WO2017042416A1 - Método para la separación de la fracción unida a glucosaminoglicanos y sus aplicaciones - Google Patents

Método para la separación de la fracción unida a glucosaminoglicanos y sus aplicaciones Download PDF

Info

Publication number
WO2017042416A1
WO2017042416A1 PCT/ES2016/070637 ES2016070637W WO2017042416A1 WO 2017042416 A1 WO2017042416 A1 WO 2017042416A1 ES 2016070637 W ES2016070637 W ES 2016070637W WO 2017042416 A1 WO2017042416 A1 WO 2017042416A1
Authority
WO
WIPO (PCT)
Prior art keywords
level
variant
disease
gags
subject
Prior art date
Application number
PCT/ES2016/070637
Other languages
English (en)
French (fr)
Inventor
Manuela ALONSO SAMPEDRO
Víctor ÁLVAREZ GONZÁLEZ
Cristóbal COLÓN MEJERAS
Miguel A. GARCÍA GONZÁLEZ
Olaya LAMAS GONZÁLEZ
Original Assignee
Universidade De Santiago De Compostela
Servizo Galego De Saude (Sergas)
Fundación Ramón Domínguez
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidade De Santiago De Compostela, Servizo Galego De Saude (Sergas), Fundación Ramón Domínguez filed Critical Universidade De Santiago De Compostela
Priority to ES16843721T priority Critical patent/ES2878194T3/es
Priority to US15/759,321 priority patent/US10725050B2/en
Priority to EP16843721.8A priority patent/EP3349007B1/en
Publication of WO2017042416A1 publication Critical patent/WO2017042416A1/es

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6803General methods of protein analysis not limited to specific proteins or families of proteins
    • G01N33/6827Total protein determination, e.g. albumin in urine
    • G01N33/6839Total protein determination, e.g. albumin in urine involving dyes, e.g. Coomassie blue, bromcresol green
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6893Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids related to diseases not provided for elsewhere
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5091Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing the pathological state of an organism
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/58Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances
    • G01N33/585Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances with a particulate label, e.g. coloured latex
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/92Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving lipids, e.g. cholesterol, lipoproteins, or their receptors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/46Assays involving biological materials from specific organisms or of a specific nature from animals; from humans from vertebrates
    • G01N2333/47Assays involving proteins of known structure or function as defined in the subgroups
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/76Assays involving albumins other than in routine use for blocking surfaces or for anchoring haptens during immunisation
    • G01N2333/765Serum albumin, e.g. HSA
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2400/00Assays, e.g. immunoassays or enzyme assays, involving carbohydrates
    • G01N2400/10Polysaccharides, i.e. having more than five saccharide radicals attached to each other by glycosidic linkages; Derivatives thereof, e.g. ethers, esters
    • G01N2400/38Heteroglycans, i.e. polysaccharides having more than one sugar residue in the main chain in either alternating or less regular sequence, e.g. gluco- or galactomannans, e.g. Konjac gum, Locust bean gum, Guar gum
    • G01N2400/40Glycosaminoglycans, i.e. GAG or mucopolysaccharides, e.g. chondroitin sulfate, dermatan sulfate, hyaluronic acid, heparin, heparan sulfate, and related sulfated polysaccharides
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/04Endocrine or metabolic disorders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/04Endocrine or metabolic disorders
    • G01N2800/042Disorders of carbohydrate metabolism, e.g. diabetes, glucose metabolism
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/34Genitourinary disorders
    • G01N2800/347Renal failures; Glomerular diseases; Tubulointerstitial diseases, e.g. nephritic syndrome, glomerulonephritis; Renovascular diseases, e.g. renal artery occlusion, nephropathy
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/50Determining the risk of developing a disease
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/52Predicting or monitoring the response to treatment, e.g. for selection of therapy based on assay results in personalised medicine; Prognosis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/56Staging of a disease; Further complications associated with the disease

