WO2017043395A1 - Wind power generation device - Google Patents

Wind power generation device Download PDF

Info

Publication number
WO2017043395A1
WO2017043395A1 PCT/JP2016/075527 JP2016075527W WO2017043395A1 WO 2017043395 A1 WO2017043395 A1 WO 2017043395A1 JP 2016075527 W JP2016075527 W JP 2016075527W WO 2017043395 A1 WO2017043395 A1 WO 2017043395A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
motor
speed
power
mode
Prior art date
Application number
PCT/JP2016/075527
Other languages
French (fr)
Japanese (ja)
Inventor
鈴木 政彦
Original Assignee
株式会社グローバルエナジー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社グローバルエナジー filed Critical 株式会社グローバルエナジー
Priority to CN201680051936.4A priority Critical patent/CN108026896B/en
Priority to KR1020187010163A priority patent/KR20180053346A/en
Publication of WO2017043395A1 publication Critical patent/WO2017043395A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/06Rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/04Automatic control; Regulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/002Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  the axis being horizontal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/005Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  the axis being vertical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/007Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations the wind motor being combined with means for converting solar radiation into useful energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/32Wind speeds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Definitions

  • the present invention relates to a wind power generator capable of improving power generation efficiency even under a low wind speed.
  • Wind power generators generally have a large mechanical loss, and at low wind speeds, the rotor is difficult to rotate smoothly due to the cogging torque of the generator, and the power generation efficiency is low.
  • the inventor of the present application has developed a vertical wind turbine generator including a wind turbine having lift type blades (see, for example, Patent Documents 1 and 2).
  • the vertical axis wind power generator described in Patent Documents 1 and 2 includes a rotor having a pair of vertically long lift-type blades facing each other around the vertical main shaft, and the vertical main shaft is disposed at both upper and lower ends of each lift-type blade.
  • the vertical axis wind turbine described in the above-mentioned patent document improves the startability of the vertical axis wind turbine, can start the rotation of the rotor even at a slight wind speed of about 1 to 1.5 m / s, and the average wind speed is For example, it has a feature that it can efficiently generate power even at a low wind speed of about 2 m / s.
  • the wind direction always changes, the wind speed suitable for the windmill does not continue for a long time, and the rotation speed of the rotor rotating under the low wind speed is changed to the peripheral speed at which the rotor can rotate efficiently by itself. If it can be accelerated, the power generation efficiency can be further increased.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a wind turbine generator capable of significantly increasing power generation efficiency by accelerating and rotating a rotor under a low wind speed. Is.
  • a windmill having a rotor having a plurality of blades, a power regeneration type motor connected to the main shaft of the rotor and switchable between a generator mode and a motor mode, and a peripheral speed or a rotational speed of the rotor are detected.
  • a rotation speed detection means a wind speed detection means for detecting an average wind speed toward the rotor; a switching means capable of selectively switching the power regeneration type motor to either a generator mode or a motor mode; Control means for controlling the rotational speed, When the wind speed detecting means detects a predetermined average wind speed, the control means switches the electric power regeneration type motor to a motor mode, and the rotational speed detecting means allows the circumferential speed or rotational speed of the rotor. Until the rotor reaches a specific value, the rotor is accelerated to rotate, and the switching means controls the power regeneration type motor to switch to the generator mode to generate power, and the wind speed detecting means.
  • the switching means switches the power regeneration type motor to the motor mode again, and accelerates rotation until the circumferential speed or rotational speed of the rotor reaches a specific value,
  • the switching means repeatedly controls the power regeneration type motor to switch to the generator mode and generate power again.
  • the control means switches the power regeneration type motor to the motor mode by the switching means when the wind speed detection means detects the predetermined average wind speed, and the circumferential speed or rotation speed of the rotor is a specific value.
  • the power regeneration type motor is controlled so as to generate power by switching to the generator mode after reaching an accelerating rotation, so that the power generation efficiency can be reduced even under conditions of low wind speed and low wind speed. Can greatly increase.
  • the cogging torque generated by the generator does not act on the main shaft, the rotor can be accelerated and rotated quickly by the motor, and the peripheral speed or rotational speed of the rotor can be increased. If the motor is accelerated until it reaches a specific value, the rotor is accelerated and rotated by lift even if there is no assistance from the motor. Therefore, the operation time in the motor mode is short and the power consumption to operate in the motor mode. Is less.
  • the wind turbine is a vertical wind turbine or a horizontal wind turbine provided with a rotor having a plurality of lift-type blades formed with inclined portions at the tip.
  • the vertical axis wind turbine or the horizontal axis wind turbine having a rotor having a plurality of lift-type blades having inclined portions formed at the tip end portions of the inclined portion causes an airflow that diffuses toward the tip end against the inner surface of the blades. Since the rotational force can be increased to increase the lift force (thrust force), the rotor rotates from the low wind speed and the higher the wind speed, the higher the lift force (thrust force) generated on the blade by the Coanda effect. The rotor is accelerated and rotates efficiently. Therefore, the power generation efficiency can be kept high by setting the circumferential speed or rotational speed of the rotor to a value that is accelerated and rotated by the lift of the blade.
  • the electric power generated by the photovoltaic power generation panel is used as a power source for operating the electric power regeneration type motor by switching to the motor mode.
  • the control means switches the power regeneration type motor to the motor mode by the switching means when the wind speed detecting means detects the predetermined average wind speed, and specifies the peripheral speed or rotational speed of the rotor.
  • the power regeneration type motor is controlled to generate electricity by switching to the generator mode until it reaches the value of, so even if the power generation amount is small under low wind speeds where the rotor rotation speed is low Efficiency can be greatly increased.
  • FIG. 3 is an enlarged cross-sectional plan view taken along line III-III in FIG. 1. It is a flowchart for controlling the rotational speed of a windmill.
  • FIG. 1 shows a wind turbine generator having a vertical wind turbine according to the present invention.
  • the wind power generator 1 has a vertical rotor 2, a power regeneration motor 3, and control means for controlling the rotational speed of the wind turbine. 4 is provided.
  • a plurality of upper and lower portions of the vertical main shaft 5 of the rotor 2 are rotatably supported by a central portion of a support frame 6 erected on the upper surface of the foundation G via a bearing 6A.
  • the inner ends of two horizontal arms 7A and 7B are fixed to the radial symmetrical position of the upper part of the vertical main shaft 5, and the vertical direction is set to the outer ends of the upper and lower arms 7A and 7B.
  • a pair of left and right lift type blades (hereinafter abbreviated as blades) 8 and 8 facing each other are fixed to the inner side surfaces of the upper and lower ends.
  • the arms 7A and 7B and the blade 8 are made of, for example, fiber reinforced synthetic resin.
  • the arms 7A and 7B and the blade 8 can be integrally formed.
  • the shape of the blade 8 is substantially the same as the blade described in Japanese Patent No. 4907703 and Japanese Patent Application Laid-Open No. 2011-169292 developed by the inventors of the present application. That is, the chord length of the blade 8 is set to 40% to 60% of the rotational radius of the blade 8, and the blade area is set large.
  • the cross-sectional shape of the main portion 8A excluding the upper and lower ends of the blade 8 is enlarged as shown in FIG. 3, and the blade thicknesses on the inner and outer sides of the blade thickness center line C of the main portion 8A are symmetrical to each other. Accordingly, the blade thickness center line C is set to be substantially overlapped with the rotation locus O of the blade thickness center of the blade 8.
  • the planar shape of the entire main portion 8A is curved in an arc shape along the rotation locus O of the blade thickness center, and the inner side surface extends in the centrifugal direction from the bulging portion of the leading edge to the trailing edge.
  • the wind hits the inner surface from the rear, it is pushed forward.
  • the shape of the cross section of the main portion 8A is assumed to be close to a standard airfoil shape in which the blade thickness on the front side that is the rotation direction is thick and gradually becomes thinner toward the rear.
  • the pressure of the airflow passing through the outer surface at the rear edge of the blade 8 is smaller than that of the airflow passing through the inner surface, and the outer surface of the rear edge of the blade 8 is caused by the Coanda effect on the outer surface.
  • the blade 8 is pushed from the rear toward the front edge, and a thrust in the rotational direction acts on the blade 8 to rotate the blade 8.
  • inwardly inclined portions 8 ⁇ / b> B and 8 ⁇ / b> B that are inclined in an arc shape inward, that is, in the direction of the longitudinal main shaft 5, are formed at both upper and lower ends of the blade 8. Since the inwardly inclined portions 8B are formed at the upper and lower end portions of the blade 8, the airflow that tends to flow in the vertical direction along the inner and outer side surfaces of the main portion 8A as the blade 8 rotates causes the Coanda effect. Therefore, the rotor 2 passes along the inner and outer surfaces of the upper and lower inwardly inclined portions 8B and 8B in the rear direction, that is, in the W direction in FIG. 2, and the rotor 2 has high rotational efficiency even under a low wind speed. Rotate.
  • the power regeneration type motor 3 described above is installed on the foundation G, and the lower end portion of the vertical main shaft 5 is connected to the rotor shaft.
  • a known permanent magnet field DC motor is used as the power regeneration type motor 3, and a detailed description will be given later.
  • a generator configured to generate power by rotation of the longitudinal main shaft 5 of the rotor 2 The motor can rotate the vertical main shaft 5 with a switching circuit 9 connected to the electric power regeneration motor 3.
  • a permanent magnet type AC synchronous motor can also be used as the power regeneration type motor 3.
  • the switching circuit 9 is connected to the first storage battery 11 via the controller 10 and is connected to the second storage battery 13 that stores the electric power generated by the solar power generation panel 12.
  • the switching circuit 9 has a power generation circuit when the power regeneration type motor 3 is used as a generator and a motor circuit (not shown) when the power regeneration motor 3 is also used as a motor.
  • the power regenerative motor 3 is switched to the generator mode, and the generated power is stored in the first storage battery 11 or the power regenerative type.
  • the motor 3 is switched to the motor mode, and this motor is operated by the electric power of the second storage battery 13.
  • the switching circuit 9 is electrically connected to a later-described generator / motor switching determination unit 16 in the control unit 4, and based on a determination signal output from the generator / motor switching determination unit 16, Can be selectively switched.
  • the electric power regenerative motor 3 is switched to the generator mode to generate electric power, and the electric power stored in the first storage battery 11 is supplied to an external DC load power source or is connected to an external AC load via a DC-AC inverter. Power is supplied to the power system.
  • the controller 10 has a function of controlling the current and voltage output to the first storage battery 11 or an external load power source by adjusting the output current amount generated by switching the power regeneration motor 3 to the generator mode. For example, immediately after startup of the rotor 2 or at a low wind speed at which the rotation speed of the rotor 2 is slow, control is performed so that the amount of output current is reduced, thereby reducing the power generation load applied to the generator. 2 stall can be prevented.
  • the control means 4 includes an average wind speed determination unit 14, a windmill peripheral speed determination unit 15, and a generator / motor switching determination unit 16.
