WO2017041757A1 - 植物无土栽培系统 - Google Patents

植物无土栽培系统 Download PDF

Info

Publication number
WO2017041757A1
WO2017041757A1 PCT/CN2016/098758 CN2016098758W WO2017041757A1 WO 2017041757 A1 WO2017041757 A1 WO 2017041757A1 CN 2016098758 W CN2016098758 W CN 2016098758W WO 2017041757 A1 WO2017041757 A1 WO 2017041757A1
Authority
WO
WIPO (PCT)
Prior art keywords
zone
culture
germination
seedling growth
nutrient solution
Prior art date
Application number
PCT/CN2016/098758
Other languages
English (en)
French (fr)
Inventor
小田刚
薦田一鹏
河英雄
M·A·Y·阿勒扎比
康迪夫
杜深宇
河成雄
Original Assignee
爱勒康农业科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 爱勒康农业科技有限公司 filed Critical 爱勒康农业科技有限公司
Publication of WO2017041757A1 publication Critical patent/WO2017041757A1/zh
Priority to ZA2018/02353A priority Critical patent/ZA201802353B/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G31/00Soilless cultivation, e.g. hydroponics
    • A01G31/02Special apparatus therefor
    • A01G31/06Hydroponic culture on racks or in stacked containers
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G31/00Soilless cultivation, e.g. hydroponics
    • A01G31/02Special apparatus therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/20Reduction of greenhouse gas [GHG] emissions in agriculture, e.g. CO2
    • Y02P60/21Dinitrogen oxide [N2O], e.g. using aquaponics, hydroponics or efficiency measures

