WO2017039309A1 - Porous hollow fiber membrane - Google Patents
Porous hollow fiber membrane Download PDFInfo
- Publication number
- WO2017039309A1 WO2017039309A1 PCT/KR2016/009712 KR2016009712W WO2017039309A1 WO 2017039309 A1 WO2017039309 A1 WO 2017039309A1 KR 2016009712 W KR2016009712 W KR 2016009712W WO 2017039309 A1 WO2017039309 A1 WO 2017039309A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- hollow
- virtual circle
- hollow fiber
- fiber membrane
- resin
- Prior art date
Links
- 239000012528 membrane Substances 0.000 title claims abstract description 90
- 239000012510 hollow fiber Substances 0.000 title claims abstract description 82
- 229920005989 resin Polymers 0.000 claims description 28
- 239000011347 resin Substances 0.000 claims description 28
- 238000000034 method Methods 0.000 claims description 13
- 239000002033 PVDF binder Substances 0.000 claims description 9
- 229920002981 polyvinylidene fluoride Polymers 0.000 claims description 9
- 238000000108 ultra-filtration Methods 0.000 claims description 7
- 229920001780 ECTFE Polymers 0.000 claims description 6
- 239000004743 Polypropylene Substances 0.000 claims description 6
- 229920002492 poly(sulfone) Polymers 0.000 claims description 6
- 229920002239 polyacrylonitrile Polymers 0.000 claims description 6
- 229920001155 polypropylene Polymers 0.000 claims description 6
- 238000001471 micro-filtration Methods 0.000 claims description 5
- 239000002904 solvent Substances 0.000 claims description 5
- 230000007704 transition Effects 0.000 claims description 4
- CHJAYYWUZLWNSQ-UHFFFAOYSA-N 1-chloro-1,2,2-trifluoroethene;ethene Chemical group C=C.FC(F)=C(F)Cl CHJAYYWUZLWNSQ-UHFFFAOYSA-N 0.000 claims description 3
- 239000004962 Polyamide-imide Substances 0.000 claims description 3
- 239000004695 Polyether sulfone Substances 0.000 claims description 3
- 238000007872 degassing Methods 0.000 claims description 3
- 229920002312 polyamide-imide Polymers 0.000 claims description 3
- 229920006393 polyether sulfone Polymers 0.000 claims description 3
- 229920001601 polyetherimide Polymers 0.000 claims description 3
- 229920013716 polyethylene resin Polymers 0.000 claims description 3
- 229920001721 polyimide Polymers 0.000 claims description 3
- 239000009719 polyimide resin Substances 0.000 claims description 3
- -1 polypropylene Polymers 0.000 claims description 3
- 239000004800 polyvinyl chloride Substances 0.000 claims description 3
- 239000004697 Polyetherimide Substances 0.000 claims description 2
- 238000005373 pervaporation Methods 0.000 claims description 2
- 230000006698 induction Effects 0.000 claims 1
- 230000002093 peripheral effect Effects 0.000 abstract description 4
- 238000001914 filtration Methods 0.000 description 11
- 239000000835 fiber Substances 0.000 description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 9
- 230000000694 effects Effects 0.000 description 7
- 230000035699 permeability Effects 0.000 description 7
- 238000000926 separation method Methods 0.000 description 7
- 238000009285 membrane fouling Methods 0.000 description 6
- 238000005452 bending Methods 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 4
- 229920001600 hydrophobic polymer Polymers 0.000 description 4
- 238000009987 spinning Methods 0.000 description 4
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 238000012856 packing Methods 0.000 description 3
- 230000002265 prevention Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 238000002145 thermally induced phase separation Methods 0.000 description 3
- MQIUGAXCHLFZKX-UHFFFAOYSA-N Di-n-octyl phthalate Natural products CCCCCCCCOC(=O)C1=CC=CC=C1C(=O)OCCCCCCCC MQIUGAXCHLFZKX-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- BJQHLKABXJIVAM-UHFFFAOYSA-N bis(2-ethylhexyl) phthalate Chemical compound CCCCC(CC)COC(=O)C1=CC=CC=C1C(=O)OCC(CC)CCCC BJQHLKABXJIVAM-UHFFFAOYSA-N 0.000 description 2
- 210000000988 bone and bone Anatomy 0.000 description 2
- 239000000701 coagulant Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000001728 nano-filtration Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 238000010612 desalination reaction Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- XNGIFLGASWRNHJ-UHFFFAOYSA-L phthalate(2-) Chemical compound [O-]C(=O)C1=CC=CC=C1C([O-])=O XNGIFLGASWRNHJ-UHFFFAOYSA-L 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000013014 purified material Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000001223 reverse osmosis Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D63/00—Apparatus in general for separation processes using semi-permeable membranes
- B01D63/02—Hollow fibre modules
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/08—Hollow fibre membranes
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/44—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
Definitions
- the present invention relates to a porous hollow fiber membrane, and more particularly, to a porous hollow fiber membrane formed so that a plurality of holes are formed in the cross section of the hollow fiber and have a petal shape on the outer circumferential surface.
- membrane technology uses selective permeability of a polymer material, etc., and is commercialized while being applied to a desalination process in the United States in the 1960s.
- the membrane separation process to which the separation membrane is applied does not have a phase change, thereby saving energy and having a relatively simple process, so that the space occupied by the device is small. Therefore, the separator is widely applied to the reverse osmosis (RO) separation process, ultrafiltration (UF), microfiltration (MF) and nanofiltration (NF) separation process.
- RO reverse osmosis
- UF ultrafiltration
- MF microfiltration
- NF nanofiltration
- membranes have various shapes such as spiral wound, tubular, hollow fiber, plate and frame, among which hollow fiber has a diameter of 0.2 ⁇ 2mm Since the shape of the hollow tube, the area ratio per unit volume of the hollow yarn has the advantage of obtaining high productivity compared to the spiral wound, tubular, and plate-shaped.
- a hollow fiber membrane having a unique structure has been developed compared to a commercially available hollow fiber membrane, and Inge of Germany has seven independent capillaries in rigid single fibers having a circular outer circumferential surface.
- Formed porous membrane Multibore® membrane
- the hollow fiber membrane is applied to the ultrafiltration process for water treatment, the separation performance is superior to that of a conventional single-bore hollow fiber membrane in which only one capillary (hollow) is formed in the conventional short fibers, and has excellent mechanical properties and chemical stability.
- the membrane fouling (fouling) effect such as excellent, but there is still room for improvement in order to maximize the permeation performance, filtration efficiency and membrane fouling prevention performance.
- the present inventors have conducted a study on the hollow fiber membrane for water treatment having a new structure, and have formed a channel having a plurality of holes (multi-bore, hollow) in the short fibers constituting the hollow fiber, but the holes (multi- When the outer circumferential surface of the short fibers including bore, hollow) is designed in the shape of petals with a pattern of concave and convex portions not circular, the outer circumferential surface of the short fibers increases the filling density and specific surface area compared to the circular shape, and thus the filtration efficiency is increased.
- the present invention has been made in view of the fact that the permeation performance can be further improved, and the membrane fouling prevention performance can be greatly improved.
- An object of the present invention is to increase the filling density and specific surface area to improve the filtration efficiency and permeability, as well as to prevent membrane fouling, and to form a plurality of hollows (holes) in the short fibers forming hollow fibers, It is to provide a porous hollow fiber membrane formed in the shape of a petal of the concave portion and the convex portion repeated pattern on the outer peripheral surface of the hollow fiber short fiber comprising.
- the first hollow is formed in the center of the cross-section, is arranged so as to uniformly radiate with respect to the center to form N (N is a natural number of 3 or more) second hollows
- N is a natural number of 3 or more
- the outer peripheral surface of the cross section is formed with N concave portions for integrally connecting between the second hollow and the second hollow.
- the concentric circle of the first hollow is defined as the first virtual circle
- the diameter is larger than the second hollow
- the concentric circle of the second hollow is defined as the second virtual circle
- the second virtual circle is preferably formed to circumscribe the first virtual circle.
- first virtual circle radius is formed to the same size as the second virtual circle radius.
- first virtual circle radius may be larger than the second virtual circle radius.
- the first virtual circle radius is formed smaller than the second virtual circle radius.
- the porous hollow fiber membrane is made of polyethylene (PE) resin, polypropylene (PP) resin, ethylene chloro trifluoro ethylene resin (ECTFE), polyvinyl chloride (PVC) resin, polysulfone resin, polyether sulfone At least one selected from the group consisting of resins, sulfonated polysulfone resins, polyvinylidene fluoride (PVDF) resins, polyacrylonitrile (PAN) resins, polyimide resins, polyamideimide resins and polyetherimides is suitable. .
- PE polyethylene
- PP polypropylene
- ECTFE ethylene chloro trifluoro ethylene resin
- PVDF polyvinyl chloride
- PVDF polysulfone resin
- PAN polyacrylonitrile
- porous hollow fiber membrane is preferably prepared by conventional non-solvent-induced phase transition (NIPS) or heat-induced phase transition (TIPS).
- NIPS non-solvent-induced phase transition
- TIPS heat-induced phase transition
- porous hollow fiber membrane is preferably applied to the microfiltration membrane, the ultrafiltration membrane, the degassing membrane, and the pervaporation membrane.
- Porous hollow fiber membranes according to an embodiment of the present invention as compared to the conventional mono- or porous hollow fiber membranes by increasing the mechanical strength of the membrane or increase the packing density and specific surface area not only improves the filtration efficiency, permeation performance, but also prevents membrane fouling. It is excellent in effect and can be applied to microfiltration and ultrafiltration separation process for water treatment.
- FIG. 1 is a perspective view of a porous hollow fiber membrane according to an embodiment of the present invention.
- FIG 2 is an exemplary cross-sectional view of the first virtual circle diameter and the second virtual circle diameter of the porous hollow fiber membrane according to an embodiment of the present invention.
- FIG. 3 is an exemplary view showing the form of FIG.
- Figure 4 is an exemplary cross-sectional view of the first virtual circle diameter of the porous hollow fiber membrane is formed larger than the second virtual circle diameter in accordance with an embodiment of the present invention.
