WO2017041269A1 - 一种可飞行清洁机器人 - Google Patents

一种可飞行清洁机器人 Download PDF

Info

Publication number
WO2017041269A1
WO2017041269A1 PCT/CN2015/089342 CN2015089342W WO2017041269A1 WO 2017041269 A1 WO2017041269 A1 WO 2017041269A1 CN 2015089342 W CN2015089342 W CN 2015089342W WO 2017041269 A1 WO2017041269 A1 WO 2017041269A1
Authority
WO
WIPO (PCT)
Prior art keywords
cleaning
aerial vehicle
unmanned aerial
flightable
cleaning robot
Prior art date
Application number
PCT/CN2015/089342
Other languages
English (en)
French (fr)
Inventor
于东方
Original Assignee
于东方
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 于东方 filed Critical 于东方
Priority to PCT/CN2015/089342 priority Critical patent/WO2017041269A1/zh
Publication of WO2017041269A1 publication Critical patent/WO2017041269A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/38Machines, specially adapted for cleaning walls, ceilings, roofs, or the like
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers

Definitions

  • the present invention relates to a cleaning robot, and more particularly to a cleaning robot capable of flying into an exterior wall of a building.
  • An object of the present invention is to provide a flightable cleaning robot that combines an unmanned aerial vehicle such that the cleaning robot can reach an arbitrary position on the outer wall of the building for cleaning work.
  • a flightable cleaning robot including an unmanned aerial vehicle and a cleaning host, wherein: the cleaning host is rotatably mounted on the unmanned aerial vehicle through a rotating shaft The bottom of the rotating shaft is connected with a driving motor; the cleaning host comprises a running mechanism and a control unit, and the running mechanism comprises a plurality of vacuum suction cups; the control unit is scheduled to fly to the outer wall of the building by the flightable cleaning robot
  • the area ⁇ controls the driving motor to rotate, so that the cleaning main body rotates around the rotating shaft away from the bottom of the UAV and is attached to the surface of the external wall of the building through the vacuum suction cup of the traveling mechanism, and rotates the UAV around the rotating shaft and stacks it for cleaning.
  • the cleaning host is rotatably mounted on the unmanned aerial vehicle through a rotating shaft
  • the bottom of the rotating shaft is connected with a driving motor
  • the cleaning host comprises a running mechanism and a control unit, and the running mechanism comprises a plurality of vacuum suction cups
  • the control unit is scheduled to fly
  • the UAV is a four-axis aircraft, and the four-axis aircraft includes four sets of rotor assemblies fixedly mounted by a rotor connection bracket; the cleaning main body is in phase with the four sets of rotor assemblies.
  • the flightable cleaning robot is provided with an infrared detecting component for sensing a distance between the flying cleaning robot and a boundary of a building exterior wall, and the infrared detecting component includes at least a side uniformly disposed on the side of the unmanned aerial vehicle.
  • the four infrared sensors on the side the infrared sensor is inclined toward the outer wall of the building to emit infrared sensing rays, and the control unit confirms the distance between the cleaning host and the outer wall boundary of the building according to the feedback signal of the infrared sensor.
  • the traveling mechanism further includes a horizontal suction cup track and a longitudinal suction cup track which are arranged in a T shape at the bottom of the cleaning main body, and each of the horizontal suction cup track and the longitudinal suction cup track includes a suction cup track.
  • a flexible crawler and a vacuum generator for generating a vacuum wherein the plurality of vacuum chucks are disposed on the flexible crawler, the vacuum generator is connected to each vacuum chuck through a rotary joint and controlled by the control unit to the vacuum chuck Vacuuming operation.
  • the cleaning host includes a cleaning mechanism disposed at a front end of the traveling mechanism and a cleaning mechanism disposed at a rear end of the traveling mechanism, and the cleaning mechanism includes at least one cleaning brush disposed at a front end of the bottom of the cleaning host.
  • the cleaning brush is driven to swing by the motor to clean the garbage;
  • the cleaning mechanism includes at least one cleaning soft blade disposed on the rear side of the running mechanism of the cleaning main body, and the cleaning soft blade is driven by the motor to swing and clean the cleaning host. Traces of walking left by the walking mechanism.
  • the unmanned aerial vehicle is provided with a garbage adsorption mechanism
  • the garbage adsorption mechanism includes a garbage adsorption port disposed at a bottom of the unmanned aerial vehicle and garbage disposed in the unmanned aerial vehicle
  • the storage box, the garbage adsorption port and the garbage storage box are connected to the vacuum motor through a connecting air pipe, and the vacuum motor sucks the garbage cleaned by the cleaning host into the garbage storage box from the garbage adsorption port.
  • the unmanned aerial vehicle is provided with a liquid spraying mechanism for spraying the cleaning liquid
  • the liquid discharging mechanism includes at least one set of high pressure spraying holes provided at the bottom of the unmanned aerial vehicle and is disposed at the unmanned a cleaning liquid storage box in the aircraft, wherein the cleaning liquid storage box is connected to the vacuum motor through a pressurized conveying pipe to pressurize the cleaning liquid in the cleaning liquid storage box, so that the cleaning liquid is discharged from the high pressure spraying hole ejection.
  • the unmanned aerial vehicle is provided with a fall prevention mechanism, and the fall prevention mechanism includes an ejection parachute for assisting descending in the unmanned aerial vehicle, and an umbrella for placing a catapult a cabin, an umbrella hatch for closing the umbrella cabin, a controller for sensing the current posture of the flightable cleaning robot to control the ejection parachute umbrella, wherein the controller is a component of the control unit, and the umbrella hatch is located The side of the UAV.
  • the unmanned aerial vehicle is provided with a solar module, and the solar module includes a solar film and a fixing bracket for mounting the solar film on the unmanned aerial vehicle.
  • the flightable cleaning robot is provided with a camera assembly, the camera assembly including a camera; the control unit is connected to the camera and stores or transmits the image captured by the camera to the receiving terminal.
  • the present invention combines mature unmanned aerial vehicle technology and cleaning robot technology to issue a flightable cleaning robot.
  • the unmanned aerial vehicle sends the cleaning host to a predetermined area of the external wall of the building, and the flightable cleaning robot passes twice.
  • the mechanical deformation is changed from the flight mode to the cleaning mode, which enables self-propelled cleaning at any position on the outer wall of the building, reducing the use of spiders in the cleaning of the exterior wall of the building.
  • FIG. 1 is a schematic view showing the overall structure of a flightable cleaning robot according to an embodiment of the present invention
  • FIG. 2 is a schematic structural view of an unmanned aerial vehicle according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a three-dimensional split structure of an unmanned aerial vehicle according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural view of a cleaning host according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a three-dimensional split structure of a cleaning host according to an embodiment of the present invention.
  • FIG. 6 is a schematic view showing the bottom structure of a flightable cleaning robot according to an embodiment of the present invention.
  • FIG. 7 is a first schematic diagram of an operational state of a flightable cleaning robot according to an embodiment of the present invention.
