WO2016072634A1 - Method for preparing polymer resin composition for producing filtration membrane having improved hydrophilicity and mechanical strength - Google Patents

Method for preparing polymer resin composition for producing filtration membrane having improved hydrophilicity and mechanical strength Download PDF

Info

Publication number
WO2016072634A1
WO2016072634A1 PCT/KR2015/010911 KR2015010911W WO2016072634A1 WO 2016072634 A1 WO2016072634 A1 WO 2016072634A1 KR 2015010911 W KR2015010911 W KR 2015010911W WO 2016072634 A1 WO2016072634 A1 WO 2016072634A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
resin composition
filtration membrane
polymer resin
membrane
Prior art date
Application number
PCT/KR2015/010911
Other languages
French (fr)
Korean (ko)
Inventor
배수경
이진원
박범진
김정은
Original Assignee
롯데케미칼 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 롯데케미칼 주식회사 filed Critical 롯데케미칼 주식회사
Publication of WO2016072634A1 publication Critical patent/WO2016072634A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/06Flat membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/16Homopolymers or copolymers of vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2333/06Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C08J2333/10Homopolymers or copolymers of methacrylic acid esters
    • C08J2333/12Homopolymers or copolymers of methyl methacrylate

Definitions

  • the present invention relates to a method for preparing a polymer resin composition for preparing a filter membrane, and more particularly, to a method for preparing a polymer resin composition for preparing a filter membrane with improved hydrophilicity and mechanical strength.
  • the present invention is derived from research conducted as part of the Global Top Environmental Technology Development Project supported by the Ministry of Environment in 2014.
  • Polymer filtration membranes are used for separation of liquids or gases in various fields such as medicine, semiconductor, battery, biotechnology, dairy, beverage and food, and water treatment.
  • the polymer filtration membrane is an important factor that can determine the efficiency and economic efficiency of the material separation process.
  • the polymer filtration membrane is a sintered membrane obtained by injecting and sintering polymer particles into a mold, or a crystalline polymer film or hollow fiber.
  • Background Art A phase conversion membrane by a solvent exchange method formed by dipping a homogeneous solution containing a resin into a non-solvent is known.
  • the solvent exchange method is mainly used to commercially manufacture the microfiltration membrane or the ultrafiltration membrane. Recently, a method of casting a polymer solution and precipitating it in a non-solvent agglomeration tank (nonsolvent induced phase separation) has been used.
  • the porous polymer membrane a polymer such as polysulfone, polyether sulfone, cellulose acetate, polyvinylidene fluoride and the like is usually used.
  • Polymers, except for cellulose acetate, are hydrophobic polymers, which degrade the filtration performance and shorten the life due to accumulation of microorganisms and suspended solids.
  • the hydrophilic polymer is prepared by a non-solvent induced phase transition process to increase the hydrophilicity and have a high permeation flow rate, but has a weak physical strength, and thus is easily broken or damaged, making it difficult to use in the long term. .
  • Korean Patent Laid-Open Publication No. 2007-0072120 discloses a hydrophilic preparation method of an asymmetric filtration membrane by adding polymethylmethacrylate as a hydrophilic additive to a hydrophobic polymer solution.
  • Such a hydrophilization method has an advantage in that the hydrophilicity is maintained almost permanently due to excellent compatibility with the hydrophobic polymer, but the physical strength of the membrane is lowered due to the low brittleness of the hydrophilic additive polymethylmethacrylate.
  • International Patent Publication No. 2006/006340 relates to a method for improving the hydrophilicity of a polyvinylidene fluoride-based membrane for water treatment, comprising: polymerizing a polyvinylidene-based resin, including titanium oxide and a granular inorganic additive in a granular form.
  • a technique comprising a step of preparing a solution, melt extruding the mixed composition, and extracting a solvent.
  • titanium oxide which is an inorganic additive in the form of granules, is depleted from the polyvinylidene fluoride-based membrane when it is in contact with water for a long time, so that the hydrophilic effect is not permanent.
  • the detached additive is mixed with the filtrate, it is not satisfied for water treatment. There is no difficulty.
  • titanium oxide there is a problem that the economic efficiency is low as an additive of the water treatment membrane.
  • An object of the present invention is to provide a polymer resin composition for preparing a filtration membrane using an additive used to have a higher hydrophilicity and a method of preparing a polymer filtration membrane using the same.
  • the present invention to solve the above problems, (a) preparing a polymer solution by mixing a hydrophobic polymer base resin, a first solvent and a hydrophilic organic additive; (b) preparing a hydrophilic inorganic additive in sol form; And (c) adding the hydrophilic inorganic additive to the polymer solution.
  • the polymer solution is 1 to 50% by weight of the hydrophobic polymer base resin, 1 to 80% by weight of the first solvent and 0.01 to 50% by weight of the hydrophilic organic additives to provide a method for producing a polymer resin composition for manufacturing a filter membrane. do.
  • the hydrophobic polymer base resin is polyethersulfone (PES), polysulfone (PSf), polyther ketone (PEK), polytherserketone (PEEK), sulfonated polymer (sulfonated polymer), polyvinylidene fluoride ( PVDF), polytetrafluoroethylene (PTFE), polyvinylidene chloride (PVDC), chlorinate polyvinylchloride (CPVC), polyvinylidene fluoride-hexafluoropropylene (PVDF-HFP) and ethylenechlorotrifluoro It provides a polymer resin composition for producing a filtration membrane, characterized in that at least one member selected from the group consisting of ethylene (ECTFE).
  • ECTFE ethylene
  • the hydrophilic organic additive is polyacrylonitrile (PAN), polyethylene oxide (PEO), polyvinyl acetate (PVAc), polyvinyl alcohol (PVA), polymethyl methacrylate (PMMA), polypropylene glycol (PPG) and Polyethylene oxide-polypropylene oxide block copolymer (PEO-PPO-PEO) provides a method for producing a polymer resin composition for producing a filtration membrane, characterized in that at least one member selected from the group consisting of.
  • the hydrophilic inorganic additive provides a method for producing a polymer resin composition for producing a filtration membrane, characterized in that added to the content of 0.1 to 10 parts by weight based on 100 parts by weight of the polymer solution.
  • the hydrophilic inorganic additive is characterized in that at least one member selected from the group consisting of titania (TiO 2 ), silica (SiO 2 ), alumina (Al 2 O 3 ), zinc oxide (ZnO) and zirconia (ZrO 2 ).
  • TiO 2 titania
  • SiO 2 silica
  • Al 2 O 3 alumina
  • ZnO zinc oxide
  • ZrO 2 zirconia
  • step (b) provides a method for producing a polymer resin composition for producing a filtration membrane, characterized in that carried out by mixing the silica precursor and the second solvent.
  • the silica precursor is at least one member selected from the group consisting of tetraethoxysilane (TEOS), tetramethoxysilane (TMOS), trimethoxymethylsilane (MTMS) and dimethyl diethoxysilane (DMDEOS) It provides a polymer resin composition for producing a filtration membrane.
  • TEOS tetraethoxysilane
  • TMOS tetramethoxysilane
  • MTMS trimethoxymethylsilane
  • DMDEOS dimethyl diethoxysilane
  • the present invention to solve the another problem, the step of applying the polymer resin composition on a substrate; And a non-solvent induced phase transition step of precipitating the applied polymer resin composition to a non-solvent.
  • the filtration membrane provides a method characterized in that it has a flat membrane or hollow fiber structure.
  • a hydrophilic organic additive is mixed with a hydrophobic polymer base resin to improve hydrophilicity of the filtration membrane, as well as a hydrophilic inorganic additive in a polymer solution in which a hydrophilic organic additive is mixed with a hydrophobic polymer base resin to improve hydrophilicity and physical strength.
  • the hydrophilization ability is not only improved compared to the case of adding a conventional hydrophilic organic additive, but also maintains the physical strength, even when operating the membrane for a long time It is possible to provide a method for preparing a polymer resin composition for preparing a filtration membrane and a method for producing a polymer filtration membrane using the same, which can minimize the amount of loss.
  • Figure 2 is a photograph showing the optical microscope measurement results of the polyvinylidene fluoride hollow fiber membrane prepared according to Example 4 and Comparative Example 3 of the present invention.
  • the present invention comprises the steps of (a) preparing a polymer solution by mixing a hydrophobic polymer base resin, a first solvent and a hydrophilic organic additive; (b) preparing a hydrophilic inorganic additive in sol form; And (c) adding the hydrophilic inorganic additive to the polymer solution.
  • Step (a) is a step of preparing a polymer solution comprising a hydrophobic polymer base resin, the polymer base resin forms a basic skeleton of the filtration membrane prepared from the polymer resin composition to be finally prepared and is a place where pores are formed.
  • a conventional polymer resin applied to a filtration membrane such as a microfiltration membrane or an ultrafiltration membrane in the art to which the present invention pertains may be applied without limitation, for example, polyether sulfone (PES), polysulfone (PSf), poly Circoketone (PEK), Polyacer Ketone (PEEK), Sulfonated polymer, Polyvinylidene fluoride (PVDF), Polytetrafluoroethylene (PTFE), Polyvinylidene chloride (PVDC), Chlorine Nate polyvinyl chloride (CPVC), polyvinylidene fluoride-hexafluoropropylene (PVDF-HFP), ethylene chlorotrifluoroethylene (ECTFE) and the like can be applied, preferably polyvinylidene fluoride (PVDF) Can be applied.
  • the polyvinylidene fluoride (PVDF) may have a weight average molecular weight of 50,000 ⁇ 2,000,000
  • the polymer base resin may be included in the polymer solution of 1 to 50% by weight, preferably 5 to 40% by weight.
  • the polymer base resin The content of is advantageously controlled in the above range.
  • the first solvent allows the polymer solution to have an appropriate viscosity and allows the polymer base resin to be sufficiently dissolved.
  • These first solvents include dimethylacetamide (DMAc), dimethylformamide (DMF), N-methyl-pyrrolidinone (NMP), N-octyl-pyrrolidinone, N-phenyl-pyrrolidinone, dimethyl sulfoxide (DMSO), sulfolane, catechol, ethyl lactate, acetone, ethyl acetate, butyl carbitol, monoethanolamine, butyrolactone, diglycol amine, ⁇ -butyrolactone, tetrahydrofuran (THF), methyl form Mate, diethyl ether, ethyl benzoate, acetonitrile, ethylene glycol, glycerol, dioxane, methyl carbitol, monoethanolamine, pyridine, propylene carbonate, toluene, decan
  • the first solvent may be included in the polymer solution 1 to 80% by weight, preferably 10 to 70% by weight, more preferably 20 to 60% by weight.
  • the polymer base resin contained in the polymer solution can be sufficiently dissolved, while giving the appropriate viscosity required for the preparation of the polymer filtration membrane, and in consideration of the pore shape and distribution control difficulties that may occur when an excessive amount is added,
  • the content of 1 solvent is advantageously adjusted in the above-mentioned range.
  • the hydrophilic organic additive is added for hydrophilization of the hydrophobic polymer base resin, and may include components conventional in the art to which the present invention pertains, such as polyacrylonitrile (PAN), polyethylene oxide (PEO), and polyvinyl.
  • PAN polyacrylonitrile
  • PEO polyethylene oxide
  • PVAc polyvinyl alcohol
  • PMMA polymethyl methacrylate
  • PPG polypropylene glycol
  • PEO-PPO-PEO polyethylene oxide-polypropylene oxide block copolymer
  • PMMA polymethylmethacrylate
  • the hydrophilic organic additive may be included in the polymer solution 0.01 to 50% by weight, preferably 0.1 to 30% by weight, more preferably 1 to 10% by weight.
  • the hydrophilic organic additive content is less than 0.01% by weight, the degree of hydrophilization of the polymer base resin may be insufficient.
  • the hydrophilic organic additive content is more than 50% by weight, the mechanical strength of the manufactured filtration membrane may be reduced.
  • the steps (b) and (c) are steps of adding a hydrophilic inorganic additive to the polymer solution and preparing a hydrophilic inorganic additive for maintaining the physical strength of the filtration membrane added to the polymer solution and further improving the hydrophilicity.
  • a hydrophilic inorganic additive is prepared in the form of a sol and added to the polymer solution.
  • the content of the hydrophilic inorganic additive is preferably 0.01 to 10 parts by weight, more preferably 0.05 to 5 parts by weight, and most preferably 0.1 to 1 part by weight based on 100 parts by weight of the polymer solution.
  • the amount of the hydrophilic inorganic additive is less than 0.01 parts by weight, the effect on the hydrophilicity and physical strength of the membrane may be insignificant.
  • it exceeds 10 parts by weight the miscibility with the hydrophilic organic additive may be reduced, and the interaction may be difficult. Therefore, it is very important to properly control the content of the hydrophilic inorganic additive.
  • hydrophilic inorganic additives examples include titania (TiO 2 ), silica (SiO 2 ), alumina (Al 2 O 3 ), zinc oxide (ZnO), zirconia (ZrO 2 ), and the like, and preferably silica (SiO). 2 ) can be used.
  • a silica sol may be mixed to prepare a silica sol.
  • Tetraethoxysilane (TEOS), tetramethoxysilane (TMOS), trimethoxymethylsilane (MTMS), dimethyl diethoxysilane (DMDEOS), etc. may be used as the silica precursor, and the second solvent may be particularly limited.
  • TEOS Tetraethoxysilane
  • TMOS tetramethoxysilane
  • MTMS trimethoxymethylsilane
  • DMDEOS dimethyl diethoxysilane
  • the second solvent may be particularly limited.
  • ethanol, hydrochloric acid, distilled water, or the like may be used alone or in combination.
  • the most effective composition of the silica sol is 50 to 70% by weight of the silica precursor, 20 to 40% by weight of ethanol and 5 to 20% by weight of distilled water. It was confirmed that.
  • the polymer resin composition may optionally further include an additive in order to control the physical properties and uses of the polymer filtration membrane to be prepared, and the shape and size of pores formed on or inside the filtration membrane.
  • Additives may include conventional ingredients that can achieve this purpose, such as polyethylene glycol, polyoxyethylene-polyoxypropylene block copolymers, polyvinylpyrrolidone (PVP), lithium chloride (LiCl), lithium perchlorate (LiClO 4 ), methanol, ethanol, isopropanol, acetone, phosphoric acid, propionic acid, acetic acid, pyridine, polyvinylpyridine, or the like may be used alone or in combination.
  • the content of the additive may be adjusted in view of the above-mentioned purpose, preferably 0.1 to 50 parts by weight, more preferably 1 to 20 parts by weight based on 100 parts by weight of the polymer solution.
  • the step of applying the above-mentioned polymer resin composition on a substrate; A non-solvent induced phase transition step of precipitating the applied polymer resin composition to a non-solvent is disclosed.
  • the polymer resin composition may be applied on a predetermined substrate in a thickness of 10 to 300 ⁇ m, and preferably in a thickness of 50 to 250 ⁇ m.
  • the step of applying the polymer resin composition on the substrate may be applied without limitation to the coating or coating method of a conventionally known polymer resin.
  • uniform coating may be performed over the entire surface of the substrate by using a casting knife coating device that performs line injection.
  • a nonwoven fabric As a base material used at the time of application
  • coating a nonwoven fabric, polyester-based resin, polyethylene resin, polypropylene resin, cellulose acetate, or resin in which these were mixed (blended) can be used.
  • the substrate may have a variety of forms depending on the specific shape or characteristics of the filtration membrane is produced, specifically, the substrate may have a flat membrane or hollow fiber (hollow fiber) structure.
  • the non-solvent induction phase transition step is a step of forming a film according to a coagulation bath treatment, in which the applied polymer resin composition is precipitated in the non-solvent to form internal pores and to prepare a membrane.
  • a coagulation solvent various organic solvents which do not dissolve the polymer membrane, water, glycols and the like may be used, and preferably water, water and an organic solvent, or a coagulation solvent in which water and glycols are mixed may be used. More preferably water may be used.
  • the temperature of the coagulation solvent used at this time is 0-90 degreeC, It is more preferable that it is 5-50 degreeC, It is most preferable that it is 10-30 degreeC.
  • the manufacturing method of the polymer filtration membrane may further comprise the step of washing and drying the product of the non-solvent induction phase transition step.
  • the polymer filtration membrane may be finally obtained by washing the resultant product of the non-solvent induction phase transition step using a solvent that does not dissolve and drying at a predetermined temperature.
  • Acetone, methanol, ethanol, water and the like may be used for washing.
  • water of 20 ° C. to 90 ° C. may be used.
  • the resultant is dried at a temperature of 20 ⁇ 200 °C, preferably 40 ⁇ 100 °C, finally a microporous polymer filtration membrane can be obtained.
  • a silica sol which is a hydrophilic inorganic additive 62 wt% of tetraethoxysilane (TEOS), 27 wt% of ethanol, 0.5 wt% of hydrochloric acid, and 10.5 wt% of distilled water were mixed and maintained at 60 to 70 ° C.
  • TEOS tetraethoxysilane
  • ethanol 0.5 wt% of hydrochloric acid
  • 10.5 wt% of distilled water were mixed and maintained at 60 to 70 ° C.
  • TEOS tetraethoxysilane
  • DMAc dimethylacetamide
  • PMMA polymethyl methacrylate
  • a polymer resin composition was prepared by adding 0.1 part by weight of the silica sol to 100 parts by weight of the silica sol to the prepared polymer solution. While maintaining the polymer resin composition at 25 °C cast casting by adjusting the thickness of the casting knife to 200 ⁇ m and precipitated in non-solvent water (20 °C) for 12 hours to form a polymer film, and the formed polymer film 1 ⁇ 2 hours with 30 °C distilled water After washing, the resultant was dried in a dry oven at a temperature of 25 ° C. for 24 hours to prepare a final polyvinylidene fluoride membrane.
  • a polyvinylidene fluoride membrane was prepared in the same manner as in Example 1 except that the silica sol was added in an amount of 1 part by weight in Example 1.
  • a polyvinylidene fluoride membrane was prepared in the same manner as in Example 1, except that 3 parts by weight of silica sol was added.
  • a bilayer hollow fiber membrane was prepared as follows.
  • the polymer solution for the support layer is a hydrophobic polymer, 40% by weight of polyvinylidene fluoride (PVDF), 44.5% by weight of gamma-butyrolactone ( ⁇ -Butyrolactone), 10% by weight of N-methylpyrrolidone (NMP), ethylene glycol ( EG) 2% by weight, polyvinylpyrrolidone (PVP) 3% by weight and lithium chloride (LiCl) 0.5% by weight to prepare a mixture.
  • PVDF polyvinylidene fluoride
  • ⁇ -Butyrolactone gamma-butyrolactone
  • NMP N-methylpyrrolidone
  • EG ethylene glycol
  • PVP polyvinylpyrrolidone
  • LiCl lithium chloride
  • the polymer resin composition for the surface layer was prepared by mixing 11% by weight of polyvinylidene fluoride (PVDF), 86% by weight of dimethylacetamide (DMAc) as a solvent, and 3% by weight of polymethyl methacrylate (PMMA) as a hydrophilic organic additive.
  • PVDF polyvinylidene fluoride
  • DMAc dimethylacetamide
  • PMMA polymethyl methacrylate
  • To 100 parts by weight of the polymer solution 1 part by weight of silica sol, a hydrophilic inorganic additive prepared in the same manner as in Example 1, 10 parts by weight of polyvinylpyrrolidone (PVP), and 1 part by weight of lithium chloride (LiCl) are prepared. It was.
  • the polymer solution for the support layer was discharged through the nozzle at the same time as the thermal induction phase transition method through the nozzle at 140 ° C., and the polymer resin composition for the surface layer by the non-solvent phase transition method at the nozzle at room temperature.
  • the formed hollow fiber membrane was immersed in a distilled water coagulation bath, which is a non-solvent at 5 ° C, washed 12 hours with distilled water at 40 ° C, and dried for 24 hours to prepare a final polyvinylidene fluoride hollow fiber membrane.
  • a polyvinylidene fluoride membrane was prepared in the same manner as in Example 1, except that 14 wt% of polyvinylidene fluoride (PVDF) was used without adding a hydrophilic organic additive in Example 1.
  • PVDF polyvinylidene fluoride
  • a polyvinylidene fluoride membrane was prepared in the same manner as in Example 1, except that silica sol was not added in Example 1.
  • a polyvinylidene fluoride hollow fiber membrane was prepared in the same manner as in Example 4 except that the silica sol was not added to the polymer layer composition for the surface layer of Example 4.
  • polyvinylidene fluoride (PVDF) was adjusted to 35% by weight and gamma-butyrolactane ( ⁇ -Butyrolactone) to 49.5% by weight, and polyvinylpyrrole in the polymer resin composition for the surface layer
  • PVDF polyvinylidene fluoride
  • ⁇ -Butyrolactone gamma-butyrolactane
  • polyvinylpyrrole in the polymer resin composition for the surface layer
  • a polyvinylidene fluoride hollow fiber membrane was prepared in the same manner as in Example 4, except that 15 parts by weight of pig (PVP) was added and tetraethoxysilane (TEOS), a precursor, was added in place of silica sol. It was.
  • composition of the polymer resin composition used in Examples and Comparative Examples is summarized in Table 1 below.
  • the polyvinylidene fluoride film prepared according to Examples 1 to 3 to which silica sol was added as a hydrophilic inorganic additive was compared with Comparative Example 2 to which silica sol was not added as a hydrophilic inorganic additive.
  • the low contact angle indicates that the hydrophilicity is improved.
  • the contact angle decreases, thereby improving the hydrophilicity.
  • polyvinylidene fluoride film whose hydrophilicity is improved by polymethyl methacrylate (PMMA), which is a hydrophilic organic additive, has further improved hydrophilicity by silica sol, which is a hydrophilic inorganic additive.
  • PMMA polymethyl methacrylate
  • Example 2 which was prepared by the addition of the same hydrophilic inorganic additive silica sol. This is because a small amount of the hydrophilic inorganic additive and the hydrophilic organic additive are lost due to the high temperature of the support layer discharged by the heat induction phase transition method in the process of discharging the double layer hollow fiber membrane through the nozzle.
  • the permeation flux of the polyvinylidene fluoride membrane prepared according to Example 3 in which the content of the silica sol is added at least 3 parts by weight is significantly reduced. This is because when the content of the silica sol, which is a hydrophilic inorganic additive, exceeds a predetermined amount, the aggregation of the silica sol occurs to block pores of the membrane.
  • the permeation flux of the polyvinylidene fluoride double layer hollow fiber membrane prepared according to Example 4 with the addition of the silica sol, which is a hydrophilic inorganic additive was increased than that of the hollow fiber membrane of Comparative Example 3 without the addition of the silica sol. That is, the permeation flux of the bilayer hollow fiber membrane prepared by adding together with the hydrophilic inorganic additive silica sol was higher than that of the bilayer hollow fiber membrane prepared by adding polymethylmethacrylate (PMMA), which is a hydrophilic organic additive alone. This is a result of improving the hydrophilicity of the film by silica sol which is a hydrophilic inorganic additive.
  • PMMA polymethylmethacrylate
  • the crystal structures of the films prepared according to Comparative Example 1 without adding hydrophilic organic additive polymethyl methacrylate (PMMA) had peak values of 18 °, 20 °, 26 ° and 40 °. It can be seen that it is represented by the ⁇ phase having a.
  • the crystal structure of the film prepared by Comparative Example 2 to which the hydrophilic organic additive polymethyl methacrylate (PMMA) was added appeared as ⁇ phase having peak values of 20 ° and 36 °. It can be seen that. This is a change in the crystal structure of polyvinylidene fluoride by polymethyl methacrylate (PMMA) which is a hydrophilic organic additive.
  • the hydrophilicity of the polyvinylidene fluoride film is improved by polymethyl methacrylate (PMMA), which is a hydrophilic organic additive, while the mechanical strength of the polyvinylidene fluoride is changed from alpha phase to beta phase.
  • PMMA polymethyl methacrylate
  • the polyvinylidene fluoride membranes prepared according to Examples 2 and 3 prepared by adding silica sol, a hydrophilic inorganic additive, as shown in FIG. The results show that the strength can be increased.
  • the average outer diameter of the polyvinylidene fluoride bilayer hollow fiber membrane is about 1300 ⁇ m, and the average inner diameter is about 700 ⁇ m, and the cross-sectional structure of the surface layer is a finger structure.