  • the average wind speed determination unit 14 is connected to an anemometer 17 that is an anemometer for detecting the average wind speed of the wind toward the rotor 2 at fixed time intervals, and the average wind speed detected by the anemometer 17 is the average wind speed.
  • the central processing unit (CPU) 18 of the control means 4 the determination is made to the generator / motor switching determination section 16. Output a signal.
  • the average wind speed detection time by the anemometer 17 is preferably set at a relatively short interval of, for example, 10 seconds or less so that the power generation amount does not fluctuate greatly even at low wind speeds.
  • the generator / motor switching determination unit 16 outputs a determination signal to the switching circuit 9 when the anemometer 17 detects a predetermined average wind speed, for example, 2 m / s, and the switching circuit 9 9 is switched from the power generation circuit to the motor circuit, and the power regeneration type motor 3 is operated in the motor mode.
  • a determination signal is also output to the generator / motor switching determination unit 16 based on data input to the wind turbine peripheral speed determination unit 15 from a rotation speed detection sensor 20 described later.
  • a gear 19 for measuring the rotational speed of the rotor 2 is attached at an appropriate position in the middle portion of the vertical main shaft 5, and the rotational speed of the gear 19 is detected by a rotational speed detection sensor 20, whereby the vertical main shaft is detected.
  • the rotational speed of the rotor 2 can be detected via 5.
  • one or a plurality of convex portions may be provided on the outer peripheral surface of the vertical main shaft 5.
  • the rotation speed detection sensor 20 for example, a non-contact type sensor such as a magnetic rotation speed detection sensor, an ultrasonic rotation speed detection sensor, or a rotary encoder is used.
  • the rotational speed of the vertical main shaft 5 detected by the rotational speed detection sensor 20 is input to the wind turbine peripheral speed determination unit 15 of the control means 4, and the central processing unit 18 of the control means 4 performs the rotor based on the input rotational speed. 2 is calculated. That is, since the outer circumference length (2 ⁇ r) of the rotor 2 is determined from the rotation radius (r) of the blade 8 of the rotor 2, the outer circumference length (2 ⁇ r) is multiplied by the rotational speed of the longitudinal main shaft 5. In this case, a peripheral speed (m / s) is obtained.
  • the rotational speed detection sensor 20 and the windmill peripheral speed determination unit 15 correspond to the rotational speed detection means according to the present invention.
  • the peripheral speed of the rotor 2 can also be obtained by detecting the angular speed of the blade 8 with a sensor. That is, a value obtained by multiplying the angular velocity (rad / s) of the blade 8 by the rotational radius (r) is the peripheral speed of the rotor 2.
  • the wind turbine peripheral speed determination unit 15 determines that the average peripheral speed of the rotor 2 has reached a specific value, for example, 5 m / s, it is output from the generator / motor switching determination unit 16 to the switching circuit 9. Based on the determination signal, the switching circuit 9 is switched from the motor circuit to the power generation circuit, and the power regeneration motor 3 is operated in the generator mode.
  • the average wind speed when the rotor 2 rotates and the generator / motor switching determination unit 16 operates in the generator mode is measured by the anemometer 17 (S1), and the central processing unit 18 of the control means 4 Based on the calculation processing result, the average wind speed determination unit 14 determines whether the average wind speed is a predetermined average wind speed, for example, 2 m / s or more (S2).
  • a determination signal is output from the generator / motor switching determination unit 16 of the control means 4 to the switching circuit 9, and the determination signal
  • the switching circuit 9 is switched to a motor circuit (S3).
  • the power regeneration type motor 3 that has been operating in the generator mode is switched to the motor mode and automatically started with the power supplied from the second storage battery 13 (S4), and the longitudinal main shaft 5 is forced.
  • the windmill, that is, the rotor 2 is accelerated and rotated (S5). If it is determined that the average wind speed has not reached 2 m / s, the process returns to step S1, and the average wind speed is continuously measured.
  • the electric power regeneration type motor 3 When the electric power regeneration type motor 3 is switched from the generator mode to the motor mode, the cogging torque by the generator does not act on the longitudinal main shaft 5, and the rotor 2 can be quickly accelerated and rotated by the motor. Therefore, the operation time in the motor mode is short, and the power consumption of the second storage battery 13 operated in the motor mode is small.
  • the reason why it is determined whether or not the average wind speed is 2 m / s or more is that in the longitudinal rotor 2 including the lift-type blade 8 having the above-described shape, for example, the rotational radius of the blade 8 is 1 m, the blade length of the blade 8 is 1. This is because when the average wind speed is 2 m / s or more in the case of 2 m, the rotation of the rotor 2 is accelerated by the lift generated in the blades, and the generated power from the generator is rotated at a speed that can be output.
  • the rotation speed detection sensor 20 After accelerating the rotation of the rotor 2 in the motor mode, the rotation speed detection sensor 20 detects the average rotation speed of the longitudinal main shaft 5, and based on the rotation speed, the central processing unit 18 converts the wind turbine, that is, the peripheral speed of the rotor 2. Then, the result is output to the wind turbine peripheral speed determining unit 15 (S6), and the wind turbine peripheral speed determining unit 15 reaches a specific value where the peripheral speed of the rotor 2 exceeds the average wind speed of 2 m / s, for example, 5 m / s. It is determined whether or not (S7).
  • the circumferential speed of the rotor 2 is 5 m / s.
  • the lift (thrust) generated in the blade 8 is increased by the action of the inwardly inclined portions 8B at both the upper and lower end portions of the blade 8 and the Coanda effect, and the rotor 2 has a circumference exceeding the wind speed without the assistance of the motor. This is because, while accelerating to the speed, it efficiently rotates to generate power, and stalling due to the power generation load is less likely to occur.
  • the rotational speed of the rotor 2 when the peripheral speed is 5 m / s
  • the peripheral speed, the rotational speed, and the length of the outer periphery have the relationship as described above.
  • Is 1 m the outer peripheral length (2 ⁇ r) of the rotor 2 is 6.28 m. Therefore, if the peripheral speed 5 m / s is divided by the outer peripheral length of 6.28 m and multiplied by 60 to be converted into a partial speed, the rotational speed of the rotor 2 is about 48 rpm.
  • a determination signal is transmitted from the generator / motor switching determination unit 16 of the control means 4 to the switching circuit 9. Based on the determination signal, the switching circuit 9 is switched to the power generation circuit (S8). Thereby, the electric power regeneration type motor 3 is switched from the motor mode to the generator mode and started (S9), and the generated electric power is stored in the first storage battery 11.
  • step S5 When the wind turbine circumferential speed determination unit 15 determines that the circumferential speed of the rotor 2 has not reached 5 m / s, the process returns to step S5, and the power regeneration type motor 3 is switched to the motor mode and the circumferential speed of the rotor 2 is changed. Continue to accelerate until the speed reaches 5m / s.
  • the anemometer 17 measures the average wind speed again (S10), and when the average wind speed determination unit 14 detects an average wind speed of 2 m / s or less (S11),
  • the switching circuit 9 is switched to the motor circuit, the power regeneration motor 3 is switched to the motor mode again, and the rotor 2 is rotated at an accelerated speed.
  • the power regeneration type motor 3 that can be switched between the generator mode and the motor mode is connected to the longitudinal main shaft 5 of the rotor 2.
  • the electric power regeneration type motor is designed so that the rotor 2 reaches a peripheral speed of 5 m / s that can be efficiently rotated while accelerating by itself. 3 is switched to the motor mode and accelerated rapidly.
  • the rotational speed of the rotor 2 is set so that the power regeneration motor 3 can be switched to the generator mode to generate power. Therefore, the power generation efficiency can be increased without greatly changing the generated power even under the low wind speed where the rotational speed of the rotor 2 is low and the amount of power generated is small.
  • the average peripheral speed of the rotor 2 when the power regeneration type motor 3 is switched from the motor mode to the generator mode is set to, for example, 5 m / s, which is a value that allows the rotor 2 to rotate efficiently while accelerating by itself.
  • 5 m / s which is a value that allows the rotor 2 to rotate efficiently while accelerating by itself.
  • stalling due to the power generation load is less likely to occur even if the motor is stopped, and it is not necessary to frequently switch the power regeneration motor 3 to the motor mode. It is possible to reduce the power consumption of the second storage battery 13 that is a driving power source.
  • the electric power regeneration type motor 3 is connected to the vertical main shaft 5 and the motor 3 is switched to the motor mode by the switching circuit 9 to accelerate the rotation of the rotor 2, the rotor 2 is accelerated and rotated. There is no need to separately install a dedicated motor for controlling the motor, which is economical.
  • the present invention is not limited to the embodiment described above, and various modifications and changes such as the following can be made without departing from the scope of the present invention.
  • the power regeneration type motor 3 when it is detected that the average wind speed is 2 m / s, the power regeneration type motor 3 is switched to the motor mode and started to accelerate the rotation of the rotor 2, but the average wind speed is 2 m.
  • the power regeneration type motor 3 is switched to the motor mode, The rotor 2 may be accelerated.
  • the motor mode is accelerated until the peripheral speed of the rotor 2 reaches 5 m / s and the motor mode is switched to the generator mode.
  • the peripheral speed of the rotor 2 is Since the rotational speed can be converted, the motor mode can be switched to the generator mode when the rotational speed sensor 20 detects the rotational speed of the rotor 2 when the peripheral speed reaches 5 m / s.
  • the power regeneration type motor 3 is switched to the motor mode, and the average wind speed for accelerating and rotating the rotor 2 is 2 m / s.
  • the average wind speed at this time corresponds to the rotation radius of the blade 8. Is set appropriately. That is, for example, when the rotational radius of the blade 8 is smaller than 1 m in the above embodiment, the rotational torque of the rotor 2 becomes small, and it is easy to stall due to the power generation load. Therefore, the average wind speed is set to 2 m / s or more. Thus, when the rotational speed of the rotor 2 is high, the rotor 2 may be accelerated and switched to the motor mode.
  • the average wind speed is set to 2 m / s or less, and the rotor When the rotational speed of 2 is low, the rotor 2 may be accelerated and switched to the motor mode.
  • the power regeneration motor 3 is switched from the motor mode to the generator mode.
  • the motor mode is switched to the generator mode.
  • the peripheral speed of the rotor 2 is appropriately set according to the rotation radius of the blade 8.
  • the second storage battery 13 stored by the solar power generation panel 12 is used as the power source operated in the motor mode.
  • the solar power generation panel 12 and the second storage battery 13 are omitted, and the first storage battery is used.
  • the electric power of 11 may be used to operate the motor. At this time, as described above, since the operation time in the motor mode is short, the power consumption of the first storage battery 11 can be minimized.
  • the present invention relates to a wind power generator in which lift type blades are fixed to a vertical main shaft in a multistage shape, or Japanese Patent No. 4740580, that is, the tip of the blade is in the main shaft direction.
  • the present invention can also be applied to a wind turbine generator having a horizontal axis wind turbine inclined in the (wind receiving direction).
  • SYMBOLS 1 Wind power generator 2 Rotor 3 Electric power regeneration type motor 4 Control means 5 Vertical main shaft 6 Support frame 6A Bearing 7A, 7B Arm 8 Lift type blade 8A Main part 8B Inward inclined part 9 Switching circuit (switching means) DESCRIPTION OF SYMBOLS 10 Controller 11 1st storage battery 12 Solar power generation panel 13 2nd storage battery 14 Average wind speed determination part 15 Windmill peripheral speed determination part 16 Generator / motor switching determination part 17 Anemometer (wind speed detection means) 18 Central processing unit 19 Gear 20 Rotation speed detection sensor C Blade thickness center line G Foundation O Rotation locus

