WO2012128470A2 - Polysulfone-based hollow fiber film having excellent strength and water permeability, and method for manufacturing same - Google Patents

Polysulfone-based hollow fiber film having excellent strength and water permeability, and method for manufacturing same Download PDF

Info

Publication number
WO2012128470A2
WO2012128470A2 PCT/KR2012/000789 KR2012000789W WO2012128470A2 WO 2012128470 A2 WO2012128470 A2 WO 2012128470A2 KR 2012000789 W KR2012000789 W KR 2012000789W WO 2012128470 A2 WO2012128470 A2 WO 2012128470A2
Authority
WO
WIPO (PCT)
Prior art keywords
polysulfone
hollow fiber
spinning
fiber membrane
industrial
Prior art date
Application number
PCT/KR2012/000789
Other languages
French (fr)
Korean (ko)
Other versions
WO2012128470A9 (en
WO2012128470A4 (en
WO2012128470A3 (en
Inventor
박진신
정종호
허미
Original Assignee
주식회사 휴비스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 휴비스 filed Critical 주식회사 휴비스
Publication of WO2012128470A2 publication Critical patent/WO2012128470A2/en
Publication of WO2012128470A3 publication Critical patent/WO2012128470A3/en
Publication of WO2012128470A4 publication Critical patent/WO2012128470A4/en
Publication of WO2012128470A9 publication Critical patent/WO2012128470A9/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • B01D69/087Details relating to the spinning process
    • B01D69/0871Fibre guidance after spinning through the manufacturing apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/66Polymers having sulfur in the main chain, with or without nitrogen, oxygen or carbon only
    • B01D71/68Polysulfones; Polyethersulfones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • B01D69/087Details relating to the spinning process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/02Hydrophilization
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/022Asymmetric membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/026Sponge structure

Definitions

  • the present invention relates to a hollow fiber membrane and a method for manufacturing the same, and more particularly, to a polysulfone-based hollow fiber membrane and a method of manufacturing the improved water permeability and strength.
  • Separation membrane refers to a material having a selective permeability to separate the undissolved particles from the fluid.
  • the membrane is divided into two types: flat membrane and hollow fiber membrane. Hollow fiber membranes are most used for water treatment because they have high filtration efficiency within the same volume.
  • Hollow fiber membranes can be classified into two types according to the manufacturing method, which can be broadly classified into nonsolvent induced phase preparation process (NIPS) method using non-solvent and thermally induced phase preparation process (TIPS) method manufactured using heat.
  • NIPS nonsolvent induced phase preparation process
  • TIPS thermally induced phase preparation process
  • the membrane prepared by the NIPS method can give a variety of changes to the spinning conditions to form a variety of structures, particularly asymmetrical structure of the membrane, it is easy to adjust the pore size by adding various additives, hydrophilization to the membrane There is an advantage to obtain a high water permeability by imparting, but generally has a disadvantage of weak strength.
  • the separator prepared by the TIPS method is generally the same structure on the outside and inside the surface of the separator, the high strength of the separator can be widely used mainly in the industry.
  • fluorine-based polymers have been introduced and applied to fluorine-based hollow fiber membranes having excellent strength.
  • the TIPS method has the advantage of obtaining high strength properties, but it is difficult to control pore size easily and difficult to solution hydrophobic and hydrophilic additives of fluorine-based polymers. Has a problem of falling.
  • the general characteristics required for hollow fiber membranes for water treatment are as follows. First of all, the characteristics affecting the separation function are appropriate porosity (number of empty holes) for the purpose of separation efficiency, uniform pore distribution for the purpose of improving the fractional accuracy, and optimum pore size to effectively separate the separation object. To be required. Next, as material properties, chemical resistance, chemical resistance, heat resistance, etc. to chemical treatment are required. In addition, there is a need for excellent mechanical strength and water permeability associated with operating costs to extend the service life due to characteristics affecting the driving ability.
  • Polysulfone hollow fiber membranes developed in the prior art have a high water permeability due to relatively hydrophilic material characteristics than fluorinated resins, but due to the low mechanical strength, periodic backwashing is required, which is problematic for industrial use. Is being used by.