Definitions

  • the present invention belongs to the field of glycobiology.
  • it refers to a method for the separation in biological samples of the fraction bound or associated with sulfated glycosaminoglycans and their applications in biomedicine.
  • Glycosaminoglycans are large unbranched polysaccharides consisting of repeated sequences of disaccharides, where one of the components is always an amino sugar (D-galactosamine or D-glucosamine) and the other component is a uronic acid, such as L-glucuronic or L-iduronic, with the exception of keratan sulfate. With the exception of hyaluronic acid, all GAGs have sulfate groups, such as O-esters or N-sulfate.
  • GAGs are part of proteoglycans and lipids.
  • Proteoglycans are a specific type of glycoproteins that have at least one protein-bound GAG chain, and that are classified based on the GAG chain present.
  • Glycosylation of molecules is a posttranslational enzymatic process carried out in the endoplasmic reticulum and in the Golgi apparatus. Glycosylation reactions are carried out by enzymes called glycosyltransferases, from monosaccharide precursors of endogenous and exogenous origin.
  • MPS mucopolysaccharidoses
  • Specific GAG test methods have also been developed, which try to identify the types of GAG that are excessively excreted and help a better diagnosis, since different types of MPS are associated with the increased excretion of specific GAGs.
  • These include chromatographic methods, such as HPLC, which, although sensitive and specific, are not suitable for mass screening due to their high price and the required analysis time; ELISA methods, which are commercially available for some types of GAG, but have not been developed for the detection of all GAGs; and tandem mass spectrometry methods, which have the disadvantage of being complex due to the molecular heterogeneity of GAGs and difficult to apply for mass screening.
  • kidney disease There are also diseases related to acquired disorders of glycosylation, such as kidney disease. Acquired or congenital kidney disease is a world-wide public health problem. A recent prospective study in the United States indicates that 54% of adults between 30-49 years old, 52% of adults between 50-64 years old, and 42% of adults over 65 years old are affected for chronic kidney disease and an increase between 13.2% and 14.4% is expected in 2020, and 16.7% in 2030.
  • the authors of the present invention have developed a new method for the separation of the sulfated glycosaminoglycan (GAG) bound fraction into biological samples.
  • GAG glycosaminoglycan
  • This method allows the study of alterations in the glycosylation of GAGs in a simple, fast, economical way that requires a very small amount of sample (microliters).
  • This method has numerous applications in biomedicine, such as the diagnosis and prognosis of diseases that occur with alterations in GAG levels, the search for biomarkers for the diagnosis of these diseases, the monitoring of the pathology or the treatment of it, etc.
  • Traditional methods require high sample volumes and many previous steps.
  • the method of the present invention is based on the fact that GAGs, depending on the tissue in which they are found, tend to appear associated with other molecules, either for functional reasons or for mechanical interactions. Although some interference in the state of the art already described interference in the measurements due to other molecules that, invariably, were purified along with them, no one sought a further practical application to this association.
  • the present invention is related to the ability of the dimethylmethylene blue dye (DMB), at an acidic pH, to produce complexes with sulphated GAGs that give rise to turbidity formation, followed rapidly by the precipitation of this DMB-GAG complex in about 15 minutes. After centrifugation, the precipitate contains only the fraction bound to sulfated GAGs. The rest is removed from the sample. This precipitate can then be used for the analysis of the fraction by various techniques such as denaturing electrophoresis in polyacrylamide gels (SDS-PAGE) and staining with a dye for the visualization of proteins such as Sypro Ruby.
  • SDS-PAGE polyacrylamide gels
  • the bands obtained in the Electrophoresis can be identified by Western blotting or they can also be cleaved for identification by proteomics.
  • the method of the invention combines the property of DMB to specifically bind and precipitate sulfated GAGs with protein and / or lipid analysis techniques.
  • this method has a very high potential, since it can be used in studies in which glycation / glycosylation plays an important role and allows the discovery of new biomarkers for diagnosis, prognosis or monitoring of pathologies, new therapeutic targets and new cell communication pathways.
  • the present invention relates to an in vitro method for separating free sulfated glycosaminoglycans (GAG) and the fraction bound or associated with sulfated GAGs from a sample as defined in claims 1 to 5 .
  • GAG glycosaminoglycans
  • the second and third aspects of the invention relate to an in vitro method of identifying the profile of proteins bound or associated with sulfated GAGs of a sample as defined in claims 6 to 12.
  • the invention relates to an in vitro method of identifying the profile of lipids bound or associated with sulfated GAGs of a sample as defined in claim 13.
  • the invention relates to an in vitro method for detecting an alteration in the glycosylation pattern by sulfated GAGs of a sample as defined in claim 14.
  • the invention also relates to diagnostic methods, methods for determining the prognosis, for monitoring the progression, for monitoring the effect of a therapy and for the identification of suitable compounds for the treatment of diseases associated with an alteration (increase or decrease) of one or more sulfated GAGs as defined in claims 15 to 35.
  • the invention also relates to the use of the method of the second, third, fourth or fifth aspects to identify protein or lipid biomarkers bound or associated with sulfated GAGs.
  • the invention relates to an in vitro method for diagnosing mucopolysaccharidosis in a subject comprising detecting in a urine sample of said subject the presence of the signal peptide SEQ ID NO: 1 of uromodulin or a variant thereof.
  • the invention also relates to methods for determining the prognosis, for monitoring the progression of a subject, for monitoring the effect of a therapy, for designing a personalized therapy or for selecting a patient capable of being treated with a therapy for prevention and / or treatment of mucopolysaccharidosis, and methods for the identification of compounds suitable for the treatment of mucopolysaccharidosis as defined in claims 46 to 51.
  • the invention relates to the use of an agent capable of detecting the signal peptide SEQ ID NO: 1 of uromodulin or a variant thereof in a urine sample to diagnose mucopolysaccharidosis, to determine the prognosis or to monitor the progression of a subject suffering from mucopolysaccharidosis, to monitor the effect of a therapy on a subject suffering from mucopolysaccharidosis, to design a personalized therapy in a subject that has symptoms of mucopolysaccharidosis, to select a patient susceptible to being treated with a therapy for prevention and / or treatment of mucopolysaccharidosis or for the identification of suitable compounds for the treatment of mucopolysaccharidosis, where the agent capable of detecting the signal peptide SEQ ID NO: 1 of uromodulin or a variant thereof is selected from the group consisting of an enzyme capable to specifically recognize an amino acid sequence of the signal peptide of SEQ ID NO: 1 from the uromodulin or a variant
  • the invention relates to the use of the signal peptide SEQ ID NO: 1 of uromodulin or a variant thereof as a diagnostic marker, prognosis, monitoring of the progression of a subject suffering from mucopolysaccharidosis, or as marker for monitoring the effect of a therapy, marker for designing a personalized therapy, selection marker for a patient susceptible to being treated with a therapy for the prevention and / or treatment of mucopolysaccharidosis or as a marker for the identification of suitable compounds for treatment of mucopolysaccharidosis.
  • the invention relates to methods of diagnosis, prognosis or monitoring of the progression of renal disease, monitoring of the effect of a therapy, methods for designing a personalized therapy or for selecting a patient capable of being treated with a therapy for prevention and / or treatment of renal disease and methods for the identification of suitable compounds for the treatment of renal disease as defined in claims 55 to 61.
  • the invention relates to the use of an agent capable of detecting uromodulin or a variant thereof bound or associated with sulfated GAGs selected from the group consisting of an enzyme capable of specifically recognizing an amino acid sequence of the uromodulin or a variant thereof and cleaving it, an antibody, an aptamer and fragments thereof that specifically bind to uromodulin or a variant thereof and / or an agent capable of detecting albumin or a variant thereof bound or associated with sulfated GAGs selected from the group consisting of an enzyme capable of specifically recognizing an amino acid sequence of the albumin or a variant thereof and cleaving it, an antibody, an aptamer and fragments thereof that are specifically bind albumin or a variant thereof in a urine sample to diagnose kidney disease, to determine prognosis or to monitor the progression of a subject suffering from kidney disease, to monitor the effect of a therapy on a subject suffering from kidney disease, to design a personalized therapy on a subject that has symptoms of kidney disease,
  • the invention relates to the use of uromodulin or a variant thereof bound or associated with sulphated and / or albumin GAGs or a variant thereof bound or associated with sulfated GAGs as a diagnostic marker of renal disease, as a prognostic marker of renal disease, as a marker for monitoring the effect of a therapy on a subject suffering from renal disease, as a marker for designing a personalized therapy on a subject who has symptoms of renal disease, as a marker for selecting a patient susceptible to being treated with a therapy for the prevention and / or treatment of kidney disease or as a marker for the identification of suitable compounds for the treatment of kidney disease.
  • the invention in another aspect, relates to an in vitro method for diagnosing advanced kidney disease in a subject comprising detecting the level of uromodulin complexes or a variant thereof-GAG sulphated-exosomes in a urine sample of said subject and comparing said level with a reference value where a decreased level of the uromodulin complexes or a variant thereof - GAG sulphated-exosomes with respect to the reference value is indicative that the subject suffers from advanced kidney disease.
  • the invention also relates to methods for determining the prognosis or for monitoring the progression of advanced kidney disease, or for monitoring the effect of a therapy, designing a personalized therapy or selecting a patient capable of being treated with a therapy for the treatment of disease.
  • the invention relates to the use of an agent capable of detecting uromodulin complexes or a variant thereof-GAG sulphated-exosomes in a urine sample to diagnose advanced kidney disease, to determine the prognosis or to monitor the progression of a subject suffering from advanced kidney disease, to monitor the effect of a therapy on a subject suffering from advanced kidney disease, to design a personalized therapy on a subject that has symptoms of advanced kidney disease, to select a patient susceptible to being treated with a therapy for the treatment of advanced renal disease or for the identification of suitable compounds for the treatment of advanced renal disease, where the agent capable of detecting uromodulin complexes or a variant thereof-GAG sulphated-exosomes is selected from the group consisting of a enzyme capable of specifically recognizing an amino acid sequence of uromodulin or a variant thereof and cleaving it, an antibody, an aptamer and fragments thereof that specifically bind to uromodulin or a variant thereof.
  • the invention relates to the use of a uromodulin complex or a variant thereof-GAG sulphated-exosomes as a diagnostic marker for advanced renal disease, as a prognostic marker for advanced renal disease, as a marker for monitoring the effect of a therapy in a subject suffering from advanced kidney disease, as a marker to design a personalized therapy in a subject that has symptoms of advanced kidney disease, as a selection marker of a patient susceptible to being treated with a therapy for the treatment of advanced kidney disease or as a marker for the identification of suitable compounds for the treatment of advanced kidney disease.
  • the invention relates to a complex formed by the association of uromodulin or a variant thereof, sulphated GAGs and exosomes.
  • the invention in another aspect, relates to a kit comprising dimethylmethylene blue (DMB) at a concentration between 0.01 and 100 mM at a pH between 2 and 6.9.
  • DMB dimethylmethylene blue
  • the invention in another aspect, relates to a kit comprising an antibody capable of specifically detecting a peptide of sequence SEQ ID NO: 1 or a variant thereof, and unable to detect mature uromodulin, or a fragment of said antibody capable of to join the sequence SEQ ID NO: 1 or a variant thereof.
  • the invention relates to the use of the kit of the invention to separate the free sulfated GAGs and the fraction bound or associated to the sulphated GAGs of a sample, to identify the profile of proteins bound or associated to the sulphated GAGs of a sample, to identify the profile of lipids bound or associated with sulfated GAGs of a sample, to detect an alteration in the glycosylation pattern by sulphated GAGs, to diagnose a disease, to determine the prognosis of a disease, to monitor the progression of a disease, to monitor the effect of a therapy for the treatment of a disease, to predict the response to a therapy, to design a personalized therapy, for the identification of suitable compounds for the treatment of a disease, to identify bound or associated protein or lipid biomarkers to sulfated GAGs or to detect complexes formed by exosomes, sulphated GAGs and a protein.
  • Figure 1 Molecular structures of glycosaminoglycans (GAG) chondroitin sulfate, keratan sulfate, hyaluronate, dermatan sulfate and heparan sulfate.
  • GAG glycosaminoglycans
  • Figure 2 Molecular structure of the DMB.
  • Figure 3 Scheme of the invention and its applications in biomedicine.
  • DMB dimethylmethylene blue
  • min minutes
  • t room temperature
  • GAGs glycosaminoglycans.
  • Figure 4 SDS-PAGE showing the pattern of GAG-bound protein bands in urine of control individuals (16 men and 16 women aged 30-49) and the identification of uromodulin by Western blot.
  • Figure 5 2-dimensional electrophoresis (pH 3-6 strips and 7.5% PAGE gels) of DMB precipitated urine from two male control individuals and identification of uromodulin by Western blot.
  • Figure 6 Total protein band pattern and in the GAG-bound fraction in urine and serum of control individuals and with renal insufficiency (left). Identification of the GAG bound albumin present by Western blot. IR, individuals with renal insufficiency; ST, molecular weight marker; Alb, albumin; S, serum without precipitating; Or, urine without precipitating; D, serum or urine precipitated with DMB.
  • Figure 7 Union between commercial uromodulin and / or commercial albumin with commercial GAG (heparan, chondroitin and dermatan sulfate) in PBS (cyd) or uromodulin-free urine (a and b) of a patient with a truncated mutation in the uromodulin gene.
  • GAG heparan, chondroitin and dermatan sulfate
  • FIG. 8 Pattern of glucosaminoglycan-bound protein bands in urine of patients with mucopolysaccharidosis (MPS) and their respective controls (sex and age similar to patients), as well as the identification of uromodulin and albumin by Western blot.
  • MPS I a 4-year-old female patient with MPS I; 1-1, I-2, I-3 and I-4, healthy controls of the same age and sex as the MPS I patient; MPS VII, 6 year old female patient with MPS VII; VI 1-1, healthy control of the same age and sex as the MPS patient VII.
  • MPS II male patients 6 and 8 years with MPS-II; 11-1,
  • III- 2, III-3, III-4, III-5 and III-6 healthy controls of the same age and sex as MPS I II patients.
  • MPS IV a 17-year-old female patient, and two 14-year-old male patients with MPS IV, respectively; IV-1, IV-2, IV-3 and IV-4, healthy controls of the same age and sex as MPS IV patients.
  • the levels of total glycosaminoglycans (mg / mmol creatinine) measured by the traditional method with DMB are shown in the upper part, the elevated values with respect to the reference are shown in gray and normal values are shown in black.
  • ST molecular weight marker.
  • Figure 9 2-dimensional electrophoresis (pH 3-6 strips and 7.5% SDS-PAGE gels) of DMB precipitated urine from patients with MPS.
  • Figure 10 Protein profile associated with GAG in the urine of control individuals, patients with type 1 PKD and patients with type 2 PKD.
  • the first column represents the molecular weight markers.
  • the next seven columns show the uromodulin precipitated with GAG after incubation with DMB and denaturation (30 ⁇ of precipitated protein is loaded per column) in samples from different PKD1 or PKD2 patients. Creat, creatinine.
  • Figure 11 Differences observed in the GAG-bound protein profile between urine supernatants and their respective cell pellets as renal function deteriorates.
  • Figure 12 Identification and characterization of UMOD-GAG-exosome (UGE) complexes by electron microscopy (a), size (b), zeta (c) and Western blot (d) images of purified and precipitated exosomes with DMB where 30 ⁇ of precipitated protein is loaded per column.
  • the first 3 columns of Figure 12 (d) belong to exosomes purified by ultracentrifugation and columns 4 and 5 belong to exosomes purified by gradient with a commercial kit (ExoQuick_TC, System Biosciences).
  • Lane 1 purified and filtered exosomes without precipitating with DMB; Lane 2, purified, filtered and precipitated exosomes with DMB; Lanes 3 and 4, supernatants of the exosomal fractions filtered, and filtered and precipitated with DMB, respectively; Lanes 5 and 6, purified exosomes without precipitating and precipitated with DMB, respectively; Lanes 7 and 8, supernatants of the non-precipitated exosomal fractions, and precipitated with DMB, respectively, c) Lanes 1-4, cell fraction remaining after purifying exosomes, precipitated with DMB, treated with DTT or treated with DTT and precipitated with DMB , respectively; Lane 5, purified, filtered and treated with DTT exosomes; Lane 6, purified, filtered, DTT treated and DMB precipitated exosomes; Lanes 7 and 8, supernatants of exosomal fractions filtered and treated with DTT with or without precipitation with DMB, respectively.
  • FIG. 15 Schematic representation of the CGU complexes with the possible associations between the three elements that comprise it, a) exosomes associated with GAGs through uromodulin, b) exosomes directly associated with GAGs without the need for uromodulin as a bridge.
  • FIG. 16 UGE complexes disappear as kidney disease progresses.
  • a representative gel of 3 patients with polycystic kidney disease caused by mutations in the PKD2 gene is shown a) Lanes 1, 4 and 7, supernatants of the exosomal fraction without precipitating; Lanes 2, 5 and 8, exosomal fraction without precipitating; Lanes 3, 6 and 9, exosomal fraction precipitated with DMB; St, molecular weight marker, b) Electron microscopy images of the UGE complexes. in an individual with normal renal function (left) and absence of UGE complexes in an individual without uromodulin and with renal damage (right).
  • FIG. 17 Separation of urine-free GAGs precipitated with DMB in cellulose acetate gels.
  • C + mixture of chondroitin sulfate (Con), dermatan sulfate (Der) and commercial heparan sulfate (Hep) precipitated with DMB; lanes MPS I, MPS II, MPS III and MPS IV, urine precipitated with DMB from patients with mucopolysaccharidosis I, II, III and IV, respectively; lanes 1, 2, 3, 4, 5, 6 and 7, urine precipitated with DMB from individuals without mucopolysaccharidosis of different ages (1 month, 7 months, 1 year, 3 years, 4 years, 6 years and 7 years, respectively) , where the only GAG present is chondroitin sulfate. That, band corresponding to the keratan sulfate characteristic of MPS IV.
  • the invention relates to an in vitro method (called “first method of the invention") for separating free sulfated glycosaminoglycans (GAG) and the fraction bound or associated with sulfated GAGs from a sample comprising:
  • DMB blue dimethylmethylene dye
  • glycosaminoglycan or "GAG”, also called mucopolysaccharide, as used herein, refers to a heteropolysaccharide consisting of repetitions of disaccharide units.
  • Glycosaminoglycans are linear chains where alternating ⁇ 1 ⁇ 3 bonds with ⁇ 1 ⁇ 4 bonds of a uric acid (D-glucuronic or L-iduronic acid) linked by a ⁇ 1 ⁇ 3 link to an amino sugar (N-acetyl-glucosamine or N - acetylgalactosamine).
  • GAGs differ according to the nature of the disaccharide units that constitute them, the length of the disaccharide chain (10-150 units) and their modifications (N-sulphation, O-sulphation, N-acetylation or epimerization of the units of saccharides).
  • AH hyaluronic acid
  • C4S chondroitin-4-sulfate
  • C6S chondroitin-6-sulfate
  • DS dermatan sulfate
  • HS heparan sulfate
  • Sister Heparin
  • sulfated glycosaminoglycan or "sulfated GAG”, also called sulfated mucopolysaccharide, as used herein, refers to those GAGs that have at least one sulfate group. With the exception of hyaluronic acid, all GAGs are sulfated.
  • chondroitin-4-sulfate C4S
  • C6S chondroitin-6-sulfate
  • DS dermatan sulfate
  • QS keratan sulfate
  • HS heparan sulfate
  • Sister Heparin
  • GAGs can be found in a sample in free form, either bound or associated with other components.
  • GAG sulphated free means those that are not bound or associated with any other component.
  • sulfated GAGs can be found bound to other compounds forming glycoconjugates, such as glycoproteins, proteoglycans and lipids bound or associated with GAG.
  • glycoprotein or “glycoprotein”, as used herein, refers to a molecule normally composed of one or more oligosaccharides covalently linked to specific side chains of polypeptides. They usually have a higher percentage of proteins than carbohydrates.
  • At least one of the carbohydrates that make up the glycoprotein must be a sulfated GAG.
  • the most common types of glycoproteins found in eukaryotic cells are defined according to the nature of the protein-binding regions, the most frequent being those of type N and O.
  • N-glycans are a chain of oligosaccharides linked covalently. to an asparagine residue of a polypeptide chain within an Asn-X-Ser / Thr consensus sequence, generally via N-acetylglucosamine (Glc-NAc).
  • the O-glycans are an oligosaccharide chain covalently linked to a serine or threonine residue (Ser / Thr-O) generally via an N-acetylgalactosamine (GalNAc).
  • proteoglycan refers to a specific type of glycoproteins that have at least one GAG chain bound to the protein, and are classified based on the GAG chain present.
  • GAGs bound to the protein must be sulphated GAGs.
  • Heparan sulfate and chondroitin sulfate are the most common GAG of proteoglycans.
  • Many proteoglycans also contain other glycans linked by N- or O-glycosidic type bonds. These compounds may vary in terms of their tissue distribution, nature of the central protein, their function and the GAGs attached to them. The carbohydrate content is higher than that of glycoproteins, reaching in some cases up to 95% of their weight, and both the sequence and the arrangement of the structural domains that conform them are highly conserved and slightly glycated.
  • lipid bound or associated with GAG refers to a molecule formed by one or more sulfated GAGs bound to lipids by a covalent bond or associated with them in some other way.
  • sulfated GAG-linked fraction of a sample is meant any compound that is bound to sulfated GAGs by a covalent bond. Examples of these compounds are, without limitation, sulfated GAG-containing glycoproteins and proteoglycans.
  • the sulfated GAG-bound fraction is a protein fraction. In another preferred embodiment the sulfated GAG-bound fraction is a lipid fraction.
  • sulfated GAG-associated fraction of a sample is meant any compound or structure that is not bound to sulfated GAGs by a covalent bond, but that sulfated GAGs and the compound or structure are held together through other types of interactions, such as ionic interactions, dipole-dipole interactions, van der Waals interactions or hydrogen bonds, among others.
  • the sulfated GAG-associated fraction is a fraction that contains exosomes, more preferably, a fraction that contains exosomes and one or more proteins.
  • exosomes refers to small extracellular nanovesicles (50-200 nm) surrounded by membranes that come from the endocytic pathway and that are released by different cell types to most of the biological fluids, including urine. They are also secreted by cells in vitro. Among the functions attributed to them are, among others, the intercellular traffic of membrane and RNA receptors, the induction of immunity and antigen presentation, the modulation of bone mineralization and antiapoptotic responses. Its membranes are rich in proteins involved in transport and fusion, and also in lipids such as cholesterol, sphingolipids, ceramides, etc.
  • the exosomes are identified because when they are separated in a sucrose gradient they show a density range between 1, 13 and 1, 19 g / ml and because they have a series of markers such as CD63, CD81, CD9, ALIX, FLOT1, ICAM1, EpCam, ANXA5, TSG101 and Hsp70 that can be detected, for example, by antibodies.
  • the fraction associated with sulfated GAGs of the invention can be an exosome from any type of sample, for example, without limitation, an exosome from cell culture media, blood, urine, amniotic fluid and ascites fluid. In a preferred embodiment the exosomes have been isolated from the urine. Methods for isolating exosomes from samples and biological fluids are well known to those skilled in the art.
  • the fraction associated with Sulfated GAGs is a complex formed by uromodulin (or a variant thereof) and exosomes.
  • the sulfated GAG-associated fraction is a complex formed by albumin (or a variant thereof) and exosomes.
  • the sulfated GAG-associated fraction is a complex formed by IgA (or a variant thereof) and exosomes.
  • the sulfated GAG-associated fraction is a complex formed by IgG (or a variant thereof) and exosomes.
  • sample in the context of the first method of the invention, refers to any type of sample that contains or is capable of containing sulfated GAGs.
  • sample is a biological sample.
  • biological sample refers to any material from a human being, from animals or from plants that can house information about its genetic endowment.
  • biological samples that can be used in the present invention are, without limitation, urine samples, serum, plasma, tissues, cells, exosomes, synovial fluid, vitreous humor, cerebrospinal fluid, skin, intestinal mucosa, peritoneal fluid, arterial wall , bone, cartilage, embryonic tissue and umbilical cord, etc.
  • the biological sample is a urine sample.
  • the biological sample is a sample of exosomes, preferably a sample of exosomes previously isolated from a subject, more preferably a sample of exosomes isolated from the urine of a subject.
  • the biological sample is a serum or plasma sample.
  • the sample is obtained in the conditions and in the container that best suits to preserve its integrity.
  • urine the second morning urine must be collected, discarding the first urination, in protease-free containers.
  • blood it should be collected in the appropriate tube as desired by working with serum (biochemical tube or STII) or with plasma (tube with anticoagulant, for example heparin).
  • the starting sample is processed according to its nature and especially before its possible storage.
  • a separation of the non-soluble cell fraction and its supernatant must be performed.
  • Blood samples should be separated from the cell fraction of serum or plasma according to standard conditions.
  • Samples should be stored at low temperatures, ideally at - 80 ° C.
  • the freeze-thaw cycles can compromise the integrity of the samples and lead to underestimations of the GAG content and its bound or associated fraction.
  • exosomes are obtained from the urine supernatant obtained as described above, subjecting it to centrifugation at 5,000 g for 20 minutes, followed by filtration through 0.22 ⁇ filters of low protein adsorption and subsequently ultracentrifugation at 100,000 g for 2 hours.
  • the exosomes are resuspended in a buffer, for example PBS, and stored at -20 ° C.
  • Exosomes can also be isolated by commercial kits.
  • obtaining the sample must be accompanied by obtaining as much information as possible from the patient's medical history as well as all the biochemical parameters available for the correct interpretation of the results. It is convenient to make a preliminary classification of the pathological stage in which the individual is before sampling.
  • the first step of the first method of the invention consists in contacting the sample from which the free sulphated GAGs or the sulfate bound or associated GAG fraction is separated with the blue dimethylmethylene dye (DMB) at an acidic pH between 2 and 6.9.
  • DMB dimethylmethylene dye
  • dimethylmethylene blue refers to a cationic dye also known as 1,9-dimethylmethylene blue, which comprises the compound 3,7-bis (dimethylamino) -1, 9-dimethyldiphenothiazin-5-io and any salt thereof.
  • salts with anions derived from inorganic acids, for example and without limitation, hydrochloric, sulfuric, phosphoric, diphosphoric, bromide, iodide, nitric acid and organic acids, for example and without limitation, citric, fumaric, maleic acid, malic, mandelic, ascorbic, oxalic, succinic, tartaric, benzoic, acetic, methanesulfonic, ethanesulfonic, benzenesulfonic, cyclamic or p-toluenesulfonic.
  • inorganic acids for example and without limitation, hydrochloric, sulfuric, phosphoric, diphosphoric, bromide, iodide, nitric acid and organic acids, for example and without limitation, citric, fumaric, maleic acid, malic, mandelic, ascorbic, oxalic, succinic, tartaric, benzoic, acetic, methanesulfonic,
  • the DMB is 3,7-bis (dimethylamino) -1,9-dimethyldiphenotiazin-5-io chloride, the structure of which is shown in Figure 2 above.
  • the term DMB also includes mixed salts.
  • the DMB is a double salt of 3,7-bis (dimethylamino) -1,9-dimethyldiphenotiazin-5-io zinc chloride, the structure of which is shown in Figure 2 below. These compounds can be purchased commercially.
  • the DMB at acidic pH is able to specifically bind sulphated GAGs due to their negative charge.
  • DMB has been used to quantify GAG, but it has always been considered that a major limitation of this method is that sulfated DMB-GAG complexes are unstable in solution and precipitate. So far, no one thought of taking advantage of this feature as an advantage to separate GAGs from a sample.
  • DMB is a powdered substance that dissolves in a suitable solvent, such as ethanol, until an appropriate concentration is reached.
  • a suitable solvent such as ethanol
  • the DMB is at a concentration ranging from 0.01 to 100 mM, preferably between 0.29 and 0.35 mM, more preferably at 0.29 mM.
  • the solvent in which the dye is dissolved is ethanol.
  • the DMB used in the first method of the invention must be at an acidic pH between 2 and 6.9.
  • pH refers to the measure of the acidity or alkalinity of a solution.
  • the pH typically ranges from 0 to 14 in aqueous solution, the solutions with pH below 7 being acidic and those with pH above 7 being alkaline.
  • the pH 7 indicates the neutrality of the solution, where the solvent is water.
  • the determination of the pH of a solution can be done precisely by means of a potentiometer (or pH meter) and also approximately by means of indicators, by methods widely known in the state of the art. Since the pH value can vary with temperature, in the context of this invention the pH measurement is performed at 20 ° C.
  • the DMB used in the first method of the invention has a pH measured at 20 ° C between 2 and 6.9; preferably between 3 and 4; more preferably between 3.3 and 3.6. In a preferred embodiment the pH measured at 20 ° C is 3.5.
  • a buffering agent for the pH of the DMB dissolved in a suitable solvent to be acidic, a buffering agent must be added.
  • buffering agent is meant, in the context of the present invention, an agent capable of controlling the acidic pH of the solution and keeping it constant at a pH between 2 and 6.9.
  • Suitable buffer agents for the present invention are, without limitation, acetate buffer, phosphate citrate buffer, diphosphate buffer, formate buffer and a combination thereof.
  • the buffering agent is sodium formate, preferably 0.2 M sodium formate at pH 3.5.
  • the buffering agent is mixed with the DMB previously dissolved in a suitable solvent such as ethanol, in a dissolved DMB / buffer ratio of 1/99 to 10/90.
  • the dissolved DMB / buffer ratio is 1/99.
  • the sample to be analyzed containing free and bound sulfated GAGs or associated with other components should be mixed with the buffered DMB in a sample proportion: Buffered DMB suitable for saturation, such as that in the range of 1: 1 to 1: 5. Preferably, they are mixed in a 1: 2 ratio.
  • step b) of the first method of the invention the mixture of step a) is incubated at a temperature between 0 ° C and 40 ° C for the time necessary for the formation of a precipitate.
  • the blue dimethylmethylene dye specifically binds to the GAGs both free and bound or associated with other compounds, forming complexes with them and resulting in the formation of turbidity, quickly followed by precipitation of the complex formed.
  • the incubation can be carried out at a temperature between 0 ° C and 40 ° C, preferably between 4 ° C and 30 ° C, more preferably between 10 ° C and 28 ° C, even more preferably between 15 ° C and 25 ° C, still more preferably between 20 ° C and 25 ° C.
  • the incubation will be carried out in a refrigerated, tempered environment or in an oven depending on the temperature that is desired to be reached by methods known to those skilled in the art. In a preferred embodiment the incubation is carried out at room temperature (between 20 ° C and 25 ° C).
  • precipitate is meant, in the context of the first method of the invention, the insoluble solid that is produced by the complex formed between the sulfated GAGs present in the sample to be analyzed and the DMB. In most cases the precipitate falls to the bottom of the solution and its formation can be observed with the naked eye. On other occasions the precipitate may float or remain in suspension, depending on whether it is less dense or as dense as the rest of the solution.
  • the incubation time is the time necessary for the formation of the precipitate and can be determined by the person skilled in the art by simple observation of the solution or by methods known in the state of the art. Once the precipitate has formed, it can remain unchanged for days in a temperature range between 0 ° C and 40 ° C.
  • the incubation time is between 1 minute and 2 hours, preferably it is at least 1 minute, at least 5 minutes, at least 10 minutes, at least 15 minutes, at least 20 minutes, at least 30 minutes , at least 40 minutes, at least 50 minutes, at least 60 minutes, at least 90 minutes.
  • the time necessary for the formation of the precipitate is at least 15 minutes.
  • step c) of the method of the invention the supernatant is removed after precipitation.
  • This removal can be carried out by any method known to the person skilled in the art, for example, by filtration, decantation or by a centrifugation and aspiration process of the supernatant.
  • centrifugation is performed after step b) centrifugation is performed.
  • the removal is carried out by centrifugation and subsequent decantation or aspiration of the supernatant, more preferably by centrifugation and subsequent aspiration of the supernatant, even more preferably by centrifugation at 10,000 g for 10 minutes at 4 ° C and subsequent aspiration of the supernatant.
  • the precipitate contains only the free sulfated GAGs bound to the DMB and the bound fraction or associated with sulfated GAG.
  • the supernatant contains the rest, which is removed from the sample.
  • step d) of the first method of the invention the precipitate containing the free sulphated GAGs and the fraction bound or associated with sulphated GAGs are recovered.
  • This recovery may simply consist in obtaining the isolated precipitate separated from the supernatant after step c).
  • the precipitate obtained after step c) can be dissolved or mixed with a suitable solvent or solution depending on the subsequent use of the precipitate.
  • the precipitate is to be analyzed by protein electrophoresis, it can be resuspended in a loading buffer for electrophoresis with or without SDS. In a preferred embodiment the precipitate is resuspended in 7.5% SDS.
  • the precipitate is to be analyzed by chromatography or protein sequencing, it can be resuspended in a suitable buffer to carry out these techniques.
  • Figure 3 shows a scheme with the different analysis possibilities.
  • the precipitate obtained can be used to identify patterns or profiles of proteins characteristic of a certain state, pathological or not, or of a certain sample.
  • the protein fraction analysis can be analyzed by various techniques such as, without limitation, protein electrophoresis, chromatography, mass spectrometry or protein sequencing.
  • the invention relates to an in vitro method (hereinafter "second method of the invention") for identifying the profile of proteins bound to or associated with sulfated GAGs of a sample comprising: a) separation of the protein fraction bound or associated to sulfated GAGs of a sample according to the first method of the invention; b) electrophoretic separation of the product obtained in a); and c) identification of the electrophoretic profile obtained in b).
  • protein in the context of the second method of the invention, refers to any molecule formed by amino acids linked by peptide bonds and, therefore, includes both peptides and proteins and fragments thereof, including those modified.
  • any protein modified post-translationally with GAG or otherwise associated with GAG can be identified by the second method of the invention.
  • the protein is selected from the group consisting of uromodulin, albumin, IgA, IgG or a variant thereof and fragments thereof.
  • protein profile in the context of the second method of the invention, the specific pattern of proteins that form the fraction bound or associated with GAGs is understood.
  • the protein profile can be qualitative, quantitative or both.
  • the protein profile does not only refer to the set of proteins of known nature that have been identified by a specific antibody (specific profile), but also to the pattern of bands obtained after electrophoretic separation, although it is not possible to relate each band with a specific protein (nonspecific profile).
  • proteins can be directly bound or associated with sulfated GAGs or indirectly through other compounds bound or associated with sulfated GAGs, such as exosomes.
  • the first stage (stage a) of the second method of the invention comprises the separation of the protein fraction bound or associated with sulfated GAGs according to the first method of the invention.
  • the precipitate obtained in stage a) must be resuspended in a suitable medium to be used in stage b) of the method.
  • Any loading buffer for electrophoresis may be suitable for resuspension.
  • media in which it can be resuspended are, without limitation, 7.5% SDS; Laemli buffer; Laemli buffer with ⁇ -mercaptoethanol and 7.5% SDS in a 1: 1 ratio; TBE buffer (100 mM Tris-borate, 1 mM EDTA, pH 8.3) with 2M sucrose and 0.02% bromophenol blue; TAE buffer (40 mM Tris, 5 mM CH3COONa, 0.9 mM EDTA, pH 7.9); TBE buffer with 2M sucrose; etc.
  • the preferred buffer for resuspension of the precipitate is 7.5% SDS (sodium dodecyl sulfate) which is subsequently combined in a variable ratio 1: 1 to 1: 10 with the loading buffer. If the amount of precipitate is very large it may be necessary to pour the mixture to achieve complete homogenization.
  • Step b) of the second method of the invention is the electrophoretic separation of the product obtained in step a).
  • electrophoretic separation or “electrophoresis” is meant a method of separating the components of a sample by applying an electric field.
  • electrophoretic separation is a protein electrophoresis.
  • the electrophoretic separation can be zone electrophoresis (separation depending on the load), isoelectric focusing (separation depending on the isoelectric point) and size separation in molecular sieve.
  • electrophoretic separation examples include zone electrophoresis (in paper, cellulose acetate, agarose, polyacrylamide and capillary electrophoresis), isoelectric focusing, electrophoresis in native (PAGE) or denaturing (SDS-PAGE) polyacrylamide gels.
  • zone electrophoresis in paper, cellulose acetate, agarose, polyacrylamide and capillary electrophoresis
  • isoelectric focusing electrophoresis in native (PAGE) or denaturing (SDS-PAGE) polyacrylamide gels.
  • PAGE native
  • SDS-PAGE denaturing
  • the electrophoretic separation or electrophoresis is carried out by methods known to those skilled in the art.
  • electrophoresis is SDS-PAGE. In another preferred embodiment, electrophoresis is a two-dimensional electrophoresis.
  • electrophoresis is an electrophoresis in a polyacrylamide gel. In another preferred embodiment, electrophoresis is an electrophoresis in a cellulose acetate gel.
  • step c) of the method of the invention the electrophoretic profile obtained in b) is identified.
  • the term "electrophoretic profile" refers to the specific pattern of bands or spots produced by the protein fraction bound or associated with GAG when proteins are separated by electrophoresis. This specific pattern may be due to several causes: a) because each type of GAG binds to a different fraction; b) that the binding of GAG to proteins and peptides causes this fraction to be secreted into a fluid or, for example, excreted in urine; and c) excess GAG causes specific isoforms to form.
  • the "identification of the electrophoretic profile” requires either the visualization of a pattern of bands or spots of proteins that can be identified by their molecular weight although their nature is unknown; or the identification of protein bands or spots by the use of an antibody that specifically recognizes a specific protein, by protein sequencing or by mass spectrometry.
  • step c) of the second method of the invention is performed by Western blotting, that is, by the use of antibodies that specifically recognize a certain protein. This technique is widely known to the person skilled in the art.
  • step c) is performed by staining with a specific dye for protein visualization.
  • staining in the context of the second method of the invention, it refers to the action of staining the protein bands so that they acquire color or fluorescence and can be detected. Protein staining protocols are known to the person skilled in the art.
  • protein-specific dye for protein visualization refers to a compound that has a specific affinity for proteins and which, when bound to them, allows to visualize the protein bands of a gel after electrophoretic separation either by observing the coloration of the same with the naked eye or by the detection of the emission of fluorescence after illumination with UV light, blue light or laser.
  • protein-specific dyes are, without limitation, silver staining, coomassie blue, "Blue Silver” or Coomassie G250, negative staining (with zinc or copper), Ponceau S and fluorescent staining.
  • fluorescent stains are, without limitation, Sypro Ruby, Emerald (specifically stained glycated proteins), Flamingo TM (Bio-Rad), Oriole TM (Bio-Rad), Pro-Q, Cy2, Cy3 and / or Cy5 makeup, etc.
  • specific dye for protein visualization is Sypro Ruby.
  • the dye to be used will depend on the subsequent analysis to which the sample is to be subjected. For example, staining with silver is not use if you want to do mass spectrometry analysis; while fluorescent staining or Coomassie G250 staining are compatible with mass spectrometry.
  • the bands or spots obtained are cleaved from the gel and identified by proteomics.
  • proteomic techniques that can be used are, without limitation, non-colorimetric techniques such as mass spectrometry, protein sequencing, refractive index spectroscopy, ultraviolet (UV) spectroscopy, fluorescence analysis, radiochemical analysis, near infrared spectroscopy, spectroscopy nuclear magnetic resonance imaging (NMR), pyrolysis mass spectrometry, Raman dispersion spectroscopy, ionic nebulization spectroscopy combined with mass spectrometry and capillary electrophoresis.
  • the techniques used are selected from the group consisting of mass spectrometry and protein sequencing.
  • mass spectrometry or MS analysis, an analytical technique is understood to identify unknown compounds that includes: (1) ionizing the compounds and potentially fractionating the parental ions of compounds formed into child ions; and (2) detect the charged compounds and calculate a mass to charge ratio (m / z).
  • the compounds can be ionized and detected by any suitable means.
  • a “mass spectrometer” includes means for ionizing compounds and detecting charged compounds.
  • mass spectrometry is used in particular gas chromatography mass spectrometry (GC-MS), liquid chromatography mass spectrometry (LC-MS), direct infusion mass spectrometry or cyclotron ion resonance mass spectrometry by mass transform Fourier (FT-ICR-MS), capillary electrophoresis mass spectrometry (CE-MS), high performance liquid chromatography coupled to mass spectrometry (HPLC-MS), quadrupole mass spectrometry, any mass spectrometry sequentially coupled such as MS-MS or MS-MS-MS, mass spectrometry with inductive coupling plasma (ICP-MS), pyrolysis-mass spectrometry (Py-MS), ion mobility mass spectrometry or mass spectrometry of flight time (TOF), electrospray ionization mass spectrometry (ESI-MS), ESI-MSMS, ESI-MS / (MS) n, matrix-assisted laser desorption / ionization mass spectrometry
  • substitute marker means a biological or clinical parameter that is measured instead of the biologically definitive or clinically more significant parameter.
  • ions are produced by the addition of a proton or a hydrogen nucleus, [M + H] + where M means the molecule of interest and H means the hydrogen ion, which is the same as a proton.
  • M means the molecule of interest
  • H means the hydrogen ion, which is the same as a proton.
  • Some ionization methods will also produce similar ions.
  • Analog ions can arise by the addition of an alkali metal cation, rather than the proton discussed above.
  • a typical species can be [M + Na] + or [M + K] +.
  • the analysis of ionized molecules is similar regardless of whether it has to do with a protonated ion, as discussed above, or if it deals with an added alkali metal cation.
  • a proton adds a unit of mass (typically called a Dalton), in the case of hydrogen ion (i.e. proton), 23 Dalton in the case of sodium or 39 Dalton in the case of potassium.
  • These additional weights or masses are simply added to the molecular weight of the molecule of interest and the MS peak is produced at the point for the molecular weight of the molecule of interest plus the weight of the ion that has been added.
  • These ionization methods can also produce negative ions.
  • the most common molecular signal is the deprotonated molecule [MH] - in this case the mass is a Dalton less than the molecular weight of the molecule of interest.
  • multiple charged ions will be produced. These they are of the general type of identification [M + nH] n +, where lowercase n identifies the number of additional protons that have been added.
  • the proteomics technique used is mass spectrometry, preferably by MALDI-TOF or MALDI-TOF / TOF.
  • gas chromatography combined with mass spectrometry liquid chromatography combined with mass spectrometry or MALDI combined with mass spectrometry is used.
  • mass spectrometry is tandem mass spectrometry.
  • protein sequencing in the context of the second method of the invention, the determination of the amino acid sequence of a protein is understood. Any method of protein sequencing can be used in the method of the invention, for example and without limitation, sequencing by the Edman degradation method, sequencing by mass spectrometry either directly or after digestion of the peptide fragments, etc. These methods are well known to those skilled in the art.
  • the precipitate obtained by the first method of the invention can also be studied by electron microscopy.
  • the precipitate is resuspended in a specific buffer for observation by electron microscopy such as resins such as Epon acrylic or Epoxy, or 2% glutaraldehyde in 0.1 M cacodylate buffer at pH 7.4.
  • the DMB acts as a contrast.
  • Electrode microscopy means a technique that uses an electron microscope, which is one that uses electrons instead of photons or visible light to form images of objects.
  • the electron microscopy techniques useful in the present invention include both transmission electron microscopy and scanning electron microscopy, among others. This technique allows to study the fractions associated with sulfated GAGs, such as exosomes.
  • the invention relates to an in vitro method (hereinafter “third method of the invention") for identifying the profile of proteins bound to or associated with sulfated GAGs of a sample comprising:
  • mass spectrometry is tandem mass spectrometry.
  • the first stage of the third method of the invention involves the separation of the protein fraction bound or associated with sulfated GAGs from a sample using the first method of the invention.
  • the precipitate obtained in step a) can be directly analyzed by chromatography or mass spectrometry, preferably tandem mass spectrometry. For this, said precipitate is resuspended in the appropriate medium to carry out the next stage of the third method of the invention.
  • the profile of proteins bound to or associated with sulfated GAGs is identified by chromatography.
  • chromatography is meant a method for separating components of a mixture that is based on differences in the flow behavior of several components of a mixture / solution carried by a mobile phase through a support / column coated with a certain Stationary phase. Specifically, some components bind strongly to the stationary phase and spend more time in the support, while other components are predominantly in the mobile phase and pass more quickly through the support.
  • the criteria on which it is based that the various compounds are separated through the column is defined by the particular problem under investigation and is imposed by the structure, composition and binding capacity of the stationary phase.
  • a stationary phase could be constructed so that linear and low molecular weight molecules elute faster than aromatic and high molecular weight molecules. As they elute the support components, they can be analyzed immediately by a detector or collected for further analysis.
  • a large number of separation methods are currently available, and in particular chromatography methods, including gas chromatography ("GC”), liquid chromatography (“LC”), ion chromatography (“IC”), molecular exclusion chromatography (“SEC”), supercritical fluid chromatography (“SCF”), thin layer chromatography (“TLC”), high-performance liquid chromatography resolution (“HPLC”) and capillary electrophoresis (“CE”).
  • Gas chromatography can be used to separate volatile compounds.
  • Liquid chromatography is an alternative chromatographic technique useful for separating ions or molecules that are dissolved in a solvent.
  • the principle of separation by GC and LC is the same, its main difference is in the phase with which the separation occurs (vapor versus liquid phase).
  • GC is mainly used to separate molecules of up to 650 atomic units of weight, while, in principle, LC can separate compounds of any molecular weight.
  • Suitable types of liquid chromatography that can be applied in the method of the invention include, without limitation, reverse phase chromatography, normal phase chromatography, affinity chromatography, ion exchange chromatography, hydrophilic interaction liquid chromatography (HILIC), chromatography of molecular exclusion and chiral chromatography. These methods are well known in the art and can be applied by the person skilled in the art without further delay.
  • step a) the profile of proteins bound to or associated with sulfated GAGs is identified by mass spectrometry, preferably tandem mass spectrometry.
  • Tudem mass spectrometry means the spectrometry method in which two coupled analyzers are used, so that the first analyzer is used to select the compound of interest and then this ion passes to the collision cell where it is induced. ion dissociation. This technique is well known to those skilled in the art and is suitable for quantification and for sample screening.
  • the precipitate obtained can be used to identify patterns or lipid profiles characteristic of a certain state, pathological or not, or of a certain sample.
  • the analysis of the lipid fraction can be analyzed by various techniques such as, without limitation, lipid electrophoresis, chromatography, or mass spectrometry coupled chromatography.
  • the invention relates to an in vitro method (hereinafter “fourth method of the invention") for identifying the profile of lipids bound to or associated with sulfated GAGs of a sample comprising:
  • lipids in the context of the fourth method of the invention, refers to any organic molecule composed mainly of carbon and hydrogen and to a lesser extent oxygen, although they may also contain phosphorus, sulfur and nitrogen, which are hydrophobic and soluble in organic solvents such as benzine, benzene and chloroform.
  • lipids includes any type of lipid such as, without limitation, triglycerides, phospholipids, spheroid hormones, etc. Any lipid bound or otherwise associated with GAG can be identified by the fourth method of the invention.
  • lipid profile in the context of the fourth method of the invention, the specific lipid pattern that forms the fraction bound to or associated with GAG is understood.
  • the lipid profile can be qualitative, quantitative or both.
  • the lipid profile does not only refer to the set of lipids of a known nature that have been specifically identified (specific profile), but also to the pattern obtained after electrophoretic separation, although it is not possible to relate each band to a specific lipid (nonspecific profile).
  • the fourth method of the invention consists of a first stage in which the lipid fraction bound or associated with sulfated GAGs of a sample is separated according to the first method of the invention.
  • the precipitate obtained in the first stage can be identified by electrophoresis or chromatography.
  • the lipid profile is identified by lipid electrophoresis.
  • electrophoresis or chromatography
  • electrophoresis has been defined in relation to the second and third method of the invention and in the context of the fourth method of the invention refers to a lipid electrophoresis.
  • the lipid profile is identified by chromatography.
  • chromatography has been defined in relation to the second and third method of the invention and in the context of the fourth method of the invention refers to a lipid chromatography.
  • the method of the invention is also useful for detecting alterations in the glycosylation pattern by sulfated GAGs of lipids or proteins.
  • the invention relates to an in vitro method (hereinafter "fifth method of the invention") for detecting an alteration in the glycosylation pattern by sulfated GAGs of a sample comprising:
  • glycosylation pattern in the context of the fifth method of the invention, the specific glycosylation pattern by sulphated components of the components is understood of a sample, where a sulfated GAG is added to another molecule, particularly a protein or lipid.
  • any difference in the glycosylation pattern is understood with respect to a reference sample, either an increase or a decrease in sulphated GAG glycosylation. .
  • the profile of proteins bound or associated with sulfated GAGs of a sample is identified by the second or third method of the invention and / or the profile of lipids bound or associated with GAGs is identified. sulfated from a sample by the fourth method of the invention as described above.
  • the second stage of the fifth method of the invention consists in comparing the profile of proteins bound or associated to sulfated GAGs obtained in a) with that obtained for a reference sample and / or comparing the profile of lipids bound or associated with sulfated GAGs. obtained in a) with that obtained for a reference sample, where a difference in the profile obtained in a) with respect to the profile obtained in the reference sample indicates an alteration in the glycosylation pattern by sulfated GAGs.
  • reference sample in the context of the fifth method of the invention, a sample of the same type is understood as the sample to be analyzed which is taken as the basis for comparison.
  • the reference sample comes from healthy normal individuals not affected by any disease.
  • the reference sample can also be obtained from the same subject to be analyzed.
  • the reference sample has been obtained from healthy individuals of the same age and sex as the sample to be analyzed.
  • the glycosylation pattern of the sample to be analyzed is compared with that of the reference sample and this allows the detection of quantitative and / or qualitative alterations in this pattern.
  • the rest of the terms have been defined in the context of the previous aspects. Any embodiment described for the first, second, third and fourth method of the invention is also applicable to the fifth method of the invention.
  • the methods of the invention which allow analyzing the fraction bound or associated with GAGs have different applications in biomedicine.
  • they can be used for the identification of new biomarkers or profiles of biomarkers at the protein level that function as prognostic or diagnostic indicators, or for the monitoring of a certain pathology or condition. They also allow monitoring a therapy, and design a personalized therapy in a subject suffering from a disease or select a patient that can be treated with a certain therapy. It can also be useful for the discovery of new therapeutic targets.
  • Another application is its use in the study of new cell communication pathways or molecular mechanisms.
  • the invention relates to the use of the second, third, fourth and fifth methods of the invention to identify protein or lipid biomarkers bound or associated with sulfated GAGs.
  • biomarker refers to a substance used as an indicator of a biological state, which must be objectively measured and evaluated as an indicator of a normal biological process, state pathogenic or in response to a pharmacological treatment.
  • biomarkers are useful for the diagnosis, prognosis and / or monitoring of disease progression.
  • biomarkers are useful for monitoring the effect of a therapy for the treatment of a disease.
  • biomarkers are useful for predicting the response to a therapy.
  • predicting the response to a therapy means the possibility of knowing in advance the administration of a therapy if an individual is going to respond well or badly to it.
  • biomarkers are useful for designing a personalized therapy.
  • biomarkers are useful for the identification of suitable compounds for the treatment of a disease.
  • the disease is selected from the group consisting of kidney disease and mucopolysaccharidosis.
  • the renal disease is autosomal dominant polycystic kidney type 1 or type 2.
  • the authors of the present invention have identified a series of markers present in the urine of subjects suffering from mucopolysaccharidosis and kidney disease, and that are absent or in different proportion in individuals who do not suffer from such diseases. These markers can be used in a rapid method of diagnosis of mucopolysaccharidosis in newborns, in methods of early diagnosis of kidney disease or in methods of diagnosis of advanced kidney disease.
  • the invention relates to an in vitro method for diagnosing a disease associated with an alteration of one or more sulfated GAGs in a subject comprising:
  • an increased or decreased level of one or more sulphated GAGs with respect to the reference value is indicative that the subject suffers a disease associated with an alteration of one or more sulfated GAGs.
  • in vitro method for diagnosing a disease associated with an alteration of one or more sulfated GAGs is understood as a method that allows to show the existence of any disease in which a pathogenic alteration of the sulphated GAG levels, that is, when said process is harmful or unwanted in a subject by detecting these levels.
  • “Diagnose” refers to assessing the probability that a subject suffers from a disease.
  • the methods are carried out "in vitro", that is, they are not practiced on the human or animal body.
  • such evaluation although preferred, may not be correct for 100% of the subjects to be diagnosed.
  • the term requires that a statistically significant part of the subjects can be identified as suffering from the disease.
  • the person skilled in the art can determine if a part is statistically significant without further delay using several well-known statistical evaluation tools, for example, determination of confidence intervals, determination of the p-value, Student's t-test, Mann-Whitney test , etc.
  • Preferred confidence intervals are at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, at least 95%.
  • P values are preferably 0.2, 0.0, 0.05.
  • Disease associated with an alteration of one or more sulfated GAGs means any disease that occurs with an increase or a decrease in sulfated GAG levels with respect to the levels of a normal individual.
  • Diseases in which there is an alteration in one or more glycosaminoglycans in a primary or secondary manner are, without limitation, mucopolysaccharidosis, renal amyloidosis (Tencer J. et al. Nephrol Dial Transplant. 1997.12 (6): 1 161-6), glomerulonephritis ( Tencer J. et al. Clin Nephrol 1997; 48 (4): 212-9), congenital nephrotic syndrome (Vermylen C. et al.
  • the disease associated with an alteration of one or more sulfated GAGs is selected from the group consisting of:
  • a mucopolysaccharidosis selected from the group consisting of Hurler disease (alpha-L-iduronidase deficiency), Scheie disease (alpha-L-iduronidase deficiency), Hunter disease (iduronate-2-sulfatase deficiency), disease of Sanfilippo A (heparan sulfamidase deficiency), Sanfilippo B disease (alpha-N-acetyl-glucosaminidase deficiency), Sanfilippo C disease (heparan-alpha-glucosaminide N-acetyltransferase deficiency), Sanfilippo D disease (deficiency of N-acetylglucosamine-6-sulfatase), Morquio A disease (N-acetylgalactosamine-6-sulfatase deficiency), Morquio B disease (beta-D-galactosidase deficiency), Maroteaux-Lamy disease
  • a renal disease selected from the group consisting of autosomal dominant polycystic kidney disease type 1 or type 2, glomerulonephritis, nephrotic syndrome, endemic Balkan nephropathy, renal transplantation, renal lithiasis and diabetic nephropathy;
  • an endocrinopathy selected from the group consisting of hypothyroidism and diabetes
  • a rheumatologic disease selected from the group consisting of osteoarthritis, ankylosing spondylitis, rheumatoid arthritis and syringomyelia; and e) an oncological disease.
  • cancer disease is selected from prostate cancer and colon cancer. In an even more preferred embodiment the disease is selected from the group consisting of mucopolysaccharidosis and kidney disease.
  • MES manucopolysaccharidosis
  • the accumulation within the brain is responsible for mental retardation and psychomotor retardation and, in general, the accumulation of these substances in other tissues offers a wide spectrum of findings and forms ranging from phenotypically mild and undetectable signs to grotesque and deformants that significantly affect individuals suffering from such alteration. So far, 7 types of mucopolysaccharidoses have been described with several subtypes that involve about 1 1 specific enzymes. Table I describes the different types of MPS and the type of GAG excreted.
  • MPS excreted MPS and GAG.
  • DS dermatan sulfate
  • HS heparan sulfate
  • CS chondroitin-4 and -6 sulfate
  • KS keratan sulfate. All types of MPS are inherited in an autosomal recessive manner, except for Hunter syndrome (MPS II), which is linked to the X chromosome.
  • kidney disease refers to a condition characterized by a significant and progressive decrease in kidney function, expressed by glomerular filtration or by an estimated creatinine clearance ⁇ 60 ml / min / 1, 73m 2 or as the Presence of renal damage persistently for at least 3 months. Renal damage is usually diagnosed by markers instead of by a renal biopsy, so its diagnosis can be made without knowledge of the cause. In a preferred embodiment the renal disease is autosomal dominant polycystic kidney disease type 1 or type 2.
  • autosomal dominant renal polycystic disease type 1 or type 2 or “autosomal dominant polycystic kidney disease type 1 or type 2” or “ADPKD1 or ADPKD2” refers to a progressive genetic disease of the kidneys characterized by the presence of multiple cysts in both kidneys. This disease can also damage the liver, seminal vesicles, pancreas, arachnoid and rarely the heart and brain.
  • the manifestations of this disease include abnormalities in renal function, hypertension, kidney pain, and renal failure. Initial symptoms are hypertension, fatigue, severe pain in the back and sides and urinary tract infections. The disease frequently leads to the development of chronic renal failure and can result in total loss of renal function, which requires a certain type of dialysis. In 85% of patients this disease is caused by the mutation of the PKD1 gene (locus 16p13.3-p13.1), and in the remaining 15% the cause is the mutation of the PKD2 gene (locus 4q21q23).
  • the alteration of one or more sulfated GAGs is an increase of one or more GAG.
  • the disease associated with an increase in one or more sulfated GAGs is a disease that involves an unwanted accumulation of one or more sulphated GAGs selected from mucopolysaccharidosis, mucolipidosis, congenital nephrotic syndrome, endemic Balkan nephropathy, rheumatoid arthritis and syringomyelia. .
  • the alteration of one or more sulfated GAGs is a decrease of one or more GAG.
  • the disease associated with the decrease of one or more sulphated GAGs is selected from the group consisting of renal amyloidosis, glomerulonephritis, nephrotic syndrome, hypothyroidism and diabetes.
  • the first stage of the diagnostic method of the invention comprises the separation of free sulphated GAGs and the fraction bound or associated with sulphated GAGs from a biological sample of a subject by the first method of the invention.
  • biological sample has been defined in the context of the first method of the invention.
  • the biological sample is a urine, serum or plasma sample.
  • the biological sample is a sample of exosomes, preferably exosomes isolated from a urine sample.
  • subject in the present invention is understood as any animal classified as a mammal and includes, but is not limited to, domestic or farm animals, primates and humans, for example, humans, nonhuman primates, cows, horses, pigs , sheep, goats, dogs, cats or rodents.
  • the subject is a human being male or female of any race or age.
  • the subject is a subject that potentially suffers from a disease associated with an alteration of one or more sulfated GAGs.
  • the second stage of the diagnostic method comprises detecting the level of one or more sulfated GAGs separated in a).
  • GAG levels can be detected by methods described in the state of the art and known to those skilled in the art. Such methods include colorimetric spectrophotometric detection methods; specific GAG test methods that identify the types of GAG produced or excreted in excess such as HPLC, ELISA and tandem mass spectrometry; and methods based on depolymerization of GAGs (Tomatsu S. et al. 2013. Mol. Genet. Metab. 1 10 (0): 42-53).
  • step (b) is performed by staining the sulfated GAGs with the DMB dye.
  • staining is performed by 0.02% DMB in water.
  • the gel should fade, preferably using 10% acetic acid.
  • absolute levels refers to the total amount of sulfated GAG in a sample. Said value can be given as the concentration of sulphated GAGs expressed in units of mass per unit volume (for example, in ng / ml of sample), in the number of sulphated GAG molecules per unit volume (for example, in pmol of sulfated GAGs / ml of sample), in sulfated GAG mass units per total GAG mass unit (pg sulphated GAG / total GAG mg), or in the number of sulphated GAG molecules per total GAG mass unit (for example, in pmol sulfated GAG / total GAG mg).
  • relative levels refers to the relationship between sulfated GAG levels and a reference GAG, that is, it is defined as the concentration of sulfated GAGs in a normalized manner with respect to said reference GAG.
  • Control GAG in the present invention is understood as a GAG whose concentration does not change or only change in limited amounts in diseased cells with respect to normal cells.
  • the control GAG is chondroitin sulfate.
  • the level of the total sulfated GAGs can be detected either the level of the free sulphated GAGs or the level of the sulfated GAGs associated with a protein or lipid fraction. In a preferred embodiment the level of one or more free sulphated GAGs is detected.
  • step (c) of the method of the invention is carried out, which consists in comparing the sulphated GAG levels obtained in step (b) with a value of reference for each sulfated GAG.
  • the "reference value” comes from a set of samples preferably formed by a mixture of the same type of sample to be analyzed from normal individuals not affected by this type of disease. Said reference value can be determined by techniques well known in the state of the art, such as, for example, determination of the average value of sulfated GAG measured in samples of healthy subjects.
  • the reference value can also be obtained from the same subject to be analyzed. In a preferred embodiment of the invention the reference value has been obtained from samples of healthy individuals of the same age and sex as the subject.
  • the value of sulfated GAG levels obtained in step (a) can be compared with this reference value and, therefore, allows the detection of alterations in sulfated GAG levels of the subject with respect to the reference value.
  • an increased or decreased level of one or more sulfated GAGs with respect to the reference value is indicative that the subject suffers a disease associated with an alteration of one or more sulfated GAGs. More specifically, in the method of the invention, an increase in sulfated GAG levels with respect to the reference value is indicative that the subject suffers from a disease associated with an increase in sulphated GAG levels.
  • “increased levels” or “increased level” with respect to the reference value is understood as a variation of the levels above the reference value of at least 5%, at least 10 %, at least 15%, at least 20%, at least 25%, at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 100%, at least 110%, at least 120%, at least 130%, at least 140%, at least 150% or more, compared to the reference value.
  • the disease is mucopolysaccharidosis and: (i) an increased level of free dermatan sulfate with respect to the reference value is indicative that the subject suffers from type I, type II, type VI or type VII mucopolysaccharidosis;
  • an increased level of free keratan sulfate with respect to the reference value is indicative that the subject suffers from type IV mucopolysaccharidosis.
  • a decrease in sulfated GAG levels with respect to the reference value is indicative that the subject suffers from a disease associated with a decrease in sulphated GAG levels.
  • “decrease in levels” or “decreased level” with respect to the reference value is understood as a variation of the levels below the reference value of at least 5%, at least 10%, at least 15%, at least 20%, at least 25%, at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, at least 55 %, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95% or at least 100% (i.e. absent) compared to the reference value.
  • an electrophoretic separation of the sample is performed.
  • Said electrophoretic separation can be carried out on any type of gel including, without limitation, agarose gel, polyacrylamide gel and cellulose acetate gel.
  • the gel is a cellulose acetate gel.
  • the electrophoresis buffer is barium acetate.
  • an in vitro method for diagnosing mucopolysaccharidosis in a subject comprising:
  • the inventors have found that the uromodulin signal peptide is present in the urine samples of a subject suffering from mucopolysaccharidosis, and absent in healthy subjects.
  • the invention relates to an in vitro method for diagnosing mucopolysaccharidosis in a subject comprising detecting in a urine sample of said subject the presence of the signal peptide SEQ ID NO: 1 of uromodulin or of a variant of it.
  • the method comprises:
  • the urine sample can be analyzed as such or, alternatively, the sulfated GAG-linked uromodulin can be first extracted from the sample before analysis by any of the methods of separation of the GAGs described in the state of The technique.
  • the method of separation of GAGs is the first method of the invention, and then the fraction bound to sulfated GAGs that has precipitated is analyzed.