Abstract

Provided is a wind power generation device with which power generation efficiency at low wind speeds can be markedly increased by causing a rotor to rotate at an accelerated rate. When a wind speed detection means 17 detects a predetermined average wind speed, a control means 4 performs control so that after a switching means 9 has switched a power-regeneration-type motor 3 to a motor mode and a rotor 2 has been rotated at an accelerated rate until the wind speed detection means 17 detects that the circumferential speed of the rotor 2 has reached a specified value, the motor 3 is switched by the switching means 9 to a power generator mode to generate power. When the wind speed detection means 17 again detects the predetermined average wind speed, the control means 4 repeats a control in which the switching means 9 again switches the motor 3 to the motor mode and the rotor 2 is caused to rotate at an accelerated rate.

Description

風力発電装置Wind power generator
 本発明は、低風速下においても、発電効率を高めうるようにした風力発電装置に関する。 The present invention relates to a wind power generator capable of improving power generation efficiency even under a low wind speed.
 風力発電装置は、一般的に機械的ロスが大きく、かつ低風速下では、ロータは発電機のコギングトルクのために、円滑に回転しにくく、発電効率は低い。この問題を解決するために、本願の発明者は、揚力型ブレードを有する風車を備える縦軸風力発電装置を開発している(例えば特許文献1、2参照)。 Wind power generators generally have a large mechanical loss, and at low wind speeds, the rotor is difficult to rotate smoothly due to the cogging torque of the generator, and the power generation efficiency is low. In order to solve this problem, the inventor of the present application has developed a vertical wind turbine generator including a wind turbine having lift type blades (see, for example, Patent Documents 1 and 2).
 特許文献1、2に記載されている縦軸風力発電装置は、縦主軸を中心として互いに対向する1対の縦長揚力型ブレードを有するロータを備え、各揚力型ブレードの上下両端部に、縦主軸方向へ向かう内向き傾斜部を形成することにより、ブレードの内側面に沿って上下方向に拡散する気流を、内向き傾斜部で受止めて、回転力を高めるとともに、揚力(推力)を増大させ、低風速下においても、ロータが効率よく回転して、発電効率を高めうるようにしたものである。 The vertical axis wind power generator described in Patent Documents 1 and 2 includes a rotor having a pair of vertically long lift-type blades facing each other around the vertical main shaft, and the vertical main shaft is disposed at both upper and lower ends of each lift-type blade. By forming the inwardly inclined part toward the direction, the airflow that diffuses in the vertical direction along the inner surface of the blade is received by the inwardly inclined part, increasing the rotational force and increasing the lift (thrust). The rotor can be efficiently rotated even under a low wind speed so that the power generation efficiency can be improved.
特許第4907073号公報Japanese Patent No. 4907073 特開2011-169292号公報JP 2011-169292 A
 上記特許文献に記載の縦軸風車は、縦軸風車の起動性を改善して、1~1.5m/s程度の微風速でも、ロータの回転を開始させることができ、かつ平均風速が、例えば2m/s程度の低風速下でも、効率よく発電しうるという特徴を有している。 The vertical axis wind turbine described in the above-mentioned patent document improves the startability of the vertical axis wind turbine, can start the rotation of the rotor even at a slight wind speed of about 1 to 1.5 m / s, and the average wind speed is For example, it has a feature that it can efficiently generate power even at a low wind speed of about 2 m / s.
 また、ロータの周速または回転速度が一定の値に達すると、コアンダ効果により、ブレードに生じる揚力が増大するため、ブレードの回転は加速され、かつ発電負荷による失速が起こりにくくなり、発電効率は高められるという特徴も有している。 In addition, when the peripheral speed or rotational speed of the rotor reaches a certain value, the lift generated in the blade increases due to the Coanda effect, so that the rotation of the blade is accelerated and the stall due to the power generation load is less likely to occur. It also has the feature of being enhanced.
 しかし、風向きは常に変化するため、風車に適する風速が長時間継続することはなく、低風速下で回転しているロータの回転速度を、ロータが自力により効率よく回転しうる周速となるまで加速することができれば、発電効率をさらに高めることができる。 However, since the wind direction always changes, the wind speed suitable for the windmill does not continue for a long time, and the rotation speed of the rotor rotating under the low wind speed is changed to the peripheral speed at which the rotor can rotate efficiently by itself. If it can be accelerated, the power generation efficiency can be further increased.
 本発明は、上記課題に鑑みてなされたもので、低風速下において、ロータを加速回転させることにより、発電効率を大幅に高めことができるようにした風力発電装置を提供することを目的とするものである。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a wind turbine generator capable of significantly increasing power generation efficiency by accelerating and rotating a rotor under a low wind speed. Is.
 本発明の風力発電装置によると、上記課題は、次のようにして解決される。
(1)複数のブレードを備えるロータを有する風車と、前記ロータの主軸に接続され、発電機モードとモータモードとに切替可能な電力再生型モータと、前記ロータの周速または回転速度を検知する回転速度検知手段と、前記ロータに向かう平均風速を検知する風速検知手段と、前記電力再生型モータを発電機モードとモータモードとのいずれかに選択的に切替可能な切替手段と、前記風車の回転速度を制御する制御手段とを備え、
 前記制御手段は、前記風速検知手段が予め定めた平均風速を検知したときに、前記切替手段が前記電力再生型モータをモータモードに切替え、前記回転速度検知手段が前記ロータの周速または回転速度が特定の値に達したことを検知するまで、前記ロータを加速回転させた後、前記切替手段により前記電力再生型モータを発電機モードに切替えて発電するように制御し、かつ前記風速検知手段が再度、予め定めた平均風速を検知したときに、前記切替手段が前記電力再生型モータを再度モータモードに切替えて、前記ロータの周速または回転速度が特定の値に達するまで加速回転させ、前記切替手段が再度前記電力再生型モータを発電機モードに切替えて発電させるように繰返し制御するようになっている。
According to the wind power generator of the present invention, the above problem is solved as follows.
(1) A windmill having a rotor having a plurality of blades, a power regeneration type motor connected to the main shaft of the rotor and switchable between a generator mode and a motor mode, and a peripheral speed or a rotational speed of the rotor are detected. A rotation speed detection means; a wind speed detection means for detecting an average wind speed toward the rotor; a switching means capable of selectively switching the power regeneration type motor to either a generator mode or a motor mode; Control means for controlling the rotational speed,
When the wind speed detecting means detects a predetermined average wind speed, the control means switches the electric power regeneration type motor to a motor mode, and the rotational speed detecting means allows the circumferential speed or rotational speed of the rotor. Until the rotor reaches a specific value, the rotor is accelerated to rotate, and the switching means controls the power regeneration type motor to switch to the generator mode to generate power, and the wind speed detecting means. When the predetermined average wind speed is detected again, the switching means switches the power regeneration type motor to the motor mode again, and accelerates rotation until the circumferential speed or rotational speed of the rotor reaches a specific value, The switching means repeatedly controls the power regeneration type motor to switch to the generator mode and generate power again.
 このような構成によると、制御手段は、風速検知手段が予め定めた平均風速を検知したときに、切替手段により電力再生型モータをモータモードに切替え、ロータの周速または回転速度が特定の値に達するまで加速回転させてから、電力再生型モータを発電機モードに切替えて発電するように制御するので、ロータの回転速度が低い低風速下で発電量が少ない条件下においても、発電効率を大幅に高めることができる。 According to such a configuration, the control means switches the power regeneration type motor to the motor mode by the switching means when the wind speed detection means detects the predetermined average wind speed, and the circumferential speed or rotation speed of the rotor is a specific value. The power regeneration type motor is controlled so as to generate power by switching to the generator mode after reaching an accelerating rotation, so that the power generation efficiency can be reduced even under conditions of low wind speed and low wind speed. Can greatly increase.
 また、電力再生型モータをモータモードに切替えると、主軸には、発電機によるコギングトルクが作用しなくなり、モータによりロータを速やかに加速回転させることができ、かつ、ロータの周速または回転速度が特定の値に達するまで加速回転させると、モータによる助力が無くても、揚力によってロータは加速されて回転するので、モータモードで作動させている時間は短かく、モータモードで作動させる電力消費量は少なくて済む。 When the power regeneration type motor is switched to the motor mode, the cogging torque generated by the generator does not act on the main shaft, the rotor can be accelerated and rotated quickly by the motor, and the peripheral speed or rotational speed of the rotor can be increased. If the motor is accelerated until it reaches a specific value, the rotor is accelerated and rotated by lift even if there is no assistance from the motor. Therefore, the operation time in the motor mode is short and the power consumption to operate in the motor mode. Is less.
(2) 前記(1)項において、前記風車を、先端部に傾斜部を形成した複数の揚力型ブレードを有するロータを備える縦軸風車または横軸風車とする。 (2) In the above paragraph (1), the wind turbine is a vertical wind turbine or a horizontal wind turbine provided with a rotor having a plurality of lift-type blades formed with inclined portions at the tip.
 このような構成によると、先端部に傾斜部を形成した複数の揚力型ブレードを備えるロータを有する縦軸風車または横軸風車は、ブレードの内側面に当って先端方向へ拡散する気流を傾斜部で受け止めることにより、回転力を高めて揚力(推力)を増大させることができるので、ロータは低風速時から回転し、かつ風速が速くなるほど、コアンダ効果によりブレードに生じる揚力(推力)は増大し、ロータは加速されて効率よく回転する。そのため、ロータの周速または回転速度を、ブレードの揚力により加速して回転する値に設定することにより、発電効率を高く維持することができる。 According to such a configuration, the vertical axis wind turbine or the horizontal axis wind turbine having a rotor having a plurality of lift-type blades having inclined portions formed at the tip end portions of the inclined portion causes an airflow that diffuses toward the tip end against the inner surface of the blades. Since the rotational force can be increased to increase the lift force (thrust force), the rotor rotates from the low wind speed and the higher the wind speed, the higher the lift force (thrust force) generated on the blade by the Coanda effect. The rotor is accelerated and rotates efficiently. Therefore, the power generation efficiency can be kept high by setting the circumferential speed or rotational speed of the rotor to a value that is accelerated and rotated by the lift of the blade.
(3) 前記(1)または(2)項において、前記電力再生型モータをモータモードに切替えて作動させる電源として、太陽光発電パネルにより発電された電力を使用する。 (3) In the item (1) or (2), the electric power generated by the photovoltaic power generation panel is used as a power source for operating the electric power regeneration type motor by switching to the motor mode.
 このような構成によると、モータモードで作動させる電源として、発電機モードにより発電された電力を使用する必要はなく、発電機により発電された電力を有効に使用することができる。 According to such a configuration, it is not necessary to use the power generated in the generator mode as the power source operated in the motor mode, and the power generated by the generator can be used effectively.
 本発明の風力発電装置によると、制御手段は、風速検知手段が予め定めた平均風速を検知したときに、切替手段により電力再生型モータをモータモードに切替え、ロータの周速または回転速度が特定の値に達するまで加速回転させてから、電力再生型モータを発電機モードに切替えて発電するように制御するので、ロータの回転速度が低い低風速下で、発電量が少ない場合においても、発電効率を大幅に高めることができる。 According to the wind turbine generator of the present invention, the control means switches the power regeneration type motor to the motor mode by the switching means when the wind speed detecting means detects the predetermined average wind speed, and specifies the peripheral speed or rotational speed of the rotor. The power regeneration type motor is controlled to generate electricity by switching to the generator mode until it reaches the value of, so even if the power generation amount is small under low wind speeds where the rotor rotation speed is low Efficiency can be greatly increased.
