  • FIG. 9 (a) a portion that looks like a bump is a portion where self-burning has occurred.
  • FIG. 9B is an enlarged view of one of the 10 products or semi-finished products shown in FIG. 9A
  • FIG. 9C shows the product shown in FIG. Shows burn-out in semi-finished products.
  • a part of the hypotenuse of the triangle is recessed in a concave shape, and this part is a part where self-burning occurs.
  • FIG. 10A, 10 products or semi-finished products are cut out from one workpiece W by cutting in the in-focus area. Self-burning does not occur in all of the ten products or semi-finished products shown in FIG.
  • FIG. 10B is an enlarged view of one of the ten products or semi-finished products shown in FIG.
  • a region 45 in the quadrangle shown in FIG. 11 is an appropriate region when the workpiece W is cut.
  • the workpiece W to be subjected to laser processing is SS400 having a thickness of 12 mm, and the assist gas (O2) 37 is blown onto the workpiece W at 0.07 MPa during laser processing.
  • the maximum feed rate is 1700 mm / min
  • the minimum feed rate is 1400 mm / min.
  • the maximum feed rate is about 850 mm / min, and the minimum feed rate is about 700 mm / min.
  • FIG. 12 shows that assist gas (O2) 37 is blown onto a workpiece W (SS400 with a thickness of 12 mm) at 0.07 MPa, the laser output is 4 kW, and the feed rate is 1400 mm / min (F1400) or 1700 mm / min (F1700). ) Shows the state of the processed surface when processed.
  • Fp-6”, “Fp-7” and the like shown in FIG. 12 indicate the position of the focal point 11 when cutting the workpiece W, and “Fp-6” indicates the vertical direction (the thickness of the workpiece W). This indicates that the distance between the upper surface of the workpiece W and the focal point 11 is 6 mm. In the state shown in FIG. 12, good cutting is performed in all cases.
  • it is a laser processing method for cutting a plate-shaped workpiece W using the laser beam 9 having a wavelength of 1 ⁇ m, and the position of the focal point 11 of the laser beam 9 when cutting the workpiece W is determined. Locating between the center CL of the workpiece W in the thickness direction of the workpiece W and the end surface WU of the workpiece W on the rear side in the traveling direction of the laser beam 9 in the optical axis direction of the laser beam 9; It may be grasped as a laser processing method including cutting the workpiece W using the laser beam 9 having a focal point at the position 11.
  • the workpiece W is a thick plate and is made of iron, steel, an iron alloy, or a material that generates heat by an oxidation reaction, and the workpiece W is cut from the small diameter nozzle 21 containing oxygen.
  • An assist gas 37 blown toward the workpiece W is used.
  • the inner diameter of the small diameter nozzle 21 is 0. .6 mm or more and 15% or less of the thickness of the workpiece W.
  • the workpiece W is a thick plate and is made of iron, steel, an iron alloy, or a material that generates heat by an oxidation reaction, and the workpiece W is cut from the small diameter nozzle 21 containing oxygen.
  • the assist gas 37 blown toward the workpiece W, when cutting the workpiece W, when cutting the workpiece W in order to suppress the occurrence of self-burning in the workpiece W
  • the assist gas 37 is blown into the holes and grooves formed by the cutting process.
  • the position of the focal point 11 of the laser beam 9 when piercing is performed is determined in the plate thickness direction of the workpiece W.
  • the center CL of the workpiece W and the end surface (upper surface) of the workpiece W in the optical axis direction of the laser beam 9 and in the forward direction of the laser beam 9, or in the optical axis direction of the laser beam 9 The end surface (upper surface) of the workpiece W on the front side in the traveling direction of the laser light 9 and the end surface (upper surface) of the workpiece W on the front side in the traveling direction of the laser light 9 and in front of the laser light 9 in the traveling direction ( It is located between the part slightly away from the upper surface).

Abstract

Provided is a laser processing method in which laser light having a wavelength in the 1 μm band is used, wherein a workpiece can be cut with consistent quality by minimizing the incidence of self-burning. A laser processing method in which a plate-shaped workpiece W is processed by cutting using laser light 9 having a wavelength in the 1 μm band, wherein: the position of the focal point 11 of the laser light 9 during processing of the workpiece by cutting is positioned between the center CL of the workpiece W in the plate thickness direction of the workpiece W and the end surface WU of the workpiece W on the trailing side in the direction in which the laser light 9 advances, which is the optical axis direction of the laser light 9; and the workpiece W is machined by cutting, using the laser light 9 having the focal point at the position of the focal point 11.