Abstract

Disclosed are a polymer resin composition for filtration membrane production capable of improving the physical strength of a hydrophilized polymer filtration membrane, particularly a polymer resin composition for filtration membrane production which not only improves the physical strength of a hydrophilized polymer filtration membrane but also uses additives used to allow for higher hydrophilicity, and a polymer filtration membrane production method using same. The present invention provides a method for preparing a polymer resin composition for filtration membrane production and a polymer filtration membrane production method using same, the method for preparing a polymer resin composition for filtration membrane production comprising the steps of: (a) mixing a hydrophobic polymer base resin, a first solvent, and a hydrophilic organic additive so as to prepare a polymer solution; (b) preparing a hydrophilic inorganic additive in the form of a sol; and (c) adding the hydrophilic inorganic additive to the polymer solution.

Description

친수성 및 기계적 강도가 향상된 여과막 제조용 고분자 수지 조성물 제조방법Manufacturing method of polymer resin composition for preparing filtration membrane with improved hydrophilicity and mechanical strength
본 발명은 여과막 제조용 고분자 수지 조성물 제조방법에 관한 것으로, 보다 상세하게는 친수성 및 기계적 강도가 향상된 여과막 제조용 고분자 수지 조성물 제조방법에 관한 것이다.The present invention relates to a method for preparing a polymer resin composition for preparing a filter membrane, and more particularly, to a method for preparing a polymer resin composition for preparing a filter membrane with improved hydrophilicity and mechanical strength.
본 발명은 2014년 환경부에서 지원하는 글로벌탑환경기술개발사업의 일환으로 수행된 연구로부터 도출된 것이다.The present invention is derived from research conducted as part of the Global Top Environmental Technology Development Project supported by the Ministry of Environment in 2014.
[과제고유번호: GT-14-B-01-002-0, 과제명: 생물오염제어 기능성 복합 분리막 기반의 하폐수 재이용 공정개발][Task No .: GT-14-B-01-002-0, Title: Development of Wastewater Recycling Process Based on Biocontamination Control Functional Membrane]
의약 분야, 반도체 분야, 전지 분야, 생명공학 분야, 유제품, 음료 및 식품 분야, 수처리 분야 등 다양한 분야에서 액체 또는 기체의 분리를 위하여 고분자 여과막을 이용하고 있다.Polymer filtration membranes are used for separation of liquids or gases in various fields such as medicine, semiconductor, battery, biotechnology, dairy, beverage and food, and water treatment.
고분자 여과막은 물질의 분리 공정에 있어서 공정의 효율 및 경제성을 결정할 수 있는 중요한 인자이며, 이러한 고분자 여과막으로는 고분자 입자를 몰드에 주입하고 소결하여 얻어지는 소결막이나, 결정성 고분자 필름이나 중공사를 연신하여 다공성을 부여하는 연신막이나, 고분자 필름에 방사선을 조사하고 이를 에칭 용액에 담그어 제조되는 트랙킹 에칭막이나, 고분자의 용융점을 상회하는 온도에서 희석제와 혼합하여 제조하는 열유도 상변환막이나, 고분자 수지를 포함하는 균질 용액을 비용매에 담궈서 형성되는 용매 교환법에 의한 상변환막 등이 알려져 있다.The polymer filtration membrane is an important factor that can determine the efficiency and economic efficiency of the material separation process. The polymer filtration membrane is a sintered membrane obtained by injecting and sintering polymer particles into a mold, or a crystalline polymer film or hollow fiber. Stretched film that imparts porosity, or a tracking etching film prepared by irradiating a polymer film with radiation and immersing it in an etching solution, or a heat induced phase conversion film prepared by mixing with a diluent at a temperature above the melting point of the polymer, or a polymer. Background Art A phase conversion membrane by a solvent exchange method formed by dipping a homogeneous solution containing a resin into a non-solvent is known.
현재 정밀 여과막이나 한외 여과막을 상업적으로 제조하기 위해서는 용매 교환법을 주로 사용하고 있다. 그리고 최근에는 고분자 용액을 캐스팅하고 이를 비용매 응집조에 침전시키는 방법(비용매 유도 상전이, Nonsolvent Induced Phase Separation)이 사용되고 있다.At present, the solvent exchange method is mainly used to commercially manufacture the microfiltration membrane or the ultrafiltration membrane. Recently, a method of casting a polymer solution and precipitating it in a non-solvent agglomeration tank (nonsolvent induced phase separation) has been used.
한편, 다공성 고분자 막은 대개의 경우 폴리술폰, 폴리에테르술폰, 셀룰로오스아세테이트, 폴리비닐리덴플루오라이드 등의 고분자가 사용된다. 셀룰로오스아세테이트를 제외한 고분자들은 소수성 고분자로서 미생물이나 부유물질 등의 축적에 의해 여과성능이 떨어지고 수명이 단축된다. 이를 위해 친수성 고분자를 비용매 유도 상전이 공정을 통해 분리막을 제조하여 친수성을 증가시키고 높은 투과유속을 갖도록 하는 것이지만, 물리적 강도가 약한 문제점을 가지고 있어, 쉽게 파단되거나 손상으로 장기적으로 사용하기 어려운 결점이 있다.On the other hand, as the porous polymer membrane, a polymer such as polysulfone, polyether sulfone, cellulose acetate, polyvinylidene fluoride and the like is usually used. Polymers, except for cellulose acetate, are hydrophobic polymers, which degrade the filtration performance and shorten the life due to accumulation of microorganisms and suspended solids. For this purpose, the hydrophilic polymer is prepared by a non-solvent induced phase transition process to increase the hydrophilicity and have a high permeation flow rate, but has a weak physical strength, and thus is easily broken or damaged, making it difficult to use in the long term. .
대한민국 공개특허 제2007-0072120호는 소수성 고분자 용액에 친수성 첨가제인 폴리메틸메타아크릴레이트를 첨가하여 비대칭 여과막의 친수화 제조방법에 관해 개시하고 있다. 이와 같은 친수화 방법은 소수성 고분자와의 혼화성이 우수해 거의 영구적으로 친수성이 유지된다는 장점이 있으나, 친수성 첨가제인 폴리메틸메타아크릴레이트의 낮은 취성으로 막의 물리적 강도가 저하되는 어려움이 있다.Korean Patent Laid-Open Publication No. 2007-0072120 discloses a hydrophilic preparation method of an asymmetric filtration membrane by adding polymethylmethacrylate as a hydrophilic additive to a hydrophobic polymer solution. Such a hydrophilization method has an advantage in that the hydrophilicity is maintained almost permanently due to excellent compatibility with the hydrophobic polymer, but the physical strength of the membrane is lowered due to the low brittleness of the hydrophilic additive polymethylmethacrylate.
국제공개특허 제2006/006340호는 수처리용 폴리불화비닐리덴계 막의 친수성을 향상시키는 방법에 관한 것으로, 폴리비닐리덴계 수지를 중합하는 단계, 입상형태의 무기 첨가제인 산화티탄 및 유기 액상체를 포함하는 용액 제조단계, 혼합 조성물을 용융 압출하고, 용매를 추출하는 단계로 이루어진 기술을 개시하고 있다. 그러나 입상형태의 무기 첨가제인 산화티탄은 장기간 물에 접촉시키면 폴리불화비닐리덴계 막으로부터 탈리가 발생하여 친수화 효과가 영구적이지 못하며, 탈리된 첨가제가 여과액에 혼합되는 경우에는 수처리 용도로 만족되지 않는 어려움이 있다. 또한 산화티탄의 경우에는 수처리 막의 첨가제로서 경제성이 낮다는 문제점이 있다.International Patent Publication No. 2006/006340 relates to a method for improving the hydrophilicity of a polyvinylidene fluoride-based membrane for water treatment, comprising: polymerizing a polyvinylidene-based resin, including titanium oxide and a granular inorganic additive in a granular form. Disclosed is a technique comprising a step of preparing a solution, melt extruding the mixed composition, and extracting a solvent. However, titanium oxide, which is an inorganic additive in the form of granules, is depleted from the polyvinylidene fluoride-based membrane when it is in contact with water for a long time, so that the hydrophilic effect is not permanent. When the detached additive is mixed with the filtrate, it is not satisfied for water treatment. There is no difficulty. In addition, in the case of titanium oxide, there is a problem that the economic efficiency is low as an additive of the water treatment membrane.
Ochoa 등(N.A. Ochoa et al., Journal of Membrane Science, 2003, p203-211.)은 친수성 첨가제인 폴리메틸메타크릴레이트를 이용하여 폴리비닐리덴플루오라이드 막의 친수성을 향상시키는 방법이 개시하고 있으나, 폴리메틸메타크릴레이트 첨가제의 첨가량 대비 친수성 효과가 적고, 막의 기계적 강도가 낮아질 수 있는 문제가 있다.Ochoa et al. (NA Ochoa et al., Journal of Membrane Science, 2003, p203-211.) Disclose a method of improving the hydrophilicity of a polyvinylidene fluoride membrane using a polymethylmethacrylate as a hydrophilic additive. There is a problem that less hydrophilic effect compared to the amount of the methyl methacrylate additive added, the mechanical strength of the membrane can be lowered.
Yu 등(LY Yu et al., Journal of Membrane Science, 2009, p257-265.)은 무기 첨가제인 산화규소를 이용하여 폴리비닐리덴플루오라이드 중공사막의 친수성 및 물리적 강도를 향상시키는 방법을 개시하고 있으나, 막의 기계적 안정성 및 친수성을 향상시킬 수 있는 산화규소의 첨가량이 한정적인 문제가 있다.Yu et al. (LY Yu et al., Journal of Membrane Science, 2009, p257-265.) Disclose a method for improving the hydrophilicity and physical strength of polyvinylidene fluoride hollow fiber membranes using silicon oxide as an inorganic additive. However, there is a problem in that the amount of silicon oxide added to improve the mechanical stability and hydrophilicity of the membrane is limited.
따라서 본 발명은 상기 문제점을 해결하고자 안출된 것으로, 친수화된 고분자 여과막의 물리적 강도를 향상시킬 수 있는 여과막 제조용 고분자 수지 조성물로서, 구체적으로는 친수화된 고분자 여과막의 물리적 강도를 향상시킬 뿐만 아니라, 더 높은 친수성을 가질 수 있도록 하는데 사용되는 첨가제를 이용한 여과막 제조용 고분자 수지 조성물과 이를 이용한 고분자 여과막의 제조방법을 제공하고자 한다.Therefore, the present invention has been made to solve the above problems, as a polymer resin composition for preparing a membrane for improving the physical strength of the hydrophilized polymer filter membrane, specifically not only to improve the physical strength of the hydrophilized polymer filter membrane, An object of the present invention is to provide a polymer resin composition for preparing a filtration membrane using an additive used to have a higher hydrophilicity and a method of preparing a polymer filtration membrane using the same.
상기 과제를 해결하기 위하여 본 발명은, (a) 소수성 고분자 베이스 수지, 제1 용매 및 친수성 유기 첨가제를 혼합하여 고분자 용액을 제조하는 단계; (b) 졸 형태의 친수성 무기 첨가제를 제조하는 단계; 및 (c) 상기 친수성 무기 첨가제를 상기 고분자 용액에 첨가하는 단계;를 포함하는 여과막 제조용 고분자 수지 조성물 제조방법을 제공한다.The present invention to solve the above problems, (a) preparing a polymer solution by mixing a hydrophobic polymer base resin, a first solvent and a hydrophilic organic additive; (b) preparing a hydrophilic inorganic additive in sol form; And (c) adding the hydrophilic inorganic additive to the polymer solution.
또한 상기 고분자 용액은 상기 소수성 고분자 베이스 수지 1~50중량%, 상기 제1 용매 1~80중량% 및 상기 친수성 유기 첨가제 0.01~50중량%로 구성된 것을 특징으로 하는 여과막 제조용 고분자 수지 조성물 제조방법을 제공한다.In addition, the polymer solution is 1 to 50% by weight of the hydrophobic polymer base resin, 1 to 80% by weight of the first solvent and 0.01 to 50% by weight of the hydrophilic organic additives to provide a method for producing a polymer resin composition for manufacturing a filter membrane. do.
또한 상기 소수성 고분자 베이스 수지는 폴리에테르술폰(PES), 폴리술폰(PSf), 폴리이써케톤(PEK), 폴리이써이써케톤(PEEK), 술폰화된 고분자(sulfonated polymer), 폴리비닐리덴플루오라이드(PVDF), 폴리테트라플루오로에틸렌(PTFE), 폴리비닐라이덴 클로라이드(PVDC), 클로린네이트 폴리비닐클로라이드(CPVC), 폴리비닐라이덴플로라이드-헥사플로로프로필렌(PVDF-HFP) 및 에틸렌클로로트리플로로에틸렌(ECTFE)으로 이루어진 군에서 선택되는 1종 이상인 것을 특징으로 하는 여과막 제조용 고분자 수지 조성물 제조방법을 제공한다.In addition, the hydrophobic polymer base resin is polyethersulfone (PES), polysulfone (PSf), polyther ketone (PEK), polytherserketone (PEEK), sulfonated polymer (sulfonated polymer), polyvinylidene fluoride ( PVDF), polytetrafluoroethylene (PTFE), polyvinylidene chloride (PVDC), chlorinate polyvinylchloride (CPVC), polyvinylidene fluoride-hexafluoropropylene (PVDF-HFP) and ethylenechlorotrifluoro It provides a polymer resin composition for producing a filtration membrane, characterized in that at least one member selected from the group consisting of ethylene (ECTFE).