本発明の風力発電装置の正面図である。It is a front view of the wind power generator of the present invention. ロータとアームの拡大平面図である。It is an enlarged plan view of a rotor and an arm. 図1のIII-III線における拡大横断平面図である。FIG. 3 is an enlarged cross-sectional plan view taken along line III-III in FIG. 1. 風車の回転速度を制御するためのフローチャートである。It is a flowchart for controlling the rotational speed of a windmill.
 本発明の実施形態を、図面に基づいて説明する。なお、以下の実施形態においては、ブレードの回転半径1m、ブレードの翼長1.2mの縦軸風車を備える場合について説明するが、これに限定されないことは勿論である。 Embodiments of the present invention will be described with reference to the drawings. In the following embodiments, a case where a vertical wind turbine having a blade rotation radius of 1 m and a blade blade length of 1.2 m is described will be described, but the present invention is not limited thereto.
 図1は、本発明に係る、縦軸風車を備える風力発電装置を示し、風力発電装置1は、縦軸型のロータ2と、電力再生型モータ3と、風車の回転速度を制御する制御手段4とを備えている。 FIG. 1 shows a wind turbine generator having a vertical wind turbine according to the present invention. The wind power generator 1 has a vertical rotor 2, a power regeneration motor 3, and control means for controlling the rotational speed of the wind turbine. 4 is provided.
 ロータ2の縦主軸5の上下複数箇所が、基礎Gの上面に立設された支持枠体6の中央部に、軸受6Aを介して回転自在に支持されている。縦主軸5の上部の径方向の対称位置には、上下2本ずつの水平のアーム7A、7Bの内端部が固着され、各上下のアーム7A、7Bの外端部には、垂直方向を向く左右1対の揚力型ブレード(以下ブレードと略称する)8、8の上下端部の内側面が固着されている。アーム7A、7B及びブレード8は、例えば繊維強化合成樹脂により形成されている。なお、アーム7A、7Bとブレード8とは、一体成形が可能である。 A plurality of upper and lower portions of the vertical main shaft 5 of the rotor 2 are rotatably supported by a central portion of a support frame 6 erected on the upper surface of the foundation G via a bearing 6A. The inner ends of two horizontal arms 7A and 7B are fixed to the radial symmetrical position of the upper part of the vertical main shaft 5, and the vertical direction is set to the outer ends of the upper and lower arms 7A and 7B. A pair of left and right lift type blades (hereinafter abbreviated as blades) 8 and 8 facing each other are fixed to the inner side surfaces of the upper and lower ends. The arms 7A and 7B and the blade 8 are made of, for example, fiber reinforced synthetic resin. The arms 7A and 7B and the blade 8 can be integrally formed.
 ブレード8の形状は、本願の発明者が開発した、特許第4907073号公報、特開2011-169292号公報に記載されているブレードと実質的に同形をなしている。
 すなわち、ブレード8の弦長は、ブレード8の回転半径の40%~60%とされ、翼面積は大きく設定されている。
The shape of the blade 8 is substantially the same as the blade described in Japanese Patent No. 4907703 and Japanese Patent Application Laid-Open No. 2011-169292 developed by the inventors of the present application.
That is, the chord length of the blade 8 is set to 40% to 60% of the rotational radius of the blade 8, and the blade area is set large.
 ブレード8における上下両端部を除く主部8Aの横断面の形状は、図3に拡大して示すように、主部8Aの翼厚中心線Cの内方と外方における翼厚は、互いに対称的にほぼ等寸とされ、かつ翼厚中心線Cは、ブレード8の翼厚中心の回転軌跡Oとほぼ重なるように設定されている。 The cross-sectional shape of the main portion 8A excluding the upper and lower ends of the blade 8 is enlarged as shown in FIG. 3, and the blade thicknesses on the inner and outer sides of the blade thickness center line C of the main portion 8A are symmetrical to each other. Accordingly, the blade thickness center line C is set to be substantially overlapped with the rotation locus O of the blade thickness center of the blade 8.
 主部8A全体の平面形は、図2に示すように、翼厚中心の回転軌跡Oに沿うように円弧状に湾曲され、その内側面は、前縁の膨らみ部分から後縁にかけて、遠心方向へ傾斜しており、後方から内側面に風が当たると、前方へ押されるようになっている。 As shown in FIG. 2, the planar shape of the entire main portion 8A is curved in an arc shape along the rotation locus O of the blade thickness center, and the inner side surface extends in the centrifugal direction from the bulging portion of the leading edge to the trailing edge. When the wind hits the inner surface from the rear, it is pushed forward.
 主部8Aの横断面の形状は、回転方向である前側の翼厚が厚く、後方に向かって漸次薄くなる標準翼型に近いものとされている。 The shape of the cross section of the main portion 8A is assumed to be close to a standard airfoil shape in which the blade thickness on the front side that is the rotation direction is thick and gradually becomes thinner toward the rear.
 ブレード8が回転すると、ブレード8の内外の回転半径の差によって、内側面に比して外側面の周速度が大となり、外側面に沿って後方へ通過する気流の方が、内側面におけるそれよりも高速となる。 When the blade 8 rotates, the peripheral speed of the outer surface becomes larger than that of the inner surface due to the difference between the inner and outer turning radii of the blade 8, and the airflow passing rearward along the outer surface is larger than that on the inner surface. Faster than.
 そのため、ブレード8の後縁部において、外側面を通過する気流の圧力は、内側面を通過する気流のそれよりも小となり、外側面におけるコアンダ効果によって、ブレード8の後縁部の外側面が、後方から前縁部方向に押されて、ブレード8に回転方向の推力が作用し、ブレード8は回転する。 Therefore, the pressure of the airflow passing through the outer surface at the rear edge of the blade 8 is smaller than that of the airflow passing through the inner surface, and the outer surface of the rear edge of the blade 8 is caused by the Coanda effect on the outer surface. The blade 8 is pushed from the rear toward the front edge, and a thrust in the rotational direction acts on the blade 8 to rotate the blade 8.
 図1及び図2に示すように、ブレード8の上下両端部には、内方、すなわち縦主軸5方向に向かって、円弧状に傾斜する内向き傾斜部8B、8Bが形成されている。ブレード8の上下の端部に、内向き傾斜部8Bを形成してあるため、ブレード8の回転に伴い、主部8Aの内外の側面に沿って上下方向へ流れようとする気流は、コアンダ効果により、上下の内向き傾斜部8B、8Bの内面及び外面に沿って、後方、すなわち図2におけるW方向に向かって通過するようになり、低風速下においても、ロータ2は、高い回転効率をもって回転する。 As shown in FIGS. 1 and 2, inwardly inclined portions 8 </ b> B and 8 </ b> B that are inclined in an arc shape inward, that is, in the direction of the longitudinal main shaft 5, are formed at both upper and lower ends of the blade 8. Since the inwardly inclined portions 8B are formed at the upper and lower end portions of the blade 8, the airflow that tends to flow in the vertical direction along the inner and outer side surfaces of the main portion 8A as the blade 8 rotates causes the Coanda effect. Therefore, the rotor 2 passes along the inner and outer surfaces of the upper and lower inwardly inclined portions 8B and 8B in the rear direction, that is, in the W direction in FIG. 2, and the rotor 2 has high rotational efficiency even under a low wind speed. Rotate.
 前述した電力再生型モータ3は、基礎Gに設置され、そのロータ軸に縦主軸5の下端部が連結されている。
 電力再生型モータ3としては、例えば、公知の永久磁石界磁式直流モータが使用され、詳細な説明は後述するが、ロータ2の縦主軸5の回転により発電するようになっている発電機と、縦主軸5を回転させるようになっているモータとに、電力再生型モータ3に接続された切替回路9をもって切替え可能となっている。なお、電力再生型モータ3として、永久磁石型交流同期モータを使用することも可能である。
The power regeneration type motor 3 described above is installed on the foundation G, and the lower end portion of the vertical main shaft 5 is connected to the rotor shaft.
For example, a known permanent magnet field DC motor is used as the power regeneration type motor 3, and a detailed description will be given later. A generator configured to generate power by rotation of the longitudinal main shaft 5 of the rotor 2 The motor can rotate the vertical main shaft 5 with a switching circuit 9 connected to the electric power regeneration motor 3. As the power regeneration type motor 3, a permanent magnet type AC synchronous motor can also be used.
 切替回路9は、コントローラ10を介して第1蓄電池11に接続され、かつ、太陽光発電パネル12により発電された電力を蓄電する第2蓄電池13に接続されている。切替回路9は、電力再生型モータ3を発電機として使用する場合の発電回路と、同じくモータとして使用する場合のモータ回路(いずれも図示略)とを有するもので、それらの回路を介して電力再生型モータ3へ流れる電流方向を切り替えることにより(図1の矢印参照)、電力再生型モータ3を発電機モードに切り替えて、発電された電力を第1蓄電池11に蓄電したり、電力再生型モータ3をモータモードに切替えて、このモータを第2蓄電池13の電力により作動させたりするようになっている。 The switching circuit 9 is connected to the first storage battery 11 via the controller 10 and is connected to the second storage battery 13 that stores the electric power generated by the solar power generation panel 12. The switching circuit 9 has a power generation circuit when the power regeneration type motor 3 is used as a generator and a motor circuit (not shown) when the power regeneration motor 3 is also used as a motor. By switching the direction of the current flowing to the regenerative motor 3 (see the arrow in FIG. 1), the power regenerative motor 3 is switched to the generator mode, and the generated power is stored in the first storage battery 11 or the power regenerative type. The motor 3 is switched to the motor mode, and this motor is operated by the electric power of the second storage battery 13.
 切替回路9は、制御手段4における後述する発電機・モータ切替判定部16に電気的に接続され、発電機・モータ切替判定部16より出力される判定信号に基づいて、発電回路とモータ回路とに選択的に切替えられるようになっている。 The switching circuit 9 is electrically connected to a later-described generator / motor switching determination unit 16 in the control unit 4, and based on a determination signal output from the generator / motor switching determination unit 16, Can be selectively switched.
 電力再生型モータ3を発電機モードに切替えて発電し、第1蓄電池11に蓄電された電力は、外部の直流負荷電源に給電されるか、またはDC-ACインバータを介して、外部の交流負荷電力系統に給電される。 The electric power regenerative motor 3 is switched to the generator mode to generate electric power, and the electric power stored in the first storage battery 11 is supplied to an external DC load power source or is connected to an external AC load via a DC-AC inverter. Power is supplied to the power system.
 コントローラ10は、電力再生型モータ3を発電機モードに切替えて発電させた出力電流量を調節して、第1蓄電池11または外部の負荷電源へ出力する電流や電圧を制御する機能を有し、例えば、ロータ2の起動直後や、ロータ2の回動速度が遅くなる低風速時のときに、出力電流量が少なくなるように制御することにより、発電機に加わる発電負荷を軽減させて、ロータ2の失速を防止しうるようになっている。 The controller 10 has a function of controlling the current and voltage output to the first storage battery 11 or an external load power source by adjusting the output current amount generated by switching the power regeneration motor 3 to the generator mode. For example, immediately after startup of the rotor 2 or at a low wind speed at which the rotation speed of the rotor 2 is slow, control is performed so that the amount of output current is reduced, thereby reducing the power generation load applied to the generator. 2 stall can be prevented.
 制御手段4は、平均風速判定部14と、風車周速判定部15と、発電機・モータ切替判定部16とを備えている。
 平均風速判定部14は、ロータ2に向かう風の一定時間毎の平均風速を検知するための、風速検知手段である風速計17に接続され、風速計17により検出された平均風速は、平均風速判定部14に入力され、制御手段4の中央処理装置(CPU)18により演算処理されて、風速が予め定めた平均風速に達したと判定されたとき、発電機・モータ切替判定部16に判定信号を出力する。なお、風速計17による平均風速の検知時間は、低風速下でも発電量が大きく変動しないように、例えば10秒以下の比較的短い間隔で行うのが好ましい。
The control means 4 includes an average wind speed determination unit 14, a windmill peripheral speed determination unit 15, and a generator / motor switching determination unit 16.