- FIG. 5 is an exemplary view showing the form of FIG.
- FIG. 6 is a cross-sectional view illustrating a first virtual circle diameter of the porous hollow fiber membrane smaller than the second virtual circle diameter in accordance with an embodiment of the present invention.
- FIG. 7 is an exemplary view showing the form of FIG.
- FIG. 1 is a perspective view of a porous hollow fiber membrane according to an embodiment of the present invention
- Figure 2 is a cross section in which the first virtual circle diameter and the second virtual circle diameter of the porous hollow fiber membrane according to an embodiment of the present invention are the same
- 3 is an exemplary view showing the form of Figure 2
- Figure 4 is a cross-sectional view of the first virtual circle diameter of the porous hollow fiber according to an embodiment of the present invention is formed larger than the second virtual circle diameter
- FIG. 6 is a cross-sectional view illustrating a first virtual circle diameter of the porous hollow fiber membrane smaller than the second virtual circle diameter according to an embodiment of the present invention
- 7 is an exemplary view showing the form of FIG.
- the porous hollow fiber according to an embodiment of the present invention, the first hollow 100 is formed in the center of the cross-section, N is formed so as to uniformly radiate with respect to the center (N is a natural number of 3 or more) two second hollows 200 are formed, and N concave portions for integrally connecting the second hollows 200 and the second hollows 200 are formed on the outer circumferential surface of the cross section. do.
- the porous hollow fiber membrane 10 is formed in a pillar shape in which a first hollow 100 is formed at a central portion thereof.
- the first hollow 100 serves as a passage through which foreign matter or purified material moves.
- the second hollow 200 is uniformly formed at the back radial position with respect to the center of the first hollow 100. That is, it is appropriate that the second hollow 200 is formed with N (N is a natural number of 3 or more) of the first hollow 100.
- the porous hollow fiber membrane 10 has a first virtual circle 310 and a second hollow formed larger than the first hollow radius a1 based on the center of the first hollow 100.
- the second virtual circle 330 formed larger than the second hollow radius b1 based on the center of the concentric circle of 200 and the second virtual circle 330 are in contact with the inside from the center of the concentric circle of the first hollow 100.
- the third virtual circle 350 is included.
- the first virtual circle 310 is larger than the radius a1 of the first hollow and formed around the concentric circle of the first hollow 100.
- the first virtual circle 310 is formed such that the second virtual circle 330 is circumscribed.
- the first virtual circle 310 is disposed at a position where the second hollow 200 is uniformly radiated.
- the second virtual circle 330 is larger than the second hollow radius b1 and is formed around the concentric circles of the second hollow 200.
- the second virtual circle 330 is formed to circumscribe the first virtual circle 310.
- the second virtual circle 330 is in contact with N (N is a natural number of 3 or more) centering on the first virtual circle 310. That is, the second hollow 200 is formed to be spaced apart from the first hollow 100 in an equal radial shape, and the second hollow 200 is formed of N (N is a natural number of 3 or more).
- the third virtual circle 350 is formed to be in contact with the second virtual circle 330 at the center of the first hollow 100. That is, the third virtual circle 350 is formed to have a size of the outer circumferential surface of the porous hollow fiber membrane 10 at the center of the first hollow 100.
- Unevenness is formed on the outer circumferential surface of the porous hollow fiber membrane 10.
- the bending of the unevenness 110 is formed corresponding to the number of the second hollow 200 is arranged. That is, the unevenness 110 may be divided into the concave portion 111 and the convex portion 113.
- Such unevenness 110 is preferably formed in the shape of a petal with respect to the cross section of the porous hollow fiber membrane 10.
- Porous hollow fiber membrane 10 is improved in bending strength and mechanical strength than the conventional circular. That is, the porous hollow fiber membrane 10 serves to withstand the air injected vertically when installed in the filtration device. Many air pressure is formed on the surface of the porous hollow fiber 10 has the effect of improving the filtration efficiency.
- Concave-convex 110 is a convex portion 113 is formed in a portion formed by extending the second hollow 200 in the circumferential direction.
- the concave-convex 110 includes a concave portion 111 at a portion connecting the second hollow 200 and the second hollow 200 in the circumferential direction.
- the convex portion 113 of the concave-convex 110 is formed to contact the inner side of the third virtual circle 350, and the concave portion 111 of the concave-convex 110 is the second hollow 200 and the second hollow 200. It is formed between. That is, the recess 111 has a space close to the space between the second hollow 200 and the second hollow 200 is formed.
- the unevenness 110 is formed on the outer circumferential surface of the porous hollow fiber membrane 10, thereby improving the specific surface area and filtration efficiency.
- the concave-convex 110 forms a concave portion 111 on the outer circumferential surface of the porous hollow fiber membrane 10, so that the concave-convex 110 reduces the raw materials used in manufacturing, thereby improving economic efficiency.
- the unevenness 110 serves to ensure uniform permeability and uniform reliability of the product as compared to the conventional hollow fiber membrane by making the distance between the second hollow 200 and the convex portion 113 constant.
- the concave portion 111 is formed to be closer to the first hollow 100. That is, the second hollows 200 are provided.
- the concave portion 111 is in contact with the first virtual circle 310.
- the concave portion 111 is necessarily formed in contact with the first virtual circle 310. That is, it is revealed that the recess 111 is formed near the first virtual circle 310.
- the porous hollow fiber membrane 10 is formed such that when the second hollow 200 increases by one, the concave portion 111 moves away from the first hollow 100 direction. That is, when four or more second hollows 200 are formed, it can be seen that the concave portion 111 is far from the first virtual circle 310. That is, the concave portion 111 is formed to be closer to the direction of the third virtual circle 350 while gradually moving away from the vicinity of the first virtual circle 310 when the second hollow 200 increases. That is, the recess 111 is formed near the first virtual circle 310 as shown in FIG. 3A, and the recess 111 is formed near the third virtual circle 350 as shown in FIG. 3H. can confirm. do.
- the porous hollow fiber membrane 10 has a radius a2 of the first virtual circle 310 and a radius b2 of the second virtual circle having the same size.
- the porous hollow fiber membrane 10 may be made of a hydrophobic polymer including a vinyl polymer and an olefin polymer.
- a hydrophobic polymer polyethylene (PE) resin, polypropylene (PP) resin, ethylene chloro trifluoro ethylene resin (ECTFE), polyvinyl chloride (PVC) resin, polysulfone resin, polyethersulfone resin, sulfonated polysulfone resin
- PVC polyvinyl chloride
- PVDF polysulfone resin
- PAN polyacrylonitrile
- polyimide resin polyamideimide resin
- polyetherimide polyetherimide.
- fluorine-containing hydrophobic polymers such as polyvinylidene fluoride (PVDF) homopolymers or copolymers thereof are more preferably used in view of chemical stability.
- the porous hollow fiber membrane 10 according to the present invention is obtained by dissolving the above-mentioned hydrophobic polymer in a solvent or a solvent containing a non-solvent or an additive, if necessary, to obtain a spinning solution, the spinning solution and the internal coagulant to the spinning nozzle After discharging, supplying and spinning through a conventional nonsolvent induced phase separation method (NIPS) or thermally induced phase separation method (TIPS) to form a hollow fiber completely phase-transferred by an external coagulant It can be manufactured by.
- NIPS nonsolvent induced phase separation method
- TIPS thermally induced phase separation method
- the porous hollow fiber membrane 10 according to the second exemplary embodiment of the present invention omits the same components as those of the first exemplary embodiment, and the radius a2 of the first virtual circle 310 is set to the first.
- the case in which the virtual circle 330 is formed larger than the radius b2 will be described in detail.
- Unevenness is formed on the outer circumferential surface of the porous hollow fiber membrane 10.
- the bending of the unevenness 110 is formed corresponding to the number of the second hollow 200 is arranged. That is, the concave-convex 110 may be divided into the concave portion 111 and the convex portion 113 (see FIG. 4).
- Concave-convex 110 is a convex portion 113 is formed in a portion formed by extending the second hollow 200 in the circumferential direction.
- the concave-convex 110 includes a concave portion 111 at a portion connecting the second hollow 200 and the second hollow 200 in the circumferential direction.
- the convex portion 113 of the concave-convex 110 is formed to contact the inner side of the third virtual circle 350, and the concave portion 111 of the concave-convex 110 is the second hollow 200 and the second hollow 200. It is formed between. That is, the recess 111 has a space close to the space between the second hollow 200 and the second hollow 200 is formed.
- the recess 111 has a depth of “v” shape in the direction of the first hollow 100.
- the porous hollow fiber membrane 10 is increased by one second hollow 200.
- the concave portion 111 is formed one by one between the second hollow 200 and the second hollow 200, the concave portion 111 is formed to move away from the first hollow 100 direction. That is, when seven or more second hollows 200 are formed, it can be seen that the concave portion 111 is far from the first virtual circle 310. That is, the concave portion 111 is formed to be closer to the direction of the third virtual circle 350 while gradually moving away from the vicinity of the first virtual circle 310.
- the porous hollow fiber membrane 10 according to the third exemplary embodiment of the present invention omits the same components as those of the first exemplary embodiment, and the radius a2 of the first virtual circle 310 is set to the first.
- the case in which the virtual circle 330 is formed smaller than the radius b2 will be described in detail.
- Filtration efficiency can be increased while reducing the diameter of the porous hollow fiber membrane 10.
- the porous hollow fiber membrane 10 is formed to have a smaller radius a2 of the first virtual circle 310, and increases the radius b2 of the second virtual circle 330 of the porous hollow fiber membrane 10. That is, by increasing the radius b1 of the second hollow 200 of the surface outer diameter of the porous hollow fiber membrane 10, the filtration efficiency and the packing density may be increased (see FIG. 6 or 7).
- Unevenness is formed on the outer circumferential surface of the porous hollow fiber membrane 10.
- the bending of the unevenness 110 is formed corresponding to the number of the second hollow 200 is arranged. That is, the concave-convex 110 may be divided into the shape of the concave portion 111 and the convex portion 113 (see FIG. 6).