  • the method of the invention has resulted in the discovery of profiles of biomarkers at the protein level linked to GAG that function as diagnostic indicators of kidney disease.
  • the invention in another aspect, relates to an in vitro method for diagnosing kidney disease in a subject comprising detecting the level of uromodulin or a variant thereof linked to or associated with sulphated GAGs and / or detecting the level of albumin or of a variant thereof linked to or associated with sulfated GAGs in a urine sample of said subject and compare said level with a reference value where a decreased level of uromodulin or a variant thereof linked or associated with sulphated GAGs with respect to the reference value and / or a decreased level of albumin or a variant thereof bound or associated with sulfated GAGs with respect to the reference value is indicative that the subject suffers from kidney disease.
  • the invention in another aspect, relates to an in vitro method for diagnosing advanced kidney disease in a subject comprising detecting the level of uromodulin complexes or a variant thereof-GAG sulphated-exosomes in a urine sample of said subject and comparing said level with a reference value where a decreased level of the uromodulin complexes or a variant thereof - GAG sulphated-exosomes with respect to the reference value is indicative that the subject suffers from advanced kidney disease.
  • the separation of uromodulin and / or albumin bound or associated with sulfated GAGs and the separation of uromodulin complexes or a Variant of the same-GAG sulphated-exosomes of the urine sample is performed according to the first method of the invention.
  • signal peptide refers to a peptide consisting of 24 amino acids of sequence SEQ ID NO: 1 which are the first to appear when the uromodulin polypeptide chain is synthesized and decide on the destination , transport route and secretion efficiency of uromodulin. In one embodiment of the invention, the peptide formed by 30 amino acids of SEQ ID NO: 2 is detected.
  • uromodulin refers to a glycoprotein that is secreted into the urine after proteolytic excision, where it contributes to osmotic pressure preventing urinary tract infection and modulating crystal formation. It is the most abundant protein present in the urine. It is also called Tamm-Horsfall glycoprotein (THP). It is expressed specifically in the loop of Henle of the kidney and is related to different renal pathologies. In humans it is encoded by the UMOD gene (UniGene Hs. 654425). Human uromodulin is the protein defined by the Uniprot database sequence with accession number P0791 1 dated July 22, 2015.
  • the sequence P0791 1 corresponds to the precursor of uromodulin, whose signal peptide occupies positions 1 to 24 , and whose propeptide (positions 615 to 640) is eliminated in the mature form.
  • mature uromodulin is formed by amino acids 25 to 614; while the secreted form is formed by amino acids 25 to 587 of the sequence P07911.
  • albumin refers to a member of the family of albumin proteins that are water-soluble globular proteins, moderately soluble in concentrated salt solutions and undergoing heat denaturation. Albumin is usually found in the blood plasma. Serum albumin is produced by the liver, dissolves in the blood plasma and is the most abundant blood protein in mammals. In some renal pathologies albumin is lost in the urine. Particularly, the term “albumin” refers to a globular protein that in humans is encoded by the ALB gene (UniGene Hs. 418167). Human serum albumin is the protein defined by the sequence of the Uniprot database with accession number P02768 dated July 22, 2015.
  • uromodulin complexes or a variant thereof-GAG sulfated-exosomes refers to a complex formed by the association of at least three components: the uromodulin protein, sulphated GAG and exosomes. Also included in the present invention are those complexes where uromodulin has been replaced by a variant of uromodulin. These three components can be found linked or associated in very different ways (see Figure 15), but this union or association is specific, that is, it goes beyond simple mechanical interactions by proximity or abundance, as evidenced by the tests reflected in Figures 7, 10 and 12.
  • protein as used herein also includes all physiologically relevant forms of chemical modification after translation.
  • Post-translational modifications that fall within the scope of the present invention include, for example, cleavage of the signal peptide, glycosylation, acetylation, phosphorylation, isoprenylation, proteolysis, myrisylation, protein folding and proteolytic process, etc.
  • proteins may include unnatural amino acids formed by post-translation modifications or by the introduction of unnatural amino acids during translation.
  • the protein detected is that corresponding to the species to which the subject from which the sample to be analyzed belongs belongs.
  • Protein variants can also be used to measure protein levels in the methods of the invention.
  • the protein variants may be: (i) those in which one or more of the amino acid residues are substituted by a conserved or non-conserved amino acid residue (preferably a conserved amino acid) and such a substituted amino acid residue may or may not be encoded by the genetic code, (ii) those in which there is one or more modified amino acid residues, for example, residues that are modified by the coupling of substituent groups, (iii) those in which the protein is a variant of alternative splicing of the protein and / or (iv) protein fragments. Fragments include proteins generated through the proteolytic process (including multi-site proteolysis) of an original sequence.
  • Variants according to the present invention include amino acid sequences that have at least 60%, 70%, 80%, 90%, 95% or 96% similarity or identity with the original amino acid sequence.
  • the "similarity" between two proteins is determined by comparing the amino acid sequence of a protein with a sequence of a second protein. The degree of "identity" between two proteins is determined using computer algorithms and methods that are widely known to those skilled in the art, preferably using the BLASTP algorithm [BLASTM Annual, Altschul, S., et al., NCBI NLM NIH Bethesda, Md 20894, Altschul, S., et al., J. Mol. Biol., 215: 403-410 (1990)].
  • the variant is a mammalian variant, preferably a human variant, more preferably with at least 60%, 70%, 80%, 90%, 95% or 96% similarity or identity with the original amino acid sequence.
  • Expression levels of a protein or peptide can be detected and quantified by conventional methods. Such methods include, without limitation, the detection of the protein by measuring its affinity to one of its ligands, and the subsequent quantification of the protein-ligand complex, or by the use of antibodies capable of specifically binding the protein (or fragments). of them containing the antigenic determinants) and the subsequent quantification of the resulting antigen-antibody complexes.
  • the detection is carried out by means of an antibody that specifically binds to the protein or a fragment thereof capable of binding the antigen.
  • the detection is carried out by means of an aptamer that specifically binds to the protein or a fragment thereof capable of binding to said protein.
  • the detection is carried out by means of an enzyme capable of specifically recognizing an amino acid sequence of the protein and cleaving it.
  • the antibodies that can be used in these assays are, for example, serum polyclonal antibodies; hybridoma supernatants or monoclonal antibodies, chimeric antibodies, humanized antibodies, primatized antibodies, human antibodies, bispecific antibodies, and antibody fragments such as Fab, Fab ', F (ab') 2, scFv, diabodies, triabodies, tetrabodies and nanobodies.
  • the antibodies used in the method of the invention can or they cannot be marked with a detectable agent.
  • the antibody used is conjugated to a detectable agent.
  • detectable agent and “marking” are synonymous and refer to an agent of such nature that allows their detection by enzymatic, radioactive or fluorescence methods.
  • the detectable compound may be an enzyme, a radioactively labeled compound or a radioactive isotope, a fluorochrome, a chemiluminescent reagent, an enzyme substrate or cofactor, an enzyme inhibitor, a particle, a dye, etc.
  • Radioactive isotopes also called radioisotopes or radionuclides
  • Compounds radiolabelled by radioactive isotopes may include, without limitation, 3 H, 14 C, 15 N, 35 S, 90 Y, "Te, 111 ln, 125 l, 131 l.
  • Fluorescent markers may include, without limitation, rhodamine, lanthanide phosphors or FITC.
  • Enzymatic markers may include, without limitation, horseradish peroxidase, beta-galactosidase, luciferase or alkaline phosphatase.
  • Preferred dips include, but are not limited to, fluorescein , a phosphatase such as alkaline phosphatase, biotin, avidin, a peroxidase such as horseradish peroxidase and biotin-related compounds or avidin-related compounds (eg, streptavidin or ImmunoPure® NeutrAvidin available in Pierce, Rockford, IL).
  • fluorescein a phosphatase such as alkaline phosphatase
  • biotin biotin
  • avidin a peroxidase
  • a peroxidase such as horseradish peroxidase and biotin-related compounds or avidin-related compounds (eg, streptavidin or ImmunoPure® NeutrAvidin available in Pierce, Rockford, IL).
  • assays there are a wide variety of well known assays that can be used in the present invention, in which primary unlabeled antibodies and secondary labeled antibodies are used: such techniques include Western blotting or Western blotting, ELISA (enzyme-linked immunoabsorption assay ), RIA (radioimmunoassay), competitive EIA (competitive enzyme immunoassay), DAS-ELISA (double antibody sandwich ELISA), or techniques based on the use of protein biochips or microarrays that include specific antibodies or tests based on colloidal precipitation in forms such as test strips. Other forms for protein detection include techniques such as affinity chromatography, ligand binding assays, etc. There are commercial antibodies against the proteins of the invention on the market that can be used in the context of the invention.
  • the quantification of protein levels is performed by Western blotting or ELISA.
  • the detection is performed by mass spectrometry, preferably tandem mass spectrometry, which has been previously defined.
  • protein levels is used to refer to both absolute levels and relative levels of said protein.
  • absolute values refers to the total amount of the protein of interest in a sample. Said value can be given as the concentration of protein expressed in units of mass per unit volume (for example, in ng / ml of sample), in the number of protein molecules per unit volume (for example, in pmol of protein / ml of sample), in units of protein mass X per unit mass of total protein (pg protein X / mg total protein) or in the number of protein molecules X per unit mass of total protein (for example , in pmol protein X / mg total protein).
  • relative levels refers to the relationship between the expression levels of the protein under study and a reference protein, that is, it is defined as the concentration of the protein under study in a normalized way with respect to said protein. reference.
  • Control protein in the present invention is understood as a protein whose expression does not change or only changes in limited amounts in the altered cells with respect to unaltered cells.
  • the control protein is a protein encoded by genes that are constitutively expressed, that are those genes that are always active or that are constantly transcribed, such that these proteins are constitutively expressed and carry out essential cellular functions.
  • Preferred control proteins that can be used in the present invention include, without limitation, ⁇ -2-microglobulin. (B2M), ubiquitin, 18-S ribosomal protein, cyclophilin, GAPDH, PSMB4, tubulin and actin. In a more preferred embodiment the control protein is tubulin.
  • step (b) of the invention is carried out, which consists in comparing the levels of the protein under study obtained in step (a) with a value reference.
  • reference value refers to predetermined criteria used as a reference to evaluate the values or data obtained from samples collected from a subject.
  • the reference value or reference level may be an absolute value, a relative value, a value that has an upper or lower limit, a range of values, an average value, a medium value, an average value, or a compared value. with a particular control or baseline value.
  • a reference value can be based on a value of an individual sample, such as, for example, a value obtained from a sample of the subject being analyzed, but at an earlier time.
  • the reference value can be based on a large number of samples, such as a population of subjects of the matching chronological age group, or based on a set of samples that include or exclude the sample being analyzed.
  • the reference value comes from a set of samples preferably formed by a mixture of the same type of sample to be analyzed from normal individuals not affected by the disease. Said reference value can be determined by techniques well known in the state of the art, such as, for example, determination of the average value of the protein measured in a sample obtained from healthy subjects. The reference value can also be obtained from constitutively expressed proteins taken from the same subject to be analyzed.
  • the value of the protein levels obtained in step (a) can be compared with this reference value and, therefore, allows the detection of alterations in the subject's protein levels with respect to the reference value.
  • “increased levels” or “increased level” with respect to the reference value is understood as a variation of the levels above the reference value of at least 5%, at least 10 %, at least 15%, at least 20%, at least 25%, at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 100%, at least 110%, at least 120%, at least 130%, at least 140%, at least 150% or more, compared to the reference value.
  • a decrease in sulfated GAG levels with respect to the reference value is indicative that the subject suffers from a disease associated with a decrease in sulphated GAG levels.
  • “decrease in levels” or “decreased level” with respect to the reference value is understood as a variation of the levels below the reference value of at least 5%, at least 10%, at least 15%, at least 20%, at least 25%, at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, at least 55 %, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95% or at least 100% (i.e. absent) compared to the reference value.
  • Advanced kidney disease means not only the final stage of kidney disease, or end-stage renal disease, when the kidneys no longer have the capacity to remove enough wastes and it is necessary to undergo dialysis or a kidney transplant, but also the stage in which the disease has advanced so that the kidneys have almost ceased to function and the symptoms are mild, such as abnormally dark or light skin, bone pain, drowsiness or concentration problems, numbness or swelling of hands and feet, muscle fasciculations or cramps, bad breath, susceptibility to bruising or blood in the stool, excessive thirst, frequent hiccups, amenorrhea, shortness of breath and vomiting.
  • These methods may consist essentially of the steps mentioned above or may include additional steps.
  • the invention relates to an in vitro method for determining the prognosis or for monitoring the progression of a disease associated with an increase in one or more sulphated GAGs in a subject comprising:
  • a decrease in the level of one or more sulfated GAGs with respect to the reference value is indicative that the disease associated with an increase of one or more sulphated GAGs has a good prognosis
  • an increase in the level of one or more sulfated GAGs with respect to the reference value is indicative that the disease associated with an increase in one or more sulphated GAGs has a poor prognosis.
  • the invention relates to an in vitro method for determining the prognosis or for monitoring the progression of a disease associated with a decrease in one or more sulphated GAGs in a subject comprising:
  • an increase in the level of one or more sulfated GAGs with respect to the reference value is indicative that the disease associated with a decrease in one or more sulphated GAGs has a good prognosis.
  • the invention relates to an in vitro method for determining the prognosis or for monitoring the progression of a subject suffering from mucopolysaccharidosis comprising:
  • the homogeneous urinary profile observed in the general population is altered in renal patients at the protein level and could be used as a biomarker of function and renal prognosis, anticipating changes in creatinine levels, the biomarker of renal damage currently referenced, in several years. since 50% of renal function may have been lost before creatinine levels change significantly.
  • Uromodulin has a pattern of inverse expression at creatinine levels, tending to decrease progressively in advanced renal patients (determined by serum creatinine levels, proteinuria and other clinical signs).
  • the method of the invention has allowed observing that the greater the damage and evolution of renal failure, even without significant changes in creatinine levels, the lower the (semi-quantitative) presence of uromodulin associated with GAG in urine.
  • the invention in another aspect, relates to an in vitro method for determining the prognosis or for monitoring the progression of kidney disease in a subject comprising detecting the level of uromodulin or a variant thereof linked to or associated with sulfated GAGs and / or detect the level of albumin or a variant thereof bound or associated with sulfated GAGs in a urine sample of said subject and compare said level with a reference value obtained from the same subject at a previous time
  • a decrease in the level of uromodulin or a variant thereof bound or associated with sulfated GAGs and / or a decrease in the level of albumin or a variant thereof bound or associated with sulfated GAGs with respect to the value reference is indicative that the disease has a poor prognosis or
  • the invention in another aspect, relates to an in vitro method for determining the prognosis or for monitoring the progression of advanced kidney disease in a subject comprising a) detecting the level of uromodulin complexes or a variant thereof - GAG sulfated- exosomes in a urine sample of said subject; and b) compare said level with a reference value obtained from the same subject at a previous time
  • the expression "monitor the progression" of a disease refers to the determination of one or more parameters that indicate the progression of the disease in a patient. diagnosed of it. Appropriate parameters to determine the evolution of a subject diagnosed with a disease are, without limitation, risk of relapse, disease-free survival and / or overall survival of the subject.
  • risk of relapse is understood as the probability that a subject develops the disease after a disease-free period;
  • disease-free survival is understood as the period of time after treatment in which the disease is not detected; and
  • all survival of the subject is understood as the percentage of subjects that survive, from the moment of diagnosis or treatment, after a defined period of time.
  • the levels of one or more sulfated GAGs or the protein levels in a biological sample of a subject having the disease are obtained in a first period of time (first sample of the subject) and the levels of one or more sulfated GAGs or protein levels in a biological sample of the same subject are obtained in a second period of time (second sample of the subject) and compared allowing the disease progression to be monitored.
  • the second sample of the subject can be taken from the same subject from which the first measurement is derived, in a second period of time, that is, at any time after the first period of time, for example, one day, one week, one month, two months, three months, 1 year, 2 years, or more after the first sample of the subject.
  • the first sample of the subject is taken before receiving the treatment and the second sample of the subject is taken after the treatment.
  • the first sample of the subject is taken after the subject has begun to receive treatment and the second sample of the subject is then taken at different periods of time during the course of treatment.
  • good prognosis means that the disease is not in progression. "Good prognosis” also refers to a positive outcome for the patient and It depends on the type of forecast; For example, a good prognosis of one year of survival means that the patient will survive for at least one year. In a preferred embodiment, a good prognosis refers to a probability of more than 40% of surviving 5 years after the diagnosis of the disease.
  • poor prognosis means that the disease is in progression and that the therapy administered to the subject under study must be changed and a new therapy must be designed to treat the disease.
  • “Bad prognosis” also refers to a negative outcome for the patient and depends on the type of prognosis; For example, a poor prognosis of 1 year of survival means that the patient will not survive for at least 1 year. In a preferred embodiment, a poor prognosis refers to a probability less than 40% of surviving 5 years after the diagnosis of the disease.
  • the separation of the uromodulin and / or albumin associated with sulfated GAGs or the separation of the uromodulin complexes or a variant thereof-GAG sulphated-exosomes from the urine sample is performed according to the first method of the invention.
  • Sulfated GAG levels can be determined as described above.
  • the levels of the proteins or variants thereof can be determined by any suitable method known in the art, such as, for example, Western blot or ELISA. .
  • the detection is performed by mass spectrometry, preferably tandem mass spectrometry.
  • the renal disease is autosomal dominant polycystic kidney type 1 or type 2, preferably autosomal dominant polycystic kidney disease type 1 or type 2 associated with known mutations in the PKD1 genes (chr16: 41711 del18bp; chr16: 28907c > g; chr16: 37060c> t) and PKD2 (chr4: 88995974c> t).
  • the invention also provides methods for determining the efficacy of a therapy for the treatment of a disease associated with an increase of one or more sulfated GAGs, of a disease associated with a decrease of one or more sulfated GAGs, and particularly of mucopolysaccharidosis and renal disease.
  • the invention relates to an in vitro method for monitoring the effect of a therapy for the treatment of a disease associated with an increase in one or more sulfated GAGs comprising:
  • the invention in another aspect, relates to an in vitro method for monitoring the effect of a therapy for the treatment of a disease associated with a decrease in one or more sulphated GAGs comprising: a) separating free sulphated GAGs and the bound fraction or associated with sulfated GAGs of a biological sample of a subject suffering from said disease and who has been treated with said therapy by the first method of the invention; and b) detect the level of one or more sulfated GAGs separated in a)
  • a decrease or absence of change in the level of one or more sulfated GAGs with respect to the level of the sulfated GAG in a sample from the same subject before therapy is indicative that the therapy administered is ineffective or that the subject You need an alternative therapy.
  • the invention relates to an in vitro method for monitoring the effect of a therapy in a subject suffering from mucopolysaccharidosis and being treated with said therapy comprising:
  • a decrease in the level of the signal peptide SEQ ID NO: 1 of the uromodulin or a variant thereof with respect to the reference value is indicative that the therapy administered is effective or where an increase in the level of the signal peptide SEQ ID NO: 1 of uromodulin or a variant thereof with respect to the reference value is indicative that the therapy administered is ineffective or that the subject needs an alternative therapy.
  • the invention relates to an in vitro method for monitoring the effect of a therapy on a subject suffering from kidney disease and who is treated with said therapy comprising:
  • an increase in the level of uromodulin or a variant thereof bound or associated with sulfated GAGs and / or an increase in the level of albumin or a variant thereof bound or associated with sulfated GAGs with respect to the value reference is indicative that the therapy administered is effective or
  • a decrease in the level of uromodulin or a variant thereof bound or associated with sulfated GAGs and / or a decrease in the level of albumin or a variant thereof bound or associated with sulfated GAGs with respect to the value Reference is indicative that the therapy administered is ineffective or that the subject needs an alternative therapy.
  • the invention relates to an in vitro method for monitoring the effect of a therapy on a subject suffering from advanced kidney disease and who is treated with said therapy comprising:
  • a decrease in the level of uromodulin complexes or a variant of it-GAG sulphated-exosomes with respect to the reference value is indicative of that the therapy administered is ineffective or that the subject needs an alternative therapy.
  • the separation of the uromodulin and / or albumin associated with sulfated GAGs or the separation of the uromodulin complexes or a variant thereof-GAG sulphated-exosomes from the urine sample is performed according to the first method of the invention.
  • monitoring the effect of a therapy refers to monitoring the disease throughout the treatment to determine if it is effective or not.
  • the term "therapy” or “treatment” collectively refers to means of any kind (hygienic means, pharmacological means, surgical means or physical means) the purpose of which is to prevent and / or cure or relieve a disease or pathology or its symptoms.
  • the therapy is selected from diet therapy, drug treatment, exercise therapy and a combination thereof.
  • said treatment is a pharmacological treatment, that is, a treatment comprising the administration of a drug to a subject to prevent, alleviate and / or cure a disease; or to relieve, reduce or eliminate one or more symptoms associated with said disease.
  • standard therapy or “conventional therapy” is understood as that therapy that employs drugs that have demonstrated clinical efficacy in randomized phase III studies, alone or in combinations similar to those used in the present invention.
  • conventional therapy for the treatment of mucopolysaccharidosis may be symptomatic therapy, enzyme replacement treatments, substrate inhibitors and bone marrow transplantation (hematopoietic progenitors).
  • kidney disease depends on its etiology, and can be, without limitation, immunosuppressants such as tacrolimus or cyclosporine; supplements or restriction of mineral salts such as sodium, potassium, magnesium; diet or diuretics such as amiloride, triamterene or tolvaptan; and on other occasions the only solution is dialysis or transplantation.
  • immunosuppressants such as tacrolimus or cyclosporine
  • mineral salts such as sodium, potassium, magnesium
  • diet or diuretics such as amiloride, triamterene or tolvaptan
  • alternative therapy is understood as a therapy other than the therapy originally administered, here called standard therapy, to a subject.
  • Said "alternative therapy” includes significant variations to the standard therapy, such as the substitution of some agents for others, the addition of alternative agents, change of dose or increase in the dose intensity of the drugs, addition of other agents (approved or in experimentation phase), alteration in the sequence of administration of agents or the type of local treatments, such as surgery or radiotherapy, etc.
  • the alternative therapies defined here are probably associated with greater side effects for the subject (although not necessarily) and predictably, greater effectiveness.
  • agents included in the alternative mucopolysaccharidosis therapy could be enzyme "enhancement" therapy when there is residual enzyme activity, or gene therapy in the process of clinical testing.
  • agents included in the alternative therapy of renal disease could be any of the agents that have not been used as standard therapy and, preferably, dialysis and / or renal transplantation.
  • the reference sample is a sample of the same patient suffering from the disease that has either not been treated or has been treated with control therapy, preferably, the same excipient, support or vehicle that is used in the therapy whose efficacy is being treated. To evaluate.
  • the detection is performed by mass spectrometry, preferably tandem mass spectrometry.
  • kidney disease is autosomal dominant polycystic kidney disease type 1 or type 2.
  • the different embodiments of the diagnostic and prognostic methods of the invention are essentially as previously defined with respect to the diagnostic and prognostic methods of the invention. Methods to identify suitable compounds for the treatment of a disease
  • the authors of the present invention have also developed a method for the identification of a compound suitable for the treatment of diseases associated with an increase or decrease in one or more sulfated GAGs, mucopolysaccharidosis and kidney disease.
  • the identification of a series of markers whose levels increase or decrease with respect to reference samples allows the screening of compounds in a model of these diseases that are capable of restoring the levels of the markers to those found in normal samples.
  • the invention relates to an in vitro method for the identification of suitable compounds for the treatment of a disease associated with an increase in one or more sulfated GAGs comprising:
  • the compound is considered effective for the treatment of the disease when the level of one or more sulfated GAGs decreases with respect to the level of the same sulfated GAG in a reference sample.
  • the invention relates to an in vitro method for the identification of suitable compounds for the treatment of a disease associated with a decrease in one or more sulfated GAGs comprising:
  • the invention relates to an in vitro method for the identification of compounds suitable for the treatment of mucopolysaccharidosis comprising: a) detecting the level of the signal peptide SEQ ID NO: 1 of uromodulin or a variant thereof in a urine sample of a subject suffering from mucopolysaccharidosis and who has been treated with a candidate compound and b) comparing said level with a reference value
  • the compound is considered effective for the treatment of the disease when the level of the signal peptide SEQ ID NO: 1 of the uromodulin or a variant thereof decreases with respect to the reference value.
  • the invention relates to an in vitro method for the identification of suitable compounds for the treatment of renal disease comprising: a) detecting the level of uromodulin or a variant thereof linked to or associated with sulphated GAGs and / or detect the level of albumin or a variant thereof bound or associated with sulfated GAGs in a urine sample of a subject suffering from kidney disease and who has been treated with a candidate compound and
  • the compound is considered effective for the treatment of the disease when the level of uromodulin or a variant thereof bound or associated with sulphated GAGs and / or the level of albumin or a variant thereof bound or associated with the Sulfated GAG increases with respect to the reference value.
  • the invention relates to an in vitro method for the identification of compounds suitable for the treatment of advanced kidney disease comprising:
  • the compound is considered effective for the treatment of advanced kidney disease when the level of uromodulin complexes or a variant thereof - sulphated GAG-exosomes increases with respect to the reference value.
  • the separation of the uromodulin and / or albumin associated with sulfated GAGs, or the separation of the uromodulin complexes or a variant thereof sulphated-GAG-exosomes from the urine sample is performed according to the first method of the invention .
  • identification of suitable compounds for the treatment of a disease refers both to a screening method for the identification of effective compounds for the treatment of the existing disease and for preventive treatment (ie, prophylaxis).
  • treatment has been defined in the context of the methods of monitoring a therapy.
  • reference sample refers to a sample derived from a diseased subject where the therapy is being tested but obtained from the diseased subject prior to the administration of said therapy.
  • the reference sample may also be a sample of a subject suffering from the disease and that has not been treated or that has been treated with control therapy, preferably, the same excipient, support or vehicle that is used in the candidate compound that is screened. .
  • the subject can be a patient or an animal used as a model of the disease.
  • animals suitable for use in the screening method of the invention include, but are not limited to, mice, rats, rabbits, monkeys, guinea pigs, dogs and cats.
  • the test compound or a control compound (for example, orally, rectally or parenterally such as intraperitoneally or intravenously) is administered to a suitable animal and the effect on the levels of one or more is determined. More markers.
  • agents include, but are not limited to, nucleic acids (eg, DNA and RNA), carbohydrates, lipids, proteins, peptides, peptidomimetics, small molecules and other drugs.
  • Agents can be obtained using any of the numerous approaches in combinatorial library methods known in the art.
  • the compounds to be tested further include, for example, antibodies (for example, polyclonal, monoclonal, humanized, anti-idiotypic, chimeric, and single chain antibodies as well as Fab, F (ab ') 2 fragments, Fab expression libraries, and antibody epitope binding fragments).
  • the Compounds or libraries of compounds may be present, for example, in solution, in balls, chips, bacteria, spores, plasmids or phages.
  • the compound is a low molecular weight compound, then this can be generated by several methods known in the art, preferably synthetically, in particular by combinatorial chemistry, or by biochemical methods, in particular by recombinant expression or purification from biological probes
  • the compound may be of low molecular weight ("small molecules") or the library may be composed of molecules with low molecular weight (“small molecule library”).
  • small molecule is defined as a complex collection of compounds, which are produced non-biologically, which means that they are not produced by recombinant expression, such as most protein or peptide libraries.
  • “Small molecules” can be generated by various methods known in the art, but are preferably produced synthetically, more preferably by combinatorial chemistry, to generate a library of compounds with maximum chemical diversity within the constraints of the predicted characteristics of An attractive drug. If the compound of which its suitability for the treatment of a disease is tested is a peptide or a peptide library, then these can be generated by various methods known in the art for use as candidate compounds, but preferably produced by biochemical methods. , more preferably by recombinant expression in prokaryotic or eukaryotic cells.
  • the compound of which to be tested for suitability for therapy can be formulated with a pharmaceutically acceptable carrier to produce a pharmaceutical composition, which can be administered to a human or other animal.
  • a pharmaceutically acceptable carrier may be, for example, water, sodium phosphate buffer, phosphate buffered saline, normal saline or Ringer's solution or another physiologically buffered saline, or other solvent or vehicle, such as a glycol, glycerol, an oil such as olive oil, or an injectable organic ester.
  • a pharmaceutically acceptable carrier may also contain physiologically acceptable compounds that act, for example, to stabilize or increase the absorption of the modulating compound. The subject matter expert would know that the choice of A pharmaceutically acceptable carrier, including a physiologically acceptable compound, depends, for example, on the route of administration of the composition.
  • the detection is performed by mass spectrometry, preferably tandem mass spectrometry.
  • kidney disease is autosomal dominant polycystic kidney disease type 1 or type 2.
  • the different embodiments of the diagnostic and prognostic methods of the invention are essentially as previously defined with respect to the diagnostic and prognostic methods of the invention.
  • the invention relates to an in vitro method for designing a personalized therapy in a subject having symptoms of mucopolysaccharidosis comprising:
  • an increased level of the signal peptide SEQ ID NO: 1 of uromodulin or a variant thereof with respect to the reference value is indicative that said subject is capable of receiving a therapy for the prevention and / or treatment of mucopolysaccharidosis.
  • the invention relates to an in vitro method for selecting a patient capable of being treated with a therapy for the prevention and / or treatment of mucopolysaccharidosis comprising: a) detecting the level of the signal peptide SEQ ID NO: 1 of the uromodulin or a variant thereof in a urine sample of said subject and
  • an increased level of the signal peptide SEQ ID NO: 1 of uromodulin or a variant thereof with respect to the reference value is indicative that said subject is a candidate to receive a therapy for the prevention and / or treatment of mucopolysaccharidosis .
  • the invention relates to an in vitro method for designing a personalized therapy in a subject that has symptoms of kidney disease comprising: a) detecting the level of uromodulin or a variant thereof linked to or associated with GAG sulfated and / or detect the level of albumin or a variant thereof bound or associated with sulfated GAGs in a urine sample of said subject and
  • a decrease in the level of uromodulin or a variant thereof bound or associated with sulfated GAGs and / or a decrease in the level of albumin or a variant thereof bound or associated with sulfated GAGs with respect to the value Reference is indicative that said subject is susceptible to receiving therapy for the prevention and / or treatment of kidney disease.
  • the invention relates to an in vitro method for selecting a patient capable of being treated with a therapy for the prevention and / or treatment of kidney disease comprising:
  • the invention relates to an in vitro method for designing a personalized therapy in a subject that has symptoms of advanced kidney disease comprising:
  • a decrease in the level of uromodulin complexes or a variant thereof-GAG sulphated-exosomes with respect to the reference value is indicative that said subject is likely to receive a therapy for the treatment of advanced kidney disease.
  • the invention relates to an in vitro method for selecting a patient capable of being treated with a therapy for the treatment of advanced kidney disease comprising:
  • a decrease in the level of uromodulin complexes or a variant thereof-GAG sulphated-exosomes with respect to the reference value is indicative that said subject is a candidate to receive a therapy for the treatment of advanced kidney disease.
  • the separation of the uromodulin and / or albumin associated with sulfated GAGs, or the separation of the uromodulin complexes or a variant thereof sulphated-GAG-exosomes from the urine sample is performed according to the first method of the invention .
  • the detection is performed by mass spectrometry, preferably tandem mass spectrometry.
  • kidney disease is autosomal dominant polycystic kidney disease type 1 or type 2.
  • design a personalized therapy refers to the design and application of interventions for prevention and treatment adapted to the patient's genetic substrate and to the molecular profile of the disease.
  • macopolysaccharidosis symptoms refers to the symptoms produced by said disease that vary depending on the type of mucopolysaccharidosis in question.
  • symptoms may include hearing loss, developmental delays, hydrocephalus, retinal degeneration and glaucoma, rough facial features, short stature (dwarfism), dysplasia, skeletal irregularities, thickening of the skin, hepatomegaly or splenomegaly, hernias, hirsutism, carpal tunnel syndrome, recurrent respiratory infections, airway obstruction diseases, sleep apnea, heart disease.
  • symptoms of kidney disease refers to symptoms that are present in an initial state of the disease, when it goes unnoticed, for example and without limitation, lack of appetite, feeling of malaise and fatigue, headaches, itching and dry skin, nausea and weight loss.
  • symptoms of advanced kidney disease refers to the symptoms that appear when the kidney disease has already affected renal function, such as, without limitation, abnormally dark or light skin, bone pain, drowsiness or problems with concentration, numbness or swelling of hands and feet, muscle fasciculations or cramps, bad breath, susceptibility to bruising or blood in the stool, excessive thirst, frequent hiccups, amenorrhea, shortness of breath and vomiting.
  • prevention therapy refers to the prevention or set of prophylactic measures to prevent a disease or to prevent or delay the onset of symptomatology of the disease. same. Particularly, said term refers to the prevention or set of measures to prevent the onset or to delay the clinical symptoms associated with mucopolysaccharidosis or kidney disease. Desired clinical results associated with the administration of such treatment to a subject include but are not limited to, stabilization of the disease state of the disease, delay in disease progression or improvement in the physiological state of the subject.
  • Treatment therapy refers to the tentative recovery of a health problem, usually after a specific diagnosis of mucopolysaccharidosis or kidney disease. As such, it is not necessarily a cure, that is, a complete reversal of a disease. Therefore, “treatment” as used herein covers any treatment of a disease, disorder or condition of a mammal, particularly a human being, and includes inhibiting the disease or condition, that is, stopping its development. ; or alleviate the disease or condition, that is, cause the regression of the disease or condition or the improvement of one or more symptoms of the disease or condition.
  • the population of subjects treated by the method includes a subject suffering from the undesirable condition or disease, as well as subjects at risk of developing the condition or disease. Therefore, one skilled in the art understands that a treatment may improve the patient's condition, but may not be a complete cure for the disease.
  • Suitable preventive or curative treatments in mucopolysaccharidosis include, but are not limited to, iduronidase for MPS I, idursulfase for MPS II, N-acetylgalactosamine-6-sulfate sulfatase (Galns) for MPS IVA, recombinant human arylsulfatase for MPS VI (all of them are enzyme replacement therapies); hematopoietic progenitor transplantation including umbilical cord blood transplantation, erythropoietic stem cell transplantation and peripheral blood stem cell transplantation; substrate reduction therapy if there is some residual enzyme activity.
  • kidney disease include, but are not limited to, symptomatic or palliative treatment; specific to the cause (if antibiotic use is bacterial, etc); immunosuppressants such as tacrolimus or cyclosporine; supplements or restriction of mineral salts such as sodium, potassium, magnesium; diet or diuretics such as amiloride, triamterene or tolvaptan; dialysis (peritoneal, hemodialysis) and renal transplantation.
  • the term "select” as used herein refers to the action of choosing a subject to undergo a preventive or curative treatment of mucopolysaccharidosis or kidney disease.
  • the different embodiments of the diagnostic and prognostic methods of the invention (the methods used to determine the levels of the markers, the nature of the sample to be studied, the thresholds for considering that a marker has increased or decreased) they are essentially as previously defined with respect to the diagnostic and prognostic methods of the invention.
  • the invention relates to the use of an agent capable of detecting the signal peptide SEQ ID NO: 1 of uromodulin or a variant thereof in a urine sample to diagnose mucopolysaccharidosis, to determine the prognosis or to monitor the progression of a subject suffering from mucopolysaccharidosis, to monitor the effect of a therapy on a subject suffering from mucopolysaccharidosis, to design a personalized therapy in a subject that has symptoms of mucopolysaccharidosis, to select a patient susceptible to being treated with a therapy for prevention and / or treatment of mucopolysaccharidosis or for the identification of suitable compounds for the treatment of mucopolysaccharidosis.
  • the agent capable of detecting the signal peptide SEQ ID NO: 1 of the uromodulin or a variant thereof is selected from the group consisting of an enzyme capable of specifically recognizing an amino acid sequence of the signal peptide of SEQ ID NO : 1 of the uromodulin or a variant thereof and cleaving said peptide, an antibody, an aptamer and fragments thereof that specifically bind the signal peptide SEQ ID NO: 1 of the uromodulin or a variant thereof.
  • the agent is an antibody capable of specifically detecting a peptide of sequence SEQ ID NO: 1 or a variant thereof, and unable to detect mature or secreted uromodulin, or a fragment of said antibody capable of binding to the sequence SEQ ID NO: 1 or a variant thereof.
  • the agent is an aptamer capable of specifically detecting a peptide of sequence SEQ ID NO: 1 or a variant thereof, and unable to detect mature or secreted uromodulin, or a fragment of said aptamer capable of binding to the sequence SEQ ID NO: 1 or a variant thereof.
  • the agent is an enzyme capable of recognizing it specifies an amino acid sequence of the signal peptide of SEQ ID NO: 1 or a variant thereof and cleaves said peptide, and is unable to recognize an amino acid sequence of mature or secreted uromodulin and cleaves it.
  • the invention relates to the use of the signal peptide SEQ ID NO: 1 of uromodulin or a variant thereof as a diagnostic marker for mucopolysaccharidosis, as a prognostic marker for mucopolysaccharidosis, as a monitoring marker for the progression of a subject that undergoes mucopolysaccharidosis, as a marker for monitoring the effect of a therapy in a subject suffering from mucopolysaccharidosis, as a marker to design a personalized therapy in a subject that has symptoms of mucopolysaccharidosis, as a selection marker for a patient capable of being treated with a therapy for the prevention and / or treatment of mucopolysaccharidosis or as a marker for the identification of suitable compounds for the treatment of mucopolysaccharidosis.
  • the invention relates to the use of an agent capable of detecting uromodulin or a variant thereof bound or associated with sulphated GAGs and / or an agent capable of detecting albumin or a variant thereof bound or associated to sulfated GAGs in a urine sample to diagnose kidney disease, to determine the prognosis or to monitor the progression of a subject suffering from kidney disease, to monitor the effect of a therapy on a subject suffering from kidney disease, to design a therapy personalized in a subject that has symptoms of kidney disease, to select a patient that can be treated with a therapy for the prevention and / or treatment of kidney disease or for the identification of suitable compounds for the treatment of kidney disease.
  • the invention relates to the use of uromodulin or a variant thereof bound or associated with sulphated and / or albumin GAGs or a variant thereof bound or associated with sulfated GAGs as a disease diagnostic marker.
  • renal as a prognostic marker of renal disease, as a marker for monitoring the effect of a therapy in a subject suffering from renal disease, as a marker to design a personalized therapy in a subject that has symptoms of renal disease, as a patient selection marker liable to be treated with a therapy for the prevention and / or treatment of kidney disease or as a marker for the identification of suitable compounds for the treatment of kidney disease.
  • the invention relates to the use of an agent capable of detecting uromodulin complexes or a variant thereof-GAG sulphated-exosomes in a urine sample to diagnose advanced kidney disease, to determine the prognosis or to monitor the progression of a subject suffering from advanced kidney disease, to monitor the effect of a therapy on a subject suffering from advanced kidney disease, to design a personalized therapy on a subject that has symptoms of advanced kidney disease, to select a patient susceptible to being treated with a therapy for the treatment of advanced kidney disease or for the identification of suitable compounds for the treatment of advanced kidney disease.
  • the invention relates to the use of a uromodulin complex or a variant thereof-GAG sulphated-exosomes as a diagnostic marker for advanced renal disease, as a prognostic marker for advanced renal disease, as a marker for monitoring the effect of a therapy in a subject suffering from advanced kidney disease, as a marker to design a personalized therapy in a subject that has symptoms of advanced kidney disease, as a selection marker of a patient susceptible to being treated with a therapy for the treatment of advanced kidney disease or as a marker for the identification of suitable compounds for the treatment of advanced kidney disease.
  • agent refers to any compound or reagent that makes it possible to detect the presence of the signal peptide SEQ ID NO: 1, or capable of detecting uromodulin or a variant thereof bound or associated with sulphated GAGs, or capable of detecting albumin or a variant thereof bound or associated with sulfated GAGs, or capable of detecting complexes formed by uromodulin or a variant thereof-GAG sulphated-exosomes in a sample.
  • the agent is selected from the group consisting of an antibody, an aptamer and fragments thereof that specifically bind the signal peptide SEQ ID NO: 1, uromodulin, albumin or a variant thereof.
  • the agent is an enzyme capable of specifically recognizing an amino acid sequence of the signal peptide of SEQ ID NO: 1, of uromodulin, of albumin or of a variant thereof and cleaved.
  • the agent is an antibody. In another preferred embodiment the agent is a reagent for mass spectrometry.
  • the term “marker” is equivalent to the term “biomarker”, which has been previously defined.
  • the label is a protein or lipid compound.
  • the separation of the uromodulin and / or albumin associated with sulfated GAGs or the separation of the uromodulin complexes or a variant thereof-GAG sulphated-exosomes from the urine sample is performed according to the first method of the invention.
  • kidney disease is autosomal dominant polycystic kidney disease type 1 or type 2.
  • the inventors have discovered the existence of complexes formed by uromodulin, sulfated GAG and exosomes in the urine of healthy subjects, and also in the urine of subjects suffering from kidney disease. These complexes may include other proteins.
  • exosomes and GAGs together with uromodulin form a complex that may be leading the dialogue between the different segments of the nephron.
  • the invention relates to a complex formed by the association of uromodulin or a variant thereof, sulphated GAGs and exosomes.
  • the complex is isolated, that is, substantially free of other components present in the urine.
  • the invention in another aspect, relates to a kit comprising dimethylmethylene blue (DMB) at a concentration between 0.01 and 100 nM at a pH between 2 and 6.9.
  • DMB dimethylmethylene blue
  • the pH is between 3 and 4; preferably between 3.3 and 3.6; more preferably it is 3.5.
  • the concentration of the DMB is between 0.29 and 0.35 mM, and where the pH is between 3.3 and 3.6 and the buffering agent is formate buffer.
  • kit refers to a combination of a set of reagents suitable for the separation of free sulfated GAGs and the sulfated GAG-linked fraction of a sample together with one or more types of elements or components for carrying out the methods of the invention, particularly for the analysis of the protein or lipid pattern of the sulfated GAG-bound fraction and, optionally, suitable reagents for the detection of sulphated GAG levels of mature uromodulin or secretion, of the sequence peptide SEQ ID NO: 1 of uromodulin, albumin, IgA and / or IgG.
  • the kit optionally includes other types of biochemical reagents, containers, containers suitable for commercial sale, electronic hardware and software components, etc. Reagents are packaged to allow transport and storage. Suitable materials for packaging kit components include glass, plastic (polyethylene, polypropylene, polycarbonate and the like), bottles, vials, paper, envelopes and the like. Additionally, the kits of the invention may contain instructions for the simultaneous, sequential or separate use of the various components found in the kit. Said instructions may be in the form of printed material or in the form of an electronic support capable of storing instructions so that they can be read by a subject, such as electronic storage media (magnetic discs, tapes and the like), optical media (CD- ROM, DVD) and the like. Additionally or alternatively, the media may contain Internet addresses that provide such instructions. In another preferred embodiment, the kit further comprises a gel selected from the group consisting of a polyacrylamide gel and a cellulose acetate gel.
  • polyacrylamide gel refers to a hydrogel formed by an acrylamide homopolymer that is one of the gels most used to perform protein electrophoresis, namely, polyacrylamide gel electrophoresis (PAGE). These gels are chemically inert, transparent and stable in a wide range of pH, temperature and ionic strength.
  • cellulose acetate gel refers to a medium used for the separation and characterization of proteins and other molecules according to their charge density.
  • the support consists of thin strips of cellulose acetate, with minimal adsorption properties, whereby a separation into well-defined bands is achieved.
  • the kit further comprises a loading buffer.
  • loading buffer refers to the buffer that is added to the sample to be loaded in the polyacrylamide gel well or in the cellulose acetate support.
  • this buffer contains water, sucrose and a dye (for example, xylene cyanol, bromophenol blue, bromocresol green, etc.
  • loading buffers can be, without limitation, Laemli buffer; Laemli buffer with ⁇ - mercaptoethanol and 7.5% SDS in a 1: 1 ratio; TBE buffer (100 mM Tris-borate, 1 mM EDTA, pH 8.3) with 2 M sucrose and 0.02% bromophenol blue; TAE buffer (40 mM Tris, 5 mM CH3COONa, 0.9 mM EDTA, pH 7.9); and TBE buffer with 2M sucrose.
  • the loading buffer is 7.5% SDS.
  • the kit further comprises an electrophoresis buffer.
  • electrophoresis buffer refers to the buffer in which the gel is immersed for electrophoresis.
  • electrophoresis buffer examples include, without limitation, 1x or 0.5X APR, 1x TBE, 1x Tris-Glycine, and 0.05 M barium acetate.
  • the electrophoresis buffer is 0.05 M barium acetate.
  • the kit further comprises a specific dye for protein visualization as defined in the context of the first method of the invention. In an even more preferred embodiment the dye is Sypro Ruby.
  • the kit further comprises a destination agent, preferably acetic acid, more preferably 10% acetic acid.
  • the kit further comprises a reagent capable of detecting a protein.
  • the reagent is an enzyme capable of specifically recognizing an amino acid sequence of the peptide or protein and cleaving it. In one embodiment the reagent is an enzyme capable of specifically recognizing an amino acid sequence of the peptide of sequence SEQ ID NO: 1 or a variant thereof and cleaving it, and unable to recognize an amino acid sequence of mature or secreted uromodulin and split it up.
  • the reagent is an enzyme selected from the group consisting of an enzyme capable of specifically recognizing an amino acid sequence of mature or secreted uromodulin or a variant thereof and cleaving it, an enzyme capable of specifically recognizing an amino acid sequence of albumin or a variant thereof and cleaving it, an enzyme capable of specifically recognizing an amino acid sequence of IgA or a variant thereof and cleaving it, an enzyme capable of specifically recognizing an amino acid sequence of the IgG or a variant thereof and cleave it, and combinations thereof.
  • the reagent is an aptamer.
  • the reagent is an aptamer capable of specifically detecting a sequence peptide SEQ ID NO: 1 or a variant thereof, and unable to detect mature or secreted uromodulin, or a fragment of said aptamer capable of binding the sequence. SEQ ID NO: 1 or a variant thereof.
  • the reagent is an aptamer selected from the group consisting of an aptamer capable of specifically recognizing mature or secreted uromodulin or a variant thereof, an aptamer capable of specifically recognizing albumin or a variant thereof, an aptamer capable to specifically recognize IgA or a variant of the same, an aptamer capable of specifically recognizing IgG or a variant thereof, and combinations thereof.
  • Methods for producing such aptamers are well known in the art.
  • the reagent is an antibody.
  • the antibody is an antibody capable of specifically detecting a peptide of sequence SEQ ID NO: 1 or a variant thereof, and unable to detect mature or secreted uromodulin, or a fragment of said antibody capable of binding to the sequence SEQ ID NO: 1 or a variant thereof.
  • the antibody is an antibody selected from the group consisting of an antibody capable of specifically recognizing mature or secreted uromodulin or a variant thereof, an antibody capable of specifically recognizing albumin or a variant thereof, an antibody capable to specifically recognize IgA or a variant thereof, an antibody capable of specifically recognizing IgG or a variant thereof, and combinations thereof. Methods for producing such antibodies are well known in the art.
  • the antibodies of the kit of the invention can be used in all techniques for the determination of known protein levels that are suitable for the analysis of a sample, such as Western-blot or Western transfer, ELISA, RIA, competitive EIA, DAS-ELISA, immunocytochemical or immunohistochemical techniques, techniques based on the use of biochips, protein microarrays, colloidal precipitation tests on test strips, etc.
  • the antibodies and aptamers can be fixed to a solid support such as a membrane, a plastic or a glass, optionally treated to facilitate the fixation of said antibodies and aptamers to the support.
  • Said solid support comprises, at less, a set of antibodies or aptamers that recognize the levels of a peptide of sequence SEQ ID NO: 1 or mature or secretory uromodulin, or albumin, or IgA or IgG or a variant thereof, and that can be used to detect Expression levels of these proteins.
  • kits of the invention further comprise reagents for the detection of a protein encoded by a constitutive gene.
  • additional reagents allows the normalization of the measurements made in different samples (for example, the sample to be analyzed and the control sample) to rule out that the differences in the expression of the biomarkers are due to a difference in the total quantity of proteins in the sample rather than actual differences in relative levels of expression.
  • the constitutive genes in the present invention are genes that are always active or that are constantly transcribed and that code for proteins that are constitutively expressed and that perform essential cellular functions.
  • Proteins that are constitutively expressed and can be used in the present invention include, without limitation, ⁇ -2-microglobulin (B2M), ubiquitin, 18-S ribosomal protein, cyclophilin, GAPDH, PSMB4, tubulin and actin.
  • B2M ⁇ -2-microglobulin
  • ubiquitin ubiquitin
  • 18-S ribosomal protein ubiquitin
  • cyclophilin cyclophilin
  • GAPDH GAPDH
  • PSMB4 tubulin and actin.
  • the kit further comprises a reagent capable of detecting a lipid.
  • reagents capable of detecting a lipid are, without limitation, reagents for rapid luxol blue staining, Baker's acid hematin technique, red oil staining O, staining with Sudan Black B, Sudan II, III and IV.
  • the kit further comprises a reagent capable of detecting a sulfated GAG.
  • reagents capable of detecting a sulfated GAG are, without limitation, DMB, Alcian Blue, acid albumin and cetylpyridinium chloride (CPC).
  • the reagent capable of detecting a sulfated GAG is DMB, preferably 0.02% DMB in water.
  • the kit further comprises a computer program for executing a method according to any of the inventive aspects described in this invention.
  • the invention in another aspect, relates to a kit comprising an antibody capable of specifically detecting a sequence peptide SEQ ID NO: 1 or a variant thereof, and unable to detect mature or secreting uromodulin, or a fragment of said antibody capable of binding to the sequence SEQ ID NO: 1 or a variant thereof.
  • the invention in another aspect, relates to a kit comprising an aptamer capable of specifically detecting a peptide of sequence SEQ ID NO: 1 or a variant thereof, and incapable of detecting mature or secreting uromodulin, or a fragment thereof.
  • aptamer capable of joining the sequence SEQ ID NO: 1 or a variant thereof.
  • the invention in another aspect, relates to a kit comprising an enzyme capable of specifically recognizing an amino acid sequence of the signal peptide of SEQ ID NO: 1 of uromodulin or a variant thereof and cleaving said peptide, and incapable of recognizing an amino acid sequence of mature or secreting uromodulin and cleaving it.
  • the invention relates to the use of a kit as defined above to separate free sulfated GAGs and the fraction bound or associated with sulfated GAGs from a sample, to identify the profile of proteins bound or associated with Sulfated GAGs from a sample, to identify the profile of lipids bound or associated with sulphated GAGs from a sample, to detect an alteration in the glycosylation pattern by sulphated GAGs, to diagnose a disease, to determine the prognosis of a disease, to monitor the progression of a disease, to monitor the effect of a therapy for the treatment of a disease, to predict the response to a therapy, to design a personalized therapy, for the identification of suitable compounds for the treatment of a disease, to identify protein or lipid biomarkers bound or associated with sulfates or to detect complexes formed by e Xosomes, sulfated GAGs and a protein.
  • the disease is a disease associated with an alteration of one or
  • the disease is selected from the group consisting of mucopolysaccharidosis and kidney disease. More preferably the renal disease is autosomal dominant polycystic kidney disease type 1 or type 2.
  • Example 1 Description of the sample processing before isolating the fraction associated with glycosaminoglycans and / or exosomes
  • Urine samples should be stored at -20 ° C until used if it is not done the same day.
  • blood samples they should be collected in the appropriate tube as desired to obtain serum or plasma.
  • the blood sample In the case of plasma, the blood sample must be collected in a tube with anticoagulant, for example heparin or EDTA, and centrifuged at maximum speed for 10 minutes.
  • anticoagulant for example heparin or EDTA
  • serum the sample should be collected in a biochemical tube or STII, allowed to stand for at least 30 minutes and centrifuged at maximum speed for 10 minutes. Both plasma and serum should be stored at -80 ° C until used if it is not done the same day.
  • Dimethylmethylene blue (Serva) was used at a concentration of 0.29 mM dissolved in ethanol and 0.2 M formate buffer was added at pH 3.5 in a 1: 99 ratio. It was then mixed with the biological sample in a 1: 2 ratio. Subsequently, it was incubated for 15 minutes at room temperature. Finally, it was centrifuged at 10,000g for 10 minutes at 4 ° C. The supernatant was removed and the precipitate was recovered, which contains the glycosaminoglycan bound fraction.
  • Serva Dimethylmethylene blue
  • albumin and uromodulin were identified by proteomics (identification by sequencing in MALDI-TOF / TOF).
  • Figure 4 shows the pattern of GAG-bound protein bands in the urine (50 ⁇ ) of healthy individuals (16 men and 16 women, aged 20 to 49) using the method of the invention.
  • the most abundant GAG-bound protein in control individuals is uromodulin, as shown in the left part of the figure, and to a lesser extent other proteins are present.
  • uromodulin the standard protocols for Western blot and a specific antibody for uromodulin (Biomedical-BTI) in dilution 1: 3000 were used. It was visualized using FITC (Abcam's IgG-FITC, 1: 1000 dilution) and the Molecular Imager (Bio-Rad) system with the Quantity One (Bio-Rad) software.
  • FIG. 5 shows the protein pattern bound to GAG in the urine (300 ⁇ ) of two control individuals (23 and 26 year old men) using pH 3-6 strips and 7.5% SDS-PAGE, followed by staining with Sypro Ruby The presence of numerous spots was observed, the most abundant being isomorms of uromodulin. Western blotting was performed as described above.
  • Figure 6 shows the application of the invention in the search for different GAG-bound protein patterns in urine and serum of control individuals and with renal insufficiency (left), and the identification of GAG-bound albumin present by Western blot (right).
  • a 1: 100 dilution in PBS was made for the serum sample and then 50 ⁇ was precipitated with DMB following the method of the invention described above.
  • For the Western blot of albumin an Origene antibody was used at a 1: 4000 dilution and visualized with an antibody bound to Cy5 (IgG-Cy5 Abcam, dilution 1: 5000) using the equipment described above. It was observed that the patient with renal insufficiency had almost no uromodulin and had a lot of urine albumin, but only a little was glycated.
  • Example 5 Description of the reconstitution tests of the junctions between different proteins and glycosaminoglycans
  • Figure 7 demonstrates that the method of the invention is capable of separating those proteins that have glycosaminoglycans together.
  • bovine serum albumin (BSA) was incubated (Bio-Rad) or uromodulin (Biomedical-BTI) in PBS with 100 of the commercial GAGs for 1 hour at 37 ° C to allow GAG binding to proteins.
  • BSA bovine serum albumin
  • uromodulin Biomedical-BTI
  • the precipitate was resuspended in 7.5% SDS and prepared following the standard protocol for the use of SDS-PAGE. It was observed that both commercial albumin and uromodulin are poorly glycated and, after incubation with GAG, glycation occurs and new protein bands appear.
  • Example 6 Identification of specific GAG-bound protein band patterns in individuals suffering from mucopolysaccharidosis
  • Figure 8 shows the patterns of GAG-bound protein bands in urine of patients suffering from different types of mucopolysaccharidoses (MPS I, MPS II, MPS III, MPS IV and MPS VII) and in control individuals of the same age and sex than the patients Urine GAG levels are also shown (above the reference level in patients) measured by the traditional method with DMB (Whitley C.B et al., Clin. Chem. 1989, 35: 2074-2081); and the identification of uromodulin and albumin proteins by Western blot performed under the conditions already described above.
  • MPS I, MPS II, MPS III, MPS IV and MPS VII mucopolysaccharidoses
  • Figure 9 shows 2D electrophoresis in the conditions described above in the urine of patients with confirmed mucopolysaccharidosis. When compared with the controls in Figure 5, the disappearance of the high molecular weight isoforms corresponding to uromodulin and glycated low-weight proteins is observed.
  • Example 7 Diagnostic biomarker in mucopolysaccharidosis
  • Example 8 Diagnosis, monitoring and search for new biomarkers in kidney disease
  • the invention was used in the study of patients or future patients with autosomal dominant polycystic kidney disease associated with known mutations in the PKD1 genes (chr16: 41711 del18bp; chr16: 28907c> g; chr16: 37060c> t) and PKD2 (chr4: 88995974c> t).
  • Figure 10 shows that there is a profile of GAG-associated proteins in control individuals and that the urinary protein profile linked to GAG is altered in patients with renal disease, for example PKD, and that this alteration depends on their renal function (determined by serum creatinine levels and proteinuria).
  • PKD renal disease
  • Uromodulin appears to have a pattern of inverse expression at creatinine levels, tending to decrease progressively in advanced renal patients.
  • the greater the damage and evolution of renal failure, even without significant changes in creatinine levels, the lower the presence of uromodulin associated with GAG in urine ( Figures 10 and 1 1).
  • Example 9 Description of the conditions for the identification by Western blot of the uromodulin associated with glycosaminoglycans and exosomes
  • the identification and characterization of purified exosomal complexes was performed by imaging techniques by electron microscopy, validation of the overall size / charge (based on zeta potential), specific precipitation with DMB as described above, separation in 7.5% gels SDS-PAGE and Western blot.
  • the purified exosomal fractions, supernatants and / or urine pellets were precipitated with DMB, were processed and separated on an SDS-PAGE gel as described above. Proteins were transferred to PVDF-FL membrane at 100V for one hour and a half, nonspecific junctions were blocked with 1% casein or 4% skim milk, incubated with the primary antibody (Rabbit Anti-human Tamm Horsfall glycoprotein, Biomedical-BTI) in dilution 1: 3000 and finally revealed by incubation with the appropriate secondary antibody labeled with fluorescent agents.
  • the primary antibody Rabbit Anti-human Tamm Horsfall glycoprotein, Biomedical-BTI
  • Figure 12 shows the characterization of the UGE complexes (uromodulin-GAG-exosomes) by electron microscopy (a), size (b), zeta (c) and Western uromodulin (d) potential.
  • Figure 12 (d) shows the identification of uromodulin associated with purified exosomal fractions by different approaches and in different PKD patients, as well as in cell pellets and unfractionated urine.
  • Example 10 Description of the disruption assays of the junctions between different proteins, glycosaminoglycans and exosomes
  • exosomal complexes were validated by disruption and reconstitution of the junctions between its components, UMOD-exosomes-GAG in different media (eg urine or PBS buffer) and by different approaches (eg gravity precipitation, gradient purification, treatment with dithiothreitol, filtration or incubation with commercial glycosaminoglycans).
  • media eg urine or PBS buffer
  • approaches eg gravity precipitation, gradient purification, treatment with dithiothreitol, filtration or incubation with commercial glycosaminoglycans.
  • the disruption of the UGE complexes was performed by treatment with 100 mg / ml of dithiothreitol (DTT) at 37 ° C for 10 minutes and / or filtration with filters of low protein adsorption and pore size of 0.22 ⁇ (Millex, Millipore ) ( Figure 14).
  • DTT dithiothreitol
  • Isolated urine exosomes appear to form a complex with uromodulin and GAGs both in samples from healthy volunteers and kidney patients.
  • Figure 15 shows the possible associations between the three elements that make up the UGE complexes.
  • Example 11 UGE complexes are lost when kidney damage / failure progresses
  • Example 12 Separation of free GAGs in urine in cellulose acetate gels for the diagnosis of mucopolysaccharidosis
  • the inventors have developed a method that improves the diagnosis of mucopolysaccharidoses using the separation of free GAGs (chondroitin sulfate, dermatan sulfate, heparan sulfate and keratan sulfate) in urine samples.
  • free GAGs chondroitin sulfate, dermatan sulfate, heparan sulfate and keratan sulfate
  • the method of the invention is also useful for finding other peptides within any protein that could be altered in certain pathologies and that could be used as biomarkers in pathologies related to glycosylation / glycation.
  • the homogeneous urinary profile observed in the general population is altered in renal patients at the protein level and could be used as a biomarker of function and renal prognosis, anticipating changes in creatinine levels in several years, the biomarker of renal damage currently referenced, since 50% of renal function may have been lost before creatinine levels change significantly.
  • the exosomes interact with the primary cilia and that they are internalized at least by the cells of the collecting duct, it is suggested that the UGE complex (uromodulin-glucosaminoglycans-exosomes) may be leading the dialogue between the different segments of the nephron.
  • This communication could be related to the immune system as a result of the identification of the exosome content as well as the previously described function of uromodulin as an immune agent (pathogen trap, inflammation mediator or macrophage and granulocyte activator).
  • the invention also allows, starting from a 1 ml urine sample and using a cellulose acetate gel, to distinguish individuals suffering from mucopolysaccharidosis from healthy individuals; and it also allows differentiating between the different mucopolysaccharidoses as shown in Figure 17.
  • the method commonly used for the diagnosis of mucopolysaccharidoses is very laborious and difficult requiring the use of approximately two days; while the method of the invention allows said diagnosis to be made simply and quickly in only about 4 hours.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Urology & Nephrology (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Hematology (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Cell Biology (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Physiology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Endocrinology (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