The average wind speed determination unit 14 is connected to an anemometer 17 that is an anemometer for detecting the average wind speed of the wind toward the rotor 2 at fixed time intervals, and the average wind speed detected by the anemometer 17 is the average wind speed. When it is determined that the wind speed has reached a predetermined average wind speed after being input to the determination section 14 and processed by the central processing unit (CPU) 18 of the control means 4, the determination is made to the generator / motor switching determination section 16. Output a signal. Note that the average wind speed detection time by the anemometer 17 is preferably set at a relatively short interval of, for example, 10 seconds or less so that the power generation amount does not fluctuate greatly even at low wind speeds.
 詳細な説明は後述するが、発電機・モータ切替判定部16は、風速計17が予め定めた平均風速、例えば2m/sを検知した場合に、切替回路9に判定信号を出力し、切替回路9を発電回路からモータ回路に切替えて、電力再生型モータ3をモータモードで作用させるようになっている。
 また、発電機・モータ切替判定部16へは、後述する回転速度検出センサ20から風車周速判定部15に入力されるデータに基づいても、判定信号が出力される。
As will be described in detail later, the generator / motor switching determination unit 16 outputs a determination signal to the switching circuit 9 when the anemometer 17 detects a predetermined average wind speed, for example, 2 m / s, and the switching circuit 9 9 is switched from the power generation circuit to the motor circuit, and the power regeneration type motor 3 is operated in the motor mode.
A determination signal is also output to the generator / motor switching determination unit 16 based on data input to the wind turbine peripheral speed determination unit 15 from a rotation speed detection sensor 20 described later.
 縦主軸5の中間部の適所には、ロータ2の回転速度を測定するための歯車19が取付けられており、この歯車19の回転数を、回転速度検出センサ20をもって検出することにより、縦主軸5を介してロータ2の回転速度を検出しうるようになっている。なお、歯車19に代えて、縦主軸5の外周面に、例えば1個または複数個の凸部を設けてもよい。
 回転速度検出センサ20には、例えば磁気回転速度検出センサ、超音波回転速度検出センサ、ロータリエンコーダ等の非接触型センサが用いられる。
A gear 19 for measuring the rotational speed of the rotor 2 is attached at an appropriate position in the middle portion of the vertical main shaft 5, and the rotational speed of the gear 19 is detected by a rotational speed detection sensor 20, whereby the vertical main shaft is detected. The rotational speed of the rotor 2 can be detected via 5. Instead of the gear 19, for example, one or a plurality of convex portions may be provided on the outer peripheral surface of the vertical main shaft 5.
As the rotation speed detection sensor 20, for example, a non-contact type sensor such as a magnetic rotation speed detection sensor, an ultrasonic rotation speed detection sensor, or a rotary encoder is used.
 回転速度検出センサ20により検出された縦主軸5の回転速度は、制御手段4の風車周速判定部15に入力され、入力された回転速度に基づいて、制御手段4の中央処理装置18がロータ2の平均周速を演算する。すなわち、ロータ2のブレード8の回転半径(r)から、ロータ2の外周の長さ(2πr)が確定されるので、その外周の長さ(2πr)に縦主軸5の回動速度を乗じれば、周速(m/s)が得られる。上記の回転速度検出センサ20と風車周速判定部15は、本発明に係る回転速度検知手段に相当する。 The rotational speed of the vertical main shaft 5 detected by the rotational speed detection sensor 20 is input to the wind turbine peripheral speed determination unit 15 of the control means 4, and the central processing unit 18 of the control means 4 performs the rotor based on the input rotational speed. 2 is calculated. That is, since the outer circumference length (2πr) of the rotor 2 is determined from the rotation radius (r) of the blade 8 of the rotor 2, the outer circumference length (2πr) is multiplied by the rotational speed of the longitudinal main shaft 5. In this case, a peripheral speed (m / s) is obtained. The rotational speed detection sensor 20 and the windmill peripheral speed determination unit 15 correspond to the rotational speed detection means according to the present invention.
 なお、ロータ2の周速は、ブレード8の角速度を、センサにより検出することによっても求めることができる。すなわち、ブレード8の角速度(rad/s)に、その回転半径(r)を乗じた値が、ロータ2の周速となる。 The peripheral speed of the rotor 2 can also be obtained by detecting the angular speed of the blade 8 with a sensor. That is, a value obtained by multiplying the angular velocity (rad / s) of the blade 8 by the rotational radius (r) is the peripheral speed of the rotor 2.
 風車周速判定部15より、ロータ2の平均周速が特定の値、例えば5m/sに達したと判定された場合には、発電機・モータ切替判定部16から切替回路9に出力される判定信号に基づいて、切替回路9をモータ回路から発電回路に切替え、電力再生型モータ3を発電機モードで作用させるようになっている。 When the wind turbine peripheral speed determination unit 15 determines that the average peripheral speed of the rotor 2 has reached a specific value, for example, 5 m / s, it is output from the generator / motor switching determination unit 16 to the switching circuit 9. Based on the determination signal, the switching circuit 9 is switched from the motor circuit to the power generation circuit, and the power regeneration motor 3 is operated in the generator mode.
 次に、上記実施形態に係る風力発電装置1における風車の回転速度制御方法を、図4に示すフローチャートを参照して説明する。
 まず、ロータ2が回転し、発電機・モータ切替判定部16が発電機モードとして作動しているときの平均風速を、風速計17により測定し(S1)、制御手段4の中央処理装置18の演算処理結果に基づいて、平均風速判定部14が、予め定めた平均風速である例えば2m/s以上か否かを判定する(S2)。
Next, a method for controlling the rotational speed of the wind turbine in the wind turbine generator 1 according to the above embodiment will be described with reference to the flowchart shown in FIG.
First, the average wind speed when the rotor 2 rotates and the generator / motor switching determination unit 16 operates in the generator mode is measured by the anemometer 17 (S1), and the central processing unit 18 of the control means 4 Based on the calculation processing result, the average wind speed determination unit 14 determines whether the average wind speed is a predetermined average wind speed, for example, 2 m / s or more (S2).
 平均風速判定部14において、平均風速が2m/s以上と判定した場合には、制御手段4の発電機・モータ切替判定部16から、切替回路9に判定信号が出力され、その判定信号により、切替回路9をモータ回路に切替える(S3)。 When the average wind speed determination unit 14 determines that the average wind speed is 2 m / s or more, a determination signal is output from the generator / motor switching determination unit 16 of the control means 4 to the switching circuit 9, and the determination signal The switching circuit 9 is switched to a motor circuit (S3).
 これにより、それまで発電機モードで作動していた電力再生型モータ3を、モータモードに切り替えて、第2蓄電池13より給電される電力をもって自動的に始動させ(S4)、縦主軸5を強制的に回転させて、風車すなわちロータ2を加速回転させる(S5)。平均風速が2m/sに達していないと判定した場合は、ステップS1に戻り、引き続き平均風速を測定する。 As a result, the power regeneration type motor 3 that has been operating in the generator mode is switched to the motor mode and automatically started with the power supplied from the second storage battery 13 (S4), and the longitudinal main shaft 5 is forced. The windmill, that is, the rotor 2 is accelerated and rotated (S5). If it is determined that the average wind speed has not reached 2 m / s, the process returns to step S1, and the average wind speed is continuously measured.
 電力再生型モータ3を発電機モードからモータモードに切替えると、縦主軸5には、発電機によるコギングトルクが作用しなくなり、モータによりロータ2を速やかに加速回転させることができる。従って、モータモードで作動させている時間は短かく、モータモードで作動させる第2蓄電池13の電力消費量は少なくて済む。 When the electric power regeneration type motor 3 is switched from the generator mode to the motor mode, the cogging torque by the generator does not act on the longitudinal main shaft 5, and the rotor 2 can be quickly accelerated and rotated by the motor. Therefore, the operation time in the motor mode is short, and the power consumption of the second storage battery 13 operated in the motor mode is small.
 平均風速が2m/s以上か否かを判定する理由は、前述した形状の揚力型ブレード8を備える縦軸型のロータ2において、例えばブレード8の回転半径を1m、ブレード8の翼長1.2mとした場合、平均風速が2m/s以上となると、ブレードに生じる揚力によりロータ2の回転が加速され、発電機からの発電電力を出力可能な速度で回転するからである。 The reason why it is determined whether or not the average wind speed is 2 m / s or more is that in the longitudinal rotor 2 including the lift-type blade 8 having the above-described shape, for example, the rotational radius of the blade 8 is 1 m, the blade length of the blade 8 is 1. This is because when the average wind speed is 2 m / s or more in the case of 2 m, the rotation of the rotor 2 is accelerated by the lift generated in the blades, and the generated power from the generator is rotated at a speed that can be output.
 従って、平均風速が2m/s程度の低風速下でロータ2が回転しているときに、電力再生型モータ3をモータモードに切替えて、ロータ2の回転を速やかに加速させると、ブレードに揚力が生じて更に加速され、その後、モータモードから発電機モードに切替えて発電する時の発電効率は高まる。 Therefore, when the rotor 2 is rotating at a low wind speed of about 2 m / s in average wind speed, if the power regeneration type motor 3 is switched to the motor mode and the rotation of the rotor 2 is accelerated rapidly, lift force is exerted on the blades. Is further accelerated, and then the power generation efficiency is increased when power is generated by switching from the motor mode to the generator mode.
 ロータ2の回転をモータモードで加速したのち、回転速度検出センサ20により縦主軸5の平均回転数を検出し、その回転数に基づいて、中央処理装置18が風車すなわちロータ2の周速に換算して、その結果を風車周速判定部15に出力し(S6)、風車周速判定部15が、ロータ2の周速が平均風速2m/sを超える特定の値、例えば5m/sに達したか否かを判定する(S7)。 After accelerating the rotation of the rotor 2 in the motor mode, the rotation speed detection sensor 20 detects the average rotation speed of the longitudinal main shaft 5, and based on the rotation speed, the central processing unit 18 converts the wind turbine, that is, the peripheral speed of the rotor 2. Then, the result is output to the wind turbine peripheral speed determining unit 15 (S6), and the wind turbine peripheral speed determining unit 15 reaches a specific value where the peripheral speed of the rotor 2 exceeds the average wind speed of 2 m / s, for example, 5 m / s. It is determined whether or not (S7).
 ロータ2の周速が5m/sに達したか否かを判定する理由は、上述した形状の揚力型ブレード8を備える縦軸型のロータ2においては、ロータ2の周速が5m/sに達すると、ブレード8の上下両端部の内向き傾斜部8Bの作用とコアンダ効果により、ブレード8に生じる揚力(推力)が増加し、ロータ2は、モータによる助力がなくても、風速を超える周速度に加速しながら効率よく回転して発電し、かつ発電負荷による失速が起きにくくなるからである。 The reason why it is determined whether or not the circumferential speed of the rotor 2 has reached 5 m / s is that in the vertical rotor 2 including the lift-type blade 8 having the above-described shape, the circumferential speed of the rotor 2 is 5 m / s. When it reaches, the lift (thrust) generated in the blade 8 is increased by the action of the inwardly inclined portions 8B at both the upper and lower end portions of the blade 8 and the Coanda effect, and the rotor 2 has a circumference exceeding the wind speed without the assistance of the motor. This is because, while accelerating to the speed, it efficiently rotates to generate power, and stalling due to the power generation load is less likely to occur.
 なお、周速が5m/sの場合のロータ2の回転速度を例示すると、周速、回転速度及び外周の長さには、前述したような関係があるので、例えばブレード8の回転半径(r)を1mとした場合、ロータ2の外周の長さ(2πr)は6.28mとなる。従って、周速5m/sを、外周の長さ6.28mで割り、60を乗じて分速に換算すれば、ロータ2の回転速度は約48rpmとなる。 For example, when the rotational speed of the rotor 2 when the peripheral speed is 5 m / s, the peripheral speed, the rotational speed, and the length of the outer periphery have the relationship as described above. ) Is 1 m, the outer peripheral length (2πr) of the rotor 2 is 6.28 m. Therefore, if the peripheral speed 5 m / s is divided by the outer peripheral length of 6.28 m and multiplied by 60 to be converted into a partial speed, the rotational speed of the rotor 2 is about 48 rpm.