- Concave-convex 110 is a convex portion 113 is formed in a portion formed by extending the second hollow 200 in the circumferential direction.
- the concave-convex 110 includes a concave portion 111 at a portion connecting the second hollow 200 and the second hollow 200 in the circumferential direction.
- the convex portion 113 of the concave-convex 110 is formed to contact the inner side of the third virtual circle 350, and the concave portion 111 of the concave-convex 110 is the second hollow 200 and the second hollow 200. It is formed between. That is, the recess 111 has a space close to the space between the second hollow 200 and the second hollow 200 is formed.
- the recess 111 has a depth of “v” shape in the direction of the first hollow 100.
- the porous hollow fiber membrane 10 is increased by one second hollow 200.
- the recess 111 is formed one by one between the second hollow 200 and the second hollow 200, the recess 111 is formed to be far from the first hollow 100 direction. That is, when four or more second hollows 200 are formed, it can be seen that the concave portion 111 is far from the first virtual circle 310. That is, the concave portion 111 is formed to be closer to the direction of the third virtual circle 350 while gradually moving away from the vicinity of the first virtual circle 310.
- polyvinylidene fluoride resin weight average molecular weight 300,000 to 320,000
- silica 30% by weight of dioctylphthalate and dibutyl
- a porous (multibore) nozzle with an outer diameter of the nozzle
- Dioctyl phthalate was used at 30 ° C. as a hollow forming agent, passed through an 80 mm air chamber, and solidified in a 60 ° C. water bath, stretched 50% in a 60 ° C. water bath, and stabilized in a hot air at 120 ° C.
- the winding speed was adjusted to 15 m / min to prepare a porous hollow fiber membrane having an outer circumferential surface as shown in FIG. 1 in the shape of a petal (outer diameter 4.2 ⁇ , inner diameter 0.8 ⁇ ).
- a porous hollow fiber membrane having an outer circumferential surface as shown in FIG. 1 in the shape of a petal (outer diameter 4.2 ⁇ , inner diameter 0.8 ⁇ ).
- a porous hollow fiber membrane having a circular outer circumferential surface was prepared in the same manner as in the above experimental example, except that the nozzle had a circular porous diameter (multibore) nozzle, and the water permeability and mechanical properties were evaluated through post-treatment. It was.
- the porous hollow fiber membrane of the outer circumferential surface prepared from the experimental example according to an embodiment of the present invention is petal-shaped compared to the porous hollow fiber membrane of which the outer circumferential surface prepared from the comparative example is circular. It can be seen that the remarkably increased, which is due to the fact that the outer diameter of the nozzle is petal-shaped, heat transfer is uniformly made during the hollow fiber membrane formation process, the surface area is large.
- the porous hollow fiber membrane having the outer circumferential surface prepared from the experimental example has a petal-shaped porous hollow fiber membrane having the circular outer circumferential surface prepared from the comparative example It can be confirmed that it is much superior to that, this is because the porous hollow fiber membrane having the outer circumferential surface is formed in the bone during the hollow fiber membrane formation process, the orientation is good during stretching, the strength is increased, the pores are uniformly formed and the longitudinal direction is increased. It is interpreted that the bone is formed and the elongation is improved.
- porous hollow fiber membrane of the present invention by increasing the packing density and the specific surface area compared to the conventional single-hole or porous hollow fiber membrane, not only the filtration efficiency and permeation performance is improved, but also the membrane fouling prevention effect is excellent, and the fine filtration membrane, It can be applied to the separation process of ultrafiltration membrane, degassing membrane and permeation membrane.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Organic Chemistry (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
A porous hollow fiber membrane according to an embodiment of the present invention includes a first hollow formed in a central portion of a horizontal cross section thereof, and N (N being a natural number of at least 3) second hollows formed so as to be arranged uniformly equidistant from the central portion. N recessed portions for integrally connecting the spaces between the second hollows are formed on the outer peripheral surface of the horizontal cross section.
Description
본 발명은 다공형 중공사막에 관한 것으로, 보다 상세하게는 중공사의 횡단면에 복수개의 구멍이 형성되고 외주 면에는 꽃잎 모양을 갖도록 형성된 다공형 중공사막에 관한 것이다.The present invention relates to a porous hollow fiber membrane, and more particularly, to a porous hollow fiber membrane formed so that a plurality of holes are formed in the cross section of the hollow fiber and have a petal shape on the outer circumferential surface.
일반적으로 분리막 기술은 고분자재료 등의 선택적 투과성을 이용한 것으로, 1960년대 미국에서 담수화 공정에 적용하면서 상업화된 기술이다. 이러한 분리막이 적용되는 막분리 공정은 증류공정과는 달리 상변화가 없으므로 에너지를 절약할 수 있고 비교적 공정이 간단하므로 장치가 차지하는 공간이 작은 장점이 있다. 따라서, 분리막은 역삼투(RO) 분리공정을 비롯하여 한외여과(UF), 정밀여과(MF) 및 나노여과(NF) 분리공정에 광범위하게 적용되고 있다.In general, membrane technology uses selective permeability of a polymer material, etc., and is commercialized while being applied to a desalination process in the United States in the 1960s. Unlike the distillation process, the membrane separation process to which the separation membrane is applied does not have a phase change, thereby saving energy and having a relatively simple process, so that the space occupied by the device is small. Therefore, the separator is widely applied to the reverse osmosis (RO) separation process, ultrafiltration (UF), microfiltration (MF) and nanofiltration (NF) separation process.
일반적으로 분리막은 나권형(spiral wound), 관형(tubular), 중공사형(hollow fiber), 판틀형(plat and frame) 등의 다양한 형태가 있는데, 그 중에서 중공사형은 내부중앙 직경이 0.2~2mm의 실관 형태이므로 중공사의 단위부피당 면적비가 나권형, 관형 및 판틀형에 비하여 높은 생산성을 얻을 수 있는 장점이 있다. Generally, membranes have various shapes such as spiral wound, tubular, hollow fiber, plate and frame, among which hollow fiber has a diameter of 0.2 ~ 2mm Since the shape of the hollow tube, the area ratio per unit volume of the hollow yarn has the advantage of obtaining high productivity compared to the spiral wound, tubular, and plate-shaped.
특히, 최근에는 종래 상업화된 중공사막에 비하여 특이한 구조를 갖는 중공사막이 개발되었는바, 독일의 Inge사는 원형의 외주면을 갖는 강성의 단섬유(single fiber)에 7개의 독립적인 모세관(capillary, 중공)이 형성된 구조의 다공형 멤브레인(Multibore® membrane)을 상용화하였다. 이 중공사막은 수처리용 한외여과공정에 적용됨으로써 종래 단섬유에 1개의 모세관(capillary, 중공) 만이 형성된 통상의 단공형(single-bore) 중공사막에 비하여 분리성능이 우수하고, 기계적 물성, 화학적 안정성 및 막오염(fouling) 방지 효과 등이 뛰어난 것으로 알려져 있으나, 투과성능, 여과효율 및 막오염 방지 성능을 극대화하기 위해서는 여전히 개선의 여지가 있었다.In particular, recently, a hollow fiber membrane having a unique structure has been developed compared to a commercially available hollow fiber membrane, and Inge of Germany has seven independent capillaries in rigid single fibers having a circular outer circumferential surface. Formed porous membrane (Multibore® membrane) was commercialized. Since the hollow fiber membrane is applied to the ultrafiltration process for water treatment, the separation performance is superior to that of a conventional single-bore hollow fiber membrane in which only one capillary (hollow) is formed in the conventional short fibers, and has excellent mechanical properties and chemical stability. And it is known that the membrane fouling (fouling) effect, such as excellent, but there is still room for improvement in order to maximize the permeation performance, filtration efficiency and membrane fouling prevention performance.
따라서, 본 발명자는 새로운 구조를 갖는 수처리용 중공사막에 관한 연구를 거듭한 결과, 중공사를 이루는 단섬유에 복수개의 구멍(multi-bore, 중공)을 갖는 채널을 형성하되, 그 구멍(multi-bore, 중공)을 포함하는 단섬유의 외주면이 원형이 아닌 오목부분 및 볼록부분이 반복된 패턴의 꽃잎 모양으로 설계하면, 단섬유의 외주면이 원형형태에 비하여 충진 밀도 및 비표면적이 증가하여 여과효율 및 투과성능을 더욱 향상시킬 수 있고, 아울러 막오염 방지 성능도 크게 개선될 수 있음에 착안하여 본 발명을 완성하기에 이르렀다.Accordingly, the present inventors have conducted a study on the hollow fiber membrane for water treatment having a new structure, and have formed a channel having a plurality of holes (multi-bore, hollow) in the short fibers constituting the hollow fiber, but the holes (multi- When the outer circumferential surface of the short fibers including bore, hollow) is designed in the shape of petals with a pattern of concave and convex portions not circular, the outer circumferential surface of the short fibers increases the filling density and specific surface area compared to the circular shape, and thus the filtration efficiency is increased. The present invention has been made in view of the fact that the permeation performance can be further improved, and the membrane fouling prevention performance can be greatly improved.
본 발명의 목적은 충진 밀도 및 비표면적이 증가하여 여과효율, 투과성능이 향상될 뿐만 아니라 막오염 방지 효과도 우수한, 중공사를 이루는 단섬유에 복수개의 중공(구멍)이 형성되고, 그 구멍을 포함하는 중공사 단섬유의 외주 면에 오목부분 및 볼록부분이 반복된 패턴의 꽃잎 모양으로 형성된 다공형 중공사막을 제공하고자 하는 것이다.An object of the present invention is to increase the filling density and specific surface area to improve the filtration efficiency and permeability, as well as to prevent membrane fouling, and to form a plurality of hollows (holes) in the short fibers forming hollow fibers, It is to provide a porous hollow fiber membrane formed in the shape of a petal of the concave portion and the convex portion repeated pattern on the outer peripheral surface of the hollow fiber short fiber comprising.