La presente invención pertenece al campo de la glicobiología. En particular, se refiere a un método para la separación en muestras biológicas de la fracción unida o asociada a glucosaminoglicanos (GAG) sulfatados y sus aplicaciones en biomedicina, tales como la identificación del perfil de glicoproteínas o del perfil de lípidos unidos o asociados a GAG sulfatados, la detección de una alteración en el patrón de glicosilación por GAG sulfatados, la identificación de biomarcadores de diagnóstico, pronóstico, monitorización de la progresión de una enfermedad o del efecto de una terapia, o para la identificación de compuestos adecuados para el tratamiento de una enfermedad. La invención se relaciona también con métodos para diagnosticar mucopolisacaridosis y para diagnosticar y determinar el pronóstico de enfermedad renal.

Description

MÉTODO PARA LA SEPARACIÓN DE LA FRACCIÓN UNIDA A GLUCOSAMINOGLICANOS Y SUS APLICACIONES
CAMPO DE LA INVENCIÓN
La presente invención pertenece al campo de la glicobiología. En particular, se refiere a un método para la separación en muestras biológicas de la fracción unida o asociada a glucosaminoglicanos sulfatados y sus aplicaciones en biomedicina.
ANTECEDENTES DE LA INVENCIÓN
Los glucosaminoglicanos (GAG) son grandes polisacáridos no ramificados conformados por secuencias repetidas de disacáridos, donde uno de los componentes siempre es un aminoazúcar (D-galactosamina o D-glucosamina) y el otro componente es un ácido urónico, como el L-glucurónico o el L-idurónico, a excepción del queratán sulfato. Con excepción del ácido hialurónico, todos los GAG poseen grupos sulfato, como O-ésteres o N-sulfato.
Los GAG se encuentran formando parte de proteoglicanos y lípidos. Los proteoglicanos son un tipo específico de glicoproteínas que tienen al menos una cadena de GAG unida a la proteína, y que se clasifican en base a la cadena de GAG presente.
La glicosilación de moléculas es un proceso enzimático postraduccional llevado a cabo en el retículo endoplásmico y en el aparato de Golgi. Las reacciones de glicosilación son realizadas por enzimas llamadas glicosiltransferasas, a partir de precursores monosacáridos de origen endógeno y exógeno.
Existen enfermedades relacionadas con alteraciones congénitas de la glicosilación, tales como las mucopolisacaridosis (MPS). Las MPS son un grupo heterogéneo de errores innatos del metabolismo producidos por la deficiencia de alguna de las enzimas necesarias para la degradación de los GAG. Los GAG no degradados suelen ser excretados parcialmente en la orina, pero el resto permanecen acumulados en los lisosomas. Este acúmulo es el que produce las alteraciones celulares e interferencias en otros procesos metabólicos con consecuencias graves para el organismo humano, causando daño a nivel celular, tisular y de órgano.
Hasta el momento se han descrito 7 tipos de MPS con varios subtipos que involucran a unas 1 1 enzimas específicas. Cada tipo de MPS tiene síntomas y signos inespecíficos, y algunas alteraciones consideradas "características", pero que aun así obligan a realizar el diagnóstico preciso de estas enfermedades utilizando la determinación de la actividad enzimática involucrada y, en el mejor de los casos, la identificación molecular del gen afectado. Suelen ser difíciles de detectar en el recién nacido, y un diagnóstico precoz y preciso de las MPS es crítico para proporcionar los cuidados paliativos apropiados y, cuando es posible, un tratamiento específico de la enfermedad (terapia de reemplazo enzimático, trasplante de células troncales hematopoyéticas, entre otras).
El diagnóstico de la mayoría de las MPS no es fácil y está basado principalmente en los hallazgos clínicos. Una vez establecida la sospecha, el médico puede contar con ciertas pruebas analíticas como el análisis de los GAG en la orina y la cuantificación de la actividad enzimática en tejidos (sangre o fibroblastos). Finalmente, puede encargar la realización de técnicas de biología molecular para confirmar la posible alteración genética.
Para la cuantificación de GAG totales en orina se han utilizado métodos colorimétricos, que miden la elevación de GAG comparados con los niveles de GAG esperados en individuos normales de la misma edad. Se han descrito varios ensayos en los que se utiliza azul de dimetilmetileno (DMB) como colorante. Los GAG se unen a DMB y el compuesto formado se detecta especrofotométricamente. No obstante, no se produce un aislamiento del complejo GAG-DMB formado (Whitley C.B. et al. 1989. Clin. Chem., 35(3):374-379; Jong J.G.N. et al. 1992. Clin. Chem., 38(6):803-807). Sin embargo, presentan un alto porcentaje de falsos positivos y falsos negativos y debido a su baja especificidad no permiten discriminar entre los diferentes tipos de GAG.
También se han desarrollado métodos de ensayo de GAG específicos, que tratan de identificar los tipos de GAG que son excretados en exceso y ayudar a un mejor diagnóstico, puesto que los diferentes tipos de MPS están asociados con el aumento en la excreción de GAG específicos. Entre estos destacan métodos cromatográficos, tales como HPLC, que aunque son sensibles y específicos no son adecuados para un cribaje masivo debido a su elevado precio y al tiempo de análisis requerido; métodos ELISA, que están disponibles comercialmente para algunos tipos de GAG, pero no se han desarrollado para la detección de todos los GAG; y métodos de espectrometría de masas en tándem, que presentan el inconveniente de ser complejos debido a la heterogeneidad molecular de los GAG y de difícil aplicación para el cribado en masa.
Asimismo, se han desarrollado métodos basados en la despolimerización de los GAG, que miden los residuos de ácido hexurónico que todos los GAG tienen (excepto el queratán sulfato). Esta medición se hace directamente en el líquido de diálisis, tras el fraccionamiento de la muestra en una columna de celulosa ECTEOLA (que separa los GAG sulfatados de los no sulfatados), o después de precipitarla con bromuro de cetiltrimetilamonio (CTAB), cloruro de cetilpiridinio (CPC) o aminoacridina. Estos métodos consumen mucho tiempo y dan resultados poco reproducibles debido a la interferencia de otros cromógenos o a la pérdida de algunas fracciones de GAG en los tratamientos previos.
También existen enfermedades relacionadas con alteraciones adquiridas de la glicosilación, tales como la enfermedad renal. La enfermedad renal adquirida o congénita es un problema de salud pública de primera magnitud mundial. Un reciente estudio prospectivo realizado en Estados Unidos señala que el 54% de los adultos de entre 30-49 años, un 52% de los adultos de entre 50-64 años, y un 42% de los adultos de más de 65 años están afectados por enfermedad renal crónica y se prevé un incremento entre el 13,2% y el 14,4% en el 2020, y del 16,7% en el 2030. Su diagnóstico está basado en la medición de una serie de parámetros clínicos en orina (tasa de filtración glomerular o GFR calculada a través de los niveles de creatinina, cistatina C o inulina, proteinuria, hematuria, etc.), de técnicas de imagen (principalmente ultrasonidos, tomografía computarizada (TC) o resonancia magnética nuclear (RMN)), y de anatomía patológica (mediante biopsias obtenidas de manera invasiva). Todas ellas tienen un limitado poder de diagnóstico diferencial y ninguna es capaz de anticipar la evolución de la enfermedad renal en el tiempo de manera certera y eficiente. Estas herramientas tienen, además, una limitada especificidad y sensibilidad.
Por lo tanto, existe una necesidad de nuevos métodos de detección de las fracciones unidas o asociadas a GAG que superen las desventajas de los métodos conocidos hasta ahora y que permitan un diagnóstico menos invasivo, rápido, sensible, fiable y barato en etapas tempranas de la enfermedad, que pueda ser utilizado para el cribado masivo en neonatos, y que permita detectar y/o pronosticar, entre otros, enfermedades tales como la MPS o la enfermedad renal.
SUMARIO DE LA INVENCIÓN
Los autores de la presente invención han desarrollado un nuevo método para la separación de la fracción unida a glucosaminoglicanos (GAG) sulfatados en muestras biológicas. Este método permite el estudio de las alteraciones en la glicosilación de los GAG de una manera sencilla, rápida, económica y que requiere una cantidad muy pequeña de muestra (microlitros). Este método tiene numerosas aplicaciones en biomedicina, como el diagnóstico y pronóstico de enfermedades que cursan con alteraciones en los niveles de GAG, la búsqueda de biomarcadores para el diagnóstico de estas enfermedades, el seguimiento de la patología o del tratamiento de la misma, etc. Los métodos tradicionales requieren volúmenes de muestra elevados y muchos pasos previos.
El método de la presente invención está basado en que los GAG, dependiendo del tejido en el que se encuentren, tienden a aparecer asociados a otras moléculas, bien sea por motivos funcionales o por interacciones mecánicas. Aunque en algunos ensayos del estado de la técnica ya se describían interferencias en las mediciones debido a otras moléculas que, invariablemente, se purificaban junto con ellos, nadie le buscó una aplicación práctica ulterior a esta asociación.
Particularmente, la presente invención está relacionada con la capacidad del colorante azul de dimetilmetileno (DMB), a pH ácido, de producir complejos con los GAG sulfatados que dan lugar a la formación de turbidez, seguida rápidamente por la precipitación de este complejo DMB-GAG en unos 15 minutos. Después de una centrifugación, el precipitado contiene sólo la fracción unida a los GAG sulfatados. El resto es eliminado de la muestra. A continuación, este precipitado puede ser utilizado para el análisis de la fracción por diversas técnicas como electroforesis desnaturalizante en geles de poliacrilamida (SDS-PAGE) y tinción con un colorante para la visualización de proteínas como Sypro Ruby. Las bandas obtenidas en la electroforesis pueden identificarse mediante Western blot o también pueden escindirse para su identificación mediante proteómica.
El método de la invención combina la propiedad del DMB de unir y precipitar específicamente los GAG sulfatados con las técnicas de análisis de proteínas y/o lípidos. Al detectar fracciones glicadas específicamente con GAG, este método tiene una potencialidad muy elevada, ya que puede ser utilizado en estudios en los que la glicación/glicosilación tenga un papel importante y permitir el descubrimiento de nuevos biomarcadores de diagnóstico, pronóstico o seguimiento de patologías, nuevas dianas terapéuticas y nuevas vías de comunicación celular.
Por lo tanto, en un primer aspecto, la presente invención se relaciona con un método in vitro para separar los glucosaminoglicanos (GAG) sulfatados libres y la fracción unida o asociada a los GAG sulfatados de una muestra según se define en las reivindicaciones 1 a 5.
El segundo y tercer aspectos de la invención se relacionan con un método in vitro de identificación del perfil de proteínas unidas o asociadas a los GAG sulfatados de una muestra según se define en las reivindicaciones 6 a 12.
En un cuarto aspecto, la invención se relaciona con un método in vitro de identificación del perfil de lípidos unidos o asociados a los GAG sulfatados de una muestra según se define en la reivindicación 13.
En un quinto aspecto, la invención se relaciona con un método in vitro para detectar una alteración en el patrón de glicosilación por los GAG sulfatados de una muestra según se define en la reivindicación 14.
La invención también se relaciona con métodos de diagnóstico, métodos para determinar el pronóstico, para monitorizar la progresión, para monitorizar el efecto de una terapia y para la identificación de compuestos adecuados para el tratamiento de enfermedades asociadas a una alteración (aumento o disminución) de uno o más GAG sulfatados según se define en las reivindicaciones 15 a 35. La invención también se refiere al uso del método del segundo, tercer, cuarto o quinto aspectos para identificar biomarcadores proteicos o lipidíeos unidos o asociados a los GAG sulfatados.
En otro aspecto, la invención se refiere a un método in vitro para diagnosticar mucopolisacaridosis en un sujeto que comprende detectar en una muestra de orina de dicho sujeto la presencia del péptido señal SEQ ID NO: 1 de la uromodulina o de una variante del mismo.
La invención también se refiere a métodos para determinar el pronóstico, para monitorizar la progresión de un sujeto, para monitorizar el efecto de una terapia, para diseñar una terapia personalizada o para seleccionar un paciente susceptible de ser tratado con una terapia para la prevención y/o tratamiento de mucopolisacaridosis, y a métodos para la identificación de compuestos adecuados para el tratamiento de mucopolisacaridosis según se define en las reivindicaciones 46 a 51.
En otro aspecto, la invención se refiere al uso de un agente capaz de detectar el péptido señal SEQ ID NO: 1 de la uromodulina o una variante del mismo en una muestra de orina para diagnosticar mucopolisacaridosis, para determinar el pronóstico o para monitorizar la progresión de un sujeto que sufre mucopolisacaridosis, para monitorizar el efecto de una terapia en un sujeto que sufre mucopolisacaridosis, para diseñar una terapia personalizada en un sujeto que tiene síntomas de mucopolisacaridosis, para seleccionar un paciente susceptible de ser tratado con una terapia para la prevención y/o tratamiento de mucopolisacaridosis o para la identificación de compuestos adecuados para el tratamiento de mucopolisacaridosis, donde el agente capaz de detectar el péptido señal SEQ ID NO: 1 de la uromodulina o una variante del mismo se selecciona del grupo que consiste en un enzima capaz de reconocer de manera específica una secuencia de aminoácidos del péptido señal de SEQ ID NO: 1 de la uromodulina o de una variante del mismo y escindir dicho péptido, un anticuerpo, un aptámero y fragmentos de los mismos que se unen específicamente al péptido señal SEQ ID NO: 1 de la uromodulina o a una variante del mismo.
En otro aspecto, la invención se refiere al uso del péptido señal SEQ ID NO: 1 de la uromodulina o una variante del mismo como marcador de diagnóstico, pronóstico, monitorización de la progresión de un sujeto que sufre mucopolisacaridosis, o como marcador de monitorización del efecto de una terapia, marcador para diseñar una terapia personalizada, marcador de selección de un paciente susceptible de ser tratado con una terapia para la prevención y/o tratamiento de mucopolisacaridosis o como marcador para la identificación de compuestos adecuados para el tratamiento de mucopolisacaridosis.
En otro aspecto, la invención se refiere a métodos de diagnóstico, pronóstico o monitorización de la progresión de enfermedad renal, monitorización del efecto de una terapia, métodos para diseñar una terapia personalizada o para seleccionar un paciente susceptible de ser tratado con una terapia para la prevención y/o tratamiento de enfermedad renal y métodos para la identificación de compuestos adecuados para el tratamiento de enfermedad renal según se define en las reivindicaciones 55 a 61.
En otro aspecto, la invención se refiere al uso de un agente capaz de detectar uromodulina o una variante de la misma unida o asociada a los GAG sulfatados seleccionado del grupo que consiste en un enzima capaz de reconocer de manera específica una secuencia de aminoácidos de la uromodulina o de una variante de la misma y escindirla, un anticuerpo, un aptámero y fragmentos de los mismos que se unen específicamente a la uromodulina o a una variante de la misma y/o de un agente capaz de detectar albúmina o una variante de la misma unida o asociada a los GAG sulfatados seleccionado del grupo que consiste en un enzima capaz de reconocer de manera específica una secuencia de aminoácidos de la albúmina o de una variante de la misma y escindirla, un anticuerpo, un aptámero y fragmentos de los mismos que se unen específicamente a la albúmina o a una variante de la misma en una muestra de orina para diagnosticar enfermedad renal, para determinar el pronóstico o para monitorizar la progresión de un sujeto que sufre enfermedad renal, para monitorizar el efecto de una terapia en un sujeto que sufre enfermedad renal, para diseñar una terapia personalizada en un sujeto que tiene síntomas de enfermedad renal, para seleccionar un paciente susceptible de ser tratado con una terapia para la prevención y/o tratamiento de enfermedad renal o para la identificación de compuestos adecuados para el tratamiento de enfermedad renal.
En otro aspecto, la invención se refiere al uso de uromodulina o una variante de la misma unida o asociada a los GAG sulfatados y/o de albúmina o de una variante de la misma unida o asociada a los GAG sulfatados como marcador de diagnóstico de enfermedad renal, como marcador pronóstico de enfermedad renal , como marcador de monitorización del efecto de una terapia en un sujeto que sufre enfermedad renal, como marcador para diseñar una terapia personalizada en un sujeto que tiene síntomas de enfermedad renal, como marcador de selección de un paciente susceptible de ser tratado con una terapia para la prevención y/o tratamiento de enfermedad renal o como marcador para la identificación de compuestos adecuados para el tratamiento de enfermedad renal.
En otro aspecto, la invención se refiere a un método in vitro para diagnosticar enfermedad renal avanzada en un sujeto que comprende detectar el nivel de los complejos uromodulina o una variante de la misma-GAG sulfatados-exosomas en una muestra de orina de dicho sujeto y comparar dicho nivel con un valor de referencia donde un nivel disminuido de los complejos uromodulina o una variante de la misma- GAG sulfatados-exosomas con respecto al valor de referencia es indicativo de que el sujeto sufre enfermedad renal avanzada.
La invención también se refiere a métodos para determinar el pronóstico o para monitorizar la progresión de enfermedad renal avanzada, o para monitorizar el efecto de una terapia, diseñar una terapia personalizada o seleccionar un paciente susceptible de ser tratado con una terapia para el tratamiento de enfermedad renal avanzada o a métodos para la identificación de compuestos adecuados para el tratamiento de enfermedad renal avanzada según se define en las reivindicaciones 66 a 71.
En otro aspecto, la invención se refiere al uso de un agente capaz de detectar complejos uromodulina o una variante de la misma-GAG sulfatados-exosomas en una muestra de orina para diagnosticar enfermedad renal avanzada, para determinar el pronóstico o para monitorizar la progresión de un sujeto que sufre enfermedad renal avanzada, para monitorizar el efecto de una terapia en un sujeto que sufre enfermedad renal avanzada, para diseñar una terapia personalizada en un sujeto que tiene síntomas de enfermedad renal avanzada, para seleccionar un paciente susceptible de ser tratado con una terapia para el tratamiento de enfermedad renal avanzada o para la identificación de compuestos adecuados para el tratamiento de enfermedad renal avanzada, donde el agente capaz de detectar complejos uromodulina o una variante de la misma-GAG sulfatados-exosomas se selecciona del grupo que consiste en un enzima capaz de reconocer de manera específica una secuencia de aminoácidos de la uromodulina o de una variante de la misma y escindirla, un anticuerpo, un aptámero y fragmentos de los mismos que se unen específicamente a la uromodulina o a una variante de la misma.
En otro aspecto, la invención se refiere al uso de un complejo uromodulina o una variante de la misma-GAG sulfatados-exosomas como marcador de diagnóstico de enfermedad renal avanzada, como marcador pronóstico de enfermedad renal avanzada, como marcador de monitorización del efecto de una terapia en un sujeto que sufre enfermedad renal avanzada, como marcador para diseñar una terapia personalizada en un sujeto que tiene síntomas de enfermedad renal avanzada, como marcador de selección de un paciente susceptible de ser tratado con una terapia para el tratamiento de enfermedad renal avanzada o como marcador para la identificación de compuestos adecuados para el tratamiento de enfermedad renal avanzada.
En otro aspecto, la invención se refiere a un complejo formado por la asociación de uromodulina o una variante de la misma, GAG sulfatados y exosomas.
En otro aspecto, la invención se refiere a un kit que comprende azul de dimetilmetileno (DMB) a una concentración comprendida entre 0,01 y 100 mM a un pH comprendido entre 2 y 6,9.
En otro aspecto, la invención se refiere a un kit que comprende un anticuerpo capaz de detectar específicamente un péptido de secuencia SEQ ID NO: 1 o una variante del mismo, e incapaz de detectar la uromodulina madura, o un fragmento de dicho anticuerpo con capacidad para unirse a la secuencia SEQ ID NO: 1 o a una variante de la misma.
En otro aspecto, la invención se refiere al uso del kit de la invención para separar los GAG sulfatados libres y la fracción unida o asociada a los GAG sulfatados de una muestra, para identificar el perfil de proteínas unidas o asociadas a los GAG sulfatados de una muestra, para identificar el perfil de lípidos unidos o asociados a los GAG sulfatados de una muestra, para detectar una alteración en el patrón de glicosilación por los GAG sulfatados, para diagnosticar una enfermedad, para determinar el pronóstico de una enfermedad, para monitorizar la progresión de una enfermedad, para monitorizar el efecto de una terapia para el tratamiento de una enfermedad, para predecir la respuesta a una terapia, para diseñar una terapia personalizada, para la identificación de compuestos adecuados para el tratamiento de una enfermedad, para identificar biomarcadores proteicos o lipidíeos unidos o asociados a los GAG sulfatados o para detectar complejos formados por exosomas, GAG sulfatados y una proteína.
BREVE DESCRIPCIÓN DE LAS FIGURAS
Figura 1 : Estructuras moleculares de los glucosaminoglicanos (GAG) condroitín sulfato, queratán sulfato, hialuronato, dermatán sulfato y heparán sulfato.
Figura 2: Estructura molecular del DMB. A) cloruro de 3,7-bis(dimetilamino)-1 ,9- dimetildifenotiazin-5-io B) doble sal de cloruro de zinc de 3,7-bis(dimetilamino)-1 ,9- dimetildifenotiazin-5-io.
Figura 3: Esquema de la invención y sus aplicaciones en biomedicina. DMB, azul de dimetilmetileno; min, minutos; ta amb, temperatura ambiente; GAGs: glucosaminoglicanos.
Figura 4: SDS-PAGE en el que se muestra el patrón de bandas proteicas unidas a GAG en orina de individuos controles (16 varones y 16 mujeres de 30-49 años) y la identificación de la uromodulina mediante Western blot.
Figura 5: Electroforesis en 2 dimensiones (tiras de pH 3-6 y geles PAGE al 7,5%) de la orina precipitada con DMB de dos individuos control varones e identificación de la uromodulina mediante Western blot.
Figura 6: Patrón de bandas proteicas totales y en la fracción unida a GAG en orina y suero de individuos control y con insuficiencia renal (izquierda). Identificación de la albúmina unida a GAG presente mediante Western blot. IR, individuos con insuficiencia renal; ST, marcador de peso molecular; Alb, albúmina; S, suero sin precipitar; O, orina sin precipitar; D, suero u orina precipitados con DMB.
Figura 7: Unión entre uromodulina y/o albúmina comerciales con GAG comerciales (heparán, condroitín y dermatán sulfato) en PBS (c y d) u orina libre de uromodulina (a y b) de un paciente con una mutación truncante en el gen de la uromodulina. a) Carril 1 , orina sin precipitar; Carril 2, orina precipitada con DMB; Carril 3, orina con uromodulina comercial añadida y precipitada con DMB; Carriles 4, 5 y 6, orina con uromodulina comercial añadida, incubada con heparán, condroitín y dermatán sulfato, respectivamente, y precipitada con DMB; b) Carril 1 , orina sin precipitar; Carril 2, orina precipitada con DMB; Carril 3, orina con albúmina comercial añadida y precipitada con DMB; Carriles 4, 5 y 6, orina con albúmina comercial añadida, incubada con heparán, condroitín y dermatán sulfato, respectivamente, y precipitada con DMB; c) Carril 1 , uromodulina comercial sin precipitar; Carril 2, uromodulina comercial precipitada con DMB; Carriles 3, 4 y 5, uromodulina comercial incubada en PBS con heparán, condroitín o dermatán sulfato, respectivamente, y precipitada con DMB; d) Carril 1 , albúmina comercial sin precipitar; Carril 2, albúmina comercial precipitada con DMB; Carriles 3, 4 y 5, albúmina comercial incubada en PBS con heparán, condroitín y dermatán sulfato, respectivamente, y precipitada con DMB; St, marcador de pesos moleculares.
Figura 8: Patrón de bandas proteicas unidas a glucosaminoglicanos en orina de pacientes con mucopolisacaridosis (MPS) y sus respectivos controles (sexo y edad similares a los pacientes), así como la identificación de la uromodulina y albúmina mediante Western blot. A) MPS I, paciente mujer de 4 años con MPS I; 1-1 , I-2, I-3 y I- 4, controles sanos de la misma edad y sexo que el paciente de MPS I; MPS VII, paciente mujer de 6 años con MPS VII; VI 1-1 , control sano de la misma edad y sexo que el paciente de MPS VII. MPS II, pacientes varones de 6 y 8 años con MPS-II; 11-1 ,
II- 2, II-3, II-4, II-5, controles sanos de la misma edad y sexo que los pacientes de MPS- II. B). MPS III, pacientes varones de 1 y 10 años con MPS III, respectivamente; 111-1 ,
III- 2, III-3, III-4, III-5 y III-6, controles sanos de la misma edad y sexo que los pacientes de MPS I II. MPS IV, paciente mujer de 17 años, y dos pacientes varones de 14 años con MPS IV, respectivamente; IV-1 , IV-2, IV-3 y IV-4, controles sanos de la misma edad y sexo que los pacientes de MPS IV. Los niveles de glucosaminoglicanos totales (mg/mmol creatinina) medidos por el método tradicional con DMB se muestran en la parte superior, los valores elevados con respecto al de referencia se muestran en color gris y los valores normales se muestran en color negro. ST, marcador de peso molecular.
Figura 9: Electroforesis en 2 dimensiones (tiras de pH 3-6 y geles SDS-PAGE al 7,5%) de la orina precipitada con DMB de pacientes con MPS.
Figura 10: Perfil proteico asociado a GAG en la orina de individuos control, enfermos de PKD tipo 1 y enfermos de PKD tipo 2. La primera columna representa los marcadores de peso molecular. Las siguientes siete columnas muestran la uromodulina precipitada con los GAG después de la incubación con DMB y desnaturalización (se cargan 30 μΙ de proteína precipitada por columna) en muestras de distintos pacientes de PKD1 o PKD2. Creat, creatinina. Figura 11 : Diferencias observadas en el perfil proteico unido a GAG entre los sobrenadantes de orina y sus respectivos pellets celulares a medida que la función renal se va deteriorando.
Figura 12: Identificación y caracterización de los complejos UMOD-GAG-exosomas (UGE) mediante imágenes de microscopía electrónica (a), tamaño (b), potencial zeta (c) y Western blot (d) de exosomas purificados y precipitados con DMB donde se cargan 30 μΙ de proteína precipitada por columna. Las 3 primeras columnas de la Figura 12(d) pertenecen a exosomas purificados por ultracentrifugación y las columnas 4 y 5 pertenecen a exosomas purificados mediante gradiente con un kit comercial (ExoQuick_TC, System Biosciences). ID, código del paciente, Creat, creatinina; Peí, pellet celular de orina de un voluntario sano; Ur, sobrenadante de la orina de un voluntario sano; C-, sobrenadante de la orina de un individuo de ADMCKD (enfermedad renal medular quística autosómica dominante con mutación conocida en el gen de la uromodulina); C+, control positivo con 1 μg de uromodulina comercial (Human Tamm Horsfall Glycoprotein, Biomedical-BTI).
Figura 13. Purificación de los complejos UGE mediante diversas aproximaciones tales como precipitación por centrifugación o gravedad (a) y aislamiento por gradiente (b). Figura 14. Ensayos de disrupción de los complejos UGE mediante tratamiento con DTT (a) y/o filtración (b y c). a) Carriles 1 y 5, exosomas purificados sin precipitar con DMB; Carriles 2 y 6, exosomas purificados precipitados con DMB, Carriles 3 y 7, sobrenadante de las fracciones exosomales; Carriles 4 y 8, mismos sobrenadantes precipitados con DMB. b) Carril 1 , exosomas purificados y filtrados sin precipitar con DMB; Carril 2, exosomas purificados, filtrados y precipitados con DMB; Carriles 3 y 4, sobrenadantes de las fracciones exosomales filtradas, y filtradas y precipitadas con DMB, respectivamente; Carriles 5 y 6, exosomas purificados sin precipitar y precipitados con DMB, respectivamente; Carriles 7 y 8, sobrenadantes de las fracciones exosomales sin precipitar, y precipitados con DMB, respectivamente, c) Carriles 1-4, fracción celular remanente después de purificar exosomas, precipitada con DMB, tratada con DTT o tratada con DTT y precipitada con DMB, respectivamente; Carril 5, exosomas purificados, filtrados y tratados con DTT; Carril 6, exosomas purificados, filtrados, tratados con DTT y precipitados con DMB; Carriles 7 y 8, sobrenadantes de las fracciones exosomales filtrados y tratados con DTT con o sin precipitación con DMB, respectivamente.
Figura 15. Representación esquemática de los complejos UGE con las posibles asociaciones entre los tres elementos que lo conforman, a) exosomas asociados a GAGs a través de la uromodulina, b) exosomas asociados directamente a GAGs sin necesidad de la uromodulina como puente.
Figura 16. Los complejos UGE desaparecen a medida que progresa la enfermedad renal. Se muestra un gel representativo de 3 pacientes con enfermedad poliquística renal causada por mutaciones en el gen PKD2 a) Carriles 1 , 4 y 7, sobrenadantes de la fracción exosomal sin precipitar; Carriles 2, 5 y 8, fracción exosomal sin precipitar; Carriles 3, 6 y 9, fracción exosomal precipitada con DMB; St, marcador de pesos moleculares, b) Imágenes de microscopía electrónica de los complejos UGE. en individuo con función renal normal (izquierda) y ausencia de complejos UGE en individuo sin uromodulina y con daño renal (derecha).
Figura 17. Separación de los GAG libres en orina precipitados con DMB en geles de acetato de celulosa. C+, mezcla de condroitín sulfato (Con), dermatán sulfato (Der) y heparán sulfato (Hep) comerciales precipitados con DMB; carriles MPS I, MPS II, MPS III y MPS IV, orinas precipitadas con DMB de pacientes con mucopolisacaridosis I, II, III y IV, respectivamente; carriles 1 , 2, 3, 4, 5, 6 y 7, orinas precipitadas con DMB de individuos sin mucopolisacaridosis de diferentes edades (1 mes, 7 meses, 1 año, 3 años, 4 años, 6 años y 7 años, respectivamente), donde el único GAG presente es el condroitín sulfato. Que, banda correspondiente al queratán sulfato característica de la MPS IV.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
Método de separación de GAG sulfatados
En un primer aspecto, la invención se relaciona con un método in vitro (denominado "primer método de la invención") para separar los glucosaminoglicanos (GAG) sulfatados libres y la fracción unida o asociada a los GAG sulfatados de una muestra que comprende:
a) poner en contacto una muestra con el colorante azul de dimetilmetileno (DMB) a un pH ácido comprendido entre 2 y 6,9; b) incubar la mezcla de a) a una temperatura comprendida entre 0°C y 40°C durante el tiempo necesario para la formación de un precipitado; c) eliminar el sobrenadante; y d) recuperar el precipitado que contiene los GAG sulfatados libres y la fracción unida o asociada a los GAG sulfatados.
El término "glucosaminoglicano" o "GAG", también llamado mucopolisacárido, tal y como aquí se utiliza, se refiere a un heteropolisacárido constituido por repeticiones de unidades de disacáridos. Los glucosaminoglicanos son cadenas lineales donde alternan enlaces β 1→3 con enlaces β 1→4 de un ácido uránico (D-glucurónico o L- idurónico) unido por un enlace β 1→3 a un aminoazúcar (N-acetil-glucosamina o N- acetilgalactosamina). Los GAG se diferencian según la naturaleza de las unidades de disacáridos que los constituyen, la longitud de la cadena de disacáridos (10-150 unidades) y sus modificaciones (N-sulfatación, O-sulfatación, N-acetilación o epimerización de las unidades de sacáridos). Entre los GAG de interés biológico destacan los siguientes siete: ácido hialuronico (AH), condroitín-4-sulfato (C4S), condroitín-6-sulfato (C6S), dermatán sulfato (DS) o condroitín sulfato B, queratán sulfato (QS), heparán sulfato (HS) y Heparina (Hna). Por la introducción en su estructura de grupos acídicos (carboxi, sulfatos esterificados y sulfamida) presentan una elevada densidad de carga eléctrica negativa. Sufren grados variables de sulfatación siendo el sulfato esterificado a los OH alcohólicos lo que aumenta su carácter polianiónico. El número de cargas negativas por unidad de disacárido varía entre 1 , en el caso del ácido hialurónico y el queratán sulfato, y 4 en el caso de la heparina. En la figura 1 se muestra la estructura de los GAG más conocidos.
El término "glucosaminoglicano sulfatado" o "GAG sulfatado", también llamado mucopolisacárido sulfatado, tal como aquí se utiliza, se refiere a aquellos GAG que tienen al menos un grupo sulfato. Con excepción del ácido hialurónico, todos los GAG están sulfatados. Así, entre los GAG sulfatados que pueden separarse según el método de la presente invención se encuentran, sin limitación, condroitín-4-sulfato (C4S), condroitín-6-sulfato (C6S), dermatán sulfato (DS) o condroitín sulfato B, queratán sulfato (QS), heparán sulfato (HS) y Heparina (Hna).
Los GAG sulfatados se pueden encontrar en una muestra en forma libre, o bien unidos o asociados a otros componentes. Por "GAG sulfatados libres" se entiende aquellos que no están unidos o asociados a ningún otro componente. Pero además, los GAG sulfatados se pueden encontrar unidos a otros compuestos formando glicoconjugados, tales como glicoproteínas, proteoglicanos y lípidos unidos o asociados a GAG. El término "glicoproteína" o "glucoproteína", tal como aquí se utiliza, se refiere a una molécula integrada normalmente por uno o más oligosacáridos unidos de modo covalente a cadenas laterales específicas de polipéptidos. Suelen tener un mayor porcentaje de proteínas que de glúcidos. En el contexto de la presente invención, al menos uno de los glúcidos que compone la glicoproteína debe ser un GAG sulfatado. Los tipos más comunes de glicoproteínas encontrados en células eucariotas son definidos de acuerdo a la naturaleza de las regiones de unión con la proteína, siendo las más frecuentes las de tipo N y O. Los N-glicanos son una cadena de oligosacáridos unida en forma covalente a un residuo de asparagina de una cadena polipeptídica dentro de una secuencia consenso Asn-X-Ser/Thr, generalmente vía N- acetilglucosamina (Glc-NAc). Los O-glicanos son una cadena de oligosacáridos unida covalentemente a un residuo de serina o treonina (Ser/Thr-O) generalmente vía una N- acetilgalactosamina (GalNAc).
El término "proteoglicano" o "PG", tal como aquí se utiliza, se refiere a un tipo específico de glicoproteínas que tienen al menos una cadena de GAG unida a la proteína, y se clasifican en base a la cadena de GAG presente. En el contexto de la presente invención, los GAG unidos a la proteína deben ser GAG sulfatados. Heparán sulfato y condroitín sulfato son los GAG más comunes de los proteoglicanos. Muchos proteoglicanos contienen, además, otros glicanos unidos por enlaces tipo N- u O- glucosídico. Estos compuestos pueden variar en cuanto a su distribución tisular, naturaleza de la proteína central, su función y los GAG fijados a ellas. El contenido de carbohidratos es mayor que en el de las glucoproteínas, alcanzando en algunos casos hasta el 95% de su peso, y tanto la secuencia como la disposición de los dominios estructurales que los conforman están altamente conservados y ligeramente glicados.
El término "lípido unido o asociado a GAG", tal como aquí se utiliza, se refiere a una molécula formada por uno o más GAG sulfatados unidos a lípidos mediante un enlace covalente o asociados a ellos de algún otro modo.
Por "fracción unida a GAG sulfatados de una muestra", tal como aquí se utiliza, se entiende cualquier compuesto que se encuentra unido a los GAG sulfatados mediante un enlace covalente. Ejemplos de estos compuestos son, sin limitación, las glucoproteínas que contienen GAG sulfatados y los proteoglicanos. En una realización preferida la fracción unida a GAG sulfatados es una fracción proteica. En otra realización preferida la fracción unida a GAG sulfatados es una fracción lipídica.
Por "fracción asociada a GAG sulfatados de una muestra", tal como aquí se utiliza, se entiende cualquier compuesto o estructura que no está unido a los GAG sulfatados mediante un enlace covalente, sino que los GAG sulfatados y el compuesto o estructura se mantienen juntos mediante otro tipo de interacciones, tales como interacciones iónicas, interacciones dipolo-dipolo, interacciones de van der Waals o puentes de hidrógeno, entre otras. En una realización preferida la fracción asociada a GAG sulfatados es una fracción que contiene exosomas, más preferiblemente, una fracción que contiene exosomas y una o más proteínas.
El término "exosomas", según se utiliza en el presente documento, se refiere a unas pequeñas nanovesículas extracelulares (50-200 nm) rodeadas de membrana que provienen de la vía endocítica y que son liberadas por diferentes tipos celulares a la mayor parte de los fluidos biológicos, incluyendo la orina. También son secretados por células in vitro. Entre las funciones que se les atribuyen destacan, entre otras, el tráfico intercelular de receptores de membrana y ARN, la inducción de inmunidad y presentación de antígenos, la modulación de la mineralización ósea y respuestas antiapoptóticas. Sus membranas son ricas en proteínas involucradas en transporte y fusión, y también en lípidos como colesterol, esfingolípidos, ceramidas, etc. Los exosomas se identifican porque al ser separados en un gradiente de sacarosa muestran un rango de densidad de entre 1 , 13 y 1 , 19 g/ml y porque poseen una serie de marcadores como CD63, CD81 , CD9, ALIX, FLOT1 , ICAM1 , EpCam, ANXA5, TSG101 y Hsp70 que pueden ser detectados, por ejemplo, mediante anticuerpos. La fracción asociada a los GAG sulfatados de la invención puede ser un exosoma procedente de cualquier tipo de muestra, por ejemplo, sin limitación, un exosoma procedente de medios de cultivo celular, sangre, orina, fluido amniótico y fluido ascítico. En una realización preferida los exosomas han sido aislados de la orina. Métodos para aislar exosomas de muestras y fluidos biológicos son bien conocidos por el experto en la técnica.
Los inventores han identificado diversos complejos formados por exosomas y una o más proteínas en muestras de orina, tal y como se demuestra en la Tabla II que aparece en la parte experimental. En una realización particular la fracción asociada a los GAG sulfatados es un complejo formado por uromodulina (o una variante de la misma) y exosomas. En otra realización particular la fracción asociada a GAG sulfatados es un complejo formado por albúmina (o una variante de la misma) y exosomas. En otra realización particular la fracción asociada a GAG sulfatados es un complejo formado por IgA (o una variante de la misma) y exosomas. En otra realización particular la fracción asociada a GAG sulfatados es un complejo formado por IgG (o una variante de la misma) y exosomas.
El término "muestra", en el contexto del primer método de la invención, se refiere a cualquier tipo de muestra que contenga o sea susceptible de contener GAG sulfatados. En una realización preferida la muestra es una muestra biológica.
El término "muestra biológica", tal como aquí se utiliza, se refiere a cualquier material procedente de un ser humano, de animales o de plantas que puede albergar información sobre su dotación genética. Ejemplos de muestras biológicas que pueden ser utilizadas en la presente invención son, sin limitación, muestras de orina, suero, plasma, tejidos, células, exosomas, líquido sinovial, humor vitreo, fluido cerebroespinal, piel, mucosa intestinal, líquido peritoneal, pared arterial, hueso, cartílago, tejido embrionario y cordón umbilical, etc. En una realización preferida la muestra biológica es una muestra de orina. En otra realización preferida la muestra biológica es una muestra de exosomas, preferiblemente una muestra de exosomas previamente aislados de un sujeto, más preferiblemente una muestra de exosomas aislados de la orina de un sujeto. En otra realización preferida la muestra biológica es una muestra de suero o plasma.
La muestra se obtiene en las condiciones y en el recipiente que mejor convenga para preservar la integridad de la misma. En el caso de las orinas debe recogerse la segunda orina de la mañana, descartando la primera micción, en contenedores libres de proteasas. En el caso de sangre, debe recogerse en el tubo adecuado según se quiera trabajar con suero (tubo de bioquímica o STII) o con plasma (tubo con anticoagulante, por ejemplo heparina).
Tras la recogida, la muestra de partida se procesa según su naturaleza y sobre todo antes de su posible almacenamiento. En el caso de las orinas se debe realizar una separación de la fracción celular y no soluble y su sobrenadante. En el caso de muestras de sangre se debe separar la fracción celular del suero o plasma según condiciones estándar.
La conservación de las muestras debe hacerse a bajas temperaturas, idealmente a - 80°C. Los ciclos de congelación-descongelación pueden comprometer la integridad de las muestras y dar lugar a infraestimaciones del contenido de GAG y su fracción unida o asociada.
La obtención, procesado y conservación de otro tipo de muestras se hace según técnicas estándar conocidas por el experto en la materia. Por ejemplo, la obtención de exosomas se realiza a partir del sobrenadante de la orina obtenido como se describe más arriba, sometiéndolo a centrifugación a 5.000 g durante 20 minutos, seguida de filtración a través de filtros de 0,22 μηι de baja adsorción proteica y posteriormente ultracentrifugación a 100.000 g durante 2 horas. Los exosomas se resuspenden en un tampón, por ejemplo PBS, y se almacenan a -20°C. Los exosomas también pueden aislarse mediante kits comerciales.
Cuando se trate de una muestra clínica la obtención de la muestra debe ir acompañada de la obtención de la mayor información posible de la historia clínica del paciente así como todos los parámetros bioquímicos disponibles para la correcta interpretación de los resultados. Es conveniente hacer una clasificación preliminar del estadio patológico en el que se encuentra el individuo antes de la toma de muestra.
En ocasiones, inmediatamente antes de separar los GAG sulfatados por el método de la invención es necesario preparar la muestra mediante dilución, sobre todo en muestras de suero o plasma, diluyendo la muestra según la concentración prevista de GAG sulfatados y la fracción unida o asociada a ellos.
La primera etapa del primer método de la invención consiste en poner en contacto la muestra de la que se quieren separar los GAG sulfatados libres o la fracción unida o asociada a GAG sulfatados con el colorante azul de dimetilmetileno (DMB) a un pH ácido comprendido entre 2 y 6,9.
Esta puesta en contacto implica mezclar la muestra y el DMB hasta obtener una mezcla homogénea. El término "azul de dimetilmetileno" o "DMB", tal como aquí se utiliza, se refiere a un colorante catiónico también conocido como azul de 1 ,9-dimetilmetileno, que comprende el compuesto 3,7-bis(dimetilamino)-1 ,9-dimetildifenotiazin-5-io y cualquier sal del mismo. Entre sus sales se encuentran sales con aniones derivados de ácidos inorgánicos, por ejemplo y sin limitación, clorhídrico, sulfúrico, fosfórico, difosfórico, bromuro, yoduro, ácido nítrico y ácidos orgánicos, por ejemplo y sin limitación, ácido cítrico, fumárico, maleico, málico, mandélico, ascórbico, oxálico, succínico, tartárico, benzoico, acético, metanosulfónico, etanosulfónico, bencenosulfónico, ciclámico o p- toluenosulfónico. En una realización preferida el DMB es cloruro de 3,7- bis(dimetilamino)-1 ,9-dimetildifenotiazin-5-io, cuya estructura se muestra en la figura 2 superior. El término DMB también incluye sales mixtas. En una realización preferida el DMB es una doble sal de cloruro de zinc de 3,7-bis(dimetilamino)-1 ,9- dimetildifenotiazin-5-io, cuya estructura se muestra en la figura 2 inferior. Estos compuestos pueden adquirirse comercialmente.
El DMB a pH ácido es capaz de unirse específicamente a los GAG sulfatados debido a la carga negativa de estos. El DMB se ha utilizado para cuantificar GAG, pero siempre se ha considerado que una gran limitación de este método es que los complejos DMB-GAG sulfatados son inestables en solución y precipitan. Hasta el momento, nadie pensó en aprovechar esta característica como una ventaja para separar los GAG de una muestra.
El DMB es una sustancia en polvo que se disuelve en un disolvente adecuado, como por ejemplo etanol, hasta alcanzar una concentración apropiada. En una realización preferida el DMB está a una concentración que oscila entre 0,01 y 100 mM, preferiblemente entre 0,29 y 0,35 mM, más preferiblemente a 0,29 mM. En una realización preferida el disolvente en el que está disuelto el colorante es etanol.
El DMB utilizado en el primer método de la invención debe estar a un pH ácido comprendido entre 2 y 6,9.
El término "pH" se refiere a la medida de la acidez o la alcalinidad de una solución. El pH típicamente va de 0 a 14 en disolución acuosa, siendo ácidas las disoluciones con pH inferiores a 7 y alcalinas las que tienen pH superiores a 7. El pH=7 indica la neutralidad de la disolución, donde el disolvente es agua. La determinación del pH de una solución puede hacerse de forma precisa mediante un potenciómetro (o pH-metro) y también de forma aproximada mediante indicadores, por métodos ampliamente conocidos en el estado de la técnica. Puesto que el valor del pH puede variar con la temperatura, en el contexto de esta invención la medición del pH se realiza a 20°C. El DMB utilizado en el primer método de la invención tiene un pH medido a 20°C comprendido entre 2 y 6,9; preferiblemente comprendido entre 3 y 4; más preferiblemente comprendido entre 3,3 y 3,6. En una realización preferida el pH medido a 20°C es de 3,5.
Para que el pH del DMB disuelto en un disolvente adecuado sea ácido, debe añadirse un agente tampón. Por "agente tampón" se entiende, en el contexto de la presente invención, un agente capaz de controlar el pH ácido de la solución y de mantenerlo constante a un pH comprendido entre 2 y 6,9. Agentes tampones adecuados para la presente invención son, sin limitación, tampón acetato, tampón citrato fosfato, tampón difosfato, tampón formiato y una combinación de los mismos. En una realización preferida de la invención el agente tampón es formiato sódico, preferiblemente formiato sódico 0,2 M a pH 3,5. En una realización preferida el agente tampón se mezcla con el DMB previamente disuelto en un disolvente adecuado tal como etanol, en una proporción DMB disuelto/tampón de 1/99 a 10/90. Preferiblemente la proporción DMB disuelto/tampón es de 1/99.
La muestra a analizar que contiene los GAG sulfatados libres y unidos o asociados a otros componentes debe mezclarse con el DMB tamponado en una proporción muestra:DMB tamponado adecuada para que se sature, tal como la comprendida en el intervalo de 1 : 1 a 1 :5. Preferiblemente, se mezclan en una proporción 1 :2.
En la etapa b) del primer método de la invención la mezcla de la etapa a) se incuba a una temperatura comprendida entre 0°C y 40°C durante el tiempo necesario para la formación de un precipitado. En esta etapa el colorante azul de dimetilmetileno se une de forma específica a los GAG tanto libres como unidos o asociados a otros compuestos, formando complejos con ellos y dando lugar a la formación de turbidez, seguida rápidamente por la precipitación del complejo formado. La incubación puede realizarse a una temperatura comprendida entre 0°C y 40°C, preferiblemente entre 4°C y 30°C, más preferiblemente entre 10°C y 28°C, aún más preferiblemente entre 15°C y 25°C, todavía más preferiblemente entre 20°C y 25°C. La incubación se realizará en un entorno refrigerado, atemperado o en una estufa dependiendo de la temperatura que se desee alcanzar por métodos conocidos por el experto en la técnica. En una realización preferida la incubación se realiza a temperatura ambiente (entre 20°C y 25°C).
Por "precipitado" se entiende, en el contexto del primer método de la invención, el sólido insoluble que se produce por el complejo formado entre los GAG sulfatados presentes en la muestra a analizar y el DMB. En la mayoría de los casos el precipitado baja al fondo de la disolución y su formación puede observarse a simple vista. En otras ocasiones el precipitado puede flotar o quedarse en suspensión, dependiendo de si es menos denso o igual de denso que el resto de la solución.
El tiempo de incubación es el tiempo necesario para la formación del precipitado y puede ser determinado por el experto en la materia por simple observación de la solución o por métodos conocidos en el estado de la técnica. Una vez formado el precipitado este puede mantenerse inalterado durante días en un intervalo de temperatura comprendido entre 0°C y 40°C. En una realización preferida, el tiempo de incubación está comprendido entre 1 minuto y 2 horas, preferiblemente es de al menos 1 minuto, al menos 5 minutos, al menos 10 minutos, al menos 15 minutos, al menos 20 minutos, al menos 30 minutos, al menos 40 minutos, al menos 50 minutos, al menos 60 minutos, al menos 90 minutos. En una realización más preferida el tiempo necesario para la formación del precipitado es de al menos 15 minutos.
En la etapa c) del método de la invención se produce la eliminación del sobrenadante tras la precipitación. Esta eliminación puede realizarse mediante cualquier método conocido por el experto en la materia, por ejemplo, por filtración, decantación o por un proceso de centrifugado y aspiración del sobrenadante. En una realización preferida tras la etapa b) se realiza una centrifugación. En una realización preferida la eliminación se realiza por centrifugación y posterior decantación o aspiración del sobrenadante, más preferiblemente por centrifugación y posterior aspiración del sobrenadante, aún más preferiblemente por centrifugación a 10.000 g durante 10 minutos a 4°C y posterior aspiración del sobrenadante. Tras la centrifugación, el precipitado contiene sólo los GAG sulfatados libres unidos al DMB y la fracción unida o asociada a GAG sulfatados. El sobrenadante contiene el resto, que es eliminado de la muestra.
En la etapa d) del primer método de la invención se recupera el precipitado que contiene los GAG sulfatados libres y la fracción unida o asociada a GAG sulfatados. Esta recuperación puede consistir simplemente en la obtención del precipitado aislado separado del sobrenadante tras la etapa c). Opcionalmente, el precipitado obtenido tras la etapa c) puede disolverse o mezclarse con un disolvente o solución adecuada en función del uso posterior que va a hacerse del precipitado. Por ejemplo, si el precipitado va a analizarse por electroforesis de proteínas, puede resuspenderse en un tampón de carga para electroforesis con o sin SDS. En una realización preferida el precipitado se resuspende en 7,5% SDS. Si el precipitado va a analizarse por cromatografía o por secuenciación proteica puede resuspenderse en un tampón adecuado para llevar a cabo estas técnicas. En la figura 3 se muestra un esquema con las diferentes posibilidades de análisis.
Método de identificación del perfil de proteínas unidas o asociadas a GAG sulfatados
Cuando la fracción unida o asociada a los GAG sulfatados precipitada por el primer método de la invención es una fracción proteica, el precipitado obtenido puede ser utilizado para identificar patrones o perfiles de proteínas característicos de un determinado estado, patológico o no, o de una determinada muestra.