  • FIG. 8 is a second schematic diagram of an operational state of a flightable cleaning robot according to an embodiment of the present invention.
  • FIG. 9 is a third schematic diagram of the working state of the flightable cleaning robot according to an embodiment of the present invention.
  • FIG. 10 is a schematic view showing the working state of a flightable cleaning robot according to an embodiment of the present invention.
  • a flightable cleaning robot for cleaning a building exterior wall 300, particularly suitable for cleaning operations in a difficult area of a building exterior wall 300, including an unmanned aerial vehicle 100 and cleaning the main body 200, wherein: the cleaning main body 200 is rotatably mounted on the bottom of the UAV 100 through a rotating shaft 16, and the rotating shaft 16 is connected with a driving motor; the cleaning main body 20 includes a running mechanism 19 and a control unit, and the running mechanism 19 includes a plurality of vacuum chucks; the control unit controls the driving motor to operate in a predetermined area where the flightable cleaning robot flies to the external wall 300 of the building, so that the cleaning main unit 200 rotates around the rotating shaft 16.
  • the control unit of the flightable cleaning robot comprises a control board 17 disposed in the cleaning host 20, and the control board 17 may have a signal receiving circuit for receiving a control signal from a remote controller or the like for flight control or cleaning. Control, etc.
  • the flightable cleaning robot includes an unmanned aerial vehicle 100 and a cleaning host 200 disposed in the unmanned aerial vehicle 100.
  • the unmanned aerial vehicle 100 is mainly used to air the cleaning host 200 to a predetermined area of the exterior wall 300 of the building. Then, the main unit 200 is cleaned for cleaning work.
  • the cleaning main body 200 is rotatably connected to the bottom of the UAV 100 through a rotating shaft 16, and the rotating shaft 16 is connected with a driving motor; the unmanned aerial vehicle 100 and the cleaning main body 200 can be operated at 0°-90° by the driving motor and the rotating shaft 16. The position is changed to achieve mechanical deformation. Specifically, referring to FIG. 2 and FIG.
  • the unmanned aerial vehicle 100 includes a mounting bracket composed of an upper bracket 5 and a lower bracket 13 .
  • the main functional components of the unmanned aerial vehicle 100 are disposed on the mounting bracket.
  • the UAV 100 is provided with a vacuum motor 10 and an infrared detecting component for sensing the distance between the flying cleaning robot and the boundary of the building exterior wall 300.
  • the infrared detecting component includes an infrared sensor 6 disposed on the side of the UAV 100, and The infrared sensor 6 is electrically connected to the control unit.
  • the cleaning host 200 includes a running mechanism 19 and a casing formed by the main body cover 15 and the main unit lower cover 18.
  • the traveling mechanism 19 includes a plurality of vacuum suction cups.
  • the flying cleaning robot can be attached to the building exterior wall 300 and walked by the vacuum suction cup. Operation ⁇ , Referring to FIG. 7, the flightable cleaning robot flies through the unmanned aerial vehicle 100 in an airplane mode and approaches a predetermined area of the exterior wall 300 of the building, and the infrared detecting component senses the distance between the flying cleaning robot and the exterior wall 300 of the building. And transmitting back to the control unit; referring to FIG.
  • the control unit controls the driving motor to drive through the rotating shaft 16
  • the cleaning main body 200 moves from the horizontal direction to the vertical direction around the rotating shaft 16, that is, the cleaning main body 200 rotates from the unmanned aerial vehicle 100 and forms an angle of 90° with the UAV 100 to complete the first mechanical deformation.
  • the control unit controls the vacuum chuck operation of the running mechanism 19 to adsorb the cleaning main body 200 on the exterior wall 300 of the building; referring to FIG.
  • control unit then controls the driving motor to drive the unmanned aerial vehicle 100 to be engaged with the cleaning host 200 through the rotating shaft 16 to complete Second mechanical deformation;
  • the flightable cleaning robot completes the transition from flight mode to cleaning mode by two mechanical deformations under the control of the control unit.
  • the unmanned aerial vehicle 100 is a four-axis aircraft including four sets of rotor assemblies 4 fixed to the mounting bracket by a rotor connecting bracket 3, the unmanned aerial vehicle 100
  • the mounting bracket is provided with an installation space for mounting the rotor assembly 4, so that the cleaning main assembly 200 and the four sets of rotor assemblies 4 are disposed offset from each other without interfering with each other. Since the four-axis rotorcraft is a very mature technology, the specific structure will not be described again.
  • the infrared detecting component includes at least four infrared sensors 6 disposed uniformly. Generally, the infrared detecting component is provided with eight infrared sensors 6, ensuring no dead angles are detected.
  • the infrared sensor 6 is tilted toward the exterior wall 300 of the building to emit infrared sensing rays, and the control unit confirms the distance between the flying cleaning robot and the outer wall of the building 300 according to the feedback signal of the infrared sensor and avoids being emptied and perceived during the cleaning operation. Obstacles on the exterior wall 300 of the building.
  • the eight infrared sensors 6 are evenly arranged along the edge of the unmanned aerial vehicle 100, and the infrared sensing rays emitted by the infrared sensor 6 are not horizontal, and the infrared sensing rays emitted by the infrared sensor 6 are between the infrared ray of the building and the exterior wall 300 of the building.
  • the angle is between 25° and 65°.
  • the angle of the infrared sensing ray may be 25°, 30°, 45°, 60° or 65°.
  • the infrared sensor 6 When the flightable cleaning robot travels to the edge of the exterior wall 300 of the building, the infrared sensor 6 does not sense the exterior wall 300 of the building, and the control unit according to the vertical distance between the infrared sensor 6 and the exterior wall 300 of the building and the infrared sensor The angle of the infrared inductive ray emitted by 6 can be used to calculate the distance between the flightable cleaning robot and the edge of the external wall 300 of the building, thereby determining the next direction of travel and the distance traveled by the cleaning host 200 to avoid falling.
  • the running mechanism 19 further includes a horizontal suction cup track and a longitudinal suction cup track arranged in a T-shape at the bottom of the cleaning main body 200, each of the horizontal suction cup track and the longitudinal suction cup track.
  • the crawler includes a flexible crawler and a vacuum generator for generating a vacuum, a plurality of vacuum chucks are disposed on the flexible crawler, and the vacuum generator is connected to each vacuum chuck through a rotary joint and is controlled by the control unit Control the vacuum suction operation of the vacuum chuck.
  • the running mechanism 19 on the cleaning main body 200 includes a longitudinal suction cup track that moves forward and backward and two lateral suction cup tracks that move left and right, and the three suction cup tracks form a T-shaped structure.
  • two laterally moving suction cup tracks are arranged on the same straight line, one longitudinally moving longitudinal suction cup track is perpendicular to the two left and right moving horizontal suction cup tracks, and the three suction cup tracks form a T-shaped structure, which will be cleaned.
  • the main body 200 is firmly supported and adsorbed on the exterior wall 300 of the building.