  • vinylidene fluoride-based hollow fiber membranes which are fluorine-based resins having mechanical strength superior to those of polysulfone-based resins.
  • the moldability is not good, and because of the hydrophobicity, the water permeability is significantly low.
  • Korean Patent No. 129816 discloses a membrane manufacturing process in which a spinning nozzle is modified to use a triple nozzle, and a polymer solution composition and solidification rate are controlled to suppress macropores to enhance strength.
  • the triple nozzle has a disadvantage in that the manufacturing method is more complicated than a single nozzle, and the manufacturing cost is high due to supplementation of additional equipment.
  • the separator was made of only fine micropores without macropores by controlling the spinning conditions without changing the composition and ratio of the spinning solution or introducing additional processes. It can be seen that the permeability is not significantly superior to the conventional membrane.
  • the research group of the present inventors invented an industrial hollow fiber membrane which maintains excellent permeability by using a polysulfone polymer having good hydrophilicity and enhanced the weak mechanical strength of the conventional polysulfone polymer.
  • An object of the present invention is to provide a polysulfone-based hollow fiber membrane having excellent strength and water permeability.
  • Another object of the present invention is to provide a method for producing a polysulfone hollow fiber membrane having excellent strength and water permeability.
  • the present invention is 20 to 25% by weight of a polysulfone resin (A), 40 to 50% by weight of an organic solvent (B) and a hydrophilic additive (C) 30
  • a polysulfone hollow fiber membrane comprising 35% by weight, wherein the hollow fiber membrane is an asymmetric sponge structure in which the pore size is continuously increased from the outer surface layer to the inner surface layer, and the ratio of the pore sizes of the outer surface layer and the inner surface layer is 1: It provides a polysulfone hollow fiber membrane, characterized in that 10 to 1: 10000.
  • the polysulfone hollow fiber membrane has a strength of 800 gf / ⁇ or more and a water permeability of 2,000 L / m 2 * kgf * h.
  • the polysulfone resin (A) is polysulfone or polyisulfone
  • the organic solvent (B) is dimethyl acetamide (dimethylacetamide, DMAc), dimethyl formamide (DMF), Chloroform, N-methyl-2-pyrrolidone (NMP / N-Methyl-2-Pyrrolidone), dimethyl sulfoxide (Dimethylsulfoxide), and mixtures thereof
  • the hydrophilic additive C
  • Polyvinylpyrrolidone weight average molecular weight Mw: 15,000 to 90,000
  • polyethylene glycol Mw: 200 to 1,000
  • ethylene glycol ethylene glycol
  • methyl alcohol, glycerin polyvinyl alcohol
  • cellulose acetate polyvinyl alcohol
  • polyvinyl alcohol sodium chloride
  • lithium chloride lithium chloride
  • polypropylene And glycol castor oil
  • zinc chloride and mixtures thereof.
  • the present invention is prepared a spinning solution containing a polysulfone resin (A), an organic solvent (B), and a hydrophilic additive (C) Doing; Preparing an internal coagulating solution; Spinning the spinning stock solution and the internal coagulating solution through a double nozzle; Forming organic pores by phase-conversion with the nonsolvent in the coagulation bath and the cleaning bath by the organic solvent (B) and the hydrophilic additive (C); And a winding step, wherein the forming of the pores provides a method for producing a polysulfone-based hollow fiber membrane, wherein the total residence time in the coagulation bath and the cleaning bath is radiated in excess of 90 seconds.
  • a spinning solution containing a polysulfone resin (A), an organic solvent (B), and a hydrophilic additive (C) Doing; Preparing an internal coagulating solution; Spinning the spinning stock solution and the internal coagulating solution through a double nozzle; Forming organic pores by phase-conversion with the nonsolvent in
  • the residence time in the coagulation bath of the spinning step is characterized in that more than 15 seconds.
  • the coagulation bath temperature of the spinning step is characterized in that 50 to 70 °C.