본 발명의 실시예에 따른 다공형 중공사막은, 횡단면의 중심부에 제1 중공이 형성되고, 상기 중심부를 기준으로 균일하게 등방사되도록 배치되어 N(N은 3이상의 자연수)개의 제2 중공이 형성되며, 상기 횡단면 외주 면에는 상기 제2 중공과 제2 중공 사이를 일체로 연결해주기 위한 N개의 오목부분이 형성된다.Porous hollow fiber membrane according to an embodiment of the present invention, the first hollow is formed in the center of the cross-section, is arranged so as to uniformly radiate with respect to the center to form N (N is a natural number of 3 or more) second hollows The outer peripheral surface of the cross section is formed with N concave portions for integrally connecting between the second hollow and the second hollow.
또한, 제1 중공보다 직경이 크고, 상기 제1 중공의 동심원을 제1 가상원으로 정의하고, 상기 제2 중공보다 직경이 크고, 상기 제2 중공의 동심원을 제2 가상원 으로 정의할 때, 상기 제2 가상원은 상기 제1 가상원에 외접하는 하도록 형성되는 것이 바람직하다. Further, when the diameter is larger than the first hollow, the concentric circle of the first hollow is defined as the first virtual circle, the diameter is larger than the second hollow, and the concentric circle of the second hollow is defined as the second virtual circle, The second virtual circle is preferably formed to circumscribe the first virtual circle.
또한, 제1 가상원 반지름은 상기 제2 가상원 반지름과 동일한 크기로 형성된다. In addition, the first virtual circle radius is formed to the same size as the second virtual circle radius.
또한, 제1 가상원 반지름은 상기 제2 가상원 반지름보다 크게 형성될 수도 있다.In addition, the first virtual circle radius may be larger than the second virtual circle radius.
또한, 제1 가상원 반지름은 상기 제2 가상원 반지름보다 작게 형성된다.In addition, the first virtual circle radius is formed smaller than the second virtual circle radius.
또한, 상기 다공형 중공사막은 그 재질이 폴리에틸렌(PE)수지, 폴리프로필렌(PP)수지, 에틸렌 클로로 트리플루오로 에틸렌 수지(ECTFE), 폴리염화비닐(PVC)수지, 폴리설폰 수지, 폴리에테르설폰수지, 설폰화 폴리설폰 수지, 폴리비닐리덴플루오라이드(PVDF) 수지, 폴리아크릴로니트릴(PAN) 수지, 폴리이미드 수지, 폴리아미드이미드 수지 및 폴리에테르이미드로 이루어진 군으로부터 선택된 1종 이상의 것이 적절하다. In addition, the porous hollow fiber membrane is made of polyethylene (PE) resin, polypropylene (PP) resin, ethylene chloro trifluoro ethylene resin (ECTFE), polyvinyl chloride (PVC) resin, polysulfone resin, polyether sulfone At least one selected from the group consisting of resins, sulfonated polysulfone resins, polyvinylidene fluoride (PVDF) resins, polyacrylonitrile (PAN) resins, polyimide resins, polyamideimide resins and polyetherimides is suitable. .
또한, 상기 다공형 중공사막은 통상의 비용매유도 상전이법(NIPS) 또는 열유도 상전이법(TIPS)에 의하여 제조되는 것이 바람직하다. In addition, the porous hollow fiber membrane is preferably prepared by conventional non-solvent-induced phase transition (NIPS) or heat-induced phase transition (TIPS).
또한, 전술한 다공형 중공사막은 정밀여과막, 한외여과막과, 탈기막, 투과증발막에 적용되는 것이 좋다. In addition, the above-described porous hollow fiber membrane is preferably applied to the microfiltration membrane, the ultrafiltration membrane, the degassing membrane, and the pervaporation membrane.
본 발명의 특징 및 이점들은 첨부도면에 의거한 다음의 상세한 설명으로 더욱 명백해질 것이다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이고, 사전적인 의미로 해석되어서는 아니 되며, 발명자가 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합되는 의미와 개념으로 해석되어야만 한다.The features and advantages of the present invention will become more apparent from the following detailed description based on the accompanying drawings. Prior to this, the terms or words used in this specification and claims should not be interpreted in a conventional, lexical sense, and the inventors will appropriately define the concept of terms in order to best explain their invention in the best way possible. It should be interpreted as meaning and concept corresponding to the technical idea of the present invention based on the principle that it can.
본 발명의 실시예에 따른 다공형 중공사막은, 종래 단공형 또는 다공형 중공사막에 비하여 막의 기계적 강도가 증가하거나 충진 밀도 및 비표면적이 증가함으로써 여과효율, 투과성능이 향상될 뿐만 아니라 막오염 방지 효과도 우수하여 수처리용 정밀여과 및 한외여과 분리공정에 적용할 수 있다.Porous hollow fiber membranes according to an embodiment of the present invention, as compared to the conventional mono- or porous hollow fiber membranes by increasing the mechanical strength of the membrane or increase the packing density and specific surface area not only improves the filtration efficiency, permeation performance, but also prevents membrane fouling. It is excellent in effect and can be applied to microfiltration and ultrafiltration separation process for water treatment.
또한, 중공사 단섬유의 외주 면에 오목부분 및 볼록부분이 반복된 패턴의 꽃잎으로 형성된 다공형 중공사막을 제공하는 효과가 있다. In addition, there is an effect to provide a porous hollow fiber membrane formed of petals of the concave portion and the convex portion repeated pattern on the outer peripheral surface of the hollow fiber short fibers.
또한, 제2 중공과 볼록부분간 거리가 일정함으로써, 종래 중공사막에 비해 균일한 투과성 및 제품의 균일한 신뢰성을 갖는 다중공사막 모듈을 제공하는 효과가 있다. In addition, since the distance between the second hollow and the convex portion is constant, there is an effect of providing a multi-fiber membrane module having a uniform permeability and uniform reliability of the product compared to the conventional hollow fiber membrane.
또한, 제2 중공과 볼록부분간 거리가 일정함으로써, 종래 원형보다 휨 강도및 기계적 강도가 개선된 효과가 있다.In addition, since the distance between the second hollow and the convex portion is constant, there is an effect that the bending strength and the mechanical strength are improved compared to the conventional circular.
도 1은 본 발명의 일실시예에 따른 다공형 중공사막의 사시도.1 is a perspective view of a porous hollow fiber membrane according to an embodiment of the present invention.
도 2는 본 발명의 일실시예에 따른 다공형 중공사막의 제1 가상원 지름과 제2 가상원 지름이 동일하게 형성된 단면 예시도.2 is an exemplary cross-sectional view of the first virtual circle diameter and the second virtual circle diameter of the porous hollow fiber membrane according to an embodiment of the present invention.
도 3은 도 2에 대한 형태를 도시한 예시도. 3 is an exemplary view showing the form of FIG.
도 4는 본 발명의 일실시예에 따른 다공형 중공사막의 제1 가상원 지름이 제2 가상원 지름보다 크게 형성된 단면 예시도. Figure 4 is an exemplary cross-sectional view of the first virtual circle diameter of the porous hollow fiber membrane is formed larger than the second virtual circle diameter in accordance with an embodiment of the present invention.
도 5는 도 4에 대한 형태를 도시한 예시도. 5 is an exemplary view showing the form of FIG.
도 6은 본 발명의 일실시예에 따른 다공형 중공사막의 제1 가상원 지름이 제2 가상원 지름보다 작게 형성된 단면 예시도. 6 is a cross-sectional view illustrating a first virtual circle diameter of the porous hollow fiber membrane smaller than the second virtual circle diameter in accordance with an embodiment of the present invention.
도 7은 도 6에 대한 형태를 도시한 예시도. 7 is an exemplary view showing the form of FIG.
본 발명의 목적, 특정한 장점들 및 신규한 특징들은 첨부된 도면들과 연관되는 이하의 상세한 설명과 바람직한 실시예로부터 더욱 명백해질 것이다. 본 명세서에서 각 도면의 구성요소들에 참조번호를 부가함에 있어서, 동일한 구성 요소들에 한해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 번호를 가지도록 하고 있음에 유의하여야 한다. 또한, 제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 또한, 본 발명을 설명함에 있어서, 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명은 생략한다.The objects, specific advantages and novel features of the present invention will become more apparent from the following detailed description and preferred embodiments in conjunction with the accompanying drawings. In the present specification, in adding reference numerals to the components of each drawing, it should be noted that the same components as possible, even if displayed on different drawings have the same number as possible. In addition, terms such as first and second may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another. In addition, in describing the present invention, if it is determined that the detailed description of the related known technology may unnecessarily obscure the subject matter of the present invention, the detailed description thereof will be omitted.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. 도 1은 본 발명의 일실시예에 따른 다공형 중공사막의 사시도, 도 2는 본 발명의 일실시예에 따른 다공형 중공사막의 제1 가상원 지름과 제2 가상원 지름이 동일하게 형성된 단면 예시도, 도 3은 도 2에 대한 형태를 도시한 예시도, 도 4는 본 발명의 일실시예에 따른 다공형 중공사막의 제1 가상원 지름이 제2 가상원 지름보다 크게 형성된 단면 예시도, 도 5는 도 4에 대한 형태를 도시한 예시도, 도 6은 본 발명의 일실시예에 따른 다공형 중공사막의 제1 가상원 지름이 제2 가상원 지름보다 작게 형성된 단면 예시도 및 도 7은 도 6에 대한 형태를 도시한 예시도 이다. Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. 1 is a perspective view of a porous hollow fiber membrane according to an embodiment of the present invention, Figure 2 is a cross section in which the first virtual circle diameter and the second virtual circle diameter of the porous hollow fiber membrane according to an embodiment of the present invention are the same 3 is an exemplary view showing the form of Figure 2, Figure 4 is a cross-sectional view of the first virtual circle diameter of the porous hollow fiber according to an embodiment of the present invention is formed larger than the second virtual circle diameter 5 is an exemplary view showing a form of FIG. 4, FIG. 6 is a cross-sectional view illustrating a first virtual circle diameter of the porous hollow fiber membrane smaller than the second virtual circle diameter according to an embodiment of the present invention. 7 is an exemplary view showing the form of FIG.