Definitions

  • the present invention generally relates to a plant cultivation system and, more particularly, to a plant soilless culture system.
  • plants are planted in the soil and in an atmospheric environment.
  • the growth of plants in this case is greatly affected by the external environment, especially in the case of harsh external environment, the growth of plants may be stopped or damaged.
  • the plant In the existing soilless culture system, the plant is always in a position during the cultivation process, so it must be removed after the plant is fully mature, and the space and time utilization rate is low.
  • the nutrient solution circulation system and the air circulation system are very complicated, resulting in a high cost of the entire system.
  • current soilless cultivation systems usually occupy a large area and are not conducive to use in small spaces.
  • a first aspect of the invention provides a plant soilless culture system comprising:
  • a container having an enclosed space inside the container, the enclosed space including a cultivation area
  • the cultivation area comprises a germination and seedling growth zone and a cultivation and harvesting zone;
  • the cultivation zone comprises at least one carriage system, each carriage system being provided with at least one shelf for placing components capable of containing a cultivation substrate in which the plants are placed.
  • the germination and seedling growth zone comprises a germination zone and a seedling growth zone.
  • the culture and harvesting zone comprises a culture zone and a harvest zone, wherein the culture zone is interposed between the harvest zones.
  • the growth period of the plant in the culture zone is the same as the growth cycle in the harvest zone.
  • the germination zone is an opaque box having a heater therein.
  • a preferred embodiment of the first aspect of the invention wherein the germination and seedling growth zone is provided with at least one carriage system, and wherein the component of the germination and seedling growth zone capable of containing the cultivation substrate is a tray.
  • a preferred embodiment of the first aspect of the invention wherein the culture and harvesting zone is provided with at least one carriage system, and wherein the component of the cultivation and harvesting zone capable of containing the cultivation substrate is a culture tank.
  • the enclosed space further comprises a front zone.
  • the front zone and the cultivation zone are hermetically spaced apart from one another.
  • a preferred embodiment of the first aspect of the invention wherein the front zone comprises a refrigeration device.
  • the front zone comprises an air purifier and a sterilizing device.
  • a table area is disposed in the front zone or the cultivation zone.
  • the work area is provided with a pool and a stretchable faucet.
  • the plant soilless culture system further comprises an air circulation system, the air circulation system being disposed in the cultivation area.
  • the air circulation system comprises a HVAC (Heating Ventilation Air Conditioning), an air supply fan and a circulation piping system, the HVAC and the air supply
  • the fan is in communication, and the circulation is connected to the HVAC by a piping system.
  • the circulation pipe system includes any one of the following three types:
  • circulation piping system further comprises at least one second port, the at least one second port being located at the top center of the container.
  • the circulation piping system comprises a)
  • the circulation piping system comprises a plurality of wall tubes disposed on the opposite side walls, and
  • the plurality of first ports are a plurality of apertures disposed in the plurality of wall tubes and in fluid communication with the cultivation zone.
  • a preferred embodiment of the first aspect of the invention, wherein the plurality of wall tubes comprises at least one vertical extension and at least one horizontal extension.
  • the circulation piping system includes b)
  • the circulation piping system includes at least one side wall extension portion disposed on the opposite side walls And the at least one sidewall extension is in fluid communication with the plurality of first ports of the bottom upper surface of the container.
  • the plurality of fans are respectively spaced apart from a respective one of the opposite two side walls when the circulation piping system includes c) Angle setting.
  • a preferred embodiment of the first aspect of the invention wherein the plurality of fans twitch air from the cultivation zone to a respective one of the opposing two side walls, with air along the opposite A respective one of the two side walls flows upward into the plurality of first ports.
  • the plurality of first ports are air return ports
  • the at least one second port is an intake air The air enters the cultivation area via the at least one second port.
  • the plurality of first ports are air intakes, air enters the cultivation area via the plurality of first ports, and the at least one second port is back At the port, air exits the cultivation zone via the at least one second port.
  • the plant soilless culture system further comprises a fluid circulation system disposed in the cultivation area for providing nutrient solution to the plant.
  • the fluid circulation system comprises a water inlet system, a germination and seedling growth zone nutrient solution circulation system, and a culture and harvest zone nutrient solution circulation system.
  • the water inlet system includes a water inlet pipe, a flow control regulator, a water meter, a booster pump, and at least one water purification system, which are sequentially connected, the water inlet pipe Connect to an external water source.
  • the germination and seedling growth zone nutrient solution circulation system provides a nutrient solution for the germination and seedling growth zone, comprising: a germination and seedling growth zone water tank, a plurality of germination and a nutrient trough in the seedling growth zone, a germination and seedling growth zone pressure pump, at least one germination and seedling growth zone fluid delivery conduit, at least one set of germination and seedling growth zone fluid introduction conduits, and at least one germination and seedling growth zone fluid extraction conduit,
  • the water inlet system delivers water to the germination and seedling growth zone water tank
  • the germination and seedling growth zone water tank is connected to the plurality of germination and seedling growth zone nutrient tanks, the plurality of germination and seedlings
  • the nutrient trough of the growth zone transports nutrients to the water tank of the germination and seedling growth zone to form a nutrient solution in the water tank of the germination and seedling growth zone;
  • the germination and seedling growth zone pressure pump pumps nutrient solution in the germination and seedling growth zone water tank to the at least one germination and seedling growth zone fluid delivery conduit, the at least one germination and seedling growth zone fluid a delivery conduit in communication with the at least one set of germination and seedling growth zone fluid introduction conduits for delivering nutrient solution to the at least one set of germination and seedling growth zone fluid introduction conduits;
  • the at least one set of germination and seedling growth zone fluid introduction conduits introduce nutrient solution into the component containing the cultivation substrate, and the at least one germination and seedling growth zone fluid extraction conduit will flow out from the component containing the cultivation substrate Nutrient fluid is drawn to the water tank of the germination and seedling growth zone.
  • the germination and seedling growth zone nutrient solution circulation system further comprises a germination and seedling growth zone fluid output conduit, the at least one germination and seedling growth zone fluid extraction conduit and The germination and the seedling growth zone fluid communication conduit are connected, the germination and seedling growth zone fluid output conduit is connected to the germination and seedling growth zone water tank, and the nutrient for withdrawing the at least one germination and seedling growth zone fluid out of the pipeline The liquid is output to the water tank of the germination and seedling growth zone.
  • the germination and seedling growth zone nutrient tank comprises a tank containing a substance capable of lowering the pH of the nutrient solution.
  • the nutrient solution in the germination and seedling growth zone nutrient solution circulation system, is continuously circulated, periodically circulated or irregularly circulated.
  • the culture and harvesting zone nutrient solution circulation system provides nutrient solution for the culture and harvesting zone, comprising: a culture and harvesting zone water tank, a plurality of culture and harvesting zone nutrition a tank, a culture and harvesting zone, a culture and harvesting zone pressure pump, a culture and harvesting zone fluid delivery conduit, at least one row of culture and harvesting zone fluid introduction conduits, and at least one culture and harvesting zone fluid outlet tank,
  • the water inlet system delivers water to the culture and harvesting zone water tank
  • the culture and harvesting zone water tank is connected to the plurality of culture and harvesting zone nutrient tanks, the plurality of culture and harvesting zone nutrients
  • the trough delivers nutrients to the culture and harvesting zone water tank to form a nutrient solution in the culture and harvesting zone water tank;
  • the culture and harvesting zone pressure pump pumps nutrient solution in the culture and harvesting zone water tank to the culture and harvesting zone fluid delivery conduit, the culture and harvesting zone fluid delivery conduit and at least one row of culture and The harvest zone fluid introduction conduits are in communication to deliver nutrient solution to the at least one row of culture and harvest zone fluid introduction conduits;
  • the at least one row of culture and harvesting zone fluid introduction conduits introduce nutrient solution into the component containing the cultivation substrate
  • the at least one culture and harvesting zone fluid extraction conduit is below one end of the component containing the cultivation substrate to extract nutrient solution flowing from the component containing the cultivation substrate to the culture and harvesting zone water tank.
  • the culture and harvest zone nutrient tank comprises a tank containing a substance capable of lowering the pH of the nutrient solution.
  • the nutrient solution is continuously circulated, periodically circulated or irregularly circulated in the culture and harvesting zone nutrient solution circulation system.
  • an illumination system there is further included an illumination system.
  • a preferred embodiment of the first aspect of the invention wherein the illumination system is disposed above the components of the cultivation substrate.
  • the distance between the illumination system and the plant is adjustable.
  • At least one of the germination and seedling growth zone pressure pump and the culture and harvesting zone pressure pump are turned on before the illumination system is turned on for 30 minutes, and It is turned off after the illumination system is turned off for 30 minutes.
  • the container has a top, a bottom, and four side walls, one of which is provided with a door.
  • the upper surface of the bottom portion is V-shaped in cross section.
  • a preferred embodiment of the first aspect of the invention wherein the body of the top, the body of the bottom, and the body of the four side walls are each made of steel.
  • the lower surface of the body of the bottom is attached with a layer of insulating material
  • the upper surface of the body of the bottom is provided with a concrete layer
  • the upper surface of the concrete layer Covered with floor.
  • the lower surface of the body of the top is attached with a layer of insulating material, and the lower surface of the layer of insulating material is attached with a separating plate.
  • the side of the body of the four side walls facing the interior of the container is attached with a layer of insulating material, and the layer of the layer of insulating material facing the interior of the container One side is attached with a spacer.
  • the structure of the separator is a sandwich structure, which in turn is a steel sheet, a foam layer and a steel sheet.
  • a preferred embodiment of the first aspect of the invention wherein the plant soilless culture system comprises a monitoring system and a control system.
  • the monitoring system includes, but is not limited to, an air temperature sensor, a humidity sensor, a CO2 level sensor, a liquid temperature sensor, a pH sensor, a dissolved oxygen sensor.
  • control system comprises one or more controllers.
  • a preferred embodiment of the first aspect of the invention, wherein the cultivation substrate is sponge, rock wool, ceramsite, coco, perlite or vermiculite.
  • a preferred embodiment of the first aspect of the invention wherein the plant is a green leafy vegetable.
  • a second aspect of the present invention provides a plant soilless culture system comprising: a container having an enclosed space inside the container, the closed space including a cultivation area; and an air circulation system in which the air circulation system is disposed In space,
  • the air circulation system comprises a HVAC system HVAC, an air supply fan and a circulation piping system
  • the HVAC is in communication with the air supply fan
  • the circulation piping system is in communication with the HVAC
  • the circulation pipe system includes any one of the following three types:
  • circulation piping system further comprises at least one second port, the at least one second port being located at the top center of the container.
  • the circulation piping system includes a)
  • the circulation piping system includes a plurality of wall tubes disposed on the opposite side walls, and
  • the plurality of first ports are a plurality of apertures disposed in the plurality of wall tubes and in fluid communication with the cultivation zone.
  • a preferred embodiment of the second aspect of the invention, wherein the plurality of wall tubes comprises at least one vertical extension and at least one horizontal extension.
  • the circulation piping system comprises b)
  • the circulation piping system includes at least one side wall extension portion disposed on the opposite side walls And the at least one sidewall extension is in fluid communication with the plurality of first ports of the bottom upper surface of the container.
  • the circulation piping system comprises c
  • the plurality of fans are respectively spaced apart from a corresponding one of the opposite two side walls Angle setting.
  • the plurality of fans twitch air from the cultivation zone to a respective one of the opposite two side walls, causing air along the opposite A respective one of the two side walls flows upward into the plurality of first ports.
  • the plurality of first ports are air return ports
  • the at least one second port is an air intake The air enters the cultivation area via the at least one second port.
  • the plurality of first ports are air intakes, air enters the cultivation area via the plurality of first ports, and the at least one second port is back At the port, air exits the cultivation zone via the at least one second port.
  • the cultivation area comprises a germination and seedling growth zone and a culture and harvesting zone.
  • the germination and seedling growth zone comprises a germination zone and a seedling growth zone.
  • the culture and harvesting zone comprises a culture zone and a harvest zone, wherein the culture zone is interposed between the harvest zones.
  • the growth period of the plant in the culture zone is the same as the growth cycle in the harvest zone.
  • the germination zone is an opaque box having a heater therein.
  • the germination and seedling growth zone is provided with at least one carriage system, and wherein the component of the germination and seedling growth zone capable of accommodating the cultivation substrate is a tray.
  • the culture and harvesting zone is provided with at least one carriage system, and wherein the component of the cultivation and harvesting zone capable of containing the cultivation substrate is a culture tank.
  • the enclosed space further comprises a front zone.
  • the front zone and the cultivation zone are hermetically spaced apart from one another.
  • the front zone comprises a refrigeration device.
  • the front zone comprises an air purifier and a sterilizing device.
  • a table area is disposed in the front zone or the cultivation zone.
  • the work area is provided with a pool and a stretchable faucet.
  • the plant soilless culture system further comprises a fluid circulation system disposed in the cultivation area for providing nutrient solution to the plant.
  • the fluid circulation system comprises a water inlet system, a germination and seedling growth zone nutrient solution circulation system, and a culture and harvest zone nutrient solution circulation system.
  • the water inlet system includes a water inlet pipe, a flow control regulator, a water meter, a booster pump, and at least one water purification system, which are sequentially connected, the water inlet pipe Connect to an external water source.
  • the germination and seedling growth zone nutrient solution circulation system provides nutrient solution for the germination and seedling growth zone, comprising: a germination and seedling growth zone water tank, a plurality of germination and a nutrient trough in the seedling growth zone, a germination and seedling growth zone pressure pump, at least one germination and seedling growth zone fluid delivery conduit, at least one set of germination and seedling growth zone fluid introduction conduits, and at least one germination and seedling growth zone fluid extraction conduit,
  • the water inlet system delivers water to the germination and seedling growth zone water tank
  • the germination and seedling growth zone water tank is connected to the plurality of germination and seedling growth zone nutrient tanks, the plurality of germination and seedlings
  • the nutrient trough of the growth zone transports nutrients to the water tank of the germination and seedling growth zone to form a nutrient solution in the water tank of the germination and seedling growth zone;
  • the germination and seedling growth zone pressure pump pumps nutrient solution in the germination and seedling growth zone water tank to the at least one germination and seedling growth zone fluid delivery conduit, the at least one germination and seedling growth zone fluid a delivery conduit in communication with the at least one set of germination and seedling growth zone fluid introduction conduits for delivering nutrient solution to the at least one set of germination and seedling growth zone fluid introduction conduits;
  • the at least one set of germination and seedling growth zone fluid introduction conduits introduce nutrient solution into the component containing the cultivation substrate, and the at least one germination and seedling growth zone fluid extraction conduit will flow out from the component containing the cultivation substrate Nutrient fluid is drawn to the water tank of the germination and seedling growth zone.
  • the germination and seedling growth zone nutrient solution circulation system further comprises a germination and seedling growth zone fluid output conduit, and the at least one germination and seedling growth zone fluid extraction conduit
  • the germination and the seedling growth zone fluid communication conduit are connected, the germination and seedling growth zone fluid output conduit is connected to the germination and seedling growth zone water tank, and the nutrient for withdrawing the at least one germination and seedling growth zone fluid out of the pipeline
  • the liquid is output to the water tank of the germination and seedling growth zone.
  • the germination and seedling growth zone nutrient tank comprises a tank containing a substance capable of lowering the pH of the nutrient solution.
  • the nutrient solution in the germination and seedling growth zone nutrient solution circulation system, is continuously circulated, periodically circulated or irregularly circulated.
  • the culture and harvesting zone nutrient solution circulation system provides nutrient solution for the culture and harvesting zone, comprising: a culture and harvesting zone water tank, a plurality of culture and harvesting zone nutrition a tank, a culture and harvesting zone pressure pump, a culture and harvesting zone fluid delivery conduit, at least one row of culture and harvesting zone fluid introduction conduits, and at least one culture and harvesting zone fluid outlet tank,
  • the water inlet system delivers water to the culture and harvesting zone water tank
  • the culture and harvesting zone water tank is connected to the plurality of culture and harvesting zone nutrient tanks, the plurality of culture and harvesting zone nutrients
  • the trough delivers nutrients to the culture and harvesting zone water tank to form a nutrient solution in the culture and harvesting zone water tank;
  • the culture and harvesting zone pressure pump pumps nutrient solution in the culture and harvesting zone water tank to the culture and harvesting zone fluid delivery conduit, the culture and harvesting zone fluid delivery conduit and at least one row of culture and The harvest zone fluid introduction conduits are in communication to deliver nutrient solution to the at least one row of culture and harvest zone fluid introduction conduits;
  • the at least one row of culture and harvesting zone fluid introduction conduits introduce nutrient solution into the component containing the cultivation substrate
  • the at least one culture and harvesting zone fluid extraction conduit is below one end of the component containing the cultivation substrate to extract nutrient solution flowing from the component containing the cultivation substrate to the culture and harvesting zone water tank.
  • the culture and harvesting zone nutrient tank comprises a tank containing a substance capable of lowering the pH of the nutrient solution.
  • the nutrient solution is continuously circulated, periodically circulated, or irregularly circulated in the nutrient circulatory system of the culture and harvesting zone.
  • an illumination system there is further included an illumination system.
  • the illumination system is disposed above the components of the cultivation substrate.
  • the distance between the illumination system and the plant is adjustable.
  • the at least one of the germination and seedling growth zone pressure pump and the culture and harvesting zone pressure pump are turned on 30 minutes before the illumination system is turned on, and It is turned off after the illumination system is turned off for 30 minutes.
  • a third aspect of the invention provides a plant soilless culture system comprising:
  • one side of the container is provided with at least one fan, and one side opposite the side has at least one hole.
  • a preferred embodiment of the third aspect of the invention wherein the at least one fan pulls outside air through the at least one aperture toward the space.
  • the side portion of the at least one fan also has at least one aperture.
  • the opposite one side is also provided with at least one fan.
  • the blowing direction of the fan is variable.
  • the space comprises a functional component zone and a cultivation zone, the functional component zone and the cultivation zone being spaced apart from each other, wherein the cultivation zone comprises at least one shelf, A component capable of accommodating the cultivation substrate is placed in at least one of the shelves, and the plants are placed in the cultivation substrate.
  • the component capable of accommodating the cultivation substrate is a tray.
  • the plant soilless culture system further comprises a fluid circulation system comprising a water tank, a plurality of nutrient tanks, a pressure pump, and a fluid flow conduit ,
  • the water tank is connected to the plurality of nutrient tanks, and the plurality of nutrient tanks transport nutrients to the water tank to form a nutrient solution in the water tank;
  • the pressure pump pumps nutrient solution in the water tank to the fluid flow conduit
  • the fluid flow conduit delivers nutrient solution to the component containing the cultivation substrate, and will receive the cultivation substrate from the nutrient solution
  • the nutrient solution flowing out of the component is led out to the water tank.
  • the nutrient tank includes a tank containing a substance capable of lowering the pH of the nutrient solution.
  • the shelf is provided with a fluid inlet port and a fluid discharge port.
  • a preferred embodiment of the third aspect of the invention wherein the fluid flow conduit is coupled to the fluid inlet port to deliver nutrient solution to the component containing the cultivation substrate;
  • the fluid flow conduit is further connected to the fluid discharge port, and the nutrient solution flows out from the component accommodating the cultivation substrate through the fluid discharge port, and is led out to the water tank through the fluid flow conduit.
  • the plant soilless cultivation system further comprises an illumination system.
  • the distance between the illumination system and the plant is adjustable.
  • the pressure pump is turned on before the illumination system is turned on for 30 minutes, and is turned off after the illumination system is turned off for 30 minutes.
  • the container is a vertical cabinet.
  • the upper portion of the vertical cabinet is the cultivation area
  • the lower portion of the vertical cabinet is the functional component area
  • the cabinet comprises a door.
  • the door is made of glass.
  • the portion of the glass corresponding to the functional component region is sprayed with a metal powder.
  • the bottom of the vertical cabinet is provided with a plurality of wheels.
  • the shelf is provided with a slider such that the shelf can be pulled out of the container.
  • a preferred embodiment of the third aspect of the invention, wherein the cultivation substrate is sponge, rock wool, ceramsite, coco, perlite or vermiculite.
  • the container is provided with a wireless access module.
  • the plant cultivation system of the present invention by setting the division, it has been proved that the division multiplies the yield.
  • the plant cultivation system also optimizes the nutrient solution circulatory system and the air circulation system to provide the plant with an optimal growth environment in a cheaper and more efficient manner.
  • the illumination system of the plant cultivation system is adjustable to improve the light absorption of the plants. Further, the present invention provides a small plant cultivation system which can be conveniently used in a small space such as a restaurant, a home or the like.
  • FIG. 1 is an external perspective view of a container of a plant cultivation system in accordance with an embodiment of the present invention.
  • Figure 2 is a cross-sectional view of the container of Figure 1 taken along line A-A.
  • Figure 3 further shows a perspective view of the floor of Figure 2.
  • Figure 4 is a perspective view of the internal space of the container of Figure 1.
  • Figure 5 is a plan view of the internal space of Figure 4.
  • Figure 6 shows a block diagram of a water inlet system in accordance with one embodiment of the present invention.
  • Figure 7a is a perspective view showing a germination and seedling growth zone nutrient solution circulation system according to an embodiment of the present invention
  • Figure 7b is a front view showing a germination and seedling growth zone nutrient solution circulation system according to an embodiment of the present invention
  • 7c1 shows a side view of a germination and seedling growth zone nutrient solution circulation system according to an embodiment of the present invention
  • FIG. 7c2 shows another side view of a germination and seedling growth zone nutrient solution circulation system according to an embodiment of the present invention.
  • Figure 7d shows a top view of a germination and seedling growth zone nutrient solution circulatory system in accordance with one embodiment of the present invention.
  • Figure 8a shows a perspective view of a culture and harvesting zone nutrient solution circulation system in accordance with one embodiment of the present invention
  • Figure 8b shows an enlarged schematic view of zone K in Figure 8a
  • Figure 8c shows an enlarged schematic view of zone J in Figure 8a
  • Figure 8d shows a side view of a portion of Figure 8a.
  • FIG. 9 shows a schematic diagram of an air circulation system in accordance with one embodiment of the present invention.
  • Figure 10 shows a schematic view of an air circulation system in accordance with another embodiment of the present invention.