  • the present invention provides a polysulfone hollow fiber membrane having an asymmetric sponge structure in which no pinholes or finger structures are formed and the pores of the inner surface layer are larger than the outer surface layer, and the hollow fiber membrane of the present invention has excellent water permeability and strength.
  • FIG. 3 is an electrophotograph obtained by magnifying a cross section of the hollow fiber membrane according to Example 2 with a scanning electron microscope 50 times.
  • FIG. 3 is an electrophotograph obtained by magnifying a cross section of the hollow fiber membrane according to Example 2 with a scanning electron microscope 50 times.
  • Figure 4 is an electrophotographic measurement of the inner surface of the hollow fiber membrane according to Example 2 magnified 90 times with a scanning electron microscope.
  • Example 5 is an electrophotographic image of an outer surface of a hollow fiber membrane according to Example 2, at 30,000 times magnification, measured by a scanning electron microscope.
  • FIG. 6 is an electrophotograph obtained by magnifying a cross section of a hollow fiber membrane according to Example 3 with a scanning electron microscope 400 times.
  • FIG. 6 is an electrophotograph obtained by magnifying a cross section of a hollow fiber membrane according to Example 3 with a scanning electron microscope 400 times.
  • FIG. 7 is an electrophotographic image of the inner surface of a hollow fiber membrane according to Example 3 at 90 times magnification with a scanning electron microscope.
  • Example 8 is an electrophotographic image of an outer surface of a hollow fiber membrane according to Example 3, at 30,000 times magnification, measured by a scanning electron microscope.
  • FIG. 9 is an electrophotograph obtained by magnifying a cross section of a hollow fiber membrane according to Comparative Example 7 with a scanning electron microscope.
  • 11 is an electrophotographic measurement of an outer surface of a hollow fiber membrane according to Comparative Example 7 magnified 30,000 times with a scanning electron microscope.
  • Polysulfone hollow fiber membrane of the present invention is a spinning solution containing 20 to 25% by weight of polysulfone resin (A), 40 to 50% by weight of an organic solvent (B), and 30 to 35% by weight of a hydrophilic additive (C) and It is a feature of the invention to be produced by spinning the internal coagulating solution.
  • polysulfone resin of the present invention polysulfone, polyethersulfon, and mixtures thereof may be used as the base resin.
  • Polysulfone resins have the advantages of excellent chemical resistance and heat resistance, wide pH range applied, and excellent solubility in organic solvents, making it easy to prepare a spinning solution (dope).
  • the polysulfone resin (A) is preferably included in 20 to 25% by weight relative to the total weight of the spinning solution.
  • the polysulfone resin is 20 wt% or less, the hollow fiber is not formed due to the low viscosity, and it is difficult to control the air gap, resulting in poor radioactivity.
  • the polysulfone resin is 25 wt% or more, the solubility in the spinning stock solution is decreased. May occur or the appearance may be uneven.
  • the organic solvent (B) of the present invention used to dissolve the polysulfone resin (A) is dimethyl acetamide (dimethylacetamide, DMAc), dimethyl formamide (DMF), chloroform, N-methyl-2- It is preferable to use one or more selected from the group consisting of pyrrolidone (N-Methyl-2-Pyrrolidone) and dimethyl sulfoxide (Dimethylsulfoxide).
  • the organic solvent is contained in 30 to 60% by weight, preferably 40 to 50% by weight relative to the total weight of the spinning solution.
  • the present invention includes a hydrophilic additive to impart hydrophilization or control the pore size to the hollow fiber to be produced.
  • the hydrophilic additive include polyvinylpyrrolidone (weight average molecular weight Mw: 15,000 to 90,000), polyethylene glycol (Mw: 200 to 1,000), ethylene glycol, methyl alcohol, glycerin, cellulose acetate, polyvinyl alcohol, sodium chloride, chloride Hydrophilic additives such as lithium, polypropylene glycol, castor oil, and zinc chloride.