Description

セルフバーニングの発生を抑制するレーザ加工方法およびレーザ加工装置Laser processing method and laser processing apparatus for suppressing occurrence of self-burning
 本発明は、レーザ加工方法およびレーザ加工装置に関し、特に、ワークにレーザ加工を行うときにレーザ光を制御するレーザ加工方法およびレーザ加工装置に関する。 The present invention relates to a laser processing method and a laser processing apparatus, and more particularly to a laser processing method and a laser processing apparatus that control laser light when laser processing is performed on a workpiece.
 従来のレーザ切断では、図13で示すように、集光レンズ301を用いてレーザ光303を100μm~1000μmのスポットサイズ(集光径)に集光することでエネルギー密度を高くし、金属(軟鋼板;ワーク)305の一部分を瞬間的に溶融させ、アシストガスなる補助ガス(図13では図示せず)にて溶融金属を除去しながら切断を行っている。 In the conventional laser cutting, as shown in FIG. 13, the energy density is increased by condensing the laser beam 303 into a spot size (condensed diameter) of 100 μm to 1000 μm using a condensing lens 301, and metal (soft steel). A portion of the plate (workpiece) 305 is instantaneously melted, and cutting is performed while removing the molten metal with an auxiliary gas (not shown in FIG. 13) as an assist gas.
 また、軟鋼板の厚板などではアシストガスに酸素を使用して、酸化反応熱によりレーザパワーだけでは切断が困難とされる板厚帯の切断を行っている。また、酸素を用いた切断による軟鋼板の加工においては、光学的に適正な集光径に合わせた上で焦点位置307はディフォーカスした状態(焦点位置307がワーク305の上面よりも上方に位置している状態)で加工する方法が一般常識とされている。 Also, for thick steel plates, oxygen is used as an assist gas, and the plate thickness band, which is difficult to cut by laser power alone, is cut by the heat of oxidation reaction. Further, in the processing of mild steel sheets by cutting using oxygen, the focal position 307 is in a defocused state after being adjusted to an optically appropriate condensing diameter (the focal position 307 is positioned above the upper surface of the workpiece 305). In general, it is common sense to use a method of processing in a state where
 ここで、従来の技術文献として、たとえば、特許文献1を掲げることができる。 Here, for example, Patent Document 1 can be listed as a conventional technical document.
特開平6-155063号公報Japanese Patent Laid-Open No. 6-155063
 ところで、DDL(Direct Diode Laser)やファイバレーザのように波長が1μm帯のレーザ光は、CO2レーザ(図14(b)参照)に比べてビーム中心付近のパワー強度分布が非常に高く(図14(a)参照)、CO2レーザなどの10μm帯の光と比較して金属(ワーク)に対しての光の吸収率が非常に高いことから、アシストガスに酸素を用いた軟鋼板(ワーク)の切断においては、切断に最適なレーザ光の集光スポットサイズを照射した場合に材料(ワーク)上面の切断幅(カーフ幅)が必要以上に大きくなり過ぎ、カーフコントロールが難しくなり、過剰燃焼(セルフバーニング)を起こすなど、安定した品質での切断が非常に難しいという問題がある。 By the way, laser light with a wavelength of 1 μm band such as DDL (Direct Diode Laser) or fiber laser has a very high power intensity distribution near the center of the beam as compared with a CO2 laser (see FIG. 14B) (FIG. 14). (Refer to (a)), since the light absorptance with respect to the metal (work) is very high compared with the light of 10 μm band such as CO2 laser, the mild steel plate (work) using oxygen as an assist gas. In cutting, when the focused spot size of the laser beam optimal for cutting is irradiated, the cutting width (kerf width) on the upper surface of the material (workpiece) becomes too large, making kerf control difficult and excessive combustion (self There is a problem that cutting with stable quality is very difficult, such as causing burning.
 従って、本発明は、波長が1μm帯のレーザ光を用いたワークのレーザ加工方法およびレーザ加工装置において、セルフバーニングの発生を抑制することで、安定した品質でのワークの切断を行うことができるレーザ加工方法およびレーザ加工装置を提供することを目的とする。 Therefore, the present invention can cut a workpiece with stable quality by suppressing the occurrence of self-burning in the laser beam machining method and laser machining apparatus using a laser beam having a wavelength of 1 μm. An object is to provide a laser processing method and a laser processing apparatus.
 本発明の一側面によると、波長が1μm帯であるレーザ光を用いて、板状のワークの切断加工を行うレーザ加工方法であって、前記ワークの切断加工をする際の前記レーザ光の焦点の位置を、前記ワークの板厚方向で、前記ワークの中心と、前記レーザ光の光軸方向であって前記レーザ光の進行方向後側における前記ワークの端面との間に位置させることと、前記焦点の位置に焦点を有する前記レーザ光を用いて、前記ワークの切断加工を行うことと、を含むレーザ加工方法が提供される。 According to one aspect of the present invention, there is provided a laser processing method for cutting a plate-shaped workpiece using a laser beam having a wavelength of 1 μm, and the focal point of the laser beam when the workpiece is cut. Is positioned between the center of the workpiece in the plate thickness direction of the workpiece and the end surface of the workpiece on the rear side in the traveling direction of the laser beam in the optical axis direction of the laser beam; There is provided a laser processing method including cutting the workpiece using the laser beam having a focal point at the focal position.
 また、好ましくは、上記レーザ加工方法において、前記ワークは、厚板であり、鉄もしくは鋼もしくは鉄合金もしくは酸化反応によって発熱する材料で構成されており、前記ワークでの切断加工は、酸素を含み小径ノズルから前記ワークに向かって吹き付けられるアシストガスを用いてなされるようになっており、前記小径ノズルの内径は、0.6mm以上であって前記ワークの板厚の15%以下の値になっている。 Preferably, in the laser processing method, the workpiece is a thick plate and is made of iron, steel, an iron alloy, or a material that generates heat by an oxidation reaction, and the cutting processing by the workpiece includes oxygen. Assist gas is sprayed from the small-diameter nozzle toward the workpiece, and the inner diameter of the small-diameter nozzle is not less than 0.6 mm and not more than 15% of the thickness of the workpiece. ing.
 また、好ましくは、上記レーザ加工方法において、前記ワークは、厚板であり、鉄もしくは鋼もしくは鉄合金もしくは酸化反応によって発熱する材料で構成されており、前記ワークでの切断加工は、酸素を含み小径ノズルから前記ワークに向かって吹き付けられるアシストガスを用いてなされるようになっており、前記ワークに切断加工をするときに、前記アシストガスを前記切断加工で形成される孔や溝の内部に吹き付ける。 Preferably, in the laser processing method, the workpiece is a thick plate and is made of iron, steel, an iron alloy, or a material that generates heat by an oxidation reaction, and the cutting processing by the workpiece includes oxygen. Assist gas is sprayed from the small-diameter nozzle toward the workpiece, and when the workpiece is cut, the assist gas is placed inside the holes and grooves formed by the cutting. Spray.
 また、好ましくは、上記レーザ加工方法において、前記切断加工を行う前に前記ワークにピアス加工を行う場合、前記ピアス加工をするときの前記レーザ光の焦点の位置を、前記ワークの板厚方向で、前記ワークの中心と、前記レーザ光の光軸方向であって前記レーザ光の進行方向前側における前記ワークの端面との間、もしくは、前記レーザ光の光軸方向であって前記レーザ光の進行方向前側における前記ワークの端面と、前記レーザ光の進行方向前側における前記ワークの端面の近傍であって前記レーザ光の進行方向前側における前記ワークの端面から僅かに離れた箇所との間に位置させる。 Preferably, in the laser processing method, when the workpiece is pierced before the cutting processing, the position of the focal point of the laser beam when the piercing processing is performed in the plate thickness direction of the workpiece. , Between the center of the workpiece and the end surface of the workpiece in the optical axis direction of the laser beam and on the front side in the traveling direction of the laser beam, or in the optical axis direction of the laser beam and traveling of the laser beam Between the end surface of the workpiece on the front side in the direction and a position near the end surface of the workpiece on the front side in the traveling direction of the laser beam and slightly separated from the end surface of the workpiece on the front side in the traveling direction of the laser beam. .
 本発明の他の側面によると、波長が1μm帯であるレーザ光を板状のワークに向けて出射するとともに、前記レーザ光の焦点の位置を変更自在であるレーザ加工ヘッドと、前記ワークが設置されるワーク設置部と、前記ワーク設置部に設置された前記ワークに切断加工をする際に、前記レーザ加工ヘッドから出射される前記レーザ光の焦点の位置を、前記ワークの板厚方向で、前記ワークの中心と、前記レーザ光の光軸方向であって前記レーザ光進行方向後側のワークの端面との間に位置させるように、前記レーザ加工ヘッドを制御する制御部と、を含むレーザ加工装置が提供される。 According to another aspect of the present invention, a laser processing head that emits laser light having a wavelength of 1 μm toward a plate-shaped workpiece and is capable of changing a focal position of the laser light, and the workpiece is installed. When the workpiece installed on the workpiece installed section and the workpiece installed on the workpiece installed section are cut, the position of the focal point of the laser beam emitted from the laser machining head in the thickness direction of the workpiece, A laser including a control unit that controls the laser processing head so as to be positioned between the center of the workpiece and an end surface of the workpiece that is in the optical axis direction of the laser beam and is behind the laser beam traveling direction. A processing apparatus is provided.
 また、好ましくは、上記レーザ加工装置において、前記ワークが、厚板であり、鉄もしくは鋼もしくは鉄合金もしくは酸化反応によって発熱する材料で構成されている場合、前記ワークでの切断加工は、酸素を含み小径ノズルから前記ワークに向かって吹き付けられるアシストガスを用いてなされるように構成されており、前記小径ノズルの内径は、0.6mm以上であって前記ワークの板厚の15%以下の値になっている。 Preferably, in the laser processing apparatus, when the workpiece is a thick plate and is made of iron, steel, an iron alloy, or a material that generates heat by an oxidation reaction, the cutting process with the workpiece is performed using oxygen. It is comprised so that it may be made using the assist gas sprayed toward the said workpiece | work from a small diameter nozzle, The internal diameter of the said small diameter nozzle is 0.6 mm or more, and the value of 15% or less of the plate | board thickness of the said workpiece | work It has become.
 また、好ましくは、上記レーザ加工装置において、前記ワークが、厚板であり、鉄もしくは鋼もしくは鉄合金もしくは酸化反応によって発熱する材料で構成されている場合、前記ワークでの切断加工は、酸素を含み小径ノズルから前記ワークに向かって吹き付けられるアシストガスを用いてなされるように構成されており、前記ワークでの切断加工をするときに、前記アシストガスを前記切断加工で形成される孔や溝の内部に吹き付けるように構成されている。 Preferably, in the laser processing apparatus, when the workpiece is a thick plate and is made of iron, steel, an iron alloy, or a material that generates heat by an oxidation reaction, the cutting process with the workpiece is performed using oxygen. A hole or a groove formed by using an assist gas sprayed from a small-diameter nozzle toward the workpiece, and when the workpiece is cut by the workpiece, the assist gas is formed by the cutting processing. It is configured to spray inside.
 また、好ましくは、上記レーザ加工装置において、前記制御部は、前記切断加工を行う前に前記ワークにピアス加工を行う場合、前記レーザ加工ヘッドから出射される前記レーザ光の焦点の位置を、前記ワークの板厚方向で、前記ワークの中心と、前記レーザ光の光軸方向であって前記レーザ光の進行方向前側における前記ワークの端面との間、もしくは、前記レーザ光の光軸方向であって前記レーザ光の進行方向前側における前記ワークの端面と、前記レーザ光の進行方向前側における前記ワークの端面の近傍であって前記レーザ光の進行方向前側における前記ワークの端面から僅かに離れた箇所との間に位置させるように、前記レーザ加工ヘッドを制御する。 Preferably, in the laser processing apparatus, when the control unit performs piercing processing on the workpiece before performing the cutting processing, the position of the focal point of the laser light emitted from the laser processing head is determined. In the plate thickness direction of the workpiece, it is between the center of the workpiece and the end surface of the workpiece in the optical axis direction of the laser beam and on the front side in the traveling direction of the laser beam, or in the optical axis direction of the laser beam. The end surface of the workpiece on the front side in the traveling direction of the laser beam, and the position near the end surface of the workpiece on the front side in the traveling direction of the laser beam and slightly separated from the end surface of the workpiece on the front side in the traveling direction of the laser beam The laser processing head is controlled so as to be positioned between the two.
 本発明によれば、波長が1μm帯のレーザ光を用いたワークのレーザ加工方法およびレーザ加工装置において、セルフバーニングの発生を抑制することで、安定した品質でのワークの切断を行うことができるという効果を奏する。 According to the present invention, in a laser beam machining method and a laser beam machining apparatus using a laser beam having a wavelength of 1 μm, it is possible to cut a workpiece with stable quality by suppressing the occurrence of self-burning. There is an effect.