또한 상기 친수성 유기 첨가제는 폴리아크릴로니트릴(PAN), 폴리에틸렌옥사이드(PEO), 폴리비닐아세테이트(PVAc), 폴리비닐알콜(PVA), 폴리메틸메타크릴레이트(PMMA), 폴리프로필렌 글리콜(PPG) 및 폴리에틸렌옥사이드-폴리프로필렌옥사이드 블록 코폴리머(PEO-PPO-PEO)로 이루어진 군에서 선택되는 1종 이상인 것을 특징으로 하는 여과막 제조용 고분자 수지 조성물 제조방법을 제공한다.In addition, the hydrophilic organic additive is polyacrylonitrile (PAN), polyethylene oxide (PEO), polyvinyl acetate (PVAc), polyvinyl alcohol (PVA), polymethyl methacrylate (PMMA), polypropylene glycol (PPG) and Polyethylene oxide-polypropylene oxide block copolymer (PEO-PPO-PEO) provides a method for producing a polymer resin composition for producing a filtration membrane, characterized in that at least one member selected from the group consisting of.
또한 상기 친수성 무기 첨가제는 상기 고분자 용액 100중량부에 대하여 0.1~10중량부 함량으로 첨가되는 것을 특징으로 하는 여과막 제조용 고분자 수지 조성물 제조방법을 제공한다.In addition, the hydrophilic inorganic additive provides a method for producing a polymer resin composition for producing a filtration membrane, characterized in that added to the content of 0.1 to 10 parts by weight based on 100 parts by weight of the polymer solution.
또한 상기 친수성 무기 첨가제는 티타니아(TiO2), 실리카(SiO2), 알루미나(Al2O3), 산화아연(ZnO) 및 지르코니아(ZrO2)로 이루어진 군에서 선택되는 1종 이상인 것을 특징으로 하는 여과막 제조용 고분자 수지 조성물 제조방법을 제공한다.In addition, the hydrophilic inorganic additive is characterized in that at least one member selected from the group consisting of titania (TiO 2 ), silica (SiO 2 ), alumina (Al 2 O 3 ), zinc oxide (ZnO) and zirconia (ZrO 2 ). Provided is a method for preparing a polymer resin composition for preparing a filtration membrane.
또한 상기 (b) 단계는 실리카 전구체 및 제2 용매를 혼합하여 수행되는 것을 특징으로 하는 여과막 제조용 고분자 수지 조성물 제조방법을 제공한다.In addition, the step (b) provides a method for producing a polymer resin composition for producing a filtration membrane, characterized in that carried out by mixing the silica precursor and the second solvent.
또한 상기 실리카 전구체는 테트라에톡시실란(TEOS), 테트라메톡시실란(TMOS), 트리메톡시메틸실란(MTMS) 및 디메틸 디에톡시실란(DMDEOS)으로 이루어진 군에서 선택되는 1종 이상인 것을 특징으로 하는 여과막 제조용 고분자 수지 조성물 제조방법을 제공한다.In addition, the silica precursor is at least one member selected from the group consisting of tetraethoxysilane (TEOS), tetramethoxysilane (TMOS), trimethoxymethylsilane (MTMS) and dimethyl diethoxysilane (DMDEOS) It provides a polymer resin composition for producing a filtration membrane.
상기 또 다른 과제 해결을 위하여 본 발명은, 상기 고분자 수지 조성물을 기재 상에 도포하는 단계; 및 상기 도포된 고분자 수지 조성물을 비용매에 침전시키는 비용매 유도 상전이 단계;를 포함하는 고분자 여과막 제조방법을 제공한다.The present invention to solve the another problem, the step of applying the polymer resin composition on a substrate; And a non-solvent induced phase transition step of precipitating the applied polymer resin composition to a non-solvent.
또한 상기 여과막은 평막형 또는 중공사형의 구조를 갖는 것을 특징으로 하는 방법을 제공한다.In addition, the filtration membrane provides a method characterized in that it has a flat membrane or hollow fiber structure.
이러한 본 발명에 따르면 소수성 고분자 베이스 수지에 친수성 유기 첨가제를 혼합하여 여과막의 친수성을 향상시킴은 물론, 친수성 및 물리적 강도를 향상시키기 위해 소수성 고분자 베이스 수지에 친수성 유기 첨가제가 혼합된 고분자 용액에 친수성 무기 첨가제를 혼합하되, 기존의 입상 형태가 아닌 졸 형태로 혼합함으로써, 친수화 능력이 기존 친수성 유기 첨가제를 첨가한 경우의 막에 비해 더욱 향상될 뿐만 아니라 물리적 강도도 유지할 수 있고, 장기간 막을 운영하는 경우에도 손실되는 양을 최소화 할 수 있는 여과막 제조용 고분자 수지 조성물 제조방법 및 이를 이용하여 고분자 여과막을 제조하는 방법을 제공할 수 있다.According to the present invention, a hydrophilic organic additive is mixed with a hydrophobic polymer base resin to improve hydrophilicity of the filtration membrane, as well as a hydrophilic inorganic additive in a polymer solution in which a hydrophilic organic additive is mixed with a hydrophobic polymer base resin to improve hydrophilicity and physical strength. By mixing in the form of a sol instead of the conventional granular form, the hydrophilization ability is not only improved compared to the case of adding a conventional hydrophilic organic additive, but also maintains the physical strength, even when operating the membrane for a long time It is possible to provide a method for preparing a polymer resin composition for preparing a filtration membrane and a method for producing a polymer filtration membrane using the same, which can minimize the amount of loss.
도 1은 본 발명의 실시예 2 및 3, 비교예 1 및 2에 따라 제조된 폴리비닐리덴플루오라이드 막의 X선 회절 분석 결과를 나타낸 그래프,1 is a graph showing the results of X-ray diffraction analysis of the polyvinylidene fluoride film prepared according to Examples 2 and 3, Comparative Examples 1 and 2 of the present invention,
도 2는 본 발명의 실시예 4 및 비교예 3에 따라 제조된 폴리비닐리덴플루오라이드 중공사막의 광학현미경 측정 결과를 나타낸 사진.Figure 2 is a photograph showing the optical microscope measurement results of the polyvinylidene fluoride hollow fiber membrane prepared according to Example 4 and Comparative Example 3 of the present invention.
이하에서는 본 발명의 바람직한 실시예를 상세하게 설명한다. 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐리게 할 수 있다고 판단되는 경우 그 상세한 설명을 생략하기로 한다. 명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한, 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있음을 의미한다.Hereinafter, a preferred embodiment of the present invention will be described in detail. In the following description of the present invention, if it is determined that the detailed description of the related known technology may obscure the gist of the present invention, the detailed description thereof will be omitted. Throughout the specification, when a part is said to "include" a certain component, it means that it may further include other components, not to exclude other components, unless otherwise stated.
본 발명자들은 여과막 제조용 고분자 수지 조성물에 있어, 종래 친수성 향상을 위해 첨가되는 친수성 무기 첨가제와 함께 기계적 강도 향상을 위해 첨가되는 무기 첨가제를 사용할 경우 친수성 및 기계적 강도 향상이 서로 양립하기 어려운 문제에 직시하고 예의 연구를 거듭한 결과, 친수성 무기 첨가제를 졸 형태로서, 친수성 유기 첨가제가 혼합된 고분자 용액에 첨가할 경우 기계적 강도를 유지하면서 친수성을 더욱 증가시키는 것을 발견하고 본 발명에 이르게 되었다.MEANS TO SOLVE THE PROBLEM The present inventors faced the problem that hydrophilicity and mechanical strength improvement are incompatible with each other when the polymer resin composition for manufacturing a filter membrane uses the inorganic additive added for mechanical strength improvement with the hydrophilic inorganic additive added for conventional hydrophilicity improvement. As a result of the research, it has been found that when the hydrophilic inorganic additive is added in the sol form and the hydrophilic organic additive is added to the mixed polymer solution, the hydrophilicity is further increased while maintaining the mechanical strength.
따라서 본 발명은 (a) 소수성 고분자 베이스 수지, 제1 용매 및 친수성 유기 첨가제를 혼합하여 고분자 용액을 제조하는 단계; (b) 졸 형태의 친수성 무기 첨가제를 제조하는 단계; 및 (c) 상기 친수성 무기 첨가제를 상기 고분자 용액에 첨가하는 단계;를 포함하는 여과막 제조용 고분자 수지 조성물 제조방법을 개시한다.Therefore, the present invention comprises the steps of (a) preparing a polymer solution by mixing a hydrophobic polymer base resin, a first solvent and a hydrophilic organic additive; (b) preparing a hydrophilic inorganic additive in sol form; And (c) adding the hydrophilic inorganic additive to the polymer solution.
상기 (a) 단계는 소수성 고분자 베이스 수지를 포함하는 고분자 용액을 제조하는 단계로, 이러한 고분자 베이스 수지는 최종 제조되는 고분자 수지 조성물로부터 제조되는 여과막의 기본적인 골격을 이루고 기공이 형성되는 장소가 된다.Step (a) is a step of preparing a polymer solution comprising a hydrophobic polymer base resin, the polymer base resin forms a basic skeleton of the filtration membrane prepared from the polymer resin composition to be finally prepared and is a place where pores are formed.
상기 고분자 베이스 수지로는 본 발명이 속하는 기술분야에서 정밀여과막 또는 한외여과막 등의 여과막에 적용되는 통상적인 고분자 수지가 제한 없이 적용될 수 있으며, 예컨대 폴리에테르술폰(PES), 폴리술폰(PSf), 폴리이써케톤(PEK), 폴리이써이써케톤(PEEK), 술폰화된 고분자(sulfonated polymer), 폴리비닐리덴플루오라이드(PVDF), 폴리테트라플루오로에틸렌(PTFE), 폴리비닐라이덴 클로라이드(PVDC), 클로린네이트 폴리비닐클로라이드(CPVC), 폴리비닐라이덴플로라이드-헥사플로로프로필렌(PVDF-HFP), 에틸렌클로로트리플로로에틸렌(ECTFE) 등이 적용될 수 있고, 바람직하게는 폴리비닐리덴플루오라이드(PVDF)가 적용될 수 있다. 이때 상기 폴리비닐리덴플루오라이드(PVDF)는 50,000~2,000,000의 중량평균분자량을 가질 수 있다. As the polymer base resin, a conventional polymer resin applied to a filtration membrane such as a microfiltration membrane or an ultrafiltration membrane in the art to which the present invention pertains may be applied without limitation, for example, polyether sulfone (PES), polysulfone (PSf), poly Circoketone (PEK), Polyacer Ketone (PEEK), Sulfonated polymer, Polyvinylidene fluoride (PVDF), Polytetrafluoroethylene (PTFE), Polyvinylidene chloride (PVDC), Chlorine Nate polyvinyl chloride (CPVC), polyvinylidene fluoride-hexafluoropropylene (PVDF-HFP), ethylene chlorotrifluoroethylene (ECTFE) and the like can be applied, preferably polyvinylidene fluoride (PVDF) Can be applied. In this case, the polyvinylidene fluoride (PVDF) may have a weight average molecular weight of 50,000 ~ 2,000,000.
본 발명에서 상기 고분자 베이스 수지는 상기 고분자 용액에서 1~50중량% 포함될 수 있고, 바람직하게는 5~40중량%로 포함될 수 있다. 즉 본 발명에 따른 고분자 수지 조성물을 사용하여 제조된 고분자 여과막의 기계적 물성을 확보함과 동시에, 고분자 베이스 수지의 과량 첨가시 발생할 수 있는 기공 형상 및 분포 제어의 어려움 등을 감안하여, 상기 고분자 베이스 수지의 함량은 전술한 범위에서 조절되는 것이 유리하다.In the present invention, the polymer base resin may be included in the polymer solution of 1 to 50% by weight, preferably 5 to 40% by weight. In other words, while ensuring the mechanical properties of the polymer filtration membrane prepared using the polymer resin composition according to the present invention, in consideration of the pore shape and distribution control difficulties that may occur when excessive addition of the polymer base resin, the polymer base resin The content of is advantageously controlled in the above range.