 風車周速判定部15において、ロータ2の周速が5m/sに達したと判定した場合には、制御手段4の発電機・モータ切替判定部16から、切替回路9に判定信号が送信され、その判定信号により、切替回路9を発電回路に切替える(S8)。これにより、電力再生型モータ3は、モータモードから発電機モードに切替えられて始動し(S9)、発電された電力は、第1蓄電池11に蓄電される。 When the wind turbine peripheral speed determination unit 15 determines that the peripheral speed of the rotor 2 has reached 5 m / s, a determination signal is transmitted from the generator / motor switching determination unit 16 of the control means 4 to the switching circuit 9. Based on the determination signal, the switching circuit 9 is switched to the power generation circuit (S8). Thereby, the electric power regeneration type motor 3 is switched from the motor mode to the generator mode and started (S9), and the generated electric power is stored in the first storage battery 11.
 風車周速判定部15が、ロータ2の周速が5m/sに達していないと判定した場合には、ステップS5に戻り、電力再生型モータ3をモータモードに切替えたまま、ロータ2の周速が5m/sに達するまで加速し続ける。 When the wind turbine circumferential speed determination unit 15 determines that the circumferential speed of the rotor 2 has not reached 5 m / s, the process returns to step S5, and the power regeneration type motor 3 is switched to the motor mode and the circumferential speed of the rotor 2 is changed. Continue to accelerate until the speed reaches 5m / s.
 電力再生型モータ3を発電機モードに切替えた後、風速計17により再度平均風速を測定し(S10)、平均風速判定部14が平均風速2m/s以下を検知した場合(S11)には、ステップS3に戻り、前述と同様に、切替回路9をモータ回路に切り替え、電力再生型モータ3を再度モータモードに切り替えて、ロータ2を加速回転させる。このステップS3~S11までをループ状に繰返して、ロータ2の回転速度を制御することにより、発電効率を大幅に高めることができる。 After switching the power regeneration motor 3 to the generator mode, the anemometer 17 measures the average wind speed again (S10), and when the average wind speed determination unit 14 detects an average wind speed of 2 m / s or less (S11), Returning to step S3, similarly to the above, the switching circuit 9 is switched to the motor circuit, the power regeneration motor 3 is switched to the motor mode again, and the rotor 2 is rotated at an accelerated speed. By repeating the steps S3 to S11 in a loop and controlling the rotational speed of the rotor 2, the power generation efficiency can be significantly increased.
 以上説明したように、前記実施形態に係る風車の回転速度制御方法においては、ロータ2の縦主軸5に、発電機モードとモータモードとに切替え可能な電力再生型モータ3を接続しておき、ロータ2が平均風速2m/s程度の低風速下で回転している場合に、ロータ2が自力で加速しながら効率よく回転しうる周速である5m/sに達するように、電力再生型モータ3をモータモードに切替えて速やかに加速し、ロータ2の周速が5m/sに達したときは、電力再生型モータ3を発電機モードに切替えて発電しうるように、ロータ2の回転速度を繰返し制御するようにしているので、ロータ2の回転速度が低い低風速下で、発電量が少ない条件下においても発電電力を大きく変動させることなく、発電効率を高めることができる。 As described above, in the wind turbine rotational speed control method according to the embodiment, the power regeneration type motor 3 that can be switched between the generator mode and the motor mode is connected to the longitudinal main shaft 5 of the rotor 2. When the rotor 2 is rotating at a low wind speed of about 2 m / s on average, the electric power regeneration type motor is designed so that the rotor 2 reaches a peripheral speed of 5 m / s that can be efficiently rotated while accelerating by itself. 3 is switched to the motor mode and accelerated rapidly. When the peripheral speed of the rotor 2 reaches 5 m / s, the rotational speed of the rotor 2 is set so that the power regeneration motor 3 can be switched to the generator mode to generate power. Therefore, the power generation efficiency can be increased without greatly changing the generated power even under the low wind speed where the rotational speed of the rotor 2 is low and the amount of power generated is small.
 また、電力再生型モータ3をモータモードから発電機モードに切替える場合のロータ2の平均周速を、例えばロータ2が自力で加速しながら効率よく回転しうる値である5m/sに設定しておくと、平均周速が5m/sに達したとき、モータを停止しても、発電負荷による失速が起きにくくなるとともに、電力再生型モータ3を頻繁にモータモードに切替える必要がなくなるので、モータ駆動用電源である第2蓄電池13の電力消費量を少なくすることができる。 Further, the average peripheral speed of the rotor 2 when the power regeneration type motor 3 is switched from the motor mode to the generator mode is set to, for example, 5 m / s, which is a value that allows the rotor 2 to rotate efficiently while accelerating by itself. In other words, when the average peripheral speed reaches 5 m / s, stalling due to the power generation load is less likely to occur even if the motor is stopped, and it is not necessary to frequently switch the power regeneration motor 3 to the motor mode. It is possible to reduce the power consumption of the second storage battery 13 that is a driving power source.
 さらに、電力再生型モータ3を縦主軸5に接続しておき、このモータ3を切替回路9によりモータモードに切替えて、ロータ2の回転を加速するようにしてあるので、ロータ2を加速回転させるための専用のモータを別途設置して、それを制御する必要はなく、経済的となる。
 本発明は、上記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内で、次のような種々の変形や変更を施すことが可能である。
Furthermore, since the electric power regeneration type motor 3 is connected to the vertical main shaft 5 and the motor 3 is switched to the motor mode by the switching circuit 9 to accelerate the rotation of the rotor 2, the rotor 2 is accelerated and rotated. There is no need to separately install a dedicated motor for controlling the motor, which is economical.
The present invention is not limited to the embodiment described above, and various modifications and changes such as the following can be made without departing from the scope of the present invention.
 上記実施形態では、平均風速が2m/sとなったことを検知したとき、電力再生型モータ3をモータモードに切替えて始動させ、ロータ2の回転を加速するようにしたが、平均風速が2m/sのときの縦主軸5の平均回転速度を検知するか、または平均風速が2m/sのときのロータ2の周速を検知したときに、電力再生型モータ3をモータモードに切替えて、ロータ2を加速させるようにしてもよい。 In the above embodiment, when it is detected that the average wind speed is 2 m / s, the power regeneration type motor 3 is switched to the motor mode and started to accelerate the rotation of the rotor 2, but the average wind speed is 2 m. When the average rotational speed of the vertical spindle 5 at / s is detected or the peripheral speed of the rotor 2 when the average wind speed is 2 m / s is detected, the power regeneration type motor 3 is switched to the motor mode, The rotor 2 may be accelerated.
 また、上記実施形態では、ロータ2の周速が5m/sに達するまでモータモードにより加速して、モータモードを発電機モードに切替えるようにしたが、前述したように、ロータ2の周速は回転速度に換算できるため、周速が5m/sに達したときのロータ2の回転速度を回転速度センサ20が検出したときに、モータモードを発電機モードに切替えるようにすることもできる。 In the above embodiment, the motor mode is accelerated until the peripheral speed of the rotor 2 reaches 5 m / s and the motor mode is switched to the generator mode. However, as described above, the peripheral speed of the rotor 2 is Since the rotational speed can be converted, the motor mode can be switched to the generator mode when the rotational speed sensor 20 detects the rotational speed of the rotor 2 when the peripheral speed reaches 5 m / s.
 上記実施形態では、電力再生型モータ3をモータモードに切替えて、ロータ2を加速回転させる平均風速を2m/sとしたが、この際の平均風速は、ブレード8の回転半径の大小に対応して適宜に設定される。
 すなわち、例えば、ブレード8の回転半径が上記実施形態の1mより小さい場合には、ロータ2の回転トルクが小さくなって、発電負荷により失速し易くなるので、平均風速を2m/s以上に設定して、ロータ2の回転速度が高いときに、モータモードに切替えてロータ2を加速回転させるようにすればよい。
In the above embodiment, the power regeneration type motor 3 is switched to the motor mode, and the average wind speed for accelerating and rotating the rotor 2 is 2 m / s. The average wind speed at this time corresponds to the rotation radius of the blade 8. Is set appropriately.
That is, for example, when the rotational radius of the blade 8 is smaller than 1 m in the above embodiment, the rotational torque of the rotor 2 becomes small, and it is easy to stall due to the power generation load. Therefore, the average wind speed is set to 2 m / s or more. Thus, when the rotational speed of the rotor 2 is high, the rotor 2 may be accelerated and switched to the motor mode.
 また、ブレード8の回転半径が1mより大きい場合には、ロータ2の回転速度が低くても、回転トルクが大となって発電可能となるので、2m/s以下の平均風速に設定し、ロータ2の回転速度が低いときに、モータモードに切替えてロータ2を加速回転させるようにすればよい。 Further, when the rotation radius of the blade 8 is larger than 1 m, even if the rotation speed of the rotor 2 is low, the rotation torque becomes large and power can be generated. Therefore, the average wind speed is set to 2 m / s or less, and the rotor When the rotational speed of 2 is low, the rotor 2 may be accelerated and switched to the motor mode.
 また、上記実施形態では、ロータ2の周速が5m/sに達したときに、電力再生型モータ3をモータモードから発電機モードに切替えるようにしたが、モータモードから発電機モードに切替える場合のロータ2の周速は、ブレード8の回転半径の大小に応じて適宜に設定される。 In the above embodiment, when the peripheral speed of the rotor 2 reaches 5 m / s, the power regeneration motor 3 is switched from the motor mode to the generator mode. However, when the motor mode is switched to the generator mode. The peripheral speed of the rotor 2 is appropriately set according to the rotation radius of the blade 8.
 上記実施形態では、モータモードで作動させる電源として、太陽光発電パネル12により蓄電された第2蓄電池13を使用しているが、太陽光発電パネル12及び第2蓄電池13を省略し、第1蓄電池11の電力を利用してモータを作動させるようにしてもよい。この際、前述したように、モータモードで作動している時間は短いので、第1蓄電池11の電力消費量を最小限に抑えることができる。 In the above embodiment, the second storage battery 13 stored by the solar power generation panel 12 is used as the power source operated in the motor mode. However, the solar power generation panel 12 and the second storage battery 13 are omitted, and the first storage battery is used. The electric power of 11 may be used to operate the motor. At this time, as described above, since the operation time in the motor mode is short, the power consumption of the first storage battery 11 can be minimized.
 本発明は、特許第4907073号公報の図4に記載されているように、揚力型ブレードを縦主軸に多段状に固定した風力発電装置や、特許第4740580公報、すなわちブレードの先端部が主軸方向(受風方向)に傾斜された横軸風車を備える風力発電装置にも適用可能である。 As described in FIG. 4 of Japanese Patent No. 4907073, the present invention relates to a wind power generator in which lift type blades are fixed to a vertical main shaft in a multistage shape, or Japanese Patent No. 4740580, that is, the tip of the blade is in the main shaft direction. The present invention can also be applied to a wind turbine generator having a horizontal axis wind turbine inclined in the (wind receiving direction).
1 風力発電装置
2 ロータ
3 電力再生型モータ
4 制御手段
5 縦主軸
6 支持枠体
6A 軸受
7A、7B アーム
8 揚力型ブレード
8A 主部
8B 内向き傾斜部
9 切替回路(切替手段)
10 コントローラ
11 第1蓄電池
12 太陽光発電パネル
13 第2蓄電池
14 平均風速判定部
15 風車周速判定部
16 発電機・モータ切替判定部
17 風速計(風速検知手段)
18 中央処理装置
19 歯車
20 回転速度検出センサ
 C 翼厚中心線
 G 基礎
 O 回転軌跡 
DESCRIPTION OF SYMBOLS 1 Wind power generator 2 Rotor 3 Electric power regeneration type motor 4 Control means 5 Vertical main shaft 6 Support frame 6A Bearing 7A, 7B Arm 8 Lift type blade 8A Main part 8B Inward inclined part 9 Switching circuit (switching means)
DESCRIPTION OF SYMBOLS 10 Controller 11 1st storage battery 12 Solar power generation panel 13 2nd storage battery 14 Average wind speed determination part 15 Windmill peripheral speed determination part 16 Generator / motor switching determination part 17 Anemometer (wind speed detection means)
18 Central processing unit 19 Gear 20 Rotation speed detection sensor C Blade thickness center line G Foundation O Rotation locus