El análisis de la fracción proteica puede ser analizado por diversas técnicas como por ejemplo, sin limitación, la electroforesis de proteínas, la cromatografía, la espectrometría de masas o la secuenciación proteica.
Así, en otro aspecto, la invención se refiere a un método in vitro (en adelante "segundo método de la invención") de identificación del perfil de proteínas unidas o asociadas a los GAG sulfatados de una muestra que comprende: a) separación de la fracción proteica unida o asociada a los GAG sulfatados de una muestra según el primer método de la invención; b) separación electroforética del producto obtenido en a); y c) identificación del perfil electroforético obtenido en b). El término "proteína", en el contexto del segundo método de la invención, se refiere a cualquier molécula formada por aminoácidos unidos por enlaces peptídicos y, por lo tanto, incluye tanto a péptidos y proteínas como a fragmentos de los mismos, incluyendo aquellos modificados postraduccionalmente. Cualquier proteína modificada postraduccionalmente con GAG o asociada de otro modo a GAG puede ser identificada mediante el segundo método de la invención. En una realización preferida, la proteína se selecciona del grupo que consiste en uromodulina, albúmina, IgA, IgG o una variante de las mismas y fragmentos de las mismas.
Por "perfil de proteínas", en el contexto del segundo método de la invención, se entiende el patrón específico de proteínas que forma la fracción unida o asociada a los GAG. El perfil de proteínas puede ser cualitativo, cuantitativo o ambos. En el presente documento el perfil de proteínas no se refiere únicamente al conjunto de proteínas de naturaleza conocida que han sido identificadas mediante un anticuerpo específico (perfil específico), sino también al patrón de bandas obtenido tras la separación electroforética, aunque no sea posible relacionar cada banda con una proteína concreta (perfil inespecífico).
Estas proteínas pueden estar directamente unidas o asociadas a los GAG sulfatados o bien indirectamente a través de otros compuestos unidos o asociados a los GAG sulfatados, como los exosomas.
La primera etapa (etapa a) del segundo método de la invención comprende la separación de la fracción proteica unida o asociada a los GAG sulfatados según el primer método de la invención.
El precipitado obtenido en la etapa a) debe resuspenderse en un medio adecuado para poder ser utilizado en la etapa b) del método. Cualquier tampón de carga para electroforesis puede ser adecuado para la resuspensión. Ejemplos de medios en los que puede resuspenderse son, sin limitación, 7,5% SDS; tampón Laemli; tampón Laemli con β-mercaptoetanol y 7,5% de SDS en relación 1 :1 ; tampón TBE (100 mM Tris-borato, 1 mM EDTA, pH 8,3) con sacarosa 2 M y 0,02% de azul de bromofenol; tampón TAE (40 mM Tris, 5 mM CH3COONa, 0,9 mM EDTA, pH 7,9); tampón TBE con sacarosa 2 M; etc. El tampón preferido para la resuspensión del precipitado es SDS (dodecil sulfato sódico) al 7,5 % que posteriormente se combina en proporción variable 1 :1 a 1 : 10 con el tampón de carga. Si la cantidad de precipitado es muy grande puede ser necesario vortear la mezcla para conseguir una completa homogeneización.
La etapa b) del segundo método de la invención es la separación electrof oré tica del producto obtenido en la etapa a). Por "separación electroforética" o "electroforesis", se entiende un método de separación de los componentes de una muestra mediante la aplicación de un campo eléctrico. En el contexto del segundo método de la invención la separación electroforética es una electroforesis proteica. En función del tipo de separación empleado, la separación electroforética puede ser electroforesis de zona (separación en función de la carga), isoelectroenfoque (separación en función del punto isoeléctrico) y separación por tamaño en tamiz molecular. Ejemplos de separación electroforética son, sin limitación, electroforesis de zona (en papel, acetato de celulosa, agarosa, poliacrilamida y electroforesis capilar), isoelectroenfoque, electroforesis en geles de poliacrilamida nativos (PAGE) o desnaturalizantes (SDS- PAGE). El experto en la materia reconocerá que la separación electroforética puede ser monodimensional o bidimensional, por ejemplo cuando se utiliza como primera dimensión el isoelectroenfoque y como segunda dimensión la electroforesis en geles de poliacrilamida. La separación electroforética o electroforesis se lleva a cabo por métodos conocidos por el experto en la técnica.
En una realización preferida la electroforesis es SDS-PAGE. En otra realización preferida la electroforesis es una electroforesis bidimensional.
En una realización preferida la electroforesis es una electroforesis en un gel de poliacrilamida. En otra realización preferida la electroforesis es una electroforesis en un gel de acetato de celulosa.
En la etapa c) del método de la invención se identifica el perfil electroforético obtenido en b).
En el contexto del segundo método de la invención el término "perfil electroforético" se refiere al patrón específico de bandas o manchas producido por la fracción proteica unida o asociada a los GAG cuando las proteínas son separadas mediante electroforesis. Este patrón específico puede ser debido a varias causas: a) a que cada tipo de GAG se une a una fracción diferente; b) a que la unión del GAG a las proteínas y péptidos hace que esta fracción sea secretada a un fluido o, por ejemplo, excretada en orina; y c) el exceso de GAG hace que se formen isoformas específicas. La "identificación del perfil electrof oré tico" requiere o bien la visualización de un patrón de bandas o manchas de proteínas que pueden identificarse mediante su peso molecular aunque su naturaleza sea desconocida; o bien la identificación de las bandas o manchas de proteínas mediante el uso de un anticuerpo que reconoce específicamente una proteína concreta, mediante secuenciación proteica o mediante espectrometría de masas.
En una realización preferida, la etapa c) del segundo método de la invención se realiza mediante Western blot, es decir, mediante el uso de anticuerpos que reconocen específicamente una determinada proteína. Esta técnica es ampliamente conocida por el experto en la materia.
En otra realización preferida, la etapa c) se realiza mediante tinción con un colorante específico para la visualización de proteínas.
Por "tinción", en el contexto del segundo método de la invención, se refiere a la acción de teñir las bandas de proteínas de modo que adquieran color o fluorescencia y puedan ser detectadas. Los protocolos de tinción de proteínas son conocidos por el experto en la materia.
El término "colorante específico para la visualización de proteínas" se refiere a un compuesto que tiene una afinidad específica por las proteínas y que al unirse a ellas permite visualizar las bandas de proteína de un gel tras la separación electroforética bien por la observación de coloración de las mismas a simple vista o por la detección de la emisión de fluorescencia tras iluminación con luz UV, luz azul o láser. Ejemplos de colorantes específicos para proteínas son, sin limitación, tinción de plata, azul de coomassie, "Blue Silver" o Coomassie G250, tinción negativa (con zinc o cobre), Ponceau S y tinción fluorescente. Ejemplos de tinciones fluorescentes son, sin limitación, Sypro Ruby, Emerald (tiñe específicamente proteínas glicadas), Flamingo™ (Bio-Rad), Oriole™ (Bio-Rad), Pro-Q , mareaje con Cy2, Cy3 y/o Cy5, etc. En una realización preferida el colorante específico para la visualización de proteínas es Sypro Ruby.
Como el experto en la técnica conoce, el colorante a utilizar dependerá del posterior análisis al que se vaya a someter la muestra. Por ejemplo, la tinción con plata no se utiliza si se desean hacer análisis por espectrometría de masas; mientras que la tinción fluorescente o la tinción Coomassie G250 sí que son compatibles con espectrometría de masas.
En una realización preferida, tras la tinción con un colorante específico para la visualización de proteínas, las bandas o manchas obtenidas se escinden del gel y se identifican mediante proteómica. Entre las técnicas de proteómica que pueden ser utilizadas están, sin limitación, técnicas no colorimétricas como espectrometría de masas, secuenciación proteica, espectroscopia de índice de refracción, espectroscopia ultravioleta (UV), análisis de fluorescencia, análisis radioquímico, espectroscopia de infrarojo cercano, espectroscopia de resonancia magnética nuclear (RMN), pirólisis espectrometría de masas, espectroscopia de dispersión Raman, espectroscopia de nebulización iónica combinada con espectrometría de masas y electroforesis capilar. Preferiblemente, las técnicas utilizadas se seleccionan del grupo que consiste en la espectrometría de masas y la secuenciación proteica.
Por "espectrometría de masas" o análisis por MS, se entiende una técnica analítica para identificar compuestos desconocidos que incluye: (1) ionizar los compuestos y potencialmente fraccionar los iones parentales de compuestos formados en iones hijos; y (2) detectar los compuestos cargados y calcular una relación masa a carga (m/z). Los compuestos se pueden ionizar y detectar mediante cualquier medio adecuado. Un "espectrómetro de masas" incluye medios para ionizar compuestos y detectar compuestos cargados.
Preferiblemente, se usa espectrometría de masas en particular cromatografía de gases espectrometría de masas (GC-MS), cromatografía líquida espectrometría de masas (LC-MS), espectrometría de masas por infusión directa o espectrometría de masas de resonancia de ión ciclotrónico por transformada de Fourier (FT-ICR-MS), electroforesis capilar espectrometría de masas (CE-MS), cromatografía líquida de alta resolución acoplada a espectrometría de masas (HPLC-MS), espectrometría de masas en cuadrupolo, cualquier espectrometría de masas acoplada de forma secuencial, tal como MS-MS o MS-MS-MS, espectrometría de masas con plasma de acoplamiento inductivo (ICP-MS), pirólisis- espectrometría de masas (Py-MS), espectrometría de masas por movilidad de iones o espectrometría de masas de tiempo de vuelo (TOF), espectrometría de masas de ionización por electrospray (ESI-MS), ESI-MSMS, ESI- MS/(MS)n, espectrometría de masas por desorción/ionización láser asistida por matriz tiempo de vuelo (MALDI-TOF-MS), espectrometría de masas por desorción/ionización láser aumentada por superficie tiempo de vuelo (SELDI-TOF-MS), desorción/ionización sobre silicona (DIOS), espectrometría de masa de ión secundario (SIMS), tiempo de vuelo en cuadrupolo (Q-TOF), espectrometría de masas de ionización química a presión atmosférica (APCI-MS), APCI-MSIMS, APCI-(MS)n, espectrometría de masas de fotoionización a presión atmosférica (APPI-MS), APPI- MSIMS y APPI-(MS)n, espectrometría de masas en cuadrupolo, espectrometría de masas por transformada de Fourier (FTMS) y espectrometría de masas por trampa de iones, donde n es un número entero mayor que cero. Dichas técnicas se divulgan en, por ejemplo, Nissen, Journal of Chromatography A, 703, 1995: 37-57, US 4540884 ó US 5397894.
Los métodos de ionización mencionados anteriormente generalmente producen un ión resultante de la adición de uno o más átomos o mediante rotura de la molécula. Estos iones se pueden usar después como marcadores sustitutos de la molécula que se quiere medir. El término "marcador sustituto" como se usa aquí significa un parámetro biológico o clínico que se mide en lugar del parámetro biológicamente definitivo o clínicamente más significativo.
Típicamente los iones se producen por la adición de un protón o un núcleo de hidrógeno, [M+H]+ donde M significa la molécula de interés y H significa el ión de hidrógeno, que es lo mismo que un protón. Algunos métodos de ionización también producirán iones análogos. Los iones análogos pueden surgir por la adición de un catión de metal alcalino, más que el protón discutido anteriormente. Una especie típica puede ser [M+Na]+ o [M+K]+. El análisis de las moléculas ionizadas es similar independientemente de si tiene que ver con un ión protonado, como se ha discutido anteriormente, o si se ocupa con un catión de metal alcalino añadido. La diferencia principal es que la adición de un protón añade una unidad de masa (típicamente llamado un Dalton), en el caso del ión de hidrógeno (es decir, protón), 23 Dalton en el caso de sodio ó 39 Dalton en el caso de potasio. Estos pesos o masas adicionales simplemente se añaden al peso molecular de la molécula de interés y el pico de MS se produce en el punto para el peso molecular de la molécula de interés más el peso del ión que se ha añadido. Estos métodos de ionización también pueden producir iones negativos. La señal molecular más común es la molécula desprotonada [M-H]-, en este caso la masa es un Dalton menor que el peso molecular de la molécula de interés. Además, para algunos compuestos se producirán iones múltiplemente cargados. Estos son del tipo general de identificación [M+nH]n+, donde n minúscula identifica el número de protones adicionales que se han añadido.
En una realización preferida la técnica de proteómica utilizada es la espectrometría de masas, preferiblemente por MALDI-TOF o MALDI-TOF/TOF.
En otra realización se utiliza cromatografía de gases combinada con espectrometría de masas, cromatografía líquida combinada con espectrometría de masas o MALDI combinada con espectrometría de masas.
En otra realización preferida la espectrometría de masas es espectrometría de masas en tándem.
Otra posibilidad para identificar la fracción unida a los GAG es secuenciar los péptidos o proteínas. Por "secuenciación proteica", en el contexto del segundo método de la invención, se entiende la determinación de la secuencia de aminoácidos de una proteína. Cualquier método de secuenciación proteica puede ser utilizado en el método de la invención, por ejemplo y sin limitación, secuenciación por el método de degradación de Edman, secuenciación por espectrometría de masas bien directamente o tras la digestión de los fragmentos peptídicos, etc. Estos métodos son bien conocidos por el experto en la técnica.
El precipitado obtenido por el primer método de la invención también puede estudiarse por microscopía electrónica. Para ello, el precipitado se resuspende en un tampón específico para observación por microscopía electrónica tal como las resinas como el acrílico Epon o las Epoxi, o 2% glutaraldehido en tampón cacodilato 0, 1 M a pH 7,4. En este caso el DMB actúa como contraste.
Por "microscopía electrónica" se entiende una técnica que utiliza un microscopio electrónico, que es aquel que utiliza electrones en lugar de fotones o luz visible para formar las imágenes de los objetos. Las técnicas de microscopía electrónica útiles en la presente invención incluyen tanto microscopía electrónica de transmisión como microscopía electrónica de barrido, entre otras. Esta técnica permite estudiar las fracciones asociadas a los GAG sulfatados, como por ejemplo los exosomas. En otro aspecto, la invención se refiere a un método in vitro (en adelante "tercer método de la invención") de identificación del perfil de proteínas unidas o asociadas a los GAG sulfatados de una muestra que comprende:
a) separación de la fracción proteica unida o asociada a los GAG sulfatados de una muestra según el primer método de la invención y
b) identificación del perfil de proteínas unidas o asociadas a los GAG sulfatados mediante cromatografía o espectrometría de masas de la fracción obtenida en a). Preferiblemente, la espectrometría de masas es espectrometría de masas en tándem.
La primera etapa del tercer método de la invención implica la separación de la fracción proteica unida o asociada a los GAG sulfatados de una muestra utilizando el primer método de la invención.
El precipitado obtenido en la etapa a) puede ser analizado directamente mediante cromatografía o espectrometría de masas, preferiblemente espectrometría de masas en tándem. Para ello, dicho precipitado se resuspende en el medio adecuado para llevar a cabo la siguiente etapa del tercer método de la invención.
En una realización preferida, tras la etapa a) el perfil de proteínas unidas o asociadas a los GAG sulfatados se identifica mediante cromatografía. Por "cromatografía" se entiende un método para la separación de componentes de una mezcla que se basa en diferencias en el comportamiento de flujo de varios componentes de una mezcla/solución llevada por una fase móvil a través de un soporte/columna recubierto con una cierta fase estacionaria. Específicamente, algunos componentes se unen con fuerza a la fase estacionaria y pasan mayor tiempo en el soporte, mientras que otros componentes están predominantemente en la fase móvil y pasan más rápidamente a través del soporte. El criterio en el que se basa que los varios compuestos se separen a través de la columna se define por el problema particular que se investiga y está impuesto por la estructura, composición y capacidad de unión de la fase estacionaria. Por ejemplo, se podría construir una fase estacionaria de modo que las moléculas lineales y de bajo peso molecular eluyan más rápido que las aromáticas y de alto peso molecular. Según eluyen los componentes del soporte, se pueden analizar inmediatamente mediante un detector o ser recogidos para análisis adicional. Actualmente están disponibles un gran número de métodos de separación, y en particular métodos de cromatografía, incluyendo cromatografía de gases ("GC"), cromatografía líquida ("LC"), cromatografía iónica ("IC"), cromatografía de exclusión molecular ("SEC"), cromatografía de fluidos supercríticos ("SCF"), cromatografía de capa fina ("TLC"), cromatografía líquida de alta resolución ("HPLC") y electroforesis capilar ("CE"). La cromatografía de gases se puede usar para separar compuestos volátiles. La cromatografía líquida ("LC") es una técnica cromatográfica alternativa útil para separar iones o moléculas que están disueltas en un solvente. El principio de la separación por GC y LC es el mismo, su diferencia principal está en la fase con la que se produce la separación (fase vapor frente a líquida). Además, GC se usa principalmente para separar moléculas de hasta 650 unidades atómicas de peso, mientras, en principio, LC puede separar compuestos de cualquier peso molecular. Los tipos adecuados de cromatografía líquida que se pueden aplicar en el método de la invención incluyen, sin limitación, cromatografía de fase reversa, cromatografía de fase normal, cromatografía de afinidad, cromatografía de intercambio iónico, cromatografía líquida de interacción hidrofílica (HILIC), cromatografía de exclusión molecular y cromatografía quiral. Estos métodos son bien conocidos en la técnica y los puede aplicar el experto en la materia sin más dilación.
En otra realización preferida, tras la etapa a) el perfil de proteínas unidas o asociadas a los GAG sulfatados se identifica mediante espectrometría de masas, preferiblemente espectrometría de masas en tándem.
Por "espectrometría de masas en tándem" se entiende el método de espectrometría en el que se utilizan dos analizadores acoplados, de modo que el primer analizador es usado para seleccionar el compuesto de interés y luego este ión pasa a la celda de colisión donde se induce la disociación del ión. Esta técnica es bien conocida por el experto en la técnica y es adecuada para cuantificación y para el cribado de muestras.
Cualquier realización descrita en el contexto del primer método de la invención es también aplicable al segundo y tercer métodos.
Método de identificación del perfil de lípidos unidos o asociados a GAG sulfatados
Cuando la fracción unida o asociada a los GAG sulfatados precipitada por el primer método de la invención es una fracción lipídica, el precipitado obtenido puede ser utilizado para identificar patrones o perfiles de lípidos característicos de un determinado estado, patológico o no, o de una determinada muestra. El análisis de la fracción lipídica puede ser analizado por diversas técnicas como por ejemplo, sin limitación, la electroforesis de lípidos, la cromatografía, o la cromatografía acoplada a espectrometría de masas
En otro aspecto, la invención se refiere a un método in vitro (en adelante "cuarto método de la invención") de identificación del perfil de lípidos unidos o asociados a los GAG sulfatados de una muestra que comprende:
a) separación de la fracción lipídica unida o asociada a los GAG sulfatados de una muestra según el primer método de la invención; y
b) identificación del perfil de lípidos unidos o asociados a los GAG sulfatados mediante electroforesis o cromatografía de la fracción obtenida en a).
El término "lípidos", en el contexto del cuarto método de la invención, se refiere a cualquier molécula orgánica compuesta principalmente por carbono e hidrógeno y en menor medida oxígeno, aunque también pueden contener fósforo, azufre y nitrógeno, que son hidrófobos y solubles en disolventes orgánicos como la bencina, el benceno y el cloroformo. El término lípidos incluye a cualquier tipo de lípidos tales como, sin limitación, triglicéridos, fosfolípidos, hormonas esferoides, etc. Cualquier lípido unido o asociado de otro modo a GAG puede ser identificado mediante el cuarto método de la invención.
Por "perfil de lípidos", en el contexto del cuarto método de la invención, se entiende el patrón específico de lípidos que forma la fracción unida o asociada a los GAG. El perfil de lípidos puede ser cualitativo, cuantitativo o ambos. En el presente documento el perfil de lípidos no se refiere únicamente al conjunto de lípidos de naturaleza conocida que han sido identificados específicamente (perfil específico), sino también al patrón obtenido tras la separación electroforética, aunque no sea posible relacionar cada banda con un lípido concreto (perfil inespecífico).
El cuarto método de la invención consta de una primera etapa en la que la fracción lipídica unida o asociada a los GAG sulfatados de una muestra se separa según el primer método de la invención.
El precipitado obtenido en la primera etapa se puede identificar mediante electroforesis o cromatografía. En una realización preferida el perfil de lípidos se identifica por electroforesis de lípidos. El término "separación electroforética" o "electroforesis" ha sido definido en relación al segundo y tercer método de la invención y en el contexto del cuarto método de la invención se refiere a una electroforesis lipídica.
En otra realización preferida el perfil de lípidos se identifica por cromatografía. El término "cromatografía" ha sido definido en relación al segundo y tercer método de la invención y en el contexto del cuarto método de la invención se refiere a una cromatografía de lípidos.
El resto de términos han sido definidos en el contexto de los aspectos anteriores. Cualquier realización descrita para el primer, segundo y tercer métodos de la invención es también aplicable al cuarto método de la invención.
Métodos para detectar alteraciones en el patrón de glicosilación por GAG sulfatados
El método de la invención también resulta útil para detectar alteraciones en el patrón de glicosilación por los GAG sulfatados de lípidos o proteínas.
En otro aspecto, la invención se refiere a un método in vitro (en adelante "quinto método de la invención") para detectar una alteración en el patrón de glicosilación por los GAG sulfatados de una muestra que comprende:
a) identificar el perfil de proteínas unidas o asociadas a los GAG sulfatados de una muestra según el segundo o tercer método de la invención y/o identificar el perfil de lípidos unidos o asociados a los GAG sulfatados de una muestra según el cuarto método de la invención; y
b) comparar el perfil de proteínas unidas o asociadas a los GAG sulfatados obtenido en a) con el obtenido para una muestra de referencia y/o comparar el perfil de lípidos unidos o asociados a los GAG sulfatados obtenido en a) con el obtenido para una muestra de referencia donde una diferencia del perfil obtenido en a) respecto al perfil obtenido en la muestra de referencia indica una alteración en el patrón de glicosilación por los GAG sulfatados.
Por "patrón de glicosilación", en el contexto del quinto método de la invención, se entiende el patrón específico de glicosilación por GAG sulfatados de los componentes de una muestra, donde se adiciona un GAG sulfatado a otra molécula, particularmente a una proteína o lípido.
Por "alteración en el patrón de glicosilación", en el contexto del quinto método de la invención, se entiende cualquier diferencia en el patrón de glicosilación con respecto a una muestra de referencia, ya sea un aumento o una disminución de la glicosilación por GAG sulfatados.
En la primera etapa del quinto método de la invención se identifica el perfil de proteínas unidas o asociadas a los GAG sulfatados de una muestra por el segundo o tercer método de la invención y/o se identifica al perfil de lípidos unidos o asociados a los GAG sulfatados de una muestra por el cuarto método de la invención como se ha descrito anteriormente.
La segunda etapa del quinto método de la invención consiste en comparar el perfil de proteínas unidas o asociadas a los GAG sulfatados obtenido en a) con el obtenido para una muestra de referencia y/o comparar el perfil de lípidos unidos o asociados a los GAG sulfatados obtenido en a) con el obtenido para una muestra de referencia, donde una diferencia del perfil obtenido en a) respecto al perfil obtenido en la muestra de referencia indica una alteración en el patrón de glicosilación por los GAG sulfatados.
Por "muestra de referencia", en el contexto del quinto método de la invención, se entiende una muestra del mismo tipo que la muestra que se va a analizar que se toma como base para la comparación. En una realización preferida la muestra de referencia proviene de individuos normales sanos no afectados por ninguna enfermedad. La muestra de referencia se puede obtener también del mismo sujeto a analizar. En una realización preferida de la invención la muestra de referencia se ha obtenido a partir de individuos sanos de la misma edad y sexo que la muestra a analizar.
El patrón de glicosilación de la muestra a analizar se compara con el de la muestra de referencia y esto permite la detección de alteraciones cuantitativas y/o cualitativas en este patrón. El resto de términos han sido definidos en el contexto de los aspectos anteriores. Cualquier realización descrita para el primer, segundo, tercer y cuarto método de la invención es también aplicable al quinto método de la invención.
Usos de los métodos de la invención
Los métodos de la invención, que permiten analizar la fracción unida o asociada a los GAG tienen distintas aplicaciones en biomedicina. Así, sin limitación, pueden utilizarse para la identificación de nuevos biomarcadores o perfiles de biomarcadores a nivel proteico que funcionan como indicadores pronóstico o diagnóstico, o para el seguimiento de una determinada patología o condición. Asimismo, permiten monitorizar una terapia, y diseñar una terapia personalizada en un sujeto que sufre una enfermedad o seleccionar a un paciente susceptible de ser tratado con una determinada terapia. También puede ser útil para el descubrimiento de nuevas dianas terapéuticas. Otra aplicación es su uso en el estudio de nuevas vías de comunicación celular o mecanismos moleculares.
Por lo tanto, en otro aspecto, la invención se relaciona con el uso del segundo, tercer, cuarto y quinto métodos de la invención para identificar biomarcadores proteicos o lipidíeos unidos o asociados a los GAG sulfatados.
El término "biomarcador" o "marcador biológico", según se usa en el presente documento, se refiere a una sustancia utilizada como indicador de un estado biológico, que debe poder medirse objetivamente y ser evaluado como un indicador de un proceso biológico normal, estado patogénico o de respuesta a un tratamiento farmacológico.
En una realización dichos biomarcadores son útiles para el diagnóstico, pronóstico y/o monitorización de la progresión de una enfermedad.
En otra realización dichos biomarcadores son útiles para monitorizar el efecto de una terapia para el tratamiento de una enfermedad.
En otra realización dichos biomarcadores son útiles para predecir la respuesta a una terapia. Por "predecir la respuesta a una terapia" se entiende la posibilidad de saber con antelación a la administración de una terapia si un individuo va a responder bien o mal a la misma.
En otra realización dichos biomarcadores son útiles para diseñar una terapia personalizada.
En otra realización dichos biomarcadores son útiles para la identificación de compuestos adecuados para el tratamiento de una enfermedad.
En una realización preferida la enfermedad se selecciona del grupo que consiste en enfermedad renal y mucopolisacaridosis. En otra realización más preferida la enfermedad renal es poliquistosis renal autosómica dominante de tipo 1 o de tipo 2.
Los términos "diagnóstico", "pronóstico", "monitorización de la progresión", "monitorización del efecto de una terapia", "diseño de una terapia personalizada" e "identificación de compuestos adecuados para el tratamiento" se explican más adelante.
Métodos de diagnóstico de la invención
Los autores de la presente invención han identificado una serie de marcadores presentes en la orina de sujetos que padecen mucopolisacaridosis y enfermedad renal, y que están ausentes o en distinta proporción en individuos que no padecen tales enfermedades. Estos marcadores se pueden usar en un método rápido de diagnóstico de mucopolisacaridosis en recién nacidos, en métodos de diagnóstico precoz de enfermedad renal o en métodos de diagnóstico de enfermedad renal avanzada.
En un aspecto, la invención se refiere a un método in vitro para diagnosticar una enfermedad asociada a una alteración de uno o más GAG sulfatados en un sujeto que comprende:
a) separar los GAG sulfatados libres y la fracción unida o asociada a los GAG sulfatados de una muestra biológica de dicho sujeto por el primer método de la invención, b) detectar el nivel de uno o más GAG sulfatados separados en a) y c) comparar dicho nivel con un valor de referencia para dicho uno o más GAG sulfatados
donde un nivel aumentado o disminuido de uno o más GAG sulfatados con respecto al valor de referencia es indicativo de que el sujeto sufre una enfermedad asociada a una alteración de uno o más GAG sulfatados.
En el contexto de la presente invención, "método in vitro para diagnosticar una enfermedad asociada a una alteración de uno o más GAG sulfatados" se entiende como un método que permite mostrar la existencia de cualquier enfermedad en la que se produce una alteración patogénica de los niveles de GAG sulfatados, es decir, cuando dicho proceso es dañino o no deseado en un sujeto por medio de la detección de estos niveles. "Diagnosticar" se refiere a evaluar la probabilidad según la cual un sujeto padece una enfermedad.
Los métodos se llevan a cabo "in vitro", es decir, no se practican sobre el cuerpo humano o animal.
Como entenderán los expertos en la materia, tal evaluación, aunque se prefiere que sea, puede no ser correcta para el 100% de los sujetos a diagnosticar. El término, sin embargo, requiere que se pueda identificar una parte estadísticamente significativa de los sujetos como que padece la enfermedad. El experto en la materia puede determinar si una parte es estadísticamente significativa sin más dilación usando varias herramientas de evaluación estadística bien conocidas, por ejemplo, determinación de intervalos de confianza, determinación del valor de p, prueba t de Student, prueba de Mann-Whitney, etc. Los intervalos de confianza preferidos son de al menos el 50%, al menos el 60%, al menos el 70%, al menos el 80%, al menos el 90%, al menos el 95%. Los valores de p son, preferiblemente, 0,2, 0, 1 , 0,05.
Por "enfermedad asociada a una alteración de uno o más GAG sulfatados" se entiende cualquier enfermedad que cursa con un aumento o con una disminución de los niveles de GAG sulfatados respecto a los niveles de un individuo normal. Enfermedades en las que hay una alteración en uno o más glucosaminoglicanos de manera primaria o secundaria son, sin limitación, mucopolisacaridosis, amiloidosis renal (Tencer J. et al. Nephrol Dial Transplant. 1997.12(6):1 161-6), glomerulonefritis (Tencer J. et al. Clin Nephrol. 1997;48(4):212-9), síndrome nefrótico congénito (Vermylen C. et al. Pediatr Nephrol. 1989;3(2): 122-9), nefropatía endémica de los Balcanes (Jurétic D. et al. Nephron. 1993; 65(4): 564-7), trasplante renal (Rodríguez-Cuartero et al. Clin Nephrol. 1997;47(4):274-6), litiasis renal (Hesse et al., Urol. Int. 1986; 41 (2):81-7), nefropatía diabética (Pérez Blanco et al. Nephron. 1996; 73(2):344-5), hipotiroidismo (Tokoro T. and Eto Y. Eur J Pediatr. 1985 May; 144(1 ):84-6), diabetes (Nikiforovskaia LF, and Ivanova LN. Vopr Med Khim. 1987;33(1):91-6), artritis reumatoide ((Kéry V. Et al. Clin Chem. 1992;38(6):841-6) y siringomielia (Elaev N.R. and Bakhtiarova KZ. Biull Eksp Biol Med. 1992; 114(9):271-2).
En una realización preferida la enfermedad asociada a una alteración de uno o más GAG sulfatados se selecciona del grupo que consiste en:
a) una mucopolisacaridosis seleccionada del grupo que consiste en enfermedad de Hurler (deficiencia de alfa-L-iduronidasa), enfermedad de Scheie (deficiencia de alfa-L-iduronidasa), enfermedad de Hunter (deficiencia de iduronato-2-sulfatasa), enfermedad de Sanfilippo A (deficiencia de heparán sulfamidasa), enfermedad de Sanfilippo B (deficiencia de alfa-N-acetil- glucosaminidasa), enfermedad de Sanfilippo C (deficiencia de heparán-alfa- glucosaminida N-acetiltransferasa), enfermedad de Sanfilippo D (deficiencia de N-acetilglucosamina-6-sulfatasa), enfermedad de Morquio A (deficiencia de N- acetilgalactosamina-6-sulfatasa), enfermedad de Morquio B (deficiencia de beta-D-galactosidasa), enfermedad de Maroteaux-Lamy (deficiencia de arilsulfatasa B) y enfermedad de Sly (deficiencia de beta-glucuronidasa);
b) una enfermedad renal seleccionada del grupo que consiste en poliquistosis renal autosómica dominante de tipo 1 o de tipo 2, glomerulonefritis, síndrome nefrótico, nefropatía endémica de los Balcanes, trasplante renal, litiasis renal y nefropatía diabética;
c) una endocrinopatía seleccionada del grupo que consiste en hipotiroidismo y diabetes;
d) una enfermedad reumatológica seleccionada del grupo que consiste en osteoartritis, espondilitis anquilosante, artritis reumatoide y siringomielia; y e) una enfermedad oncológica.
En una realización la enfermedad oncológica se selecciona de cáncer de próstata y cáncer de colon. En una realización aún más preferida la enfermedad se selecciona del grupo que consiste en mucopolisacaridosis y enfermedad renal.
El término "mucopolisacaridosis" o "MES", tal y como aquí se utiliza, designa a un grupo heterogéneo de errores innatos del metabolismo producidos por la deficiencia de alguna de las enzimas necesarias para la degradación de los GAG, es decir, son alteraciones congénitas de la glicosilación. Los GAG no degradados suelen ser excretados parcialmente en la orina, pero el resto permanecen acumulados en los lisosomas. Este acúmulo produce las alteraciones celulares e interferencias en otros procesos metabólicos con consecuencias graves para el organismo humano, causando daño a nivel celular, tisular y de órgano. Por ejemplo, la acumulación dentro del cerebro es responsable del retraso mental y retraso psicomotor y, en general, la acumulación de estas sustancias en otros tejidos ofrece un gran espectro de hallazgos y formas que van desde signos fenotípicamente leves y poco perceptibles hasta formas grotescas y deformantes que afectan notablemente a los individuos que padecen dicha alteración. Hasta el momento se han descrito 7 tipos de mucopolisacaridosis con varios subtipos que involucran a unas 1 1 enzimas específicas. En la Tabla I se describen los distintos tipos de MPS y el tipo de GAG excretado.
Figure imgf000040_0001
Tabla I. Tipos de MPS y GAG excretados. DS: dermatán sulfato; HS: heparán sulfato; CS: condroitín-4 y -6 sulfato; KS: queratán sulfato. Todos los tipos de MPS son heredados en forma autosómica recesiva, exceptuando el síndrome de Hunter (MPS II), que está ligado al cromosoma X.
El término "enfermedad renal" se refiere a un estado caracterizado por una disminución significativa y progresiva de la función de los ríñones, expresada por un filtrado glomerular o por un aclaramiento de creatinina estimados < 60 ml/min/1 ,73m2 o como la presencia de daño renal de forma persistente durante al menos 3 meses. El daño renal se diagnostica habitualmente mediante marcadores en vez de por una biopsia renal, por lo que su diagnóstico puede realizarse sin conocimiento de la causa. En una realización preferida la enfermedad renal es poliquistosis renal autosómica dominante de tipo 1 o de tipo 2. El término "poliquistosis renal autosómica dominante de tipo 1 o de tipo 2" o "enfermedad poliquística renal autosómica dominante de tipo 1 o de tipo 2" o "ADPKD1 o ADPKD2", se refiere a una enfermedad genética progresiva de los ríñones caracterizada por la presencia de múltiples quistes en ambos ríñones. Esta enfermedad también puede dañar al hígado, vesículas seminales, páncreas, aracnoides y raramente al corazón y al cerebro. Las manifestaciones de esta enfermedad incluyen anormalidades en la función renal, hipertensión, dolor renal, e insuficiencia renal. Los síntomas iniciales son hipertensión, fatiga, dolores severos en la espalda y costados e infecciones en el tracto urinario. La enfermedad conduce frecuentemente al desarrollo de insuficiencia renal crónica y puede resultar en la pérdida total de la función renal, lo que requiere un cierto tipo de diálisis. En el 85% de los pacientes esta enfermedad está causada por la mutación del gen PKD1 (locus 16p13.3-p13.1), y en el 15% restante la causa es la mutación del gen PKD2 (locus 4q21q23).
En una realización la alteración de uno o más GAG sulfatados es un aumento de uno o más GAG. En una realización la enfermedad asociada a un aumento de uno o más GAG sulfatados es una enfermedad que cursa con una acumulación indeseada de uno o más GAG sulfatados seleccionada de mucopolisacaridosis, mucolipidosis, síndrome nefrótico congénito, nefropatía endémica de los Balcanes, artritis reumatoide y siringomielia.
En otra realización la alteración de uno o más GAG sulfatados es una disminución de uno o más GAG. En una realización la enfermedad asociada a la disminución de uno o más GAG sulfatados se selecciona del grupo que consiste en amiloidosis renal, glomerulonefritis, síndrome nefrótico, hipotiroidismo y diabetes. La primera etapa del método diagnóstico de la invención comprende la separación de los GAG sulfatados libres y de la fracción unida o asociada a los GAG sulfatados de una muestra biológica de un sujeto por el primer método de la invención.
El término "muestra biológica" ha sido definido en el contexto del primer método de la invención. En una realización preferida la muestra biológica es una muestra de orina, suero o plasma. En otra realización preferida la muestra biológica es una muestra de exosomas, preferiblemente exosomas aislados de una muestra de orina.
Por "sujeto" en la presente invención se entiende como cualquier animal clasificado como mamífero e incluye, pero no está limitado a, animales domésticos o de granja, primates y humanos, por ejemplo, seres humanos, primates no humanos, vacas, caballos, cerdos, ovejas, cabras, perros, gatos o roedores. Preferiblemente, el sujeto es un ser humano hombre o mujer de cualquier raza o edad. En el contexto de este aspecto de la invención el sujeto es un sujeto que potencialmente padece una enfermedad asociada a una alteración de uno o más GAG sulfatados.
La segunda etapa del método diagnóstico comprende detectar el nivel de uno o más GAG sulfatados separados en a).
Los niveles de GAG pueden ser detectados mediante métodos descritos en el estado de la técnica y conocidos por el experto en la materia. Dichos métodos incluyen métodos colorimétricos de detección espectrofotométrica; métodos de ensayo de GAG específicos que permiten identificar los tipos de GAG producidos o excretados en exceso tales como HPLC, ELISA y espectrometría de masas en tándem; y métodos basados en la despolimerización de los GAG (Tomatsu S. et al. 2013. Mol. Genet. Metab. 1 10(0):42-53).
En una realización preferida la etapa (b) se realiza mediante la tinción de los GAG sulfatados con el colorante DMB. Preferiblemente, la tinción se realiza mediante DMB al 0,02% en agua. Luego el gel debe desteñirse, preferiblemente usando ácido acético al 10%. La persona experta en la técnica apreciará que el método de la invención se puede poner en práctica utilizando tanto el nivel absoluto como el nivel relativo de los GAG sulfatados. Por lo tanto, en la presente invención, la expresión "nivel de uno o más GAG sulfatados" se utiliza para referirse tanto a los niveles absolutos como a los niveles relativos de los GAG sulfatados.
La expresión "niveles absolutos" se refiere a la cantidad total de GAG sulfatados en una muestra. Dicho valor puede ser dado como la concentración de GAG sulfatados expresado en unidades de masa por unidad de volumen (por ejemplo, en ng/ml de muestra), en el número de moléculas de GAG sulfatados por unidad de volumen (por ejemplo, en pmol de GAG sulfatados/ml de muestra), en las unidades de masa de GAG sulfatados por unidad de masa de GAG totales (pg GAG sulfatados/mg GAG totales), o en el número de moléculas de GAG sulfatados por unidad de masa de GAG totales (por ejemplo, en pmol GAG sulfatados/mg GAG totales).
La expresión "niveles relativos" se refiere a la relación entre los niveles de GAG sulfatados y de un GAG de referencia, es decir, se define como la concentración de GAG sulfatados en forma normalizada con respecto a dicho GAG de referencia.
Con el fin de normalizar los valores de GAG sulfatados entre las diferentes muestras, es posible comparar niveles de GAG sulfatados en las muestras a analizar con la expresión de un GAG de control. "GAG de control" en la presente invención se entiende como un GAG cuya concentración no cambia o solo cambia en cantidades limitadas en las células enfermas con respecto a células normales. Preferiblemente, el GAG de control es condroitín sulfato.
El experto apreciará que en la etapa b) puede detectarse el nivel de los GAG sulfatados totales o bien el nivel de los GAG sulfatados libres o bien el nivel de los GAG sulfatados asociados a una fracción proteica o lipídica. En una realización preferida se detecta el nivel de uno o más GAG sulfatados libres.
Una vez que se ha determinado el nivel de uno o más GAG sulfatados en una muestra se lleva a cabo la etapa (c) del método de la invención que consiste en comparar los niveles de GAG sulfatados obtenidos en la etapa (b) con un valor de referencia para cada GAG sulfatado. El "valor de referencia" procede de un conjunto de muestras formado preferiblemente por una mezcla del mismo tipo de muestra a analizar de individuos normales no afectados por este tipo de enfermedades. Dicho valor de referencia puede ser determinado mediante técnicas bien conocidas en el estado de la técnica, como por ejemplo, determinación del valor medio de GAG sulfatados medido en muestras de sujetos sanos. El valor de referencia se puede obtener también del mismo sujeto a analizar. En una realización preferida de la invención el valor de referencia se ha obtenido a partir de muestras de individuos sanos de la misma edad y sexo que el sujeto.
Una vez que se establece el valor de referencia, el valor de los niveles de GAG sulfatados obtenidos en la etapa (a) se puede comparar con este valor de referencia y, por lo tanto, permite la detección de alteraciones en los niveles de GAG sulfatados del sujeto con respecto al valor de referencia. En el método de la invención un nivel aumentado o disminuido de uno o más GAG sulfatados con respecto al valor de referencia es indicativo de que el sujeto sufre una enfermedad asociada a una alteración de uno o más GAG sulfatados. Más específicamente, en el método de la invención, un aumento de los niveles de GAG sulfatados con respecto al valor de referencia es indicativo de que el sujeto padece una enfermedad asociada a un aumento de los niveles de GAG sulfatados.
En el contexto de la presente invención, "aumento de los niveles" o "nivel aumentado" con respecto al valor de referencia se entiende como una variación de los niveles por encima del valor de referencia de al menos el 5%, al menos el 10%, al menos el 15%, al menos el 20%, al menos el 25%, al menos el 30%, al menos el 35%, al menos el 40%, al menos el 45%, al menos el 50%, al menos el 55%, al menos el 60%, al menos el 65%, al menos el 70%, al menos el 75%, al menos el 80%, al menos el 85%, al menos el 90%, al menos el 95%, al menos el 100%, al menos el 110%, al menos el 120%, al menos el 130%, al menos el 140%, al menos el 150% o más, en comparación con el valor de referencia.
En una realización preferida, la enfermedad es mucopolisacaridosis y: (i) un nivel aumentado de dermatán sulfato libre con respecto al valor de referencia es indicativo de que el sujeto sufre mucopolisacaridosis de tipo I, de tipo II, de tipo VI o de tipo VII;
(ii) un nivel aumentado de heparán sulfato libre con respecto al valor de referencia es indicativo de que el sujeto sufre mucopolisacaridosis de tipo III; y
(iii) un nivel aumentado de queratán sulfato libre con respecto al valor de referencia es indicativo de que el sujeto sufre mucopolisacaridosis de tipo IV.
Por otra parte, en el método de la invención una disminución de los niveles de GAG sulfatados con respecto al valor de referencia es indicativo de que el sujeto padece una enfermedad asociada a una disminución de los niveles de GAG sulfatados.
De forma similar, "disminución de los niveles" o "nivel disminuido" con respecto al valor de referencia se entiende como una variación de los niveles por debajo del valor de referencia de al menos el 5%, al menos el 10%, al menos el 15%, al menos el 20%, al menos el 25%, al menos el 30%, al menos el 35%, al menos el 40%, al menos el 45%, al menos el 50%, al menos el 55%, al menos el 60%, al menos el 65%, al menos el 70%, al menos el 75%, al menos el 80%, al menos el 85%, al menos el 90%, al menos el 95% o en al menos el 100% (es decir, ausente) en comparación con el valor de referencia.
En una realización, tras la etapa (a) se realiza una separación electrof oré tica de la muestra. Dicha separación electrof oré tica se puede llevar a cabo en cualquier tipo de gel incluyendo, sin limitación, gel de agarosa, gel de poliacrilamida y gel de acetato de celulosa. En una realización preferida el gel es un gel de acetato de celulosa. En una realización aún más preferida el tampón de electroforesis es acetato de bario.
Por lo tanto, es una realización preferida de la invención un método in vitro para diagnosticar mucopolisacaridosis en un sujeto que comprende:
a) separar los GAG sulfatados libres de una muestra de orina de dicho sujeto por el primer método de la invención,
b) someter el precipitado obtenido en la etapa anterior a electroforesis, preferiblemente en gel de acetato de celulosa,
c) detectar el nivel de uno o más GAG sulfatados libres separados en b) mediante tinción con el colorante DMB, y d) comparar dicho nivel con un valor de referencia para dicho uno o más GAG sulfatados libres
donde un nivel aumentado de dermatán sulfato libre con respecto al valor de referencia es indicativo de que el sujeto sufre mucopolisacaridosis de tipo I, de tipo II, de tipo VI o de tipo VII;
donde un nivel aumentado de heparán sulfato libre con respecto al valor de referencia es indicativo de que el sujeto sufre mucopolisacaridosis de tipo III; y
donde un nivel aumentado de queratán sulfato libre con respecto al valor de referencia es indicativo de que el sujeto sufre mucopolisacaridosis de tipo IV.
Los inventores han encontrado que el péptido señal de la uromodulina está presente en las muestras de orina de un sujeto que padece mucopolisacaridosis, y ausente en sujetos sanos.
Por lo tanto, en otro aspecto, la invención se refiere a un método in vitro para diagnosticar mucopolisacaridosis en un sujeto que comprende detectar en una muestra de orina de dicho sujeto la presencia del péptido señal SEQ ID NO: 1 de la uromodulina o de una variante del mismo.
En una realización preferida, el método comprende:
a) detectar el nivel del péptido señal SEQ ID NO: 1 de la uromodulina o de una variante del mismo en una muestra de orina de dicho sujeto y
b) comparar dicho nivel con un valor de referencia
donde un nivel aumentado del péptido señal SEQ ID NO: 1 de la uromodulina o de una variante del mismo con respecto al valor de referencia es indicativo de que el sujeto sufre mucopolisacaridosis.
Se entenderá que la muestra de orina se puede analizar como tal o, de forma alternativa, la uromodulina unida a los GAG sulfatados se puede extraer primero de la muestra antes del análisis mediante cualquiera de los métodos de separación de los GAG descrito en el estado de la técnica. En una realización preferida el método de separación de los GAG es el primer método de la invención, y después se analiza la fracción unida a los GAG sulfatados que ha precipitado. En el caso de muestras urinarias procedentes de enfermos renales, el método de la invención ha dado lugar al descubrimiento de perfiles de biomarcadores a nivel proteico unidos a GAG que funcionan como indicadores de diagnóstico de enfermedad renal.
En otro aspecto, la invención se refiere a un método in vitro para diagnosticar enfermedad renal en un sujeto que comprende detectar el nivel de uromodulina o de una variante de la misma unida o asociada a los GAG sulfatados y/o detectar el nivel de albúmina o de una variante de la misma unida o asociada a los GAG sulfatados en una muestra de orina de dicho sujeto y comparar dicho nivel con un valor de referencia donde un nivel disminuido de uromodulina o de una variante de la misma unida o asociada a los GAG sulfatados con respecto al valor de referencia y/o un nivel disminuido de albúmina o de una variante de la misma unida o asociada a los GAG sulfatados con respecto al valor de referencia es indicativo de que el sujeto sufre enfermedad renal.
En la búsqueda intensiva de nuevos biomarcadores renales asociados a exosomas, es común realizar estrategias de depleción de la uromodulina o utilizar listas de exclusión de la misma a nivel bioinformático. Sin embargo, los inventores han descubierto un complejo formado por uromodulina, GAG sulfatados y exosomas. Estos complejos pueden ser monitorizados de manera fácil y barata en la orina para su uso como biomarcadores de diagnóstico y pronóstico de enfermedad renal dada la identificación de su característico perfil de expresión.
En otro aspecto, la invención se refiere a un método in vitro para diagnosticar enfermedad renal avanzada en un sujeto que comprende detectar el nivel de los complejos uromodulina o una variante de la misma-GAG sulfatados-exosomas en una muestra de orina de dicho sujeto y comparar dicho nivel con un valor de referencia donde un nivel disminuido de los complejos uromodulina o una variante de la misma- GAG sulfatados-exosomas con respecto al valor de referencia es indicativo de que el sujeto sufre enfermedad renal avanzada.
En una realización preferida la separación de la uromodulina y/o albúmina unida o asociada a GAG sulfatados y la separación de los complejos uromodulina o una variante de la misma-GAG sulfatados-exosomas de la muestra de orina se realiza según el primer método de la invención.
El término "péptido señal", tal como aquí se utiliza, se refiere a un péptido formado por 24 aminoácidos de secuencia SEQ ID NO: 1 que son los primeros que aparecen cuando se sintetiza la cadena polipeptídica de la uromodulina y que deciden sobre el destino, ruta de transporte y eficiencia de secreción de la uromodulina. En una realización de la invención se detecta el péptido formado por 30 aminoácidos de SEQ ID NO: 2.