상기 제1 용매는 고분자 용액이 적절한 점도를 갖도록 하고, 고분자 베이스 수지가 충분히 용해될 수 있도록 한다. 이러한 제1 용매로는 디메틸아세트아마이드(DMAc), 디메틸포름아마이드(DMF), N-메틸-피롤리디논(NMP), N-옥틸-피롤리디논, N-페닐-피롤리디논, 디메틸설폭시드(DMSO), 설포란, 카테콜, 에틸 락테이트, 아세톤, 에틸 아세테이트, 부틸 카르비톨, 모노에탄올아민, 부티롤 락톤, 디글리콜 아민, γ-부티롤락톤, 테트라히드로푸란(THF), 메틸 포르메이트, 디에틸 에테르, 에틸 벤조에이트, 아세토니트릴, 에틸렌 글리콜, 글리세롤, 디옥산, 메틸 카르비톨, 모노에탄올아민, 피리딘, 프로필렌 카르보네이트, 톨루엔, 데칸, 헥산, 헥산류, 크실렌류, 시클로헥산, 1H,1H,9H-퍼플루오로-1-노난올, 퍼플루오로-1,2-디메틸시클로부탄, 퍼플루오로-1,2-디메틸시클로헥산 및 퍼플루오로헥산(류)가 단독 또는 혼합된 것이 사용될 수 있으며, 바람직하게는 디메틸아세트아마이드(DMAc), 디메틸포름아마이드(DMF), N-메틸-피롤리디논(NMP), 디메틸설폭시드(DMSO) 또는 설포란이 사용될 수 있다.The first solvent allows the polymer solution to have an appropriate viscosity and allows the polymer base resin to be sufficiently dissolved. These first solvents include dimethylacetamide (DMAc), dimethylformamide (DMF), N-methyl-pyrrolidinone (NMP), N-octyl-pyrrolidinone, N-phenyl-pyrrolidinone, dimethyl sulfoxide (DMSO), sulfolane, catechol, ethyl lactate, acetone, ethyl acetate, butyl carbitol, monoethanolamine, butyrolactone, diglycol amine, γ-butyrolactone, tetrahydrofuran (THF), methyl form Mate, diethyl ether, ethyl benzoate, acetonitrile, ethylene glycol, glycerol, dioxane, methyl carbitol, monoethanolamine, pyridine, propylene carbonate, toluene, decane, hexane, hexanes, xylenes, cyclohexane , 1H, 1H, 9H-perfluoro-1-nonanol, perfluoro-1,2-dimethylcyclobutane, perfluoro-1,2-dimethylcyclohexane, and perfluorohexane (s) are alone or Mixed ones may be used, preferably dimethylacetamide (DMAc), dimeth Formamide (DMF), N- methyl-pyrrolidinone (NMP), there are dimethyl sulfoxide (DMSO) or sulfolane can be used.
본 발명에서 제1 용매는 상기 고분자 용액에서 1~80중량% 포함될 수 있고, 바람직하게는 10~70중량%, 보다 바람직하게는 20~60중량%로 포함될 수 있다. 즉 고분자 용액에 포함되는 고분자 베이스 수지가 충분히 용해될 수 있도록 하면서도, 고분자 여과막의 제조에 요구되는 적절한 점도를 부여하고, 과량 첨가시 발생할 수 있는 기공 형상 및 분포 제어의 어려움 등을 감안하여, 상기 제1 용매의 함량은 전술한 범위에서 조절되는 것이 유리하다.In the present invention, the first solvent may be included in the polymer solution 1 to 80% by weight, preferably 10 to 70% by weight, more preferably 20 to 60% by weight. In other words, the polymer base resin contained in the polymer solution can be sufficiently dissolved, while giving the appropriate viscosity required for the preparation of the polymer filtration membrane, and in consideration of the pore shape and distribution control difficulties that may occur when an excessive amount is added, The content of 1 solvent is advantageously adjusted in the above-mentioned range.
상기 친수성 유기 첨가제는 소수성 고분자 베이스 수지의 친수화를 위해 첨가되는 것으로, 본 발명이 속하는 기술분야에서 통상적인 성분들이 포함될 수 있으며, 예컨대 폴리아크릴로니트릴(PAN), 폴리에틸렌옥사이드(PEO), 폴리비닐아세테이트(PVAc), 폴리비닐알콜(PVA), 폴리메틸메타크릴레이트(PMMA), 폴리프로필렌 글리콜(PPG) 및 폴리에틸렌옥사이드-폴리프로필렌옥사이드 블록 코폴리머(PEO-PPO-PEO)가 단독 또는 혼합된 것이 사용될 수 있고, 바람직하게는 폴리메틸메타크릴레이트(PMMA)가 사용될 수 있다.The hydrophilic organic additive is added for hydrophilization of the hydrophobic polymer base resin, and may include components conventional in the art to which the present invention pertains, such as polyacrylonitrile (PAN), polyethylene oxide (PEO), and polyvinyl. Acetate (PVAc), polyvinyl alcohol (PVA), polymethyl methacrylate (PMMA), polypropylene glycol (PPG) and polyethylene oxide-polypropylene oxide block copolymer (PEO-PPO-PEO) alone or in combination Can be used, preferably polymethylmethacrylate (PMMA) can be used.
본 발명에서 친수성 유기 첨가제는 상기 고분자 용액에서 0.01~50중량% 포함될 수 있고, 바람직하게는 0.1~30중량%, 더욱 바람직하게는 1~10중량% 포함될 수 있다. 상기 친수성 유기 첨가제 함량이 0.01중량% 미만일 경우에는 고분자 베이스 수지의 친수화 정도가 미흡할 수 있고, 50중량%를 초과할 경우에는 제조되는 여과막의 기계적 강도가 저하될 수 있다.In the present invention, the hydrophilic organic additive may be included in the polymer solution 0.01 to 50% by weight, preferably 0.1 to 30% by weight, more preferably 1 to 10% by weight. When the hydrophilic organic additive content is less than 0.01% by weight, the degree of hydrophilization of the polymer base resin may be insufficient. When the hydrophilic organic additive content is more than 50% by weight, the mechanical strength of the manufactured filtration membrane may be reduced.
상기 (b) 및 (c) 단계는 상기 고분자 용액에 첨가되어 제조되는 여과막의 물리적 강도를 유지시킴과 동시에 친수화 능력을 더욱 향상시키기 위한 친수성 무기 첨가제를 제조 및 고분자 용액에 첨가하는 단계로, 본 발명에서는 친수성 무기 첨가제를 졸 형태로 제조하여 고분자 용액에 첨가한다.The steps (b) and (c) are steps of adding a hydrophilic inorganic additive to the polymer solution and preparing a hydrophilic inorganic additive for maintaining the physical strength of the filtration membrane added to the polymer solution and further improving the hydrophilicity. In the invention, a hydrophilic inorganic additive is prepared in the form of a sol and added to the polymer solution.
친수성 무기 첨가제의 함량은 상기 고분자 용액 100중량부를 기준으로 0.01~10중량부인 것이 바람직하고, 0.05~5중량부인 것이 더욱 바람직하고, 0.1~1중량부인 것이 가장 바람직하다. 상기 친수성 무기 첨가제 함량이 0.01중량부 미만일 경우에는 막의 친수성 및 물리적 강도에 미치는 영향이 미비할 수 있고, 10중량부를 초과할 경우에는 친수성 유기 첨가제와의 혼화성이 저하되며, 상호 작용이 어려워질 수 있기 때문에 친수성 무기 첨가제의 함량을 적절히 조절하는 것은 매우 중요하다.The content of the hydrophilic inorganic additive is preferably 0.01 to 10 parts by weight, more preferably 0.05 to 5 parts by weight, and most preferably 0.1 to 1 part by weight based on 100 parts by weight of the polymer solution. When the amount of the hydrophilic inorganic additive is less than 0.01 parts by weight, the effect on the hydrophilicity and physical strength of the membrane may be insignificant. When it exceeds 10 parts by weight, the miscibility with the hydrophilic organic additive may be reduced, and the interaction may be difficult. Therefore, it is very important to properly control the content of the hydrophilic inorganic additive.
이러한 친수성 무기 첨가제로는 예컨대 티타니아(TiO2), 실리카(SiO2), 알루미나(Al2O3), 산화아연(ZnO), 지르코니아(ZrO2) 등을 들 수 있으며, 바람직하게는 실리카(SiO2)가 사용될 수 있다.Examples of such hydrophilic inorganic additives include titania (TiO 2 ), silica (SiO 2 ), alumina (Al 2 O 3 ), zinc oxide (ZnO), zirconia (ZrO 2 ), and the like, and preferably silica (SiO). 2 ) can be used.
졸 형태의 친수성 무기 첨가제를 제조하는 방법을 바람직한 예시로서 실리카 졸을 들어 설명하면, 실리카 전구체 및 제2 용매를 혼합하여 실리카 졸을 제조할 수 있다. 상기 실리카 전구체로는 테트라에톡시실란(TEOS), 테트라메톡시실란(TMOS), 트리메톡시메틸실란(MTMS), 디메틸 디에톡시실란(DMDEOS) 등이 사용될 수 있으며, 제2 용매로는 특별히 한정되는 것은 아니나 예컨대 에탄올, 염산, 증류수 등이 단독 또는 혼합된 것이 사용될 수 있다.When a method for preparing a hydrophilic inorganic additive in the form of a sol is described as a preferred example, a silica sol may be mixed to prepare a silica sol. Tetraethoxysilane (TEOS), tetramethoxysilane (TMOS), trimethoxymethylsilane (MTMS), dimethyl diethoxysilane (DMDEOS), etc. may be used as the silica precursor, and the second solvent may be particularly limited. For example, ethanol, hydrochloric acid, distilled water, or the like may be used alone or in combination.
이때 실리카 전구체가 상기 고분자 용액에 균일하게 분산되도록 하는 것이 중요한데, 본 발명에서는 실리카 졸의 함량 조성이 실리카 전구체 50~70중량%, 에탄올 20~40중량% 및 증류수 5~20중량%일 때 가장 효과적인 것으로 확인되었다.At this time, it is important to uniformly disperse the silica precursor in the polymer solution. In the present invention, the most effective composition of the silica sol is 50 to 70% by weight of the silica precursor, 20 to 40% by weight of ethanol and 5 to 20% by weight of distilled water. It was confirmed that.
한편 상기 고분자 수지 조성물은 제조되는 고분자 여과막의 물성과 용도, 여과막 표면 또는 내부에 형성되는 기공의 형태와 크기를 조절하기 위하여, 선택적으로 첨가제를 더 포함할 수 있다. 첨가제로는 이러한 목적을 달성할 수 있는 통상적인 성분들이 포함될 수 있으며, 예컨대 폴리에틸렌글리콜, 폴리옥시에틸렌-폴리옥시프로필렌 블록 공중합체, 폴리비닐피롤리돈(PVP), 염화리튬(LiCl), 과염소산리튬(LiClO4), 메탄올, 에탄올, 이소프로판올, 아세톤(Acetone), 인산, 프로피온산, 아세트산, 피리딘, 폴리비닐피리딘 등이 단독 또는 혼합된 것일 수 있다. 상기 첨가제의 함량은 전술한 목적을 감안하여 조절될 수 있으며, 바람직하게는 상기 고분자 용액 100중량부에 대하여 0.1~50중량부, 보다 바람직하게는 1~20중량부로 포함될 수 있다.Meanwhile, the polymer resin composition may optionally further include an additive in order to control the physical properties and uses of the polymer filtration membrane to be prepared, and the shape and size of pores formed on or inside the filtration membrane. Additives may include conventional ingredients that can achieve this purpose, such as polyethylene glycol, polyoxyethylene-polyoxypropylene block copolymers, polyvinylpyrrolidone (PVP), lithium chloride (LiCl), lithium perchlorate (LiClO 4 ), methanol, ethanol, isopropanol, acetone, phosphoric acid, propionic acid, acetic acid, pyridine, polyvinylpyridine, or the like may be used alone or in combination. The content of the additive may be adjusted in view of the above-mentioned purpose, preferably 0.1 to 50 parts by weight, more preferably 1 to 20 parts by weight based on 100 parts by weight of the polymer solution.
본 발명의 다른 구현예에 따르면, 전술한 고분자 수지 조성물을 기재 상에 도포하는 단계; 및 상기 도포된 고분자 수지 조성물을 비용매에 침전시키는 비용매 유도 상전이 단계;를 포함하는 고분자 여과막 제조방법이 개시된다.According to another embodiment of the invention, the step of applying the above-mentioned polymer resin composition on a substrate; A non-solvent induced phase transition step of precipitating the applied polymer resin composition to a non-solvent is disclosed.
고분자 수지 조성물은 소정의 기재 상에 10~300㎛ 두께로 도포될 수 있고, 바람직하게는 50~250㎛의 두께로 도포될 수 있다.The polymer resin composition may be applied on a predetermined substrate in a thickness of 10 to 300 μm, and preferably in a thickness of 50 to 250 μm.
고분자 수지 조성물을 기재 상에 도포하는 단계는 통상적으로 알려진 고분자 수지의 도포 또는 코팅 방법을 제한 없이 적용할 수 있다. 예컨대 고분자 수지 조성물을 도포하는 단계에서는 라인 분사를 행하는 캐스팅 나이프 도포 장치를 이용하여 기재의 전체면에 걸쳐 균일한 도포를 진행할 수 있다.The step of applying the polymer resin composition on the substrate may be applied without limitation to the coating or coating method of a conventionally known polymer resin. For example, in the step of applying the polymer resin composition, uniform coating may be performed over the entire surface of the substrate by using a casting knife coating device that performs line injection.
도포 시 사용되는 기재로는 부직포, 폴리에스테르계 수지, 폴리에틸렌 수지, 폴리프로필렌 수지, 셀룰로스아세테이트 또는 이들이 혼합(블렌드)된 수지를 사용할 수 있다. 또한 기재는 제조되는 여과막의 구체적인 형태 또는 특성에 따라서 다양한 형태를 가질 수 있는데, 구체적으로 상기 기재는 평막형 또는 중공사(hollow fiber)형의 구조를 가질 수 있다.As a base material used at the time of application | coating, a nonwoven fabric, polyester-based resin, polyethylene resin, polypropylene resin, cellulose acetate, or resin in which these were mixed (blended) can be used. In addition, the substrate may have a variety of forms depending on the specific shape or characteristics of the filtration membrane is produced, specifically, the substrate may have a flat membrane or hollow fiber (hollow fiber) structure.
상기 비용매 유도 상전이 단계는 응고조 처리에 따른 막 형성 단계로서, 도포된 고분자 수지 조성물을 비용매에 침전시켜서 내부 기공을 형성시키고 막을 제조하는 단계이다. 사용되는 응고 용매는 고분자 막을 녹이지 않는 다양한 유기용매, 물, 글라이콜류 등이 사용될 수 있고, 바람직하게는 물, 물과 유기용매, 또는 물과 글라이콜류가 혼합된 응고 용매가 사용될 수 있고, 더욱 바람직하게는 물이 사용될 수 있다. 이때 사용되는 응고 용매의 온도는 0~90℃인 것이 바람직하고, 5~50℃인 것이 더욱 바람직하고, 10~30℃인 것이 가장 바람직하다.The non-solvent induction phase transition step is a step of forming a film according to a coagulation bath treatment, in which the applied polymer resin composition is precipitated in the non-solvent to form internal pores and to prepare a membrane. As the coagulation solvent to be used, various organic solvents which do not dissolve the polymer membrane, water, glycols and the like may be used, and preferably water, water and an organic solvent, or a coagulation solvent in which water and glycols are mixed may be used. More preferably water may be used. It is preferable that the temperature of the coagulation solvent used at this time is 0-90 degreeC, It is more preferable that it is 5-50 degreeC, It is most preferable that it is 10-30 degreeC.