  • the hydrophilic additives affect the pore formation and hydrophilicity of the hollow fiber and are closely related to the water permeability. More specifically, the hydrophilic additive present in the spinning solution during the stay in the coagulation bath after the spinning solution is discharged from the double-tubular nozzle may absorb the non-solvent of the coagulation bath, thereby facilitating phase inversion with the solvent of the spinning solution. In addition, the hydrophilic additive acts as a swelling agent to increase the pore size, or cross-linkage of the hydrophilic group in the polysulfone resin to increase the hydrophilicity of the hollow fiber.
  • the hydrophilic additive (C) is contained in 10 to 40% by weight, preferably 20 to 35% by weight relative to the total weight of the spinning solution.
  • the content of the hydrophilic additive (C) is less than 10% by weight, pores are not formed inside the hollow fiber, so that the water permeability is remarkably lowered. In particular, as illustrated in FIG. 9, a finger-like structure may be formed. Can be.
  • the large pores (Pin-Hole) is formed may be reduced durability and pressure resistance.
  • Method for producing a polysulfone hollow fiber membrane of the present invention comprises the steps of preparing a spinning stock solution containing a polysulfone resin (A), an organic solvent (B), and a hydrophilic additive (C); Preparing an internal coagulating solution; Spinning the spinning stock solution and the internal coagulating solution through a double nozzle; Forming organic pores by phase-conversion with the nonsolvent in the coagulation bath and the cleaning bath by the organic solvent (B) and the hydrophilic additive (C); And a winding step.
  • the polysulfone resin (A), the organic solvent (B), and the hydrophilic additive (C) are dissolved at a compounding temperature of 30 to 40 ° C. and a stirring speed of 80 to 120 rpm for 12 to 24 hours, and then -5 to Degassing under a vacuum of -1 kgf for 12 to 24 hours to remove bubbles in the spinning stock solution (DOPE).
  • DOPE spinning stock solution
  • the internal coagulation solution is used to form pores inside the hollow fiber membrane, and the solvent is dimethyl acetamide (DMAc), dimethyl formamide (DMF), chloroform, tetrahydrofuran, N in non-solvent water.
  • DMAc dimethyl acetamide
  • DMF dimethyl formamide
  • chloroform chloroform
  • tetrahydrofuran N in non-solvent water.
  • the blending ratio is formulated in an amount of 0 to 30% by weight, preferably 5 to 25% by weight, and 70 to 100% by weight, preferably 75 to 95% by weight, of an organic solvent.
  • the mixing temperature of the internal coagulation solution is 50 to 70 °C, the stirring speed is mixed for 12 to 24 hours at 80 to 120 rpm, and then degassed for 6 to 12 hours under a vacuum of -5 to -1 kgf bubbles in the core (Core) Remove it.
  • the spinning equipment used in the spinning step of the spinning stock solution and the internal coagulating solution is a spinning stock solution (Dope) and internal coagulating solution (Core) manufacturing tank, nozzle holder, primary coagulation tank, washing tank, winding tank, and the specimen after the spinning finish (Sample) is composed of a washing tank for removing the residual organic solvent, more specifically the spinning process schematic diagram of the present invention related to this is shown as an example in FIG.
  • the radiation source solution (Dope) and the internal coagulation solution (Core) production tank, nozzle holder process line to build a fruit system can be controlled and maintained in the temperature range of 25 to 200 °C.
  • the nozzle holder is manufactured to be movable up, down, left, and right to adjust an air gap between the nozzle and the coagulation bath.
  • the air gap is a section in which the primary phase change occurs, and the phase change is performed by exchanging the organic solvent in the atmospheric moisture and the radiation source solution.
  • the coagulation bath is installed with a multi-stage Gorod Roller in the coagulation bath to extend the phase change time to the place where the secondary phase conversion occurs to extend the residence time of the membrane.
  • the residence time can be adjusted by providing a multi-stage high roller in the cleaning tank.
  • the residence time of the coagulation bath is more than 10 seconds, preferably 15 seconds or more. If the residence time of the coagulation bath is less than 10 seconds, the secondary phase inversion is not sufficiently achieved, the pore formation is lowered and the water permeability falls.