  • the cleaning host 200 is provided with a mounting slot for mounting the suction cup track, and the suction cup track is installed in the mounting groove to minimize the distance between the cleaning main body 200 and the building exterior wall 300, and improve the flightable cleaning robot on the exterior wall of the building.
  • the attitude stability on the 300 the same as the suction cup track protection.
  • each of the suction cup tracks of the horizontal suction cup track and the longitudinal suction cup track comprises a flexible crawler and a vacuum generator for generating a vacuum
  • the plurality of vacuum suction cups are disposed on the flexible crawler
  • the vacuum generator passes through the rotary joint with each
  • the vacuum chucks are connected, that is, the vent pipes of each vacuum chuck are connected to the rotary joint, and then connected to the vacuum generator through the rotary joint.
  • the flexible crawler belt is provided with 26 vacuum suction cups, and the 26 vacuum suction cups are divided into 13 groups in two groups, and are evenly arranged on the flexible crawler belt.
  • the vacuum suction cup enables the flying cleaning robot to be reliably adsorbed on the exterior wall 300 of the building, and the crawler wheel drives the flexible crawler to operate so that the clear cleaning robot can walk on the exterior wall 300 of the building to complete the cleaning operation of the exterior wall 300 of the building.
  • the cleaning host 200 includes a cleaning mechanism disposed at the front end of the traveling mechanism 19 and a cleaning mechanism disposed at the rear end of the traveling mechanism 19.
  • the cleaning mechanism includes at least one disposed at the bottom of the cleaning host 200.
  • the cleaning brush 20 at the front end, the cleaning brush 20 is driven by the motor to sweep the dirt such as dust adhering to the exterior wall 300 of the building.
  • the cleaning mechanism includes at least one cleaning soft blade 21 provided on the rear side of the running mechanism 19 of the cleaning main body 200, and the cleaning soft blade 21 is driven to swing by the motor to clean the walking marks left by the running mechanism 19 of the cleaning main body 200.
  • the stains such as dust adhering to the exterior wall 300 of the building are washed by the cleaning brush 20 of the cleaning mechanism, and then crushed by the running mechanism 19 of the cleaning main body 200 to be reattached to the exterior wall 300 of the building, in the building.
  • a walking trace appears on the outer wall 300. Therefore, the cleaning mechanism provided on the rear side of the traveling mechanism 19 can clean the above-mentioned walking traces, thereby avoiding the occurrence of walking marks and ensuring the cleaning effect.
  • the unmanned aerial vehicle 100 is provided with a garbage adsorption mechanism, and the garbage adsorption mechanism includes a garbage adsorption port 22 disposed at the bottom of the unmanned aerial vehicle 100 and is disposed at
  • the garbage storage box 11 in the unmanned aerial vehicle 100, the garbage suction port 22 and the garbage storage box 11 are connected to the vacuum motor 10 through a connecting air pipe, and the vacuum motor 10 sucks the garbage cleaned by the cleaning main body 200 from the garbage suction port 22 into the garbage storage box 11. .
  • the vacuum motor 10 operates in the garbage suction port 22 to generate suction, and dust and the like which are removed by the cleaning mechanism and the cleaning mechanism are sucked into the garbage storage box 11 from the garbage adsorption port 22, and the garbage storage box 11 is provided with a filter to remove dust. The garbage is left in the garbage storage box 11.
  • the exterior wall 300 of the building has some stains which are relatively difficult to clear. It is difficult to remove the cleaning brush 20 and the cleaning soft blade 21, and it is necessary to use the cleaning liquid. Wash it.
  • the unmanned aerial vehicle 100 is provided with a liquid spraying mechanism for spraying the cleaning liquid, and the liquid discharging mechanism includes at least one set of high pressure spraying holes 12 provided at the bottom of the unmanned aerial vehicle 100 and a cleaning liquid provided in the unmanned aerial vehicle 100.
  • the storage case 7, the cleaning liquid storage case 7 is connected to the vacuum motor 10 through a pressurized delivery pipe to pressurize the cleaning liquid in the cleaning liquid storage case 7, so that the cleaning liquid is ejected from the high-pressure spray hole 12 for better pickup.
  • the liquid discharge mechanism is mainly used for spraying the cleaning liquid to the cleaning mechanism of the cleaning main body 200, and the number of the high pressure spray holes 12 is one-to-one corresponding to the number of the cleaning brushes 20 of the cleaning mechanism.
  • the high-pressure spray hole 12 is arranged in an arc shape to increase the spray area of the cleaning liquid, and it is ensured that the cleaning liquid can be sprayed to the cleaning liquid within the cleaning range of the cleaning brush 20.
  • the unmanned aerial vehicle 100 is provided with a fall prevention mechanism, and the fall prevention mechanism includes an ejection parachute 9 for assisting descending in the unmanned aerial vehicle 100, and is used for placing An umbrella cabin of the ejection parachute 9, an umbrella hatch for closing the umbrella cabin, a controller for sensing the current posture of the flightable cleaning robot to control the ejection parachute 9 ⁇ umbrella, the controller is a control unit of the flightable cleaning robot Part; the umbrella hatch is located on the side of the UAV 100.
  • the controller is an acceleration sensor that can sense the acceleration of the flightable cleaning robot.
  • the controller judges that the cleaning robot falls from a high-altitude free fall state according to the acceleration condition of the cleaning robot, and the controller issues an umbrella command to control the ejection parachute 9 from the umbrella.
  • the cabin is ejected, and the parachute is implemented to reduce the falling speed of the flightable cleaning robot, thereby protecting the flightable cleaning robot and reducing the occurrence of accidents.
  • the fall prevention mechanism of the flightable cleaning robot uses compressed gas as the ejection power of the ejection parachute 9, and specifically, is disposed in the unmanned aerial vehicle 100.
  • the vacuum motor 10 is connected to the umbrella compartment through a connecting air pipe, and a solenoid valve electrically connected to the controller is disposed on the connecting air pipe.
  • the solenoid valve When the controller issues the parachute command, the solenoid valve is slammed, the connecting air pipe is connected, the air is pressurized by the vacuum motor 10, and then enters the umbrella cabin through the connecting air pipe, the umbrella hatch is topped and the ejection parachute 9 is ejected, and the parachute is implemented. .
  • the unmanned aerial vehicle 100 is provided with a solar module, and the solar module includes The solar film 1 and the fixing bracket 2 for mounting the solar film 1 on the unmanned aerial vehicle 100, use solar energy to generate electricity through the solar film 1 and store the acquired electric energy in the solar energy storage battery for providing work for the flightable cleaning robot Electrical energy, the solar energy storage battery is disposed in the mounting bracket of the UAV 100.
  • the building exterior wall 300 is inconvenient to observe. Therefore, the flightable cleaning robot is provided with a camera assembly, the camera assembly includes a camera 14; the control unit is connected to the camera 14 and the camera 14 is photographed. The resulting image is stored or sent to the receiving terminal.
  • the image data captured by the camera 14 can be used to understand the basic situation of the building exterior wall 300, provide basic information for the cleaning operation or check the cleaning operation effect, and can check the aging damage of the building exterior wall 300 for the maintenance personnel, and provide maintenance reference. in accordance with