本発明の実施形態に係るレーザ加工装置の概略構成を示す図である。It is a figure which shows schematic structure of the laser processing apparatus which concerns on embodiment of this invention. 本発明の実施形態に係るレーザ加工装置の集光レンズを通過したレーザ光を示す図である。It is a figure which shows the laser beam which passed the condensing lens of the laser processing apparatus which concerns on embodiment of this invention. (a)は、本発明の実施形態に係るレーザ加工装置でインフォーカスエリアでワークを切断加工をするときの状態を示す図であり、(b)は、本発明の実施形態に係るレーザ加工装置でディフォーカスエリアでワークを切断加工をするときの状態を示す図である。(A) is a figure which shows the state when cut | disconnecting a workpiece | work in an in-focus area with the laser processing apparatus which concerns on embodiment of this invention, (b) is the laser processing apparatus which concerns on embodiment of this invention. It is a figure which shows the state when carrying out the cutting process of the workpiece | work in a defocus area. (a)は、従来のノズルでアシストガスを供給する場合を概略的に示す図であり、(b)は、本発明の実施形態に係るレーザ加工装置の小径ノズルでアシストガスを供給する場合を概略的に示す図である。(A) is a figure which shows schematically the case where assist gas is supplied with the conventional nozzle, (b) is the case where assist gas is supplied with the small diameter nozzle of the laser processing apparatus which concerns on embodiment of this invention. It is a figure shown roughly. 本発明の実施形態に係るレーザ加工機装置でワークを切断加工している状態を概略的に示す図である。It is a figure which shows roughly the state which is cutting the workpiece | work with the laser beam machine apparatus which concerns on embodiment of this invention. (a)は、本発明の実施形態に係るレーザ加工装置でレーザ光の焦点位置をワークの上面(表面)に一致させた状態で、ワークを切断加工している状態を概略的に示す図であり、(b)は、本発明の実施形態に係るレーザ加工装置でレーザ光の焦点位置をワークの板厚の中央に一致させた状態で、ワークを切断加工している状態を概略的に示す図である。(A) is a figure which shows roughly the state which is cutting the workpiece | work in the state which made the focal position of the laser beam correspond to the upper surface (surface) of a workpiece | work with the laser processing apparatus which concerns on embodiment of this invention. Yes, (b) schematically shows a state in which the workpiece is cut and processed in a state where the focal position of the laser beam coincides with the center of the thickness of the workpiece in the laser processing apparatus according to the embodiment of the present invention. FIG. (a)は、本発明の実施形態に係るレーザ加工装置の小径ノズルを使用して厚さ12mmのワークに、焦点位置を変えて切断加工を行った場合において、焦点位置と、レーザ光の集光径と、加工の可否(加工の良否)との関係を示す図であり、(b)は、加工が良好である場合のワークの加工面の形態を示す図である。(A) shows the focus position and the collection of laser light when a small-diameter nozzle of the laser processing apparatus according to the embodiment of the present invention is used to cut a workpiece having a thickness of 12 mm while changing the focus position. It is a figure which shows the relationship between an optical diameter and the possibility of a process (good or bad of a process), (b) is a figure which shows the form of the processed surface of the workpiece | work in case a process is favorable. (a)は、本発明の実施形態に係るレーザ加工装置で厚さ12mmのワークに切断加工を行って形成される切断溝の形態を示す図であり、(b)は、本発明の実施形態に係るレーザ加工装置でインフォーカスエリアでワークに切断加工を行った場合と、ディフォーカスエリアでワークに切断加工を行った場合とにおけるセルフバーニングの発生の有無を示す図である。(A) is a figure which shows the form of the cutting groove formed by performing a cutting process to the workpiece | work of thickness 12mm with the laser processing apparatus which concerns on embodiment of this invention, (b) is embodiment of this invention. It is a figure which shows the presence or absence of generation | occurrence | production of the self-burning in the case where the workpiece is cut in the in-focus area and the workpiece is cut in the defocus area. (a)は、本発明の実施形態に係るレーザ加工装置で1枚のワークにディフォーカスエリアで切断加工を行って10個の三角形状の製品もしくは半製品を切り出したときにおけるセルフバーニングの発生状態を示す図であり、(b)は、セルフバーニングが発生している1枚の製品もしくは半製品の拡大図であり、(c)は、(b)に示すものの加工不良状態を示す図である。(A) is a state of occurrence of self-burning when a single workpiece is cut in a defocus area by a laser processing apparatus according to an embodiment of the present invention to cut out 10 triangular products or semi-finished products. (B) is an enlarged view of one product or semi-finished product in which self-burning has occurred, and (c) is a diagram showing a processing failure state of what is shown in (b). . (a)は、本発明の実施形態に係るレーザ加工装置で1枚のワークにインフォーカスエリアで切断加工を行って10個の三角形状の製品もしくは半製品を切り出したときにおけるセルフバーニングの発生状態を示す図であり、(b)は、セルフバーニングが発生していない1枚の製品もしくは半製品の拡大図である。(A) is a state of occurrence of self-burning when a single workpiece is cut in an in-focus area by a laser processing apparatus according to an embodiment of the present invention and 10 triangular products or semi-finished products are cut out. (B) is an enlarged view of one product or semi-finished product in which self-burning has not occurred. 本発明の実施形態に係るレーザ加工装置で、レーザ出力と加工速度との関係において、切断加工が可能な範囲を示す図である。In the laser processing apparatus which concerns on embodiment of this invention, it is a figure which shows the range which can be cut in the relationship between a laser output and a processing speed. 本発明の実施形態に係るレーザ加工装置で、レーザ光の焦点位置と加工速度とを変えた場合における切断加工の加工面の状態を示す図である。It is a figure which shows the state of the process surface of a cutting process in the case of changing the focus position and processing speed of a laser beam with the laser processing apparatus which concerns on embodiment of this invention. 従来のレーザ加工を示す図である。It is a figure which shows the conventional laser processing. (a)は、ファイバレーザのプロファイルを示す図であり、(b)は、CO2レーザのプロファイルを示す図である。(A) is a figure which shows the profile of a fiber laser, (b) is a figure which shows the profile of CO2 laser.
 本発明の実施形態に係るレーザ加工装置1は、図1等で示すように、レーザ加工ヘッド3と、ワーク設置部5(図5参照)と、制御部7とを備えて構成されている。 As shown in FIG. 1 and the like, the laser processing apparatus 1 according to the embodiment of the present invention is configured to include a laser processing head 3, a workpiece setting unit 5 (see FIG. 5), and a control unit 7.
 レーザ加工ヘッド3は、波長が1μm帯(たとえば、0.7μm~1.2μm)であるレーザ光9を、ワーク設置部5に設置されている厚板のワークWに向けて出射する(図5も参照)。レーザ光9として、たとえば、ファイバレーザやDDL(直接集光型半導体レーザ)やYAGレーザのレーザ光を掲げることができる。また、レーザ加工ヘッド3では、レーザ光9の焦点(集光点)11の位置を変更自在(変更調節自在)になっている。 The laser processing head 3 emits laser light 9 having a wavelength of 1 μm (for example, 0.7 μm to 1.2 μm) toward a thick plate workpiece W installed in the workpiece installation unit 5 (FIG. 5). See also). As the laser beam 9, for example, a laser beam of a fiber laser, DDL (direct focusing semiconductor laser) or YAG laser can be listed. In the laser processing head 3, the position of the focal point (condensing point) 11 of the laser light 9 can be changed (changed and adjusted).
 例を掲げてさらに説明すると、レーザ加工装置1には、発振器13と、プロセスファイバ15とが設けられており、発振器13が発振したレーザ光9が、プロセスファイバ15を通って、プロセスファイバ15の端部に設けられている出射端17から、レーザ加工ヘッド3に向かって出射される。 The laser processing apparatus 1 is further provided with an oscillator 13 and a process fiber 15. The laser light 9 oscillated by the oscillator 13 passes through the process fiber 15 and passes through the process fiber 15. The light is emitted toward the laser processing head 3 from the emission end 17 provided at the end.
 レーザ加工ヘッド3は、筒状の本体部19とノズル21とを備えて構成されている筐体23と、コリメーションレンズ25と、集光レンズ27と備えている。コリメーションレンズ25は、筒状の本体部19の上方で筒状の本体部19内に設けられており、集光レンズ27は、筒状の本体部19の下方で筒状の本体部19内に設けられている。ノズル21は、筒状の本体部19の下端に設けられている。 The laser processing head 3 includes a casing 23 that includes a cylindrical main body 19 and a nozzle 21, a collimation lens 25, and a condenser lens 27. The collimation lens 25 is provided in the cylindrical main body 19 above the cylindrical main body 19, and the condensing lens 27 is provided in the cylindrical main body 19 below the cylindrical main body 19. Is provided. The nozzle 21 is provided at the lower end of the cylindrical main body 19.
 筒状の本体部19の下方には、アシストガス供給部36が設けられており、アシストガス供給部36からノズル21内にアシストガス(たとえば酸素を多く含むアシストガス)37が供給される。 An assist gas supply unit 36 is provided below the cylindrical main body 19, and an assist gas (for example, an assist gas containing a large amount of oxygen) 37 is supplied from the assist gas supply unit 36 into the nozzle 21.
 そして、出射端17から出射されたレーザ光9が、コリメーションレンズ25と、集光レンズ27とをこの順に通過して、ノズル21端(下端)の開口部29から、たとえば、下方に向かって出射され、ワーク設置部5に設置されているワークWに照射され、ワークWにレーザ加工(ピアス加工と切断加工)がなされる。なお、出射端17から出射されてワークWに照射されるレーザ光9の光軸は、たとえば、上下方向に延びている。 The laser beam 9 emitted from the emission end 17 passes through the collimation lens 25 and the condenser lens 27 in this order, and is emitted downward, for example, from the opening 29 at the end (lower end) of the nozzle 21. Then, the workpiece W installed in the workpiece installation unit 5 is irradiated and laser processing (piercing processing and cutting processing) is performed on the workpiece W. Note that the optical axis of the laser beam 9 emitted from the emission end 17 and applied to the workpiece W extends, for example, in the vertical direction.
 また、出射端17から出射されたレーザ光9は、コリメーションレンズ25を通過することでほぼ平行な光線に変換され、この後、集光レンズ27を通過することで収束光になる。 Further, the laser light 9 emitted from the emission end 17 is converted into a substantially parallel light beam by passing through the collimation lens 25, and then becomes convergent light by passing through the condenser lens 27.
 ワークWにレーザ加工がなされるとき、ノズル21内に供給されたアシストガス37がノズル21端の開口部29からワークWに向かって供給される(吹き付けられる)。 When laser processing is performed on the workpiece W, the assist gas 37 supplied into the nozzle 21 is supplied (sprayed) toward the workpiece W from the opening 29 at the end of the nozzle 21.
 集光レンズ27は、筐体23に一体的に設けられているが、コリメーションレンズ25は、集光レンズ27に対して、接近しもしくは離反する方向で移動位置決め自在になっている(筐体23に対して上下方向で移動位置決め自在になっている)。これによって、レーザ光9の焦点11の位置(上下方向におけるノズル21の下端と、焦点11との間の距離LZ)を変更(変更調節)することができる。 The condensing lens 27 is provided integrally with the housing 23, but the collimation lens 25 is movable and positionable in a direction approaching or separating from the condensing lens 27 (housing 23). It can be moved and positioned with respect to the vertical direction). Thereby, the position of the focal point 11 of the laser light 9 (the distance LZ between the lower end of the nozzle 21 and the focal point 11 in the vertical direction) can be changed (change adjustment).
 なお、コリメーションレンズ25を、筐体23に対して、上下方向で移動位置決め自在にすることに代えてもしくは加えて、集光レンズ27を、筐体23に対して、上下方向で移動位置決め自在にし、レーザ光9の焦点11の位置を変更(変更調節)するようにしてもよい。 In addition to or in addition to making the collimation lens 25 movable and positionable in the vertical direction with respect to the housing 23, the condenser lens 27 is made movable and positionable in the vertical direction with respect to the housing 23. The position of the focal point 11 of the laser light 9 may be changed (change adjustment).
 ワーク設置部5は、たとえば、レーザ加工ヘッド3の下側に設けられており、ワーク設置部5に設置(載置)された板状のワークWは、ワークWの厚さ方向が上下方向になっている。また、レーザ加工ヘッド3は、ワーク設置部5に設置されたワークWに対して、水平方向で相対的に移動位置決め自在になっているとともに、上下方向で移動位置決め自在になっており、ワーク設置部5に設置されたワークWとレーザ加工ヘッド3との間では、上下方向で所定の間隔があいている。 The workpiece setting unit 5 is provided, for example, on the lower side of the laser processing head 3, and the plate-like workpiece W installed (placed) on the workpiece setting unit 5 has a thickness direction of the workpiece W in the vertical direction. It has become. In addition, the laser processing head 3 can be moved and positioned relatively in the horizontal direction with respect to the workpiece W installed in the workpiece setting section 5, and can be moved and positioned in the vertical direction. A predetermined interval is provided in the vertical direction between the workpiece W installed in the section 5 and the laser processing head 3.