  • Figure 11 shows a schematic view of an air circulation system in accordance with yet another embodiment of the present invention.
  • Figure 12 shows a front view of a plant cultivation system in accordance with another embodiment of the present invention.
  • Figure 13 shows a perspective view of the plant cultivation system of Figure 12.
  • Figure 14a shows a top view of the shelf shown in Figure 13.
  • Figure 14b shows a bottom view of the shelf shown in Figure 13.
  • Figure 15 shows a detailed schematic of the bottom of the container of the plant cultivation system of Figure 12.
  • Figure 16a shows a schematic view of one embodiment of a fluid delivery conduit shared by the two carrier systems shown in Figure 8a.
  • Figure 16b shows a schematic view of another embodiment of a fluid delivery conduit shared by the two carrier systems shown in Figure 8a.
  • FIG. 1 is an external perspective view of a container 10 of a plant cultivation system in accordance with an embodiment of the present invention.
  • the container 10 is generally in the shape of a rectangular parallelepiped, but it should be understood that other suitable shapes are also possible, such as a cube.
  • the container 10 is a container, preferably, the entire container has no external protruding parts, the container as a whole conforms to shipping standards, which ensures maximum protection during transportation, handling and maintenance.
  • the container 10 includes a top portion 101, a bottom portion 102, and four side walls 103.
  • a door 104 is provided in one of the side walls.
  • FIG. 2 is a cross-sectional view of the container 10 of Figure 1 taken along line A-A.
  • This FIG. 2 shows the specific structure of the top 101, the bottom 102, and the left and right side walls 103 of the container 10.
  • the top portion 101, the bottom portion 102, and the body 3 of the side wall 103 are made of steel to provide structural strength.
  • a plurality of other layers are also disposed in the top 101, bottom 102, and side walls 103.
  • the lower surface of the main steel sheet of the bottom portion 102 may be sprayed with a 30 mm thick layer of insulating material 1 which functions to block heat transfer, which may be polyurethane (PU).
  • insulating material 1 which functions to block heat transfer
  • PU polyurethane
  • the upper surface of the main steel sheet of the bottom portion 102 can be cast with a concrete layer 4 of 25 mm thick. Concrete improves durability and extends service life, ensuring robustness during transportation and daily operations. It should be understood that the thickness of the concrete layer is not limited thereto, and other methods may be employed to provide other materials capable of improving durability.
  • the upper surface of the concrete layer is covered with a 1.8 mm thick polyvinyl chloride (PVC) floor 5 which extends upwardly to a distance of the two side walls.
  • PVC polyvinyl chloride
  • the PVC material can be non-slip and waterproof, and can be non-white such as blue to prevent reflection and prevent light from being emitted from the light source to enter the eyes of the worker.
  • the upper portion of the concrete layer may be covered with other materials, and the thickness of the material is not limited to 1.8 mm.
  • the lower surface of the top portion 101 i.e., the surface facing the interior of the container 10) and the inner surfaces of the two side walls 103 (i.e., the surface facing the interior of the container 10) are sprayed with a 30 mm thick layer of insulating material.
  • the insulation material can be polyurethane (PU). It should be understood that the thickness of the insulating material layer is not limited thereto, and the insulating material is not limited to polyurethane, and other suitable materials may be disposed by other suitable methods.
  • the top portion 101 and the side walls 103 are also respectively provided with a partitioning plate 2.
  • the separator is a sandwich structure, that is, a 0.5 mm thick galvanized steel sheet + a 49 mm thick polyurethane foam layer + a 0.5 mm thick galvanized steel sheet. It should be understood that the thickness and form of the insulation panel are not limited thereto, and other suitable materials and forms are possible.
  • the spacer can further provide thermal isolation and other components can be mounted on the spacer. In addition, a part of the light emitted by the light source can also be reflected back to the inner space of the container 10 by the isolation plate to improve the utilization of light.
  • FIG. 2 shows only the structure of the two side walls, it should be understood that the structure of the other two side walls is the same as the side wall structure shown in FIG. 2.
  • the shape of the PVC floor is also shown in FIG.
  • the PVC floor has a V-shaped cross section, that is, both sides are high and the middle is low.
  • An advantage of the inclined floor is that when water leakage occurs inside the container 10, water accumulates in the inclined area and is discharged to the outside of the container 10 through the drainage system, thereby preventing water from accumulating inside the container 10.
  • the angle between the two inclined portions of the V-shaped floor and the horizontal plane is preferably 1 to 2°.
  • Figure 3 further shows a perspective view of the floor. As shown in Figure 3, in the cultivation area 202 (described below), the floor is slanted. It should be understood that in the front zone 201 (described below), the floor may also be sloped.
  • FIG. 4 is a perspective view of the interior space 20 of the container 10 of FIG.
  • the inner space 20 is divided into two parts in the length direction: a front area 201 and a cultivation area 202, wherein the cultivation area 202 includes a work area 2021, a germination and seedling growth area 2022, and a cultivation and harvesting area. 2023, these areas are detailed in FIG. 5, and FIG. 5 is a plan view of the internal space 20 of FIG.
  • the upper right portion of the cultivation area is the work area 2021
  • the lower right portion is the germination and seedling growth area 2022
  • the left half is the cultivation and harvest area 2023.
  • the space of the front zone 201 is relatively small relative to the cultivation zone 202, and the front zone 201 and the cultivation zone 202 are relatively independent.
  • the front zone 201 provides refrigeration and detoxification functions.
  • a freezer device such as a refrigerator, may be provided in the front area 201 for storing the harvested plants.
  • the front zone 201 also includes an air purifier, such as a UV-C air purifier, and the front zone 201 also includes a sterilization device.
  • harmful substances such as pests, pollutants, dust, bacteria, viruses, microorganisms, and other airborne particles can be removed, so that the risk of the cultivation area 202 being contaminated by these harmful substances is minimized. It is possible to ensure the yield of plants.
  • the cultivation area 202 will be described in detail below.
  • the cultivation area 202 and the front area 201 are hermetically spaced apart, for example, the cultivation area 202 and the front area 201 are separated by a door which can seal the cultivation area, and the cultivation area 202 is set. It is thought to provide space for plant growth.
  • the work area 2021 of the cultivation area 202 provides a platform for preparation of plants such as vegetables before growth and related processing work after harvesting of plants such as vegetables.
  • the work area 2021 is provided with a pool WT where the worker can clean the appliance, dispense nutrient solution, select seeds, clean and/or prepare plants, complete basic maintenance, and the like.
  • a water purifier, a booster pump, etc. may be provided (which will be attached later) The figure shows) where the effects of the water purifier and the booster pump and the like will be explained below.
  • the work area may also be disposed in the front area and may include other components.
  • a seeding operation can be performed in the work area 2021.
  • the seeding operation is carried out by placing the seeds in a cultivation substrate and then watering the seeds using the above-described stretchable faucet.
  • the cultivation substrate may be sponge, rock wool, ceramsite (LECA), coconut coir, perlite, vermiculite or the like. Seeding in the work area is convenient for handling the cultivation substrate.
  • the relative position of the table area 2021 to the germination and seedling growth zone 2022, and the cultivation and harvesting zone 2023 preferably enables a worker to move from the workbench zone 2021 to the germination and seedling growth zone 2022 in a single direction, as well as the cultivation and harvesting zone. 2023, saving labor.
  • the germination and seedling growth zone 2022 is provided with a carriage system 2022RS.
  • the bracket system has four shelves 2022S, and trays are placed on the lower three shelves, and the culture medium is placed in these trays.
  • the tray is not shown in this figure.
  • the top shelf is not provided with a tray, only the lighting system is provided in the lower part of the shelf, and the lighting system will be described below.
  • the shelf of the uppermost layer may be omitted and the illumination system is otherwise secured to the shelving system.
  • the number of cradle systems may be greater than one and the number of shelves in each cradle system is not limited to that shown.
  • the spacing between the shelves is adjustable so that the number of shelves in a rack system is variable.
  • the germination and seedling growth zone 2022 can include a germination zone 2022a and a seedling growth zone 2022b for germination and seedling growth of plants such as vegetables. As schematically shown in Fig. 4, the germination zone 2022a is below the seedling growth zone 2022b, but it should be understood that the relative positions of the germination zone 2022a and the seedling growth zone 2022b are not limited thereto. In the germination zone 2022a, the seeds do not require illumination and require higher temperatures and humidity than the seedling growth zones as well as the culture and harvest zones.
  • the germination zone 2022a can be an opaque box in which a heater is located. The development of the bud region 2022a and the seedling growth region 2022b is distinguished because the conditions required for the plants during these two growth processes are different.
  • the cultivation substrate is moved to the seedling growth zone 2022b, and in the seedling growth zone 2022b, plants such as vegetables are grown into seedlings.
  • the electrical conductivity EC of the nutrient solution of the seedling growth zone 2022b may be 50% to 75% of the conductivity of the nutrient solution in the culture and harvesting zone 2023.
  • the culture and harvesting area 2023 is provided with four carriage systems 2023RS.
  • Each rack system 2023RS has five shelves 2023S. It should be understood that other suitable numbers of bracket systems and shelves are also possible.
  • a plurality of elongated culture tanks are arranged side by side in the upper portion of the lower four-layer shelf, and the culture medium is placed in these culture tanks.
  • the culture tank is shown in Figure 4 only on the shelf of one of the carriage systems.
  • the uppermost shelf is not provided with a culture tank, and only the lighting system is provided at the lower part of the shelf, and the illumination system will be described below. It should be understood that the shelf of the uppermost layer may be omitted and the illumination system is otherwise secured to the shelving system.
  • the spacing between the shelves is adjustable so that the number of shelves in a rack system is variable.
  • Each culture tank can be referred to as a culture and harvesting zone, and all of the culture tanks collectively comprise a total culture and harvesting zone 2023.
  • the culture tank in one of the shelves is schematically illustrated in Fig. 4, and the culture and harvesting area includes a culture zone 2023a and a harvesting zone 2023b for cultivating the seedlings into mature plants. It should be understood that for other culture tanks in other shelves, the culture and harvesting zones also include a culture zone 2023a and a harvest zone 2023b.
  • the seedlings grown in the seedling growth zone 2022b are first moved to the culture zone 2023a, and after being cultured for a period of time in the culture zone 2023a, the cultivation substrate is transferred to the harvesting zone 2023b, and the plants such as vegetables can be harvested after being regenerated for a long time in the harvesting zone 2023b. .
  • the growth period of the plants in the culture zone 2023a and the harvest zone 2023b may be the same, as shown in Figure 4, with the culture zone 2023a interposed between the harvest zones 2023b.
  • the number of plants in the culture zone is the same as the number of plants in the harvest zone.
  • the relative position of the culture zone and the harvest zone allows the worker to conveniently move the plants in the culture zone to the harvest zone, thereby saving manpower.
  • Introducing a nursery zone can increase yield compared to systems that include only seedling zones and finishing zones.
  • germination zone seedling growth zone, culture zone and harvesting zone, various stages of plant growth can be continuously performed, and subsequent plants can be introduced without gaps, thereby achieving uninterrupted planting and harvesting, and improving The efficiency.
  • the work area may be disposed in the front zone instead of the cultivation zone.
  • FIG. 6 through 8 show schematic views of a fluid circulation system in accordance with one embodiment of the present invention.
  • a fluid circulation system includes three subsystems: an influent system, a germination and seedling growth zone nutrient solution circulation system, and a culture and harvest zone nutrient solution circulation system.
  • the above three subsystems are respectively shown by Figs. 6 to 8 below.
  • FIG. 6 shows a block diagram of a water inlet system 60 in accordance with one embodiment of the present invention.
  • the water inlet system 60 can be disposed below the pool WT of the work area 2021.
  • the water inlet system includes an inlet pipe WI connected to an external water source, a flow control regulator V, a water meter M, a booster pump P, and at least one water purification system WP (two are shown).
  • the flow control regulator can be a manual inlet flow valve that controls the inflow of water, ensuring control of manual override and preventing any potential water delivery problems.
  • the water meter can be any inlet water meter that provides the correct information about the use of water.
  • the booster pump can be a 100W pressure sensing automatic booster pump to ensure that the internal delivery line is accurately pressurized to deliver water where it is needed.
  • the water purification system can be a 25 micron PP mesh carbon filter and a 5 micron PP mesh precipitate filter. The water purification system ensures that the quality of the water used in the internal system is maintained at an acceptable level of safety against exposure to aquatic contaminants and chemicals.
  • the water flowing from the water purification system flows to the water tank in the germination and seedling growth zone 2022 and the water tank in the cultivation and harvesting zone 2023 via a wall-mounted pipe disposed below the floor.
  • the in-wall pipe is a water-conveying polypropylene pipe embedded in the floor with an external water delivery quick access.
  • FIG. 7a is a perspective view showing a germination and seedling growth zone nutrient solution circulation system according to an embodiment of the present invention
  • Figure 7b is a front view showing a germination and seedling growth zone nutrient solution circulation system according to an embodiment of the present invention
  • 7c1 shows a side view of a germination and seedling growth zone nutrient solution circulation system according to an embodiment of the present invention
  • FIG. 7b is a perspective view showing a germination and seedling growth zone nutrient solution circulation system according to an embodiment of the present invention
  • 7c1 shows a side view of a germination and seedling growth zone nutrient solution circulation system according to an embodiment of the present invention
  • FIG. 7c2 shows another side view of a germination and seedling growth zone nutrient solution circulation system according to an embodiment of the present invention.
  • Figure 7d shows a top view of a germination and seedling growth zone nutrient solution circulatory system in accordance with one embodiment of the present invention.
  • the germination and seedling growth zone nutrient solution circulatory system shown in Fig. 7a includes a water tank 701, a plurality of nutrient tanks 702, a pressure pump (not shown), a plurality of fluid delivery conduits 703, and a plurality of sets of fluid introduction conduits 704.
  • one fluid delivery conduit 703, two fluid introduction conduits 704, and two fluid extraction conduits 705 are provided for each shelf.
  • the number of fluid introduction conduits 704 is related to the number of trays on the shelf, as shown in Figure 7a, with each row of trays on each shelf providing a set of fluid introduction conduits 704.
  • Each fluid delivery conduit 703 is divided into two branches at each layer, each connected to a group Fluid is introduced into conduit 704.
  • Each set of fluid introduction conduits may include at least one thin tube disposed above the tray of the respective layer.
  • the fluid take-off conduit is in communication with the fluid output conduit.
  • the advantage of providing the fluid output conduit 706 is that a plurality of fluid outlet conduits can be in communication therewith, i.e., through a component such that the nutrient solution flows back to the water tank without having multiple fluid extraction conduits respectively connected to the water tank, which has a multi-layer shelf In the case of a multi-row tray, it is particularly advantageous.
  • the bottom of the tray is provided with a hole, and the remaining nutrient solution absorbed by the plant flows from the hole into the fluid take-out pipe 705, the fluid take-out pipe 705 communicates with the fluid output pipe 706, and the nutrient solution flows back to the water tank 701 through the fluid output pipe 706. . Thereafter, the nutrient solution is circulated in the above path, that is, the fluid is pumped from the water tank to the fluid transfer pipe, and the fluid introduction pipe sends the nutrient solution conveyed by the fluid transfer pipe to the tray to be absorbed by the plant, and the remaining nutrient solution flows out from the tray to the fluid.
  • the pipeline is led out, and the nutrient solution flowing out of the fluid outlet pipe flows to the fluid output pipe, and flows back to the water tank through the fluid output pipe.
  • the nutrient solution in the germination and seedling growth zone nutrient solution circulation system can be circulated continuously or periodically/irregularly.
  • the circulation of the nutrient solution can facilitate the dissolution of the air, inhibit the growth of harmful substances, and the like, and is advantageous for plant growth, relative to the cultivation system in which the nutrient solution is stationary.
  • a float valve is disposed in the water tank 701 to automatically control the amount of water in the water tank 701.
  • the float valve opens and the water inlet system 60 delivers water to the water tank 701.
  • the EC sensor in the water tank 701 constantly senses the EC value in the water tank 701, and when the EC in the water tank is less than the lower limit value, the nutrient tank starts to transport nutrients to the water tank 701. This EC lower limit is different for different plants.
  • a pH sensor, a water temperature sensor, and a dissolved oxygen sensor may be disposed in the water tank 701.
  • the pH sensor senses the pH of the nutrient solution in the water tank 701, and if the pH of the nutrient solution in the water tank 701 exceeds a predetermined value or an upper limit of a predetermined range, the nutrient tank 702 delivers a pH-lowering acidic substance to the water tank 701, so that The pH of the nutrient solution is lowered to a predetermined value or a lower limit of a predetermined range. For example, when the pH reaches 6.5 or higher, the nutrient tank 702 delivers a pH-lowering acidic substance to the water tank 701, so that the pH of the nutrient solution is lowered to 6.5 or less.
  • the water temperature sensor senses the temperature of the nutrient solution in the water tank 701, and a cooler may be disposed beside the water tank 701. When the water temperature sensor senses that the temperature of the nutrient solution in the water tank 701 is too high, the cooler may reduce the temperature in the water tank 701. The temperature of the nutrient solution.
  • the dissolved oxygen sensor senses the dissolved oxygen content of the nutrient solution in the water tank 701, and when the dissolved oxygen content is too low, air can be added to the water tank 701 by the air pump.
  • the nutrient trough 702 shown in Figures 7a and 7b comprises a total of three troughs, two of which contain nutrients for plant growth, which are opened when nutrients need to be delivered to the tank 701, placing nutrients in The different tanks are for preventing different nutrients from reacting in the same tank; and the other tank is equipped with the acidic substance for lowering the pH described above, when the pH sensor senses that the pH of the nutrient solution in the water tank 701 is too high, The slot opens. It should be understood that the number of nutrient tanks 702 is not necessarily three.
  • fluid output conduits may not be provided; for example, only one fluid delivery conduit may be provided in one carrier system, and then the fluid delivery conduit branches off at each shelf; and for example fluid The delivery conduit can be integral with the plurality of sets of fluid introduction conduits.
  • Figure 8a shows a perspective view of a culture and harvesting zone nutrient solution circulation system in accordance with one embodiment of the present invention
  • Figure 8b shows an enlarged schematic view of zone K in Figure 8a
  • Figure 8c shows an enlarged schematic view of zone J in Figure 8a
  • Figure 8d shows a side view of a portion of Figure 8a.
  • Two side-by-side bay systems are shown in Figure 8a, one of which is not shown for clarity.
  • the culture and harvesting zone nutrient solution circulatory system includes a water tank 801, a plurality of nutrient tanks 802, at least one pressure pump (not shown), a fluid delivery conduit 803, and a plurality of rows of fluid introduction conduits 804. And a plurality of fluids flow out of the tank 805.
  • the two carrier systems share a water tank, a nutrient tank, and a pressure pump. Such a design is preferred to save parts. It should be understood, however, that the water tank, nutrient tank, and pressure pump can be provided separately for each of the bracket systems.
  • Figure 8c also shows that a valve V can be provided at the junction of each row of fluid introduction conduits 804 and fluid delivery conduits 803 so that the nutrient fluid can be controlled for which tanks on the shelf.
  • a valve V can be provided at the junction of each row of fluid introduction conduits 804 and fluid delivery conduits 803 so that the nutrient fluid can be controlled for which tanks on the shelf.
  • Two or more side-by-side cradle systems may share a fluid delivery conduit 803 that includes a horizontal section and at least two vertical sections 1608 and 1609 in at least two vertical sections One end of each is connected to the pressure pump and placed in the water tank 801, and the other end is connected to the horizontal section, and the first valve 1601 is disposed on the horizontal section portion between the at least two vertical sections.
  • each of the two vertical sections is arranged with one-way valves 1602 and 1603, and the first valve 1601 is a manual valve.
  • two vertical sections of the fluid delivery conduit can supply water from the tank to a different rack system, respectively.
  • the vertical section on the other side can simultaneously supply water to two or more side by side bracket systems.
  • each of the two vertical sections is arranged with solenoid valves 1604, 1605 and flow sensors 1606, 1607 connected thereto, and the first valve 1601 of the horizontal section is also It is a solenoid valve.
  • the two solenoid valves of the vertical section are simultaneously open.
  • the flow sensor in the vertical section will detect a change in flow, signaling the associated electronic control unit to close the side vertical
  • a solenoid valve in the section opens the first valve in the horizontal section to allow fluid to be simultaneously supplied from the vertical section on the opposite side to the two side-by-side bracket systems.
  • Each row of fluid introduction conduits is directed to a shelf, wherein the number of fluid introduction conduits in a row of fluid introduction conduits corresponds to the number of culture vessels placed on each shelf.
  • a fluid outflow channel is disposed directly below one end of the culture tank placed on each shelf. Similar to the germination and seedling growth zone nutrient solution circulation system, only the water flowing from the water inlet system 60 is in the water tank 801 when the nutrient solution circulation system of the culture and harvesting area is just beginning to operate. At this time, the EC sensor provided in the water tank 801 is set. It is sensed that the EC in the water tank 801 is less than the lower limit value, and the nutrient tank 802 above the water tank 801 starts to transport nutrients to the water tank 801.
  • the nutrient-mixed water that is, the nutrient solution
  • Fluid delivery conduit 803 is then passed through fluid introduction conduit 804 to the culture tank on the shelf.
  • a fluid outflow tank 805 is disposed directly below one end of each layer of the culture tank, and the remaining nutrient solution absorbed by the plant flows from the culture tank to the fluid outflow tank 805, and then flows back from the fluid outflow tank 805 to the water tank 801.
  • the height of the culture tank at one end near the water tank is lower than the height of the other end, so that the nutrient solution can flow to the fluid outflow tank 805 after flowing in the culture tank.
  • the nutrient solution is circulated in the above path, that is, the nutrient solution is pumped from the water tank to the fluid delivery pipe, and then flows into the culture tank through the fluid introduction pipe, and the nutrient solution flowing out of the culture tank flows to the fluid outflow tank and finally flows back to the water tank.
  • Nutrient fluid circulation system in the culture and harvesting area The nutrient solution can be circulated all the time, or it can be cycled periodically or irregularly.
  • the circulation of the nutrient solution can facilitate the dissolution of the air, inhibit the growth of harmful substances, and the like, and is advantageous for plant growth, relative to the cultivation system in which the nutrient solution is stationary.
  • the arrangement of fluid outflow slots 805 is advantageous to avoid that each of the culture tanks requires a fluid output conduit to be connected to the water tank 801, thus simplifying the structure.
  • a float valve is disposed in the water tank 801 to automatically control the amount of water in the water tank 801.
  • the float valve opens and the water inlet system 60 delivers water to the water tank 801.
  • the EC sensor in the water tank 801 always senses the EC value in the water tank 801, and when the EC in the water tank is less than the lower limit value, the nutrient tank starts to deliver nutrients to the water tank 801. This EC lower limit is different for different plants.
  • a pH sensor, a water temperature sensor, and a dissolved oxygen sensor may be disposed in the water tank 801.
  • the pH sensor senses the pH of the nutrient solution in the water tank 801, and if the pH of the nutrient solution in the water tank 701 exceeds a predetermined value or an upper limit of a predetermined range, the nutrient tank 702 delivers a pH-lowering acidic substance to the water tank 701, so that The pH of the nutrient solution is lowered below a predetermined value or below a lower limit of the predetermined range. For example, when the pH reaches 6.5 or higher, the nutrient tank 702 delivers a pH-lowering acidic substance to the water tank 701, so that the pH of the nutrient solution is lowered to 6.5 or less.
  • the water temperature sensor senses the temperature of the nutrient solution in the water tank 801, and a cooler may be disposed beside the water tank 801. When the water temperature sensor senses that the temperature of the nutrient solution in the water tank 801 is too high, the cooler may reduce the temperature in the water tank 801. The temperature of the nutrient solution.
  • the dissolved oxygen sensor senses the dissolved oxygen content of the nutrient solution in the water tank 801, and when the dissolved oxygen content is too low, air can be added to the water tank 801 by the air pump.