상기 고분자 여과막의 제조방법은 상기 비용매 유도 상전이 단계의 결과물을 세척하고 건조하는 단계를 더 포함할 수 있다. 구체적으로 상기 비용매 유도 상전이 단계의 결과물을 녹이지 않는 용매를 사용하여 세척한 뒤 일정 온도에서 건조함으로써 최종적으로 고분자 여과막을 얻을 수 있다. 세척에는 아세톤, 메탄올, 에탄올, 물 등이 사용될 수 있으며, 바람직하게는 20~90℃의 물이 사용될 수 있다. 또한 세척 후 결과물을 20~200℃, 바람직하게는 40~100℃의 온도하에서 건조하여, 최종적으로 미세 다공성 고분자 여과막이 얻어질 수 있다.The manufacturing method of the polymer filtration membrane may further comprise the step of washing and drying the product of the non-solvent induction phase transition step. Specifically, the polymer filtration membrane may be finally obtained by washing the resultant product of the non-solvent induction phase transition step using a solvent that does not dissolve and drying at a predetermined temperature. Acetone, methanol, ethanol, water and the like may be used for washing. Preferably, water of 20 ° C. to 90 ° C. may be used. In addition, after washing the resultant is dried at a temperature of 20 ~ 200 ℃, preferably 40 ~ 100 ℃, finally a microporous polymer filtration membrane can be obtained.
이하, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예를 상세히 설명한다. 그러나 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명이 하기에 설명하는 실시예에 한정되는 것은 아니다.Hereinafter, embodiments of the present invention will be described in detail so that those skilled in the art can easily practice the present invention. However, the following examples are merely illustrative of the present invention, and the present invention is not limited to the examples described below.
실시예 1Example 1
친수성 무기 첨가제인 실리카 졸을 만들기 위해서 테트라에톡시실란(TEOS) 62중량%, 에탄올 27중량%, 염산 0.5중량% 및 증류수 10.5중량% 함량으로 60~70℃로 유지하면서 혼합하여 제조하였다. 한편 고분자 용액을 만들기 위해서 소수성 고분자로서 폴리비닐리덴플루오라이드(PVDF) 11중량%, 용매인 디메틸아세트아마이드(DMAc) 86중량%, 친수성 유기 첨가제인 폴리메틸메타크릴레이트(PMMA) 3중량% 함량으로 혼합하여 고분자 용액을 제조하였다. 제조된 고분자 용액 에 실리카 졸 100중량부에 대하여 실리카 졸 0.1중량부 함량으로 첨가하여 고분자 수지 조성물을 제조하였다. 고분자 수지 조성물을 25℃로 유지하면서 캐스팅 나이프의 두께를 200㎛로 조절하여 캐스팅한 후 비용매인 물(20℃)에 12시간 침전시켜서 고분자 막을 형성시키고, 형성된 고분자 막을 30℃ 증류수로 1~2시간 세척한 후 드라이오븐에서 25℃의 온도로 24시간 건조시켜 최종 폴리비닐리덴플루오라이드 막을 제조하였다.In order to prepare a silica sol which is a hydrophilic inorganic additive, 62 wt% of tetraethoxysilane (TEOS), 27 wt% of ethanol, 0.5 wt% of hydrochloric acid, and 10.5 wt% of distilled water were mixed and maintained at 60 to 70 ° C. On the other hand, in order to make a polymer solution, 11% by weight of polyvinylidene fluoride (PVDF) as a hydrophobic polymer, 86% by weight of dimethylacetamide (DMAc) as a solvent, and 3% by weight of polymethyl methacrylate (PMMA) as a hydrophilic organic additive The polymer solution was prepared by mixing. A polymer resin composition was prepared by adding 0.1 part by weight of the silica sol to 100 parts by weight of the silica sol to the prepared polymer solution. While maintaining the polymer resin composition at 25 ℃ cast casting by adjusting the thickness of the casting knife to 200 ㎛ and precipitated in non-solvent water (20 ℃) for 12 hours to form a polymer film, and the formed polymer film 1 ~ 2 hours with 30 ℃ distilled water After washing, the resultant was dried in a dry oven at a temperature of 25 ° C. for 24 hours to prepare a final polyvinylidene fluoride membrane.
실시예 2Example 2
실시예 1에서 실리카 졸을 1중량부 함량으로 첨가한 것을 제외하고는 실시예 1과 동일한 방법으로 폴리비닐리덴플루오라이드 막을 제조하였다.A polyvinylidene fluoride membrane was prepared in the same manner as in Example 1 except that the silica sol was added in an amount of 1 part by weight in Example 1.
실시예 3Example 3
실시예 1에서 실리카 졸을 3중량부 함량으로 첨가한 것을 제외하고는 실시예 1과 동일한 방법으로 폴리비닐리덴플루오라이드 막을 제조하였다.A polyvinylidene fluoride membrane was prepared in the same manner as in Example 1, except that 3 parts by weight of silica sol was added.
실시예 4Example 4
다음과 같이 이중층 중공사막을 제조하였다.A bilayer hollow fiber membrane was prepared as follows.
지지층용 고분자 용액은 소수성 고분자로서 폴리비닐리덴플루오라이드(PVDF) 40중량%, 감마-부티로락탄(γ-Butyrolactone) 44.5중량%, N-메틸피롤리돈(NMP) 10중량%, 에틸렌 글리콜(EG) 2중량%, 폴리비닐피롤리돈(PVP) 3중량% 및 염화리튬(LiCl) 0.5중량% 함량으로 혼합하여 준비하였다.The polymer solution for the support layer is a hydrophobic polymer, 40% by weight of polyvinylidene fluoride (PVDF), 44.5% by weight of gamma-butyrolactone (γ-Butyrolactone), 10% by weight of N-methylpyrrolidone (NMP), ethylene glycol ( EG) 2% by weight, polyvinylpyrrolidone (PVP) 3% by weight and lithium chloride (LiCl) 0.5% by weight to prepare a mixture.
표면층용 고분자 수지 조성물은 폴리비닐리덴플루오라이드(PVDF) 11중량%, 용매인 디메틸아세트아마이드(DMAc) 86중량% 및 친수성 유기 첨가제인 폴리메틸메타크릴레이트(PMMA) 3중량%를 혼합하여 제조한 고분자 용액 100중량부에, 실시예 1과 같은 방법으로 제조된 친수성 무기 첨가제인 실리카 졸을 1중량부, 폴리비닐피롤리돈(PVP) 10중량부 및 염화리튬(LiCl) 1중량부를 혼합하여 준비하였다.The polymer resin composition for the surface layer was prepared by mixing 11% by weight of polyvinylidene fluoride (PVDF), 86% by weight of dimethylacetamide (DMAc) as a solvent, and 3% by weight of polymethyl methacrylate (PMMA) as a hydrophilic organic additive. To 100 parts by weight of the polymer solution, 1 part by weight of silica sol, a hydrophilic inorganic additive prepared in the same manner as in Example 1, 10 parts by weight of polyvinylpyrrolidone (PVP), and 1 part by weight of lithium chloride (LiCl) are prepared. It was.
내부홀 형성 보어(Bore) 용액은 디메틸아세트아마이드(DMAc)와 에틸렌글리콜(EG)을 6:4의 중량비로 혼합하여 상온에서 준비하였다.Bore solution was prepared at room temperature by mixing dimethyl acetamide (DMAc) and ethylene glycol (EG) in a weight ratio of 6: 4.
지지층용 고분자 용액은 140℃의 노즐을 통해 열유도 상전이법으로, 표면층용 고분자 수지 조성물은 상온의 노즐에서 비용매 상전이법으로, 보어 용액과 함께 동시에 노즐을 통해 토출시켯다. 방사 토출량은 지지층 : 코팅층 : 내부홀 = 3 : 1 : 2 비율로 토출되도록 하였다. 이후 형성된 중공사막을 5℃ 비용매인 증류수 응고조에 침지시킨 후, 40℃ 증류수로 12시간 세척하고 24시간 건조시켜 최종 폴리비닐리덴플루오라이드 중공사막을 제조하였다.The polymer solution for the support layer was discharged through the nozzle at the same time as the thermal induction phase transition method through the nozzle at 140 ° C., and the polymer resin composition for the surface layer by the non-solvent phase transition method at the nozzle at room temperature. The radiation discharge amount was discharged in a ratio of support layer: coating layer: inner hole = 3: 1: 2. Thereafter, the formed hollow fiber membrane was immersed in a distilled water coagulation bath, which is a non-solvent at 5 ° C, washed 12 hours with distilled water at 40 ° C, and dried for 24 hours to prepare a final polyvinylidene fluoride hollow fiber membrane.
비교예 1Comparative Example 1
실시예 1에서 친수성 유기 첨가제를 첨가하지 않고, 폴리비닐리덴플루오라이드(PVDF)를 14중량% 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 폴리비닐리덴플루오라이드 막을 제조하였다.A polyvinylidene fluoride membrane was prepared in the same manner as in Example 1, except that 14 wt% of polyvinylidene fluoride (PVDF) was used without adding a hydrophilic organic additive in Example 1.
비교예 2Comparative Example 2
실시예 1에서 실리카 졸을 첨가하지 않을 것을 제외하고는 실시예 1과 동일한 방법으로 폴리비닐리덴플루오라이드 막을 제조하였다.A polyvinylidene fluoride membrane was prepared in the same manner as in Example 1, except that silica sol was not added in Example 1.
비교예 3Comparative Example 3
실시예 4의 표면층용 고분자 수지 조성물에서 실리카 졸을 첨가하지 않은 것을 제외하고는 실시예 4와 동일한 방법으로 폴리비닐리덴플루오라이드 중공사막을 제조하였다.A polyvinylidene fluoride hollow fiber membrane was prepared in the same manner as in Example 4 except that the silica sol was not added to the polymer layer composition for the surface layer of Example 4.
비교예 4Comparative Example 4
실시예 4의 지지층용 고분자 용액에서 폴리비닐리덴플루오라이드(PVDF)를 35중량% 및 감마-부티로락탄(γ-Butyrolactone)을 49.5중량%로 조절하고, 표면층용 고분자 수지 조성물에서 폴리비닐피롤리돈(PVP) 15중량부로 조절하고, 실리카 졸 대신 전구체인 테트라에톡시실란(TEOS)을 1중량부 함량으로 첨가한 것을 제외하고는 실시예 4와 동일한 방법으로 폴리비닐리덴플루오라이드 중공사막을 제조하였다.In the polymer solution for the support layer of Example 4, polyvinylidene fluoride (PVDF) was adjusted to 35% by weight and gamma-butyrolactane (γ-Butyrolactone) to 49.5% by weight, and polyvinylpyrrole in the polymer resin composition for the surface layer A polyvinylidene fluoride hollow fiber membrane was prepared in the same manner as in Example 4, except that 15 parts by weight of pig (PVP) was added and tetraethoxysilane (TEOS), a precursor, was added in place of silica sol. It was.
상기 실시예 및 비교예에 사용된 고분자 수지 조성물의 조성을 하기 표 1에 정리하여 나타내었다.The composition of the polymer resin composition used in Examples and Comparative Examples is summarized in Table 1 below.
Figure PCTKR2015010911-appb-T000001
Figure PCTKR2015010911-appb-T000001
시험예 1Test Example 1
상기 실시예 1 내지 4, 비교예 1 내지 4에 따라 제조된 폴리비닐리덴플루오라이드계 수지막 표면의 친수화 정도를 측정하기 위하여 접촉각 측정기(㈜에스이오. Phoenix 300 touch)로 접촉각을 측정하고 그 결과를 하기 표 2(평막) 및 표 3(중공사막)에 나타내었다.In order to measure the degree of hydrophilization of the surface of the polyvinylidene fluoride resin film prepared according to Examples 1 to 4 and Comparative Examples 1 to 4, the contact angle was measured using a contact angle measuring instrument (S. Phoenix. The results are shown in Table 2 (flat membrane) and Table 3 (hollow fiber membrane).
Figure PCTKR2015010911-appb-T000002
Figure PCTKR2015010911-appb-T000002
Figure PCTKR2015010911-appb-T000003
Figure PCTKR2015010911-appb-T000003
표 2에 나타낸 바와 같이, 초기 접촉각의 경우 친수성 무기 첨가제인 실리카 졸을 첨가한 실시예 1 내지 3에 따라 제조된 폴리비닐리덴플루오라이드 막이 친수성 무기 첨가제인 실리카 졸을 첨가하지 않은 비교예 2에 비해 접촉각이 낮게 측정되어 친수성이 향상되었음을 알 수 있다. 그리고 친수성 무기 첨가제인 실리카 졸의 함량이 증가할수록 접촉각이 감소하여 친수성이 향상하는 것을 알 수 있다. 이는 친수성 유기 첨가제인 폴리메틸메타크릴레이트(PMMA)에 의해 친수성이 향상된 폴리비닐리덴플루오라이드 막이 친수성 무기 첨가제인 실리카 졸에 의해 친수성이 더욱 향상된 것을 보여주고 있다.As shown in Table 2, for the initial contact angle, the polyvinylidene fluoride film prepared according to Examples 1 to 3 to which silica sol was added as a hydrophilic inorganic additive was compared with Comparative Example 2 to which silica sol was not added as a hydrophilic inorganic additive. The low contact angle indicates that the hydrophilicity is improved. As the content of the silica sol, which is a hydrophilic inorganic additive, increases, the contact angle decreases, thereby improving the hydrophilicity. This shows that the polyvinylidene fluoride film whose hydrophilicity is improved by polymethyl methacrylate (PMMA), which is a hydrophilic organic additive, has further improved hydrophilicity by silica sol, which is a hydrophilic inorganic additive.