 なお、上記説明では、レーザ加工ヘッド3のコリメーションレンズ25や集光レンズ27の位置を変更して焦点11の位置を変更(変更調節)することにしているが、コリメーションレンズ25や集光レンズ27の位置を変更することに代えてもしくは加えて、ワーク設置部5に対するレーザ加工ヘッド3の高さ位置を変えることで、焦点11の位置を変更(変更調節)することにしてもよい。ワーク設置部5に対するレーザ加工ヘッド3の高さ位置を変えることのみで、焦点11の位置を変更する場合、レーザ加工ヘッド3のノズル21の下端と焦点11との間の距離(高さ方向の距離)LZは変化しないが、レーザ加工ヘッド3のノズル21の下端とワーク設置部5との間の距離は変化することになる。 In the above description, the position of the focal point 11 is changed (change adjustment) by changing the positions of the collimation lens 25 and the condensing lens 27 of the laser processing head 3, but the collimation lens 25 and the condensing lens 27 are changed. Instead of or in addition to changing the position, the position of the focal point 11 may be changed (change adjustment) by changing the height position of the laser processing head 3 with respect to the workpiece setting unit 5. When the position of the focal point 11 is changed only by changing the height position of the laser processing head 3 with respect to the workpiece setting unit 5, the distance (in the height direction) between the lower end of the nozzle 21 of the laser processing head 3 and the focal point 11 is changed. The distance LZ does not change, but the distance between the lower end of the nozzle 21 of the laser processing head 3 and the workpiece placement unit 5 changes.
 制御部7は、メモリ31と、CPU33とを備えて構成されており、メモリ31に予め格納されている動作プログラムによって、レーザ加工ヘッド3から出射されるレーザ光9の焦点11の位置を適宜変更する等、レーザ加工装置1の動作を制御する。 The control unit 7 includes a memory 31 and a CPU 33, and appropriately changes the position of the focal point 11 of the laser light 9 emitted from the laser processing head 3 according to an operation program stored in advance in the memory 31. For example, the operation of the laser processing apparatus 1 is controlled.
 すなわち、制御部7は、ワークWに切断加工をする場合、レーザ加工ヘッド3を制御することによって、レーザ加工ヘッド3から出射されるレーザ光9の焦点11の位置を、ワークWの板厚方向(たとえば、上下方向)で、ワークWの中心(板厚中心)CLと、レーザ光の光軸の延伸方向であってレーザ光の進行方向後側のワークWの端面(レーザ加工ヘッド3とは反対側の端面;下面)WUとの間に位置させる。ここでレーザ光の進行方向後側のワークの端面とは、レーザ光がワークを貫通しワークから出射する側のワークの端面を意味する。 That is, when cutting the workpiece W, the control unit 7 controls the laser machining head 3 to change the position of the focal point 11 of the laser beam 9 emitted from the laser machining head 3 in the thickness direction of the workpiece W. (For example, in the vertical direction) the center (plate thickness center) CL of the workpiece W and the end surface (the laser processing head 3) of the workpiece W in the extending direction of the optical axis of the laser beam and on the rear side in the laser beam traveling direction. Opposite end face; bottom face) Located between WU. Here, the end surface of the work on the rear side in the traveling direction of the laser light means the end surface of the work on the side where the laser light passes through the work and is emitted from the work.
 なお、上記制御において、レーザ光9の焦点11の位置を、ワークWの中心CLと一致させてもよいが、ワークWの下面WUよりも上方にすることが望ましい。 In the above control, the position of the focal point 11 of the laser light 9 may be coincident with the center CL of the workpiece W, but it is desirable that the position is higher than the lower surface WU of the workpiece W.
 また、制御部7は、切断加工を行う前にレーザ光9を用いてワークWにピアス加工を行う場合、レーザ加工ヘッド3から出射されるレーザ光9の焦点11の位置を、ワークWの板厚方向(上下方向)で、ワークWの中心CLと、レーザ光9の光軸方向であってレーザ光9の進行方向前側におけるワークWの端面(上面)との間、もしくは、レーザ光9の光軸方向であってレーザ光9の進行方向前側におけるワークの端面(上面)と、この上面の近傍であって上面から僅かに離れた箇所との間に位置させるように、レーザ加工ヘッド3を制御する。ここでレーザ光の進行方向前側におけるワークの端面とは、レーザ光がワークに入射する側のワークの端面を意味する。 In addition, when the control unit 7 performs piercing on the workpiece W using the laser beam 9 before cutting, the control unit 7 determines the position of the focal point 11 of the laser beam 9 emitted from the laser processing head 3 as the plate of the workpiece W. In the thickness direction (vertical direction), between the center CL of the workpiece W and the end surface (upper surface) of the workpiece W in the optical axis direction of the laser beam 9 and in the forward direction of the laser beam 9, or the laser beam 9 The laser processing head 3 is positioned so as to be positioned between the end surface (upper surface) of the workpiece in the optical axis direction and the front side of the traveling direction of the laser light 9 and a location near the upper surface and slightly away from the upper surface. Control. Here, the end face of the workpiece on the front side in the traveling direction of the laser beam means the end surface of the workpiece on the side where the laser beam enters the workpiece.
 ここで、図2を参照して、インフォーカスエリアと、ディフォーカスエリアについて説明すると、集光レンズ27を通過したレーザ光9の焦点11よりも上方(レーザ加工ヘッド3側)が、インフォーカスエリアであり、焦点11よりも下方(レーザ加工ヘッド3とは反対側)が、ディフォーカスエリアになる。 Here, the in-focus area and the de-focus area will be described with reference to FIG. 2. The in-focus area is located above the focal point 11 of the laser light 9 that has passed through the condenser lens 27 (on the laser processing head 3 side). The area below the focal point 11 (on the side opposite to the laser processing head 3) is the defocus area.
 なお、図6(a)では、焦点11がワークWの上面に位置しているので、ディフォーカスエリアで、ワークWに切断加工がなされる。図6(b)では、焦点11がワークWの中心(厚さ方向で中央に位置している平面)CLに位置しているので、中心CLよりも上側では、インフォーカスエリアでワークWに切断加工がなされ、中心CLよりも下側では、ディフォーカスエリアでワークWに切断加工がなされる。 In FIG. 6A, since the focal point 11 is positioned on the upper surface of the workpiece W, the workpiece W is cut in the defocus area. In FIG. 6B, since the focal point 11 is located at the center CL of the workpiece W (a plane located at the center in the thickness direction) CL, the workpiece 11 is cut into the workpiece W in the in-focus area above the center CL. Machining is performed, and the work W is cut in the defocus area below the center CL.
 ワークWのレーザ加工では、レーザ光9でワークWにピアス加工を行った後、ピアス加工で形成された貫通孔を起点として、ワークWをレーザ加工ヘッド3に対して相対的に移動することで、ワークWにレーザ光9で切断加工がなされ、ワークWから所定形状の製品や半製品が切り出される。 In the laser processing of the workpiece W, the workpiece W is pierced with the laser beam 9 and then moved relative to the laser processing head 3 starting from the through hole formed by the piercing processing. The workpiece W is cut with the laser light 9, and a product or semi-finished product having a predetermined shape is cut out from the workpiece W.
 ワークWは、たとえば、軟鋼で構成されている。ワークWにレーザ加工をするときには、ほぼ酸素で構成されているアシストガス37を、ノズル(小径ノズル)21からワークWに向かって吹き付けるように構成されている。 Work W is made of, for example, mild steel. When laser processing is performed on the workpiece W, an assist gas 37 composed of substantially oxygen is blown from the nozzle (small diameter nozzle) 21 toward the workpiece W.
 このとき、ワークWにレーザ加工(ピアス加工や切断加工)をするときに、酸化反応が広い範囲で起きることによるワークWでのセルフバーニングの発生を抑えるために、小径ノズル21の内径は、0.6mm以上であってワークWの板厚の15%以下の値になっている。なお、ワークWの板厚は、レーザ加工の被加工物としては厚板になっており、たとえば、6mm~18mm(4mm~22mmでもよい。)の範囲内になっている。 At this time, when performing laser processing (piercing processing or cutting processing) on the workpiece W, the inner diameter of the small-diameter nozzle 21 is 0 in order to suppress the occurrence of self-burning in the workpiece W due to an oxidation reaction occurring in a wide range. .6 mm or more and 15% or less of the thickness of the workpiece W. Note that the plate thickness of the workpiece W is a thick plate as a workpiece to be processed by laser processing, and is, for example, in the range of 6 mm to 18 mm (may be 4 mm to 22 mm).
 小径ノズル21の中央には、円錐台状の貫通孔35が形成されており、円錐台状の貫通孔35の小径な端(円錐台では小径な上面;開口部29)がワークW側(下側)に位置し、円錐台状の貫通孔35の大径な端(円錐台では大径な下面)がワークWとは反対側(上側)に位置している。そして、レーザ光9の光軸と円錐台状の貫通孔35の中心軸とがお互いに一致するようにして(上下方向に延伸するようにして)、レーザ光9が、ノズル21の円錐台状の貫通孔35内を通り、円錐台状の貫通孔35の小径な開口部29からワークWに向かって出射される。 A frustoconical through-hole 35 is formed in the center of the small-diameter nozzle 21, and the small-diameter end of the frustoconical through-hole 35 (the upper surface having a small diameter on the truncated cone; the opening 29) is on the workpiece W side (lower side). The large-diameter end of the frustoconical through hole 35 (the large-diameter lower surface of the truncated cone) is located on the opposite side (upper side) of the workpiece W. The laser beam 9 is shaped like a truncated cone of the nozzle 21 so that the optical axis of the laser beam 9 and the central axis of the frustoconical through hole 35 coincide with each other (extend in the vertical direction). The through-hole 35 is emitted from the small-diameter opening 29 of the truncated cone-shaped through-hole 35 toward the workpiece W.
 小径ノズル21の内径(開口径)とは、円錐台状の貫通孔35の小径な端(開口部29)における貫通孔35の内径である。小径ノズル21に供給されたアシストガス37は、円錐台状の貫通孔35の円形状の開口部29からワークWに向かって下方に吹き出す。 The inner diameter (opening diameter) of the small-diameter nozzle 21 is the inner diameter of the through-hole 35 at the small-diameter end (opening 29) of the frustoconical through-hole 35. The assist gas 37 supplied to the small-diameter nozzle 21 is blown downward toward the workpiece W from the circular opening 29 of the frustoconical through hole 35.
 なお、小径ノズル21の貫通孔35が円錐台状に形成されていることで、小径ノズル21の貫通孔35が下側に向かう(ワークWに近づく)にしたがって徐々に絞まっており、アシストガス37から吹き出すガス流が、たとえば、下方に流れ、外側(ワークWの上面)に拡散しにくい構造になっており、ワークWの上面におけるガス流の直径がワークWに形成されるカーフ幅よりも小さくなっている。 Since the through hole 35 of the small diameter nozzle 21 is formed in a truncated cone shape, the through hole 35 of the small diameter nozzle 21 is gradually throttled downward (approaching the workpiece W), and the assist gas 37 The gas flow blown out from, for example, flows downward and is difficult to diffuse outside (the upper surface of the workpiece W), and the diameter of the gas flow on the upper surface of the workpiece W is smaller than the kerf width formed on the workpiece W. It has become.
 アシストガス37の供給量は、ワークWの厚さによって、適宜変えることができるように構成されている。また、アシストガス37の圧力(小径ノズル21へのアシストガス37の供給圧力であってもよいし、小径ノズル21の開口部29におけるアシストガス37の圧力であってもよい)は、ゲージ圧で、0.05MPa~0.10MPaになっている。 The supply amount of the assist gas 37 can be changed as appropriate according to the thickness of the workpiece W. Moreover, the pressure of the assist gas 37 (the supply pressure of the assist gas 37 to the small-diameter nozzle 21 or the pressure of the assist gas 37 in the opening 29 of the small-diameter nozzle 21) may be a gauge pressure. 0.05 MPa to 0.10 MPa.
 ワークWの材質としては、軟鋼以外のものとして、鉄もしくは炭素鋼もしくは鉄合金、もしくは酸化反応によって発熱し、この発熱によってピアス加工や切断加工が促進される材料、を掲げることができる。 As the material of the work W, iron, carbon steel, an iron alloy, or a material that generates heat by an oxidation reaction and promotes piercing or cutting by other than mild steel can be listed.
 また、酸化反応が広い範囲で起きることによるワークWでのセルフバーニングの発生を抑えるために、ワークWにレーザ加工(たとえば切断加工)をするときに、アシストガス37を、レーザ加工(たとえば切断加工)で形成される孔や溝の内部に吹き付けるように構成されていてもよい。 Further, in order to suppress the occurrence of self-burning in the workpiece W due to the occurrence of the oxidation reaction in a wide range, when laser processing (for example, cutting processing) is performed on the workpiece W, the assist gas 37 is used for laser processing (for example, cutting processing). ) May be configured to be sprayed into the hole or groove formed.
 さらには、ワークWにレーザ加工を行うときに、アシストガス37をレーザ加工で形成される孔や溝の内部(孔や溝の側面;レーザ加工による切断面)に吹き付けることで、ワークWの表面(上面)にはアシストガス37を直接吹き付けないようにしてもよい(小径ノズル21から吹き出されたアシストガス37がワークWの表面に直接到達しないようにしてもよい)。 Furthermore, when laser processing is performed on the workpiece W, the surface of the workpiece W is sprayed by spraying the assist gas 37 on the inside of the holes and grooves formed by the laser processing (side surfaces of the holes and grooves; cut surfaces by laser processing). The assist gas 37 may not be directly blown onto the (upper surface) (the assist gas 37 blown from the small diameter nozzle 21 may not directly reach the surface of the workpiece W).
 ところで、小径ノズル21としてラバールノズルを採用し、ワークWにレーザ加工を行うときに、アシストガス37を超音速で、レーザ加工で形成される孔や溝の内部に吹き付けるようにしてもよい。 By the way, when a Laval nozzle is adopted as the small diameter nozzle 21 and the workpiece W is subjected to laser machining, the assist gas 37 may be blown into a hole or groove formed by laser machining at supersonic speed.