Claims (3)

  1.  複数のブレードを備えるロータを有する風車と、
     前記ロータの主軸に接続され、発電機モードとモータモードとに切替可能な電力再生型モータと、
     前記ロータの周速または回転速度を検知する回転速度検知手段と、
     前記ロータに向かう平均風速を検知する風速検知手段と、
     前記電力再生型モータを発電機モードとモータモードとのいずれかに選択的に切替可能な切替手段と、
     前記風車の回転速度を制御する制御手段とを備え、
     前記制御手段は、前記風速検知手段が予め定めた平均風速を検知したときに、前記切替手段が前記電力再生型モータをモータモードに切替え、前記回転速度検知手段が前記ロータの周速または回転速度が特定の値に達したことを検知するまで、前記ロータを加速回転させた後、前記切替手段により前記電力再生型モータを発電機モードに切替えて発電するように制御し、かつ前記風速検知手段が再度、予め定めた平均風速を検知したときに、前記切替手段が前記電力再生型モータを再度モータモードに切替えて、前記ロータの周速または回転速度が特定の値に達するまで加速回転させ、前記切替手段が再度前記電力再生型モータを発電機モードに切替えて発電させるように繰り返し制御するようになっていることを特徴とする風力発電装置。
    A windmill having a rotor with a plurality of blades;
    A power regeneration type motor connected to the main shaft of the rotor and switchable between a generator mode and a motor mode;
    Rotation speed detection means for detecting the circumferential speed or rotation speed of the rotor;
    Wind speed detection means for detecting an average wind speed toward the rotor;
    Switching means capable of selectively switching the power regeneration type motor to either a generator mode or a motor mode;
    Control means for controlling the rotational speed of the windmill,
    When the wind speed detecting means detects a predetermined average wind speed, the control means switches the electric power regeneration type motor to a motor mode, and the rotational speed detecting means allows the circumferential speed or rotational speed of the rotor. Until the rotor reaches a specific value, the rotor is accelerated to rotate, and the switching means controls the power regeneration type motor to switch to the generator mode to generate power, and the wind speed detecting means. When the predetermined average wind speed is detected again, the switching means switches the power regeneration type motor to the motor mode again, and accelerates rotation until the circumferential speed or rotational speed of the rotor reaches a specific value, The wind power generator is characterized in that the switching means is repeatedly controlled so that the electric power regeneration type motor is switched to the generator mode to generate power again.
  2.  前記風車は、先端部に傾斜部を形成した複数の揚力型ブレードを有するロータを備える縦軸風車または横軸風車であることを特徴とする請求項1に記載の風力発電装置。 2. The wind turbine generator according to claim 1, wherein the wind turbine is a vertical axis wind turbine or a horizontal axis wind turbine including a rotor having a plurality of lift-type blades each having an inclined portion formed at a tip portion.
  3.  前記電力再生型モータをモータモードに切替えて作動させる電源として、太陽光発電パネルにより発電された電力を使用することを特徴とする請求項1または2に記載の風力発電装置。 The wind power generator according to claim 1 or 2, wherein power generated by a photovoltaic power generation panel is used as a power source for operating the electric power regeneration type motor by switching to a motor mode.
PCT/JP2016/075527 2015-09-11 2016-08-31 Wind power generation device WO2017043395A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680051936.4A CN108026896B (en) 2015-09-11 2016-08-31 Wind power generation plant
KR1020187010163A KR20180053346A (en) 2015-09-11 2016-08-31 Wind power device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015179432A JP6649727B2 (en) 2015-09-11 2015-09-11 Wind power generator
JP2015-179432 2015-09-11