  • the nutrient trough 802 shown in Figures 8a and 8b comprises a total of three troughs, two of which contain nutrients for plant growth, which are opened when nutrients need to be delivered to the tank 801,
  • the nutrients are placed in different tanks to prevent different nutrients from reacting in the same tank; and the other tank is filled with the acidic substance described above for lowering the pH, when the pH sensor senses the pH of the nutrient solution in the water tank 801 When high, the slot opens.
  • the number of nutrient tanks 802 is not necessarily three.
  • FIG. 9 shows a schematic diagram of an air circulation system 90 in accordance with one embodiment of the present invention.
  • an air supply fan (not shown) is provided, which may be in the side wall, which supplies the outside air to the inside of the container 10.
  • the air supply fan is in fluid communication with the HVAC to supply air to the HVAC.
  • the air supply fan can be placed with an air filter to filter out contaminants such as bacteria in the outside air.
  • the air circulation system 90 further includes a heating and ventilation air conditioning system (HVAC), a first ventilation duct 901a, a second ventilation duct 901b, a third ventilation duct 901c, a fourth ventilation duct 901d, a first controller 902a, and a second controller.
  • HVAC heating and ventilation air conditioning system
  • the first ventilation duct 901a, the second ventilation duct 901b, and the third ventilation duct 901c are all in fluid communication with the HVAC system, and the first ventilation duct 901a, the second ventilation duct 901b, and the third ventilation duct 901c are both connected to the fourth ventilation duct.
  • 901d is in fluid communication.
  • the first controller 902a is located at a junction of the first ventilation duct 901a and the fourth ventilation duct 901d
  • the second controller 902b is located at a junction of the second ventilation duct 901b and the fourth ventilation duct 901d
  • the third control The 902c is located at the junction of the third ventilation duct 901c and the fourth ventilation duct 901d.
  • the lower portion of the first ventilation duct 901a may have an open diffuser to communicate with the interior of the container 10.
  • the open grid can be distributed over the entire length of the venting duct such that air is distributed to the greatest extent throughout the internal system.
  • the open grid can be adjustable.
  • a plurality of wall tubes 903 (903b and 903c as shown) are disposed in the two side walls of the container 10, and the wall tubes may include at least one vertical extension and at least one horizontal extension.
  • These wall tubes have a plurality of holes H on the side facing the inside of the container 10, as can be clearly seen in the wall tube 903b (there are a plurality of holes in the surface of the two side walls facing the inside of the container, the holes can be combined with the walls The hole of the tube corresponds to).
  • the fourth ventilation duct is in fluid communication with the wall tubes.
  • the design of the wall tubes such that the position of the wall tubes is farther away from the fourth ventilation duct, the greater the air flow rate, the purpose of which can be achieved by the choice of the size of the holes and the cross-sectional area of the tubes.
  • the air circulation system 90 can provide at least a plurality of air circulation modes, which are described below.
  • the second controller 902b operates, and the HVAC passes the air supplied from the air supply fan to the wall pipe 903b in the side wall of the second ventilation duct 901b via the fourth ventilation duct 901d through the second ventilation duct 901b, the air Flows through the holes in the wall tube 903b to the inside of the container 10, and when the air flows to the other side wall, the wall tube 903c in the side wall enters through the hole of the wall tube 903c in the side wall, the third controller 902c Also working, air flows from the wall pipe 903c through the fourth ventilation duct 901d to the third ventilation duct 901c, and then returns to the HVAC to form an air circulation.
  • the third controller 902c operates, and the HVAC passes the air supplied from the air supply fan to the side wall of the third ventilation duct 901c through the third ventilation duct 901d through the third ventilation duct 901d.
  • the tube 903b, the second controller 902a also operates, air flows from the wall tube 903b through the fourth ventilation duct 901d to the second ventilation duct 901b, and then returns to the HVAC to form an air circulation.
  • the second controller 902b operates, and the HVAC passes the air supplied from the air supply fan to the wall pipe 903b in the side wall of the second ventilation duct 901b via the fourth ventilation duct 901d through the second ventilation duct 901b, the air Flows through the holes in the wall tube 903b to the inside of the container 10; at the same time, the third controller 903c operates, and the HVAC passes through the third ventilation duct 901c, and the air supplied from the air supply fan is sent to the vicinity through the fourth ventilation duct 901d.
  • the first controller 902a operates to blow the container 10 from the wall tube 903b and the wall tube 903c, respectively.
  • the internal air is drawn into the first ventilation duct 901a and then returned to the HVAC to form an air circulation.
  • the first controller 902a operates, and the HVAC pushes the air supplied from the air supply fan into the interior of the container 10 through the first ventilation duct 901a, and the air passes through the holes in the wall tube 903b and the wall tube 903c.
  • the second controller 902a and the third controller 903c are operated, and the air enters the second ventilation duct 901b and the third ventilation duct 901c from the wall pipe 903b and the wall pipe 903c via the fourth ventilation duct 901d, respectively, and then returns.
  • an air circulation is formed.
  • FIG. 10 shows a schematic diagram of an air circulation system 100 in accordance with another embodiment of the present invention. Similar to the air circulation system 90, for the air circulation system 100, it is also provided with an air supply fan (not shown), which may be on one side wall 103. The air supply fan supplies external air to the inside of the container 10. The air supply fan is in fluid communication with the HVAC to supply air to the HVAC. The fan can be placed with an air filter to filter out contaminants such as bacteria in the outside air.
  • the air circulation system 100 further includes a heating and ventilation air conditioning system (HVAC), a first ventilation duct 1001a, a second ventilation duct 1001b, a third ventilation duct 1001c, and a plurality of wall fans F.
  • HVAC heating and ventilation air conditioning system
  • the HVAC is in fluid communication with the first ventilation duct 1001a, the second ventilation duct 1001b, and the third ventilation duct 1001c.
  • the wall fans are suspended from the side walls and the number can be related to the number of trays or culture tanks.
  • the lower portion of the first ventilation duct 1001a, the lower portion of the second ventilation duct 1001b, and the lower portion of the third ventilation duct 1001c may each have an open grille communicating with the interior of the container 10.
  • the open grid can be distributed over the entire length of these ventilation ducts so that the air is distributed as much as possible throughout the internal system.
  • the open grid can be adjustable.
  • the HVAC sends air to the inside of the container 10 through the first ventilation duct 1001a, and the wall fans F on both sides pull the air toward the side wall, and the air flowing to the two side walls further flows upward, respectively.
  • the second ventilation duct 1001b and the third ventilation duct 1001c flow back to the HVAC to form an air circulation.
  • the HVAC can also blow air to the fan F1 through the third ventilation duct 1001c, and blow the air to the fan F2 through the second ventilation duct 1001b, and the fans F1 and F2 push the air toward the inside of the container 10, and then through the first ventilation duct 1001a flows back to HVAC, creating an air circulation.
  • a plurality of wall fans are respectively disposed in the opposite side walls.
  • the wall fans in each side wall are spaced apart from each other and are disposed at an angle to the side walls.
  • a plurality of wall fans can bleed air from the cultivation area to the two side walls, causing air to flow upward along the two side walls into the second ventilation duct 1001b and the third ventilation duct 1001c.
  • the second ventilation duct 1001b and the third ventilation duct 1001c may be air return ports, and the air exits the cultivation area via the second ventilation duct 1001b and the third ventilation duct 1001c, the first ventilation duct 1001a is an air inlet, and the air passes through the first ventilation duct 1001a enters the cultivation area.
  • the second ventilation duct 1001b and the third ventilation duct 1001c may be air inlets, and the air exits the cultivation area via the second ventilation duct 1001b and the third ventilation duct 1001c, the first ventilation duct 1001a is a return air port, and the air passes through the first Ventilation duct 1001a enters the cultivation area.
  • the fans F1 and F2 on both sides make the wind of the plants uniform, so that plants at different locations can grow in the same way; at the same time, the use of wall fans can increase the air flow so that the atmosphere in the whole system is the same.
  • FIG 11 shows a schematic diagram of an air circulation system 110 in accordance with yet another embodiment of the present invention.
  • one side wall 103 is provided with an air supply fan (not shown) which supplies external air to the inside of the container 10.
  • the air supply fan is in fluid communication with the HVAC to supply air to the HVAC.
  • the fan can be placed with an air filter to filter out contaminants such as bacteria in the outside air.
  • the air circulation system 110 further includes a heating ventilation air conditioning system (HVAC), a first ventilation duct 1101a, a second ventilation duct 1101b, a third ventilation duct 1101c, a fourth ventilation duct 1101d, and a first controller. 1102a, a second controller 1102b, and a third controller 1102c.
  • HVAC heating ventilation air conditioning system
  • the HVAC is in fluid communication with the first ventilation duct 1101a, the second ventilation duct 1101b, and the third ventilation duct 1101c.
  • the first ventilation duct 1101a, the second ventilation duct 1101b, and the third ventilation duct 1101c are in fluid communication with the fourth ventilation duct 1101d.
  • the first controller 1102a is located at the junction of the first ventilation duct 1101a and the fourth ventilation duct 1101d
  • the second controller 1102b is located at the junction of the second ventilation duct 1101b and the fourth ventilation duct 1101d
  • the third controller 1102c is located at the third.
  • the lower portion of the first ventilation duct 1101a may have an open grille to communicate with the interior of the container 10.
  • the open grid can be distributed over the entire length of the venting duct such that air is distributed to the greatest extent throughout the internal system.
  • the open grid can be adjustable.
  • the air circulation system 110 differs from the air circulation system 90 in that the air circulation system 110 has no wall pipe 903, but a plurality of holes 1103 are provided in the upper surface of the floor.
  • a fourth ventilation duct 1101d extends in the side wall and is in fluid communication with a plurality of apertures 1103 of the upper surface of the bottom of the container.
  • the second controller 1102b and the third controller 1102c operate, and the HVAC sends the air supplied from the air supply fan to the air through the second ventilation duct 1101b and the third ventilation duct 1101c via the fourth ventilation duct 1101d.
  • air then flows through the plurality of holes 1103 to the interior of the container 10, at which time the first controller 1102a operates, drawing air flowing from the plurality of holes 1103 into the interior of the container 10 into the first ventilation duct 1101a, and then back To HVAC, an air circulation is formed.
  • the HVAC sends air to the interior of the container 10 through the first ventilation duct 1101a, the air enters the fourth ventilation duct 1101d through the hole of the floor surface, then enters the second ventilation duct 1101b and the third ventilation duct 1101c, and finally the air returns to the HVAC, Form an air circulation.
  • the various conduits in Figures 9 through 11 are isolated, customized conduit paths, ensuring that the treated fresh air can be evenly distributed throughout the internal system without the need for compression, and the air can remain effectively recirculated to Maintain optimal atmospheric conditions.
  • the air circulation system of Figures 9 through 11 allows the internal air to circulate/flow multiple times per hour, ensuring consistent atmospheric conditions throughout the growing zone, and fresh air is continuously replenished into the growing area to promote healthy growth, fast Gas flow also ensures that any change in atmospheric parameters will work quickly.
  • a variety of air circulation modes allow the user to select the appropriate mode as needed to optimize the system structure.
  • the container 10 is also provided with an atmospheric pressure outlet which can be disposed in one side wall of the container.
  • the atmospheric pressure outlet may be provided with screens for blocking the entry of pests.
  • the HVAC also functions as an air conditioner, that is, when the temperature inside the container is too high or too low, the HVAC can blow cold air or hot air into the room, and when the air is supplied to the fan When the temperature of the supplied air is too high or too low, the HVAC may first lower the temperature of the supplied air or raise the temperature of the supplied air.
  • the plant cultivation system may also be provided with a plurality of circuits including, but not limited to, a quick connect access port, a fuse box, a wire, a trunking, and a wireless access module.
  • the quick connect access port can be a 50 amp quick connect access port with an external electrical connection cable head.
  • the quick connect access port is capable of inputting power to the internal system through a single point of insertion, ensuring that the user can easily make electrical settings.
  • the fuse box contains AC contactors, main switches, 14 fuses, and grounded electrical boxes that reduce the risk of electrical hazards and protect internal circuits from external surges and internal component failures.
  • the wire is a hard core copper wire. Electrical power is supplied to the internal components through the wires, and the amount of current flowing through the entire system can be safely operated.
  • the trunking can be a waterproof, fire resistant PVC cable guide. Wire placement in the wire slot minimizes electrical hazards.
  • the wireless access module can be a GSM/CDMA/WCDMA WiFi module, and the GSM/CDMA/WCDMA WiFi module includes an industrial grade GSM/CDMA/WCDMA WiFi receiver and transmitter.
  • the use of the GSM/CDMA/WCDMA WiFi module enables the internal system to have a reliable Internet connection and can be connected to an external server for continuous continuous monitoring, data collection, analysis and adjustment of the internal system.
  • the connection to the Internet allows the system to respond to software updates and allows the system to operate in the most efficient manner, for example, only when the energy consumption is low. Start the system. It should be understood that the various components of the internal circuitry described above are merely exemplary and that the various components may be in other forms.
  • the plant cultivation system can include a monitoring system and a control system.
  • the monitoring system can include: an air temperature sensor, a humidity sensor, a CO2 level sensor, a liquid temperature sensor, a pH sensor, a dissolved oxygen sensor.
  • the control system can include one or more controllers to control the environment of the internal system. Each sensor senses various parameter values of the internal system in real time, and then provides each parameter value to the controller. The controller automatically controls each part of the internal system according to the received parameter value, thereby forming an automatic feedback loop.
  • the monitoring system and control system can also be manipulated by the mobile device so that the system can be inspected and adjusted at any location.
  • the plant cultivation system is also provided with an illumination system L.
  • the illumination system is placed above the tray and the culture tank to illuminate the plants.
  • the light source used is an 18 W 1.2m CTW light source with a heat sink or a 16W Philips LED module. It should be understood that the light source can be other types of light sources. Depending on the plant to be cultivated, light sources of different wavelengths and different powers can be used.
  • the height of the light source is adjustable to ensure that the distance between the light source and the plant is an optimal distance and that different plants with different light quantity requirements can be met.
  • the light source can be adjusted to a position very close to the plant, so that the growth of the plant can be ensured with very low energy consumption, and the energy utilization rate can be improved, thereby reducing the LED module.
  • Quantity The manner in which the height of the light source is adjusted can be manually adjusted, for example by manual roller blinds.
  • a sensor for example, a laser, to determine the height of the plant at this time when the plant blocks the laser, thereby increasing the height of the light source.
  • the germination and seedling growth zone nutrient solution circulation system and the pressure pump in the culture and harvest zone nutrient solution circulation system may be opened before the illumination system is turned on for 30 minutes, and may be disconnected in the illumination system. Close after 30 minutes. It should be understood that the illumination system can also be illuminated for 24 hours.
  • Figure 12 shows a front view of a plant cultivation system in accordance with another embodiment of the present invention.
  • the plant cultivation system includes a container 120, which may be a vertical cabinet.
  • the container 120 includes an upper cultivation area and a lower functional area (this will be more clearly shown in Figure 13). It should be understood that the relative positions of the cultivation area and the functional component area are not limited thereto.
  • the container 120 can include a door 1201 that can be split as shown in the figures, or can be a single door.
  • the door 1201 may be composed of glass G to facilitate observation of the growth of plants in the cultivation area.
  • the lower portion of the door 1201 may be sprayed with metal powder M to block components in the functional component area, such as a water tank or the like.
  • a plurality of wheels W are provided at the bottom of the container 120 to facilitate moving the container.
  • a lock L can be provided on the door 1201 to improve safety.
  • Figure 13 shows a perspective view of the plant cultivation system of Figure 12.
  • the interior of the container 120 is shown in Figure 13 and shows an exploded view of one side.
  • the side of the container 120 can be provided with an attachment 1202.
  • a U-shaped groove UC may be provided on the attachment 1202 for placing water pipes and wires.
  • the attachment 1202 can also be provided with a plurality of height-adjustable holes 12021, which can be located in the cultivation area, and each of the holes 12021 can be mounted with a fan for air flow.
  • the attachment 1202 can be covered by a metal plate 1203 to provide a more aesthetic appearance and protect the attachment 1202.
  • the metal plate 1203 can be provided with an armrest H to facilitate the handling of the container 120.
  • the metal plate 1203 is provided with a plurality of holes, the function of which will be described below.
  • a wireless access module such as a WiFi access point, is also disposed on the container 120.
  • the fan mounted on one side rotates so that air passes through a plurality of holes on the metal plate on the other side and a hole in the attachment 1202 on the other side, thereby entering the inside of the container, and then the air is directed to the side where the fan is located Pulling and flowing out through a plurality of holes in the metal plate 1203 on the side where the fan is located, thereby achieving the flow of air from one side to the other side.
  • the fan can also allow air to enter the interior of the container from the aperture in one side and flow to the other side and then out from the aperture on the other side.
  • the structure of the side portion shown in FIG. 13 is merely illustrative, and the attachment member and the metal plate may not be provided, and the water pipe, the electric wire, and the fan may not be disposed in the attachment member.
  • At least one fan may be mounted on one side of the container, and at least one hole may be provided on a side opposite the at least one fan.
  • the fan can pull the wind to introduce air from the at least one aperture into the interior of the container.
  • the side having at least one fan may also have at least one hole.
  • a fan can be provided on both sides of the container. The blowing direction of the fan is variable.
  • FIG. 13 Also shown in Figure 13 is a multi-layer shelf 1205.
  • a multi-layer shelf 1205 is placed in the cultivation area.
  • the shelf can be pulled out to facilitate the operation of the staff.
  • Preferably, only one shelf is pulled out at a time, thereby preventing the vertical cabinet from falling over.
  • Figure 14a shows a top view of a shelf.
  • Figure 14a also shows that a tray is placed in the shelf 1205 for holding the cultivation substrate S, which may be sponge, rock wool, ceramsite (LECA), coconut coir, perlite, Vermiculite, etc. Plants to be cultivated are placed in the cultivation substrate S.
  • the cultivation substrate S which may be sponge, rock wool, ceramsite (LECA), coconut coir, perlite, Vermiculite, etc. Plants to be cultivated are placed in the cultivation substrate S.
  • Figure 14b shows a bottom view of the shelf shown in Figure 13.
  • an illumination system LS having at least one light source, which may be an LED.
  • the lighting system is placed above the tray to illuminate the plants.
  • the light source can be other types of light sources.
  • light sources of different wavelengths and different powers can be used.
  • the height of the light source is adjustable to ensure that the distance between the light source and the plant is an optimal distance and that different plants with different light quantity requirements can be met.
  • the light source can be adjusted to a position very close to the plant, so that the growth of the plant can be ensured with very low energy consumption, and the energy utilization rate can be improved, thereby reducing the LED module.
  • Quantity The manner in which the height of the light source is adjusted can be manually adjusted, for example by manual roller blinds.
  • a sensor for example, a laser, to determine the height of the plant at this time when the plant blocks the laser, thereby increasing the height of the light source.
  • a fluid inlet port WI and a fluid outflow port WO are also provided in the shelf for water circulation.
  • the area 1401 can be used to place water pipes, wires, and the like.
  • the tray is also provided with a slider 1402 to facilitate sliding of the shelf from the container 120.
  • Figure 15 shows a detailed schematic of the bottom of the container.
  • the bottom of the container is a functional area that can be fitted with the various components required to run the plant cultivation system.
  • the bottom of the container may be provided with a first control system 1501, a second control system 1502, which may control the operation of the entire plant cultivation system, for example including a monitoring system and a control system.
  • the monitoring system can include: an air temperature sensor, a humidity sensor, a CO2 level sensor, a liquid temperature sensor, a pH sensor, a dissolved oxygen sensor. It should be understood that the monitoring system can include other sensors than those described above.
  • the control system can include one or more controllers to control the environment of the internal system.
  • Each sensor senses various parameter values of the internal system in real time, and then provides each parameter value to the controller.
  • the controller automatically controls each part of the internal system according to the received parameter value, thereby forming an automatic feedback loop.
  • the monitoring system and control system can also be manipulated by the mobile device so that the system can be inspected and adjusted at any location.
  • FIG. 15 also shows a plurality of nutrient tanks 1503 and a water tank 1504, which are internally placed with nutrients to provide nutrients to plants placed in the shelves.
  • Nutrient tank 1503 can be in the form of a pump. It should be understood that the functional component area may also be provided with other components.
  • the nutrient solution circulation system of the plant cultivation system will be described below.
  • the EC sensor provided in the water tank senses that the EC in the water tank 1504 is less than the lower limit value, and the nutrient tank 1503 starts to transport nutrients to the water tank.
  • the nutrient-mixed water that is, the nutrient solution
  • a fluid flow pipe for example, a water pipe, not shown
  • a pressure pump not shown
  • the nutrient solution circulation of the fluid circulation system may be a cyclical cycle, a 24 hour uninterrupted cycle, or an irregular cycle.
  • the fluid flow conduit may also be connected to the fluid inlet port WI to deliver the nutrient solution to the tray, and the fluid flow conduit may also be connected to the fluid outflow port WO, and the nutrient solution is discharged from the tray through the fluid outflow port WO. It flows out and is led out to the water tank through the fluid flow conduit.
  • a float valve is provided in the water tank to automatically control the amount of water in the water tank.
  • the float valve opens and delivers water to the water tank.
  • the EC sensor of the water tank always senses the EC value in the water tank, and when the EC in the water tank is less than the lower limit value, the nutrient tank starts to transport nutrients to the water tank. This EC lower limit is different for different plants.
  • a pH sensor, a water temperature sensor, and a dissolved oxygen sensor may be provided in the water tank. The pH sensor senses the pH of the nutrient solution in the water tank.
  • the nutrient tank 702 delivers a pH-lowering acidic substance to the water tank 701, so that the nutrient The pH of the liquid is lowered to a predetermined value or a lower limit of a predetermined range. For example, when the pH reaches 6.5 or higher, the nutrient tank 702 delivers a pH-lowering acidic substance to the water tank 701, so that the pH of the nutrient solution is lowered to 6.5 or less.
  • the water temperature sensor senses the temperature of the nutrient solution in the water tank, and a cooler may be disposed beside the water tank.
  • the cooler can reduce the temperature of the nutrient solution in the water tank.
  • the dissolved oxygen sensor senses the dissolved oxygen content of the nutrient solution in the water tank, and when the dissolved oxygen content is too low, the air pump can be used to add air to the water tank.
  • the nutrient tank 1503 shown in the figure comprises a total of three tanks, two of which are filled with nutrients for plant growth.
  • the two tanks are opened, and the nutrients are placed in different tanks for the purpose of The different nutrients are prevented from reacting in the same tank; the other tank is filled with the acidic substance described above for lowering the pH, and the tank is opened when the pH sensor senses that the pH of the nutrient solution in the water tank 1504 is too high.
  • the number of nutrient tanks 1503 does not have to be three.
  • the pressure pump can be turned on 30 minutes before the illumination system is turned on, and can be turned off after the illumination system is turned off for 30 minutes. It should be understood that the illumination system can also be illuminated for 24 hours.
  • the system shown in Figs. 12 to 15 occupies a small space, and is particularly suitable for use in a compact space such as a restaurant.
  • the system is easy to use, and in particular provides a controlled growth environment for plants with short growth cycles.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Cultivation Receptacles Or Flower-Pots, Or Pots For Seedlings (AREA)
  • Hydroponics (AREA)