Landscapes

  • Cleaning In General (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

一种可飞行清洁机器人,包括无人飞行器(100)以及清洁主机(200),其中:所述清洁主机(200)通过旋转轴(16)可旋转地安装在所述无人飞行器(100)的底部,所述旋转轴(16)连接有驱动电机;所述清洁主机(200)包括行走机构(19)及控制单元,且该行走机构(19)包括多个真空吸盘;所述控制单元在可飞行清洁机器人飞抵建筑物外墙(300)的预定区域时控制驱动电机运行,使清洁主机(200)绕旋转轴(16)转动脱离无人飞行器(100)的底部并通过行走机构(19)的真空吸盘贴附到建筑物外墙(300)的表面,以及使无人飞行器(100)绕旋转轴(16)旋转并叠于清洁主机(200)上。通过将成熟的无人飞行器技术和清洁机器人技术有机结合在一起实现在可飞行清洁机器人到达大厦外墙的任意位置并自走清洁,减少了大厦外墙清洁作业中蜘蛛人的使用。

Description

说明书 发明名称:一种可飞行清洁机器人 技术领域
[0001] 本发明涉及一种清洁机器人, 具体涉及一种能够飞行进入大厦外墙的清洁机器 人。
背景技术
[0002] 大厦外墙清洁是一项高危险的户外作业, 一般使用绳索将人员吊在大厦外墙进 行清洁作业, 行业称之为蜘蛛人。 进行大厦外墙清洁的蜘蛛人是非常危险的工 作, 蜘蛛人在清洁作业过程中仅凭绳索吊在空中, 全球每年都有很多蜘蛛人在 大厦外墙清洁作业过程中因为失误或者大风大雨的恶劣天气出现伤亡。
[0003] 目前出现有使用爬墙清洁机器人代替蜘蛛人进行大厦外墙清洁工作, 大大减少 了蜘蛛人的伤亡现象。 但是由于爬墙清洁机器人对作业条件要求较高, 越障能 力不够, 无法到达所有的墙面进行清洁作业, 依然需要蜘蛛人进行清洁工作。 技术问题
[0004] 本发明的目的在于针对上述技术问题提出一种结合无人飞行器使得清洁机器人 可以到达大厦外墙任意位置进行清洁作业的可飞行清洁机器人。
问题的解决方案
技术解决方案
[0005] 本发明解决上述技术问题所采用的技术方案为: 一种可飞行清洁机器人, 包括 无人飞行器以及清洁主机, 其中: 所述清洁主机通过旋转轴可旋转地安装在所 述无人飞行器的底部, 所述旋转轴连接有驱动电机; 所述清洁主机包括行走机 构及控制单元, 且该行走机构包括多个真空吸盘; 所述控制单元在可飞行清洁 机器人飞抵建筑物外墙的预定区域吋控制驱动电机运行, 使清洁主机绕旋转轴 转动脱离无人飞行器的底部并通过行走机构的真空吸盘贴附到建筑物外墙的表 面, 以及使无人飞行器绕旋转轴旋转并叠于清洁主机上。
[0006] 在本发明中, 所述无人飞行器为四轴飞行器, 该四轴飞行器包括通过旋翼连接 支架安装固定的四组旋翼组件; 所述清洁主机与四组旋翼组件相错。 [0007] 在本发明中, 所述可飞行清洁机器人设有用于感知可飞行清洁机器人与大厦外 墙边界的距离的红外探测组件, 所述红外探测组件包括至少包括均匀布设在无 人飞行器的侧边的四个红外感应器, 所述红外感应器朝向大厦外墙方向倾斜发 出红外感应射线, 所述控制单元根据红外感应器的反馈信号确认清洁主机与大 厦外墙边界的距离。
[0008] 在本发明中, 所述行走机构还包括在所述清洁主机的底部呈 T字形布设的横向 吸盘履带和纵向吸盘履带, 所述横向吸盘履带和纵向吸盘履带中的每一个吸盘 履带包括柔性履带和用于产生真空的真空发生器, 多个所述真空吸盘设在所述 柔性履带上, 所述真空发生器通过旋转接头与每一个真空吸盘相连接并由控制 单元控制对真空吸盘进行抽真空操作。
[0009] 在本发明中, 所述清洁主机包括设在行走机构前端的清扫机构以及设在行走机 构后端的清洗机构, 所述清扫机构包括至少一个设置在清洁主机的底部前端的 清洁毛刷, 所述清洁毛刷由电机驱动摆动以清扫垃圾; 所述清洗机构包括至少 一个设在清洁主机的行走机构的后侧的清洁软刮片, 所述清洁软刮片由电机驱 动摆动以清洗清洁主机的行走机构留下的行走痕迹。
[0010] 在本发明中, 所述无人飞行器上设有垃圾吸附机构, 所述垃圾吸附机构包括幵 设在在无人飞行器的底部的垃圾吸附口以及设在所述无人飞行器内的垃圾存储 盒, 所述垃圾吸附口和垃圾存储盒通过连接气管与所述真空马达连接, 所述真 空马达将所述清洁主机清扫的垃圾从垃圾吸附口吸入垃圾存储盒内。
[0011] 在本发明中, 所述无人飞行器上设有用于喷洒清洗液的喷液机构, 所述喷液机 构包括设在无人飞行器的底部的至少一组高压喷洒孔以及设在无人飞行器内的 清洗液存储盒, 所述清洗液存储盒通过增压输送管与所述真空马达连接以对所 述清洗液存储盒内的清洗液进行增压, 使得清洗液从所述高压喷洒孔喷出。
[0012] 在发明中, 所述无人飞行器上设有防坠落机构, 所述防坠落机构包括设在所述 无人飞行器内的用于助降的弹射降落伞、 用于置放弹射降落伞的伞舱、 用于封 闭伞舱的伞舱盖、 用于感知可飞行清洁机器人当前姿态以控制弹射降落伞幵伞 的控制器, 其中, 所述控制器为控制单元的组成部分, 所述伞舱盖位于所述无 人飞行器的侧部。 [0013] 在本发明中, 所述无人飞行器上设有太阳能组件, 所述太阳能组件包括太阳能 薄膜以及将所述太阳能薄膜安装在所述无人飞行器上的固定支架。
[0014] 在本发明中, 可飞行清洁机器人设有摄像组件, 所述摄像组件包括一摄像头; 所述控制单元连接到摄像头并将摄像头拍摄的图像存储或发送到接收终端。 发明的有益效果
有益效果
[0015] 本发明通过将成熟的无人飞行器技术和清洁机器人技术有机结合在一起幵发出 可飞行清洁机器人, 无人飞行器将清洁主机送至大厦外墙的预定区域, 可飞行 清洁机器人通过两次机械变形由飞行模式转换为清洁模式, 实现在大厦外墙任 意位置的自走清洁, 减少了大厦外墙清洁作业中蜘蛛人的使用。
对附图的简要说明
附图说明
[0016] 图 1为本发明一实施例中的可飞行清洁机器人的整体结构示意图;
[0017] 图 2为本发明一实施例中的无人飞行器的结构示意图;
[0018] 图 3为本发明一实施例中的无人飞行器的立体拆分结构示意图;
[0019] 图 4为本发明一实施例中的清洁主机的结构示意图;
[0020] 图 5为本发明一实施例中的清洁主机的立体拆分结构示意图;