또한 친수성 무기 첨가제인 실리카 졸을 첨가하고, 친수성 유기 첨가제인 폴리메틸메타크릴레이트(PMMA)을 첨가하지 않은 비교예 1에 따라 제조된 폴리비닐리덴플루오라이드 막은 친수성 유기 첨가제인 폴리메틸메타크릴레이트(PMMA)를 첨가한 실시예 2에 비해 접촉각이 높아 친수성이 저하되는 것을 알 수 있다. 이는 친수성 무기 첨가제인 실리카 졸을 단독으로 첨가한 막의 경우보다 친수성 무기 첨가제인 실리카 졸과 친수성 유기 첨가제인 폴리메틸메타크릴레이트(PMMA)를 동시에 첨가한 경우 두 첨가제의 상호 작용으로 인해 막의 친수성이 더 많이 향상된 것을 보여주고 있다.In addition, the polyvinylidene fluoride film prepared according to Comparative Example 1, in which silica sol, which is a hydrophilic inorganic additive, and no polymethyl methacrylate (PMMA), which is a hydrophilic organic additive, was added, polymethyl methacrylate, which is a hydrophilic organic additive ( Compared with Example 2 which added PMMA), it turns out that a contact angle is high and hydrophilicity falls. This is due to the hydrophilicity of the membrane due to the interaction between the two additives when the hydrophilic inorganic additive silica sol and the hydrophilic organic additive polymethyl methacrylate (PMMA) are added at the same time than the membrane in which the hydrophilic inorganic additive silica sol is added alone. It shows a lot of improvements.
실시예 4 및 비교예 3에 따라 제조된 폴리비닐리덴플루오라이드 이중층 중공사막의 초기 접촉각의 경우 표 3에 나타낸 바와 같이 친수성 무기 첨가제인 실리카 졸을 첨가하지 않은 비교예 3에 비해 실리카 졸을 첨가한 실시예 4에 따라 제조된 이중층 중공사막의 접촉각이 감소하여 친수성이 향상된 것을 알 수 있다. 또한 실리카 졸을 제조하기 위한 전구체인 테트라에톡시실란(TEOS)를 무기 첨가제로 첨가하여 제조한 비교예 4의 경우 초기 접촉각이 증가한 것으로 나타났다. 이는 테트라에톡시실란(TEOS)은 친수성 무기 첨가제로는 부적합하며, 이를 전구체로 하여 제조된 실리카 졸 형태가 친수성을 향상시키는 데 도움을 준다는 것을 보여준다.In the case of the initial contact angle of the polyvinylidene fluoride double layer hollow fiber membrane prepared according to Example 4 and Comparative Example 3, as shown in Table 3, silica sol was added as compared to Comparative Example 3, in which the silica sol as a hydrophilic inorganic additive was not added. It can be seen that the contact angle of the bilayer hollow fiber membrane prepared according to Example 4 is reduced to improve hydrophilicity. In addition, in the case of Comparative Example 4 prepared by adding tetraethoxysilane (TEOS), which is a precursor for preparing a silica sol, as an inorganic additive, the initial contact angle was increased. This shows that tetraethoxysilane (TEOS) is not suitable as a hydrophilic inorganic additive, and that the silica sol form prepared as a precursor helps to improve hydrophilicity.
반면, 동일한 친수성 무기 첨가제인 실리카 졸을 첨가하여 평막으로 제조된 실시예 2에 비해 전반적으로 접촉각이 낮게 나타난 것을 알 수 있다. 이는 이중층 중공사막을 노즐을 통해 토출시키는 과정에서 열유도 상전이법으로 토출된 지지층의 높은 온도에 의해 친수성 무기 첨가제 및 친수성 유기 첨가제가 소량 손실되었기 때문이다.On the other hand, it can be seen that the overall contact angle was lower than that of Example 2, which was prepared by the addition of the same hydrophilic inorganic additive silica sol. This is because a small amount of the hydrophilic inorganic additive and the hydrophilic organic additive are lost due to the high temperature of the support layer discharged by the heat induction phase transition method in the process of discharging the double layer hollow fiber membrane through the nozzle.
시험예 2Test Example 2
실시예 1 내지 3, 비교예 1 및 2에 의해 제조된 폴리비닐리덴플루오라이드 막의 순수 투과유속을 측정하기 위해 지름 40mm의 원형 다공판을 이용하여 0.1bar 진공 조건에서 순수 투과유속의 평균값을 측정하고, 그 결과를 상기 표 2에 나타내었다. In order to measure the net permeation flux of the polyvinylidene fluoride membranes prepared in Examples 1 to 3 and Comparative Examples 1 and 2, an average value of the net permeate flux was measured under a 0.1 bar vacuum condition using a circular porous plate having a diameter of 40 mm. The results are shown in Table 2 above.
친수성 무기 첨가제인 실리카 졸을 첨가하지 않은 비교예 2에 따라 제조된 폴리비닐리덴플루오라이드 막의 투과유속에 비해 실리카 졸을 첨가한 실시예 1 및 2의 분리막 투과유속이 증가한 것을 알 수 있다. 이는 친수성 무기 첨가제인 실리카 졸에 의해 막의 친수성이 향상되면서 나타나는 결과이다. It can be seen that the membrane permeation fluxes of Examples 1 and 2 in which silica sol was added were increased compared to the permeation flux of polyvinylidene fluoride membrane prepared according to Comparative Example 2, in which silica sol, which is a hydrophilic inorganic additive, was not added. This is a result of improving the hydrophilicity of the film by the silica sol, a hydrophilic inorganic additive.
반면, 실리카 졸의 함량이 3중량부 이상 첨가되는 실시예 3에 따라 제조된 폴리비닐리덴플루오라이드 막의 투과유속은 현저히 감소된 것을 알 수 있다. 이는 친수성 무기 첨가제인 실리카 졸의 함량이 일정량을 초과할 경우 실리카 졸의 응집현상이 발생하여 막의 기공을 막기 때문이다. On the other hand, it can be seen that the permeation flux of the polyvinylidene fluoride membrane prepared according to Example 3 in which the content of the silica sol is added at least 3 parts by weight is significantly reduced. This is because when the content of the silica sol, which is a hydrophilic inorganic additive, exceeds a predetermined amount, the aggregation of the silica sol occurs to block pores of the membrane.
시험예 3Test Example 3
실시예 4, 비교예 3 및 4에 따라 제조된 폴리비닐리덴플루오라이드 중공사막의 순수 투과유속을 측정하기 위해 유효막 길이가 10cm인 4개의 중공사막 샘플을 관형 튜브에 삽입 후 에폭시로 고정시켜 Dead-end 타입의 분리막 모듈을 제작하였다. 1kg/㎠의 압력으로 모듈에 증류수를 유입시키고 중공사막 내부에서 외부로 투과된 물의 양을 측정하여 단위면적당 순수 투과유속을 측정하고 그 결과를 상기 표 3에 나타내었다. In order to measure the net permeation flux of the polyvinylidene fluoride hollow fiber membranes prepared according to Examples 4, Comparative Examples 3 and 4, four hollow fiber membrane samples having an effective membrane length of 10 cm were inserted into a tubular tube, and then fixed with epoxy. A -end type membrane module was produced. Distilled water was introduced into the module at a pressure of 1 kg / cm 2, and the pure permeation flux per unit area was measured by measuring the amount of water permeated from the inside of the hollow fiber membrane and the results are shown in Table 3 above.
친수성 무기 첨가제인 실리카 졸을 첨가한 실시예 4에 따라 제조된 폴리비닐리덴플루오라이드 이중층 중공사막의 투과유속이 실리카 졸을 첨가하지 않은 비교예 3의 중공사막 투과유속보다 증가한 것을 알 수 있다. 즉 친수성 유기 첨가제인 폴리메틸메타크릴레이트(PMMA)를 단독으로 첨가하여 제조된 이중층 중공사막에 비해 친수성 무기 첨가제인 실리카 졸과 함께 첨가하여 제조된 이중층 중공사막의 투과유속이 더 높게 나타난 것을 알 수 있으며, 이는 친수성 무기 첨가제인 실리카 졸에 의해 막의 친수성이 향상되면서 나타난 결과이다. It can be seen that the permeation flux of the polyvinylidene fluoride double layer hollow fiber membrane prepared according to Example 4 with the addition of the silica sol, which is a hydrophilic inorganic additive, was increased than that of the hollow fiber membrane of Comparative Example 3 without the addition of the silica sol. That is, the permeation flux of the bilayer hollow fiber membrane prepared by adding together with the hydrophilic inorganic additive silica sol was higher than that of the bilayer hollow fiber membrane prepared by adding polymethylmethacrylate (PMMA), which is a hydrophilic organic additive alone. This is a result of improving the hydrophilicity of the film by silica sol which is a hydrophilic inorganic additive.
시험예 4Test Example 4
실시예 2 및 3, 비교예 1 및 2에 따라 제조된 폴리비닐리덴플루오라이드 막의 결정구조를 확인하기 위해 방사선원은 40kV, 20~30mA으로 하고 Scanning angle은 5~50°로 하는 X선 회절 분석을 수행하고 그 결과를 도 1에 나타내었다.In order to confirm the crystal structure of the polyvinylidene fluoride film prepared according to Examples 2 and 3, Comparative Examples 1 and 2, X-ray diffraction analysis was performed with a radiation source of 40 kV and 20 to 30 mA and a scanning angle of 5 to 50 °. The results are shown in FIG. 1.
도 1(a)에 나타낸 바와 같이 친수성 유기 첨가제인 폴리메틸메타크릴레이트(PMMA)를 첨가하지 않은 비교예 1에 따라 제조된 막의 결정구조는 18°, 20°, 26° 및 40°의 피크값을 갖는 α상으로 나타난 것을 알 수 있다. 그러나 도 1(b)에 나타낸 바와 같이 친수성 유기 첨가제인 폴리메틸메타크릴레이드(PMMA)를 첨가한 비교예 2에 의해 제조된 막의 결정구조는 20° 및 36°의 피크값을 갖는 β상으로 나타난 것을 알 수 있다. 이는 친수성 유기 첨가제인 폴리메틸메타크릴레이트(PMMA)에 의해 폴리비닐리덴플루오라이드의 결정구조가 변화한 것이다. As shown in Fig. 1 (a), the crystal structures of the films prepared according to Comparative Example 1 without adding hydrophilic organic additive polymethyl methacrylate (PMMA) had peak values of 18 °, 20 °, 26 ° and 40 °. It can be seen that it is represented by the α phase having a. However, as shown in Fig. 1 (b), the crystal structure of the film prepared by Comparative Example 2 to which the hydrophilic organic additive polymethyl methacrylate (PMMA) was added appeared as β phase having peak values of 20 ° and 36 °. It can be seen that. This is a change in the crystal structure of polyvinylidene fluoride by polymethyl methacrylate (PMMA) which is a hydrophilic organic additive.
즉 친수성 유기 첨가제인 폴리메틸메타크릴레이트(PMMA)에 의해 폴리비닐리덴플루오라이드 막의 친수성이 향상되는 반면, 폴리비닐리덴플루오라이드의 결정구조가 α상에서 β상으로 변화하면서 기계적 강도가 저하될 수 있다는 문제점이 있다. 그러나 도 1(b)와 같이 친수성 무기 첨가제인 실리카 졸을 첨가하여 제조된 실시예 2 및 3에 따라 제조된 폴리비닐리덴플루오라이드 막은 피크값이 증가하였으며, 이는 실리카 졸에 의해 결정화도가 증가하여 물리적 강도가 증가할 수 있음을 나타낸 결과이다. That is, the hydrophilicity of the polyvinylidene fluoride film is improved by polymethyl methacrylate (PMMA), which is a hydrophilic organic additive, while the mechanical strength of the polyvinylidene fluoride is changed from alpha phase to beta phase. There is a problem. However, the polyvinylidene fluoride membranes prepared according to Examples 2 and 3 prepared by adding silica sol, a hydrophilic inorganic additive, as shown in FIG. The results show that the strength can be increased.
시험예 5Test Example 5
실시예 4 및 비교예 3에 따라 제조된 폴리비닐리덴플루오라이드 중공사막의 단면구조를 확인하기 위해 광학현미경(Olympus, AHMT3-513NU)을 이용하여 70배율로 측정한 결과를 각각 도 2(a) 및 도 2(b)에 나타내었다.In order to confirm the cross-sectional structure of the polyvinylidene fluoride hollow fiber membranes prepared according to Example 4 and Comparative Example 3, the results of measurement at 70 magnification using an optical microscope (Olympus, AHMT3-513NU) were respectively measured. And (b).
도 2에 나타낸 바와 같이 폴리비닐리덴플루오라이드 이중층 중공사막의 평균 외경은 약 1300㎛, 평균 내경은 약 700㎛이며, 표면층의 단면구조는 핑거(Finger) 구조임을 알 수 있다.As shown in FIG. 2, the average outer diameter of the polyvinylidene fluoride bilayer hollow fiber membrane is about 1300 μm, and the average inner diameter is about 700 μm, and the cross-sectional structure of the surface layer is a finger structure.
이상으로 본 발명의 바람직한 실시예를 상세하게 설명하였다. 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다.The preferred embodiment of the present invention has been described in detail above. The description of the present invention is for illustrative purposes, and it will be understood by those skilled in the art that the present invention may be easily modified in other specific forms without changing the technical spirit or essential features of the present invention.
따라서, 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미, 범위 및 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.Therefore, the scope of the present invention is shown by the claims below rather than the detailed description, and all changes or modifications derived from the meaning, scope, and equivalent concepts of the claims are included in the scope of the present invention. Should be interpreted.