Publications (1)

Publication Number Publication Date
WO2017043395A1 true WO2017043395A1 (en) 2017-03-16

Family

ID=58240809

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/075527 WO2017043395A1 (en) 2015-09-11 2016-08-31 Wind power generation device

Country Status (4)

Country Link
JP (1) JP6649727B2 (en)
KR (1) KR20180053346A (en)
CN (1) CN108026896B (en)
WO (1) WO2017043395A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110873025B (en) * 2018-09-04 2022-01-14 郑州宇通重工有限公司 Sanitation truck exhaust energy recovery control method and device and sanitation truck
CN111072096B (en) * 2020-01-13 2020-12-18 武汉理工大学 Closed water area water quality improving device based on photocatalysis

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08322298A (en) * 1995-05-24 1996-12-03 Yamaha Motor Co Ltd Wind power generating apparatus
JP2008215156A (en) * 2007-03-02 2008-09-18 Matsushita Electric Ind Co Ltd Wind power generation apparatus
JP4907073B2 (en) * 2004-10-20 2012-03-28 株式会社グローバルエナジー Vertical axis windmill

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2038559U (en) * 1988-04-15 1989-05-31 北京工业大学 Wind-electricity and photoelectricily complementary device
US7360995B2 (en) * 2003-10-22 2008-04-22 Global Energy Co., Ltd. Vertical axis windmill
CA2696973C (en) * 2010-02-10 2013-01-15 Mitsubishi Heavy Industries, Ltd. Wind turbine generator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08322298A (en) * 1995-05-24 1996-12-03 Yamaha Motor Co Ltd Wind power generating apparatus
JP4907073B2 (en) * 2004-10-20 2012-03-28 株式会社グローバルエナジー Vertical axis windmill
JP2008215156A (en) * 2007-03-02 2008-09-18 Matsushita Electric Ind Co Ltd Wind power generation apparatus

Also Published As

Publication number Publication date
JP6649727B2 (en) 2020-02-19
KR20180053346A (en) 2018-05-21
CN108026896B (en) 2021-03-26
CN108026896A (en) 2018-05-11
JP2017053307A (en) 2017-03-16

Similar Documents

Publication Publication Date Title
TWI726895B (en) Rotation speed control method of windmill and wind power generation device
CN109072876B (en) Wind power generation method and wind power generation device
JP3262257B2 (en) Electric vehicle control device and control method
WO2017043395A1 (en) Wind power generation device
JP6774172B2 (en) Wind power generation method
JP6714398B2 (en) Wind power generation method in multi-stage vertical wind turbine
US7518258B1 (en) System for operating a generator as a motor in a turbine wind power generating system
JP6917673B2 (en) Windmill rotation speed control method
JP6917674B2 (en) Wind power generator
JP6337211B2 (en) Start control method and system of air conditioner and outdoor fan thereof
JP2010200533A (en) Wind power generation system and method for controlling stall of the same
JP6609129B2 (en) Wind power generator
JP2017053304A5 (en)
JP2017053303A5 (en)
JP3788925B2 (en) Wind power generator using permanent magnet type synchronous generator and its starting method
JP4920315B2 (en) Wind power generation control system and inverter device
JP6609128B2 (en) Windmill rotational speed control method
JP2017020374A5 (en)
JP2017020373A5 (en)
KR101448540B1 (en) Start-up and braking control of a wind turbine
WO2017159550A1 (en) Method for generating wind power using multi-stage vertical axis wind turbine, and multi-stage vertical axis wind power generation device
JP4040939B2 (en) Wind power generation apparatus and wind power generation method using the same
JP2010268571A (en) Radial motor
WO2019235524A1 (en) Vertical axis wind turbine-type wind power generation device
JP2017172392A (en) Multistage vertical shaft wind power generation device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16844256

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187010163

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 16844256

Country of ref document: EP

Kind code of ref document: A1