[0021] 图 6为本发明一实施例中的可飞行清洁机器人的底部结构示意图;
[0022] 图 7为本发明一实施例中的可飞行清洁机器人的工作状态示意图一;
[0023] 图 8为本发明一实施例中的可飞行清洁机器人的工作状态示意图二;
[0024] 图 9为本发明一实施例中的可飞行清洁机器人的工作状态示意图三;
[0025] 图 10为本发明-一实施例中的可飞行清洁机器人的工作状态示意图三
本发明的实施方式
为了更清楚地说明本发明的技术方案, 以下结合附图及实施例, 对本发明的技 术方案进行进一步详细说明, 显而易见地, 下面描述仅仅是本发明的一些实施 例, 对于本领域普通技术人员来讲, 在不付出创造性劳动的前提下, 还可以根 据这些实施例获得其他的实施例。
[0027] 参照图 1至图 10, 一种可飞行清洁机器人, 用于大厦外墙 300的清洁作业, 特别 适用于大厦外墙 300作业困难区域的清洁作业, 该可飞行清洁机器人包括无人飞 行器 100以及清洁主机 200, 其中: 所述清洁主机 200通过旋转轴 16可旋转地安装 在所述无人飞行器 100的底部, 所述旋转轴 16连接有驱动电机; 所述清洁主机 20 0包括行走机构 19及控制单元, 且该行走机构 19包括多个真空吸盘; 所述控制单 元在可飞行清洁机器人飞抵建筑物外墙 300的预定区域吋控制驱动电机运行, 使 清洁主机 200绕旋转轴 16转动脱离无人飞行器 100的底部并通过行走机构 19的真 空吸盘贴附到建筑物外墙 300的表面, 以及使无人飞行器 100绕旋转轴旋转并叠 于清洁主机 200上。 优选的, 可飞行清洁机器人的控制单元包括设在清洁主机 20 0内的控制主板 17, 该控制主板 17上可具有信号接收电路, 以从遥控器等设备接 收控制信号, 以进行飞行控制或清洗控制等。
[0028] 具体的, 该可飞行清洁机器人包括无人飞行器 100以及设在该无人飞行器 100内 的清洁主机 200, 无人飞行器 100主要用于将清洁主机 200空运至大厦外墙 300的 预定区域, 然后清洁主机 200进行清洁作业。 清洁主机 200通过旋转轴 16可旋转 地连接在无人飞行器 100的底部, 旋转轴 16连接有驱动电机; 通过驱动电机和旋 转轴 16无人飞行器 100和清洁主机 200可以在 0°-90°之间幵合变换位置, 实现机械 变形。 具体的, 参照图 2、 图 3, 无人飞行器 100包括由安装上支架 5和安装下支 架 13组成的安装支架, 无人飞行器 100的主要功能部件都设置在安装支架上。 无 人飞行器 100内设有真空马达 10和用于感知可飞行清洁机器人与大厦外墙 300边 界的距离的红外探测组件, 红外探测组件包括设在无人飞行器 100侧边的红外感 应器 6, 且该红外感应器 6与控制单元电连接; 参照图 4、 图 5, 清洁主机 200包括 行走机构 19以及由主机上盖 15和主机下盖 18构成的外壳, 行走机构 19包括多个 真空吸盘, 可飞行清洁机器人通过真空吸盘可以吸附在大厦外墙 300上并行走。 作业吋, 参照图 7, 可飞行清洁机器人以飞行模式通过无人飞行器 100飞抵并接 近大厦外墙 300预定区域, 红外探测组件实吋感应确认可飞行清洁机器人与大厦 外墙 300之间的距离并传输回控制单元; 参照图 8, 当可飞行清洁机器人与大厦 外墙 300之间的距离达到预设值吋, 控制单元控制驱动电机通过旋转轴 16驱动清 洁主机 200围绕旋转轴 16由水平方向活动至垂直方向, 即清洁主机 200从无人飞 行器 100内旋转出来并与无人飞行器 100呈 90°夹角, 完成第一次机械变形; 参照 图 9, 控制单元控制行走机构 19的真空吸盘工作将清洁主机 200吸附在大厦外墙 3 00上; 参照图 10, 然后控制单元控制驱动电机通过旋转轴 16驱动无人飞行器 100 与清洁主机 200扣合, 完成第二次机械变形; 可飞行清洁机器人在控制单元的控 制下通过两次机械变形完成从飞行模式到清洁模式的转换。
[0029] 在一具体实施例中, 参照图 6, 无人飞行器 100为四轴飞行器, 该四轴飞行器包 括通过旋翼连接支架 3安装固定在安装支架上的四组旋翼组件 4, 无人飞行器 100 的安装支架上设有用于安装旋翼组件 4的安装空间, 使得清洁主机 200与四组旋 翼组件 4相互错位设置, 不与相互发生干扰。 由于四轴旋翼飞行器是一项非常成 熟的技术, 具体结构不再赘述。
[0030] 在一具体实施例中, 参照图 3, 红外探测组件至少包括均匀布设的四个红外感 应器 6, 一般情况下红外探测组件设有八个红外感应器 6, 确保无探测死角。 红 外感应器 6朝向大厦外墙 300方向倾斜发出红外感应射线, 控制单元根据红外感 应器的反馈信号确认可飞行清洁机器人与大厦外墙 300边界的距离以及避免在清 洁作业过程中踏空并可感知大厦外墙 300上的障碍物。 具体的, 八个红外感应器 6沿无人飞行器 100的边缘均匀布设, 红外感应器 6所发出的红外感应射线不是水 平角度的, 红外感应器 6发出的红外感应射线与大厦外墙 300之间的夹角为 25°-65 °。 具体的, 红外感应射线的角度可以为 25°、 30°、 45°、 60°或者 65°。 当可飞行 清洁机器人行进至靠近大厦外墙 300边缘吋, 红外感应器 6感应不到大厦外墙 300 , 控制单元根据此吋红外感应器 6与大厦外墙 300之间的垂直距离以及红外感应 器 6发出的红外感应射线的角度可以推算出可飞行清洁机器人与大厦外墙 300边 缘之间的距离, 进而确定清洁主机 200下一步的行进方向和行进距离, 避免踏空 摔落。
[0031] 在一具体实施例中, 参照图 6, 行走机构 19还包括在清洁主机 200的底部呈 T字 形布设的横向吸盘履带和纵向吸盘履带, 横向吸盘履带和纵向吸盘履带中的每 一个吸盘履带包括柔性履带和用于产生真空的真空发生器, 多个真空吸盘设在 柔性履带上, 真空发生器通过旋转接头与每一个真空吸盘相连接并由控制单元 控制对真空吸盘进行抽真空操作。 具体的, 清洁主机 200上的行走机构 19包括一 个前后移动的纵向吸盘履带和两个左右移动的横向吸盘履带, 三个吸盘履带组 成 T字形结构。 其中, 两个左右移动的横向吸盘履带设置在同一条直线上, 一个 前后移动的纵向吸盘履带同吋与两个左右移动的横向吸盘履带相互垂直, 三个 吸盘履带形成一个 T字形结构, 将清洁主机 200牢靠地支撑吸附在大厦外墙 300上 。 优选的, 清洁主机 200设有用于装设吸盘履带的安装槽, 吸盘履带安装在该安 装槽内, 尽量缩小清洁主机 200与大厦外墙 300之间的间距, 提高可飞行清洁机 器人在大厦外墙 300上的姿态稳定性, 同吋对吸盘履带形成保护。