Abstract

一种植物无土栽培系统,包括:一个容器(10),该容器(10)的内部提供一个封闭空间,该封闭空间包括栽培区(202),其中该栽培区(202)包括一个发芽和幼苗生长区(2022)以及一个培养和收获区(2023);并且其中该栽培区(202)包括至少一个托架系统(2022RS),每个托架系统(2022RS)设有至少一层搁架(2022S)以放置能够容纳栽培基质的部件,植物被安置在所述栽培基质中。

Description

植物无土栽培系统 技术领域
本发明总体涉及一种植物栽培系统,更具体地,涉及一种植物无土栽培系统。
背景技术
通常,植物被种植在土壤中,处于大气环境下。但植物在这种情况下的生长受到外界环境的影响较大,特别是在外界环境恶劣的情况下植物的生长可能会停止或被损坏。
此外,土壤会受到污染,影响植物的生长,破坏植物的品质。
现有的无土栽培系统在栽培过程中植物始终处于一个位置,因此必须等到植物完全成熟后才能被移除,空间和时间利用率低。在目前的无土栽培系统,营养液循环系统和空气循环系统十分复杂,导致整个系统的成本较高。此外,目前的无土栽培系统通常占地较大,不利于在小型空间使用。
因此,需要一种无土栽培系统,其能够为植物的生长提供必要稳定的环境,并且植物不会受到污染。
发明内容
本发明的第一方面提供一种植物无土栽培系统,包括:
一个容器,该容器的内部提供一个封闭空间,该封闭空间包括栽培区,
其中该栽培区包括一个发芽和幼苗生长区以及一个培养和收获区;并且
其中该栽培区包括至少一个托架系统,每个托架系统设有至少一层搁架以放置能够容纳栽培基质的部件,植物被安置在所述栽培基质中。
根据本发明的第一方面的一个优选实施方案,其中,该发芽和幼苗生长区包括发芽区和幼苗生长区。
根据本发明的第一方面的一个优选实施方案,其中,该培养和收获区包括培养区和收获区,其中所述培养区间插在所述收获区之间。
根据本发明的第一方面的一个优选实施方案,其中植物在所述培养区的生长周期与在所述收获区的生长周期相同。
根据本发明的第一方面的一个优选实施方案,其中,该发芽区是一个不透光的箱子,该箱子内设有加热器。
根据本发明的第一方面的一个优选实施方案,其中,该发芽和幼苗生长区设置有至少一个托架系统,且其中该发芽和幼苗生长区中的能够容纳栽培基质的部件是托盘。
根据本发明的第一方面的一个优选实施方案,其中,该培养和收获区设置有至少一个托架系统,且其中该培养和收获区中的能够容纳栽培基质的部件是培养槽。
根据本发明的第一方面的一个优选实施方案,其中,所述封闭空间还包括一个前区。
根据本发明的第一方面的一个优选实施方案,其中,该前区和该栽培区相互气密地间隔开。
根据本发明的第一方面的一个优选实施方案,其中,该前区包括冷藏设备。
根据本发明的第一方面的一个优选实施方案,其中,该前区包括空气净化器和杀菌装置。
根据本发明的第一方面的一个优选实施方案,其中,一个工作台区设置在该前区或该栽培区中。
根据本发明的第一方面的一个优选实施方案,其中,该工作台区设有水池和可拉伸的水龙头。
根据本发明的第一方面的一个优选实施方案,其中,该植物无土栽培系统还包括一个空气循环系统,该空气循环系统设置在该栽培区中。
根据本发明的第一方面的一个优选实施方案,其中,该空气循环系统包括一个暖通空调系统HVAC(Heating Ventilation Air Conditioning)、一个空气供应风扇和一个循环用管道系统,该HVAC与该空气供应风扇相连通,该循环用管道系统与该HVAC相连通,
其中该循环用管道系统包括下列三种中的任一种:
a)设置在该容器的相对的两个侧壁中的多个第一端口,
b)设置在该容器的底部上表面的多个第一端口,
c)设置在该容器的顶部并分别靠近该容器的相对的两个侧壁的多个第一端口,并在所述相对的两个侧壁上设置多个风扇;以及
其中该循环用管道系统还包括至少一个第二端口,所述至少一个第二端口位于该容器的顶部中央。
根据本发明的第一方面的一个优选实施方案,其中,当该循环用管道系统包括a)时,该循环用管道系统包括设置在所述相对的两个侧壁上的多个壁管,并且所述多个第一端口是设置在所述多个壁管中并与该栽培区流体连通的多个孔。
根据本发明的第一方面的一个优选实施方案,其中,所述多个壁管包括至少一个竖直延伸部分和至少一个水平延伸部分。
根据本发明的第一方面的一个优选实施方案,其中,当该循环用管道系统包括b)时,该循环用管道系统包括设置在所述相对的两个侧壁上的至少一个侧壁延伸部分,并且所述至少一个侧壁延伸部分与该容器的底部上表面的所述多个第一端口流体连通。
根据本发明的第一方面的一个优选实施方案,其中,当该循环用管道系统包括c)时,所述多个风扇分别与所述相对的两个侧壁中的相应的一个间隔开并成角度设置。
根据本发明的第一方面的一个优选实施方案,其中所述多个风扇将空气从该栽培区向所述相对的两个侧壁中的相应的一个进行抽动,使空气沿着所述相对的两个侧壁中的相应的一个向上流动进入所述多个第一端口。
根据本发明的第一方面的一个优选实施方案,其中,所述多个第一端口是回气口,空气经由所述多个第一端口离开该栽培区,所述至少一个第二端口是进气口,空气经由所述至少一个第二端口进入该栽培区。
根据本发明的第一方面的一个优选实施方案,其中,所述多个第一端口是进气口,空气经由所述多个第一端口进入该栽培区,所述至少一个第二端口是回气口,空气经由所述至少一个第二端口离开该栽培区。
根据本发明的第一方面的一个优选实施方案,其中,该植物无土栽培系统还包括一个流体循环系统,该流体循环系统设置在该栽培区中,用于为植物提供营养液。
根据本发明的第一方面的一个优选实施方案,其中,所述流体循环系统包括进水系统、发芽和幼苗生长区营养液循环系统、以及培养和收获区营养液循环系统。
根据本发明的第一方面的一个优选实施方案,其中,该进水系统包括依次连接的一个进水管、一个流量控制调节器、一个水表、一个增压泵以及至少一个水净化系统,该进水管连接至外部水源。
根据本发明的第一方面的一个优选实施方案,其中,该发芽和幼苗生长区营养液循环系统为该发芽和幼苗生长区提供营养液,包括:一个发芽和幼苗生长区水箱、多个发芽和幼苗生长区营养物槽、一个发芽和幼苗生长区压力泵、至少一个发芽和幼苗生长区流体输送管道、至少一组发芽和幼苗生长区流体引入管道以及至少一个发芽和幼苗生长区流体引出管道,
其中,所述进水系统向所述发芽和幼苗生长区水箱输送水,所述发芽和幼苗生长区水箱与所述多个发芽和幼苗生长区营养物槽相连接,所述多个发芽和幼苗生长区营养物槽向所述发芽和幼苗生长区水箱输送营养素从而在该发芽和幼苗生长区水箱中形成营养液;
其中,所述发芽和幼苗生长区压力泵将所述发芽和幼苗生长区水箱中的营养液泵送至所述至少一个发芽和幼苗生长区流体输送管道,所述至少一个发芽和幼苗生长区流体输送管道与所述至少一组发芽和幼苗生长区流体引入管道相连通以将营养液输送至所述至少一组发芽和幼苗生长区流体引入管道;以及
其中,所述至少一组发芽和幼苗生长区流体引入管道将营养液引入所述容纳栽培基质的部件,所述至少一个发芽和幼苗生长区流体引出管道将从所述容纳栽培基质的部件流出的营养液引出至所述发芽和幼苗生长区水箱。
根据本发明的第一方面的一个优选实施方案,其中,该发芽和幼苗生长区营养液循环系统还包括一个发芽和幼苗生长区流体输出管道,所述至少一个发芽和幼苗生长区流体引出管道与该发芽和幼苗生长区流体输出管道相连通,该发芽和幼苗生长区流体输出管道连接至所述发芽和幼苗生长区水箱,用于将所述至少一个发芽和幼苗生长区流体引出管道引出的营养液输出至所述发芽和幼苗生长区水箱。
根据本发明的第一方面的一个优选实施方案,其中,所述发芽和幼苗生长区营养物槽中包括一个装有能够降低营养液的pH值的物质的槽。
根据本发明的第一方面的一个优选实施方案,其中,在该发芽和幼苗生长区营养液循环系统中,营养液是一直循环的、周期性循环的或不定期循环的。
根据本发明的第一方面的一个优选实施方案,其中,该培养和收获区营养液循环系统为该培养和收获区提供营养液,包括:一个培养和收获区水箱、多个培养和收获区营养物槽、一个培养和收获区一个培养和收获区压力泵、一个培养和收获区流体输送管道、至少一排培养和收获区流体引入管道和至少一个培养和收获区流体流出槽,
其中,所述进水系统向所述培养和收获区水箱输送水,所述培养和收获区水箱与所述多个培养和收获区营养物槽相连接,所述多个培养和收获区营养物槽向所述培养和收获区水箱输送营养素从而在该培养和收获区水箱中形成营养液;
其中,所述培养和收获区压力泵将所述培养和收获区水箱中的营养液泵送至所述培养和收获区流体输送管道,所述培养和收获区流体输送管道与至少一排培养和收获区流体引入管道相连通以将营养液输送至所述至少一排培养和收获区流体引入管道;
其中,所述至少一排培养和收获区流体引入管道将营养液引入所述容纳栽培基质的部件;以及
其中,所述至少一个培养和收获区流体引出管道在所述容纳栽培基质的部件的一端的下方,以将从所述容纳栽培基质的部件流出的营养液引出至所述培养和收获区水箱。
根据本发明的第一方面的一个优选实施方案,其中,所述培养和收获区营养物槽中包括一个装有能够降低营养液的pH值的物质的槽。
根据本发明的第一方面的一个优选实施方案,其中,在该培养和收获区营养液循环系统中,营养液是一直循环的、周期性循环的或不定期循环的。
根据本发明的第一方面的一个优选实施方案,其中,还包括光照系统。
根据本发明的第一方面的一个优选实施方案,其中,该光照系统设置在所述栽培基质的部件的上方。
根据本发明的第一方面的一个优选实施方案,其中,该光照系统与植物之间的距离是可调节的。
根据本发明的第一方面的一个优选实施方案,其中,所述发芽和幼苗生长区压力泵和所述培养和收获区压力泵中的至少一个在所述光照系统接通30分钟之前打开,并且在所述光照系统断开30分钟之后关闭。
根据本发明的第一方面的一个优选实施方案,其中,所述容器具有一个顶部、一个底部、以及四个侧壁,其中一个侧壁设有一个门。
根据本发明的第一方面的一个优选实施方案,其中,所述底部的上表面截面成V字形。
根据本发明的第一方面的一个优选实施方案,其中,所述顶部的主体、所述底部的主体以及所述四个侧壁的主体均由钢制成。
根据本发明的第一方面的一个优选实施方案,其中,所述底部的主体的下表面附接有隔离材料层,所述底部的主体的上表面设有混凝土层,并且该混凝土层的上表面覆盖有地板。
根据本发明的第一方面的一个优选实施方案,其中,所述地板由聚氯乙烯PVC制成。
根据本发明的第一方面的一个优选实施方案,其中,所述顶部的主体的下表面附接有隔离材料层,并且该隔离材料层的下表面附接有隔离板。
根据本发明的第一方面的一个优选实施方案,其中,所述四个侧壁的主体的面向该容器的内部的一侧附接有隔离材料层,并且该隔离材料层的面向该容器的内部的一侧附接有隔离板。
根据本发明的第一方面的一个优选实施方案,其中,所述隔离板的结构为三明治结构,该三明治结构依次为钢板、泡沫层和钢板。
根据本发明的第一方面的一个优选实施方案,其中,该植物无土栽培系统包括监测系统和控制系统。
根据本发明的第一方面的一个优选实施方案,其中,该监测系统包括但不限于:空气温度传感器、湿度传感器、CO2水平传感器、液体温度传感器、pH值传感器、溶解氧传感器。
根据本发明的第一方面的一个优选实施方案,其中,该控制系统包括一个或多个控制器。
根据本发明的第一方面的一个优选实施方案,其中,所述栽培基质是海绵、岩棉、陶粒、椰糠、珍珠岩或蛭石。
根据本发明的第一方面的一个优选实施方案,其中,所述容器是集装箱。
根据本发明的第一方面的一个优选实施方案,其中,所述植物是绿叶蔬菜。
本发明的第二方面提供一种植物无土栽培系统,包括:一个容器,该容器的内部提供一个封闭空间,该封闭空间包括栽培区;以及一个空气循环系统,该空气循环系统设置在该封闭空间中,
其中该空气循环系统包括一个暖通空调系统HVAC、一个空气供应风扇和一个循环用管道系统,该HVAC与该空气供应风扇相连通,该循环用管道系统与该HVAC相连通,
其中该循环用管道系统包括下列三种中的任一种:
a)设置在该容器的相对的两个侧壁中的多个第一端口,
b)设置在该容器的底部上表面的多个第一端口,
c)设置在该容器的顶部并分别靠近该容器的相对的两个侧壁的多个第一端口,并在所述相对的两个侧壁上设置多个风扇;以及
其中该循环用管道系统还包括至少一个第二端口,所述至少一个第二端口位于该容器的顶部中央。
根据本发明的第二方面的一个优选实施方案,其中,当该循环用管道系统包括a)时,该循环用管道系统包括设置在所述相对的两个侧壁上的多个壁管,并且所述多个第一端口是设置在所述多个壁管中并与该栽培区流体连通的多个孔。
根据本发明的第二方面的一个优选实施方案,其中,所述多个壁管包括至少一个竖直延伸部分和至少一个水平延伸部分。
根据本发明的第二方面的一个优选实施方案,其中,当该循环用管道系统包括b)时,该循环用管道系统包括设置在所述相对的两个侧壁上的至少一个侧壁延伸部分,并且所述至少一个侧壁延伸部分与该容器的底部上表面的所述多个第一端口流体连通。
根据本发明的第二方面的一个优选实施方案,其中,当该循环用管道系统包括c)时,所述多个风扇分别与所述相对的两个侧壁中的相应的一个间隔开并成角度设置。
根据本发明的第二方面的一个优选实施方案,其中所述多个风扇将空气从该栽培区向所述相对的两个侧壁中的相应的一个进行抽动,使空气沿着所述相对的两个侧壁中的相应的一个向上流动进入所述多个第一端口。
根据本发明的第二方面的一个优选实施方案,其中,所述多个第一端口是回气口,空气经由所述多个第一端口离开该栽培区,所述至少一个第二端口是进气口,空气经由所述至少一个第二端口进入该栽培区。
根据本发明的第二方面的一个优选实施方案,其中,所述多个第一端口是进气口,空气经由所述多个第一端口进入该栽培区,所述至少一个第二端口是回气口,空气经由所述至少一个第二端口离开该栽培区。
根据本发明的第二方面的一个优选实施方案,其中,该栽培区包括一个发芽和幼苗生长区以及一个培养和收获区。
根据本发明的第二方面的一个优选实施方案,其中,该发芽和幼苗生长区包括发芽区和幼苗生长区。
根据本发明的第二方面的一个优选实施方案,其中,该培养和收获区包括培养区和收获区,其中所述培养区间插在所述收获区之间。
根据本发明的第二方面的一个优选实施方案,其中,植物在所述培养区的生长周期与在所述收获区的生长周期相同。
根据本发明的第二方面的一个优选实施方案,其中,该发芽区是一个不透光的箱子,该箱子内设有加热器。
根据本发明的第二方面的一个优选实施方案,其中,该发芽和幼苗生长区设置有至少一个托架系统,且其中该发芽和幼苗生长区中的能够容纳栽培基质的部件是托盘。
根据本发明的第二方面的一个优选实施方案,其中,该培养和收获区设置有至少一个托架系统,且其中该培养和收获区中的能够容纳栽培基质的部件是培养槽。
根据本发明的第二方面的一个优选实施方案,其中,所述封闭空间还包括一个前区。
根据本发明的第二方面的一个优选实施方案,其中,该前区和该栽培区相互气密地间隔开。
根据本发明的第二方面的一个优选实施方案,其中,该前区包括冷藏设备。
根据本发明的第二方面的一个优选实施方案,其中,该前区包括空气净化器和杀菌装置。
根据本发明的第二方面的一个优选实施方案,其中,一个工作台区设置在该前区或该栽培区中。
根据本发明的第二方面的一个优选实施方案,其中,该工作台区设有水池和可拉伸的水龙头。
根据本发明的第二方面的一个优选实施方案,其中,该植物无土栽培系统还包括一个流体循环系统,该流体循环系统设置在该栽培区中,用于为植物提供营养液。
根据本发明的第二方面的一个优选实施方案,其中,所述流体循环系统包括进水系统、发芽和幼苗生长区营养液循环系统、以及培养和收获区营养液循环系统。
根据本发明的第二方面的一个优选实施方案,其中,该进水系统包括依次连接的一个进水管、一个流量控制调节器、一个水表、一个增压泵以及至少一个水净化系统,该进水管连接至外部水源。
根据本发明的第二方面的一个优选实施方案,其中,该发芽和幼苗生长区营养液循环系统为该发芽和幼苗生长区提供营养液,包括:一个发芽和幼苗生长区水箱、多个发芽和幼苗生长区营养物槽、一个发芽和幼苗生长区压力泵、至少一个发芽和幼苗生长区流体输送管道、至少一组发芽和幼苗生长区流体引入管道以及至少一个发芽和幼苗生长区流体引出管道,
其中,所述进水系统向所述发芽和幼苗生长区水箱输送水,所述发芽和幼苗生长区水箱与所述多个发芽和幼苗生长区营养物槽相连接,所述多个发芽和幼苗生长区营养物槽向所述发芽和幼苗生长区水箱输送营养素从而在该发芽和幼苗生长区水箱中形成营养液;
其中,所述发芽和幼苗生长区压力泵将所述发芽和幼苗生长区水箱中的营养液泵送至所述至少一个发芽和幼苗生长区流体输送管道,所述至少一个发芽和幼苗生长区流体输送管道与所述至少一组发芽和幼苗生长区流体引入管道相连通以将营养液输送至所述至少一组发芽和幼苗生长区流体引入管道;以及
其中,所述至少一组发芽和幼苗生长区流体引入管道将营养液引入所述容纳栽培基质的部件,所述至少一个发芽和幼苗生长区流体引出管道将从所述容纳栽培基质的部件流出的营养液引出至所述发芽和幼苗生长区水箱。
根据本发明的第二方面的一个优选实施方案,其中,该发芽和幼苗生长区营养液循环系统还包括一个发芽和幼苗生长区流体输出管道,所述至少一个发芽和幼苗生长区流体引出管道与该发芽和幼苗生长区流体输出管道相连通,该发芽和幼苗生长区流体输出管道连接至所述发芽和幼苗生长区水箱,用于将所述至少一个发芽和幼苗生长区流体引出管道引出的营养液输出至所述发芽和幼苗生长区水箱。
根据本发明的第二方面的一个优选实施方案,其中,所述发芽和幼苗生长区营养物槽中包括一个装有能够降低营养液的pH值的物质的槽。
根据本发明的第二方面的一个优选实施方案,其中,在该发芽和幼苗生长区营养液循环系统中,营养液是一直循环的、周期性循环的或不定期循环的。
根据本发明的第二方面的一个优选实施方案,其中,该培养和收获区营养液循环系统为该培养和收获区提供营养液,包括:一个培养和收获区水箱、多个培养和收获区营养物槽、一个培养和收获区压力泵、一个培养和收获区流体输送管道、至少一排培养和收获区流体引入管道和至少一个培养和收获区流体流出槽,
其中,所述进水系统向所述培养和收获区水箱输送水,所述培养和收获区水箱与所述多个培养和收获区营养物槽相连接,所述多个培养和收获区营养物槽向所述培养和收获区水箱输送营养素从而在该培养和收获区水箱中形成营养液;
其中,所述培养和收获区压力泵将所述培养和收获区水箱中的营养液泵送至所述培养和收获区流体输送管道,所述培养和收获区流体输送管道与至少一排培养和收获区流体引入管道相连通以将营养液输送至所述至少一排培养和收获区流体引入管道;
其中,所述至少一排培养和收获区流体引入管道将营养液引入所述容纳栽培基质的部件;以及
其中,所述至少一个培养和收获区流体引出管道在所述容纳栽培基质的部件的一端的下方,以将从所述容纳栽培基质的部件流出的营养液引出至所述培养和收获区水箱。
根据本发明的第二方面的一个优选实施方案,其中,所述培养和收获区营养物槽中包括一个装有能够降低营养液的pH值的物质的槽。
根据本发明的第二方面的一个优选实施方案,其中,在该培养和收获区营养液循环系统中,营养液是一直循环的、周期性循环的或不定期循环的。
根据本发明的第二方面的一个优选实施方案,其中,还包括光照系统。
根据本发明的第二方面的一个优选实施方案,其中,该光照系统设置在所述栽培基质的部件的上方。
根据本发明的第二方面的一个优选实施方案,其中,该光照系统与植物之间的距离是可调节的。
根据本发明的第二方面的一个优选实施方案,其中,所述发芽和幼苗生长区压力泵和所述培养和收获区压力泵中的至少一个在所述光照系统接通30分钟之前打开,并且在所述光照系统断开30分钟之后关闭。
本发明的第三方面提供一种植物无土栽培系统,包括:
一个容器,该容器的内部提供一个空间,
其中该容器的一个侧部设有至少一个风扇,且与该侧部相对的一个侧部具有至少一个孔。
根据本发明的第三方面的一个优选实施方案,其中,所述至少一个风扇通过所述至少一个孔将外部空气拉向该空间。
根据本发明的第三方面的一个优选实施方案,其中,所述至少一个风扇所在的侧部也具有至少一个孔。
根据本发明的第三方面的一个优选实施方案,其中,所述相对的一个侧部也设有至少一个风扇。
根据本发明的第三方面的一个优选实施方案,其中,所述风扇的吹气方向可变。
根据本发明的第三方面的一个优选实施方案,其中,该空间包括功能部件区和栽培区,该功能部件区和该栽培区相互间隔开,其中该栽培区包括至少一层搁架,所述至少一层搁架中放置有能够容纳栽培基质的部件,植物被安置在所述栽培基质中。
根据本发明的第三方面的一个优选实施方案,其中,能够容纳栽培基质的部件是托盘。
根据本发明的第三方面的一个优选实施方案,其中,该植物无土栽培系统还包括流体循环系统,所述流体循环系统包括一个水箱、多个营养物槽、一个压力泵、以及流体流动管道,
其中,所述水箱与所述多个营养物槽相连接,所述多个营养物槽向所述水箱输送营养素从而在该水箱中形成营养液;
其中,所述压力泵将所述水箱中的营养液泵送至所述流体流动管道,所述流体流动管道将营养液输送至所述容纳栽培基质的部件,并将从所述容纳栽培基质的部件流出的营养液引出至所述水箱。
根据本发明的第三方面的一个优选实施方案,其中,所述流体循环系统是周期性循环的、24小时不间断循环的或不定期循环的。
根据本发明的第三方面的一个优选实施方案,其中,所述营养物槽中包括一个装有能够降低营养液的pH值的物质的槽。
根据本发明的第三方面的一个优选实施方案,其中,所述搁架设有流体进入口和流体排出口。
根据本发明的第三方面的一个优选实施方案,其中,所述流体流动管道与所述流体进入口相连接,从而将营养液输送至所述容纳栽培基质的部件;以及
其中,所述流体流动管道还与所述流体排出口相连接,营养液经所述流体排出口从所述容纳栽培基质的部件流出,并通过所述流体流动管道引出至所述水箱。
根据本发明的第三方面的一个优选实施方案,其中,该植物无土栽培系统还包括光照系统。
根据本发明的第三方面的一个优选实施方案,其中,所述光照系统在植物的上方。
根据本发明的第三方面的一个优选实施方案,其中,所述光照系统与植物之间的距离是可调节的。
根据本发明的第三方面的一个优选实施方案,其中,所述压力泵在所述光照系统接通30分钟之前打开,并且在所述光照系统断开30分钟之后关闭。
根据本发明的第三方面的一个优选实施方案,其中,该容器是一个立柜。
根据本发明的第三方面的一个优选实施方案,其中,该立柜的上部是该栽培区,该立柜的下部是该功能部件区。
根据本发明的第三方面的一个优选实施方案,其中,该立柜包括一个门。
根据本发明的第三方面的一个优选实施方案,其中,该门由玻璃制成。
根据本发明的第三方面的一个优选实施方案,其中,该玻璃的对应于该功能部件区的部分喷涂有金属粉末。
根据本发明的第三方面的一个优选实施方案,其中,该立柜的底部设有多个轮子。