 次に、レーザ加工装置1の動作について説明する。 Next, the operation of the laser processing apparatus 1 will be described.
 初期状態として、ワーク設置部5にワークWが載置されており、ワーク設置部5に載置されているワークWに対して所定の位置(レーザ加工開始位置)にレーザ加工ヘッド3が位置しているものとする。 As an initial state, the workpiece W is placed on the workpiece placement unit 5, and the laser machining head 3 is positioned at a predetermined position (laser machining start position) with respect to the workpiece W placed on the workpiece placement unit 5. It shall be.
 上記初期状態において、レーザ加工ヘッド3からワークWに向けてレーザ光9を照射するとともに、アシストガス(酸素)37を吹き付けて、ワークWにレーザ加工(ピアス加工)を行う。このとき、レーザ光9の焦点(集光点)11は、ワークWの板厚方向(上下方向)で、ワークWの上面とワークWの中心CLとの間に位置しているが、レーザ光9の焦点(集光点)11を、ワークWの上面よりも上方であってワークWの上面近傍に位置(ワークWを溶融等させることができるエネルギー密度を得ることができる位置)させてもよいし、さらに、レーザ光9の焦点(集光点)11を、ワークWの板厚方向(上下方向)で、ワークWの中心CLとワークWの下面WUとの間に位置させてもよい。 In the initial state, the laser beam 9 is irradiated from the laser processing head 3 toward the workpiece W, and the assist gas (oxygen) 37 is blown to perform laser processing (piercing processing) on the workpiece W. At this time, the focal point (condensing point) 11 of the laser beam 9 is positioned between the upper surface of the workpiece W and the center CL of the workpiece W in the plate thickness direction (vertical direction) of the workpiece W. 9 (focusing point) 11 is located above the upper surface of the workpiece W and in the vicinity of the upper surface of the workpiece W (a position where an energy density capable of melting the workpiece W can be obtained). Further, the focal point (condensing point) 11 of the laser beam 9 may be positioned between the center CL of the workpiece W and the lower surface WU of the workpiece W in the plate thickness direction (vertical direction) of the workpiece W. .
 ワークWにピアス加工を行った後、ピアス加工で形成された貫通孔を起点として、ワークWをレーザ加工ヘッド3に対して相対的に移動することで、ワークWに切断加工をし、ワークWから所定形状の製品や半製品を切り出す。このときも、レーザ光9の焦点11は、ワークWの板厚方向(上下方向)で、ワークWの中心CLとワークWの下面WUとの間に位置している。 After the workpiece W is pierced, the workpiece W is cut relative to the laser machining head 3 with the through-hole formed by the piercing as a starting point, so that the workpiece W is cut and processed. Cut out products and semi-finished products from the shape. Also at this time, the focal point 11 of the laser light 9 is located between the center CL of the workpiece W and the lower surface WU of the workpiece W in the plate thickness direction (vertical direction) of the workpiece W.
 なお、ワークWの端から切断加工を開始する等の場合には、ワークWにピアス加工を行うことなく、切断加工を行う場合もある。 In addition, when the cutting process is started from the end of the workpiece W, the cutting process may be performed without piercing the workpiece W.
 また、ワークWにレーザ光9を照射することで、ワークWが溶融するとともに、アシストガス37を噴射することで、溶融した金属を除去する。また、アシストガス37として酸素を用いることで、酸化反応熱が発生し、レーザ出力だけでは切断が困難な厚いワーク(厚さが6mm~18mm程度のワーク)Wの加工も可能になる。 Further, the workpiece W is melted by irradiating the workpiece W with the laser light 9 and the melted metal is removed by injecting the assist gas 37. Further, by using oxygen as the assist gas 37, it is possible to process a thick workpiece (a workpiece having a thickness of about 6 mm to 18 mm) W that generates heat of oxidation reaction and is difficult to cut with only laser output.
 レーザ加工装置1によれば、レーザ光9の焦点11の位置を、ワークWの板厚方向で、ワークWの中心CLとワークWの下面WUとの間に位置させるので、切断加工による切断面からワークWへの入熱が減少し、ワークWでのセルフバーニングの発生が抑制され、安定した品質でのワークWの切断を行うことができる。 According to the laser processing apparatus 1, the position of the focal point 11 of the laser light 9 is positioned between the center CL of the workpiece W and the lower surface WU of the workpiece W in the plate thickness direction of the workpiece W. Therefore, the heat input to the workpiece W is reduced, the occurrence of self-burning in the workpiece W is suppressed, and the workpiece W can be cut with stable quality.
 図3を参照してより詳しく説明する。図3(a)では上述した動作に対応する態様を示しており、図3(a)では、レーザ光9の焦点11がワークWの下端部側に位置している。図3(b)で示す態様は比較例を示しており、図3(b)では、レーザ光9の焦点11がワークWの上面の上方に位置している。図3に破線L1で示しているものは、レーザ光9の波面である。 This will be described in more detail with reference to FIG. FIG. 3A shows an aspect corresponding to the above-described operation. In FIG. 3A, the focal point 11 of the laser light 9 is located on the lower end side of the workpiece W. The mode shown in FIG. 3B shows a comparative example. In FIG. 3B, the focal point 11 of the laser light 9 is located above the upper surface of the workpiece W. What is indicated by a broken line L <b> 1 in FIG. 3 is the wavefront of the laser light 9.
 図3(a)では、ワークWのところでレーザ光9の波面L1が下向きに狭まっている(上方に凸になっている;波面L1が球面の一部で形成されており、この球面の中心が波面L1よりも下側に位置している)。これにより、レーザ光9の波面L1における成分(レーザ光9の進行方向のベクトルの成分)42を、X方向(水平方向;ワークWに形成される孔や溝の側面39に対して直交する方向)と、Z方向(上下方向)とに分解すると、X方向の成分41が内向きになり、レーザ光9の多重反射が起こりにくくなり、側面(切断面)39への入熱量が減少し、セルフバーニングの発生が抑制される。なお、Z方向の成分43は、上から下に向かっている。 In FIG. 3A, the wavefront L1 of the laser beam 9 narrows downward at the workpiece W (convex upwards; the wavefront L1 is formed by a part of a spherical surface, and the center of this spherical surface is It is located below the wavefront L1). Thereby, the component (vector component in the traveling direction of the laser beam 9) 42 at the wavefront L1 of the laser beam 9 is orthogonal to the X direction (horizontal direction; side surface 39 of the hole or groove formed in the workpiece W). ) And the Z direction (vertical direction), the X-direction component 41 becomes inward, multiple reflection of the laser light 9 hardly occurs, and the amount of heat input to the side surface (cut surface) 39 decreases. The occurrence of self-burning is suppressed. The component 43 in the Z direction is from top to bottom.
 これに対して、図3(b)では、ワークWのところでレーザ光9の波面L1が下向きに広がっている(下方に凸になっている;波面L1が球面の一部で形成されており、この球面の中心が波面L1よりも上側に位置している)。これにより、レーザ光9の波面L1における成分42を、X方向とZ方向とに分解すると、X方向の成分41が外向きになり、レーザ光9の多重反射が起こりやすくなり、側面(切断面)39への入熱量が増え、セルフバーニングは発生しやすくなる。 On the other hand, in FIG. 3B, the wavefront L1 of the laser light 9 spreads downward at the workpiece W (projects downward; the wavefront L1 is formed as a part of a spherical surface, The center of this spherical surface is located above the wavefront L1). Thereby, when the component 42 in the wavefront L1 of the laser beam 9 is decomposed into the X direction and the Z direction, the component 41 in the X direction becomes outward, and multiple reflection of the laser beam 9 is likely to occur. ) The amount of heat input to 39 increases, and self-burning tends to occur.
 また、レーザ加工装置1によれば、小径ノズル21からワークWに向かって吹き付けられるアシストガス37を用いてレーザ加工がなされるので、酸素が作用する範囲を狭くすることができ、ワークWでの酸化反応がおこる範囲が広がることが抑制され、過剰な入熱によって発生するセルフバーニングを、レーザ光9の焦点11の位置をワークWの板厚方向で下方にしたこととの相乗効果によって一層抑制することができる。 Moreover, according to the laser processing apparatus 1, since the laser processing is performed using the assist gas 37 sprayed from the small diameter nozzle 21 toward the workpiece W, the range in which oxygen acts can be narrowed. It is suppressed that the range where the oxidation reaction occurs is suppressed, and self-burning generated due to excessive heat input is further suppressed by a synergistic effect with the position of the focal point 11 of the laser light 9 being lowered in the thickness direction of the workpiece W. can do.
 また、レーザ加工装置1によれば、ワークWにレーザ加工をするときに、アシストガス37をレーザ加工で形成される孔や溝の内部に吹き付けるので、酸素が作用する範囲を狭くすることができ、ワークWでの酸化反応がおこる範囲が広がることが抑制され、過剰な入熱によって発生するセルフバーニングを一層抑制することができる。 Further, according to the laser processing apparatus 1, when the workpiece W is laser processed, the assist gas 37 is blown into the holes and grooves formed by the laser processing, so that the range in which oxygen acts can be narrowed. Further, it is possible to suppress the range in which the oxidation reaction occurs in the workpiece W from being widened, and to further suppress self-burning that occurs due to excessive heat input.
 また、レーザ加工装置1によれば、レーザ光9の焦点11の位置を、ワークWの板厚方向で、ワークWの中心CLとワークWの下面WUとの間に位置させるので、ワークWの上面(表面)におけるエネルギー密度が小さくなり、ワークWの上面での酸化作用が発生が抑制され、ワークWでのセルフバーニングの発生が抑制される。 Further, according to the laser processing apparatus 1, the position of the focal point 11 of the laser light 9 is positioned between the center CL of the workpiece W and the lower surface WU of the workpiece W in the thickness direction of the workpiece W. The energy density on the upper surface (surface) is reduced, the oxidation action on the upper surface of the workpiece W is suppressed, and the occurrence of self-burning on the workpiece W is suppressed.
 図4を参照してより詳しく説明する。図4(a)では、従来の態様を示しており、図4(b)では、レーザ加工装置1での態様を示している。 This will be described in more detail with reference to FIG. FIG. 4A shows a conventional mode, and FIG. 4B shows a mode in the laser processing apparatus 1.
 図4(a)で示す態様では、小径ノズル21を用いていてもワークWと小径ノズル21との間隔が大きいことで、アシストガス37が作用する領域が広くなり、酸化反応が広範囲でおきてしまい、セルフバーニングが発生しやすくなってしまう。これに対して、図4(b)で示す態様では、小径ノズル21を用いるとともに、ワークWと小径ノズル21との間隔が小さくなっていることで、アシストガス37が作用する範囲が狭くなり、酸化反応が作用する範囲が小さくなり、酸化反応が広がることが抑制され、ワークWへの過剰な入熱によって発生するセルフバーニングを防ぐことができる。 In the embodiment shown in FIG. 4 (a), even if the small diameter nozzle 21 is used, the area where the assist gas 37 acts is widened because the distance between the workpiece W and the small diameter nozzle 21 is large, and the oxidation reaction occurs over a wide range. As a result, self-burning is likely to occur. On the other hand, in the mode shown in FIG. 4B, the small gas nozzle 21 is used and the distance between the workpiece W and the small nozzle 21 is reduced, so that the range in which the assist gas 37 acts is narrowed. The range in which the oxidation reaction acts is reduced, the expansion of the oxidation reaction is suppressed, and self-burning that occurs due to excessive heat input to the workpiece W can be prevented.
 ここで、実際にワークWを切断加工した結果を示す。 Here, the result of actually cutting the workpiece W is shown.
 図7(a)は、厚さ12mmの板状のワークW(軟鋼;SS400)を切断加工した場合における焦点位置(ワークWの上面と焦点11との間の距離)と、集光径(ワークWの上面でのレーザ光9の直径)と、加工の可否(○;可、×;不可)とを示している。なお、焦点位置は、ワークWの上面から上方へ向かう場合を「+」とし、ワークWの上面から下方へ向かう方向を「-」としている。 FIG. 7A shows a focal position (distance between the upper surface of the workpiece W and the focal point 11) and a focused diameter (workpiece) when a plate-shaped workpiece W (soft steel; SS400) having a thickness of 12 mm is cut. The diameter of the laser beam 9 on the upper surface of W) and whether or not processing is possible (O; acceptable, x; impossible) are shown. The focal position is “+” when moving upward from the upper surface of the workpiece W, and “−” when moving downward from the upper surface of the workpiece W.
 焦点位置が-5mmであるとき(焦点位置がワークWの上面から5mmだけ下に下がったところに位置しているとき)には、集光径は、0.463mmであり、加工の状況は不可である。 When the focal position is -5 mm (when the focal position is located 5 mm below the upper surface of the workpiece W), the condensing diameter is 0.463 mm, and the processing status is impossible. It is.
 焦点位置が-6mmであるとき(焦点位置が厚さ12mmのワークWの上面から6mmだけ下に下がったところに位置しているとき;焦点位置がワークWの厚さ方向中央に位置しているとき)には、集光径は、0.540mmであり、加工の状況は可である。 When the focal position is −6 mm (when the focal position is located 6 mm below the top surface of the workpiece W having a thickness of 12 mm; the focal position is located at the center of the workpiece W in the thickness direction). )), The condensing diameter is 0.540 mm, and the processing situation is acceptable.