Claims (10)

  1. (a) 소수성 고분자 베이스 수지, 제1 용매 및 친수성 유기 첨가제를 혼합하여 고분자 용액을 제조하는 단계;(a) mixing a hydrophobic polymer base resin, a first solvent, and a hydrophilic organic additive to prepare a polymer solution;
    (b) 졸 형태의 친수성 무기 첨가제를 제조하는 단계; 및(b) preparing a hydrophilic inorganic additive in sol form; And
    (c) 상기 친수성 무기 첨가제를 상기 고분자 용액에 첨가하는 단계;(c) adding the hydrophilic inorganic additive to the polymer solution;
    를 포함하는 여과막 제조용 고분자 수지 조성물 제조방법.Polymer resin composition production method for producing a filtration membrane comprising a.
  2. 제1항에 있어서,The method of claim 1,
    상기 고분자 용액은 상기 소수성 고분자 베이스 수지 1~50중량%, 상기 제1 용매 1~80중량% 및 상기 친수성 유기 첨가제 0.01~50중량%로 구성된 것을 특징으로 하는 여과막 제조용 고분자 수지 조성물 제조방법.The polymer solution is 1 to 50% by weight of the hydrophobic polymer base resin, 1 to 80% by weight of the first solvent and 0.01 to 50% by weight of the hydrophilic organic additive, the method for producing a polymer resin composition for manufacturing a filtration membrane.
  3. 제1항에 있어서,The method of claim 1,
    상기 소수성 고분자 베이스 수지는 폴리에테르술폰(PES), 폴리술폰(PSf), 폴리이써케톤(PEK), 폴리이써이써케톤(PEEK), 술폰화된 고분자(sulfonated polymer), 폴리비닐리덴플루오라이드(PVDF), 폴리테트라플루오로에틸렌(PTFE), 폴리비닐라이덴 클로라이드(PVDC), 클로린네이트 폴리비닐클로라이드(CPVC), 폴리비닐라이덴플로라이드-헥사플로로프로필렌(PVDF-HFP) 및 에틸렌클로로트리플로로에틸렌(ECTFE)으로 이루어진 군에서 선택되는 1종 이상인 것을 특징으로 하는 여과막 제조용 고분자 수지 조성물 제조방법.The hydrophobic polymer base resin may be polyethersulfone (PES), polysulfone (PSf), polyther ketone (PEK), polytherther ketone (PEEK), sulfonated polymer, polyvinylidene fluoride (PVDF) ), Polytetrafluoroethylene (PTFE), polyvinylidene chloride (PVDC), chlorinate polyvinylchloride (CPVC), polyvinylidene fluoride-hexafluoropropylene (PVDF-HFP) and ethylenechlorotrifluoroethylene Method for producing a polymer resin composition for producing a filtration membrane, characterized in that at least one member selected from the group consisting of (ECTFE).
  4. 제1항에 있어서,The method of claim 1,
    상기 친수성 유기 첨가제는 폴리아크릴로니트릴(PAN), 폴리에틸렌옥사이드(PEO), 폴리비닐아세테이트(PVAc), 폴리비닐알콜(PVA), 폴리메틸메타크릴레이트(PMMA), 폴리프로필렌 글리콜(PPG) 및 폴리에틸렌옥사이드-폴리프로필렌옥사이드 블록 코폴리머(PEO-PPO-PEO)로 이루어진 군에서 선택되는 1종 이상인 것을 특징으로 하는 여과막 제조용 고분자 수지 조성물 제조방법.The hydrophilic organic additives include polyacrylonitrile (PAN), polyethylene oxide (PEO), polyvinylacetate (PVAc), polyvinyl alcohol (PVA), polymethyl methacrylate (PMMA), polypropylene glycol (PPG) and polyethylene Oxide-polypropylene oxide block copolymer (PEO-PPO-PEO) is a method for producing a polymer resin composition for filtration membranes, characterized in that at least one member selected from the group consisting of.
  5. 제1항에 있어서,The method of claim 1,
    상기 친수성 무기 첨가제는 상기 고분자 용액 100중량부에 대하여 0.1~10중량부 함량으로 첨가되는 것을 특징으로 하는 여과막 제조용 고분자 수지 조성물 제조방법.The hydrophilic inorganic additive is a method for producing a polymer resin composition for filtration membranes, characterized in that added to 0.1 to 10 parts by weight with respect to 100 parts by weight of the polymer solution.
  6. 제1항에 있어서,The method of claim 1,
    상기 친수성 무기 첨가제는 티타니아(TiO2), 실리카(SiO2), 알루미나(Al2O3), 산화아연(ZnO) 및 지르코니아(ZrO2)로 이루어진 군에서 선택되는 1종 이상인 것을 특징으로 하는 여과막 제조용 고분자 수지 조성물 제조방법.The hydrophilic inorganic additive is at least one member selected from the group consisting of titania (TiO 2 ), silica (SiO 2 ), alumina (Al 2 O 3 ), zinc oxide (ZnO) and zirconia (ZrO 2 ). Method for producing a polymer resin composition for production.
  7. 제1항에 있어서,The method of claim 1,
    상기 (b) 단계는 실리카 전구체 및 제2 용매를 혼합하여 수행되는 것을 특징으로 하는 여과막 제조용 고분자 수지 조성물 제조방법.The step (b) is a method for producing a polymer resin composition for preparing a filtration membrane, characterized in that the mixture is carried out by mixing the silica precursor and the second solvent.
  8. 제7항에 있어서,The method of claim 7, wherein
    상기 실리카 전구체는 테트라에톡시실란(TEOS), 테트라메톡시실란(TMOS), 트리메톡시메틸실란(MTMS) 및 디메틸 디에톡시실란(DMDEOS)으로 이루어진 군에서 선택되는 1종 이상인 것을 특징으로 하는 여과막 제조용 고분자 수지 조성물 제조방법.The silica precursor is at least one selected from the group consisting of tetraethoxysilane (TEOS), tetramethoxysilane (TMOS), trimethoxymethylsilane (MTMS) and dimethyl diethoxysilane (DMDEOS) Method for producing a polymer resin composition for production.
  9. 제1항의 고분자 수지 조성물을 기재 상에 도포하는 단계; 및Applying the polymer resin composition of claim 1 on a substrate; And
    상기 도포된 고분자 수지 조성물을 비용매에 침전시키는 비용매 유도 상전이 단계;A non-solvent induced phase transition step of precipitating the applied polymer resin composition to a non-solvent;
    를 포함하는 고분자 여과막 제조방법.Polymer filter membrane manufacturing method comprising a.
  10. 제9항에 있어서,The method of claim 9,
    상기 여과막은 평막형 또는 중공사형의 구조를 갖는 것을 특징으로 하는 방법.The filtration membrane is characterized in that it has a flat membrane or hollow fiber structure.
PCT/KR2015/010911 2014-11-03 2015-10-15 Method for preparing polymer resin composition for producing filtration membrane having improved hydrophilicity and mechanical strength WO2016072634A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140151181A KR101733848B1 (en) 2014-11-03 2014-11-03 Manufactured method of polymer resin composition having increasing hydrophilicity and mechanical strength for preparing of filter membrane
KR10-2014-0151181 2014-11-03