도 1 내지 3를 참조하여 설명하면, 본 발명의 일실시예에 따른 다공형 중공사막은, 횡단면의 중심부에 제1 중공(100)이 형성되고, 상기 중심부를 기준으로 균일하게 등 방사되도록 형성된 N(N은 3이상의 자연수)개의 제2 중공(200)이 형성되며, 상기 횡단면 외주 면에는 상기 제2 중공(200)과 제2 중공(200) 사이를 일체로 연결해주기 위한 N개의 오목부분이 형성된다. Referring to Figures 1 to 3, the porous hollow fiber according to an embodiment of the present invention, the first hollow 100 is formed in the center of the cross-section, N is formed so as to uniformly radiate with respect to the center (N is a natural number of 3 or more) two second hollows 200 are formed, and N concave portions for integrally connecting the second hollows 200 and the second hollows 200 are formed on the outer circumferential surface of the cross section. do.
도 1을 참조하여 설명하면, 다공형 중공사막(10)은 중심부분에 제1 중공(100)이 형성된 기둥형태로 형성된다. 이때, 제1 중공(100)은 이물질 또는 정제된 물질이 이동하는 통로 역할을 한다. 제2 중공(200)은 제1 중공(100)의 중심부를 기준으로 균일하게 등 방사위치에 형성된다. 즉, 제2 중공(200)은 제1 중공(100)의 N(N은 3 이상의 자연수)개가 형성되는 것이 적절하다.Referring to FIG. 1, the porous hollow fiber membrane 10 is formed in a pillar shape in which a first hollow 100 is formed at a central portion thereof. At this time, the first hollow 100 serves as a passage through which foreign matter or purified material moves. The second hollow 200 is uniformly formed at the back radial position with respect to the center of the first hollow 100. That is, it is appropriate that the second hollow 200 is formed with N (N is a natural number of 3 or more) of the first hollow 100.
도 2 및 3을 참조하여 설명하면, 다공형 중공사막(10)은 제1 중공(100)의 중심을 기준으로 제1 중공 반지름(a1)보다 크게 형성된 제1 가상원(310)과 제2 중공(200)의 동심원 중심을 기준으로 제2 중공 반지름(b1)보다 크게 형성된 제2 가상원(330)과 제1 중공(100)의 동심원 중심으로부터 제2 가상원(330)을 내측에 접하도록 형성된 제3 가상원(350)을 포함한다. Referring to FIGS. 2 and 3, the porous hollow fiber membrane 10 has a first virtual circle 310 and a second hollow formed larger than the first hollow radius a1 based on the center of the first hollow 100. The second virtual circle 330 formed larger than the second hollow radius b1 based on the center of the concentric circle of 200 and the second virtual circle 330 are in contact with the inside from the center of the concentric circle of the first hollow 100. The third virtual circle 350 is included.
도 2를 참조하여 설명하면, 제1 가상원(310)은 제1 중공의 반지름(a1)보다 크고, 제1 중공(100)의 동심원을 중심으로 형성된다. 제1 가상원(310)은 제2 가상원(330)이 외접하도록 형성된다. 제1 가상원(310)은 제2 중공(200)이 균일하게 등 방사된 위치에 배치된다. Referring to FIG. 2, the first virtual circle 310 is larger than the radius a1 of the first hollow and formed around the concentric circle of the first hollow 100. The first virtual circle 310 is formed such that the second virtual circle 330 is circumscribed. The first virtual circle 310 is disposed at a position where the second hollow 200 is uniformly radiated.
제2 가상원(330)은 제2 중공 반지름(b1)보다 크고, 제2 중공(200)의 동심원을 중심으로 형성된다. 제2 가상원(330)은 제1 가상원(310)에 외접하도록 형성된다. 제1 가상원(310)을 중심으로 제2 가상원(330)이 N(N은 3 이상의 자연수)개 접한다. 즉 제2 중공(200)은 제1 중공(100)에서 등 방사형태로 떨어져 형성되고, 제2 중공(200)은 N(N은 3 이상의 자연수)개가 형성된다. The second virtual circle 330 is larger than the second hollow radius b1 and is formed around the concentric circles of the second hollow 200. The second virtual circle 330 is formed to circumscribe the first virtual circle 310. The second virtual circle 330 is in contact with N (N is a natural number of 3 or more) centering on the first virtual circle 310. That is, the second hollow 200 is formed to be spaced apart from the first hollow 100 in an equal radial shape, and the second hollow 200 is formed of N (N is a natural number of 3 or more).
제3 가상원(350)은 제1 중공(100)의 중심에서 제2 가상원(330)을 내측에 접하도록 형성된다. 즉, 제3 가상원(350)은 제1 중공(100)의 중심에서 다공형 중공사막(10) 외주면 크기로 형성된다. The third virtual circle 350 is formed to be in contact with the second virtual circle 330 at the center of the first hollow 100. That is, the third virtual circle 350 is formed to have a size of the outer circumferential surface of the porous hollow fiber membrane 10 at the center of the first hollow 100.
다공형 중공사막(10)의 외주 면에는 요철이 형성된다. 요철(110)의 굴곡은 제2 중공(200)이 배치된 개수에 대응하여 형성된다. 즉, 요철(110)은 오목부분(111)과 볼록부분(113)의 형태로 나눌 수 있다. 이러한, 요철(110)은 다공형 중공사막(10)의 횡단면에 대하여 꽃잎형태로 형성되는 것이 적절하다. 다공형 중공사막(10)은 종래 원형보다 휨 강도 및 기계적 강도가 개선된다. 즉, 다공형 중공사막(10)은 여과장치에 설치 시 수직으로 분사된 에어를 견디는 역할을 한다. 다공형 중공사(10) 표면에는 많은 공기 압이 형성되어 여과효율을 개선하는 효과가 있다. Unevenness is formed on the outer circumferential surface of the porous hollow fiber membrane 10. The bending of the unevenness 110 is formed corresponding to the number of the second hollow 200 is arranged. That is, the unevenness 110 may be divided into the concave portion 111 and the convex portion 113. Such unevenness 110 is preferably formed in the shape of a petal with respect to the cross section of the porous hollow fiber membrane 10. Porous hollow fiber membrane 10 is improved in bending strength and mechanical strength than the conventional circular. That is, the porous hollow fiber membrane 10 serves to withstand the air injected vertically when installed in the filtration device. Many air pressure is formed on the surface of the porous hollow fiber 10 has the effect of improving the filtration efficiency.
요철(110)은 외주방향으로 제2 중공(200)이 연장되어 형성된 부분에 볼록부분(113)이 형성된다. 또한, 요철(110)은 외주방향으로 제2 중공(200)과 제2 중공(200)을 연결해 주는 부분에 오목부분(111)으로 이루어진다. Concave-convex 110 is a convex portion 113 is formed in a portion formed by extending the second hollow 200 in the circumferential direction. In addition, the concave-convex 110 includes a concave portion 111 at a portion connecting the second hollow 200 and the second hollow 200 in the circumferential direction.
요철(110)의 볼록부분(113)은 제3 가상원(350)의 내측에 접하도록 형성되고, 요철(110)의 오목부분(111)은 제2 중공(200)과 제2 중공(200) 사이에 형성된다. 즉, 오목부분(111)은 제2 중공(200)과 제2 중공(200)이 형성된 간격과 밀접한 간격을 갖는다. The convex portion 113 of the concave-convex 110 is formed to contact the inner side of the third virtual circle 350, and the concave portion 111 of the concave-convex 110 is the second hollow 200 and the second hollow 200. It is formed between. That is, the recess 111 has a space close to the space between the second hollow 200 and the second hollow 200 is formed.
요철(110)은 다공형 중공사막(10)의 외주 면에 형성됨으로써, 비표면적과 여과효율을 향상시키는 효과를 갖는다. 또한, 요철(110)은 다공형 중공사막(10)의 외주 면에 오목부분(111)을 형성함으로써, 요철(110)은 제작시 사용된 원료를 감소하여 경제성을 개선한다. 더욱이, 요철(110)은 제2 중공(200)과 볼록부분(113)간의 거리를 일정하게 함으로써, 종래 중공사막에 비해 균일한 투과성 및 제품의 균일한 신뢰성을 확보하는 역할도 수행한다. The unevenness 110 is formed on the outer circumferential surface of the porous hollow fiber membrane 10, thereby improving the specific surface area and filtration efficiency. In addition, the concave-convex 110 forms a concave portion 111 on the outer circumferential surface of the porous hollow fiber membrane 10, so that the concave-convex 110 reduces the raw materials used in manufacturing, thereby improving economic efficiency. Further, the unevenness 110 serves to ensure uniform permeability and uniform reliability of the product as compared to the conventional hollow fiber membrane by making the distance between the second hollow 200 and the convex portion 113 constant.
예를 들어, 도 3a에 도시된 바와 같이 제2 중공(200)이 3개 형성되면, 오목부분(111)은 제1 중공(100) 방향으로 가까워지도록 형성된다.즉, 제2 중공(200)이 3개 형성되면 제1 가상원(310)에 오목부분(111)이 접하는 것을 알 수 있다. 이는, 제2 중공(200)이 3개 형성되면 제1 가상원(310)에 오목부분(111)이 반드시 접하도록 형성됨을 의미하는 것은 아니다. 즉, 오목부분(111)은 제1 가상원(310) 부근에 형성된다는 의미임을 밝힌다. For example, when three second hollows 200 are formed as shown in FIG. 3A, the concave portion 111 is formed to be closer to the first hollow 100. That is, the second hollows 200 are provided. When the three are formed, it can be seen that the concave portion 111 is in contact with the first virtual circle 310. This does not mean that when three second hollows 200 are formed, the concave portion 111 is necessarily formed in contact with the first virtual circle 310. That is, it is revealed that the recess 111 is formed near the first virtual circle 310.