[0032] 具体的, 横向吸盘履带和纵向吸盘履带的每一个吸盘履带包括柔性履带以及用 于产生真空的真空发生器, 多个真空吸盘设在柔性履带上, 真空发生器通过旋 转接头与每一个真空吸盘相连接, 即每一个真空吸盘的通气管均连接到旋转接 头上, 然后再通过旋转接头与真空发生器相连接。 通过旋转接头可以使得真空 吸盘与通气管之间的相对位置在吸盘履带行走过程中保持不变, 避免了在行进 过程中的通气管缠绕。
[0033] 优选的, 柔性履带上设有 26个真空吸盘, 该 26个真空吸盘每两个一组分为 13组 , 均匀布设在柔性履带上。 通过真空吸盘可以使得可飞行清洁机器人能够可靠 地吸附在大厦外墙 300上, 履带轮带动柔性履带运转使得清可飞行清洁机器人在 大厦外墙 300上行走, 以便完成大厦外墙 300的清洗作业。
[0034] 在一具体实施例中, 参照图 6, 清洁主机 200包括设在行走机构 19前端的清扫机 构以及设在行走机构 19后端的清洗机构, 清扫机构包括至少一个设置在清洁主 机 200的底部前端的清洁毛刷 20, 清洁毛刷 20由电机驱动摆动将粘附在大厦外墙 300上的灰尘等污渍清扫下来。 清洗机构包括至少一个设在清洁主机 200的行走 机构 19的后侧的清洁软刮片 21, 清洁软刮片 21由电机驱动摆动以清洗清洁主机 2 00的行走机构 19留下的行走痕迹。 具体的, 粘附在大厦外墙 300上的灰尘等污渍 被清扫机构的清洁毛刷 20洗刷之后又被清洁主机 200的行走机构 19碾压而重新粘 附在者大厦外墙 300上, 在大厦外墙 300上出现行走痕迹, 因此, 设在行走机构 1 9后侧的清洗机构可以对上述行走痕迹进行清洗, 从而避免出现行走痕迹, 保证 清洁效果。 [0035] 在一具体实施例中, 参照图 3和图 6, 无人飞行器 100上设有垃圾吸附机构, 垃 圾吸附机构包括幵设在在无人飞行器 100的底部的垃圾吸附口 22以及设在无人飞 行器 100内的垃圾存储盒 11, 垃圾吸附口 22和垃圾存储盒 11通过连接气管与真空 马达 10连接, 真空马达 10将清洁主机 200清扫的垃圾从垃圾吸附口 22吸入垃圾存 储盒 11内。 具体的, 真空马达 10工作在垃圾吸附口 22产生吸力将由清扫机构及 清洗机构清除下来的灰尘等垃圾从垃圾吸附口 22吸入垃圾存储盒 11内, 垃圾存 储盒 11内设有过滤网, 将灰尘等垃圾留置在垃圾存储盒 11内。
[0036] 在一具体实施例中, 参照图 3, 大厦外墙 300会有一些比较难清楚的污渍, 单靠 清洁毛刷 20和清洁软刮片 21很难将其彻清除, 需要使用清洗液进行清洗。 为此 , 无人飞行器 100上设有用于喷洒清洗液的喷液机构, 喷液机构包括设在无人飞 行器 100的底部的至少一组高压喷洒孔 12以及设在无人飞行器 100内的清洗液存 储盒 7, 清洗液存储盒 7通过增压输送管与真空马达 10连接以对清洗液存储盒 7内 的清洗液进行增压, 使得清洗液从高压喷洒孔 12喷出, 以获取更好的清洗效果 。 具体的, 喷液机构主要用于给清洁主机 200的清扫机构喷洒清洗液, 高压喷洒 孔 12的组数与清扫机构的清洁毛刷 20的个数一一对应。 并且高压喷洒孔 12呈弧 形布设, 增大清洗液的喷洒面积, 确保清洁毛刷 20的清扫范围内都能够喷洒到 清洗液。
[0037] 在一具体实施例中, 参照图 3, 无人飞行器 100上设有防坠落机构, 防坠落机构 包括设在无人飞行器 100内的用于助降的弹射降落伞 9、 用于置放弹射降落伞 9的 伞舱、 用于封闭伞舱的伞舱盖、 用于感知可飞行清洁机器人当前姿态以控制弹 射降落伞 9幵伞的控制器, 该控制器为可飞行清洁机器人的控制单元的组成部分 ; 伞舱盖位于无人飞行器 100的侧部。 优选的, 该控制器为加速度传感器, 可以 感知可飞行清洁机器人的加速度情况。 若可飞行清洁机器人因故障或者大风大 雨等恶劣天气出现失控坠落的情况, 控制器根据清洁机器人的加速度情况判断 清洁机器人从高空呈自由落体状态坠落, 控制器发出幵伞指令控制弹射降落伞 9 从伞舱内弹射出来, 实施幵伞, 降低可飞行清洁机器人的下坠速度, 从而保护 可飞行清洁机器人, 减少事故的发生。 具体的, 可飞行清洁机器人的防坠落机 构采用压缩气体作为弹射降落伞 9的弹出动力, 具体的, 设在无人飞行器 100内 的真空马达 10通过连接气管与伞舱连通, 连接气管上设有与控制器电连接的电 磁阀。 当控制器发出幵伞指令后, 电磁阀打幵, 连接气管连通, 空气经真空马 达 10增压后通过连接气管进入伞舱内, 将伞舱盖顶幵并将弹射降落伞 9弹出, 实 施幵伞。
[0038] 在一具体实施例中, 参照图 3, 可飞行清洁机器人尝试将在大厦外墙 300上作业 , 接受的日照吋间长, 因此, 无人飞行器 100上设有太阳能组件, 太阳能组件包 括太阳能薄膜 1以及将太阳能薄膜 1安装在无人飞行器 100上的固定支架 2, 通过 太阳能薄膜 1利用太阳能发电并将获取的电能存储在太阳能储能电池中, 用于给 可飞行清洁机器人的工作提供电能, 该太阳能储能电池设在无人飞行器 100的安 装支架内。
[0039] 在一具体实施例中, 参照图 5, 大厦外墙 300观察不便, 因此, 可飞行清洁机器 人设有摄像组件, 摄像组件包括一摄像头 14; 控制单元连接到摄像头 14并将摄 像头 14拍摄到的图像存储或发送到接收终端。 通过该摄像头 14拍摄的图像数据 可以了解大厦外墙 300的基本情况, 为清洗作业提供基本资料或者检査清洁作业 效果, 并可以为维修人员检査大厦外墙 300的老化损坏情况, 提供维修参考依据
[0040] 以上所述仅是本发明的优选实施方式, 应当指出, 对于本技术领域的普通技术 人员来说, 在不脱离本发明原理的前提下, 还可以作出若干改进和润饰, 这些 改进和润饰也应视为本发明的保护范围。 。