  • the residence time of the washing tank is 80 seconds or more, preferably 90 seconds or more.
  • Retention step of the washing tank is a third phase conversion process and the washing of the internal coagulant is carried out in which the phase change of the spinning stock solution is not completed in the coagulation tank. If the residence time of the cleaning tank is less than 80 seconds, there is a problem that residual organic solvent remains because the washing of the additive and the internal coagulant is not complete.
  • the total residence time of the coagulation bath and the washing bath is 90 seconds or more, preferably 105 seconds or more.
  • the longer the total residence time the better the phase conversion and cleaning, but the longer the production process, the lower the productivity.
  • the hollow yarn is discharged by spinning the prepared spinning stock solution and the internal coagulating solution using a double-tubular nozzle, and a primary phase conversion is performed in an air gap. Secondary phase transitions are then made through the coagulation bath. After removing the additives and the residual organic solvent in the washing tank is transported to the take-up tank, the spinning process is completed.
  • the length of the air gap is 10 cm or less, preferably 1 to 5 cm. If the air gap exceeds 10 cm, the primary phase of the organic solvent in the atmospheric water vapor and DOPE is sufficient to increase the porosity and increase the water permeability, but the hollow fiber twist or single yarn Such as radioactivity may be lowered. On the other hand, if there is no air gap, the radioactivity is excellent, but since the second phase inversion is performed immediately without the first phase inversion, the porosity is lowered, which may cause a problem of decreasing the water permeability.
  • Phase conversion is the principle that the organic solvent and hydrophilization additive in the radiation source solution (DOPE) are taken out, and the voids are filled with the non-solvent in the external coagulation bath to form pores.
  • DOPE radiation source solution
  • the temperature of the external coagulation bath is excessively high, exceeding 70 °C, the atmospheric humidity is oversaturated, so that single yarns occur, the radioactivity may be lowered, or the working environment may be poor.
  • the permeation rate of the non-solvent refers to the rate at which the ultrapure water of the coagulation bath penetrates into the spinning solution
  • the permeation rate of the solvent refers to the speed at which the solvent inside the spinning solution flows out into the coagulation bath. That is, the sponge structure can be formed only if the ultrapure water of the coagulation bath rapidly penetrates into the spinning solution.
  • the higher the temperature of the coagulation bath the higher the permeation rate and the phase change rate is also increased.
  • the coagulation bath and the washing tank water is filled with water or a mixture of water and an organic solvent, the temperature is 30 to 80 °C, more preferably 50 Maintaining at from 70 to 70 °C is characterized by the invention.
  • the cross section of the hollow fiber for water treatment can be largely divided into a finger structure and a sponge structure.
  • FIG. 6 illustrates a finger structure.
  • the outermost layer skin layer
  • the water permeability is remarkably inferior. This is because it melts and forms large pores in the cross section, and thus the pressure resistance is weakened, and when the external surface leaks, contaminants pass through as they are and thus do not function as a separation membrane.
  • the sponge structure may be divided into a symmetric membrane structure and an asymmetric membrane structure
  • the symmetric membrane structure is a structure with the same pore size of the outer surface and the inner surface
  • the asymmetric membrane structure is a structure having a different pore size of the outer surface and the inner surface
  • It can be defined as. 3 illustrates a symmetric membrane structure as an example of a sponge structure.
  • the asymmetric membrane has the advantage of having a high channel resistance compared to the symmetric membrane with less flow resistance.
  • the cross-sectional structure is formed in a compact structure than the finger structure is excellent in pressure resistance and durability.
  • the inventor of the present invention produced a hollow fiber membrane having the following structural features by the above-mentioned manufacturing method.
  • the figure is a scanning electron micrograph showing the hollow fiber membrane of the present invention
  • the hollow fiber membrane of the present invention has a finger structure (Fig. 9) or macropores (Fig. 6) of the prior art ) Is not formed, and the pore size increases from the outer surface to the inner surface, and in particular, the pore size of the outermost thin layer among the inner surface layers is 2 to 200 ⁇ m, and has a very large structural feature.