根据本发明的第三方面的一个优选实施方案,其中,所述搁架上设置有滑动件,使得该所述搁架能够被拉出至该容器外。
根据本发明的第三方面的一个优选实施方案,其中,所述栽培基质是海绵、岩棉、陶粒、椰糠、珍珠岩或蛭石。
根据本发明的第三方面的一个优选实施方案,其中,所述容器上设有无线接入模块。
根据本发明的植物栽培系统通过设置分区,实践证明,分区成倍地提高了产量。该植物栽培系统还优化了营养液循环系统和空气循环系统,从而以更廉价、更有效的方式为植物提供最佳的生长环境。该植物栽培系统的光照系统是可调节的,改善了植物的光照吸收。此外,本发明还提供了一种小型的植物栽培系统,其可以方便地用在小型空间,例如餐厅、家庭等中。
附图说明
下面将与附图相结合借助于示例性实施方案更详细地解释本发明,其中:
图1是根据本发明一个实施方案的植物栽培系统的容器的外部立体示意图。
图2是图1中的容器的沿线A-A所获得的截面图。
图3进一步示出了图2中的地板的立体示意图。
图4是图1中容器的内部空间的立体示意图。
图5是图4的内部空间的俯视图。
图6示出了根据本发明一个实施方案的进水系统的框图。
图7a示出了根据本发明一个实施方案的发芽和幼苗生长区营养液循环系统的立体图;图7b示出了根据本发明一个实施方案的发芽和幼苗生长区营养液循环系统的正视图;图7c1示出了根据本发明一个实施方案的发芽和幼苗生长区营养液循环系统的侧视图;图7c2示出了根据本发明一个实施方案的发芽和幼苗生长区营养液循环系统的另一个侧视图;图7d示出了根据本发明一个实施方案的发芽和幼苗生长区营养液循环系统的俯视图。
图8a示出了根据本发明一个实施方案的培养和收获区营养液循环系统的立体图;图8b示出了图8a中区域K的放大示意图;图8c示出了图8a中区域J的放大示意图;图8d示出了图8a的一部分的侧视图。
图9示出了根据本发明一个实施方案的空气循环系统的示意图。
图10示出了根据本发明另一实施方案的空气循环系统的示意图。
图11示出了根据本发明又一实施方案的空气循环系统的示意图。
图12示出了根据本发明另一个实施方案的植物栽培系统的正视图。
图13示出了图12的植物栽培系统的立体图。
图14a示出了图13所示搁架的顶视图。
图14b示出了图13所示搁架的仰视图。
图15示出了图12的植物栽培系统的容器底部的详细示意图。
图16a示出了图8a所示两个托架系统共用的流体输送管道的一种实施方案的示意图。
图16b示出了图8a所示两个托架系统共用的流体输送管道的另一种实施方案的示意图。
应理解,附图仅出于示例目的来绘制,不应视为是对本发明的限制。
具体实施方式
下面结合附图进一步描述本发明的各个实施方案。在所有附图中,相同或相似的标号表示相同或相似的元件或具有相同或相似功能的元件。应理解,下面结合附图描述的实施方案仅是示例性的,旨在用于解释本发明,而不意在限制本发明。
图1是根据本发明一个实施方案的植物栽培系统的容器10的外部立体示意图。如图1中所示,容器10整体呈长方体形状,但应理解,其他合适的形状也是可行的,例如正方体。在该实施方案中,容器10是集装箱,优选地,整个容器没有外部突出部件,容器整体符合船运标准,这样能够确保在运输、操作和维护期间最大的保护。
如图1中所示,容器10包括:一个顶部101,一个底部102以及四个侧壁103。在其中一个侧壁中设置有一个门104。
图2是图1中的容器10的沿线A-A所获得的截面图。该图2示出了容器10的顶部101、底部102以及左右两个侧壁103的具体结构。如图2中示出的,顶部101、底部102以及侧壁103的主体3由钢制成,以提供结构强度。如下文所说明的,为了提供附加的功能,顶部101、底部102以及侧壁103中还设置有多个其他层。
底部102的主体钢板的下表面可喷涂有30mm厚的隔离材料层1,该隔离材料的作用是能够隔断热传递,该隔离材料可以是聚氨酯(PU)。应理解,该隔离材料层的厚度不限于此,且隔离材料也不限于聚氨酯,可采用其他合适的方法设置其他隔离材料。底部102的主体钢板的上表面可浇注有25mm厚的混凝土层4。混凝土可以提高耐用性,延长使用寿命,确保了在运输和日常操作过程中的牢固性。应理解,混凝土层的厚度不限于此,且可采用其他方法设置其他能够提高耐用性的材料。混凝土层的上表面覆盖有1.8mm厚的聚氯乙烯(PVC)地板5,该聚氯乙烯可向上延伸至两个侧壁一定距离。该PVC材料可以防滑且防水,并且可以是蓝色等非白色的,从而能够防反射,防止光源发出的光反射射入工作人员的眼睛。同样,应理解,混凝土层的上部可覆盖有其他材料,且材料的厚度不限于1.8mm。
类似地,顶部101的下表面(即面向容器10内部的表面)和两个侧壁103的内表面(即面向容器10内部的表面)喷涂有30mm厚的隔离材料层。该隔离材料可以是聚氨酯(PU)。应理解,该隔离材料层的厚度不限于此,且隔离材料也不限于聚氨酯,可采用其他合适的方法设置其他隔离材料。
上述这些隔离材料层使得系统的热容量能够保持在一个预设的设定值,以确保一整天的环境条件没有大的波动。
如图2中示出的,顶部101和侧壁103还分别设有一个隔离板2。该隔离板为三明治结构,即0.5mm厚的镀锌钢板+49mm厚的聚氨酯泡沫层+0.5mm厚的镀锌钢板。应理解,该隔离板的厚度和形式不限于此,其他合适的材料和形式都是可行的。该隔离板可以进一步提供热隔离,并且可以在该隔离板上安装其他部件。此外,光源发出的一部分光还可以被隔离板反射回容器10的内部空间,提高光的利用率。
虽然图2仅示出其中两个侧壁的结构,但应理解,另外两个侧壁的结构与图2中所示出的侧壁结构是相同的。
此外,图2中还示出了PVC地板的形状。如图2中示出的,PVC地板的截面呈V字形,即两边高、中间低。倾斜的地板的优点在于当容器10的内部出现漏水情况时,水会积聚在倾斜区,然后经排水系统排出至容器10外部,从而防止容器10内部积水。V形地板的两个倾斜部分与水平面所成的角度优选地为1至2°。
图3进一步示出了地板的立体示意图。如图3中示出的,在栽培区202(将在下文描述)中,地板是倾斜的。应理解,在前区201(将在下文描述)中,地板也可以是倾斜的。
图4是图1中容器10的内部空间20的立体示意图。如图4所示,内部空间20在长度方向上被分成两个部分:前区201和栽培区202,其中,栽培区202包括工作台区2021、发芽和幼苗生长区2022、以及培养和收获区2023,这些区域在图5被详细标出,图5是图4的内部空间20的俯视图。在图5中,栽培区的右上部分为工作台区2021,右下部分为发芽和幼苗生长区2022,左半部分为培养和收获区2023。
相对于栽培区202,前区201的空间较小,前区201与栽培区202是相对独立的。前区201提供冷藏和除害功能。前区201里可设置有冷藏设备,例如冰箱,用于保存已收获的植物。前区201还包括空气净化器,例如UV-C空气净化器,前区201还包括杀菌装置。在该前区201中,害虫、污染物、灰尘、细菌、病毒、微生物以及其他通过空气传播的颗粒等有害物质可以被除去,使得栽培区202被这些有害物质所污染的危险性最小化,尽可能地保证了植物的产量。
下面将详细介绍栽培区202。
如图4和图5所示,栽培区202与前区201被气密地间隔开,例如栽培区202与前区201被一个门间隔开,该门可以密封栽培区,该栽培区202被设置以为植物的生长提供空间。
栽培区202的工作台区2021为蔬菜等植物在生长之前的准备工作以及在蔬菜等植物收获后的相关处理工作提供了平台。如图4示出的,工作台区2021设有一个水池WT,工作人员可以在此清洗器具、调配营养液、选种、清洗和/或准备植物、完成基础维护等。水池旁设有一个可拉伸的水龙头F。工作台区2021的下方可以设置有净水器、增压泵等(将在随后的附 图中示出),其中净水器和增压泵等的作用将在下文中说明。应理解,工作台区也可以设置在前区中,并且可以包括其他部件。
在工作台区2021可进行播种操作。该播种操作的过程是将种子放入栽培基质中,然后利用上述可拉伸的水龙头对种子浇水。栽培基质可以是海绵、岩棉、陶粒(LECA)、椰糠(coconut coir)、珍珠岩(perlite)、蛭石(vermiculite)等。在工作台区进行播种是便于对栽培基质进行操作。
工作台区2021与发芽和幼苗生长区2022、以及培养和收获区2023的相对位置优选地使得工作人员能够在单个方向上从工作台区2021移动至发芽和幼苗生长区2022、以及培养和收获区2023,从而节省劳力。
如图4示出的,发芽和幼苗生长区2022设置有一个托架系统2022RS。该托架系统共有四层搁架2022S,下面三层搁架上放置有托盘,培养基质放置在这些托盘内。为清楚起见,该图中未示出托盘。最上一层的搁架未设置托盘,仅在搁架的下部设有光照系统,光照系统将在下文描述。应理解,最上一层的搁架可以省略,而以其他方式将光照系统固定至搁架系统。应理解,托架系统的数目可以是大于1个,且每个托架系统中的搁架的层数不限于图中所示的。此外,搁架之间的间距是可调的,从而一个托架系统内的搁架层数是可变的。
发芽和幼苗生长区2022可包括发芽区2022a和幼苗生长区2022b,分别用于蔬菜等植物的发芽和幼苗生长。如图4中示意性示出的,发芽区2022a在幼苗生长区2022b的下方,但应理解,发芽区2022a和幼苗生长区2022b的相对位置不限于此。在发芽区2022a,种子不需要光照,且需要的温度以及湿度比幼苗生长区以及培养和收获区高。该发芽区2022a可以是一个不透光的箱子,在该箱子内设有加热器。区分开发芽区2022a和幼苗生长区2022b是因为植物在这两个生长过程期间所需的条件不同。
种子在发芽区2022a发芽之后,栽培基质被移至幼苗生长区2022b,在幼苗生长区2022b,蔬菜等植物生长成幼苗。幼苗生长区2022b的营养液的电导率EC(electrical conductivity)可以是培养和收获区2023中的营养液的电导率的50%至75%。
培养和收获区2023设有四个托架系统2023RS。每个托架系统2023RS有5层搁架2023S。应理解,其他合适数目的托架系统和搁架也是可行的。在下面4层搁架的上部并排间隔安置有多个长条形的培养槽,培养基质放置在这些培养槽内。为清楚起见,图4中仅在其中一个托架系统的搁架上示出了培养槽。最上一层的搁架未设置培养槽,仅在搁架的下部设有光照系统,光照系统将在下文描述。应理解,最上一层的搁架可以省略,而以其他方式将光照系统固定至搁架系统。此外,搁架之间的间距是可调的,从而一个托架系统内的搁架层数是可变的。
每个培养槽可以称作一个培养和收获区,所有的培养槽共同组成总的培养和收获区2023。图4中示意性示出了对于其中一层搁架中的培养槽,培养和收获区包括培养区2023a和收获区2023b,用于将幼苗培养成成熟的植物。应理解,对于其他搁架中的其他培养槽,培养和收获区同样也包括培养区2023a和收获区2023b。
幼苗生长区2022b中长成的幼苗首先被移至培养区2023a,经培养区2023a培养一段时间后,栽培基质被移至收获区2023b,蔬菜等植物在收获区2023b再生长一段时间后可以被收获。
植物在培养区2023a和收获区2023b的生长周期可以是相同的,如图4中示出的,培养区2023a间插在收获区2023b之间。培养区中的植物的数目与收获区中的植物的数目是相同的。培养区和收获区的相对位置使得工作人员可以方便地将培养区的植物移至收获区,从而节约人力。
与仅包括幼苗生长区(seedling zone)和收获区(finishing zone)的系统相比,引入培养区(nursery zone)可以使产量提高。通过上述设置的发芽区(germination zone)、幼苗生长区、培养区和收获区,植物生长的各个阶段可以连续地进行,同时能够无间隙地引入后续植物,实现不间断地植物种植和收获,提高了效率。
应理解,上述各区的图示仅是示意性的,而非限制性的,例如,工作台区可以不设置在栽培区,而设置在前区中。
图6至图8示出了根据本发明一个实施方案的流体循环系统的示意图。
根据本发明一个实施方案的流体循环系统包括三个子系统:进水系统、发芽和幼苗生长区营养液循环系统、以及培养和收获区营养液循环系统。下面通过图6至8分别示出以上三个子系统。
图6示出了根据本发明一个实施方案的进水系统60的框图。该进水系统60可以设置在工作台区2021的水池WT下方。如图6所示,该进水系统包括连接至外部水源的进水管WI、流量控制调节器V、水表M、增压泵P、至少一个水净化系统WP(图中示出了两个)。该流量控制调节器可以是手动的进水口流量阀,可以控制水的流入,确保了控制手动的过限(override)量以及防止任何潜在的水输送问题。水表可以为任何进水口水表,提供关于水的使用的正确信息。增压泵可以为100W压力感测自动增压泵,确保内部输送水管被准确加压,以将水输送到需要的地方。水净化系统可以为25微米PP网碳过滤器和5微米PP网状沉淀物过滤器。水净化系统可以确保内部系统所使用的水的质量维持在一个可接受的安全水平上,防止受到水生污染物和化学物质的危害。从水净化系统流出的水经设置在地板下方的嵌壁式管道流动至发芽和幼苗生长区2022中的水箱以及培养和收获区2023中的水箱。嵌壁式管道是嵌入地板的水输送聚丙烯管道,具有外部的水输送快速接入口。嵌壁式管道的安装可以更节约空间,且防止出现安全问题,并且送水和排水变得容易。应理解,该进水系统可以设置在任何合适的位置,且不是必须包括所描述的部件,例如可以省去其他一些部件或包括其他的一些部件。图7a示出了根据本发明一个实施方案的发芽和幼苗生长区营养液循环系统的立体图;图7b示出了根据本发明一个实施方案的发芽和幼苗生长区营养液循环系统的正视图;图7c1示出了根据本发明一个实施方案的发芽和幼苗生长区营养液循环系统的侧视图;图7c2示出了根据本发明一个实施方案的发芽和幼苗生长区营养液循环系统的另一个侧视图;图7d示出了根据本发明一个实施方案的发芽和幼苗生长区营养液循环系统的俯视图。
图7a中所示的发芽和幼苗生长区营养液循环系统包括:一个水箱701、多个营养物槽702、一个压力泵(未示出)、多个流体输送管道703、多组流体引入管道704、多个流体引出管道705和一个流体输出管道706。在图7a至7d中,针对每一层搁架设置一个流体输送管道703、两组流体引入管道704、两个流体引出管道705。流体引入管道704的数目与搁架上的托盘数目相关,如图7a示出的,每一层搁架上的每一排托盘设置一组流体引入管道704。每个流体输送管道703在每一层分成两个分支,分别连接至一组 流体引入管道704。每组流体引入管道可以包括至少一个细管,流体引入管道设置在相应层的托盘的上方。流体引出管道与流体输出管道相连通。设置流体输出管道706的优点在于多个流体引出管道可以与其相连通,即通过一个部件使得营养液流回至水箱,而不用使得多个流体引出管道分别与水箱连接,这在具有多层搁架、多排托盘的情况下是尤其有利的。在发芽和幼苗生长区营养液循环系统刚刚开始运行时,水箱701内仅有从进水系统60流入的水,此时,水箱701内设置的EC传感器感测到水箱701内的EC小于下限值,水箱701上方的营养物槽702开始向水箱701输送营养素,这时,混合有营养素的水,即营养液,被压力泵从水箱701向上推送至流体输送管道703,然后经流体引入管道704流至搁架上的托盘。托盘的底部设置有孔,被植物吸收后的剩余的营养液从所述孔流入流体引出管道705,流体引出管道705与流体输出管道706相连通,营养液通过流体输出管道706流回至水箱701。之后,营养液以上述路径循环流动,即流体从水箱被泵送至流体输送管道,流体引入管道将流体输送管道所输送的营养液送至托盘被植物吸收,剩余的营养液从托盘流出至流体引出管道,流体引出管道流出的营养液流至流体输出管道,经流体输出管道流回水箱。该发芽和幼苗生长区营养液循环系统中的营养液可以一直循环,也可以周期性/不定期循环。此外,相对于营养液静止的栽培系统,营养液的循环能够有利于空气的溶解,抑制有害物质的生长等,从而有利于植物生长。
水箱701内设置有一个浮阀,可以实现对水箱701内的水量的自动控制。当水位低于一个位置时,浮阀打开,进水系统60向水箱701送水。此外,水箱701内的EC传感器一直感测水箱701内的EC值,当水箱内的EC小于下限值时,营养物槽开始向水箱701输送营养素。该EC下限值对于不同的植物是不同的。除EC传感器之外,水箱701中还可设有pH传感器、水温传感器、溶解氧传感器。pH传感器感测水箱701中的营养液的pH值,如果水箱701中的营养液的pH超过预定值或预定范围的上限,则营养物槽702会向水箱701中输送降低pH的酸性物质,使得营养液的pH降低至预定值或预定范围的下限。例如,当pH达到6.5以上,则营养物槽702会向水箱701中输送降低pH的酸性物质,使得营养液的pH降低至6.5以下。水温传感器感测水箱701中的营养液的温度,水箱701旁可设有冷却器,当水温传感器感测到水箱701中的营养液的温度过高时,所述冷却器可以降低水箱701中的营养液的温度。溶解氧传感器感测水箱701中的营养液的溶解氧含量,当溶解氧含量过低时,可以利用气泵向水箱701添加空气。
图7a和图7b中示出的营养物槽702共包括三个槽,其中两个槽装有供植物生长的营养素,当需要向水箱701输送营养素时,这两个槽打开,将营养素放置在不同槽是为了防止不同营养素在同一个槽内反应;而另一个槽装有上文所述用于降低pH的酸性物质,当pH传感器感测到水箱701中的营养液的pH过高时,该槽打开。应理解,营养物槽702的数目不是必须为三个。
应理解,以上关于图7a至7d所描述的各个部件的数目和形式不限于本说明书和附图中所描述的,而是可以根据实际的需要而变化。此外,上述部件不是都是必须的,例如可以不设置有流体输出管道;例如可以一个托架系统仅一个流体输送管道,然后在每一层搁架处该流体输送管道分出分支;且例如流体输送管道与多组流体引入管道可以是一体的。
图8a示出了根据本发明一个实施方案的培养和收获区营养液循环系统的立体图;图8b示出了图8a中区域K的放大示意图;图8c示出了图8a中区域J的放大示意图;图8d示出了图8a的一部分的侧视图。在图8a中示出了两个并排的托架系统,为清楚起见其中一个托架系统未示出搁架。
如图8a所示,该培养和收获区营养液循环系统包括:一个水箱801、多个营养物槽802、至少一个压力泵(未示出)、一个流体输送管道803、多排流体引入管道804和多个流体流出槽805。如图8a示出的,两个托架系统共享水箱、营养物槽和压力泵,这样的设计是优选地,可以节约部件。但应理解,可分别针对各个托架系统设置水箱、营养物槽和压力泵。图8c还示出了每一排流体引入管道804与流体输送管道803的连接处可设置有阀门V,从而可以控制对哪些层搁架上的培养槽输送营养液。在图8a中针对两个并排的托架系统,应理解,对于其他托架系统,营养液循环系统的设置是相似的。
如图16a和16b所示。两个或更多个并排的托架系统可以共用一个流体输送管道803,该流体输送管道803包括一个水平区段和至少两个竖直区段1608和1609,至少两个竖直区段中的每个的一端与压力泵相连并放置于水箱801内,另一端与该水平区段连接,该至少两个竖直区段之间的水平区段部分上布置有第一阀门1601。
在一个实施方案中,两个竖直区段中的每个均布置有单向阀1602和1603,并且所述第一阀门1601为手动阀。通常,流体输送管道的两个竖直区段可以分别将水箱中的水供给到不同的托架系统。但是,当其中一个竖直区段出现故障或由于损坏而不能供水时,可以由另一侧的竖直区段同时为两个或更多个并排的托架系统供水。
在另一个替代实施方案中,两个竖直区段中的每个均布置有电磁阀1604、1605和与其相连的流量传感器1606、1607,并且所述水平区段中的第一阀门1601也可以为电磁阀。在正常情况下,竖直区段的两个电磁阀同时处于打开状态。当其中一侧竖直区段出现故障或由于损坏而不能供水时,该竖直区段中的流量传感器将会检测到流量的变化,发信号给相关的电控单元使其关闭该侧竖直区段中的电磁阀并且打开所述水平区段中的第一阀门,以允许流体从相对侧的竖直区段同时供给到两个并排的托架系统。
每排流体引入管道针对的是一层搁架,其中一排流体引入管道中的流体引入管道的数目对应于每一层搁架上所放置的培养槽的数目。每一层搁架上所放置的培养槽的一端的正下方设置有一个流体流出槽。与发芽和幼苗生长区营养液循环系统类似,在培养和收获区营养液循环系统刚刚开始运行时,水箱801内仅有从进水系统60流入的水,此时,水箱801内设置的EC传感器感测到水箱801内的EC小于下限值,水箱801上方的营养物槽802开始向水箱801输送营养素,这时,混合有营养素的水,即营养液,被压力泵从水箱801向上推送至流体输送管道803,然后经流体引入管道804流至搁架上的培养槽。每一层培养槽的一端的正下方设置有一个流体流出槽805,被植物吸收后的剩余的营养液从培养槽流至流体流出槽805,然后从流体流出槽805流回至水箱801。如图8d示出的,培养槽在靠近水箱的一端的高度低于另一端的高度,因此营养液可以在培养槽中流动之后流至流体流出槽805。之后,营养液以上述路径循环流动,即营养液从水箱泵送至流体输送管道,然后经流体引入管道流入培养槽,培养槽中流出的营养液流至流体流出槽,最后流回至水箱。该培养和收获区营养液循环系统 中的营养液可以一直循环,也可以周期性/不定期循环。此外,相对于营养液静止的栽培系统,营养液的循环能够有利于空气的溶解,抑制有害物质的生长等,从而有利于植物生长。流体流出槽805的设置是有利的,避免了每个培养槽都需要一个流体输出导管连接至水箱801,因而简化了结构。
水箱801内设置有一个浮阀,可以实现对水箱801内的水量的自动控制。当水位低于一个位置时,浮阀打开,进水系统60向水箱801送水。此外,水箱801内的EC传感器一直感测水箱801内的EC值,当水箱内的EC小于下限值时,营养物槽开始向水箱801输送营养素。该EC下限值对于不同的植物是不同的。除EC传感器之外,水箱801中还可设有pH传感器、水温传感器、溶解氧传感器。pH传感器感测水箱801中的营养液的pH值,如果水箱701中的营养液的pH超过预定值或预定范围的上限,则营养物槽702会向水箱701中输送降低pH的酸性物质,使得营养液的pH降低至预定值以下或者预定范围的下限以下。例如,当pH达到6.5以上,则营养物槽702会向水箱701中输送降低pH的酸性物质,使得营养液的pH降低至6.5以下。水温传感器感测水箱801中的营养液的温度,水箱801旁可设有冷却器,当水温传感器感测到水箱801中的营养液的温度过高时,所述冷却器可以降低水箱801中的营养液的温度。溶解氧传感器感测水箱801中的营养液的溶解氧含量,当溶解氧含量过低时,可以利用气泵向水箱801添加空气。