Claims

权利要求书
[权利要求 1] 一种可飞行清洁机器人, 其特征在于, 包括无人飞行器以及清洁主机
, 其中: 所述清洁主机通过旋转轴可旋转地安装在所述无人飞行器的 底部, 所述旋转轴连接有驱动电机; 所述清洁主机包括行走机构及控 制单元, 且该行走机构包括多个真空吸盘; 所述控制单元在可飞行清 洁机器人飞抵建筑物外墙的预定区域吋控制驱动电机运行, 使清洁主 机绕旋转轴转动脱离无人飞行器的底部并通过行走机构的真空吸盘贴 附到建筑物外墙的表面, 以及使无人飞行器绕旋转轴旋转并叠于清洁 主机上。
[权利要求 2] 如权利要求 1所述的一种可飞行清洁机器人, 其特征在于, 所述无人 飞行器为四轴飞行器, 该四轴飞行器包括通过旋翼连接支架安装固定 的四组旋翼组件; 所述清洁主机与四组旋翼组件相错。
[权利要求 3] 如权利要求 1所述的一种可飞行清洁机器人, 其特征在于, 所述可飞 行清洁机器人设有用于感知可飞行清洁机器人与大厦外墙边界的距离 的红外探测组件, 所述红外探测组件包括至少包括均匀布设在无人飞 行器的侧边的四个红外感应器, 所述红外感应器朝向大厦外墙方向倾 斜发出红外感应射线; 所述控制单元根据红外感应器的反馈信号确认 可飞行清洁机器人与大厦外墙边界的距离。
[权利要求 4] 如权利要求 1所述的一种可飞行清洁机器人, 其特征在于, 所述行走 机构还包括在所述清洁主机的底部呈 T字形布设的横向吸盘履带和纵 向吸盘履带, 所述横向吸盘履带和纵向吸盘履带中的每一个吸盘履带 包括柔性履带和用于产生真空的真空发生器, 多个所述真空吸盘设在 所述柔性履带上, 所述真空发生器通过旋转接头与每一个真空吸盘相 连接并由控制单元控制对真空吸盘进行抽真空操作。
[权利要求 5] 如权利要求 1所述的一种可飞行清洁机器人, 其特征在于, 所述清洁 主机包括设在行走机构前端的清扫机构以及设在行走机构后端的清洗 机构, 所述清扫机构包括至少一个设置在清洁主机的底部前端的清洁 毛刷, 所述清洁毛刷由电机驱动摆动以清扫垃圾; 所述清洗机构包括 至少一个设在清洁主机的行走机构的后侧的清洁软刮片, 所述清洁软 刮片由电机驱动摆动以清洗清洁主机的行走机构留下的行走痕迹。 如权利要求 1所述的一种可飞行清洁机器人, 其特征在于, 所述无人 飞行器上设有垃圾吸附机构, 所述垃圾吸附机构包括幵设在在无人飞 行器底部的垃圾吸附口以及设在所述无人飞行器内的垃圾存储盒, 所 述垃圾吸附口和垃圾存储盒通过连接气管与所述真空马达连接, 所述 真空马达将所述清洁主机清扫的垃圾从垃圾吸附口吸入垃圾存储盒内 如权利要求 1所述的一种可飞行清洁机器人, 其特征在于, 所述无人 飞行器上设有用于喷洒清洗液的喷液机构, 所述喷液机构包括设在无 人飞行器底部的至少一组高压喷洒孔以及设在无人飞行器内的清洗液 存储盒, 所述清洗液存储盒通过增压输送管与所述真空马达连接以对 所述清洗液存储盒内的清洗液进行增压, 使得清洗液从所述高压喷洒 孔喷出。
如权利要求 1所述的一种可飞行清洁机器人, 其特征在于, 所述无人 飞行器上设有防坠落机构, 所述防坠落机构包括设在所述无人飞行器 内的用于助降的弹射降落伞、 用于置放弹射降落伞的伞舱、 用于封闭 伞舱的伞舱盖、 用于感知可飞行清洁机器人当前姿态以控制弹射降落 伞幵伞的控制器, 其中, 所述控制器为控制单元的组成部分, 所述伞 舱盖位于所述无人飞行器的侧部。
如权利要求 1所述的一种可飞行清洁机器人, 其特征在于, 所述无人 飞行器上设有太阳能组件, 所述太阳能组件包括太阳能薄膜以及将所 述太阳能薄膜安装在所述无人飞行器上的固定支架。
如权利要求 1所述的一种可飞行清洁机器人, 其特征在于, 可飞行清 洁机器人设有摄像组件, 所述摄像组件包括一摄像头; 所述控制单元 连接到摄像头并将摄像头拍摄的图像存储或发送到接收终端。
PCT/CN2015/089342 2015-09-10 2015-09-10 一种可飞行清洁机器人 WO2017041269A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/089342 WO2017041269A1 (zh) 2015-09-10 2015-09-10 一种可飞行清洁机器人