도 3b 내지 3h를 참조하여 설명하면, 다공형 중공사막(10)은 제2 중공(200)이 1개씩 증가시, 오목부분(111)은 제1 중공(100) 방향에서 멀어지도록 형성된다. 즉, 제2 중공(200)이 4개 이상 형성되면 제1 가상원(310)에 오목부분(111)이 멀어지는 것을 알 수 있다. 즉, 오목부분(111)은 제2 중공(200)이 증가시 제1 가상원(310) 부근에서 서서히 멀어지면서 제3 가상원(350) 방향에 가까워지도록 형성된다. 즉, 오목부분(111)은 도 3a에 도시된 바와 같이 제1 가상원(310) 부근에 형성되고, 오목부분(111)은 도 3h에 도시된 바와 같이 제3 가상원(350) 부근에 형성됨을 확인할 수 있다. 된다. Referring to FIGS. 3B to 3H, the porous hollow fiber membrane 10 is formed such that when the second hollow 200 increases by one, the concave portion 111 moves away from the first hollow 100 direction. That is, when four or more second hollows 200 are formed, it can be seen that the concave portion 111 is far from the first virtual circle 310. That is, the concave portion 111 is formed to be closer to the direction of the third virtual circle 350 while gradually moving away from the vicinity of the first virtual circle 310 when the second hollow 200 increases. That is, the recess 111 is formed near the first virtual circle 310 as shown in FIG. 3A, and the recess 111 is formed near the third virtual circle 350 as shown in FIG. 3H. can confirm. do.
다공형 중공사막(10)은 제1 가상원(310)의 반지름(a2)과 제2 가상원의 반지름(b2)이 동일한 크기로 형성된다. The porous hollow fiber membrane 10 has a radius a2 of the first virtual circle 310 and a radius b2 of the second virtual circle having the same size.
한편, 상기 다공형 중공사막(10)의 재질은 비닐계 고분자 및 올레핀 고분자를 비롯한 소수성 고분자일 수 있다. 상기 소수성 고분자로서는 폴리에틸렌(PE)수지, 폴리프로필렌(PP)수지, 에틸렌 클로로 트리플루오로 에틸렌 수지(ECTFE), 폴리염화비닐(PVC)수지, 폴리설폰 수지, 폴리에테르설폰수지, 설폰화 폴리설폰 수지, 폴리비닐리덴플루오라이드(PVDF) 수지, 폴리아크릴로니트릴(PAN) 수지, 폴리이미드 수지, 폴리아미드이미드 수지, 및 폴리에테르이미드로 이루어진 군으로부터 선택된 1종 이상의 것을 사용할 수 있다. 특히, 화학적 안정성을 고려하여 폴리비닐리덴플루오라이드(PVDF) 호모 폴리머 또는 그의 공중합체와 같은 불소 함유 소수성 고분자를 더욱 바람직하게 사용한다.On the other hand, the porous hollow fiber membrane 10 may be made of a hydrophobic polymer including a vinyl polymer and an olefin polymer. As the hydrophobic polymer, polyethylene (PE) resin, polypropylene (PP) resin, ethylene chloro trifluoro ethylene resin (ECTFE), polyvinyl chloride (PVC) resin, polysulfone resin, polyethersulfone resin, sulfonated polysulfone resin And at least one selected from the group consisting of polyvinylidene fluoride (PVDF) resin, polyacrylonitrile (PAN) resin, polyimide resin, polyamideimide resin, and polyetherimide. In particular, fluorine-containing hydrophobic polymers such as polyvinylidene fluoride (PVDF) homopolymers or copolymers thereof are more preferably used in view of chemical stability.
아울러, 본 발명에 따른 다공형 중공사막(10)은 상술한 소수성 고분자를 용매, 또는 필요에 따라 비용매 또는 첨가제를 함유하는 용매에 녹여 방사용액을 얻고, 이 방사용액과 내부응고제를 방사노즐을 통하여 토출 및 공급하여 방사한 후, 외부응고제에 의하여 완전히 상전이된 중공사를 형성하는 통상의 비용매유도 상전이법(nonsolvent induced phase separation, NIPS) 또는 열유도 상전이법(thermally induced phase separation, TIPS)에 의하여 제조될 수 있다.In addition, the porous hollow fiber membrane 10 according to the present invention is obtained by dissolving the above-mentioned hydrophobic polymer in a solvent or a solvent containing a non-solvent or an additive, if necessary, to obtain a spinning solution, the spinning solution and the internal coagulant to the spinning nozzle After discharging, supplying and spinning through a conventional nonsolvent induced phase separation method (NIPS) or thermally induced phase separation method (TIPS) to form a hollow fiber completely phase-transferred by an external coagulant It can be manufactured by.
제2 실시 예Second embodiment
도 4를 참조하여 설명하면, 본 발명의 제2 실시예에 따른 다공형 중공사막(10)은, 제1 실시예의 동일구성요소는 생략하고, 제1 가상원(310) 반지름(a2)은 제2 가상원(330) 반지름(b2)보다 크게 형성된 경우를 자세히 설명한다. Referring to FIG. 4, the porous hollow fiber membrane 10 according to the second exemplary embodiment of the present invention omits the same components as those of the first exemplary embodiment, and the radius a2 of the first virtual circle 310 is set to the first. The case in which the virtual circle 330 is formed larger than the radius b2 will be described in detail.
다공형 중공사막(10)의 외주 면에는 요철이 형성된다. 요철(110)의 굴곡은 제2 중공(200)이 배치된 개수에 대응하여 형성된다. 즉, 요철(110)은 오목부분(111)과 볼록부분(113)의 형태로 나눌 수 있다(도 4를 참조).Unevenness is formed on the outer circumferential surface of the porous hollow fiber membrane 10. The bending of the unevenness 110 is formed corresponding to the number of the second hollow 200 is arranged. That is, the concave-convex 110 may be divided into the concave portion 111 and the convex portion 113 (see FIG. 4).
요철(110)은 외주방향으로 제2 중공(200)이 연장되어 형성된 부분에 볼록부분(113)이 형성된다. 또한, 요철(110)은 외주방향으로 제2 중공(200)과 제2 중공(200)을 연결해 주는 부분에 오목부분(111)으로 이루어진다. Concave-convex 110 is a convex portion 113 is formed in a portion formed by extending the second hollow 200 in the circumferential direction. In addition, the concave-convex 110 includes a concave portion 111 at a portion connecting the second hollow 200 and the second hollow 200 in the circumferential direction.
요철(110)의 볼록부분(113)은 제3 가상원(350)의 내측에 접하도록 형성되고, 요철(110)의 오목부분(111)은 제2 중공(200)과 제2 중공(200) 사이에 형성된다. 즉, 오목부분(111)은 제2 중공(200)과 제2 중공(200)이 형성된 간격과 밀접한 간격을 갖는다. The convex portion 113 of the concave-convex 110 is formed to contact the inner side of the third virtual circle 350, and the concave portion 111 of the concave-convex 110 is the second hollow 200 and the second hollow 200. It is formed between. That is, the recess 111 has a space close to the space between the second hollow 200 and the second hollow 200 is formed.
예를 들어, 도 5a에 도시된 바와 같이 제2 중공(200)이 6개 형성되면, 오목부분(111)은 제1 중공(100) 방향으로 “v”형태의 깊이가 형성된다. For example, when six second hollows 200 are formed as shown in FIG. 5A, the recess 111 has a depth of “v” shape in the direction of the first hollow 100.
도 5a 내지 5d를 참조하여 설명하면, 다공형 중공사막(10)은 제2 중공(200)이 1개씩 증가 된다. 오목부분(111)은 제2 중공(200)과 제2 중공(200) 사이 1개씩 형성되면, 오목부분(111)은 제1 중공(100) 방향에서 멀어지도록 형성된다. 즉, 제2 중공(200)이 7개 이상 형성되면 제1 가상원(310)에 오목부분(111)이 멀어지는 것을 알 수 있다. 즉, 오목부분(111)은 제1 가상원(310) 부근에서 서서히 멀어지면서 제3 가상원(350) 방향에 가까워지도록 형성된다.5A to 5D, the porous hollow fiber membrane 10 is increased by one second hollow 200. When the concave portion 111 is formed one by one between the second hollow 200 and the second hollow 200, the concave portion 111 is formed to move away from the first hollow 100 direction. That is, when seven or more second hollows 200 are formed, it can be seen that the concave portion 111 is far from the first virtual circle 310. That is, the concave portion 111 is formed to be closer to the direction of the third virtual circle 350 while gradually moving away from the vicinity of the first virtual circle 310.
제3 실시 예 Third embodiment
도 6를 참조하여 설명하면, 본 발명의 제3 실시예에 따른 다공형 중공사막(10)은, 제1 실시예의 동일구성요소는 생략하고, 제1 가상원(310) 반지름(a2)은 제2 가상원(330) 반지름(b2)보다 작게 형성된 경우를 자세히 설명한다. Referring to FIG. 6, the porous hollow fiber membrane 10 according to the third exemplary embodiment of the present invention omits the same components as those of the first exemplary embodiment, and the radius a2 of the first virtual circle 310 is set to the first. The case in which the virtual circle 330 is formed smaller than the radius b2 will be described in detail.
다공형 중공사막(10)의 직경을 줄이면서 여과효율을 높일 수 있다. 다공형 중공사막(10)은 제1 가상원(310) 반지름(a2)이 작아지도록 형성되며, 다공형 중공사막(10)의 제2 가상원(330) 반지름(b2)을 크게 한다. 즉, 다공형 중공사막(10)의 표면 외경의 제2 중공(200) 반지름(b1)을 크게하여 여과효율 및 충진밀도를 높일 수 있다(도 6 또는 도 7을 참조).Filtration efficiency can be increased while reducing the diameter of the porous hollow fiber membrane 10. The porous hollow fiber membrane 10 is formed to have a smaller radius a2 of the first virtual circle 310, and increases the radius b2 of the second virtual circle 330 of the porous hollow fiber membrane 10. That is, by increasing the radius b1 of the second hollow 200 of the surface outer diameter of the porous hollow fiber membrane 10, the filtration efficiency and the packing density may be increased (see FIG. 6 or 7).
다공형 중공사막(10)의 외주 면에는 요철이 형성된다. 요철(110)의 굴곡은 제2 중공(200)이 배치된 개수에 대응하여 형성된다. 즉, 요철(110)은 오목부분(111)과 볼록부분(113)의 형태로 나눌 수 있다(도 6을 참조). Unevenness is formed on the outer circumferential surface of the porous hollow fiber membrane 10. The bending of the unevenness 110 is formed corresponding to the number of the second hollow 200 is arranged. That is, the concave-convex 110 may be divided into the shape of the concave portion 111 and the convex portion 113 (see FIG. 6).