El término "uromodulina", tal como aquí se utiliza, se refiere a una glicoproteína que es secretada a la orina tras escisión proteolítica, donde contribuye a la presión osmótica previniendo la infección de las vías urinarias y modulando la formación de cristales. Es la proteína más abundante presente en la orina. También se la denomina glicoproteína de Tamm-Horsfall (THP). Se expresa específicamente en el asa de Henle del riñon y se la relaciona con diferentes patologías renales. En humanos está codificada por el gen UMOD (UniGene Hs. 654425). La uromodulina humana es la proteína definida por la secuencia de la base de datos Uniprot con número de acceso P0791 1 con fecha 22 de julio de 2015. La secuencia P0791 1 corresponde al precursor de la uromodulina, cuyo péptido señal ocupa las posiciones 1 a 24, y cuyo propéptido (posiciones 615 a 640) es eliminado en la forma madura. De este modo, la uromodulina madura está formada por los aminoácidos 25 a 614; mientras que la forma secretada está formada por los aminoácidos 25 a 587 de la secuencia P07911.
El término "albúmina", tal como aquí se utiliza, se refiere a un miembro de la familia de proteínas de la albúmina que son proteínas globulares solubles en agua, moderadamente solubles en soluciones salinas concentradas y que experimentan desnaturalización por calor. Las albúminas se encuentran habitualmente en el plasma sanguíneo. La albúmina sérica es producida por el hígado, se disuelve en el plasma sanguíneo y es la proteína sanguínea más abundante en mamíferos. En algunas patologías renales se pierde albúmina por la orina. Particularmente, el término "albúmina" se refiere a una proteína globular que en humanos está codificada por el gen ALB (UniGene Hs. 418167). La albúmina sérica humana es la proteína definida por la secuencia de la base de datos Uniprot con número de acceso P02768 con fecha 22 de julio de 2015. El término "complejos uromodulina o una variante de la misma-GAG sulfatados- exosomas" se refiere a un complejo formado por la asociación de al menos tres componentes: la proteína uromodulina, GAG sulfatados y exosomas. También se incluyen en la presente invención aquellos complejos donde la uromodulina ha sido sustituida por una variante de la uromodulina. Estos tres componentes pueden encontrarse unidos o asociados de maneras muy diferentes (ver Figura 15), pero esta unión o asociación es específica, es decir, va más allá de simples interacciones mecánicas por proximidad o abundancia, tal y como lo demuestran los ensayos reflejados en las figuras 7, 10 y 12.
El término "proteína" tal como aquí se utiliza, incluye también todas las formas fisiológicamente relevantes de modificación química después de la traducción. Las modificaciones post-traduccionales que caen dentro del alcance de la presente invención incluyen, por ejemplo, la escisión del péptido señal, glicosilación, acetilación, fosforilación, isoprenilación, proteólisis, miristoilación, plegamiento de la proteína y el proceso proteolítico, etc. Además, las proteínas pueden incluir aminoácidos no naturales formados por modificaciones posteriores a la traducción o por medio de la introducción de aminoácidos no naturales durante la traducción. Para el método diagnóstico de la invención, la proteína detectada es la que corresponde a la especie a la que pertenece el sujeto del que se ha tomado la muestra a analizar.
Las "variantes de la proteína" también se pueden utilizar para medir los niveles de proteína en los métodos de la invención. Las variantes de la proteína pueden ser: (i) aquellas en las que uno o más de los residuos de aminoácidos están sustituidos por un residuo de aminoácido conservado o no conservado (preferiblemente un aminoácido conservado) y tal residuo de aminoácido sustituido puede o no puede estar codificado por el código genético, (ii) aquellas en las que hay uno o más residuos de aminoácidos modificados, por ejemplo, residuos que son modificados por el acoplamiento de grupos sustituyentes, (iii) aquellos en los que la proteína es una variante de corte y empalme alternativo de la proteína y/o (iv) los fragmentos de la proteína. Los fragmentos incluyen proteínas generadas a través del proceso proteolítico (incluyendo proteólisis en múltiples sitios) de una secuencia original. Dichas variantes caen dentro del alcance de la presente invención. Las variantes según la presente invención incluyen secuencias de aminoácidos que tienen al menos 60%, 70%, 80%, 90%, 95% o 96% de similitud o identidad con la secuencia original de aminoácidos. Como se sabe, la "similitud" entre dos proteínas se determina por medio de la comparación de la secuencia de aminoácidos de una proteína con una secuencia de una segunda proteína. El grado de "identidad" entre dos proteínas se determina usando algoritmos informáticos y métodos que son ampliamente conocidos por el experto en la técnica, preferiblemente usando el algoritmo BLASTP [BLASTManual, Altschul, S., et al., NCBI NLM NIH Bethesda, Md. 20894, Altschul, S., et al., J. Mol. Biol., 215:403-410 (1990)].
En una realización particular la variante es una variante de mamífero, preferiblemente una variante humana, más preferiblemente con al menos 60%, 70%, 80%, 90%, 95% o 96% de similitud o identidad con la secuencia original de aminoácidos.
Los niveles de expresión de una proteína o péptido pueden ser detectados y cuantificados mediante métodos convencionales. Dichos métodos incluyen, sin limitación, la detección de la proteína midiendo su afinidad a uno de sus ligandos, y la posterior cuantificación del complejo proteína-ligando, o por medio de la utilización de anticuerpos con capacidad de unirse específicamente a la proteína (o fragmentos de los mismos que contienen los determinantes antigénicos) y la posterior cuantificación de los complejos antígeno-anticuerpo resultante. En una forma preferida de realización la detección se lleva a cabo por medio de un anticuerpo que se une específicamente a la proteína o de un fragmento del mismo con capacidad para unirse al antígeno. En otra forma de realización la detección se lleva a cabo por medio de un aptámero que se une específicamente a la proteína o de un fragmento del mismo con capacidad para unirse a dicha proteína. En otra forma de realización la detección se lleva a cabo por medio de un enzima capaz de reconocer de manera específica una secuencia de aminoácidos de la proteína y escindirla.
Los anticuerpos que pueden ser utilizados en estos ensayos son, por ejemplo, anticuerpos policlonales de suero; sobrenadantes de hibridomas o anticuerpos monoclonales, anticuerpos quiméricos, anticuerpos humanizados, anticuerpos primatizados, anticuerpos humanos, anticuerpos biespecíficos, y fragmentos de anticuerpos tales como Fab, Fab', F(ab')2, scFv, diacuerpos, triacuerpos, tetracuerpos y nanocuerpos. Además, los anticuerpos usados en el método de la invención pueden o no pueden estar marcados con un agente detectable. En una forma de realización particular, el anticuerpo utilizado está conjugado con un agente detectable.
En el contexto de la presente invención, los términos "agente detectable" y "mareaje" son sinónimos y se refieren a un agente de tal naturaleza que permite su detección mediante métodos enzimáticos, radiactivos o de fluorescencia. El compuesto detectable puede ser una enzima, un compuesto marcado radiactivamente o un isótopo radiactivo, un fluorocromo, un reactivo químioluminiscente, un sustrato enzimático o cofactor, un inhibidor enzimático, una partícula, un colorante, etc.
Los compuestos marcados radiactivamente por medio de isótopos radiactivos, también llamados radioisótopos o radionúclidos, pueden incluir, sin limitación, 3H, 14C, 15N, 35S, 90Y, "Te, 111 ln, 125l, 131 l. Los marcadores fluorescentes pueden incluir, sin limitación, rodamina, fósforos lantánidos o FITC. Los marcadores enzimáticos pueden incluir, sin limitación, peroxidasa de rábano picante, beta-galactosidasa, luciferasa o fosfatasa alcalina. Los mareajes preferidos incluyen, pero no se limitan a, fluoresceína, una fosfatasa tal como la fosfatasa alcalina, biotina, avidina, una peroxidasa tal como peroxidasa de rábano picante y compuestos relacionados con biotina o compuestos relacionados con avidina (por ejemplo, estreptavidina o ImmunoPure® NeutrAvidin disponible en Pierce, Rockford, IL).
Hay una amplia variedad de ensayos bien conocidos que se pueden utilizar en la presente invención, en los que se utilizan anticuerpos no marcados primarios y anticuerpos marcados secundarios: tales técnicas incluyen Western-blot o transferencia de Western, ELISA (ensayo por immunoabsorción ligado a enzimas), RIA (radioinmunoensayo), EIA competitivo (inmunoensayo enzimático competitivo), DAS- ELISA (ELISA sándwich de doble anticuerpo), o técnicas basadas en el uso de biochips o microarrays de proteínas que incluyan anticuerpos específicos o ensayos basados en la precipitación coloidal en formas tales como tiras reactivas. Otras formas para la detección de proteínas incluyen técnicas tales como cromatografía de afinidad, ensayos de unión a ligando, etc. Hay anticuerpos comerciales contra las proteínas de la invención en el mercado que se pueden utilizar en el contexto de la invención.
En una realización particular, la cuantificación de los niveles de proteína se realiza por transferencia Western o ELISA. En otra realización preferida, la detección se realiza mediante espectrometría de masas, preferiblemente espectrometría de masas en tándem, que ha sido definida con anterioridad.
La persona experta en la técnica apreciará que el método de la invención se puede poner en práctica utilizando tanto el nivel absoluto como el nivel relativo de expresión de la proteína. Por lo tanto, en la presente invención, la expresión "niveles de la proteína" se utiliza para referirse tanto a los niveles absolutos como a los niveles relativos de dicha proteína.
La expresión "valores absolutos" se refiere a la cantidad total de la proteína de interés en una muestra. Dicho valor puede ser dado como la concentración de proteína expresada en unidades de masa por unidad de volumen (por ejemplo, en ng/ml de muestra), en el número de moléculas de proteína por unidad de volumen (por ejemplo, en pmol de proteína/ml de muestra), en las unidades de masa de proteína X por unidad de masa de proteína total (pg proteína X/mg proteína total) o en el número de moléculas de proteína X por unidad de masa de la proteína total (por ejemplo, en pmol proteína X/mg de proteína total).
La expresión "niveles relativos" se refiere a la relación entre los niveles de expresión de la proteína objeto del estudio y de una proteína de referencia, es decir, se define como la concentración de proteína objeto del estudio en forma normalizada con respecto a dicha proteína de referencia.
Con el fin de normalizar los valores de proteína entre las diferentes muestras, es posible comparar niveles de la proteína en estudio en las muestras a analizar con la expresión de una proteína de control. "Proteína de control" en la presente invención se entiende como una proteína cuya expresión no cambia o solo cambia en cantidades limitadas en las células alteradas con respecto a células no alteradas. Preferiblemente, la proteína de control es una proteína codificada por genes que se expresan constitutivamente, que son aquellos genes siempre activos o que son transcritos constantemente, de tal manera que estas proteínas se expresan constitutivamente y llevan a cabo funciones celulares esenciales. Las proteínas de control preferidas que se pueden utilizar en la presente invención incluyen, sin limitación, β-2-microglobulina (B2M), ubiquitina, proteína ribosomal 18-S, ciclofilina, GAPDH, PSMB4, tubulina y actina. En una realización más preferida la proteína de control es tubulina.
La persona experta en la técnica entiende que las mutaciones en la secuencia de aminoácidos de la proteína en estudio no afectan a la detección de la expresión de la misma y, por lo tanto, las variantes de esta proteína generada por mutaciones de la secuencia de aminoácidos caen dentro del alcance de la presente invención.
Una vez que se ha determinado el nivel de expresión de la proteína en una muestra, se lleva a cabo la etapa (b) de la invención que consiste en comparar los niveles de la proteína en estudio obtenidos en la etapa (a) con un valor de referencia.
El término "valor de referencia", como se usa en el presente documento, se refiere a criterios predeterminados usados como referencia para evaluar los valores o datos obtenidos de las muestras recogidas de un sujeto. El valor de referencia o nivel de referencia puede ser un valor absoluto, un valor relativo, un valor que tiene un límite superior o inferior, un intervalo de valores, un valor medio, un valor mediana, un valor de media, o un valor comparado con un control particular o valor basal. Un valor de referencia se puede basar en un valor de una muestra individual, tal como, por ejemplo, un valor obtenido de muestra del sujeto que se analiza, pero en un momento anterior en el tiempo. El valor de referencia se puede basar en un gran número de muestras, tal como de una población de sujetos del grupo coincidente de edad cronológica, o basarse en un conjunto de muestras que incluyen o excluyen la muestra que se analiza. En general, el valor de referencia procede de un conjunto de muestras formado preferiblemente por una mezcla del mismo tipo de muestra a analizar de individuos normales no afectados por la enfermedad. Dicho valor de referencia puede ser determinado mediante técnicas bien conocidas en el estado de la técnica, como por ejemplo, determinación del valor medio de la proteína medida en una muestra obtenida de sujetos sanos. El valor de referencia se puede obtener también de proteínas expresadas constitutivamente tomadas del mismo sujeto a analizar.
Una vez que se establece el valor de referencia, el valor de los niveles de proteína obtenidos en la etapa (a) se puede comparar con este valor de referencia y, por lo tanto, permite la detección de alteraciones en los niveles de proteína del sujeto con respecto al valor de referencia. En el contexto de la presente invención, "aumento de los niveles" o "nivel aumentado" con respecto al valor de referencia se entiende como una variación de los niveles por encima del valor de referencia de al menos el 5%, al menos el 10%, al menos el 15%, al menos el 20%, al menos el 25%, al menos el 30%, al menos el 35%, al menos el 40%, al menos el 45%, al menos el 50%, al menos el 55%, al menos el 60%, al menos el 65%, al menos el 70%, al menos el 75%, al menos el 80%, al menos el 85%, al menos el 90%, al menos el 95%, al menos el 100%, al menos el 110%, al menos el 120%, al menos el 130%, al menos el 140%, al menos el 150% o más, en comparación con el valor de referencia.
Por otra parte, en el método de la invención una disminución de los niveles de GAG sulfatados con respecto al valor de referencia es indicativo de que el sujeto padece una enfermedad asociada a una disminución de los niveles de GAG sulfatados.
De forma similar, "disminución de los niveles" o "nivel disminuido" con respecto al valor de referencia se entiende como una variación de los niveles por debajo del valor de referencia de al menos el 5%, al menos el 10%, al menos el 15%, al menos el 20%, al menos el 25%, al menos el 30%, al menos el 35%, al menos el 40%, al menos el 45%, al menos el 50%, al menos el 55%, al menos el 60%, al menos el 65%, al menos el 70%, al menos el 75%, al menos el 80%, al menos el 85%, al menos el 90%, al menos el 95% o en al menos el 100% (es decir, ausente) en comparación con el valor de referencia.
Por "enfermedad renal avanzada" se entiende no solamente la etapa final de la enfermedad renal, o enfermedad renal terminal, cuando los ríñones ya no tienen capacidad para eliminar suficientes desechos y es necesario someterse a diálisis o a un trasplante de riñon, sin también la etapa en la que la enfermedad ha avanzado de modo que los ríñones casi han dejado de ejercer su función y la sintomatología es leve, como por ejemplo, piel anormalmente oscura o clara, dolor óseo, somnolencia o problemas de concentración, entumecimiento o hinchazón de manos y pies, fasciculaciones musculares o calambres, mal aliento, susceptibilidad a hematomas o sangre en las heces, sed excesiva, hipos frecuentes, amenorrea, dificultad para respirar y vómitos. Estos métodos pueden consistir esencialmente en las etapas mencionadas anteriormente o pueden incluir etapas adicionales.
El resto de términos se han definido en aspectos anteriores. Cualquier realización descrita con anterioridad es aplicable a los métodos diagnósticos de la invención.
Métodos para determinar el pronóstico o para monitorizar la progresión de una enfermedad
En otro aspecto, la invención se relaciona con un método in vitro para determinar el pronóstico o para monitorizar la progresión de una enfermedad asociada a un aumento de uno o más GAG sulfatados en un sujeto que comprende:
a) separar los GAG sulfatados libres y la fracción unida o asociada a GAG sulfatados de una muestra biológica de dicho sujeto por el primer método de la invención;
b) detectar el nivel de uno o más GAG sulfatados separados en a); y
c) comparar dicho nivel con un valor de referencia para dicho uno o más GAG sulfatados obtenido del mismo sujeto en un momento previo
donde una disminución en el nivel de uno o más GAG sulfatados con respecto al valor de referencia es indicativo de que la enfermedad asociada a un aumento de uno o más GAG sulfatados tiene buen pronóstico o
donde un aumento en el nivel de uno o más GAG sulfatados con respecto al valor de referencia es indicativo de que la enfermedad asociada a un aumento de uno o más GAG sulfatados tiene mal pronóstico.
En otro aspecto, la invención se relaciona con un método in vitro para determinar el pronóstico o para monitorizar la progresión de una enfermedad asociada a una disminución de uno o más GAG sulfatados en un sujeto que comprende:
a) separar los GAG sulfatados libres y la fracción unida o asociada a los GAG sulfatados de una muestra biológica de dicho sujeto por el primer método de la invención;
b) detectar el nivel de uno o más GAG sulfatados separados en a); y
c) comparar dicho nivel con un valor de referencia para dicho uno o más GAG sulfatados obtenido del mismo sujeto en un momento previo donde una disminución en el nivel de uno o más GAG sulfatados con respecto al valor de referencia es indicativo de que la enfermedad asociada a una disminución de uno o más GAG sulfatados tiene mal pronóstico o
donde un aumento en el nivel de uno o más GAG sulfatados con respecto al valor de referencia es indicativo de que la enfermedad asociada a una disminución de uno o más GAG sulfatados tiene buen pronóstico.
En otro aspecto, la invención se refiere a un método in vitro para determinar el pronóstico o para monitorizar la progresión de un sujeto que sufre mucopolisacaridosis que comprende:
a) detectar el nivel del péptido señal SEQ ID NO: 1 de la uromodulina o de una variante del mismo en una muestra de orina de dicho sujeto y
b) comparar dicho nivel con un valor de referencia obtenido del mismo sujeto en un momento previo
donde una disminución en el nivel del péptido señal SEQ ID NO: 1 de la uromodulina o de una variante del mismo con respecto al valor de referencia es indicativo de que la enfermedad tiene buen pronóstico o
donde un aumento en el nivel del péptido señal SEQ ID NO: 1 de la uromodulina o de una variante del mismo con respecto al valor de referencia es indicativo de que la enfermedad tiene mal pronóstico.
El perfil urinario homogéneo observado en población general está alterado en enfermos renales a nivel proteico y podría ser usado como biomarcador de función y prognosis renal, adelantándose en varios años a los cambios en los niveles de creatinina, el biomarcador de daño renal de referencia actualmente, ya que el 50% de la función renal puede haberse perdido antes de que los niveles de creatinina cambien significativamente.
A nivel proteico esta huella dactilar urinaria está asociada a la uromodulina y a distintos GAG (condroitín, dermatán y heparán sulfato) conocidos por formar parte de la membrana glomerular basal, de la matriz extracelular y de la capa de mucopolisacáridos de la superficie uroepitelial. La uromodulina presenta un patrón de expresión inverso a los niveles de creatinina, tendiendo a disminuir progresivamente en enfermos renales avanzados (determinado por los niveles de creatinina sérica, proteinuria y otros signos clínicos). El método de la invención ha permitido observar que cuanto mayor es el daño y evolución del fallo renal, aún sin cambios significativos en los niveles de creatinina, menor es la presencia (semicuantitativa) de la uromodulina asociada a los GAG en orina.
En otro aspecto, la invención se relaciona con un método in vitro para determinar el pronóstico o para monitorizar la progresión de enfermedad renal en un sujeto que comprende detectar el nivel de uromodulina o de una variante de la misma unida o asociada a los GAG sulfatados y/o detectar el nivel de albúmina o de una variante de la misma unida o asociada a los GAG sulfatados en una muestra de orina de dicho sujeto y comparar dicho nivel con un valor de referencia obtenido del mismo sujeto en un momento previo
donde una disminución en el nivel de uromodulina o de una variante de la misma unida o asociada a los GAG sulfatados y/o una disminución en el nivel de albúmina o de una variante de la misma unida o asociada a los GAG sulfatados con respecto al valor de referencia es indicativo de que la enfermedad tiene mal pronóstico o
donde un aumento en el nivel de uromodulina o de una variante de la misma unida o asociada a los GAG sulfatados y/o un aumento en el nivel de albúmina o de una variante de la misma unida o asociada a los GAG sulfatados con respecto al valor de referencia es indicativo de que la enfermedad tiene buen pronóstico.
En otro aspecto, la invención se relaciona con un método in vitro para determinar el pronóstico o para monitorizar la progresión de enfermedad renal avanzada en un sujeto que comprende a) detectar el nivel de los complejos uromodulina o una variante de la misma- GAG sulfatados-exosomas en una muestra de orina de dicho sujeto; y b) comparar dicho nivel con un valor de referencia obtenido del mismo sujeto en un momento previo
donde una disminución en el nivel de los complejos uromodulina o una variante de la misma-GAG sulfatados-exosomas con respecto al valor de referencia es indicativo de que la enfermedad tiene mal pronóstico o
donde un aumento en el nivel de los complejos uromodulina o una variante de la misma-GAG sulfatados-exosomas respecto al valor de referencia es indicativo de que la enfermedad tiene buen pronóstico. La progresión de la enfermedad puede ser fácilmente seguida de acuerdo con estos métodos.
Tal como se utiliza en la presente invención, la expresión "monitorizar la progresión" de una enfermedad, que es equivalente a "determinar el pronóstico", se refiere a la determinación de uno o varios parámetros que indican la progresión de la enfermedad en un paciente diagnosticado de la misma. Parámetros apropiados para determinar la evolución de un sujeto diagnosticado con una enfermedad son, sin limitación, riesgo de recaída, supervivencia libre de enfermedad y/o supervivencia global del sujeto. En la presente memoria, la expresión "riesgo de recaída" se entiende como la probabilidad de que un sujeto desarrolle la enfermedad después de un período libre de enfermedad; la "supervivencia libre de enfermedad" se entiende como el período de tiempo después del tratamiento en el que no se detecta la enfermedad; y la "supervivencia global del sujeto" se entiende como el porcentaje de sujetos que sobreviven, desde el momento del diagnóstico o tratamiento, después de un período de tiempo definido.
De acuerdo con estos aspectos de la invención, los niveles de uno o más GAG sulfatados o los niveles de proteína en una muestra biológica de un sujeto que tiene la enfermedad se obtienen en un primer periodo de tiempo (primera muestra del sujeto) y los niveles de uno o más GAG sulfatados o los niveles de proteína en una muestra biológica del mismo sujeto se obtienen en un segundo periodo de tiempo (segunda muestra del sujeto) y se comparan permitiendo monitorizar la progresión de la enfermedad. La segunda muestra del sujeto puede tomarse del mismo sujeto del cual se deriva la primera medida, en un segundo período de tiempo, es decir, en cualquier momento después del primer periodo de tiempo, por ejemplo, un día, una semana, un mes, dos meses, tres meses, 1 año, 2 años, o más después de la primera muestra del sujeto. En una realización particular la primera muestra del sujeto se toma antes de recibir el tratamiento y la segunda muestra del sujeto se toma después del tratamiento. En otra realización particular la primera muestra del sujeto se toma después de que el sujeto ha comenzado a recibir tratamiento y la segunda muestra del sujeto se toma después en diferentes periodos de tiempo durante el curso del tratamiento.
El término "buen pronóstico" significa que la enfermedad no está en progresión. "Buen pronóstico" también hace referencia a un desenlace positivo para el paciente y depende del tipo de pronóstico; por ejemplo, un buen pronóstico de un año de supervivencia significa que el paciente sobrevivirá durante al menos un año. En una realización preferida, un buen pronóstico se refiere a una probabilidad de más del 40% de sobrevivir 5 años tras el diagnóstico de la enfermedad.
El término "mal pronóstico" significa que la enfermedad está en progresión y que la terapia administrada al sujeto en estudio debe ser cambiada y una nueva terapia debe ser diseñada para tratar la enfermedad. "Mal pronóstico" también hace referencia a un desenlace negativo para el paciente y depende del tipo de pronóstico; por ejemplo, un mal pronóstico de 1 año de supervivencia significa que el paciente no sobrevivirá durante al menos 1 año. En una realización preferida, un mal pronóstico se refiere a una probabilidad inferior al 40% de sobrevivir 5 años tras el diagnóstico de la enfermedad.
En una realización preferida la separación de la uromodulina y/o albúmina asociada a GAG sulfatados o la separación de los complejos uromodulina o una variante de la misma-GAG sulfatados-exosomas de la muestra de orina se realiza según el primer método de la invención.
Los niveles de los GAG sulfatados pueden determinarse como se ha descrito anteriormente.
Como se ha mencionado anteriormente en relación con el método de diagnóstico de la invención, los niveles de las proteínas o de las variantes de las mismas se pueden determinar mediante cualquier método adecuado conocido en la técnica, tales como, por ejemplo, Western blot o ELISA.
En otra realización preferida, la detección se realiza mediante espectrometría de masas, preferiblemente espectrometría de masas en tándem.
Una vez que se han determinado los niveles de expresión de la proteína o una variante de la misma en las muestras de un sujeto en diferentes períodos de tiempo (primera y segunda muestras del sujeto), es necesario identificar si hay un aumento o disminución significativo en la expresión de dicha proteína en la segunda muestra del sujeto en comparación con el nivel de expresión de dicha proteína en la primera muestra del sujeto.
Los términos "incremento de los niveles" y "disminución de los niveles" aplicados al nivel de GAG sulfatados o al nivel de expresión de una proteína o una variante de la misma se han definido anteriormente en el contexto de los métodos diagnósticos de la invención.
En una realización preferida la enfermedad renal es poliquistosis renal autosómica dominante de tipo 1 o de tipo 2, preferiblemente es poliquistosis renal autosómica dominante de tipo 1 o de tipo 2 asociada a mutaciones conocidas en los genes PKD1 (chr16:41711 del18bp; chr16:28907c>g; chr16:37060c>t) y PKD2 (chr4:88995974c>t).
La mayoría de términos se han definido previamente en el contexto del método diagnóstico de la invención y se aplican igualmente a este aspecto inventivo.
Las realizaciones descritas para los aspectos inventivos anteriores también son aplicables a los métodos pronósticos de la invención.
Métodos para monitorizar el efecto de una terapia
La invención también proporciona métodos para la determinación de la eficacia de una terapia para el tratamiento de una enfermedad asociada a un aumento de uno o más GAG sulfatados, de una enfermedad asociada a una disminución de uno o más GAG sulfatados, y particularmente de mucopolisacaridosis y enfermedad renal.
En otro aspecto, la invención se refiere a un método in vitro para monitorizar el efecto de una terapia para el tratamiento de una enfermedad asociada a un aumento de uno o más GAG sulfatados que comprende:
a) separar los GAG sulfatados libres y la fracción unida o asociada a los GAG sulfatados de una muestra biológica de un sujeto que sufre dicha enfermedad y que ha sido tratado con dicha terapia por el primer método de la invención; y b) detectar el nivel de uno o más GAG sulfatados separados en a) donde una disminución del nivel de uno o más GAG sulfatados con respecto al nivel del mismo GAG sulfatado en una muestra procedente del mismo sujeto antes de la terapia es indicativo de que la terapia administrada es efectiva o
donde un aumento o la ausencia de cambio en el nivel de uno o más GAG sulfatados con respecto al nivel del mismo GAG sulfatado en una muestra procedente del mismo sujeto antes de la terapia es indicativo de que la terapia administrada es inefectiva o de que el sujeto necesita una terapia alternativa.
En otro aspecto, la invención se refiere a un método in vitro para monitorizar el efecto de una terapia para el tratamiento de una enfermedad asociada a una disminución de uno o más GAG sulfatados que comprende: a) separar los GAG sulfatados libres y la fracción unida o asociada a los GAG sulfatados de una muestra biológica de un sujeto que sufre dicha enfermedad y que ha sido tratado con dicha terapia por el primer método de la invención; y b) detectar el nivel de uno o más GAG sulfatados separados en a)
donde un aumento del nivel de uno o más GAG sulfatados con respecto al nivel del mismo GAG sulfatado en una muestra procedente del mismo sujeto antes de la terapia es indicativo de que la terapia administrada es efectiva o
donde una disminución o la ausencia de cambio en el nivel de uno o más GAG sulfatados con respecto al nivel del mismo GAG sulfatado en una muestra procedente del mismo sujeto antes de la terapia es indicativo de que la terapia administrada es inefectiva o de que el sujeto necesita una terapia alternativa.
En otro aspecto, la invención se refiere a un método in vitro para monitorizar el efecto de una terapia en un sujeto que sufre mucopolisacaridosis y que es tratado con dicha terapia que comprende:
a) detectar el nivel del péptido señal SEQ ID NO: 1 de la uromodulina o de una variante del mismo en una muestra de orina de dicho sujeto y
b) comparar dicho nivel con un valor de referencia obtenido del mismo sujeto antes de la terapia
donde una disminución en el nivel del péptido señal SEQ ID NO: 1 de la uromodulina o de una variante del mismo con respecto al valor de referencia es indicativo de que la terapia administrada es efectiva o donde un aumento en el nivel del péptido señal SEQ ID NO: 1 de la uromodulina o de una variante del mismo con respecto al valor de referencia es indicativo de que la terapia administrada es inefectiva o de que el sujeto necesita una terapia alternativa.
En otro aspecto, la invención se refiere a un método in vitro para monitorizar el efecto de una terapia en un sujeto que sufre enfermedad renal y que es tratado con dicha terapia que comprende:
a) detectar el nivel de uromodulina o de una variante de la misma unida o asociada a los GAG sulfatados y/o detectar el nivel de albúmina o de una variante de la misma unida o asociada a los GAG sulfatados en una muestra de orina de dicho sujeto y
b) comparar dicho nivel con un valor de referencia obtenido del mismo sujeto antes de la terapia
donde un aumento en el nivel de uromodulina o de una variante de la misma unida o asociada a los GAG sulfatados y/o un aumento en el nivel de albúmina o de una variante de la misma unida o asociada a los GAG sulfatados con respecto al valor de referencia es indicativo de que la terapia administrada es efectiva o
donde una disminución en el nivel de uromodulina o de una variante de la misma unida o asociada a los GAG sulfatados y/o una disminución en el nivel de albúmina o de una variante de la misma unida o asociada a los GAG sulfatados con respecto al valor de referencia es indicativo de que la terapia administrada es inefectiva o de que el sujeto necesita una terapia alternativa.
En otro aspecto, la invención se refiere a un método in vitro para monitorizar el efecto de una terapia en un sujeto que sufre enfermedad renal avanzada y que es tratado con dicha terapia que comprende:
a) detectar el nivel de los complejos uromodulina o una variante de la misma- GAG sulfatados-exosomas en una muestra de orina de dicho sujeto y b) comparar dicho nivel con un valor de referencia obtenido del mismo sujeto antes de la terapia
donde un aumento en el nivel de los complejos uromodulina o una variante de la misma-GAG sulfatados-exosomas respecto al valor de referencia es indicativo de que la terapia administrada es efectiva o
donde una disminución en el nivel de los complejos uromodulina o una variante de la misma-GAG sulfatados-exosomas con respecto al valor de referencia es indicativo de que la terapia administrada es inefectiva o de que el sujeto necesita una terapia alternativa.
En una realización preferida la separación de la uromodulina y/o albúmina asociada a GAG sulfatados o la separación de los complejos uromodulina o una variante de la misma-GAG sulfatados-exosomas de la muestra de orina se realiza según el primer método de la invención.
La expresión "monitorizar el efecto de una terapia" tal como aquí se utiliza se refiere a efectuar el seguimiento de la enfermedad a lo largo del tratamiento para determinar si este es efectivo o no lo es.
Como se usa aquí, el término "terapia" o "tratamiento" se refiere colectivamente a los medios de cualquier clase (medios higiénicos, medios farmacológicos, medios quirúrgicos o medios físicos) el propósito de los cuales es prevenir y/o curar o aliviar una enfermedad o patología o sus síntomas. En una realización la terapia se selecciona de terapia de la dieta, tratamiento farmacológico, terapia de ejercicio y una combinación de las mismas. En una realización preferida, dicho tratamiento es un tratamiento farmacológico, es decir, un tratamiento que comprende la administración de un fármaco a un sujeto para prevenir, aliviar y/o curar una enfermedad; o para aliviar, reducir o eliminar uno o más síntomas asociados con dicha enfermedad.
En la presente invención se entiende por "terapia estándar" ó "terapia convencional" a aquella terapia que emplea los fármacos que han demostrado eficacia clínica en estudios fase III aleatorizados, solos o en combinaciones similares a las empleadas en la presente invención. Por ejemplo, la terapia convencional para el tratamiento de la mucopolisacaridosis puede ser terapia sintomática, tratamientos enzimáticos sustitutivos, inhibidores de sustrato y trasplante de médula ósea (progenitores hematopoyéticos). La terapia convencional para el tratamiento de la enfermedad renal depende de la etiología de la misma, y puede ser, sin limitación, inmunosupresores como tacrolimus o ciclosporina; suplementos o restriccción de sales minerales como sodio, potasio, magnesio; dieta o diuréticos como amilorida, triamtereno o tolvaptan; y en otras ocasiones la única solución es la diálisis o el trasplante. Estos tratamientos son conocidos por los expertos en nefrología. En la presente invención se entiende por "terapia alternativa" a una terapia distinta de la terapia administrada originalmente, aquí denominada terapia estándar, a un sujeto. Dicha "terapia alternativa" incluye variaciones significativas a la terapia estándar, como la sustitución de unos agentes por otros, la adición de agentes alternativos, cambio de dosis o aumento de la intensidad de dosis de los fármacos, adición de otros agentes (aprobados o en fase de experimentación), alteración en la secuencia de administración de los agentes o el tipo de tratamientos locales, como la cirugía o la radioterapia, etc. Las terapias alternativas aquí definidas probablemente se asocien con mayores efectos secundarios para el sujeto (aunque no necesariamente) y previsiblemente, mayor efectividad. Ejemplos concretos de agentes incluidos dentro de la terapia alternativa de la mucopolisacaridosis podrían ser terapia de "mejora" enzimática cuando existe actividad enzimática residual, o terapia génica en proceso de ensayo clínico. Ejemplos concretos de agentes incluidos dentro de la terapia alternativa de la enfermedad renal podrían ser cualquiera de los agentes que no se han utilizado como terapia estándar y, preferiblemente, diálisis y/o trasplante renal.
La muestra de referencia es una muestra del mismo paciente que padece la enfermedad que o bien no ha sido tratado o bien ha sido tratado con terapia de control, preferiblemente, el mismo excipiente, soporte o vehículo que se usa en la terapia cuya eficacia se va a evaluar.
En otra realización preferida, la detección se realiza mediante espectrometría de masas, preferiblemente espectrometría de masas en tándem.
En una realización preferida la enfermedad renal es poliquistosis renal autosómica dominante de tipo 1 o de tipo 2.
Las diferentes realizaciones de los métodos de diagnóstico y pronóstico de la invención (los métodos usados para la determinación de los niveles de los marcadores, la naturaleza de la muestra que se va a estudiar, los umbrales para considerar que un marcador ha aumentado o disminuido) son esencialmente como se han definido previamente con respecto a los métodos de diagnóstico y pronóstico de la invención. Métodos para identificar compuestos adecuados para el tratamiento de una enfermedad
Los autores de la presente invención también han desarrollado un método para la identificación de un compuesto adecuado para el tratamiento de enfermedades asociadas con un aumento o disminución de uno o más GAG sulfatados, de mucopolisacaridosis y de enfermedad renal. La identificación de una serie de marcadores cuyos niveles aumentan o disminuyen con respecto a muestras de referencia permite el cribado de compuestos en un modelo de estas enfermedades que son capaces de restablecer los niveles de los marcadores a los encontrados en muestras normales.
En un aspecto, la invención se refiere a un método in vitro para la identificación de compuestos adecuados para el tratamiento de una enfermedad asociada a un aumento de uno o más GAG sulfatados que comprende:
a) separar los GAG sulfatados libres y la fracción unida o asociada a los GAG sulfatados de una muestra biológica de un sujeto que sufre dicha enfermedad y que ha sido tratado con un compuesto candidato por el primer método de la invención; y
b) detectar el nivel de uno o más GAG sulfatados separados en a)
donde el compuesto se considera efectivo para el tratamiento de la enfermedad cuando el nivel de uno o más GAG sulfatados disminuye con respecto al nivel del mismo GAG sulfatado en una muestra de referencia.
En otro aspecto, la invención se refiere a un método in vitro para la identificación de compuestos adecuados para el tratamiento de una enfermedad asociada a una disminución de uno o más GAG sulfatados que comprende:
a) separar los GAG sulfatados libres y la fracción unida o asociada a los GAG sulfatados de una muestra biológica de un sujeto que sufre dicha enfermedad y que ha sido tratado con un compuesto candidato por el primer método de la invención; y
b) detectar el nivel de uno o más GAG sulfatados separados en a)
donde el compuesto se considera efectivo para el tratamiento de la enfermedad cuando el nivel de uno o más GAG sulfatados aumenta con respecto al nivel del mismo GAG sulfatado en una muestra de referencia. En otro aspecto, la invención se refiere a un método in vitro para la identificación de compuestos adecuados para el tratamiento de mucopolisacaridosis que comprende: a) detectar el nivel del péptido señal SEQ ID NO: 1 de la uromodulina o de una variante del mismo en una muestra de orina de un sujeto que sufre de mucopolisacaridosis y que ha sido tratado con un compuesto candidato y b) comparar dicho nivel con un valor de referencia
donde el compuesto se considera efectivo para el tratamiento de la enfermedad cuando el nivel del péptido señal SEQ ID NO: 1 de la uromodulina o de una variante del mismo disminuye con respecto al valor de referencia.
En otro aspecto, la invención se refiere a un método in vitro para la identificación de compuestos adecuados para el tratamiento de enfermedad renal que comprende: a) detectar el nivel de uromodulina o de una variante de la misma unida o asociada a los GAG sulfatados y/o detectar el nivel de albúmina o de una variante de la misma unida o asociada a los GAG sulfatados en una muestra de orina de un sujeto que sufre enfermedad renal y que ha sido tratado con un compuesto candidato y
b) comparar dicho nivel con un valor de referencia
donde el compuesto se considera efectivo para el tratamiento de la enfermedad cuando el nivel de uromodulina o de una variante de la misma unida o asociada a los GAG sulfatados y/o el nivel de albúmina o de una variante de la misma unida o asociada a los GAG sulfatados aumenta con respecto al valor de referencia.
En otro aspecto, la invención se refiere a un método in vitro para la identificación de compuestos adecuados para el tratamiento de enfermedad renal avanzada que comprende:
a) detectar el nivel de los complejos uromodulina o una variante de la misma- GAG sulfatados-exosomas en una muestra de orina de un sujeto que sufre de enfermedad renal avanzada y que ha sido tratado con un compuesto candidato y
b) comparar dicho nivel con un valor de referencia
donde el compuesto se considera efectivo para el tratamiento de la enfermedad renal avanzada cuando el nivel de los complejos uromodulina o una variante de la misma- GAG sulfatados-exosomas aumenta con respecto al valor de referencia. En una realización preferida la separación de la uromodulina y/o albúmina asociada a GAG sulfatados, o la separación de los complejos uromodulina o una variante de la misma-GAG sulfatados-exosomas de la muestra de orina se realiza según el primer método de la invención.
La expresión "identificación de compuestos adecuados para el tratamiento de una enfermedad" se refiere tanto a un método de cribado para la identificación de compuestos efectivos para el tratamiento de la enfermedad existente como para el tratamiento preventivo (es decir, profilaxis). El término "tratamiento" ha sido definido en el contexto de los métodos de monitorización de una terapia.
El término "muestra de referencia", como se usa con respecto a este método, se refiere a una muestra que deriva de un sujeto enfermo en donde se está ensayando la terapia pero obtenida del sujeto enfermo antes de la administración de dicha terapia. La muestra de referencia también puede ser una muestra de un sujeto que padece la enfermedad y que no ha sido tratado o que ha sido tratado con terapia control, preferiblemente, el mismo excipiente, soporte o vehículo que se usa en el compuesto candidato que se criba.
El sujeto puede ser un paciente o bien un animal utilizado como modelo de la enfermedad. Los ejemplos de animales adecuados para su uso en el método de cribado de la invención incluyen, pero no están limitados a, ratones, ratas, conejos, monos, cobayas, perros y gatos. Según esta forma de realización, se administra el compuesto a ensayar o un compuesto control (por ejemplo, por vía oral, rectal o parenteral tal como por vía intraperitoneal o intravenosa) a un animal adecuado y se determina el efecto sobre los niveles de uno o más de los marcadores. Los ejemplos de agentes incluyen, pero no están limitados a, ácidos nucleicos (por ejemplo ADN y ARN), hidratos de carbono, lípidos, proteínas, péptidos, peptidomiméticos, moléculas pequeñas y otros fármacos. Los agentes se pueden obtener usando cualquiera de los numerosos planteamientos en los métodos de librerías combinatorias conocidos en la técnica. Los compuestos a ensayar incluyen además, por ejemplo, anticuerpos (por ejemplo, anticuerpos policlonales, monoclonales, humanizados, anti-idiotípicos, quiméricos, y de cadena sencilla así como fragmentos Fab, F(ab')2, librerías de expresión de Fab, y fragmentos de unión a epítopos de anticuerpos). Además, los agentes o librerías de compuestos se pueden presentar, por ejemplo, en solución, en bolas, chips, bacterias, esporas, plásmidos o fagos.
Si el compuesto es un compuesto de bajo peso molecular, entonces este se puede generar mediante varios métodos conocidos en la técnica, preferiblemente de forma sintética, en particular mediante química combinatoria, o mediante métodos bioquímicos, en particular mediante expresión recombinante o purificación a partir de sondas biológicas. El compuesto puede ser de bajo peso molecular ("moléculas pequeñas") o la librería puede estar compuesta de moléculas con bajo peso molecular ("librería de moléculas pequeñas"). Una "molécula pequeña" se define como una colección compleja de compuestos, que se producen de forma no biológica, lo que significa que no se producen mediante expresión recombinante, como por ejemplo la mayoría de las librerías de proteínas o péptidos. Las "moléculas pequeñas" se pueden generar mediante varios métodos conocidos en la técnica, pero se producen preferiblemente de forma sintética, más preferiblemente mediante química combinatoria, para generar una librería de compuestos con una diversidad química máxima dentro de las restricciones de las características predichas de un fármaco atractivo. Si el compuesto del que se ensaya su idoneidad para el tratamiento de una enfermedad es un péptido o una librería de péptidos, entonces estos se pueden generar mediante varios métodos conocidos en la técnica para su uso como compuestos candidatos, pero preferiblemente se producen mediante métodos bioquímicos, más preferiblemente mediante expresión recombinante en células procariotas o eucariotas.
El compuesto del que se va a ensayar su idoneidad para la terapia se puede formular con un soporte farmacéuticamente aceptable para producir una composición farmacéutica, que se puede administrar a un ser humano u otro animal. Un soporte farmacéuticamente aceptable puede ser, por ejemplo, agua, tampón fosfato de sodio, solución salina tamponada con fosfato, solución salina normal o solución de Ringer u otra solución salina tamponada fisiológicamente, u otro solvente o vehículo, tales como un glicol, glicerol, un aceite tal como aceite de oliva, o un éster orgánico inyectable. Un soporte farmacéuticamente aceptable también puede contener compuestos fisiológicamente aceptables que actúan, por ejemplo, para estabilizar o aumentar la absorción del compuesto modulador. El experto en la materia sabría que la elección de un soporte farmacéuticamente aceptable, incluyendo un compuesto fisiológicamente aceptable, depende, por ejemplo, de la vía de administración de la composición.
En otra realización preferida, la detección se realiza mediante espectrometría de masas, preferiblemente espectrometría de masas en tándem.
En una realización preferida la enfermedad renal es poliquistosis renal autosómica dominante de tipo 1 o de tipo 2.
Las diferentes realizaciones de los métodos de diagnóstico y pronóstico de la invención (los métodos usados para la determinación de los niveles de los marcadores, la naturaleza de la muestra que se va a estudiar, los umbrales para considerar que un marcador ha aumentado o disminuido) son esencialmente como se han definido previamente con respecto a los métodos de diagnóstico y pronóstico de la invención.
Métodos para diseñar una terapia personalizada o para seleccionar un paciente susceptible de ser tratado con una terapia para la prevención y/o tratamiento de una enfermedad
En un aspecto, la invención se refiere a un método in vitro para diseñar una terapia personalizada en un sujeto que tiene síntomas de mucopolisacaridosis que comprende:
a) detectar el nivel del péptido señal SEQ ID NO: 1 de la uromodulina o de una variante del mismo en una muestra de orina de dicho sujeto y
b) comparar dicho nivel con un valor de referencia
donde un nivel aumentado del péptido señal SEQ ID NO: 1 de la uromodulina o de una variante del mismo con respecto al valor de referencia es indicativo de que dicho sujeto es susceptible de recibir una terapia para la prevención y/o tratamiento de mucopolisacaridosis.
En otro aspecto, la invención se refiere a un método in vitro para seleccionar un paciente susceptible de ser tratado con una terapia para la prevención y/o tratamiento de mucopolisacaridosis que comprende: a) detectar el nivel del péptido señal SEQ ID NO: 1 de la uromodulina o de una variante del mismo en una muestra de orina de dicho sujeto y
b) comparar dicho nivel con un valor de referencia
donde un nivel aumentado del péptido señal SEQ ID NO: 1 de la uromodulina o de una variante del mismo con respecto al valor de referencia es indicativo de que dicho sujeto es un candidato a recibir una terapia para la prevención y/o tratamiento de la mucopolisacaridosis.
En otro aspecto, la invención se refiere a un método in vitro para diseñar una terapia personalizada en un sujeto que tiene síntomas de enfermedad renal que comprende: a) detectar el nivel de uromodulina o de una variante de la misma unida o asociada a los GAG sulfatados y/o detectar el nivel de albúmina o de una variante de la misma unida o asociada a los GAG sulfatados en una muestra de orina de dicho sujeto y
b) comparar dicho nivel con un valor de referencia
donde una disminución en el nivel de uromodulina o de una variante de la misma unida o asociada a los GAG sulfatados y/o una disminución en el nivel de albúmina o de una variante de la misma unida o asociada a los GAG sulfatados con respecto al valor de referencia es indicativo de que dicho sujeto es susceptible de recibir una terapia para la prevención y/o tratamiento de enfermedad renal.
En otro aspecto, la invención se refiere a un método in vitro para seleccionar un paciente susceptible de ser tratado con una terapia para la prevención y/o tratamiento de enfermedad renal que comprende:
a) detectar el nivel de uromodulina o de una variante de la misma unida o asociada a los GAG sulfatados y/o detectar el nivel de albúmina o de una variante de la misma unida o asociada a los GAG sulfatados en una muestra de orina de dicho sujeto y
b) comparar dicho nivel con un valor de referencia
donde una disminución en el nivel de uromodulina o de una variante de la misma unida o asociada a los GAG sulfatados y/o una disminución en el nivel de albúmina o de una variante de la misma unida o asociada a los GAG sulfatados con respecto al valor de referencia es indicativo de que dicho sujeto es un candidato a recibir una terapia para la prevención y/o tratamiento de la enfermedad renal. En otro aspecto, la invención se refiere a un método in vitro para diseñar una terapia personalizada en un sujeto que tiene síntomas de enfermedad renal avanzada que comprende:
a) detectar el nivel de los complejos uromodulina o una variante de la misma- GAG sulfatados-exosomas en una muestra de orina de dicho sujeto y b) comparar dicho nivel con un valor de referencia
donde una disminución en el nivel de los complejos uromodulina o una variante de la misma-GAG sulfatados-exosomas con respecto al valor de referencia es indicativo de que dicho sujeto es susceptible de recibir una terapia para el tratamiento de la enfermedad renal avanzada.