  • a spinning solution was prepared by dissolving 20% by weight of polyisulfone (Mw: 30,000 to 70,000), 6.2% by weight of polyvinylpyrrolidone, 23.4% by weight of polyethylene glycol, 47.9% by weight of dimethyl acetamide, and 2.6% by weight of lithium chloride. . 90 wt% of dimethyl acetamide and 10 wt% of ultrapure water were stirred and dissolved to prepare an internal coagulation solution. The spinning stock solution and the internal coagulating solution were stirred at 100 rpm at 35 ° C. for 24 hours, and then degassed under vacuum of ⁇ 1 kgf for 24 hours to remove bubbles.
  • the temperature of the spinning stock solution was maintained at 35 ° C and the internal coagulating solution at 60 ° C. Spinning.
  • the spun hollow fiber was continuously passed through a 2 cm air gap, and then passed through a coagulation bath and a washing bath containing 70 ° C. ultrapure water, and then wound up in a winder.
  • the residence time of the coagulation bath was 20 seconds
  • the residence time of the cleaning bath was 90 seconds.
  • the hollow fiber wound on the winder was cut to a length of 1 m and immersed in a water bath containing 60 ° C. ultrapure water for 24 hours, and then dried in an 80 ° C. hot air dryer for 24 hours.
  • a hollow fiber specimen was prepared in the same manner as in Example 2 except that the temperature of the coagulation bath was 50 ° C.
  • a spinning solution was prepared by dissolving 16% by weight of polyisulfone (Mw: 30,000 to 70,000), 7.5% by weight of polyvinylpyrrolidone, 13.5% by weight of polyethylene glycol, 61.8% by weight of dimethyl acetamide, and 1.2% by weight of lithium chloride. Except that was prepared in the hollow fiber specimens in the same manner as in Example 2.
  • a spinning stock solution was prepared by dissolving 13.7 wt% of polyisulfone (Mw: 30,000-70,000), 7.5 wt% of polyvinylpyrrolidone, 16.1 wt% of polyethylene glycol, 62.1 wt% of dimethyl acetamide, and 0.6 wt% of lithium chloride. Except that was prepared in the hollow fiber specimens in the same manner as in Example 2.
  • Hollow fiber specimens were prepared in the same manner as in Example 2 except that the temperature of the coagulation bath was 25 ° C.
  • Hollow fiber specimens were prepared in the same manner as in Example 2 except that the coagulation bath residence time was 10 seconds.
  • Hollow fiber specimens were prepared in the same manner as in Example 2 except that the coagulation bath residence time was 5 seconds.
  • Tensile tester Instron 5564 was used under the conditions of the initial sample length of 100 mm and the crosshead speed of 200 mm / min in an atmosphere of temperature 25 °C, 50% relative humidity. Curved grips are used to minimize damage to the bite points.
  • Water permeability Measure the amount of super pure water passed by applying a constant pressure to the unit area. At this time, ultrapure water was maintained at 25 ° C., and measured under an atmosphere of 25 ° C. and 50% relative humidity.
  • Average pore The average pore was measured by PMI's non-mercury capillary pressure gauge CF-1000 Porometer (AEL, USA) by the half-dry method according to ASTM F316-03. Perfluoropolyester (brand name: Galwick) was used for the test solution.
  • Fractional performance (0.1 ⁇ m Bead removal rate): 0.1 ⁇ m diameter latex beads (Latex Beads) are diluted in 100 ppm of ultrapure water, permeated at a pressure of 1 kgf for a certain time, and the concentration of latex beads is measured to evaluate the fractional performance. .
  • Examples 1 to 3 of the present invention have a strength of 800 gf / gf or more, and at the same time, a water permeability of 2,000 L / m 2 * kgf * h or more.
  • the strength increases, but the water permeability decreases due to a decrease in the space for forming pores.
  • Example 2 of the present invention the same strength as in Example 1 is maintained while maintaining the strength of 850 gf / ⁇ . It has a high water permeability of 2,000 LMH. This is a result obtained by lengthening the residence time in comparison with Comparative Examples 8 and 9 and making the coagulation bath temperature higher than Comparative Example 7.