요철(110)은 외주방향으로 제2 중공(200)이 연장되어 형성된 부분에 볼록부분(113)이 형성된다. 또한, 요철(110)은 외주방향으로 제2 중공(200)과 제2 중공(200)을 연결해 주는 부분에 오목부분(111)으로 이루어진다. Concave-convex 110 is a convex portion 113 is formed in a portion formed by extending the second hollow 200 in the circumferential direction. In addition, the concave-convex 110 includes a concave portion 111 at a portion connecting the second hollow 200 and the second hollow 200 in the circumferential direction.
요철(110)의 볼록부분(113)은 제3 가상원(350)의 내측에 접하도록 형성되고, 요철(110)의 오목부분(111)은 제2 중공(200)과 제2 중공(200) 사이에 형성된다. 즉, 오목부분(111)은 제2 중공(200)과 제2 중공(200)이 형성된 간격과 밀접한 간격을 갖는다. The convex portion 113 of the concave-convex 110 is formed to contact the inner side of the third virtual circle 350, and the concave portion 111 of the concave-convex 110 is the second hollow 200 and the second hollow 200. It is formed between. That is, the recess 111 has a space close to the space between the second hollow 200 and the second hollow 200 is formed.
예를 들어, 도 6a에 도시된 바와 같이 제2 중공(200)이 3개 형성되면, 오목부분(111)은 제1 중공(100) 방향으로 “v”형태의 깊이가 형성된다. For example, when three second hollows 200 are formed as shown in FIG. 6A, the recess 111 has a depth of “v” shape in the direction of the first hollow 100.
도 7a 내지 7c를 참조하여 설명하면, 다공형 중공사막(10)은 제2 중공(200)이 1개씩 증가 된다. 이때, 오목부분(111)은 제2 중공(200)과 제2 중공(200) 사이 1개씩 형성되면, 오목부분(111)은 제1 중공(100) 방향에서 멀어지도록 형성된다. 즉, 제2 중공(200)이 4개 이상 형성되면 제1 가상원(310)에 오목부분(111)이 멀어지는 것을 알 수 있다. 즉, 오목부분(111)은 제1 가상원(310) 부근에서 서서히 멀어지면서 제3 가상원(350) 방향에 가까워지도록 형성된다.Referring to FIGS. 7A to 7C, the porous hollow fiber membrane 10 is increased by one second hollow 200. In this case, when the recess 111 is formed one by one between the second hollow 200 and the second hollow 200, the recess 111 is formed to be far from the first hollow 100 direction. That is, when four or more second hollows 200 are formed, it can be seen that the concave portion 111 is far from the first virtual circle 310. That is, the concave portion 111 is formed to be closer to the direction of the third virtual circle 350 while gradually moving away from the vicinity of the first virtual circle 310.
이하에서는 본 발명의 일실시예에 따른 중공사 단섬유의 외주면에 오목부분 및 볼록부분이 반복된 패턴의 꽃잎 모양으로 형성된 다공형 중공사막을 제조하여 수투과도 및 기계적 물성을 평가한 실험예를 구체적으로 서술한다.Hereinafter, an experimental example in which a porous hollow fiber membrane formed in the shape of a petal having a concave portion and a convex portion on the outer circumferential surface of the hollow fiber short fiber according to an embodiment of the present invention is repeated to evaluate water permeability and mechanical properties. To describe.
[실험예]Experimental Example
노즐의 외경 형태가 꽃잎 모양인 다공형(멀티보아) 노즐을 사용하여 폴리비닐리덴플루오라이드 수지(중량평균분자량 300,000~320,000) 40 중량%, 실리카 15 중량%, 디옥틸프탈레이트 30 중량% 및 디부틸프탈레이트 15 중량%의 조성으로 2축압출기를 이용하여 240℃에서 토출하였다. 중공형성제로는 디옥틸프탈레이트를 30℃에서 사용하였고, 80mm의 에어 챔버를 통과 한 다음 60℃의 수조에서 응고시킨 후, 60℃의 수조에서 50% 연신하고 120℃의 열풍에서 안정화를 시켰으며, 권취속도는 15m/min으로 조절하여 도 1에 나타낸 것과 같은 외주면이 꽃잎 모양인 다공형 중공사막을 제조하였다(외경 4.2 ㎛, 내경 0.8 ㎛). 상기 외주면이 꽃잎 모양인 다공형 중공사막을 메틸렌클로라이드에 30분 침지 후 수산화나트륨 8 중량% 수용액에 15분 침지, 에탄올에 10분 침지, 글리세린 3 중량% 수용액에 24시간 순차적으로 침지 및 건조하는 후처리 과정을 거쳐 수투과도 및 기계적 물성을 평가하였으며, 그 결과를 표 1에 나타내었다.40% by weight of polyvinylidene fluoride resin (weight average molecular weight 300,000 to 320,000), 15% by weight of silica, 30% by weight of dioctylphthalate and dibutyl, using a porous (multibore) nozzle with an outer diameter of the nozzle The composition was discharged at 240 ° C. using a twin screw extruder with a composition of 15% by weight of phthalate. Dioctyl phthalate was used at 30 ° C. as a hollow forming agent, passed through an 80 mm air chamber, and solidified in a 60 ° C. water bath, stretched 50% in a 60 ° C. water bath, and stabilized in a hot air at 120 ° C. The winding speed was adjusted to 15 m / min to prepare a porous hollow fiber membrane having an outer circumferential surface as shown in FIG. 1 in the shape of a petal (outer diameter 4.2 탆, inner diameter 0.8 탆). After immersing the porous hollow fiber membrane having a petal-like outer circumferential surface for 30 minutes in methylene chloride, immersing in 8% by weight of sodium hydroxide solution for 15 minutes, immersion in ethanol for 10 minutes, and glycerine in 3% by weight aqueous solution for 24 hours The water permeability and mechanical properties were evaluated through the treatment, and the results are shown in Table 1.
[비교예][Comparative Example]
노즐의 외경 형태가 원형인 다공형(멀티보아) 노즐을 사용한 것을 제외하고는 상기 실험예와 동일한 방법으로 외주면이 원형인 다공형 중공사막을 제조하고 후처리 과정을 거쳐 수투과도 및 기계적 물성을 평가하였다.A porous hollow fiber membrane having a circular outer circumferential surface was prepared in the same manner as in the above experimental example, except that the nozzle had a circular porous diameter (multibore) nozzle, and the water permeability and mechanical properties were evaluated through post-treatment. It was.
표 1
Table 1
샘플 | 수투과 플럭스(L/㎡.hr,0.1mpa) | 파단최대하중(N) | 파단신율(%) |
실험예 | 3,600 | 46.9 | 120 |
비교예 | 2,100 | 36.2 | 80 |
Sample | Water transmission flux (L / ㎡.hr, 0.1mpa) | Breaking load (N) | Elongation at Break (%) |
Experimental Example | 3,600 | 46.9 | 120 |
Comparative example | 2,100 | 36.2 | 80 |
상기 표 1에서 보는 바와 같이, 본 발명의 일실시예에 따라 상기 실험예로부터 제조된 외주면이 꽃잎 모양인 다공형 중공사막은 비교예로부터 제조된 외주면이 원형인 다공형 중공사막에 비하여 수투과도가 현저하게 증가된 것을 확인할 수 있는데, 이는 노즐의 외경 형태가 꽃잎 모양인 것이 중공사막 형성과정에서 열전달이 균일하게 이루어지고, 그 표면적이 큰 점에 기인하는 것이라 할 수 있다.As shown in Table 1, the porous hollow fiber membrane of the outer circumferential surface prepared from the experimental example according to an embodiment of the present invention is petal-shaped compared to the porous hollow fiber membrane of which the outer circumferential surface prepared from the comparative example is circular. It can be seen that the remarkably increased, which is due to the fact that the outer diameter of the nozzle is petal-shaped, heat transfer is uniformly made during the hollow fiber membrane formation process, the surface area is large.
아울러 파단최대하중과 파단신율과 같은 기계적 물성 측면에서도 본 발명의 일실시예에 따라 상기 실험예로부터 제조된 외주면이 꽃잎 모양인 다공형 중공사막이 비교예로부터 제조된 외주면이 원형인 다공형 중공사막에 비하여 훨씬 우수한 것을 확인할 수 있는바, 이는 외주면이 꽃잎 모양인 다공형 중공사막이 중공사막 형성과정에서 골이 형성됨으로써 연신 시 배향이 잘 되어 강도가 높아짐과 동시에, 기공이 균일하게 형성되고 길이 방향으로 골이 형성되어 신도가 향상되는 것으로 해석된다.In addition, in terms of mechanical properties such as maximum breaking load and elongation at break, according to an embodiment of the present invention, the porous hollow fiber membrane having the outer circumferential surface prepared from the experimental example has a petal-shaped porous hollow fiber membrane having the circular outer circumferential surface prepared from the comparative example It can be confirmed that it is much superior to that, this is because the porous hollow fiber membrane having the outer circumferential surface is formed in the bone during the hollow fiber membrane formation process, the orientation is good during stretching, the strength is increased, the pores are uniformly formed and the longitudinal direction is increased. It is interpreted that the bone is formed and the elongation is improved.
그러므로, 본 발명의 다공형 중공사막에 따르면, 종래 단공형 또는 다공형 중공사막에 비하여 충진 밀도 및 비표면적이 증가함으로써 여과효율, 투과성능이 향상될 뿐만 아니라 막오염 방지 효과도 우수하여 정밀여과막, 한외여과막과, 탈기막, 투과증발막 분리공정에 적용할 수 있다.Therefore, according to the porous hollow fiber membrane of the present invention, by increasing the packing density and the specific surface area compared to the conventional single-hole or porous hollow fiber membrane, not only the filtration efficiency and permeation performance is improved, but also the membrane fouling prevention effect is excellent, and the fine filtration membrane, It can be applied to the separation process of ultrafiltration membrane, degassing membrane and permeation membrane.