En otro aspecto, la invención se refiere a un método in vitro para seleccionar un paciente susceptible de ser tratado con una terapia para el tratamiento de enfermedad renal avanzada que comprende:
a) detectar el nivel de los complejos uromodulina o una variante de la misma- GAG sulfatados-exosomas en una muestra de orina de dicho sujeto y b) comparar dicho nivel con un valor de referencia
donde una disminución en el nivel de los complejos uromodulina o una variante de la misma-GAG sulfatados-exosomas con respecto al valor de referencia es indicativo de que dicho sujeto es un candidato a recibir una terapia para el tratamiento de la enfermedad renal avanzada.
En una realización preferida la separación de la uromodulina y/o albúmina asociada a GAG sulfatados, o la separación de los complejos uromodulina o una variante de la misma-GAG sulfatados-exosomas de la muestra de orina se realiza según el primer método de la invención.
En otra realización preferida, la detección se realiza mediante espectrometría de masas, preferiblemente espectrometría de masas en tándem.
En una realización preferida la enfermedad renal es poliquistosis renal autosómica dominante de tipo 1 o de tipo 2.
La expresión "diseñar una terapia personalizada", tal como aquí se utiliza, se refiere al diseño y aplicación de las intervenciones para la prevención y el tratamiento adaptado al sustrato genético del paciente y para el perfil molecular de la enfermedad. La expresión "síntomas de mucopolisacaridosis", tal como aquí se utiliza, se refiere a los síntomas producidos por dicha enfermedad que varían en función del tipo de mucopolisacaridosis del que se trate. Por ejemplo, los síntomas pueden ser pérdidas de la audición, retrasos en el desarrollo, hidrocefalia, degeneración de la retina y glaucoma, rasgos faciales toscos, baja estatura (enanismo), displasia, irregularidades esqueléticas, espesamiento de la piel, hepatomegalia o esplenomegalia, hernias, hirsutismo, síndrome del túnel carpiano, infecciones respiratorias recurrentes, enfermedades obstructoras de las vías respiratorias, apnea del sueño, enfermedades cardíacas.
La expresión "síntomas de enfermedad renal", tal como aquí se utiliza, se refiere a síntomas que están presentes en un estado inicial de la enfermedad, cuando esta pasa desapercibida, por ejemplo y sin limitación, inapetencia, sensación de malestar general y fatiga, dolores de cabeza, prurito y sequedad de la piel, náuseas y pérdida de peso.
La expresión "síntomas de enfermedad renal avanzada", tal como aquí se utiliza, se refiere a los síntomas que aparecen cuando la enfermedad renal ya ha afectado a la función renal, tales como, sin limitación, piel anormalmente oscura o clara, dolor óseo, somnolencia o problemas de concentración, entumecimiento o hinchazón de manos y pies, fasciculaciones musculares o calambres, mal aliento, susceptibilidad a hematomas o sangre en las heces, sed excesiva, hipos frecuentes, amenorrea, dificultad para respirar y vómitos.
El término "terapia preventiva" o "terapia para la prevención", tal y como se utiliza en el presente documento, se refiere a la prevención o conjunto de medidas profilácticas para evitar una enfermedad o para prevenir o retrasar la aparición de la sintomatología de la misma. Particularmente, dicho término se refiere a la prevención o el conjunto de medidas para evitar la aparición o para retrasar la sintomatología clínica asociada a la mucopolisacaridosis o a la enfermedad renal. Resultados clínicos deseados asociados con la administración de dicho tratamiento a un sujeto incluyen pero no se limitan a, la estabilización del estado patológico de la enfermedad, retraso en la progresión de la enfermedad o mejoría en el estado fisiológico del sujeto.
"Terapia para el tratamiento", como se usa aquí, se refiere a la recuperación tentativa de un problema de salud, por lo general después de un diagnóstico concretamente de mucopolisacaridosis o de enfermedad renal. Como tal, no es necesariamente una cura, es decir, una reversión completa de una enfermedad. Por tanto, "tratamiento" tal como se usa en el presente documento cubre cualquier tratamiento de una enfermedad, un trastorno o un estado de un mamífero, particularmente un ser humano, e incluye inhibir la enfermedad o el estado, es decir, detener su desarrollo; o aliviar la enfermedad o el estado, es decir, provocar la regresión de la enfermedad o el estado o la mejora de uno o más síntomas de la enfermedad o el estado. La población de sujetos tratados mediante el método incluye un sujeto que padece el estado o la enfermedad indeseable, así como sujetos en riesgo de desarrollar el estado o la enfermedad. Por tanto, un experto en la técnica comprende que un tratamiento puede mejorar el estado del paciente, pero puede no ser una cura completa de la enfermedad.
Tratamientos preventivos o curativos adecuados en la mucopolisacaridosis incluyen, pero no se limitan, a la iduronidasa para la MPS I, idursulfasa para MPS II, N- acetilgalactosamina-6-sulfato sulfatasa (Galns) para MPS IVA, arilsulfatasa recombinante humana para MPS VI (todas ellas son terapias enzimáticas sustitutivas); trasplante de progenitores hematopoyéticos incluyendo trasplante de sangre de cordón umbilical, trasplante de células madre eritropoyéticas y trasplante de células madre de sangre periférica; terapia de reducción de sustrato en caso de existir cierta actividad enzimática residual.
Tratamientos preventivos o curativos adecuados en la enfermedad renal incluyen, pero no se limitan, a tratamiento sintomático o paliativo; específico de la causa (si es bacteriano empleo de antibióticos, etc); inmunosupresores como tacrolimus o ciclosporina; suplementos o restricción de sales minerales como sodio, potasio, magnesio; dieta o diuréticos como amilorida, triamtereno o tolvaptan; diálisis (peritoneal, hemodiálisis) y trasplante renal.
Tratamientos preventivos o curativos adecuados en la enfermedad renal avanzada son los mismos que se han mencionado en el párrafo precedente en el contexto de la enfermedad renal.
El término "seleccionar" tal y como se usa aquí, se refiere a la acción de escoger a un sujeto para someterlo a un tratamiento preventivo o curativo de mucopolisacaridosis o de enfermedad renal. Las diferentes realizaciones de los métodos de diagnóstico y pronóstico de la invención (los métodos usados para la determinación de los niveles de los marcadores, la naturaleza de la muestra que se va a estudiar, los umbrales para considerar que un marcador ha aumentado o disminuido) son esencialmente como se han definido previamente con respecto a los métodos de diagnóstico y pronóstico de la invención.
Otros aspectos de la invención
En otro aspecto, la invención se relaciona con el uso de un agente capaz de detectar el péptido señal SEQ ID NO: 1 de la uromodulina o una variante del mismo en una muestra de orina para diagnosticar mucopolisacaridosis, para determinar el pronóstico o para monitorizar la progresión de un sujeto que sufre mucopolisacaridosis, para monitorizar el efecto de una terapia en un sujeto que sufre mucopolisacaridosis, para diseñar una terapia personalizada en un sujeto que tiene síntomas de mucopolisacaridosis, para seleccionar un paciente susceptible de ser tratado con una terapia para la prevención y/o tratamiento de mucopolisacaridosis o para la identificación de compuestos adecuados para el tratamiento de mucopolisacaridosis. En una realización el agente capaz de detectar el péptido señal SEQ ID NO: 1 de la uromodulina o una variante del mismo se selecciona del grupo que consiste en un enzima capaz de reconocer de manera específica una secuencia de aminoácidos del péptido señal de SEQ ID NO: 1 de la uromodulina o de una variante del mismo y escindir dicho péptido, un anticuerpo, un aptámero y fragmentos de los mismos que se unen específicamente al péptido señal SEQ ID NO: 1 de la uromodulina o a una variante del mismo.
En una realización preferida el agente es un anticuerpo capaz de detectar específicamente un péptido de secuencia SEQ ID NO: 1 o una variante del mismo, e incapaz de detectar la uromodulina madura o secretada, o un fragmento de dicho anticuerpo con capacidad para unirse a la secuencia SEQ ID NO: 1 o una variante de la misma. En otra realización, el agente es un aptámero capaz de detectar específicamente un péptido de secuencia SEQ ID NO: 1 o una variante del mismo, e incapaz de detectar la uromodulina madura o secretada, o un fragmento de dicho aptámero con capacidad para unirse a la secuencia SEQ ID NO: 1 o una variante de la misma. En otra realización el agente es un enzima capaz de reconocer de manera específica una secuencia de aminoácidos del péptido señal de SEQ ID NO: 1 o de una variante del mismo y escindir dicho péptido, e incapaz de reconocer una secuencia de aminoácidos de la uromodulina madura o secretada y escindirla.
En otro aspecto, la invención se refiere al uso del péptido señal SEQ ID NO: 1 de la uromodulina o una variante del mismo como marcador de diagnóstico de mucopolisacaridosis, como marcador pronóstico de mucopolisacaridosis, como marcador de monitorización de la progresión de un sujeto que sufre mucopolisacaridosis, como marcador de monitorización del efecto de una terapia en un sujeto que sufre mucopolisacaridosis, como marcador para diseñar una terapia personalizada en un sujeto que tiene síntomas de mucopolisacaridosis, como marcador de selección de un paciente susceptible de ser tratado con una terapia para la prevención y/o tratamiento de mucopolisacaridosis o como marcador para la identificación de compuestos adecuados para el tratamiento de mucopolisacaridosis.
En otro aspecto, la invención se relaciona con el uso de un agente capaz de detectar uromodulina o una variante de la misma unida o asociada a los GAG sulfatados y/o de un agente capaz de detectar albúmina o una variante de la misma unida o asociada a los GAG sulfatados en una muestra de orina para diagnosticar enfermedad renal, para determinar el pronóstico o para monitorizar la progresión de un sujeto que sufre enfermedad renal, para monitorizar el efecto de una terapia en un sujeto que sufre enfermedad renal, para diseñar una terapia personalizada en un sujeto que tiene síntomas de enfermedad renal, para seleccionar un paciente susceptible de ser tratado con una terapia para la prevención y/o tratamiento de enfermedad renal o para la identificación de compuestos adecuados para el tratamiento de enfermedad renal.
En otro aspecto, la invención se refiere al uso de uromodulina o una variante de la misma unida o asociada a los GAG sulfatados y/o de albúmina o de una variante de la misma unida o asociada a los GAG sulfatados como marcador de diagnóstico de enfermedad renal, como marcador pronóstico de enfermedad renal , como marcador de monitorización del efecto de una terapia en un sujeto que sufre enfermedad renal, como marcador para diseñar una terapia personalizada en un sujeto que tiene síntomas de enfermedad renal, como marcador de selección de un paciente susceptible de ser tratado con una terapia para la prevención y/o tratamiento de enfermedad renal o como marcador para la identificación de compuestos adecuados para el tratamiento de enfermedad renal.
En otro aspecto, la invención se refiere al uso de un agente capaz de detectar complejos uromodulina o una variante de la misma-GAG sulfatados-exosomas en una muestra de orina para diagnosticar enfermedad renal avanzada, para determinar el pronóstico o para monitorizar la progresión de un sujeto que sufre enfermedad renal avanzada, para monitorizar el efecto de una terapia en un sujeto que sufre enfermedad renal avanzada, para diseñar una terapia personalizada en un sujeto que tiene síntomas de enfermedad renal avanzada, para seleccionar un paciente susceptible de ser tratado con una terapia para el tratamiento de enfermedad renal avanzada o para la identificación de compuestos adecuados para el tratamiento de enfermedad renal avanzada.
En otro aspecto, la invención se refiere al uso de un complejo uromodulina o una variante de la misma-GAG sulfatados-exosomas como marcador de diagnóstico de enfermedad renal avanzada, como marcador pronóstico de enfermedad renal avanzada, como marcador de monitorización del efecto de una terapia en un sujeto que sufre enfermedad renal avanzada, como marcador para diseñar una terapia personalizada en un sujeto que tiene síntomas de enfermedad renal avanzada, como marcador de selección de un paciente susceptible de ser tratado con una terapia para el tratamiento de enfermedad renal avanzada o como marcador para la identificación de compuestos adecuados para el tratamiento de enfermedad renal avanzada.
El término "agente" se refiere a cualquier compuesto o reactivo que permita detectar la presencia del péptido señal SEQ ID NO: 1 , o capaz de detectar la uromodulina o una variante de la misma unida o asociada a los GAG sulfatados, o capaz de detectar albúmina o una variante de la misma unida o asociada a los GAG sulfatados, o capaz de detectar complejos formados por uromodulina o una variante de la misma-GAG sulfatados-exosomas en una muestra.
En una realización el agente se selecciona del grupo que consiste en un anticuerpo, un aptámero y fragmentos de los mismos que se unen específicamente al péptido señal SEQ ID NO: 1 , a la uromodulina, a la albúmina o a una variante de las mismas. En otra realización el agente es un enzima capaz de reconocer de manera específica a una secuencia de aminoácidos del péptido señal de SEQ ID NO: 1 , de la uromodulina, de la albúmina o de una variante de las mismas y escindirlas.
En una realización preferida el agente es un anticuerpo. En otra realización preferida el agente es un reactivo para espectrometría de masas.
El término "marcador" es equivalente al término "biomarcador", que ha sido definido previamente. Preferiblemente el marcador es un compuesto proteico o lipídico.
En una realización preferida la separación de la uromodulina y/o albúmina asociada a GAG sulfatados o la separación de los complejos uromodulina o una variante de la misma-GAG sulfatados-exosomas de la muestra de orina se realiza según el primer método de la invención.
En una realización preferida la enfermedad renal es poliquistosis renal autosómica dominante de tipo 1 o de tipo 2.
Complejos de la invención
Los inventores han descubierto la existencia de unos complejos formados por uromodulina, GAG sulfatados y exosomas en la orina de sujetos sanos, y también en la orina de sujetos aquejados de enfermedad renal. Estos complejos pueden incluir otras proteínas.
Basándose en estudios de purificación de exosomas, precipitación específica de los GAG y secuenciación proteica, los inventores han determinado que los exosomas y los GAG junto con la uromodulina forman un complejo que puede estar dirigiendo el diálogo entre los distintos segmentos de la nefrona.
Por lo tanto, en otro aspecto, la invención se refiere a un complejo formado por la asociación de uromodulina o una variante de la misma, GAG sulfatados y exosomas.
En una realización preferida de la invención el complejo está aislado, es decir, sustancialmente libre de otros componentes presentes en la orina. Kits de la invención
En otro aspecto, la invención se refiere a un kit que comprende azul de dimetilmetileno (DMB) a una concentración comprendida entre 0,01 y 100 nM a un pH comprendido entre 2 y 6,9.
En una realización preferida el pH está comprendido entre 3 y 4; preferiblemente entre 3,3 y 3,6; más preferiblemente es de 3,5.
En otra realización preferida la concentración del DMB está comprendida entre 0,29 y 0,35 mM, y donde el pH está comprendido entre 3,3 y 3,6 y el agente tamponante es tampón formiato.
El término "kit", tal como se usa en el presente documento, se refiere a una combinación de un conjunto de reactivos adecuados para la separación de los GAG sulfatados libres y de la fracción unida a GAG sulfatados de una muestra junto con uno o más tipos de elementos o componentes para llevar a cabo los métodos de la invención, particularmente para el análisis del patrón proteico o lipídico de la fracción unida a GAG sulfatados y, opcionalmente, reactivos adecuados para la detección de los niveles de GAG sulfatados, de uromodulina madura o de secreción, del péptido de secuencia SEQ ID NO: 1 de uromodulina, de albúmina, de IgA y/o de IgG. El kit incluye opcionalmente otros tipos de reactivos bioquímicos, contenedores, envases adecuados para su venta comercial, componentes de hardware y software electrónico, etc. Los reactivos están empaquetados para permitir su transporte y almacenamiento. Materiales adecuados para el empaquetado de los componentes del kit incluyen cristal, plástico (polietileno, polipropileno, policarbonato y similares), botellas, viales, papel, sobres y similares. Adicionalmente, los kits de la invención pueden contener instrucciones para el uso simultáneo, secuencial o separado de los distintos componentes que se encuentran en el kit. Dichas instrucciones pueden encontrarse en forma de material impreso o en forma de un soporte electrónico capaz de almacenar instrucciones de forma que puedan ser leídas por un sujeto, tales como medios de almacenamiento electrónicos (discos magnéticos, cintas y similares), medios ópticos (CD-ROM, DVD) y similares. Adicional o alternativamente, los medios pueden contener direcciones de Internet que proporcionen dichas instrucciones. En otra realización preferida, el kit además comprende un gel seleccionado del grupo que consiste en un gel de poliacrilamida y un gel de acetato de celulosa.
El término "gel de poliacrilamida", tal como aquí se utiliza, se refiere a un hidrogel formado por un homopolímero de acrilamida que es uno de los geles más utilizados para realizar electroforesis de proteínas, concretamente, electroforesis en gel de poliacrilamida (PAGE). Estos geles son químicamente inertes, transparentes y estables en un amplio rango de pH, temperatura y fuerza iónica.
El término "gel de acetato de celulosa", tal como aquí se utiliza, se refiere a un medio utilizado para la separación y caracterización de proteínas y otras moléculas según su densidad de carga. El soporte consiste en tiras delgadas de acetato de celulosa, con propiedades de adsorción mínimas, por lo que se logra una separación en bandas bien definidas.
En otra realización preferida, el kit comprende además un tampón de carga.
El término "tampón de carga", tal como aquí se utiliza, se refiere al tampón que se añade a la muestra que va a cargarse en el pocilio del gel de poliacrilamida o en el soporte de acetato de celulosa. Por lo general, este tampón contiene agua, sacarosa y un colorante (por ejemplo, cianol de xileno, azul de bromofenol, verde de bromocresol, etc. Ejemplos de tampones de carga pueden ser, sin limitación, tampón Laemli; tampón Laemli con β-mercaptoetanol y 7,5% de SDS en relación 1 :1 ; tampón TBE (100 mM Tris-borato, 1 mM EDTA, pH 8,3) con sacarosa 2 M y 0,02% de azul de bromofenol; tampón TAE (40 mM Tris, 5 mM CH3COONa, 0,9 mM EDTA, pH 7,9); y tampón TBE con sacarosa 2 M. En una realización preferida el tampón de carga es SDS al 7,5%.
En otra realización preferida, el kit comprende además un tampón de electroforesis.
El término "tampón de electroforesis", tal como aquí se utiliza, se refiere al tampón en el que se sumerge el gel para la realización de la electroforesis. Ejemplos de tampón de electroforesis son, sin limitación, TAE 1x o 0,5X, TBE 1x, Tris-Glicina 1x, y acetato de bario 0,05 M. En una realización preferida el tampón de electroforesis es acetato de bario 0,05 M. En otra realización el kit además comprende un colorante específico para la visualización de proteínas según se ha definido en el contexto del primer método de la invención. En una realización aún más preferida el colorante es Sypro Ruby.
En otra realización el kit además comprende un agente de destinción, preferiblemente ácido acético, más preferiblemente ácido acético al 10%.
En otra realización el kit además comprende un reactivo capaz de detectar una proteína.
En una realización el reactivo es un enzima capaz de reconocer de manera específica una secuencia de aminoácidos del péptido o proteína y escindirla. En una realización el reactivo es un enzima capaz de reconocer de manera específica una secuencia de aminoácidos del péptido de secuencia SEQ ID NO: 1 o una variante del mismo y escindirlo, e incapaz de reconocer una secuencia de aminoácidos de la uromodulina madura o secretada y escindirla. En otra realización el reactivo es un enzima seleccionado del grupo que consiste en un enzima capaz de reconocer de manera específica una secuencia de aminoácidos de la uromodulina madura o secretada o de una variante de la misma y escindirla, un enzima capaz de reconocer de manera específica una secuencia de aminoácidos de la albúmina o de una variante de la misma y escindirla, un enzima capaz de reconocer de manera específica una secuencia de aminoácidos de la IgA o de una variante de la misma y escindirla, un enzima capaz de reconocer de manera específica una secuencia de aminoácidos de la IgG o de una variante de la misma y escindirla, y combinaciones de los mismos.
En una realización el reactivo es un aptámero. En una realización el reactivo es un aptámero capaz de detectar específicamente un péptido de secuencia SEQ ID NO: 1 o una variante del mismo, e incapaz de detectar la uromodulina madura o secretada, o un fragmento de dicho aptámero con capacidad para unirse a la secuencia SEQ ID NO: 1 o a una variante de la misma. En otra realización el reactivo es un aptámero seleccionado del grupo que consiste en un aptámero capaz de reconocer específicamente la uromodulina madura o secretada o una variante de la misma, un aptámero capaz de reconocer específicamente la albúmina o una variante de la misma, un aptámero capaz de reconocer específicamente la IgA o una variante de la misma, un aptámero capaz de reconocer específicamente la IgG o una variante de la misma, y combinaciones de los mismos. Métodos para producir tales aptámeros son bien conocidos en la técnica.
En una realización aún más preferida el reactivo es un anticuerpo. En una realización aún más preferida el anticuerpo es un anticuerpo capaz de detectar específicamente un péptido de secuencia SEQ ID NO: 1 o una variante del mismo, e incapaz de detectar la uromodulina madura o secretada, o un fragmento de dicho anticuerpo con capacidad para unirse a la secuencia SEQ ID NO: 1 o a una variante de la misma. En otra realización el anticuerpo es un anticuerpo seleccionado del grupo que consiste en un anticuerpo capaz de reconocer específicamente la uromodulina madura o secretada o una variante de la misma, un anticuerpo capaz de reconocer específicamente la albúmina o una variante de la misma, un anticuerpo capaz de reconocer específicamente la IgA o una variante de la misma, un anticuerpo capaz de reconocer específicamente la IgG o una variante de la misma, y combinaciones de los mismos. Métodos para producir tales anticuerpos son bien conocidos en la técnica.
El término "detectar específicamente" o "reconocer específicamente", tal como aquí se utiliza, se refiere a que dicho reactivo sólo reconoce ese péptido o proteína de interés y no muestra reacción si dicho péptido o proteína de interés no está presente. Cuando se refiere a un péptido o proteína se refiere a que el reactivo es capaz de reaccionar con al menos un epítopo del péptido o la proteína, en contraposición a una interacción no específica.
Como se entenderá por la persona experta en la técnica, los anticuerpos del kit de la invención se pueden utilizar en todas las técnicas para la determinación de los niveles de proteína conocidas que son adecuados para el análisis de una muestra, tales como Western-blot o transferencia Western, ELISA, RIA, EIA competitivo, DAS-ELISA, técnicas inmunocitoquímicas o inmunohistoquímicas, técnicas basadas en el uso de biochips, microarrays de proteínas, ensayos de precipitación coloidal en tiras reactivas, etc.
Los anticuerpos y aptámeros pueden fijarse a un soporte sólido tal como una membrana, un plástico o un vidrio, opcionalmente tratados para facilitar la fijación de dichos anticuerpos y aptámeros al soporte. Dicho soporte sólido, comprende, al menos, un conjunto de anticuerpos o aptámeros que reconocen los niveles de un péptido de secuencia SEQ ID NO: 1 o uromodulina madura o de secreción, o albúmina, o IgA o IgG o una variante de las mismas, y que se pueden utilizar para detectar los niveles de expresión de estas proteínas.
Los kits de la invención comprenden, además, reactivos para la detección de una proteína codificada por un gen constitutivo. La disponibilidad de dichos reactivos adicionales permite la normalización de las mediciones realizadas en diferentes muestras (por ejemplo, la muestra a analizar y la muestra de control) para descartar que las diferencias en la expresión de los biomarcadores se deben a una diferencia en la cantidad total de proteínas en la muestra más que a diferencias reales en los niveles relativos de expresión. Los genes constitutivos en la presente invención son genes que siempre están activos o que se transcriben constantemente y que codifican para proteínas que se expresan constitutivamente y que llevan a cabo funciones celulares esenciales. Las proteínas que se expresan constitutivamente y se pueden utilizar en la presente invención incluyen, sin limitación, β-2-microglobulina (B2M), ubiquitina, 18-S proteína ribosómica, ciclofilina, GAPDH, PSMB4, tubulina y actina.
En otra realización, el kit además comprende un reactivo capaz de detectar un lípido. Ejemplos no limitativos de reactivos capaces de detectar un lípido son, sin limitación, reactivos para tinción con azul de luxol rápido, técnica de la hematina ácida de Baker, tinción aceite rojo O, tinción con Negro Sudán B, Sudán II, III y IV.
En otra realización, el kit además comprende un reactivo capaz de detectar un GAG sulfatado. Ejemplos no limitativos de reactivos capaces de detectar un GAG sulfatado son, sin limitación, DMB, Alcian Blue, albúmina ácida y cloruro de cetilpiridinio (CPC). En una realización preferida el reactivo capaz de detectar un GAG sulfatado es DMB, preferiblemente DMB al 0,02% en agua.
En otra realización el kit además comprende un programa de ordenador para ejecutar un método según cualquiera de los aspectos inventivos descritos en esta invención.
En otro aspecto, la invención se refiere a un kit que comprende un anticuerpo capaz de detectar específicamente un péptido de secuencia SEQ ID NO: 1 o una variante del mismo, e incapaz de detectar la uromodulina madura o de secreción, o un fragmento de dicho anticuerpo con capacidad para unirse a la secuencia SEQ ID NO: 1 o a una variante de la misma.
En otro aspecto, la invención se refiere a un kit que comprende un aptámero capaz de detectar específicamente un péptido de secuencia SEQ ID NO: 1 o una variante del mismo, e incapaz de detectar la uromodulina madura o de secreción, o un fragmento de dicho aptámero con capacidad para unirse a la secuencia SEQ ID NO: 1 o a una variante de la misma.
En otro aspecto, la invención se refiere a un kit que comprende un enzima capaz de reconocer de manera específica una secuencia de aminoácidos del péptido señal de SEQ ID NO: 1 de la uromodulina o de una variante del mismo y escindir dicho péptido, e incapaz de reconocer una secuencia de aminoácidos de la uromodulina madura o de secreción y escindirla.
Todas las formas de realización particulares de los métodos de la presente invención son aplicables a los kits de la invención y a sus usos.
Usos de los kits de la invención
En otro aspecto, la invención se relaciona con el uso de un kit tal como se define anteriormente para separar los GAG sulfatados libres y la fracción unida o asociada a los GAG sulfatados de una muestra, para identificar el perfil de proteínas unidas o asociadas a los GAG sulfatados de una muestra, para identificar el perfil de lípidos unidos o asociados a los GAG sulfatados de una muestra, para detectar una alteración en el patrón de glicosilación por los GAG sulfatados, para diagnosticar una enfermedad, para determinar el pronóstico de una enfermedad, para monitorizar la progresión de una enfermedad, para monitorizar el efecto de una terapia para el tratamiento de una enfermedad, para predecir la respuesta a una terapia, para diseñar una terapia personalizada, para la identificación de compuestos adecuados para el tratamiento de una enfermedad, para identificar biomarcadores proteicos o lipidíeos unidos o asociados a los sulfatados o para detectar complejos formados por exosomas, GAG sulfatados y una proteína. En una realización preferida la enfermedad es una enfermedad asociada a una alteración de uno o más GAG sulfatados, preferiblemente la alteración es un aumento o disminución de uno o más GAG sulfatados.
En otra realización la enfermedad se selecciona del grupo que consiste en mucopolisacaridosis y enfermedad renal. Más preferiblemente la enfermedad renal es poliquistosis renal autosómica dominante de tipo 1 o de tipo 2.
Todas las formas de realización particulares de los métodos de la presente invención son aplicables a los kits de la invención y a sus usos.
La invención se describe en detalle a continuación por medio de los siguientes ejemplos, que han de interpretarse como meramente ilustrativos y no limitativos del alcance de la invención.
EJEMPLOS
Ejemplo 1 : Descripción del procesado de la muestra antes del aislamiento de la fracción asociada a glucosaminoglicanos y/o exosomas
En el caso de las orinas, se partió de la segunda orina de la mañana (descartando el primer chorro para evitar contaminaciones del aparato genitourinario externo) recogida en contenedores libres de proteasas y se descartaron aquellas con presencia visible de hematuria e infección de las vías urinarias. Las muestras de orina deben ser almacenadas a -20°C hasta su utilización en el caso de que no se haga el mismo día.
En el caso de muestras de sangre, se deben recoger en el tubo adecuado según se quiera obtener suero o plasma. En el caso del plasma, la muestra de sangre debe ser recogida en un tubo con anticoagulante, por ejemplo heparina o EDTA, y centrifugar a máxima velocidad durante 10 minutos. En el caso del suero, se debe recoger la muestra en un tubo de bioquímica o STII, dejarla reposar al menos 30 minutos y centrifugar a máxima velocidad durante 10 minutos. Tanto el plasma como el suero deben ser almacenados a -80°C hasta su utilización en el caso de que no se haga el mismo día. Ejemplo 2: Descripción del procedimiento de aislamiento de exosomas
Se procesaron las muestras siguiendo una modificación del procedimiento bien referido en la literatura (Christianson et al, Proc Nati Acad Sci USA 2013, 110: 17380-5; Hogan et al, J Am Soc Nephrol 2009, 20:278-288). En el caso de las orinas, se partió del sobrenadante urinario obtenido mediante centrifugación de la orina a 1000g durante 5 minutos. Brevemente, los sobrenadantes urinarios se centrifugaron a 5.000 g durante 20 minutos, se sometieron a filtración a través de filtros de baja adsorción proteica y tamaño de poro de 0,22 μηι y se ultracentrifugaron a 100.000 g durante 2 horas. Los pellets exosomales se resuspendieron en un volumen adecuado de tampón (por ejemplo, PBS 1X) y se guardaron a -20°C hasta su utilización.
Ejemplo 3: Descripción del procedimiento de separación de la fracción unida a glucosaminoglicanos
Se utilizó azul de dimetilmetileno (Serva) a una concentración de 0,29 mM disuelto en etanol y se añadió tampón formiato 0,2 M a pH 3,5 en proporción 1 :99. A continuación se mezcló con la muestra biológica en una proporción 1 :2. Posteriormente, se incubó durante 15 minutos a temperatura ambiente. Finalmente, se centrifugó a 10.000g durante 10 minutos a 4°C. Se eliminó el sobrenadante y se recuperó el precipitado, que contiene la fracción unida a glucosaminoglicanos.
Ejemplo 4: Identificación de proteínas unidas a glucosaminoglicanos en muestras de orina
En muestras de orina se identificaron mediante proteómica (identificación por secuenciacion en MALDI-TOF/TOF) la presencia de dos proteínas conocidas que están glicadas hasta en un 30%: albúmina y uromodulina.
La figura 4 muestra el patrón de bandas proteicas unidas a GAG en la orina (50 μΙ) de individuos sanos (16 varones y 16 mujeres, de 20 a 49 años) utilizando el método de la invención. La proteína unida a GAG más abundante en individuos control es la uromodulina, como se muestra en la parte izquierda de la figura, y en menor medida están presentes otras proteínas. Para identificar la uromodulina se utilizaron los protocolos standard para Western blot y un anticuerpo específico para uromodulina (Biomedical-BTI) en dilución 1 :3000. Se visualizó utilizando FITC (IgG-FITC de Abcam, dilución 1 : 1000) y el sistema Molecular Imager (Bio-Rad) con el software Quantity One (Bio-Rad).
Con la finalidad de separar mejor las proteínas que estaban unidas a GAG en la orina, se utilizó la electroforesis en 2D, que permite ver diferentes isoformas de la misma proteína. Tras varias pruebas, se observó que por encima de pH6 no aparecían proteínas en orina precipitada con DMB. La figura 5 muestra el patrón proteico unido a GAG en la orina (300 μΙ) de dos individuos control (varones de 23 y 26 años) utilizando tiras de pH 3-6 y SDS-PAGE al 7,5%, seguida de tinción con Sypro Ruby. Se observó la presencia de numerosos spots, siendo los más abundantes diferentes isoformas de la uromodulina. El Western blot se realizó como se describe más arriba.
La figura 6 muestra la aplicación de la invención en la búsqueda de patrones proteicos unidos a GAG diferentes en orina y suero de individuos control y con insuficiencia renal (izquierda), y la identificación de la albúmina unida a GAG presente mediante Western blot (derecha). Para la muestra de suero se hizo una dilución 1 : 100 en PBS y luego se precipitaron 50 μΙ con DMB siguiendo el método de la invención descrito más arriba. Para el Western blot de albúmina se utilizó un anticuerpo de Origene a una dilución 1 :4000 y se visualizó con un anticuerpo unido a Cy5 (lgG-Cy5 Abcam, dilución 1 :5000) utilizando el equipo descrito anteriormente. Se observó que el paciente con insuficiencia renal casi no tenía uromodulina y tenía mucha albúmina en orina, pero sólo una poca estaba glicada.
Ejemplo 5: Descripción de los ensayos de reconstitución de las uniones entre distintas proteínas y glicosaminoglicanos
La figura 7 demuestra que el método de la invención es capaz de separar aquellas proteínas que llevan unidos glucosaminoglicanos.
Para demostrarlo se utilizó uromodulina (Human Tamm Horsfall Glycoprotein, Biomedical-BTI) y albúmina (Bio-Rad) comerciales que se incubaron con glucosaminoglicanos comerciales (heparán, condroitín y dermatán sulfato de Sigma), tanto en PBS (Figura 7, c y d) como en la orina (Figura 7, a y b) de un paciente con una mutación truncante (C255Y) en el gen de la uromodulina que conlleva niveles casi indetectables de la misma en la orina, y con enfermedad quística medular autosómica dominante (ADMCKD) en curso. Se incubaron 1 μg de albúmina sérica bovina (BSA) (Bio-Rad) o uromodulina (Biomedical-BTI) en PBS con 100 de los GAG comerciales durante 1 hora a 37°C para permitir la unión de los GAG a las proteínas. A continuación se añadió el azul de dimetilmetileno y se siguió el método de separación de la fracción unida a GAG descrito anteriormente.
El precipitado se resuspendió en 7,5% SDS y se preparó siguiendo el protocolo estándar para la utilización de SDS-PAGE. Se observó que tanto la albúmina como la uromodulina comerciales están poco glicadas y, tras la incubación con GAG, se produce la glicación y aparecen nuevas bandas proteicas.
Se repitió el experimento utilizando 20 μΙ de la orina de un paciente sin uromodulina, observando la ausencia de uromodulina y presencia de albúmina (Figura 7, a y b, carril 1) y que estaban poco glicadas con GAG (Figura 7, a y b, carril 2). Después de incubar la orina con los GAG comerciales (100 μg) y con BSA y uromodulina (1 μg) se observó la aparición de nuevas bandas unidas a GAG. En las imágenes de los geles se puede observar que se produce una superposición de bandas entre la uromodulina y la albúmina. Se ha comprobado que la albúmina tiene una gran afinidad por los GAG y está ocultando el descubrimiento de otras proteínas, por lo que sería de utilidad el uso de métodos de depleción de albúmina para intentar desenmascarar otras proteínas.
Ejemplo 6: Identificación de patrones de bandas proteicas unidas a GAG específicas en individuos aquejados de mucopolisacaridosis
En la figura 8 se muestran los patrones de bandas proteicas unidas a GAG en orina de pacientes aquejados de diferentes tipos de mucopolisacaridosis (MPS I, MPS II, MPS III, MPS IV y MPS VII) y en individuos control de la misma edad y sexo que los pacientes. Se muestran también los niveles de GAG en orina (por encima del nivel de referencia en los pacientes) medidos por el método tradicional con DMB (Whitley C.B et al, Clin. Chem. 1989, 35:2074-2081); y la identificación de las proteínas uromodulina y albúmina mediante Western blot realizado en las condiciones ya descritas anteriormente.
La figura 9 muestra la electroforesis en 2D en las condiciones descritas anteriormente en la orina de pacientes con mucopolisacaridosis confirmada. Al compararlas con los controles de la Figura 5 se observa la desaparición de las isoformas de alto peso molecular correspondientes a la uromodulina y las proteínas glicadas de bajo peso. Ejemplo 7: Biomarcador de diagnóstico en mucopolisacaridosis
Al realizar los estudios de secuenciacion de la uromodulina mediante MALDI-TOF/TOF se encontró que en los pacientes con mucopolisacaridosis se mantiene el péptido señal SEQ ID NO: 1 (MGQPSLTWML MVWASWFIT TAAT), detectándose concretamente el péptido de SEQ ID NO: 2 (MGQPSLTWML MVWASWFIT TAATDTSEAR), que está ausente en las muestras de individuos control. Por lo tanto, sería posible utilizar la tecnología de espectrometría de masas en tándem para cuantificar este péptido señal de la uromodulina y poder utilizarlo como marcador de diagnóstico en MPS.
Ejemplo 8: Diagnóstico, seguimiento y búsqueda de nuevos biomarcadores en enfermedad renal
Se utilizó la invención en el estudio de pacientes o futuros pacientes con poliquistosis renal autosómica dominante asociada a mutaciones conocidas en los genes PKD1 (chr16: 41711 del18bp; chr16:28907c>g; chr16:37060c>t) y PKD2 (chr4:88995974c>t). Se estudiaron 23 pacientes de PKD1 , 10 pacientes de PKD2 y 17 voluntarios sanos cuyos diagnósticos y funciones renales fueron evaluados por expertos nefrólogos. La enfermedad renal fue diagnosticada en base a los niveles de creatinina sérica así como la medición de otros parámetros renales preestablecidos de rutina en la práctica clínica y diagnóstico genético. La función renal normal de los voluntarios sanos fue evaluada a través de la creatinina sérica y anamnesis.
Los sobrenadantes y pellets obtenidos del fraccionamiento por centrifugación se sometieron a precipitación específica con DMB a un ratio 1 :2 según lo descrito y los precipitados se resuspendieron y desnaturalizaron a 95°C durante 5 minutos en tampón Laemli con β-mercaptoetanol y 7,5% SDS en relación 1 :1. Entre 15-30 μΙ se cargaron en un gel al 7,5% SDS-PAGE y las proteínas se separaron a 100 V durante aproximadamente 1 hora y 30 minutos y se visualizaron mediante tinción con agentes de contraste para proteínas (ej. Sypro Ruby Protein-Gel Stain 1X).
La figura 10 muestra que existe un perfil de proteínas asociadas a GAG en los individuos control y que el perfil proteico urinario unido a GAG está alterado en pacientes con enfermedad renal, por ejemplo PKD, y que esta alteración depende de su función renal (determinada por los niveles de creatinina sérica y proteinuria). Futuros pacientes con una mutación conocida y asintomáticos en el momento del ensayo, muestran ya deficiencia en el complejo. Esta observación revela su uso como biomarcador de diagnóstico y pronóstico de enfermedad y daño renal, adelantándose en varios años a los cambios en los niveles de creatinina.
A nivel proteico, esta huella dactilar urinaria parece estar asociada a la uromodulina y a GAG (se ha comprobado para condroitín, dermatán y heparán sulfato) conocidos por formar parte de la membrana glomerular basal, de la matriz extracelular y de la capa de mucopolisacáridos de la superficie uroepitelial. La uromodulina parece presentar un patrón de expresión inverso a los niveles de creatinina, tendiendo a disminuir progresivamente en enfermos renales avanzados. De este modo, se ha observado que cuanto mayor es el daño y evolución del fallo renal, aún sin cambios significativos en los niveles de creatinina, menor es la presencia de uromodulina asociada a GAG en orina (Figuras 10 y 1 1). Esta alteración es más acusada en pacientes con PKD tipo 2 (gen PKD2 mutado) que en pacientes de PKD tipo 1 (gen PKD1 mutado) donde la uromodulina asociada a GAG prácticamente desaparece a altas creatininas, mientras que otras proteínas asociadas a GAG van apareciendo (figura 10).
Se puede determinar, comparando los perfiles observados entre los sobrenadantes y sus respectivos pellets celulares (Figura 11), que a medida que el fallo renal crónico se agrava se observan menos proteínas asociadas a GAG a nivel intracelular y aparecen más proteínas asociadas a GAG a nivel extracelular.
Un estudio similar pero de menor envergadura fue realizado en plasma de 14 enfermos oncológicos (9 de cáncer de próstata y 5 de cáncer de colon), así como en orinas y sueros procedentes de otros 14 pacientes con enfermedad renal adecuadamente validada (10 con enfermedades glomerulares y 4 con nefropatía por IgA), en líquidos perifonéales de 9 enfermos renales en terapia renal sustitutiva (diálisis peritoneal) y en orinas de tres modelos animales de ADPKD y ARPKD. Se obtuvieron unos resultados similares al primer estudio observándose una alteración del perfil proteico asociado a GAG comparado con la homogeneidad observada en las muestras de sus respectivos controles. Se observó, además, precipitación de proteínas asociadas a GAG en medios de cultivo de distintas líneas celulares renales. Por lo tanto, la aplicación de esta huella proteica unida a GAG como biomarcador de diagnóstico/pronóstico se exitende a cualquier enfermedad con afectación o no renal y en distintos tipos de muestras biológicas.
Ejemplo 9: Descripción de las condiciones para la identificación por Western blot de la uromodulina asociada a glucosaminoglicanos y a exosomas
La identificación y caracterización de los complejos exosomales purificados se realizó mediante técnicas de imagen por microscopía electrónica, validación del tamaño/carga global (basada en el potencial zeta), precipitación específica con DMB según lo descrito anteriormente, separación en geles al 7,5% SDS-PAGE y Western blot.
Las fracciones exosomales purificadas, los sobrenadantes y/o pellets de orina se precipitaron con DMB, fueron procesadas y separadas en un gel SDS-PAGE según lo descrito anteriormente. Las proteínas se transfirieron a membrana de PVDF-FL a 100V durante una hora y media, se bloquearon las uniones inespecíficas con 1 % de caseína o 4% de leche desnatada, se incubaron con el anticuerpo primario (Rabbit Anti-human Tamm Horsfall glycoprotein, Biomedical-BTI) en dilución 1 :3000 y finalmente se revelaron mediante la incubación con el anticuerpo secundario adecuado marcado con agentes fluorescentes.
La Figura 12 muestra la caracterización de los complejos UGE (uromodulina-GAG- exosomas) mediante imágenes de microscopía electrónica (a), tamaño (b), potencial zeta (c) y Western de uromodulina (d).
En la Figura 12(d) se muestra la identificación de la uromodulina asociada a las fracciones exosomales purificadas por distintas aproximaciones y en distintos pacientes de PKD, así como en pellets celulares y orina sin fraccionar.
También se utilizó para la obtención de exosomas un kit comercial (ExoQuick_TC, System Biosciences) siguiendo las instrucciones del fabricante (Figura 13).
Ejemplo 10. Descripción de los ensayos de disrupción de las uniones entre distintas proteínas, glicosaminoglicanos y exosomas
La especificidad de los complejos exosomales se validó mediante la disrupción y reconstitución de las uniones entre sus componentes, UMOD-exosomas-GAG en diferentes medios (ej. orina o tampón PBS) y por diferentes aproximaciones (ej. precipitación por gravedad, purificación por gradiente, tratamiento con ditiotreitol, filtración o incubación con glicosaminoglicanos comerciales).
Se utilizaron exosomas previamente purificados de orinas de distintos pacientes de PKD mediante gradiente (ExoQuick_TC, System Biosciences).
La disrupción de los complejos UGE se realizó mediante tratamiento con 100 mg/ml de ditiotreitol (DTT) a 37°C durante 10 minutos y/o filtración con filtros de baja adsorción proteica y tamaño de poro de 0,22 μηι (Millex, Millipore) (Figura 14).
La funcionalidad de los complejos UMOD-exosomas-GAG fue testada acorde a estudios proteomicos. Según esto, diversas bandas de proteínas fueron escindidas de los geles SDS-PAGE y procesadas para su identificación por secuenciación en MALDI-TOF/TOF.
Se identificaron las distintas proteínas asociadas a los complejos UGE mediante secuenciación por MALDI-TOF/TOF, que se detallan en la Tabla II .
Figure imgf000091_0001
50 KDa P02768-ALBU HUMAN Albúmina
37 KDa P02768-ALBU HUMAN Albúmina
Tabla II. Proteínas asociadas a los complejos UGE identificadas mediante secuenciación por MALDI-TOF/TOF.
Los exosomas aislados de orina parecen formar un complejo con la uromodulina y los GAG tanto en muestras procedentes de voluntarios sanos como de enfermos renales.
Se demuestra además que la asociación uromodulina-glucosaminoglucanos- exosomas es específica (Figura 13) y que la integridad/funcionalidad de estos complejos depende de la adecuada presencia de sus tres elementos constituyentes (Figura 14).
La figura 15 muestra las posibles asociaciones entre los tres elementos que conforman los complejos UGE.
Ejemplo 11 : Los complejos UGE se pierden cuando el daño/fallo renal progresa
Se utilizaron exosomas previamente purificados de orinas de distintos pacientes con enfermedad renal, concretamente de 6 pacientes de ADPKD y de 3 pacientes de ADMCKD con las mutaciones previamente señaladas. La figura 16 muestra cómo a medida que aumenta el daño renal (que se corresponde con los niveles aumentados de creatinina) los complejos UGE se pierden.
Ejemplo 12: Separación de los GAGs libres en orina en geles de acetato de celulosa para el diagnóstico de mucopolisacaridosis
Los inventores han desarrollado un método que permite mejorar el diagnóstico de las mucopolisacaridosis utilizando la separación de los GAG libres (condroitín sulfato, dermatán sulfato, heparán sulfato y queratán sulfato) en muestras de orina. Para ello se utilizó la segunda orina de la mañana y se precipitaron 0,5 mi de orina con 1 mi de DMB a 0,29 mM en tampón formiato sódico 0,2 M a pH 3,5. Se mezcló y se dejó precipitar durante 15 minutos a temperatura ambiente. A continuación, se centrifugó 10 minutos a 13.000 rpm a 4°C, se descartó el sobrenadante por aspiración o por decantación, y el precipitado se resuspendió en 50 microlitros de SDS al 7,5%. Se realizó también una mezcla de condroitín sulfato, dermatán sulfato y heparán sulfato comerciales que se utilizó como control positivo (C+ en la figura 17). Se cargaron 4 microlitros en un gel de acetato de celulosa (Cellogel Electrophoresis Co. Srl; Cod. 01A32-25; 5,7x14 cm/200 μηι) y se utilizó como tampón 0,05 M de acetato de bario fresco. Para la separación se corrió a 150 V durante 1 hora y 15 minutos y, a continuación, se tiñó el gel con DMB al 0,02% en agua durante 10 minutos en agitación a temperatura ambiente. Posteriormente, se destiñó utilizando ácido acético al 10% durante 10 minutos en agitación a temperatura ambiente. Como se puede comprobar en la Figura 17, se observó la aparición de las bandas de los GAG libres en color azul, bien definidas y separadas, lo que permitió diferenciar a los individuos con mucopolisacaridosis de los controles no enfermos. En los controles sanos sólo se observó la banda de condroitín sulfato; sin embargo, en los individuos enfermos, dependiendo del tipo de mucopolisacaridosis, se observó la banda de queratán sulfato característica de la mucopolisacaridosis IV, la de heparán sulfato característica de la mucopolisacaridosis III, o la de dermatán sulfato característica de la mucopolisacaridosis I, II, VI y VII.
Conclusiones:
Los resultados de las figuras 8 y 9 muestran que es posible llegar a diagnosticar de forma sencilla las mucopolisacaridosis utilizando el método de la invención. Por otra parte, la identificación de otras proteínas glicadas/glicosiladas con GAG y la caracterización de las diferentes isoformas de la uromodulina y albúmina glicadas permitiría avanzar en el conocimiento de la fisiopatología de la enfermedad y podría dar lugar al descubrimiento de nuevas dianas terapéuticas.
El método de la invención también es útil para encontrar otros péptidos dentro de cualquier proteína que pudieran estar alterados en determinadas patologías y que pudieran ser utilizados como biomarcadores en patologías relacionadas con la glicosilación/glicación.
El perfil urinario homogéneo observado en población general está alterado en enfermos renales a nivel proteico y podría ser usado como biomarcador de función y prognosis renal, adelantándose en varios años a los cambios en los niveles de creatinina, el biomarcador de daño renal de referencia actualmente, ya que el 50% de la función renal puede haberse perdido antes de que los niveles de creatinina cambien significativamente.
Sabiendo que los exosomas interaccionan con el cilio primario y que son internalizados al menos por las células del ducto colector, se sugiere que el complejo UGE (uromodulina-glucosaminoglicanos-exosomas) puede estar dirigiendo el diálogo entre los distintos segmentos de la nefrona. Esta comunicación podría estar relacionada con el sistema inmunitario a raíz de la identificación del contenido de los exosomas así como de la previamente descrita función de la uromodulina como agente inmunitario (trampa para patógenos, mediador de inflamación o activador de macrófagos y granulocitos).
Con el descubrimiento de los complejos uromodulina-glucosaminoglicanos-exosomas se pone de manifiesto un papel hasta ahora desconocido de la uromodulina y los GAG tanto en comunicación como en el sistema inmunitario a nivel renal y que además pueden ser monitorizados de manera fácil y barata en la orina para su uso como biomarcadores de diagnóstico/pronóstico de enfermedad renal dada la identificación de un perfil característico. Se sugiere que estos complejos UGE y por tanto este mecanismo de comunicación se pierden cuando el daño/fallo renal progresa dando lugar a desregulación de los segmentos de la nefrona y alteraciones en el sistema inmunitario. Estos mecanismos sientan además las bases para el desarrollo de posibles terapias y la aplicación de medidas correctivas antes de alcanzar la enfermedad renal avanzada. Esta técnica y el descubrimiento de este complejo señalizador PGE puede ser además extrapolable a cualquier fluido biológico.
La invención permite, además, partiendo de una muestra de orina de 1 mi y utilizando un gel de acetato de celulosa, distinguir a individuos enfermos de mucopolisacaridosis de los individuos sanos; y también permite diferenciar entre las distintas mucopolisacaridosis como se demuestra en la figura 17. El método habitualmente utilizado para el diagnóstico de las mucopolisacaridosis es muy laborioso y difícil requiriendo el empleo de aproximadamente dos días; mientras que el método de la invención permite que dicho diagnóstico se realice de forma sencilla y rápida en tan solo unas 4 horas aproximadamente.