 同様にして、焦点11の位置が-7mm、-8mm、-9mm、-10mm、-11mmであるときにも、集光径は、それぞれ、0.613mm、0.677mm、0.751mm、0.817mm、0.916mmであり、加工の状況は可である。 Similarly, when the position of the focal point 11 is −7 mm, −8 mm, −9 mm, −10 mm, and −11 mm, the condensed light diameters are 0.613 mm, 0.677 mm, 0.751 mm,. They are 817 mm and 0.916 mm, and the processing status is acceptable.
 なお、焦点位置が-12mmであるとき(焦点位置がワークWの下面WUのところに位置しているとき)には、集光径は、0.987mmであり、加工の状況は不可である。 When the focal position is −12 mm (when the focal position is located at the lower surface WU of the workpiece W), the condensing diameter is 0.987 mm, and the processing situation is impossible.
 図7(b)は、加工が可である場合における、ワークWの側面(切断加工された面)39の態様を示している。図7(b)では、ワークWの側面39を示す6つの写真が掲載されているが、上から順に、焦点位置を-6mm、-7mm、-8mm、-9mm、-10mm、-11mmとして切断加工した場合を示している。 FIG. 7B shows a state of the side surface (cut surface) 39 of the workpiece W when the processing is possible. In FIG. 7 (b), six photographs showing the side surface 39 of the workpiece W are shown, but in order from the top, the focal positions are cut at −6 mm, −7 mm, −8 mm, −9 mm, −10 mm, and −11 mm. The case where it processed is shown.
 さらに説明すると、焦点11の位置が-6mmの付近もしくはその下方にあるときに、12mmの厚さのワークWを切断加工するのに適正な集光径を得ている。焦点11の位置が-6mmよりも高い位置にあると、加工精度が悪くなる。焦点11の位置が-12mm付近では、エネルギー密度の低下と、切断集光径限界から切断加工の加工精度が悪くなり、実用に耐えない。 More specifically, when the position of the focal point 11 is in the vicinity of -6 mm or below, the converging diameter appropriate for cutting the workpiece W having a thickness of 12 mm is obtained. When the position of the focal point 11 is higher than −6 mm, the processing accuracy is deteriorated. When the position of the focal point 11 is in the vicinity of −12 mm, the processing accuracy of the cutting process deteriorates due to the decrease in energy density and the limit of the condensing diameter of the cutting, which is not practical.
 図8(a)は、厚さ12mmの板状のワークW(軟鋼;SS400)に切断加工をする場合の形状を示しており、ワークWをこの厚さ方向から見た状態を示している。図8(a)に示す切断加工では、ワークWから直角三角形状の製品もしくは半製品を切り出している。 FIG. 8 (a) shows a shape when cutting a plate-like workpiece W (soft steel; SS400) having a thickness of 12 mm, and shows a state in which the workpiece W is viewed from this thickness direction. In the cutting process shown in FIG. 8 (a), a right triangle product or semi-finished product is cut out from the workpiece W.
 図8(b)は、ディフォーカスエリア(焦点11をワークWのワーク中心よりも上方に位置させた状態)でワークWに図8(a)で示す態様の切断加工をした場合と、インフォーカスエリア(焦点11をワークWの中心CLを含みワークWの中心CLよりも下方であって、ワークWの下面WUよりも上方に位置させた状態)でワークWに図8(a)で示す態様の切断加工をした場合とにおけるセルフバーニング発生の有無を示している。 FIG. 8B shows a case where the workpiece W is cut in the mode shown in FIG. 8A in the defocus area (the state where the focal point 11 is positioned above the workpiece center of the workpiece W), and in-focus. A mode shown in FIG. 8A on the workpiece W in an area (a state in which the focal point 11 includes the center CL of the workpiece W and is located below the center CL of the workpiece W and above the lower surface WU of the workpiece W). The presence or absence of the occurrence of self-burning in the case where the cutting process is performed is shown.
 図8(b)から理解されるように、ディフォーカスエリアで切断加工した場合には、10個の半製品もしくは製品総てについてセルフバーニングが発生しているが、インフォーカスエリアで切断加工した場合には、10個の半製品もしくは製品総てについてセルフバーニングが発生していない。 As can be understood from FIG. 8B, when cutting is performed in the defocus area, self-burning has occurred in 10 semi-finished products or all products, but when cutting is performed in the in-focus area. No self-burning has occurred for 10 semi-finished products or all of the products.
 図8(b)の結果について写真を用いてさらに説明する。図9(a)では、1枚のワークWから10個の製品もしくは半製品をディフォーカスエリアでの切断加工で切り出している。図9(a)で示す10個の製品もしくは半製品の総てにおいてセルフバーニングが発生している。 The result of FIG. 8B will be further described using photographs. In FIG. 9A, ten products or semi-finished products are cut out from one workpiece W by cutting in the defocus area. Self-burning occurs in all 10 products or semi-finished products shown in FIG.
 図9(a)にコブのように写っている箇所がセルフバーニングの発生した箇所である。図9(b)は、図9(a)で示した10個の製品もしくは半製品のうちの1個を拡大したものであり、図9(c)は図9(b)で示した製品もしくは半製品における溶け落ちを示している。図9(c)では三角形の斜辺の一部が凹状にへこんでいるが、この箇所がセルフバーニングの発生した箇所である。 In FIG. 9 (a), a portion that looks like a bump is a portion where self-burning has occurred. FIG. 9B is an enlarged view of one of the 10 products or semi-finished products shown in FIG. 9A, and FIG. 9C shows the product shown in FIG. Shows burn-out in semi-finished products. In FIG. 9 (c), a part of the hypotenuse of the triangle is recessed in a concave shape, and this part is a part where self-burning occurs.
 図10(a)でも、1枚のワークWから10個の製品もしくは半製品をインフォーカスエリアでの切断加工で切り出している。図10(a)で示す10個の製品もしくは半製品の総てにおいてセルフバーニングが発生していない。図10(b)は、図10(a)で示した10個の製品もしくは半製品のうちの1個を拡大したものである。 10A, 10 products or semi-finished products are cut out from one workpiece W by cutting in the in-focus area. Self-burning does not occur in all of the ten products or semi-finished products shown in FIG. FIG. 10B is an enlarged view of one of the ten products or semi-finished products shown in FIG.
 次に、切断加工をするときにおけるレーザ加工ヘッド3のレーザ出力と、送り速度(ワーク設置部5に設置されたワークWに対するレーザ加工ヘッド3の水平方向での移動速度)との関係を示す。図11で示す四角形内の領域45が、ワークWに切断加工を行う場合の適正な領域である。 Next, the relationship between the laser output of the laser processing head 3 at the time of cutting and the feed speed (the moving speed of the laser processing head 3 in the horizontal direction with respect to the workpiece W installed in the workpiece installation unit 5) will be shown. A region 45 in the quadrangle shown in FIG. 11 is an appropriate region when the workpiece W is cut.
 なお、レーザ加工(ピアス加工や切断加工)の対象となるワークWは、厚さ12mmのSS400であり、レーザ加工時には、アシストガス(O2)37を0.07MPaでワークWに吹き付けている。 Note that the workpiece W to be subjected to laser processing (piercing processing and cutting processing) is SS400 having a thickness of 12 mm, and the assist gas (O2) 37 is blown onto the workpiece W at 0.07 MPa during laser processing.
 レーザの出力が4KWである場合、最大の送り速度は1700mm/minであり、最小の送り速度は1400mm/minである。レーザの出力を変更しないで送り速度のみを変更(変更調節)した場合、送り速度が速すぎると切断が十分になされない。また、レーザの出力を変更しないで送り速度のみを変更(変更調節)した場合、送り速度が遅すぎると過燃焼になり加工面が荒れるので、送り速度の最小値は、送り速度の最大値の80%程度になる。 When the laser output is 4 KW, the maximum feed rate is 1700 mm / min, and the minimum feed rate is 1400 mm / min. When only the feed rate is changed (change adjustment) without changing the laser output, cutting is not sufficiently performed if the feed rate is too fast. In addition, if only the feed rate is changed (change adjustment) without changing the laser output, if the feed rate is too slow, over-combustion will occur and the machined surface will be rough, so the minimum feed rate will be the maximum feed rate. It becomes about 80%.
 なお、レーザの出力が2KWである場合、最大の送り速度は850mm/min程度であり、最小の送り速度は700mm/min程度である。 When the laser output is 2 KW, the maximum feed rate is about 850 mm / min, and the minimum feed rate is about 700 mm / min.
 図12は、ワークW(厚さ12mmのSS400)に、アシストガス(O2)37を0.07MPaで吹き付け、レーザの出力を4KWとし、送り速度を1400mm/min(F1400)もしくは1700mm/min(F1700)として加工した場合の加工面の状態を示している。 FIG. 12 shows that assist gas (O2) 37 is blown onto a workpiece W (SS400 with a thickness of 12 mm) at 0.07 MPa, the laser output is 4 kW, and the feed rate is 1400 mm / min (F1400) or 1700 mm / min (F1700). ) Shows the state of the processed surface when processed.
 図12に示す「Fp-6」、「Fp-7」等は、ワークWに切断加工をする場合における焦点11の位置を示しており、「Fp-6」は、上下方向(ワークWの厚さ方向)におけるワークWの上面と焦点11との距離が6mmであることを示している。図12に示す状態では、いずれも良好な切断加工がなされている。 “Fp-6”, “Fp-7” and the like shown in FIG. 12 indicate the position of the focal point 11 when cutting the workpiece W, and “Fp-6” indicates the vertical direction (the thickness of the workpiece W). This indicates that the distance between the upper surface of the workpiece W and the focal point 11 is 6 mm. In the state shown in FIG. 12, good cutting is performed in all cases.
 なお、上記実施形態に係る発明を次に示す方法の発明として把握してもよい。 In addition, you may grasp | ascertain the invention which concerns on the said embodiment as invention of the method shown next.
 すなわち、波長が1μm帯であるレーザ光9を用いて、板状のワークWに切断加工を行うレーザ加工方法であって、ワークWの切断加工をする際のレーザ光9の焦点11の位置を、ワークWの板厚方向で、ワークWの中心CLと、レーザ光9の光軸方向であってレーザ光9の進行方向後側におけるワークWの端面WUとの間に位置させることと、焦点11の位置に焦点を有するレーザ光9を用いて、ワークWの切断加工を行うことと、を含むレーザ加工方法として把握してもよい。 That is, it is a laser processing method for cutting a plate-shaped workpiece W using the laser beam 9 having a wavelength of 1 μm, and the position of the focal point 11 of the laser beam 9 when cutting the workpiece W is determined. Locating between the center CL of the workpiece W in the thickness direction of the workpiece W and the end surface WU of the workpiece W on the rear side in the traveling direction of the laser beam 9 in the optical axis direction of the laser beam 9; It may be grasped as a laser processing method including cutting the workpiece W using the laser beam 9 having a focal point at the position 11.
 また、レーザ加工方法では、ワークWは、厚板であり、鉄もしくは鋼もしくは鉄合金もしくは酸化反応によって発熱する材料で構成されており、ワークWでの切断加工は、酸素を含み小径ノズル21からワークWに向かって吹き付けられるアシストガス37を用いてなされるようになっており、ワークWに切断加工をするときワークWでのセルフバーニングの発生を抑えるために、小径ノズル21の内径は、0.6mm以上であってワークWの板厚の15%以下の値になっている。 In the laser processing method, the workpiece W is a thick plate and is made of iron, steel, an iron alloy, or a material that generates heat by an oxidation reaction, and the workpiece W is cut from the small diameter nozzle 21 containing oxygen. An assist gas 37 blown toward the workpiece W is used. In order to suppress the occurrence of self-burning in the workpiece W when cutting the workpiece W, the inner diameter of the small diameter nozzle 21 is 0. .6 mm or more and 15% or less of the thickness of the workpiece W.
 または、レーザ加工方法では、ワークWは、厚板であり、鉄もしくは鋼もしくは鉄合金もしくは酸化反応によって発熱する材料で構成されており、ワークWでの切断加工は、酸素を含み小径ノズル21からワークWに向かって吹き付けられるアシストガス37を用いてなされるようになっており、ワークWに切断加工をするときワークWでのセルフバーニングの発生を抑えるために、ワークWに切断加工をするときに、アシストガス37を切断加工で形成される孔や溝の内部に吹き付けるようにしている。 Alternatively, in the laser processing method, the workpiece W is a thick plate and is made of iron, steel, an iron alloy, or a material that generates heat by an oxidation reaction, and the workpiece W is cut from the small diameter nozzle 21 containing oxygen. When using the assist gas 37 blown toward the workpiece W, when cutting the workpiece W, when cutting the workpiece W in order to suppress the occurrence of self-burning in the workpiece W In addition, the assist gas 37 is blown into the holes and grooves formed by the cutting process.
 また、レーザ加工方法では、切断加工を行う前にレーザ光9を用いてワークWにピアス加工を行う場合、ピアス加工をするときのレーザ光9の焦点11の位置を、ワークWの板厚方向で、ワークWの中心CLと、レーザ光9の光軸方向であってレーザ光9の進行方向前側におけるワークWの端面(上面)との間、もしくは、レーザ光9の光軸方向であってレーザ光9の進行方向前側におけるワークWの端面(上面)と、レーザ光9の進行方向前側におけるワークWの端面(上面)の近傍であってレーザ光9の進行方向前側におけるワークWの端面(上面)から僅かに上方に離れた箇所との間に位置させている。 In the laser processing method, when the workpiece W is pierced using the laser beam 9 before cutting, the position of the focal point 11 of the laser beam 9 when piercing is performed is determined in the plate thickness direction of the workpiece W. Thus, between the center CL of the workpiece W and the end surface (upper surface) of the workpiece W in the optical axis direction of the laser beam 9 and in the forward direction of the laser beam 9, or in the optical axis direction of the laser beam 9 The end surface (upper surface) of the workpiece W on the front side in the traveling direction of the laser light 9 and the end surface (upper surface) of the workpiece W on the front side in the traveling direction of the laser light 9 and in front of the laser light 9 in the traveling direction ( It is located between the part slightly away from the upper surface).