본 발명의 기술사상은 상기 바람직한 실시예에 따라 구체적으로 기술되었으나, 전술한 실시예들은 그 설명을 위한 것이며, 그 제한을 위한 것이 아님을 주의하여야 한다. 또한, 본 발명의 기술분야의 통상의 전문가라면 본 발명의 기술사상의 범위 내에서 다양한 실시가 가능함을 이해할 수 있을 것이다.Although the technical spirit of the present invention has been described in detail according to the above-described preferred embodiment, it should be noted that the above-described embodiments are for the purpose of description and not of limitation. In addition, those skilled in the art will understand that various implementations are possible within the scope of the technical idea of the present invention.
Claims (8)
- 횡단면의 중심부에 제1 중공이 형성되고, 상기 중심부를 기준으로 균일하게 등방사되도록 배치되어 N(N은 3이상의 자연수)개의 제2 중공이 형성되며, A first hollow is formed at the center of the cross section, and is uniformly radiated with respect to the center to form N (N is a natural number of 3 or more) second hollows.상기 횡단면 외주 면에는 상기 제2 중공과 제2 중공 사이를 일체로 연결해주기 위한 N개의 오목부분이 형성된 것을 특징으로 하는 다공형 중공사막. The hollow hollow fiber membrane of the cross-sectional outer surface is formed with N concave portions for integrally connecting between the second hollow and the second hollow.
- 청구항 1에 있어서, The method according to claim 1,상기 제1 중공보다 직경이 크고, 상기 제1 중공의 동심원을 제1 가상원으로 정의하고,A diameter larger than the first hollow, and defines a concentric circle of the first hollow as a first virtual circle,상기 제2 중공보다 직경이 크고, 상기 제2 중공의 동심원을 제2 가상원으로 정의할 때,When the diameter is larger than the second hollow and the concentric circles of the second hollow are defined as the second virtual circle,상기 제2 가상원은 상기 제1 가상원에 외접하도록 형성된 다공형 중공사막.The second virtual circle is a porous hollow fiber membrane formed to circumscribe the first virtual circle.
- 청구항 2에 있어서, The method according to claim 2,상기 제1 가상원 반지름은 상기 제2 가상원 반지름과 동일한 크기로 형성된 것을 특징으로 하는 다공형 중공사막.The first virtual circle radius is a porous hollow fiber membrane, characterized in that formed in the same size as the second virtual circle radius.
- 청구항 2에 있어서, The method according to claim 2,상기 제1 가상원 반지름은 상기 제2 가상원 반지름보다 크게 형성된 것을 특징으로 하는 다공형 중공사막.And the first virtual circle radius is larger than the second virtual circle radius.
- 청구항 2에 있어서, The method according to claim 2,상기 제1 가상원 반지름은 상기 제2 가상원 반지름보다 작게 형성된 것을 특징으로 하는 다공형 중공사막.And the first virtual circle radius is smaller than the second virtual circle radius.
- 제1항 내지 제5항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 5,상기 다공형 중공사막은 그 재질이 폴리에틸렌(PE)수지, 폴리프로필렌(PP)수지, 에틸렌 클로로 트리플루오로 에틸렌 수지(ECTFE), 폴리염화비닐(PVC)수지, 폴리설폰 수지, 폴리에테르설폰수지, 설폰화 폴리설폰 수지, 폴리비닐리덴플루오라이드(PVDF) 수지, 폴리아크릴로니트릴(PAN) 수지, 폴리이미드 수지, 폴리아미드이미드 수지 및 폴리에테르이미드로 이루어진 군으로부터 선택된 1종 이상의 것을 특징으로 하는 다공형 중공사막.The porous hollow fiber membrane may be made of polyethylene (PE) resin, polypropylene (PP) resin, ethylene chloro trifluoro ethylene resin (ECTFE), polyvinyl chloride (PVC) resin, polysulfone resin, polyether sulfone resin, At least one member selected from the group consisting of sulfonated polysulfone resin, polyvinylidene fluoride (PVDF) resin, polyacrylonitrile (PAN) resin, polyimide resin, polyamideimide resin and polyetherimide Hollow fiber membrane.
- 청구항 6에 있어서,The method according to claim 6,상기 다공형 중공사막은 통상의 비용매유도 상전이법(NIPS) 또는 열유도 상전이법(TIPS)에 의하여 제조되는 것을 특징으로 하는 다공형 중공사막.The porous hollow fiber membrane is a porous hollow fiber membrane, characterized in that produced by the conventional non-solvent induction phase transition method (NIPS) or heat induced phase transition method (TIPS).
- 청구항 1 내지 5항 중 어느 한 항에 따른 다공형 중공사막은 정밀여과막, 한외여과막과, 탈기막, 투과증발막에 적용되는 것을 특징으로 하는 다공형 중공사막.The porous hollow fiber membrane according to any one of claims 1 to 5 is applied to a microfiltration membrane, an ultrafiltration membrane, a degassing membrane and a pervaporation membrane.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20150122268 | 2015-08-31 | ||
KR10-2015-0122268 | 2015-08-31 | ||
KR1020160110882A KR101848817B1 (en) | 2015-08-31 | 2016-08-30 | Multi-bore hollow fiber membrane |
KR10-2016-0110882 | 2016-08-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017039309A1 true WO2017039309A1 (en) | 2017-03-09 |
Family
ID=58188988
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2016/009712 WO2017039309A1 (en) | 2015-08-31 | 2016-08-31 | Porous hollow fiber membrane |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2017039309A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030140790A1 (en) * | 2002-01-29 | 2003-07-31 | Attila Herczeg | Convoluted surface hollow fiber membranes |
JP2004042024A (en) * | 2002-05-16 | 2004-02-12 | Nok Corp | Melt-spun hollow fiber membrane and air release cartridge using the same |
JP2012040464A (en) * | 2010-08-13 | 2012-03-01 | Asahi Kasei Chemicals Corp | Composite porous hollow fiber membrane, membrane module, membrane filtering device, and water-treating method |
JP2014240071A (en) * | 2010-04-16 | 2014-12-25 | 旭化成ケミカルズ株式会社 | Modified porous hollow fiber membrane, manufacturing method of modified porous hollow fiber membrane, module using modified porous hollow fiber membrane, filtration device and water treatment method |
-
2016
- 2016-08-31 WO PCT/KR2016/009712 patent/WO2017039309A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030140790A1 (en) * | 2002-01-29 | 2003-07-31 | Attila Herczeg | Convoluted surface hollow fiber membranes |
JP2004042024A (en) * | 2002-05-16 | 2004-02-12 | Nok Corp | Melt-spun hollow fiber membrane and air release cartridge using the same |
JP2014240071A (en) * | 2010-04-16 | 2014-12-25 | 旭化成ケミカルズ株式会社 | Modified porous hollow fiber membrane, manufacturing method of modified porous hollow fiber membrane, module using modified porous hollow fiber membrane, filtration device and water treatment method |
JP2012040464A (en) * | 2010-08-13 | 2012-03-01 | Asahi Kasei Chemicals Corp | Composite porous hollow fiber membrane, membrane module, membrane filtering device, and water-treating method |
Non-Patent Citations (1)
Title |
---|
WANG, PENG ET AL.: "Design and Fabrication of Lotus-root-like Multi-bore Hollow Fiber Membrane for Direct Contact Membrane Distillation", JOURNAL OF MEMBRANE SCIENCE, vol. 421, 1 December 2012 (2012-12-01), pages 361 - 374, XP055200236 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102031395B1 (en) | Composite hollow fibre membrane with compatible braided support filaments | |
US8967391B2 (en) | Method for preparing composite multilayer porous hollow membrane and device and product thereof | |
WO2011037354A2 (en) | Fluorine-based hollow-fibre membrane and a production method therefor | |
KR101848817B1 (en) | Multi-bore hollow fiber membrane | |
US20180272290A1 (en) | Asymmetric membranes and related methods | |
WO2012128470A4 (en) | Polysulfone-based hollow fiber film having excellent strength and water permeability, and method for manufacturing same | |
KR20090111362A (en) | Membranes with high water flux for water purification and Manufacturing method thereof | |
CN103111189A (en) | High-flux polyvinylidene fluoride hollow fiber membrane | |
KR101502865B1 (en) | Manufacturing method of PVDF hollow fiber membrane | |
KR101738976B1 (en) | polyvinylidene fluoride hollow fiber membrane and manufacturing method thereof | |
KR20140046638A (en) | Method for manufacturing asymmetric hollow fiber membrane and asymmetric hollow fiber membrane manufactured using the same | |
WO2014112689A1 (en) | Method for manufacturing hydrophilized hollow fiber membrane by continuous process using extruder | |
CN102489173A (en) | Preparation method of heterogeneous composite hollow fiber film | |
WO2012074222A9 (en) | Preparation method of hollow fiber membrane for water treatment using cellulose-based resin | |
WO2016072554A1 (en) | Porous hollow fiber membrane and method for manufacturing same | |
WO2013073831A1 (en) | Multilayered hollow fiber membrane having high strength and high permeability, and method of manufacturing same | |
KR20160081612A (en) | PVDF porous hollow fiber membrane and the preparing method thereof | |
WO2009157693A2 (en) | Water treating membrane and hydrophilizing method therefor | |
WO2017039309A1 (en) | Porous hollow fiber membrane | |
KR100650330B1 (en) | A hollow fiber membrane with good permeability of water | |
WO2015093705A1 (en) | Hollow fiber membrane | |
WO2015008961A1 (en) | High-strength separation membrane and preparation method therefor | |
WO2016072634A1 (en) | Method for preparing polymer resin composition for producing filtration membrane having improved hydrophilicity and mechanical strength | |
KR101556009B1 (en) | Multilayered hollow fiber membrane having improved impact strength and thermal resistance and preparing method of the same | |
KR20070102011A (en) | Porous poly(vinylidene fluoride) hollow fiber membranes for high water permeance and methods to make membranes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16842275 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16842275 Country of ref document: EP Kind code of ref document: A1 |