Publications (1)

Publication Number Publication Date
WO2016072634A1 true WO2016072634A1 (en) 2016-05-12

Family

ID=55909324

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/010911 WO2016072634A1 (en) 2014-11-03 2015-10-15 Method for preparing polymer resin composition for producing filtration membrane having improved hydrophilicity and mechanical strength

Country Status (2)

Country Link
KR (1) KR101733848B1 (en)
WO (1) WO2016072634A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109603302A (en) * 2018-12-20 2019-04-12 东南大学 Antifouling modified walnut shell filtering material of one kind and its preparation method and application

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106731900A (en) * 2017-01-12 2017-05-31 常州大学 In-situ sol-gel high-strength polyvinylidene fluoride milipore filter and preparation method
KR102260086B1 (en) * 2019-06-04 2021-06-03 경상국립대학교산학협력단 Composite separator membrane, preparation method thereof and separator membrane for water treatment comprising the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040074362A (en) * 2003-02-18 2004-08-25 주식회사 코오롱 Antimicrobial hollow fiber membrane and method of preparing the same
KR20040100750A (en) * 2003-05-24 2004-12-02 한국화학연구원 Method for preparation of pH, microorganism and fouling resistant asymmetric membranes by coating titania
KR100536643B1 (en) * 2003-04-15 2005-12-14 한국화학연구원 Method for preparation of chemical, microorganism and fouling resistant asymmetric ultrafiltration and microfiltration membranes by blending titania nano particle
KR20070072120A (en) * 2005-12-30 2007-07-04 주식회사 효성 Method for preparing the chiral filtration membrane
KR20140112595A (en) * 2013-03-11 2014-09-24 중앙대학교 산학협력단 Filtration membrane using nanoparticle grafted by hydrophilic polymer and method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040074362A (en) * 2003-02-18 2004-08-25 주식회사 코오롱 Antimicrobial hollow fiber membrane and method of preparing the same
KR100536643B1 (en) * 2003-04-15 2005-12-14 한국화학연구원 Method for preparation of chemical, microorganism and fouling resistant asymmetric ultrafiltration and microfiltration membranes by blending titania nano particle
KR20040100750A (en) * 2003-05-24 2004-12-02 한국화학연구원 Method for preparation of pH, microorganism and fouling resistant asymmetric membranes by coating titania
KR20070072120A (en) * 2005-12-30 2007-07-04 주식회사 효성 Method for preparing the chiral filtration membrane
KR20140112595A (en) * 2013-03-11 2014-09-24 중앙대학교 산학협력단 Filtration membrane using nanoparticle grafted by hydrophilic polymer and method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109603302A (en) * 2018-12-20 2019-04-12 东南大学 Antifouling modified walnut shell filtering material of one kind and its preparation method and application
CN109603302B (en) * 2018-12-20 2021-09-07 东南大学 Antifouling modified walnut shell filter material and preparation method and application thereof

Also Published As

Publication number Publication date
KR101733848B1 (en) 2017-05-08
KR20160051340A (en) 2016-05-11

Similar Documents

Publication Publication Date Title
WO2011149165A1 (en) Polymer or polymer composite membrane having through-thickness micropores, and method for preparing same
WO2010021474A2 (en) Porous membrane and preparation method thereof
WO2013073828A1 (en) Hydrophilic polyvinylidene fluoride-based hollow-fiber separation membrane, and method for manufacturing same
WO2012128470A2 (en) Polysulfone-based hollow fiber film having excellent strength and water permeability, and method for manufacturing same
WO2017209536A1 (en) Filter medium, method for manufacturing same, and filter module comprising same
WO2011037354A2 (en) Fluorine-based hollow-fibre membrane and a production method therefor
US20150298069A1 (en) Polymer resin composition for preparing of microfilter membrane or ultrafilter membrane, preparation method of polymer filter membrane, and polymer filter membrane
WO2010120056A2 (en) Method of producing microporous polymer membrane and microporous polymer membrane produced by the method
WO2016072634A1 (en) Method for preparing polymer resin composition for producing filtration membrane having improved hydrophilicity and mechanical strength
CN111266016A (en) Preparation method of separation membrane with adjustable and controllable pore diameter and separation membrane prepared by preparation method
WO2016072554A1 (en) Porous hollow fiber membrane and method for manufacturing same
WO2012074222A2 (en) Preparation method of hollow fiber membrane for water treatment using cellulose-based resin
WO2017146412A1 (en) Porous support for water treatment separation membrane, ultra-thin composite membrane comprising same, and manufacturing method therefor
KR20160081612A (en) PVDF porous hollow fiber membrane and the preparing method thereof
WO2009157693A2 (en) Water treating membrane and hydrophilizing method therefor
WO2014098322A1 (en) Hollow-fibre membrane having novel structure, and production method therefor
KR20180033999A (en) Composition for separation membrane, method for preparing separation membrane using the same, membrane prepared therefrom and apparatus for purifying water
KR20100007245A (en) Asymmetric hollow fiber membranes and preparation thereof
WO2020130674A1 (en) Composition for forming filtration membrane, method for manufacturing filtration membrane by using same, and filtration membrane
KR102525810B1 (en) Porous fluorine resin membrane and method for preparing the same
WO2017109078A1 (en) Porous polymer membranes comprising silicate
WO2013147525A1 (en) Porous membrane and method for manufacturing the same
WO2020050617A1 (en) Polyethylene terephthalate ultrafiltration membrane and method for producing same
WO2019103482A2 (en) Composition for forming hollow fiber membrane, and hollow fiber membrane production method and hollow fiber membrane using same
US20220040647A1 (en) Porous membranes for high pressure filtration

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15857664

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15857664

Country of ref document: EP

Kind code of ref document: A1