Claims

REIVINDICACIONES
1. Método in vitro para separar los glucosaminoglicanos (GAG) sulfatados libres y la fracción unida o asociada a los GAG sulfatados de una muestra que comprende: a) poner en contacto una muestra con el colorante azul de dimetilmetileno (DMB) a un pH ácido comprendido entre 2 y 6,9; b) incubar la mezcla de a) a una temperatura comprendida entre 0°C y 40°C durante el tiempo necesario para la formación de un precipitado; c) eliminar el sobrenadante; y d) recuperar el precipitado que contiene los GAG sulfatados libres y la fracción unida o asociada a los GAG sulfatados.
2. Método según la reivindicación 1 donde la muestra es una muestra biológica seleccionada del grupo que consiste en exosomas, orina, suero y plasma.
3. Método según la reivindicación 1 o 2 donde la fracción unida a los GAG sulfatados se selecciona del grupo que consiste en una fracción proteica y una fracción lipídica.
4. Método según cualquiera de las reivindicaciones 1 a 3 donde la fracción asociada a los GAG sulfatados es un complejo seleccionado del grupo que consiste en:
(i) un complejo formado por uromodulina o una variante de la misma y exosomas,
(ii) un complejo formado por albúmina o una variante de la misma y exosomas,
(iii) un complejo formado por IgA o una variante de la misma y exosomas, y
(iv) un complejo formado por IgG o una variante de la misma y exosomas.
5. Método según la reivindicación 4 donde la fracción asociada a los GAG sulfatados es un complejo formado por uromodulina o una variante de la misma y exosomas.
6. Método in vitro de identificación del perfil de proteínas unidas o asociadas a los GAG sulfatados de una muestra que comprende: a) separación de la fracción proteica unida o asociada a los GAG sulfatados de una muestra según el método de cualquiera de las reivindicaciones 1 a 5; b) separación electroforética del producto obtenido en a); y c) identificación del perfil electroforético obtenido en b).
7. Método según la reivindicación 6 donde la etapa c) se realiza mediante Western blot.
8. Método según la reivindicación 6 donde la etapa c) se realiza mediante tinción con un colorante específico para la visualización de proteínas.
9. Método según cualquiera de las reivindicaciones 6 a 8 donde la proteína se selecciona del grupo que consiste en uromodulina, albúmina, IgA, IgG o una variante de las mismas y fragmentos de las mismas.
10. Método según cualquiera de las reivindicaciones 8 o 9 donde, tras la tinción con un colorante específico para la visualización de proteínas, las bandas obtenidas se escinden y se identifican mediante espectrometría de masas o secuenciación proteica.
1 1. Método según cualquiera de las reivindicaciones 6 a 10 donde la separación electroforética se realiza por SDS-PAGE o por electroforesis bidimensional.
12. Método in vitro de identificación del perfil de proteínas unidas o asociadas a los GAG sulfatados de una muestra que comprende:
a) separación de la fracción proteica unida o asociada a los GAG sulfatados de una muestra según el método de cualquiera de las reivindicaciones 1 a 5 y b) identificación del perfil de proteínas unidas o asociadas a los GAG sulfatados mediante cromatografía o espectrometría de masas de la fracción obtenida en a).
13. Método in vitro de identificación del perfil de lípidos unidos o asociados a los GAG sulfatados de una muestra que comprende:
a) separación de la fracción lipídica unida o asociada a los GAG sulfatados de una muestra según el método de cualquiera de las reivindicaciones 1 a 3; y b) identificación del perfil de lípidos unidos o asociados a los GAG sulfatados mediante electroforesis o cromatografía de la fracción obtenida en a).
14. Método in vitro para detectar una alteración en el patrón de glicosilación por los GAG sulfatados de una muestra que comprende: a) identificar el perfil de proteínas unidas o asociadas a los GAG sulfatados de una muestra según el método de cualquiera de las reivindicaciones 6 a 12 y/o identificar el perfil de lípidos unidos o asociados a los GAG sulfatados de una muestra según el método de la reivindicación 13;
y
b) comparar el perfil de proteínas unidas o asociadas a los GAG sulfatados obtenido en a) con el obtenido para una muestra de referencia y/o comparar el perfil de lípidos unidos o asociados a los GAG sulfatados obtenido en a) con el obtenido para una muestra de referencia donde una diferencia del perfil obtenido en a) respecto al perfil obtenido en la muestra de referencia indica una alteración en el patrón de glicosilación por los GAG sulfatados.
15. Método in vitro para diagnosticar una enfermedad asociada a una alteración de uno o más GAG sulfatados en un sujeto que comprende: a) separar los GAG sulfatados libres y la fracción unida o asociada a los GAG sulfatados de una muestra biológica de dicho sujeto por un método según cualquiera de las reivindicaciones 1 a 5,
b) detectar el nivel de uno o más GAG sulfatados separados en a) y
c) comparar dicho nivel con un valor de referencia para dicho uno o más GAG sulfatados
donde un nivel aumentado o disminuido de uno o más GAG sulfatados con respecto al valor de referencia es indicativo de que el sujeto sufre una enfermedad asociada a una alteración de uno o más GAG sulfatados.
16. Método según la reivindicación 15 donde el valor de referencia se ha obtenido a partir de muestras de individuos sanos de la misma edad y sexo que el sujeto.
17. Método según cualquiera de las reivindicaciones 15 o 16 donde la enfermedad asociada a una alteración de uno o más GAG sulfatados se selecciona del grupo que consiste en: a) una mucopolisacaridosis seleccionada del grupo que consiste en enfermedad de Hurler (deficiencia de alfa-L-iduronidasa), enfermedad de Scheie (deficiencia de alfa-L-iduronidasa), enfermedad de Hunter (deficiencia de iduronato-2-sulfatasa), enfermedad de Sanfilippo A (deficiencia de heparán sulfamidasa), enfermedad de Sanfilippo B (deficiencia de alfa-N-acetil- glucosaminidasa), enfermedad de Sanfilippo C (deficiencia de heparán-alfa- glucosaminida N-acetiltransferasa), enfermedad de Sanfilippo D (deficiencia de N-acetilglucosamina-6-sulfatasa), enfermedad de Morquio A (deficiencia de N- acetilgalactosamina-6-sulfatasa), enfermedad de Morquio B (deficiencia de beta-D-galactosidasa), enfermedad de Maroteaux-Lamy (deficiencia de arilsulfatasa B) y enfermedad de Sly (deficiencia de beta-glucuronidasa);
b) una enfermedad renal seleccionada del grupo que consiste en poliquistosis renal autosómica dominante de tipo 1 o de tipo 2, glomerulonefritis, síndrome nefrótico, nefropatía endémica de los Balcanes, trasplante renal, litiasis renal, y nefropatía diabética;
c) una endocrinopatía seleccionada del grupo que consiste en hipotiroidismo y diabetes;
d) una enfermedad reumatológica seleccionada del grupo que consiste en osteoartritis, espondilitis anquilosante, artritis reumatoide y siringomielia; y e) una enfermedad oncológica.
18. Método según la reivindicación 17 donde la enfermedad se selecciona del grupo que consiste en enfermedad renal y mucopolisacaridosis.
19. Método según la reivindicación 18 donde la muestra biológica es una muestra de orina, suero o plasma.
20. Método según cualquiera de las reivindicaciones 18 o 19 donde la enfermedad renal es poliquistosis renal autosómica dominante de tipo 1 o de tipo 2.
21. Método según cualquiera de las reivindicaciones 15 a 20 donde la alteración de uno o más GAG es un aumento de uno o más GAG.
22. Método según cualquiera de las reivindicaciones 15 a 20 donde la alteración de uno o más GAG es una disminución de uno o más GAG.
23. Método in vitro para determinar el pronóstico o para monitorizar la progresión de una enfermedad asociada a un aumento de uno o más GAG sulfatados en un sujeto que comprende: a) separar los GAG sulfatados libres y la fracción unida o asociada a GAG sulfatados de una muestra biológica de dicho sujeto por un método según cualquiera de las reivindicaciones 1 a 5;
b) detectar el nivel de uno o más GAG sulfatados separados en a); y
c) comparar dicho nivel con un valor de referencia para dicho uno o más GAG sulfatados obtenido del mismo sujeto en un momento previo donde una disminución en el nivel de uno o más GAG sulfatados con respecto al valor de referencia es indicativo de que la enfermedad asociada a un aumento de uno o más GAG sulfatados tiene buen pronóstico o
donde un aumento en el nivel de uno o más GAG sulfatados con respecto al valor de referencia es indicativo de que la enfermedad asociada a un aumento de uno o más GAG sulfatados tiene mal pronóstico.
24. Método in vitro para determinar el pronóstico o para monitorizar la progresión de una enfermedad asociada a una disminución de uno o más GAG sulfatados en un sujeto que comprende: a) separar los GAG sulfatados libres y la fracción unida o asociada a los GAG sulfatados de una muestra biológica de dicho sujeto por un método según cualquiera de las reivindicaciones 1 a 5;
b) detectar el nivel de uno o más GAG sulfatados separados en a); y
c) comparar dicho nivel con un valor de referencia para dicho uno o más GAG sulfatados obtenido del mismo sujeto en un momento previo
donde una disminución en el nivel de uno o más GAG sulfatados con respecto al valor de referencia es indicativo de que la enfermedad asociada a una disminución de uno o más GAG sulfatados tiene mal pronóstico o donde un aumento en el nivel de uno o más GAG sulfatados con respecto al valor de referencia es indicativo de que la enfermedad asociada a una disminución de uno o más GAG sulfatados tiene buen pronóstico.
25. Método in vitro para monitorizar el efecto de una terapia para el tratamiento de una enfermedad asociada a un aumento de uno o más GAG sulfatados que comprende: a) separar los GAG sulfatados libres y la fracción unida o asociada a los GAG sulfatados de una muestra biológica de un sujeto que sufre dicha enfermedad y que ha sido tratado con dicha terapia por un método según cualquiera de las reivindicaciones 1 a 5; y
b) detectar el nivel de uno o más GAG sulfatados separados en a)
donde una disminución del nivel de uno o más GAG sulfatados con respecto al nivel del mismo GAG sulfatado en una muestra procedente del mismo sujeto antes de la terapia es indicativo de que la terapia administrada es efectiva o
donde un aumento o la ausencia de cambio en el nivel de uno o más GAG sulfatados con respecto al nivel del mismo GAG sulfatado en una muestra procedente del mismo sujeto antes de la terapia es indicativo de que la terapia administrada es inefectiva o de que el sujeto necesita una terapia alternativa.
26. Método in vitro para monitorizar el efecto de una terapia para el tratamiento de una enfermedad asociada a una disminución de uno o más GAG sulfatados que comprende: a) separar los GAG sulfatados libres y la fracción unida o asociada a los GAG sulfatados de una muestra biológica de un sujeto que sufre dicha enfermedad y que ha sido tratado con dicha terapia por un método según cualquiera de las reivindicaciones 1 a 5; y
b) detectar el nivel de uno o más GAG sulfatados separados en a)
donde un aumento del nivel de uno o más GAG sulfatados con respecto al nivel del mismo GAG sulfatado en una muestra procedente del mismo sujeto antes de la terapia es indicativo de que la terapia administrada es efectiva o
donde una disminución o la ausencia de cambio en el nivel de uno o más GAG sulfatados con respecto al nivel del mismo GAG sulfatado en una muestra procedente del mismo sujeto antes de la terapia es indicativo de que la terapia administrada es inefectiva o de que el sujeto necesita una terapia alternativa.
27. Método in vitro para la identificación de compuestos adecuados para el tratamiento de una enfermedad asociada a un aumento de uno o más GAG sulfatados que comprende: a) separar los GAG sulfatados libres y la fracción unida o asociada a los GAG sulfatados de una muestra biológica de un sujeto que sufre dicha enfermedad y que ha sido tratado con un compuesto candidato por un método según cualquiera de las reivindicaciones 1 a 5; y
b) detectar el nivel de uno o más GAG sulfatados separados en a)
donde el compuesto se considera efectivo para el tratamiento de la enfermedad cuando el nivel de uno o más GAG sulfatados disminuye con respecto al nivel del mismo GAG sulfatado en una muestra de referencia.
28. Método in vitro para la identificación de compuestos adecuados para el tratamiento de una enfermedad asociada a una disminución de uno o más GAG sulfatados que comprende: a) separar los GAG sulfatados libres y la fracción unida o asociada a los GAG sulfatados de una muestra biológica de un sujeto que sufre dicha enfermedad y que ha sido tratado con un compuesto candidato por un método según cualquiera de las reivindicaciones 1 a 5; y
b) detectar el nivel de uno o más GAG sulfatados separados en a)
donde el compuesto se considera efectivo para el tratamiento de la enfermedad cuando el nivel de uno o más GAG sulfatados aumenta con respecto al nivel del mismo GAG sulfatado en una muestra de referencia.
29. Método según cualquiera de las reivindicaciones 21 , 23 y 25 donde la enfermedad asociada a un aumento de uno o más GAG sulfatados es una enfermedad que cursa con una acumulación indeseada de uno o más GAG sulfatados seleccionada de mucopolisacaridosis, mucolipidosis, síndrome nefrótico congénito, nefropatía endémica de los Balcanes, artritis reumatoide y siringomielia.
30. Método según cualquiera de las reivindicaciones 22, 24 y 26 donde la enfermedad asociada a la disminución de uno o más GAG sulfatados se selecciona del grupo que consiste en amiloidosis renal, glomerulonefritis, síndrome nefrótico, hipotiroidismo y diabetes.
31. Método según cualquiera de las reivindicaciones 15 a 30 donde tras la etapa (a) se realiza una separación electroforética de la muestra.
32. Método según la reivindicación 31 donde la separación electroforética se realiza en un gel de acetato de celulosa.
33. Método según cualquiera de las reivindicaciones 15 a 32 donde la etapa b) se realiza mediante la tinción de los GAG sulfatados con el colorante DMB.
34. Método según cualquiera de las reivindicaciones 15 a 33 donde se detecta el nivel de uno o más GAG sulfatados libres.
35. Método según cualquiera de las reivindicaciones 18, 19, 21 , 23, 25, 27 o 29 donde la enfermedad es mucopolisacaridosis y donde:
(i) un nivel aumentado de dermatán sulfato libre con respecto al valor de referencia es indicativo de que el sujeto sufre mucopolisacaridosis de tipo I, de tipo II, de tipo VI o de tipo VII;
(ii) un nivel aumentado de heparán sulfato libre con respecto al valor de referencia es indicativo de que el sujeto sufre mucopolisacaridosis de tipo III; y
(iii) un nivel aumentado de queratán sulfato libre con respecto al valor de referencia es indicativo de que el sujeto sufre mucopolisacaridosis de tipo IV.
36. Uso del método según cualquiera de las reivindicaciones 6 a 14 para identificar biomarcadores proteicos o lipidíeos unidos o asociados a los GAG sulfatados.
37. Uso según la reivindicación 36 donde dichos biomarcadores proteicos o lipidíeos son útiles para el diagnóstico, pronóstico y/o monitorización de la progresión de una enfermedad.
38. Uso según la reivindicación 36 donde dichos biomarcadores proteicos o lipidíeos son útiles para monitorizar el efecto de una terapia para el tratamiento de una enfermedad.
39. Uso según la reivindicación 36 donde dichos biomarcadores proteicos o lipidíeos son útiles para predecir la respuesta a una terapia.
40. Uso según la reivindicación 36 donde dichos biomarcadores proteicos o lipidíeos son útiles para diseñar una terapia personalizada.
41. Uso según la reivindicación 36 donde dichos biomarcadores proteicos o lipidíeos son útiles para la identificación de compuestos adecuados para el tratamiento de una enfermedad.
42. Uso según cualquiera de las reivindicaciones 37 a 41 donde la enfermedad se selecciona del grupo que consiste en enfermedad renal y mucopolisacaridosis.
43. Uso según la reivindicación 42 donde la enfermedad renal es poliquistosis renal autosómica dominante de tipo 1 o de tipo 2.
44. Método in vitro para diagnosticar mucopolisacaridosis en un sujeto que comprende detectar en una muestra de orina de dicho sujeto la presencia del péptido señal SEQ ID NO: 1 de la uromodulina o de una variante del mismo.
45. Método según la reivindicación 44 que comprende:
a) detectar el nivel del péptido señal SEQ ID NO: 1 de la uromodulina o de una variante del mismo en una muestra de orina de dicho sujeto y
b) comparar dicho nivel con un valor de referencia
donde un nivel aumentado del péptido señal SEQ ID NO: 1 de la uromodulina o de una variante del mismo con respecto al valor de referencia es indicativo de que el sujeto sufre mucopolisacaridosis.
46. Método in vitro para determinar el pronóstico o para monitorizar la progresión de un sujeto que sufre mucopolisacaridosis que comprende:
a) detectar el nivel del péptido señal SEQ ID NO: 1 de la uromodulina o de una variante del mismo en una muestra de orina de dicho sujeto y b) comparar dicho nivel con un valor de referencia obtenido del mismo sujeto en un momento previo
donde una disminución en el nivel del péptido señal SEQ ID NO: 1 de la uromodulina o de una variante del mismo con respecto al valor de referencia es indicativo de que la enfermedad tiene buen pronóstico o
donde un aumento en el nivel del péptido señal SEQ ID NO: 1 de la uromodulina o de una variante del mismo con respecto al valor de referencia es indicativo de que la enfermedad tiene mal pronóstico.
47. Método in vitro para monitorizar el efecto de una terapia en un sujeto que sufre mucopolisacaridosis y que es tratado con dicha terapia que comprende:
a) detectar el nivel del péptido señal SEQ ID NO: 1 de la uromodulina o de una variante del mismo en una muestra de orina de dicho sujeto y
b) comparar dicho nivel con un valor de referencia obtenido del mismo sujeto antes de la terapia
donde una disminución en el nivel del péptido señal SEQ ID NO: 1 de la uromodulina o de una variante del mismo con respecto al valor de referencia es indicativo de que la terapia administrada es efectiva o
donde un aumento en el nivel del péptido señal SEQ ID NO: 1 de la uromodulina o de una variante del mismo con respecto al valor de referencia es indicativo de que la terapia administrada es inefectiva o de que el sujeto necesita una terapia alternativa.
48. Método in vitro para diseñar una terapia personalizada en un sujeto que tiene síntomas de mucopolisacaridosis que comprende:
a) detectar el nivel del péptido señal SEQ ID NO: 1 de la uromodulina o de una variante del mismo en una muestra de orina de dicho sujeto y
b) comparar dicho nivel con un valor de referencia
donde un nivel aumentado del péptido señal SEQ ID NO: 1 de la uromodulina o de una variante del mismo con respecto al valor de referencia es indicativo de que dicho sujeto es susceptible de recibir una terapia para la prevención y/o tratamiento de mucopolisacaridosis.
49. Método in vitro para seleccionar un paciente susceptible de ser tratado con una terapia para la prevención y/o tratamiento de mucopolisacaridosis que comprende: a) detectar el nivel del péptido señal SEQ ID NO: 1 de la uromodulina o de una variante del mismo en una muestra de orina de dicho sujeto y
b) comparar dicho nivel con un valor de referencia
donde un nivel aumentado del péptido señal SEQ ID NO: 1 de la uromodulina o de una variante del mismo con respecto al valor de referencia es indicativo de que dicho sujeto es un candidato a recibir una terapia para la prevención y/o tratamiento de la mucopolisacaridosis.
50. Método in vitro para la identificación de compuestos adecuados para el tratamiento de mucopolisacaridosis que comprende:
a) detectar el nivel del péptido señal SEQ ID NO: 1 de la uromodulina o de una variante del mismo en una muestra de orina de un sujeto que sufre de mucopolisacaridosis y que ha sido tratado con un compuesto candidato y b) comparar dicho nivel con un valor de referencia
donde el compuesto se considera efectivo para el tratamiento de la enfermedad cuando el nivel del péptido señal SEQ ID NO: 1 de la uromodulina o de una variante del mismo disminuye con respecto al valor de referencia.
51. Método según cualquiera de las reivindicaciones 44 a 50 donde la detección se realiza mediante espectrometría de masas en tándem.
52. Uso de un agente capaz de detectar el péptido señal SEQ ID NO: 1 de la uromodulina o una variante del mismo en una muestra de orina para diagnosticar mucopolisacaridosis, para determinar el pronóstico o para monitorizar la progresión de un sujeto que sufre mucopolisacaridosis, para monitorizar el efecto de una terapia en un sujeto que sufre mucopolisacaridosis, para diseñar una terapia personalizada en un sujeto que tiene síntomas de mucopolisacaridosis, para seleccionar un paciente susceptible de ser tratado con una terapia para la prevención y/o tratamiento de mucopolisacaridosis o para la identificación de compuestos adecuados para el tratamiento de mucopolisacaridosis, donde el agente capaz de detectar el péptido señal SEQ ID NO: 1 de la uromodulina o una variante del mismo se selecciona del grupo que consiste en un enzima capaz de reconocer de manera específica una secuencia de aminoácidos del péptido señal de SEQ ID NO: 1 de la uromodulina o de una variante del mismo y escindir dicho péptido, un anticuerpo, un aptámero y fragmentos de los mismos que se unen específicamente al péptido señal SEQ ID NO: 1 de la uromodulina o a una variante del mismo.
53. Uso según la reivindicación 52 donde el agente es un anticuerpo capaz de detectar específicamente un péptido de secuencia SEQ ID NO: 1 o una variante del mismo, e incapaz de detectar la uromodulina madura, o un fragmento de dicho anticuerpo con capacidad para unirse a la secuencia SEQ ID NO: 1 o a una variante de la misma.
54. Uso del péptido señal SEQ ID NO: 1 de la uromodulina o una variante del mismo como marcador de diagnóstico de mucopolisacaridosis, como marcador pronóstico de mucopolisacaridosis, como marcador de monitorización de la progresión de un sujeto que sufre mucopolisacaridosis, como marcador de monitorización del efecto de una terapia en un sujeto que sufre mucopolisacaridosis, como marcador para diseñar una terapia personalizada en un sujeto que tiene síntomas de mucopolisacaridosis, como marcador de selección de un paciente susceptible de ser tratado con una terapia para la prevención y/o tratamiento de mucopolisacaridosis o como marcador para la identificación de compuestos adecuados para el tratamiento de mucopolisacaridosis.
55. Método in vitro para diagnosticar enfermedad renal en un sujeto que comprende detectar el nivel de uromodulina o de una variante de la misma unida o asociada a los GAG sulfatados y/o detectar el nivel de albúmina o de una variante de la misma unida o asociada a los GAG sulfatados en una muestra de orina de dicho sujeto y comparar dicho nivel con un valor de referencia donde un nivel disminuido de uromodulina o de una variante de la misma unida o asociada a los GAG sulfatados con respecto al valor de referencia y/o un nivel disminuido de albúmina o de una variante de la misma unida o asociada a los GAG sulfatados con respecto al valor de referencia es indicativo de que el sujeto sufre enfermedad renal.
56. Método in vitro para determinar el pronóstico o para monitorizar la progresión de enfermedad renal en un sujeto que comprende detectar el nivel de uromodulina o de una variante de la misma unida o asociada a los GAG sulfatados y/o detectar el nivel de albúmina o de una variante de la misma unida o asociada a los GAG sulfatados en una muestra de orina de dicho sujeto y comparar dicho nivel con un valor de referencia obtenido del mismo sujeto en un momento previo
donde una disminución en el nivel de uromodulina o de una variante de la misma unida o asociada a los GAG sulfatados y/o una disminución en el nivel de albúmina o de una variante de la misma unida o asociada a los GAG sulfatados con respecto al valor de referencia es indicativo de que la enfermedad tiene mal pronóstico o donde un aumento en el nivel de uromodulina o de una variante de la misma unida o asociada a los GAG sulfatados y/o un aumento en el nivel de albúmina o de una variante de la misma unida o asociada a los GAG sulfatados con respecto al valor de referencia es indicativo de que la enfermedad tiene buen pronóstico.
57. Método in vitro para monitorizar el efecto de una terapia en un sujeto que sufre enfermedad renal y que es tratado con dicha terapia que comprende:
a) detectar el nivel de uromodulina o de una variante de la misma unida o asociada a los GAG sulfatados y/o detectar el nivel de albúmina o de una variante de la misma unida o asociada a los GAG sulfatados en una muestra de orina de dicho sujeto y
b) comparar dicho nivel con un valor de referencia obtenido del mismo sujeto antes de la terapia
donde un aumento en el nivel de uromodulina o de una variante de la misma unida o asociada a los GAG sulfatados y/o un aumento en el nivel de albúmina o de una variante de la misma unida o asociada a los GAG sulfatados con respecto al valor de referencia es indicativo de que la terapia administrada es efectiva o
donde una disminución en el nivel de uromodulina o de una variante de la misma unida o asociada a los GAG sulfatados y/o una disminución en el nivel de albúmina o de una variante de la misma unida o asociada a los GAG sulfatados con respecto al valor de referencia es indicativo de que la terapia administrada es inefectiva o de que el sujeto necesita una terapia alternativa.
58. Método in vitro para diseñar una terapia personalizada en un sujeto que tiene síntomas de enfermedad renal que comprende:
a) detectar el nivel de uromodulina o de una variante de la misma unida o asociada a los GAG sulfatados y/o detectar el nivel de albúmina o de una variante de la misma unida o asociada a los GAG sulfatados en una muestra de orina de dicho sujeto y b) comparar dicho nivel con un valor de referencia
donde una disminución en el nivel de uromodulina o de una variante de la misma unida o asociada a los GAG sulfatados y/o una disminución en el nivel de albúmina o de una variante de la misma unida o asociada a los GAG sulfatados con respecto al valor de referencia es indicativo de que dicho sujeto es susceptible de recibir una terapia para la prevención y/o tratamiento de enfermedad renal.
59. Método in vitro para seleccionar un paciente susceptible de ser tratado con una terapia para la prevención y/o tratamiento de enfermedad renal que comprende: a) detectar el nivel de uromodulina o de una variante de la misma unida o asociada a los GAG sulfatados y/o detectar el nivel de albúmina o de una variante de la misma unida o asociada a los GAG sulfatados en una muestra de orina de dicho sujeto y
b) comparar dicho nivel con un valor de referencia
donde una disminución en el nivel de uromodulina o de una variante de la misma unida o asociada a los GAG sulfatados y/o una disminución en el nivel de albúmina o de una variante de la misma unida o asociada a los GAG sulfatados con respecto al valor de referencia es indicativo de que dicho sujeto es un candidato a recibir una terapia para la prevención y/o tratamiento de la enfermedad renal.
60. Método in vitro para la identificación de compuestos adecuados para el tratamiento de enfermedad renal que comprende:
a) detectar el nivel de uromodulina o de una variante de la misma unida o asociada a los GAG sulfatados y/o detectar el nivel de albúmina o de una variante de la misma unida o asociada a los GAG sulfatados en una muestra de orina de un sujeto que sufre enfermedad renal y que ha sido tratado con un compuesto candidato y
b) comparar dicho nivel con un valor de referencia
donde el compuesto se considera efectivo para el tratamiento de la enfermedad cuando el nivel de uromodulina o de una variante de la misma unida o asociada a los GAG sulfatados y/o el nivel de albúmina o de una variante de la misma unida o asociada a los GAG sulfatados aumenta con respecto al valor de referencia.
61. Método según cualquiera de las reivindicaciones 55 a 60 que, previamente a la detección del nivel de uromodulina o de una variante de la misma unida o asociada a los GAG sulfatados y/o a la detección del nivel de albúmina o de una variante de la misma unida o asociada a los GAG sulfatados, comprende una etapa de separación de los GAG sulfatados libres y la fracción unida o asociada a los GAG sulfatados de una muestra biológica de dicho sujeto por un método según cualquiera de las reivindicaciones 1 a 5.
62. Uso de un agente capaz de detectar uromodulina o una variante de la misma unida o asociada a los GAG sulfatados seleccionado del grupo que consiste en un enzima capaz de reconocer de manera específica una secuencia de aminoácidos de la uromodulina o de una variante de la misma y escindirla, un anticuerpo, un aptámero y fragmentos de los mismos que se unen específicamente a la uromodulina o a una variante de la misma y/o de un agente capaz de detectar albúmina o una variante de la misma unida o asociada a los GAG sulfatados seleccionado del grupo que consiste en un enzima capaz de reconocer de manera específica una secuencia de aminoácidos de la albúmina o de una variante de la misma y escindirla, un anticuerpo, un aptámero y fragmentos de los mismos que se unen específicamente a la albúmina o a una variante de la misma en una muestra de orina para diagnosticar enfermedad renal, para determinar el pronóstico o para monitorizar la progresión de un sujeto que sufre enfermedad renal, para monitorizar el efecto de una terapia en un sujeto que sufre enfermedad renal, para diseñar una terapia personalizada en un sujeto que tiene síntomas de enfermedad renal, para seleccionar un paciente susceptible de ser tratado con una terapia para la prevención y/o tratamiento de enfermedad renal o para la identificación de compuestos adecuados para el tratamiento de enfermedad renal.
63. Uso según la reivindicación 62 donde el agente es un anticuerpo.
64. Uso de uromodulina o una variante de la misma unida o asociada a los GAG sulfatados y/o de albúmina o de una variante de la misma unida o asociada a los GAG sulfatados como marcador de diagnóstico de enfermedad renal, como marcador pronóstico de enfermedad renal , como marcador de monitorización del efecto de una terapia en un sujeto que sufre enfermedad renal, como marcador para diseñar una terapia personalizada en un sujeto que tiene síntomas de enfermedad renal, como marcador de selección de un paciente susceptible de ser tratado con una terapia para la prevención y/o tratamiento de enfermedad renal o como marcador para la identificación de compuestos adecuados para el tratamiento de enfermedad renal.
65. Método in vitro para diagnosticar enfermedad renal avanzada en un sujeto que comprende detectar el nivel de los complejos uromodulina o una variante de la misma-GAG sulfatados-exosomas en una muestra de orina de dicho sujeto y comparar dicho nivel con un valor de referencia donde un nivel disminuido de los complejos uromodulina o una variante de la misma-GAG sulfatados-exosomas con respecto al valor de referencia es indicativo de que el sujeto sufre enfermedad renal avanzada.
66. Método in vitro para determinar el pronóstico o para monitorizar la progresión de enfermedad renal avanzada en un sujeto que comprende a) detectar el nivel de los complejos uromodulina o una variante de la misma- GAG sulfatados-exosomas en una muestra de orina de dicho sujeto; y b) comparar dicho nivel con un valor de referencia obtenido del mismo sujeto en un momento previo
donde una disminución en el nivel de los complejos uromodulina o una variante de la misma-GAG sulfatados-exosomas con respecto al valor de referencia es indicativo de que la enfermedad tiene mal pronóstico o
donde un aumento en el nivel de los complejos uromodulina o una variante de la misma-GAG sulfatados-exosomas respecto al valor de referencia es indicativo de que la enfermedad tiene buen pronóstico.
67. Método in vitro para monitorizar el efecto de una terapia en un sujeto que sufre enfermedad renal avanzada y que es tratado con dicha terapia que comprende: a) detectar el nivel de los complejos uromodulina o una variante de la misma- GAG sulfatados-exosomas en una muestra de orina de dicho sujeto y b) comparar dicho nivel con un valor de referencia obtenido del mismo sujeto antes de la terapia
donde un aumento en el nivel de los complejos uromodulina o una variante de la misma-GAG sulfatados-exosomas respecto al valor de referencia es indicativo de que la terapia administrada es efectiva o
donde una disminución en el nivel de los complejos uromodulina o una variante de la misma-GAG sulfatados-exosomas con respecto al valor de referencia es indicativo de que la terapia administrada es inefectiva o de que el sujeto necesita una terapia alternativa.
68. Método in vitro para diseñar una terapia personalizada en un sujeto que tiene síntomas de enfermedad renal avanzada que comprende:
a) detectar el nivel de los complejos uromodulina o una variante de la misma- GAG sulfatados-exosomas en una muestra de orina de dicho sujeto y b) comparar dicho nivel con un valor de referencia
donde una disminución en el nivel de los complejos uromodulina o una variante de la misma-GAG sulfatados-exosomas con respecto al valor de referencia es indicativo de que dicho sujeto es susceptible de recibir una terapia para el tratamiento de la enfermedad renal avanzada.
69. Método in vitro para seleccionar un paciente susceptible de ser tratado con una terapia para el tratamiento de enfermedad renal avanzada que comprende:
a) detectar el nivel de los complejos uromodulina o una variante de la misma- GAG sulfatados-exosomas en una muestra de orina de dicho sujeto y b) comparar dicho nivel con un valor de referencia
donde una disminución en el nivel de los complejos uromodulina o una variante de la misma-GAG sulfatados-exosomas con respecto al valor de referencia es indicativo de que dicho sujeto es un candidato a recibir una terapia para el tratamiento de la enfermedad renal avanzada.
70. Método in vitro para la identificación de compuestos adecuados para el tratamiento de enfermedad renal avanzada que comprende:
a) detectar el nivel de los complejos uromodulina o una variante de la misma- GAG sulfatados-exosomas en una muestra de orina de un sujeto que sufre de enfermedad renal avanzada y que ha sido tratado con un compuesto candidato y
b) comparar dicho nivel con un valor de referencia
donde el compuesto se considera efectivo para el tratamiento de la enfermedad renal avanzada cuando el nivel de los complejos uromodulina o una variante de la misma-GAG sulfatados-exosomas aumenta con respecto al valor de referencia.
71. Método según cualquiera de las reivindicaciones 65 a 70 que, previamente a la detección del nivel de los complejos uromodulina o una variante de la misma-GAG sulfatados-exosomas, comprende una etapa de separación de los GAG sulfatados libres y la fracción unida o asociada a los GAG sulfatados de una muestra biológica de dicho sujeto por un método según cualquiera de las reivindicaciones 1 a 5.
72. Uso de un agente capaz de detectar complejos uromodulina o una variante de la misma-GAG sulfatados-exosomas en una muestra de orina para diagnosticar enfermedad renal avanzada, para determinar el pronóstico o para monitorizar la progresión de un sujeto que sufre enfermedad renal avanzada, para monitorizar el efecto de una terapia en un sujeto que sufre enfermedad renal avanzada, para diseñar una terapia personalizada en un sujeto que tiene síntomas de enfermedad renal avanzada, para seleccionar un paciente susceptible de ser tratado con una terapia para el tratamiento de enfermedad renal avanzada o para la identificación de compuestos adecuados para el tratamiento de enfermedad renal avanzada, donde el agente capaz de detectar complejos uromodulina o una variante de la misma-GAG sulfatados-exosomas se selecciona del grupo que consiste en un enzima capaz de reconocer de manera específica una secuencia de aminoácidos de la uromodulina o de una variante de la misma y escindirla, un anticuerpo, un aptámero y fragmentos de los mismos que se unen específicamente a la uromodulina o a una variante de la misma.
73. Uso de un complejo uromodulina o una variante de la misma-GAG sulfatados- exosomas como marcador de diagnóstico de enfermedad renal avanzada, como marcador pronóstico de enfermedad renal avanzada, como marcador de monitorización del efecto de una terapia en un sujeto que sufre enfermedad renal avanzada, como marcador para diseñar una terapia personalizada en un sujeto que tiene síntomas de enfermedad renal avanzada, como marcador de selección de un paciente susceptible de ser tratado con una terapia para el tratamiento de enfermedad renal avanzada o como marcador para la identificación de compuestos adecuados para el tratamiento de enfermedad renal avanzada.
74. Método o uso según cualquiera de las reivindicaciones 55 a 73 donde la enfermedad renal es poliquistosis renal autosómica dominante de tipo 1 o de tipo 2.
75. Un complejo formado por la asociación de uromodulina o una variante de la misma, GAG sulfatados y exosomas.
76. Kit que comprende azul de dimetilmetileno (DMB) a una concentración comprendida entre 0,01 y 100 mM a un pH comprendido entre 2 y 6,9.
77. Kit según la reivindicación 76 donde el pH está comprendido entre 3 y 4.
78. Kit según la reivindicación 77 donde la concentración de DMB está comprendida entre 0,29 y 0,35 mM y donde el pH está comprendido entre 3,3 y 3,6 y el agente tamponante es tampón formiato.
79. Kit según cualquiera de las reivindicaciones 76 a 78 que además comprende un gel seleccionado del grupo que consiste en un gel de poliacrilamida y un gel de acetato de celulosa.
80. Kit según cualquiera de las reivindicaciones 76 a 79 que además comprende un tampón de carga.
81. Kit según cualquiera de las reivindicaciones 76 a 80 que además comprende un tampón de electroforesis.
82. Kit según cualquiera de las reivindicaciones 76 a 81 que además comprende un colorante específico para la visualización de proteínas.
83. Kit según cualquiera de las reivindicaciones 76 a 82 que además comprende un reactivo capaz de detectar una proteína.
84. Kit según la reivindicación 83 donde el reactivo es un anticuerpo.
85. Kit según la reivindicación 84 donde el anticuerpo es un anticuerpo seleccionado del grupo que comprende: un anticuerpo capaz de reconocer específicamente la uromodulina madura o secretada o una variante de la misma, un anticuerpo capaz de reconocer específicamente la albúmina o una variante de la misma, un anticuerpo capaz de reconocer específicamente la IgA o una variante de la misma, un anticuerpo capaz de reconocer específicamente la IgG o una variante de la misma, y combinaciones de los mismos.
86. Kit según cualquiera de las reivindicaciones 76 a 85 que además comprende un reactivo capaz de detectar un lípido.
87. Kit según cualquiera de las reivindicaciones 76 a 86 que además comprende un reactivo capaz de detectar un GAG sulfatado.
88. Kit según cualquiera de las reivindicaciones 76 a 87 que además comprende un programa de ordenador para ejecutar un método según cualquiera de las reivindicaciones 6 a 35 o 44 a 51 o 55 a 61 o 65 a 71 o 74.
89. Kit que comprende un anticuerpo capaz de detectar específicamente un péptido de secuencia SEQ ID NO: 1 o una variante del mismo, e incapaz de detectar la uromodulina madura, o un fragmento de dicho anticuerpo con capacidad para unirse a la secuencia SEQ ID NO: 1 o a una variante de la misma.
90. Uso de un kit según cualquiera de las reivindicaciones 76 a 89 para separar los GAG sulfatados libres y la fracción unida o asociada a los GAG sulfatados de una muestra, para identificar el perfil de proteínas unidas o asociadas a los GAG sulfatados de una muestra, para identificar el perfil de lípidos unidos o asociados a los GAG sulfatados de una muestra, para detectar una alteración en el patrón de glicosilación por los GAG sulfatados, para diagnosticar una enfermedad, para determinar el pronóstico de una enfermedad, para monitorizar la progresión de una enfermedad, para monitorizar el efecto de una terapia para el tratamiento de una enfermedad, para predecir la respuesta a una terapia, para diseñar una terapia personalizada, para la identificación de compuestos adecuados para el tratamiento de una enfermedad, para identificar biomarcadores proteicos o lipidíeos unidos o asociados a los sulfatados o para detectar complejos formados por exosomas, GAG sulfatados y una proteína.
91. Uso según la reivindicación 90 donde la enfermedad es una enfermedad asociada a una alteración de uno o más GAG sulfatados.
92. Uso según la reivindicación 91 donde la alteración es un aumento o disminución de uno o más GAG sulfatados.
93. Uso según cualquiera de las reivindicaciones 90 a 92 donde la enfermedad se selecciona del grupo que consiste en mucopolisacaridosis y enfermedad renal.
94. Uso según la reivindicación 93 donde la enfermedad renal es poliquistosis renal autosómica dominante de tipo 1 o de tipo 2.
PCT/ES2016/070637 2015-09-10 2016-09-09 Método para la separación de la fracción unida a glucosaminoglicanos y sus aplicaciones WO2017042416A1 (es)

Priority Applications (3)

Application Number Priority Date Filing Date Title
ES16843721T ES2878194T3 (es) 2015-09-10 2016-09-09 Método para separar la fracción asociada con glucosaminoglicanos y usos del mismo
US15/759,321 US10725050B2 (en) 2015-09-10 2016-09-09 Method for separating the fraction bound to glycosaminoglycans and applications thereof
EP16843721.8A EP3349007B1 (en) 2015-09-10 2016-09-09 Method for separating the fraction associated with glycosaminoglycans and uses thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP201531297 2015-09-10
ES201531297A ES2608814A1 (es) 2015-09-10 2015-09-10 Método para la separación de la fracción unida a glucosaminoglicanos y sus aplicaciones

Publications (1)

Publication Number Publication Date
WO2017042416A1 true WO2017042416A1 (es) 2017-03-16

Family

ID=58239768

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2016/070637 WO2017042416A1 (es) 2015-09-10 2016-09-09 Método para la separación de la fracción unida a glucosaminoglicanos y sus aplicaciones

Country Status (4)

Country Link
US (1) US10725050B2 (es)
EP (1) EP3349007B1 (es)
ES (2) ES2608814A1 (es)
WO (1) WO2017042416A1 (es)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3087305A1 (en) * 2017-12-13 2019-06-20 Glx Analytix Aps Biomarkers for multiple sclerosis
WO2021089606A1 (en) * 2019-11-04 2021-05-14 Nasasbiotech, S.L. Method for isolating nucleic acids
CN112526141A (zh) * 2020-11-23 2021-03-19 福建傲农生物科技集团股份有限公司 一种谷氨酰胺以及同时测定样品中谷氨酰胺和天冬酰胺的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010078515A2 (en) * 2009-01-02 2010-07-08 Zacharon Pharmaceuticals, Inc. Polymer end group detection
WO2013116677A2 (en) * 2012-02-01 2013-08-08 Shire Human Genetic Therapies, Inc. Assays for detection of glycosaminoglycans

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4540884A (en) 1982-12-29 1985-09-10 Finnigan Corporation Method of mass analyzing a sample by use of a quadrupole ion trap
US5397894A (en) 1993-05-28 1995-03-14 Varian Associates, Inc. Method of high mass resolution scanning of an ion trap mass spectrometer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010078515A2 (en) * 2009-01-02 2010-07-08 Zacharon Pharmaceuticals, Inc. Polymer end group detection
WO2013116677A2 (en) * 2012-02-01 2013-08-08 Shire Human Genetic Therapies, Inc. Assays for detection of glycosaminoglycans

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
BARBOSA I. ET AL.: "Improved and simple micro assay for sulfated glycosaminoglycans quantification in biological extracts and its use in skin and muscle tissue studies", GLYCOBIOLOGY, vol. 13, no. 9, September 2003 (2003-09-01), pages 647 - 653, XP002499650 *
PANIN G. ET AL.: "Simple Spectrophotometric Quantification of Urinary Excretion of Glycosaminoglycan Sulphates", CLINICAL CHEMISTRY, vol. 32, no. 11, November 1986 (1986-11-01), pages 2073 - 2076, XP055367629 *
See also references of EP3349007A4 *
VAN DE LEST CHRIS H.A. ET AL.: "Spectrophotometric method for determination of heparan sulfate", BIOCHIMICA ET BIOPHYSICA ACTA, vol. 1201, no. 2, 11 November 1994 (1994-11-11), pages 305 - 311, XP023491788 *

Also Published As

Publication number Publication date
EP3349007A1 (en) 2018-07-18
EP3349007A4 (en) 2019-07-10
US20180328939A1 (en) 2018-11-15
US10725050B2 (en) 2020-07-28
EP3349007B1 (en) 2021-04-14
ES2878194T3 (es) 2021-11-18
ES2608814A1 (es) 2017-04-17

Similar Documents

Publication Publication Date Title
D’Amato et al. In-depth exploration of cow’s whey proteome via combinatorial peptide ligand libraries
ES2543160T3 (es) Un marcador de suero para medir fibrosis hepática
Bengtsson et al. Large-scale proteomics analysis of human ovarian cancer for biomarkers
Tomatsu et al. Keratan sulphate levels in mucopolysaccharidoses and mucolipidoses
US20100184049A1 (en) Glycoprotein Profiling of Bladder Cancer
US8003337B2 (en) Method for detecting lysosomal storage diseases
Sela et al. The proteomic profile of hereditary inclusion body myopathy
ES2288358B1 (es) Marcadores de fibrosis.
KR20080073707A (ko) 방광의 전이세포 악성 종양을 검출하기 위한 비침윤성 생체외 방법
Vincourt et al. Establishment of a reliable method for direct proteome characterization of human articular cartilage
Karamessinis et al. Marked defects in the expression and glycosylation of α2-HS glycoprotein/fetuin-A in plasma from neonates with intrauterine growth restriction: proteomics screening and potential clinical implications
JP5701994B2 (ja) シトルリン化タンパク質:生理学的および病理学的疾患のマーカーとしての心筋タンパク質の翻訳後修飾
Froehlich et al. An in-depth comparison of the male pediatric and adult urinary proteomes
Hall et al. Alterations in the salivary proteome and N-glycome of Sjogren’s syndrome patients
ES2878194T3 (es) Método para separar la fracción asociada con glucosaminoglicanos y usos del mismo
De Ridder et al. Multisystem proteinopathy due to a homozygous p. Arg159His VCP mutation: A tale of the unexpected
Bellei et al. Discovery of restless legs syndrome plasmatic biomarkers by proteomic analysis
Chantada-Vázquez et al. Proteomics in inherited metabolic disorders
Zurawel et al. Proteomic profiling of the mesenteric lymph after hemorrhagic shock: differential gel electrophoresis and mass spectrometry analysis
Xue et al. Peptidomic analysis of endometrial tissue from patients with ovarian endometriosis
Zhang et al. Proteomic and N‐glycoproteomic quantification reveal aberrant changes in the human saliva of oral ulcer patients
Roy et al. Altered ureido protein modification profiles in seminal plasma extracellular vesicles of non-normozoospermic men
EP2653476B1 (en) Method for enrichment and separation of spinal fluid glycoprotein, method for searching for marker for central nervous system diseases which utilizes the aforementioned method, and marker for central nervous system diseases
Zhang et al. Serum α-l-fucosidase activities are significantly increased in patients with preeclampsia
EP3819639B1 (en) Sugar chain specific to prostate cancer, and test method using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16843721

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15759321

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016843721

Country of ref document: EP