  • Comparative Examples 1 to 5 the composition of the spinning solution is out of the preferred content range of the present invention can be seen that the water permeability is lowered or the strength is significantly reduced
  • Comparative Example 6 is a polysulfone resin dash conventional as a base resin Polyvinylidene fluoride (PVDF: 300,000 to 500,000) used for the production of hollow fiber was applied, and the water permeability was remarkably reduced.
  • the content of the polysulfone-based resin was less than the preferred content range of the present invention, and the content of the organic solvent was more than the preferred content range of the present invention, indicating that the strength and the removal rate of 0.1 ⁇ m were lowered. have.
  • Comparative Example 7 can be seen that the water permeability and strength at the same time due to the low coagulation bath temperature, Comparative Examples 8 to 9 are poor pore formation due to poor pore formation because the residence time of the coagulation bath is short It can be seen that the transmittance is reduced.

Abstract

The present invention relates to a polysulfone-based hollow fiber film having 20-25 wt% of a polysulfone resin (A), 45-55 wt% of an organic solvent (B), and 30-35 wt% of a hydrophilic additive (C), the hollow fiber film having an asymmetric sponge structure, in which pore sizes increase continuously going from an outer surface layer to an inner surface layer, and the ratio of the pore sizes of the outer surface layer and the inner surface layer is 1:10-1:10000, and a method for manufacturing the polysulfone-based hollow fiber film comprises the steps of: preparing a spinning undiluted solution including a polysulfone-based resin (A), an organic solvent (B), and a hydrophilic additive (C); preparing an inner coagulant; spinning the spinning undiluted solution and the inner coagulant; forming pores; and winding, wherein the step for forming the pores is spun when the total retention time in the coagulation set and washing set exceeds 90 seconds.

Description

강도 및 수투과도가 우수한 폴리설폰계 중공사막 및 그 제조방법Polysulfone hollow fiber membrane with excellent strength and water permeability and its manufacturing method
본 발명은 중공사막 및 그 제조방법에 관한 것으로, 보다 구체적으로는 수투과도 및 강도가 개선된 폴리설폰계 중공사막 및 그 제조방법에 관한 것이다.The present invention relates to a hollow fiber membrane and a method for manufacturing the same, and more particularly, to a polysulfone-based hollow fiber membrane and a method of manufacturing the improved water permeability and strength.
분리막은 유체로부터 용해되지 않은 입자를 분리하는 선택투과 능력을 가진 소재를 말한다. 분리막의 형태는 크게 평막, 중공사막 두 가지로 나뉜다. 중공사막은 동일한 부피 내에 막의 표면적이 커 여과효율이 높아 수 처리용으로 가장 많이 사용되고 있다. Separation membrane refers to a material having a selective permeability to separate the undissolved particles from the fluid. The membrane is divided into two types: flat membrane and hollow fiber membrane. Hollow fiber membranes are most used for water treatment because they have high filtration efficiency within the same volume.
중공사막은 제조 방법에 따라 크게 두 가지로 구분할 수 있는데 비 용매를 이용한 상 전환 법인 NIPS(Nonsolvent induced phase preparation process) 공법과 열을 이용하여 제조하는 TIPS(Thermally induced phase preparation process) 공법으로 크게 구분할 수 있다. Hollow fiber membranes can be classified into two types according to the manufacturing method, which can be broadly classified into nonsolvent induced phase preparation process (NIPS) method using non-solvent and thermally induced phase preparation process (TIPS) method manufactured using heat. have.
상기 NIPS 공법으로 제조된 분리막은 방사 조건에 여러 가지 변화를 주어 분리막의 다양한 구조 특히 비대칭 구조를 형성할 수 있고, 여러 첨가제를 추가하여 기공(Pore) 사이즈를 조절하기 용이하며, 분리막에 친수화를 부여하여 높은 수투과도를 얻을 수 있는 장점이 있으나 일반적으로 강도가 약하다는 단점을 가진다. The membrane prepared by the NIPS method can give a variety of changes to the spinning conditions to form a variety of structures, particularly asymmetrical structure of the membrane, it is easy to adjust the pore size by adding various additives, hydrophilization to the membrane There is an advantage to obtain a high water permeability by imparting, but generally has a disadvantage of weak strength.