Claims (8)

  1.  波長が1μm帯であるレーザ光を用いて、板状のワークの切断加工を行うレーザ加工方法であって、
     前記ワークの切断加工をする際の前記レーザ光の焦点の位置を、前記ワークの板厚方向で、前記ワークの中心と、前記レーザ光の光軸方向であって前記レーザ光の進行方向後側における前記ワークの端面との間に位置させることと、
     前記焦点の位置に焦点を有する前記レーザ光を用いて、前記ワークの切断加工を行うことと、
    を含むレーザ加工方法。
    A laser processing method for cutting a plate-shaped workpiece using a laser beam having a wavelength of 1 μm band,
    The focal position of the laser beam when cutting the workpiece is the thickness direction of the workpiece, the center of the workpiece, the optical axis direction of the laser beam, and the rear side of the laser beam traveling direction. Between the end face of the workpiece in
    Cutting the workpiece using the laser beam having a focal point at the focal position;
    A laser processing method including:
  2.  前記ワークは、厚板であり、鉄もしくは鋼もしくは鉄合金もしくは酸化反応によって発熱する材料で構成されており、
     前記ワークでの切断加工は、酸素を含み小径ノズルから前記ワークに向かって吹き付けられるアシストガスを用いてなされるようになっており、
     前記小径ノズルの内径は、0.6mm以上であって前記ワークの板厚の15%以下の値になっている、請求項1に記載のレーザ加工方法。
    The workpiece is a thick plate, made of iron, steel, an iron alloy, or a material that generates heat by an oxidation reaction,
    The cutting process with the workpiece is performed using an assist gas sprayed from a small-diameter nozzle toward the workpiece, containing oxygen.
    2. The laser processing method according to claim 1, wherein an inner diameter of the small diameter nozzle is 0.6 mm or more and 15% or less of a thickness of the workpiece.
  3.  前記ワークは、厚板であり、鉄もしくは鋼もしくは鉄合金もしくは酸化反応によって発熱する材料で構成されており、
     前記ワークでの切断加工は、酸素を含み小径ノズルから前記ワークに向かって吹き付けられるアシストガスを用いてなされるようになっており、
     前記ワークに切断加工をするときに、前記アシストガスを前記切断加工で形成される孔や溝の内部に吹き付ける、請求項1に記載のレーザ加工方法。
    The workpiece is a thick plate, made of iron, steel, an iron alloy, or a material that generates heat by an oxidation reaction,
    The cutting process with the workpiece is performed using an assist gas sprayed from a small-diameter nozzle toward the workpiece, containing oxygen.
    The laser processing method according to claim 1, wherein when the workpiece is cut, the assist gas is blown into a hole or groove formed by the cutting.
  4.  前記切断加工を行う前に前記ワークにピアス加工を行う場合、
     前記ピアス加工をするときの前記レーザ光の焦点の位置を、前記ワークの板厚方向で、前記ワークの中心と、前記レーザ光の光軸方向であって前記レーザ光の進行方向前側における前記ワークの端面との間、もしくは、前記レーザ光の光軸方向であって前記レーザ光の進行方向前側における前記ワークの端面と、前記レーザ光の進行方向前側における前記ワークの端面の近傍であって前記レーザ光の進行方向前側における前記ワークの端面から僅かに離れた箇所との間に位置させる、請求項1~請求項3のいずれか1つに記載のレーザ加工方法。
    When piercing the workpiece before performing the cutting process,
    The position of the focal point of the laser beam at the time of the piercing process is the workpiece thickness direction, the center of the workpiece, the optical axis direction of the laser beam, and the front side of the laser beam traveling direction. Or the end surface of the workpiece on the front side in the laser beam traveling direction and in the vicinity of the end surface of the workpiece on the front side in the laser beam traveling direction. The laser processing method according to any one of claims 1 to 3, wherein the laser processing method is positioned between a position slightly away from an end surface of the workpiece on a front side in a traveling direction of the laser beam.
  5.  波長が1μm帯であるレーザ光を板状のワークに向けて出射するとともに、前記レーザ光の焦点の位置を変更自在であるレーザ加工ヘッドと、
     前記ワークが設置されるワーク設置部と、
     前記ワーク設置部に設置された前記ワークに切断加工をする際に、前記レーザ加工ヘッドから出射される前記レーザ光の焦点の位置を、前記ワークの板厚方向で、前記ワークの中心と、前記レーザ光の光軸方向であって前記レーザ光進行方向後側のワークの端面との間に位置させるように、前記レーザ加工ヘッドを制御する制御部と、
    を含む、レーザ加工装置。
    A laser processing head that emits laser light having a wavelength of 1 μm band toward a plate-like workpiece and is capable of changing the focal position of the laser light;
    A workpiece installation section where the workpiece is installed;
    When cutting the workpiece installed in the workpiece installation unit, the position of the focal point of the laser beam emitted from the laser processing head in the plate thickness direction of the workpiece, and the center of the workpiece, A control unit that controls the laser processing head so as to be positioned between the laser beam optical axis direction and the end surface of the workpiece on the rear side in the laser beam traveling direction;
    Including a laser processing apparatus.
  6.  前記ワークが、厚板であり、鉄もしくは鋼もしくは鉄合金もしくは酸化反応によって発熱する材料で構成されている場合、
     前記ワークでの切断加工は、酸素を含み小径ノズルから前記ワークに向かって吹き付けられるアシストガスを用いてなされるように構成されており、
     前記小径ノズルの内径は、0.6mm以上であって前記ワークの板厚の15%以下の値になっている、請求項5に記載のレーザ加工装置。
    When the workpiece is a thick plate and is made of iron, steel, an iron alloy, or a material that generates heat by an oxidation reaction,
    The cutting process with the workpiece is configured to be performed using an assist gas sprayed from the small-diameter nozzle toward the workpiece, containing oxygen.
    The laser processing apparatus according to claim 5, wherein an inner diameter of the small-diameter nozzle is 0.6 mm or more and a value of 15% or less of a thickness of the workpiece.
  7.  前記ワークが、厚板であり、鉄もしくは鋼もしくは鉄合金もしくは酸化反応によって発熱する材料で構成されている場合、
     前記ワークでの切断加工は、酸素を含み小径ノズルから前記ワークに向かって吹き付けられるアシストガスを用いてなされるように構成されており、
     前記ワークでの切断加工をするときに、前記アシストガスを前記切断加工で形成される孔や溝の内部に吹き付けるように構成されている、請求項5に記載のレーザ加工装置。
    When the workpiece is a thick plate and is made of iron, steel, an iron alloy, or a material that generates heat by an oxidation reaction,
    The cutting process with the workpiece is configured to be performed using an assist gas sprayed from the small-diameter nozzle toward the workpiece, containing oxygen.
    The laser processing apparatus according to claim 5, wherein the assist gas is blown into a hole or a groove formed by the cutting process when the workpiece is cut.
  8.  前記制御部は、前記切断加工を行う前に前記ワークにピアス加工を行う場合、前記レーザ加工ヘッドから出射される前記レーザ光の焦点の位置を、前記ワークの板厚方向で、前記ワークの中心と、前記レーザ光の光軸方向であって前記レーザ光の進行方向前側における前記ワークの端面との間、もしくは、前記レーザ光の光軸方向であって前記レーザ光の進行方向前側における前記ワークの端面と、前記レーザ光の進行方向前側における前記ワークの端面の近傍であって前記レーザ光の進行方向前側における前記ワークの端面から僅かに離れた箇所との間に位置させるように、前記レーザ加工ヘッドを制御する、請求項5~請求項7のいずれか1項に記載のレーザ加工装置。  When the piercing process is performed on the work before the cutting process, the control unit is configured such that the position of the focal point of the laser beam emitted from the laser processing head is the center of the work in the plate thickness direction of the work. And the workpiece in the optical axis direction of the laser beam and the end surface of the workpiece on the front side in the traveling direction of the laser beam, or in the optical axis direction of the laser beam and in the front side in the traveling direction of the laser beam. The laser is positioned between the end surface of the laser beam and a position that is near the end surface of the workpiece on the front side in the traveling direction of the laser beam and slightly separated from the end surface of the workpiece on the front side in the traveling direction of the laser beam. The laser processing apparatus according to any one of claims 5 to 7, which controls a processing head.
PCT/JP2016/076072 2015-09-08 2016-09-06 Laser processing method and laser processing device for minimizing incidence of self-burning WO2017043460A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-176479 2015-09-08
JP2015176479A JP6190855B2 (en) 2015-09-08 2015-09-08 Laser processing method and laser processing apparatus