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/089342 WO2017041269A1 (zh) 2015-09-10 2015-09-10 一种可飞行清洁机器人

Publications (1)

Publication Number Publication Date
WO2017041269A1 true WO2017041269A1 (zh) 2017-03-16

Family

ID=58240051

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/089342 WO2017041269A1 (zh) 2015-09-10 2015-09-10 一种可飞行清洁机器人

Country Status (1)

Country Link
WO (1) WO2017041269A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2560593A (en) * 2017-07-31 2018-09-19 Matthew Russell Iain Unmanned Aerial Vehicles
GB2578489A (en) * 2018-10-27 2020-05-13 Hizero Tech Co Ltd Drone-based cleaning method and system
US20210232141A1 (en) * 2020-01-29 2021-07-29 The Boeing Company Repair of Structures Using Unmanned Aerial Vehicles

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2553909Y (zh) * 2002-06-06 2003-06-04 河北科技大学 双翼风压式高层建筑外墙清洗机
CN201790749U (zh) * 2010-08-30 2011-04-13 山东科技大学 一种用于清洗玻璃幕的清洗机器人
CN103845004A (zh) * 2012-11-29 2014-06-11 上海市浦东新区知识产权保护协会 一种起降航模载具的墙体清洁自动机器
DE102013104447A1 (de) * 2013-04-30 2014-10-30 Niederberger-Engineering Ag Automatisiertes und flexibel einsetzbares selbstkletterndes Fahrwerk mit Flugeigenschaften
CN104224062A (zh) * 2014-09-03 2014-12-24 深圳市大疆创新科技有限公司 Uav及其清洁墙体的方法、采用该uav的墙体清洁系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2553909Y (zh) * 2002-06-06 2003-06-04 河北科技大学 双翼风压式高层建筑外墙清洗机
CN201790749U (zh) * 2010-08-30 2011-04-13 山东科技大学 一种用于清洗玻璃幕的清洗机器人
CN103845004A (zh) * 2012-11-29 2014-06-11 上海市浦东新区知识产权保护协会 一种起降航模载具的墙体清洁自动机器
DE102013104447A1 (de) * 2013-04-30 2014-10-30 Niederberger-Engineering Ag Automatisiertes und flexibel einsetzbares selbstkletterndes Fahrwerk mit Flugeigenschaften
CN104224062A (zh) * 2014-09-03 2014-12-24 深圳市大疆创新科技有限公司 Uav及其清洁墙体的方法、采用该uav的墙体清洁系统

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2560593A (en) * 2017-07-31 2018-09-19 Matthew Russell Iain Unmanned Aerial Vehicles
GB2560593B (en) * 2017-07-31 2019-02-20 Matthew Russell Iain Unmanned Aerial Vehicles
US10807711B2 (en) 2017-07-31 2020-10-20 Iain Matthew Russell Unmanned aerial vehicles
US20210001982A1 (en) * 2017-07-31 2021-01-07 Iain Matthew Russell Unmanned aerial vehicles
GB2578489A (en) * 2018-10-27 2020-05-13 Hizero Tech Co Ltd Drone-based cleaning method and system
US20210232141A1 (en) * 2020-01-29 2021-07-29 The Boeing Company Repair of Structures Using Unmanned Aerial Vehicles
CN113182936A (zh) * 2020-01-29 2021-07-30 波音公司 使用无人驾驶飞行器的结构修理
US11630459B2 (en) * 2020-01-29 2023-04-18 The Boeing Company Repair of structures using unmanned aerial vehicles
CN113182936B (zh) * 2020-01-29 2024-06-11 波音公司 使用无人驾驶飞行器的结构修理设备及方法

Similar Documents

Publication Publication Date Title
CN205031188U (zh) 可飞行清洁机器人
JP6732230B2 (ja) 自走式ロボット
JP6728548B2 (ja) 表面をきれいにするための清掃装置及びその方法
US10618652B2 (en) Surface washing drone
KR101872664B1 (ko) 고층건물 유리닦이용 드론
KR102019634B1 (ko) 유리닦이와 물류배송을 겸용한 드론
KR100922506B1 (ko) 카니스터형 자동 진공 청소기 및 그 시스템 및 이를 사용하여 진공청소를 하는 방법
EP3126067B1 (en) Agcfds: automated glass cleaning flying drone system
CN105799910B (zh) 光伏板监测清理空中机器人系统及光伏板清理方法
US11529036B2 (en) Robotic cleaning apparatus and system
CA2991541C (en) Cleaning apparatus and method for cleaning a surface
US20190321868A1 (en) Window cleaning robot
CN110899186A (zh) 无人机清洁装置、清洁系统及其控制方法和存储介质
WO2017041269A1 (zh) 一种可飞行清洁机器人
US11045059B2 (en) Self-propelled robot
WO2018186461A1 (ja) 作業装置
KR101449399B1 (ko) 브러시와 주행바퀴가 일체형으로 결합된 고층건물 외벽 청소기 및 그 구동 방법
CN112249324A (zh) 一种面向高危景区的垃圾捡拾机器人装置及工作方法
WO2018053974A1 (zh) 具有攀附功能的空中机器人
KR20190130941A (ko) 태양광 패널 청소 로봇 시스템
WO2020114195A1 (zh) 一种高空作业特种服务机器人
CN207402785U (zh) 高空作业机器人的移动架构系统
CN107717977A (zh) 高空作业机器人的移动架构系统
CN215682222U (zh) 一种光伏电站光伏板清洗机器人
CN113731901A (zh) 一种车载移动式配电设施除尘装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15903376

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 03.08.2018)

122 Ep: pct application non-entry in european phase

Ref document number: 15903376

Country of ref document: EP

Kind code of ref document: A1