类似地,图8a和图8b中示出的营养物槽802共包括三个槽,其中两个槽装有供植物生长的营养素,当需要向水箱801输送营养素时,这两个槽打开,将营养素放置在不同槽是为了防止不同营养素在同一个槽内反应;而另一个槽装有上文所述用于降低pH的酸性物质,当pH传感器感测到水箱801中的营养液的pH过高时,该槽打开。应理解,营养物槽802的数目不是必须为三个。
应理解,以上关于图8a至8d所描述的各个部件的数目和形式不限于本说明书和附图中所描述的,而是可以根据实际的需要而变化。此外,上述部件不是都是必须的,例如流体输送管道与多组流体引入管道可以是一体的。
图9示出了根据本发明一个实施方案的空气循环系统90的示意图。如图9示出的,在栽培区内,设有空气供给风扇(未示出),该空气供给风扇可以在侧壁中,该空气供给风扇向容器10的内部供应外部空气。空气供给风扇与HVAC流体连通,从而将空气供应至HVAC。空气供给风扇可以与一个空气过滤器一同设置,从而过滤掉外部空气中细菌等污染物。
该空气循环系统90还包括一个暖通空调系统(HVAC)、第一通风管道901a、第二通风管道901b、第三通风管道901c、第四通风管道901d、第一控制器902a、第二控制器902b、第三控制器902c,这些部件都可嵌入容器的侧壁和顶部,从而达到美观的效果。第一通风管道901a、第二通风管道901b、第三通风管道901c均与该暖通空调系统流体连通,第一通风管道901a、第二通风管道901b、第三通风管道901c均与第四通风管道901d流体连通。该第一控制器902a位于该第一通风管道901a与第四通风管道901d的连接处,该第二控制器902b位于该第二通风管道901b与第四通风管道901d的连接处,该第三控制器902c位于该第三通风管道901c与第四通风管道901d的连接处。
第一通风管道901a的下部可具有开口格栅(diffuser),从而与容器10的内部连通。开口格栅可分布在该通风管道的整个长度上,使得空气最大程度地分布在整个内部系统中。开口格栅可以是可调节的。
在容器10的两个侧壁中设置有多个壁管903(如图所示的903b和903c),这些壁管可包括至少一个竖直延伸部分和至少一个水平延伸部分。这些壁管在面向容器10的内部的一侧具有多个孔H,如壁管903b中可清楚看出的(在两个侧壁的面向容器内部的表面存在多个孔,这些孔可与壁管的孔对应)。该第四通风管道与这些壁管流体连通。优选地,这些壁管的设计使得壁管的位置越远离第四通风管道空气流量越大,可以通过孔的大小、管的截面积的选择来实现该目的。
该空气循环系统90至少可以提供多种空气循环模式,下面将分别介绍这几种模式:
(1)第二控制器902b工作,HVAC通过第二通风管道901b,经第四通风管道901d将空气供给风扇提供的空气送至靠近第二通风管道901b的侧壁中的壁管903b中,空气通过壁管903b中的孔流动至容器10的内部,当空气流动至另一侧壁时,通过该侧壁中的壁管903c的孔进入该侧壁中的壁管903c,第三控制器902c也工作,空气从壁管903c经第四通风管道901d流动至第三通风管道901c,然后回到HVAC,形成空气循环。
(2)与模式(1)方向相反,第三控制器902c工作,HVAC通过第三通风管道901c,经第四通风管道901d将空气供给风扇提供的空气送至靠近第三通风管道901c的侧壁中的壁管903c中,空气通过壁管903c中的孔流动至容器10的内部,当空气流动至另一侧壁时,通过该侧壁中的壁管903b的孔进入该侧壁中的壁管903b,第二控制器902a也工作,空气从壁管903b经第四通风管道901d流动至第二通风管道901b,然后回到HVAC,形成空气循环。
(3)第二控制器902b工作,HVAC通过第二通风管道901b,经第四通风管道901d将空气供给风扇提供的空气送至靠近第二通风管道901b的侧壁中的壁管903b中,空气通过壁管903b中的孔流动至容器10的内部;与此同时,第三控制器903c工作,HVAC通过第三通风管道901c,经第四通风管道901d将空气供给风扇提供的空气送至靠近第三通风管道901c的侧壁中的壁管903c中,空气通过壁管903c中的孔流动至容器10的内部;第一控制器902a工作,将分别从壁管903b和壁管903c吹入容器10的内部的空气拉入第一通风管道901a,然后回到HVAC,形成空气循环。
(4)与模式(3)相反,第一控制器902a工作,HVAC通过第一通风管道901a将空气供给风扇提供的空气推入容器10的内部,空气通过壁管903b和壁管903c上的孔进入壁管903,然后第二控制器902a和第三控制器903c工作,空气从壁管903b和壁管903c分别经第四通风管道901d进入第二通风管道901b和第三通风管道901c,然后回到HVAC,形成空气循环。
多种空气循环模式使得可以根据实际需要选择相应的模式。
图10示出了根据本发明另一实施方案的空气循环系统100的示意图。与空气循环系统90类似,对于空气循环系统100,其也设有空气供给风扇(未示出),该空气供给风扇可以在一个侧壁103。该空气供给风扇向容器10的内部供应外部空气。空气供给风扇与HVAC流体连通,从而将空气供应至HVAC。风扇可以与一个空气过滤器一同设置,从而过滤掉外部空气中细菌等污染物。
该空气循环系统100还包括一个暖通空调系统(HVAC)、第一通风管道1001a、第二通风管道1001b、第三通风管道1001c以及多个壁扇F。HVAC与第一通风管道1001a、第二通风管道1001b、第三通风管道1001c流体连通。壁扇悬挂于侧壁,其数目可与托盘或培养槽的数目相关。第一通风管道1001a的下部、第二通风管道1001b的下部、第三通风管道1001c的下部均可具有开口格栅,与容器10的内部连通。开口格栅可分布在这些通风管道的整个长度上,使得空气最大程度地分布在整个内部系统中。开口格栅可以是可调节的。
在空气循环系统中,HVAC通过第一通风管道1001a向容器10的内部送入空气,两侧的壁扇F分别将空气向侧壁方向拉动,向两侧壁流动的空气进而向上流动,分别通过第二通风管道1001b和第三通风管道1001c流回至HVAC,形成空气循环。此外,HVAC还可通过第三通风管道1001c将空气吹向风扇F1,通过第二通风管道1001b将空气吹向风扇F2,风扇F1和F2将空气推向容器10的内部,然后经第一通风管道1001a流回至HVAC,形成空气循环。
多个壁扇分别设置在相对的两个侧壁中。每个侧壁中的壁扇相互间隔开并与侧壁成角度布置。多个壁扇可以将空气从该栽培区向两个侧壁进行抽动,使空气沿着两个侧壁向上流动进入第二通风管道1001b和第三通风管道1001c。第二通风管道1001b和第三通风管道1001c可以是回气口,空气经由第二通风管道1001b和第三通风管道1001c离开该栽培区,第一通风管道1001a是进气口,空气经由第一通风管道1001a进入该栽培区。或者,第二通风管道1001b和第三通风管道1001c可以是进气口,空气经由第二通风管道1001b和第三通风管道1001c离开该栽培区,第一通风管道1001a是回气口,空气经由第一通风管道1001a进入该栽培区。
两侧的风扇F1和F2使得植物受到的风的强度是均匀的,从而使得不同位置的植物可以相同地生长;同时,壁扇的使用可以提高空气流动,以使得整个系统内的大气环境相同。
图11示出了根据本发明又一实施方案的空气循环系统110的示意图。在栽培区内,一个侧壁103设有空气供给风扇(未示出),该空气供给风扇向容器10的内部供应外部空气。空气供给风扇与HVAC流体连通,从而将空气供应至HVAC。风扇可以与一个空气过滤器一同设置,从而过滤掉外部空气中细菌等污染物。
该空气循环系统110还包括一个暖通空调系统(HVAC)(Heating Ventilation Air Conditioning)、第一通风管道1101a、第二通风管道1101b、第三通风管道1101c、第四通风管道1101d、第一控制器1102a、第二控制器1102b、第三控制器1102c。HVAC与第一通风管道1101a、第二通风管道1101b、第三通风管道1101c流体连通。第一通风管道1101a、第二通风管道1101b、第三通风管道1101c与第四通风管道1101d流体连通。第一控制器1102a位于第一通风管道1101a与第四通风管道1101d的连接处,第二控制器1102b位于第二通风管道1101b与第四通风管道1101d的连接处,第三控制器1102c位于第三通风管道1101c与第四通风管道1101d的连接处。
第一通风管道1101a的下部可具有开口格栅,从而与容器10的内部连通。开口格栅可分布在该通风管道的整个长度上,使得空气最大程度地分布在整个内部系统中。开口格栅可以是可调节的。
该空气循环系统110与空气循环系统90不同之处在于空气循环系统110没有壁管903,而是在地板的上表面设置多个孔1103。第四通风管道1101d在侧壁延伸,并且与该容器的底部上表面的多个孔1103流体连通。
在该空气循环系统110中,第二控制器1102b和第三控制器1102c工作,HVAC通过第二通风管道1101b和第三通风管道1101c,经第四通风管道1101d将空气供给风扇提供的空气送至地板下方,然后空气经多个孔1103流动至容器10的内部,此时第一控制器1102a工作,将从多个孔1103流动至容器10的内部的空气拉入第一通风管道1101a,然后回到HVAC,形成空气循环。或者,HVAC通过第一通风管道1101a将空气送至容器10内部,空气通过地板表面的孔进入第四通风管道1101d,然后进入第二通风管道1101b和第三通风管道1101c,最后空气回到HVAC,形成空气循环。
图9至图11中的各种管道是被隔离的、定制管道路径,确保了经处理的新鲜空气可以均匀地分布在整个内部系统中,而不需要压缩,空气可保持有效地重复循环,以维持最佳的大气条件。图9至图11的空气循环系统使得每个小时内部空气循环/流动多次,确保了整个生长区的大气条件一致,并且新鲜空气被持续地重新补充进生长区域,以促进健康生长,快速的气体流动也确保大气参数的任何变化会快速起效。此外,多种空气循环模式使得用户可以根据需要选择相应的模式,从而优化了系统结构。
在栽培区内,容器10还设有大气压力出口,该大气压力出口可设置在容器的一个侧壁中。该大气压力出口可设有纱窗,用于阻挡害虫的进入。当容器10内的压力比外界大气环境高时,该大气压力出口打开以释放内部空气,从而形成正压,确保整个系统中的气压与容器10以外的大气环境的压力基本相等。
对于图9至图11的空气循环系统,HVAC还起到空气调节作用,即,当容器内部的温度过高或过低时,HVAC可以向室内吹入冷空气或热空气,并且当空气供给风扇所供给的空气的温度过高或过低时,HVAC可以先降低该供给的空气的温度或升高该供给的空气的温度。
应理解,图9至图11的空气循环系统仅是示例性的,而非限制性的。空气循环系统的具体结构不限于说明书和图中所描绘的具体形式。
该植物栽培系统还可设有多个电路,这些电路包括但不限于:快速连接接入端口、保险丝盒、电线、线槽、无线接入模块。快速连接接入端口可以是50 amp快速连接接入端口,具有外部电连接缆线头。该快速连接接入端口能够通过单个插入点将电力输入至内部系统,确保用户能够容易地进行电设置。保险丝盒包含有AC接触器、主开关、14个保险丝以及接地的电气盒,该保险丝盒能够降低电气危害的危险性,确保内部电路免受外部电涌和内部部件故障的影响。电线为硬芯铜线。通过电线为内部部件供应电力,且可以安全地操作流经整个系统的电流量。线槽可以为防水、防火的PVC缆线引导件。电线布置在线槽中可以将电气危害降至最小。该无线接入模块可以是GSM/CDMA/WCDMA WiFi模块,GSM/CDMA/WCDMA WiFi模块包括工业级GSM/CDMA/WCDMA WiFi接收器和发送器。使用GSM/CDMA/WCDMA WiFi模块能够使得内部系统具有可靠的互联网连接,还可以连接至外部服务器,实现对内部系统的持续持续监测、数据收集、分析和调整等。与互联网的连接允许系统能够响应软件更新,并允许系统以最有效的方式运行,例如仅在耗能低的时间开 启系统。应理解,上面描述的内部电路的各个组成部分仅是示例性的,各个组成部分可以是其他形式。
根据本发明的一个实施方案,该植物栽培系统可包括监测系统和控制系统。该监测系统可包括:空气温度传感器、湿度传感器、CO2水平传感器、液体温度传感器、pH值传感器、溶解氧传感器。应理解,该监测系统可包括除上述之外的其他传感器。此外,该控制系统可包括一个或多个控制器,以控制内部系统的环境。各个传感器实时感测内部系统的各个参数值,然后将各个参数值提供给控制器,控制器根据接收到的参数值,自动控制内部系统的各个部分,从而形成了一个自动反馈回路。该监测系统和控制系统还可以由移动设备来操纵,从而可以在任何地点检查和调整系统。
如图7a、7c和图8a示出的,该植物栽培系统还设有光照系统L。光照系统设置在托盘和培养槽的上方,以照射植物。在该光照系统中,使用的光源是具有散热器的18 W 1.2m CTW光源或16W飞利浦LED模块。应理解,光源可以是其他类型的光源。根据所栽培的植物不同,可以使用发出不同波长的光、功率不同的光源。
光源的高度是可调节的,以确保光源与植物之间的距离是最优距离,并且可以满足具有不同光量需求的不同植物。此外,由于光源的高度是可调节的,因此可以将光源调节至离植物非常近的位置,从而可以以非常低的能量消耗来保证植物的生长,提高了能量利用率,从而可以减少LED模块的数量。调节光源的高度的方式可以是手动调节,例如通过手动卷帘。此外,还可以使用传感器,例如采用激光,当植物遮挡住激光时,判断此时植物的高度升高,从而调高光源的高度。
此外,所述发芽和幼苗生长区营养液循环系统以及所述培养和收获区营养液循环系统中的压力泵可在所述光照系统接通30分钟之前打开,并且可在所述光照系统断开30分钟之后关闭。应理解,光照系统也可以24小时照明。
图12示出了根据本发明另一个实施方案的植物栽培系统的正视图。
如图12示出的,该植物栽培系统包括一个容器120,该容器120可以是立柜。容器120包括上部的栽培区和下部的功能部件区(这将在图13中更清楚地示出)。应理解,栽培区和功能部件区的相对位置不限于此。容器120可包括门1201,该门1201可以是如图中所示对开式的,也可以是单开门。门1201可由玻璃G组成,以方便观察栽培区中植物的生长情况。其中门1201的下部可喷涂有金属粉末M,以挡住功能部件区中的部件,例如水箱等。容器120的底部设有多个轮子W,以方便移动容器。门1201上可设置有锁L,提高了安全性。
图13示出了图12的植物栽培系统的立体图。图13中示出了容器120的内部,并示出了一个侧部的分解图。容器120的侧部可设有附接件1202。附接件1202上可以设有U形槽UC,用于放置水管和电线。附接件1202上还可以设有多个高度可调节的孔12021,这些孔可位于栽培区,各个孔12021可安装有风扇,可用于空气流动。
该附接件1202可被一个金属板1203所覆盖,从而更美观,并对附接件1202起到保护作用,金属板1203上可设有扶手H,以方便搬运容器120。金属板1203上穿有多个孔,这些孔的作用将在下文描述。容器120上还设置有无线接入模块,例如WiFi接入点。
安装在一侧的风扇转动以使得空气穿过另一侧的金属板上的多个孔以及另一侧的附接件1202上的孔,从而进入容器内部,然后空气被向风扇所在的一侧拉动,并通过风扇所在一侧的金属板1203上的多个孔流出,从而实现空气从一个侧部到另一个侧部的流动。风扇还可以使得空气从其一侧的孔进入容器内部,并流动至另一侧,然后从另一侧的孔流出。
应理解,图13中示出的侧部的结构仅是示意性的,可以不设有附接件和金属板,水管、电线、风扇可以不设置在附接件中。
对于该系统中的空气循环,可在容器的一侧安装有至少一个风扇,而在与所述至少一个风扇相对的一侧设置至少一个孔。风扇可以拉动风,从而将空气从所述至少一个孔引入该容器的内部。具有至少一个风扇的一侧也可以具有至少一个孔。此外,可以在容器的两侧都设有风扇。风扇的吹气方向可变。
图13中还示出了多层搁架1205。多层搁架1205设置在栽培区中。所述搁架是可被拉出的,从而方便工作人员操作。优选地,每次仅一层搁架被拉出,从而防止立柜倾倒。
图14a示出了一层搁架的顶视图。图14a还示出了搁架1205中放置有托盘,托盘用于容纳栽培基质S,栽培基质可以是海绵、岩棉、陶粒(LECA)、椰糠(coconut coir)、珍珠岩(perlite)、蛭石(vermiculite)等。栽培基质S中放置有待栽培的植物。
图14b示出了图13所示的搁架的仰视图。如图14b示出的,搁架的下方设有光照系统LS,具有至少一个光源,光源可以为LED。光照系统设置在托盘上方,以照射植物。应理解,光源可以是其他类型的光源。根据所栽培的植物不同,可以使用发出不同波长的光、功率不同的光源。光源的高度是可调节的,以确保光源与植物之间的距离是最优距离,并且可以满足具有不同光量需求的不同植物。此外,由于光源的高度是可调节的,因此可以将光源调节至离植物非常近的位置,从而可以以非常低的能量消耗来保证植物的生长,提高了能量利用率,从而可以减少LED模块的数量。调节光源的高度的方式可以是手动调节,例如通过手动卷帘。此外,还可以使用传感器,例如采用激光,当植物遮挡住激光时,判断此时植物的高度升高,从而调高光源的高度。
搁架中还设有流体进入口WI和流体流出口WO,用于水循环。区域1401可用于放置水管和电线等。托盘还设有滑动件1402,从而方便搁架从容器120中滑进滑出。
图15示出了容器底部的详细示意图。容器底部是功能部件区,可以装有运行植物栽培系统所需要的各个部件。如图15所示的,容器底部可设有第一控制系统1501、第二控制系统1502,这两个控制系统可以控制整个植物栽培系统的运行,例如包括监测系统和控制系统。该监测系统可包括:空气温度传感器、湿度传感器、CO2水平传感器、液体温度传感器、pH值传感器、溶解氧传感器。应理解,该监测系统可包括除上述之外的其他传感器。此外,该控制系统可包括一个或多个控制器,以控制内部系统的环境。各个传感器实时感测内部系统的各个参数值,然后将各个参数值提供给控制器,控制器根据接收到的参数值,自动控制内部系统的各个部分,从而形成了一个自动反馈回路。该监测系统和控制系统还可以由移动设备来操纵,从而可以在任何地点检查和调整系统。
此外,图15还示出了多个营养物槽1503和水箱1504,这些营养物槽1503内部放置有营养物,可以为搁架中放置的植物提供营养素。营养物槽1503可以为泵的形式。应理解,该功能部件区还可以设有其他部件。
下面将描述该植物栽培系统的营养液循环系统。在营养液循环系统刚开始运行时,水箱1504内仅有水,此时,水箱内设置的EC传感器感测到水箱1504内的EC小于下限值,则营养物槽1503开始向水箱输送营养素,这时,混合有营养素的水,即营养液,通过一个压力泵(未示出)被从水箱向上泵送至流体流动管道(例如水管,未示出),所述流体流动管道将营养液输送至托盘,并将从托盘流出的营养液引出至所述水箱。之后,营养液以上述路径循环流动。这样的循环流动可以增强营养液的流动性,有助于植物的生长。所述流体循环系统的营养液循环可以是周期性循环的、24小时不间断循环的或不定期循环的。
此外,所述流体流动管道也可与流体进入口WI相连接,从而将营养液输送至托盘,且所述流体流动管道还可与流体流出口WO相连接,营养液经流体流出口WO从托盘流出,并通过所述流体流动管道引出至所述水箱。
水箱内设置有一个浮阀,可以实现对水箱内的水量的自动控制。当水位低于一个位置时,浮阀打开,向水箱送水。此外,水箱的EC传感器一直感测水箱内的EC值,当水箱内的EC小于下限值时,营养物槽开始向水箱输送营养素。该EC下限值对于不同的植物是不同的。除EC传感器之外,水箱中还可设有pH传感器、水温传感器、溶解氧传感器。pH传感器感测水箱中的营养液的pH值,如果水箱701中的营养液的pH超过预定值或预定范围的上限,则营养物槽702会向水箱701中输送降低pH的酸性物质,使得营养液的pH降低至预定值或预定范围的下限。例如,当pH达到6.5以上,则营养物槽702会向水箱701中输送降低pH的酸性物质,使得营养液的pH降低至6.5以下。水温传感器感测水箱中的营养液的温度,水箱旁可设有冷却器,当水温传感器感测到水箱中的营养液的温度过高时,所述冷却器可以降低水箱中的营养液的温度。溶解氧传感器感测水箱中的营养液的溶解氧含量,当溶解氧含量过低时,可以利用气泵向水箱添加空气。
图中示出的营养物槽1503共包括三个槽,其中两个槽装有供植物生长的营养素,当需要向水箱1504输送营养素时,这两个槽打开,将营养素放置在不同槽是为了防止不同营养素在同一个槽内反应;而另一个槽装有上文所述用于降低pH的酸性物质,当pH传感器感测到水箱1504中的营养液的pH过高时,该槽打开。应理解,营养物槽1503的数目不是必须为三个。
所述压力泵可在所述光照系统接通30分钟之前打开,并且可在所述光照系统断开30分钟之后关闭。应理解,所述光照系统也可以24小时照明。
图12至图15所示出的系统所占空间小,尤其适合于餐厅等空间紧凑的地方使用。该系统使用方便,尤其能够为生长周期短的植物提供可控的生长环境。
应理解,图1至图11所示的系统中使用的多种结构——例如光照系统、营养液循环系统——可以用于图12至图15所示出的系统。
在以上各个实施方案中,有利的是,设置空气循环系统,使得空气不是直接吹到植物体上,而是通过拉动空气远离植物体,而带动空气流经植物体。这样避免了植物处于紧张状态,保证了植物的生长。
所提及的贯穿该说明书的“一个实施方案”意味着针对所述实施方案所描述的特定特征、结构或特性被包括在本发明的至少一个实施方案中。由此,贯穿该说明书的在各个位置中出现的短语“在一个实施方案中”未必全指的是相同的实施方案。而且,在一个或多个实施方案中,具体的多个特征、结构或特性可被结合到任何合适的组合和/或子组合中。另外,应理解的是,此处所提供的附图是用于对本领域普通技术人员进行解释的目的的,所述附图未必按比例画出。
所示的本发明的实施方案的上述说明,包括在摘要中所描述的,不意在是排他性的,或者是对所公开的准确形式的限制。相反,本发明的具体实施方案以及实施方案都是出于示例目的,在不偏离本发明的较宽泛的精神和范围的情况下,可以做出各种等同修改。事实上,应理解的是,特定的参数值、范围等都是为了解释目的,根据本发明的教导在其它实施方案和实施方案中也可使用其它值。
可依据上述详细说明对本发明的实施方案进行这些修改。在下列权利要求中使用的术语不应被解释为将本发明限制于在说明书和权利要求中所公开的具体实施方案。相反,本发明的范围将由下列权利要求完全决定,该权利要求将根据对权利要求诠释的法律原则而被解释。相应地,本说明书和附图应被认为是示例性的而非限制性的。