Publications (1)

Publication Number Publication Date
WO2017043460A1 true WO2017043460A1 (en) 2017-03-16

Family

ID=58239807

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/076072 WO2017043460A1 (en) 2015-09-08 2016-09-06 Laser processing method and laser processing device for minimizing incidence of self-burning

Country Status (2)

Country Link
JP (1) JP6190855B2 (en)
WO (1) WO2017043460A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110893512A (en) * 2018-08-24 2020-03-20 发那科株式会社 Laser processing system and laser processing method
US20200238438A1 (en) * 2017-10-17 2020-07-30 Mitsubishi Electric Corporation Laser processing machine
DE102022101322A1 (en) 2022-01-20 2023-07-20 TRUMPF Werkzeugmaschinen SE + Co. KG Laser cutting process with focus position within a cutting nozzle with a small opening diameter

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6799038B2 (en) 2018-08-24 2020-12-09 ファナック株式会社 Laser processing system, jet observation device, laser processing method, and jet observation method
JP6725605B2 (en) * 2018-08-24 2020-07-22 ファナック株式会社 Laser processing system and laser processing method
JP6744372B2 (en) 2018-08-24 2020-08-19 ファナック株式会社 Laser processing system, jet adjusting device, and laser processing method
JP6791918B2 (en) 2018-08-24 2020-11-25 ファナック株式会社 Laser processing system, jet observation device, laser processing method, and jet observation method
JP6816071B2 (en) 2018-08-24 2021-01-20 ファナック株式会社 Laser processing system, jet observation device, laser processing method, and jet observation method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008044000A (en) * 2006-08-21 2008-02-28 Nippon Steel Corp Laser beam machining apparatus with which working depth is increased
JP2010262442A (en) * 2009-05-01 2010-11-18 Shin Nippon Koki Co Ltd Numerical control data creation device
JP2011224600A (en) * 2010-04-19 2011-11-10 Koike Sanso Kogyo Co Ltd Laser piercing method
JP2013107089A (en) * 2011-11-17 2013-06-06 Fanuc Ltd Laser beam machining system having auxiliary control unit

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06155063A (en) * 1992-11-25 1994-06-03 Mitsubishi Electric Corp Laser beam cutting method
JPH0825074A (en) * 1994-07-13 1996-01-30 Fanuc Ltd Laser working method
JP3664904B2 (en) * 1999-01-14 2005-06-29 三菱重工業株式会社 Laser processing head
JP5631138B2 (en) * 2010-09-30 2014-11-26 株式会社アマダ Laser cutting method and apparatus
JP6063670B2 (en) * 2011-09-16 2017-01-18 株式会社アマダホールディングス Laser cutting method and apparatus
JP2014117730A (en) * 2012-12-17 2014-06-30 Amada Co Ltd Focal position setting method in fiber laser machining apparatus, fiber laser machining apparatus, and fiber laser machining method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008044000A (en) * 2006-08-21 2008-02-28 Nippon Steel Corp Laser beam machining apparatus with which working depth is increased
JP2010262442A (en) * 2009-05-01 2010-11-18 Shin Nippon Koki Co Ltd Numerical control data creation device
JP2011224600A (en) * 2010-04-19 2011-11-10 Koike Sanso Kogyo Co Ltd Laser piercing method
JP2013107089A (en) * 2011-11-17 2013-06-06 Fanuc Ltd Laser beam machining system having auxiliary control unit

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200238438A1 (en) * 2017-10-17 2020-07-30 Mitsubishi Electric Corporation Laser processing machine
CN110893512A (en) * 2018-08-24 2020-03-20 发那科株式会社 Laser processing system and laser processing method
US11602803B2 (en) 2018-08-24 2023-03-14 Fanuc Corporation Laser processing system, and laser processing method
DE102022101322A1 (en) 2022-01-20 2023-07-20 TRUMPF Werkzeugmaschinen SE + Co. KG Laser cutting process with focus position within a cutting nozzle with a small opening diameter
EP4215308A1 (en) 2022-01-20 2023-07-26 TRUMPF Werkzeugmaschinen SE + Co. KG Laser cutting method with focal position inside a cutting nozzle having a small opening diameter

Also Published As

Publication number Publication date
JP6190855B2 (en) 2017-08-30
JP2017051965A (en) 2017-03-16

Similar Documents

Publication Publication Date Title
WO2017043460A1 (en) Laser processing method and laser processing device for minimizing incidence of self-burning
JP5361999B2 (en) Laser processing apparatus and laser processing method
JP5276699B2 (en) Laser processing method and laser processing apparatus for piercing
US9919383B2 (en) Laser machining method and laser machining apparatus
JP6063670B2 (en) Laser cutting method and apparatus
JP6018744B2 (en) Laser cutting method and laser cutting apparatus
TW201805100A (en) Laser processing apparatus and method
JP2014073526A (en) Optical system and laser beam machining apparatus
US20170312856A1 (en) Laser cladding method and device for implementing same
JP6388986B2 (en) Method of laser cutting using optimized gas dynamics
JP2008126315A (en) Laser welding process with improved penetration
RU2572671C1 (en) Method of aluminium alloy butt weld laser-arc welding by consumable electrode
JPWO2010061422A1 (en) Composite welding method and composite welding equipment
US20220168841A1 (en) Method for flame cutting by means of a laser beam
CN110170746B (en) Coaxial bifocal laser-TIG electric arc hybrid welding method
US11786989B2 (en) Method for splash-free welding, in particular using a solid-state laser
JP6393555B2 (en) Laser processing machine and laser cutting processing method
CN111390393A (en) Method for processing micro-holes of atomization sheet by laser
RU2547987C1 (en) Laser welding method
JP5642493B2 (en) Laser cutting apparatus and laser cutting method
US10328528B2 (en) Piercing processing method and laser processing machine
JP2003311456A (en) Laser beam irradiating arc welding head
JP2016078073A (en) Processing method for sheet metal with direct diode laser beam and direct laser processing apparatus for executing the same
JP5958894B2 (en) Method of jetting shield gas in laser welding
JP7080421B1 (en) Laser machining machine and laser machining method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16844321

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16844321

Country of ref document: EP

Kind code of ref document: A1