Claims (19)

  1. 一种植物无土栽培系统,包括:
    一个容器,该容器的内部提供一个封闭空间,该封闭空间包括栽培区,
    其中该栽培区包括一个发芽和幼苗生长区以及一个培养和收获区;并且
    其中该栽培区包括至少一个托架系统,每个托架系统设有至少一层搁架以放置能够容纳栽培基质的部件,植物被安置在所述栽培基质中。
  2. 根据权利要求1所述的植物无土栽培系统,其中,该发芽和幼苗生长区包括发芽区和幼苗生长区。
  3. 根据权利要求1所述的植物无土栽培系统,其中,该培养和收获区包括培养区和收获区,其中所述培养区间插在所述收获区之间。
  4. 根据权利要求1所述的植物无土栽培系统,其中,该植物无土栽培系统包括监测系统和控制系统。
  5. 根据权利要求2所述的植物无土栽培系统,其中,该发芽和幼苗生长区设置有至少一个托架系统,且其中该发芽和幼苗生长区中的能够容纳栽培基质的部件是托盘。
  6. 根据权利要求3所述的植物无土栽培系统,其中,该培养和收获区设置有至少一个托架系统,且其中该培养和收获区中的能够容纳栽培基质的部件是培养槽。
  7. 根据权利要求1所述的植物无土栽培系统,其中,所述封闭空间还包括一个前区,该前区和该栽培区相互气密地间隔开。
  8. 根据权利要求7所述的植物无土栽培系统,其中,该前区包括空气净化器和杀菌装置。
  9. 根据权利要求1中任一项所述的植物无土栽培系统,其中,该植物无土栽培系统还包括一个流体循环系统,该流体循环系统设置在该栽培区中,用于为植物提供营养液,所述流体循环系统包括进水系统、发芽和幼苗生长区营养液循环系统、以及培养和收获区营养液循环系统。
  10. 根据权利要求9所述的植物无土栽培系统,其中,该进水系统包括依次连接的一个进水管、一个流量控制调节器、一个水表、一个增压泵以及至少一个水净化系统,该进水管连接至外部水源。
  11. 根据权利要求9所述的植物无土栽培系统,其中,该发芽和幼苗生长区营养液循环系统为该发芽和幼苗生长区提供营养液,包括:一个发芽和幼苗生长区水箱、多个发芽和幼苗生长区营养物槽、一个发芽和幼苗生长区压力泵、至少一个流发芽和幼苗生长区体输送管道、至少一组发芽和幼苗生长区流体引入管道以及至少一个发芽和幼苗生长区流体引出管道,
    其中,所述进水系统向所述发芽和幼苗生长区水箱输送水,所述发芽和幼苗生长区水箱与所述多个发芽和幼苗生长区营养物槽相连接,所述多 个发芽和幼苗生长区营养物槽向所述发芽和幼苗生长区水箱输送营养素从而在该发芽和幼苗生长区水箱中形成营养液;
    其中,所述发芽和幼苗生长区压力泵将所述发芽和幼苗生长区水箱中的营养液泵送至所述至少一个发芽和幼苗生长区流体输送管道,所述至少一个发芽和幼苗生长区流体输送管道与所述至少一组发芽和幼苗生长区流体引入管道相连通以将营养液输送至所述至少一组发芽和幼苗生长区流体引入管道;以及
    其中,所述至少一组发芽和幼苗生长区流体引入管道将营养液引入所述容纳栽培基质的部件,所述至少一个发芽和幼苗生长区流体引出管道将从所述容纳栽培基质的部件流出的营养液引出至所述发芽和幼苗生长区水箱。
  12. 根据权利要求9所述的植物无土栽培系统,其中,该培养和收获区营养液循环系统为该培养和收获区提供营养液,包括:一个培养和收获区水箱、多个培养和收获区营养物槽、一个培养和收获区压力泵、一个培养和收获区流体输送管道、至少一排培养和收获区流体引入管道和至少一个培养和收获区流体流出槽,
    其中,所述进水系统向所述培养和收获区水箱输送水,所述培养和收获区水箱与所述多个培养和收获区营养物槽相连接,所述多个培养和收获区营养物槽向所述培养和收获区水箱输送营养素从而在该培养和收获区水箱中形成营养液;
    其中,所述培养和收获区压力泵将所述培养和收获区水箱中的营养液泵送至所述培养和收获区流体输送管道,所述培养和收获区流体输送管道与至少一排培养和收获区流体引入管道相连通以将营养液输送至所述至少一排培养和收获区流体引入管道;
    其中,所述至少一排培养和收获区流体引入管道将营养液引入所述容纳栽培基质的部件;以及
    其中,所述至少一个培养和收获区流体引出管道在所述容纳栽培基质的部件的一端的下方,以将从所述容纳栽培基质的部件流出的营养液引出至所述培养和收获区水箱。
  13. 根据权利要求9所述的植物无土栽培系统,其中,在该发芽和幼苗生长区营养液循环系统、和/或在该培养和收获区营养液循环系统中,营养液是一直循环的、周期性循环的或不定期循环的。
  14. 根据权利要求1所述的植物无土栽培系统,其中该植物无土栽培系统还包括一个空气循环系统,该空气循环系统设置在该栽培区中空气循环系统设置在所述栽培区中。
  15. 根据权利要求1所述的植物无土栽培系统,其中,还包括光照系统,该光照系统与植物之间的距离是可调节的。
  16. 根据权利要求1中所述的植物无土栽培系统,其中,所述容器是集装箱。
  17. 一种植物无土栽培系统,包括:一个容器,该容器的内部提供一个封闭空间,该封闭空间包括栽培区;以及一个空气循环系统,该空气循环系统设置在该封闭空间中,
    其中该空气循环系统包括一个暖通空调系统HVAC、一个空气供应风扇和一个循环用管道系统,该HVAC与该空气供应风扇相连通,该循环用管道系统与该HVAC相连通,
    其中该循环用管道系统包括下列三种中的任一种:
    a)设置在该容器的相对的两个侧壁中的多个第一端口,
    b)设置在该容器的底部上表面的多个第一端口,
    c)设置在该容器的顶部并分别靠近该容器的相对的两个侧壁的多个第一端口,并在所述相对的两个侧壁上设置多个风扇;以及
    其中该循环用管道系统还包括至少一个第二端口,所述至少一个第二端口位于该容器的顶部中央。
  18. 根据权利要求17中所述的植物无土栽培系统,其中,所述多个第一端口是回气口,空气经由所述多个第一端口离开该栽培区,所述至少一个第二端口是进气口,空气经由所述至少一个第二端口进入该栽培区;或者,所述多个第一端口是进气口,空气经由所述多个第一端口进入该栽培区,所述至少一个第二端口是回气口,空气经由所述至少一个第二端口离开该栽培区。
  19. 一种植物无土栽培系统,包括:
    一个容器,该容器的内部提供一个空间,
    其中该容器的一个侧部设有至少一个风扇,且与该侧部相对的一个侧部具有至少一个孔,所述至少一个风扇通过所述至少一个孔将外部空气拉向该空间。
PCT/CN2016/098758 2015-09-11 2016-09-12 植物无土栽培系统 WO2017041757A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
ZA2018/02353A ZA201802353B (en) 2015-09-11 2018-04-10 Soilless plant culture system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510580373.5A CN106508649B (zh) 2015-09-11 2015-09-11 植物无土栽培系统
CN201510580373.5 2015-09-11

Publications (1)

Publication Number Publication Date
WO2017041757A1 true WO2017041757A1 (zh) 2017-03-16

Family

ID=58240120

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/098758 WO2017041757A1 (zh) 2015-09-11 2016-09-12 植物无土栽培系统

Country Status (3)

Country Link
CN (2) CN106508649B (zh)
WO (1) WO2017041757A1 (zh)
ZA (1) ZA201802353B (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108243940A (zh) * 2018-04-03 2018-07-06 洛阳中农富源现代农业技术有限公司 一种营养液可循环的无土栽培支架系统
CN110679554A (zh) * 2019-11-26 2020-01-14 玉溪市新特材料有限公司 一种立体循环繁蜂设备
US10785928B2 (en) 2016-12-09 2020-09-29 Eden Works, Inc. Methods systems and apparatus for cultivating densely seeded crops
CN111735908A (zh) * 2020-05-06 2020-10-02 安徽科技学院 一种批量鉴定小麦耐盐性的装置及方法
US11116156B2 (en) 2016-04-21 2021-09-14 Upward Enterprises Inc. Stacked shallow water culture (SSWC) growing systems, apparatus and methods
CN113940264A (zh) * 2021-05-19 2022-01-18 国家电投集团科学技术研究院有限公司 集装箱植物工厂
EP3964049A1 (de) * 2020-09-02 2022-03-09 Capsero AG Lagerbehältnis, wachstums- und/oder vermehrungsstation, kultivierungssystem und verfahren zur kultivierung von entwicklungsgut
CN115281014A (zh) * 2022-06-30 2022-11-04 中国农业科学院都市农业研究所 一种可循环水的集装箱内链条式培养槽
US20230014191A1 (en) * 2021-07-16 2023-01-19 Haier Us Appliance Solutions, Inc. Self-cleaning methods for an indoor gardening appliance
WO2024003590A1 (en) * 2022-07-01 2024-01-04 Farm3 Plant culture system and method

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107637342A (zh) * 2017-09-20 2018-01-30 苏州汉克山姆照明科技有限公司 一种植物育苗生长舱
CN107593166A (zh) * 2017-09-20 2018-01-19 苏州汉克山姆照明科技有限公司 一种育苗架
CN110089408A (zh) * 2018-01-29 2019-08-06 京东方科技集团股份有限公司 植物种植装置以及植物种植方法
GB201900322D0 (en) * 2019-01-09 2019-02-27 Ocado Innovation Ltd Growing systems and methods
CN109548529A (zh) * 2019-02-01 2019-04-02 四维生态科技(杭州)有限公司 一种植物栽培系统
FR3096869B1 (fr) * 2019-06-04 2023-03-24 Smart Farming System Rayonnage de culture hors sol, unité particulièrement destinée à être comprise dans un tel rayonnage, module de culture hors sol comprenant une telle unité et système de culture hors sol comprenant aux moins deux tels rayonnages.
CN115004984B (zh) * 2022-06-09 2023-07-14 内蒙古民族大学 一种用于新农科建设的新型多层恒温农业育苗装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201919451U (zh) * 2011-01-24 2011-08-10 南京市蔬菜科学研究所 一种家庭适用的花卉和蔬菜立体水培装置
US20120054061A1 (en) * 2010-08-26 2012-03-01 Fok Philip E Produce production system and process
JP2013034393A (ja) * 2011-08-03 2013-02-21 Tsubakimoto Chain Co 植物栽培装置の灌水装置
CN202958376U (zh) * 2012-12-17 2013-06-05 北京京鹏环球科技股份有限公司 一种微型植物工厂的温度调节系统
CN203206878U (zh) * 2013-03-14 2013-09-25 江苏农林职业技术学院 一种微型植物工厂
CN103975839A (zh) * 2014-05-30 2014-08-13 长沙信元电子科技有限公司 一种家庭小菜园
CN104351033A (zh) * 2014-11-03 2015-02-18 武汉优视农业科技有限公司 一种智能微型无菌植物工厂
CN104542231A (zh) * 2013-10-29 2015-04-29 孙以川 家庭立体式农业工厂

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201015317Y (zh) * 2006-08-31 2008-02-06 北京京鹏环球科技股份有限公司 一种植物工厂
US8083835B2 (en) * 2008-09-19 2011-12-27 Martin Mittelmark Micro-irrigation device, system, and method for plant-based cleaning of indoor air and filter bed bioregeneration
US9322568B2 (en) * 2010-10-07 2016-04-26 Field Controls, Llc Whole house ventilation system
CN202310788U (zh) * 2011-11-01 2012-07-11 中国计量学院 智能植物栽培架
CN202444918U (zh) * 2011-12-08 2012-09-26 北京中环易达设施园艺科技有限公司 一种移动式植物工厂
CN202722195U (zh) * 2012-04-18 2013-02-13 罗棣楹 Led光盘立体多层薄膜式水耕栽培架
CN202503993U (zh) * 2012-04-25 2012-10-31 付星 植物连续生产线
CN202759950U (zh) * 2012-06-28 2013-03-06 光茵生物科技股份有限公司 多功能种植机
TWM456689U (zh) * 2013-01-11 2013-07-11 Fresh Intake Co Ltd 室內植物培養結構(一)
KR20140102822A (ko) * 2013-02-15 2014-08-25 엘지전자 주식회사 식물 공장 컨테이너
CN103615128B (zh) * 2013-11-25 2015-12-09 北京工业大学 一种自动化雾培蔬菜种植与收获生产线
CN203827829U (zh) * 2014-03-12 2014-09-17 邱瑛杰 室内植栽箱

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120054061A1 (en) * 2010-08-26 2012-03-01 Fok Philip E Produce production system and process
CN201919451U (zh) * 2011-01-24 2011-08-10 南京市蔬菜科学研究所 一种家庭适用的花卉和蔬菜立体水培装置
JP2013034393A (ja) * 2011-08-03 2013-02-21 Tsubakimoto Chain Co 植物栽培装置の灌水装置
CN202958376U (zh) * 2012-12-17 2013-06-05 北京京鹏环球科技股份有限公司 一种微型植物工厂的温度调节系统
CN203206878U (zh) * 2013-03-14 2013-09-25 江苏农林职业技术学院 一种微型植物工厂
CN104542231A (zh) * 2013-10-29 2015-04-29 孙以川 家庭立体式农业工厂
CN103975839A (zh) * 2014-05-30 2014-08-13 长沙信元电子科技有限公司 一种家庭小菜园
CN104351033A (zh) * 2014-11-03 2015-02-18 武汉优视农业科技有限公司 一种智能微型无菌植物工厂

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11116156B2 (en) 2016-04-21 2021-09-14 Upward Enterprises Inc. Stacked shallow water culture (SSWC) growing systems, apparatus and methods
US10785928B2 (en) 2016-12-09 2020-09-29 Eden Works, Inc. Methods systems and apparatus for cultivating densely seeded crops
CN108243940A (zh) * 2018-04-03 2018-07-06 洛阳中农富源现代农业技术有限公司 一种营养液可循环的无土栽培支架系统
CN110679554A (zh) * 2019-11-26 2020-01-14 玉溪市新特材料有限公司 一种立体循环繁蜂设备
CN111735908B (zh) * 2020-05-06 2022-09-02 安徽科技学院 一种批量鉴定小麦耐盐性的装置及方法
CN111735908A (zh) * 2020-05-06 2020-10-02 安徽科技学院 一种批量鉴定小麦耐盐性的装置及方法
EP3964049A1 (de) * 2020-09-02 2022-03-09 Capsero AG Lagerbehältnis, wachstums- und/oder vermehrungsstation, kultivierungssystem und verfahren zur kultivierung von entwicklungsgut
WO2022048935A2 (de) 2020-09-02 2022-03-10 Capsero Ag Lagerbehältnis, wachstums- und/oder vermehrungsstation, kultivierungssystem und verfahren zur kultivierung von entwicklungsgut
WO2022048935A3 (de) * 2020-09-02 2022-05-27 Capsero Ag Lagerbehältnis, wachstums- und/oder vermehrungsstation, kultivierungssystem und verfahren zur kultivierung von entwicklungsgut
CN113940264A (zh) * 2021-05-19 2022-01-18 国家电投集团科学技术研究院有限公司 集装箱植物工厂
US20230014191A1 (en) * 2021-07-16 2023-01-19 Haier Us Appliance Solutions, Inc. Self-cleaning methods for an indoor gardening appliance
CN115281014A (zh) * 2022-06-30 2022-11-04 中国农业科学院都市农业研究所 一种可循环水的集装箱内链条式培养槽
CN115281014B (zh) * 2022-06-30 2023-06-30 中国农业科学院都市农业研究所 一种可循环水的集装箱内链条式培养槽
WO2024003590A1 (en) * 2022-07-01 2024-01-04 Farm3 Plant culture system and method

Also Published As

Publication number Publication date
CN110731258A (zh) 2020-01-31
CN106508649B (zh) 2019-10-18
CN106508649A (zh) 2017-03-22
ZA201802353B (en) 2018-12-19

Similar Documents

Publication Publication Date Title
WO2017041757A1 (zh) 植物无土栽培系统
US20210212271A1 (en) High density indoor farming apparatus, system and method
CN103975839B (zh) 一种家庭小菜园
KR200455827Y1 (ko) 가전형 식물 재배기
KR101451343B1 (ko) 버섯 및 새싹 재배를 위한 장치
CN105104158A (zh) 智能水培蔬菜种植柜
KR101422636B1 (ko) 가정용 수경재배장치
CN203872727U (zh) 一种家庭小菜园
CN205018017U (zh) 智能水培蔬菜种植柜
KR101614925B1 (ko) 가정용 식물재배장치
KR101582389B1 (ko) 무선 제어 가능한 식물 재배 시스템
CN104686316A (zh) 一种全自动智能有机芽苗菜种植箱
KR101222399B1 (ko) 수경재배 온실용 냉,난방장치
CN204560493U (zh) 一种全自动智能有机芽苗菜种植箱
US20170196176A1 (en) High density indoor farming apparatus, system and method
JP2013111039A (ja) 植物栽培装置
CN104303983A (zh) 植物室内栽培系统
CN201752197U (zh) 一种食用菌立体种植室的换气系统
KR101830723B1 (ko) 수경재배용 조립식 식물공장
KR20210047702A (ko) 식물 재배장치
CN111837823A (zh) 一种自动化菌菇培养舱及菌菇培养方法
KR20160136923A (ko) 이동식 청사료 및 식물 수경재배 시스템
KR101479191B1 (ko) 식물재배 및 공기정화 시스템
KR200480089Y1 (ko) 버섯 재배장치
JPH01235524A (ja) 完全制御型植物工場

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16843695

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 19.06.2018)

122 Ep: pct application non-entry in european phase

Ref document number: 16843695

Country of ref document: EP

Kind code of ref document: A1