반면, 상기 TIPS 공법으로 제조된 분리막은 일반적으로 분리막의 표면 외부와 내부의 구조가 동일하고, 분리막의 강도가 높아 주로 산업용에 널리 사용될 수 있다. 특히, 최근에는 불소계 폴리머를 도입하여 강도가 우수한 불소계 중공사 분리막에 적용되어 사용되고 있다. TIPS 공법은 고강도의 물성 획득이 가능하다는 장점이 있으나 기공 사이즈를 쉽게 조절하기 힘들고, 불소계 폴리머의 소수성 및 친수화 첨가제를 솔루션화 시키기 어렵다는 단점을 가지므로 일반적으로 술폰계열의 폴리머에 비해 수투과도가 현격히 떨어지는 문제점을 가진다. On the other hand, the separator prepared by the TIPS method is generally the same structure on the outside and inside the surface of the separator, the high strength of the separator can be widely used mainly in the industry. In particular, recently, fluorine-based polymers have been introduced and applied to fluorine-based hollow fiber membranes having excellent strength. The TIPS method has the advantage of obtaining high strength properties, but it is difficult to control pore size easily and difficult to solution hydrophobic and hydrophilic additives of fluorine-based polymers. Has a problem of falling.
수 처리용 중공사막으로 요구되는 일반적인 특성은 다음과 같다. 우선, 분리 기능에 영향을 주는 특성으로 분리 효율을 목적으로 하는 적절한 기공률 (빈 구멍의 수), 분획 정밀도 향상을 목적으로 하는 균일한 기공 분포도, 분리 대상물을 효과적으로 분리해 낼 수 있는 최적 기공크기를 갖는 것이 요구된다. 다음으로는, 소재 특성으로, 화학 약품 처리에 대한 내약품성, 내화학성, 내열성 등이 요구된다. 또한, 운전 능력에 영향을 주는 특성으로 사용 수명을 연장시키기 위한 우수한 기계적 강도, 운전비용과 관련이 있는 수투과도가 요구된다.The general characteristics required for hollow fiber membranes for water treatment are as follows. First of all, the characteristics affecting the separation function are appropriate porosity (number of empty holes) for the purpose of separation efficiency, uniform pore distribution for the purpose of improving the fractional accuracy, and optimum pore size to effectively separate the separation object. To be required. Next, as material properties, chemical resistance, chemical resistance, heat resistance, etc. to chemical treatment are required. In addition, there is a need for excellent mechanical strength and water permeability associated with operating costs to extend the service life due to characteristics affecting the driving ability.
종래부터 개발된 폴리설폰계 중공사막은 불소계 수지보다 비교적 친수성인 소재 특성으로 높은 수투과도를 지녔지만, 기계적 강도가 낮아 주기적인 역 세척의 실시가 요구되므로 산업용으로 사용하기에는 문제가 있어 주로 가정용 정수기 시장에서 사용되고 있다.Polysulfone hollow fiber membranes developed in the prior art have a high water permeability due to relatively hydrophilic material characteristics than fluorinated resins, but due to the low mechanical strength, periodic backwashing is required, which is problematic for industrial use. Is being used by.
따라서 최근 산업용으로 사용하기 위해 폴리설폰계 수지에 비해 우수한 기계적 강도를 갖는 불소계 수지인 불화 비닐리덴계 중공사막에 대한 연구가 활발히 이루어지고 있다. 그러나 비 점착성 및 상용성 저하로 인하여 성형성이 좋지 않으며, 소수성을 가지므로 수투과도가 현저히 낮은 문제점을 가진다. Therefore, in recent years, research has been actively conducted on vinylidene fluoride-based hollow fiber membranes, which are fluorine-based resins having mechanical strength superior to those of polysulfone-based resins. However, due to the non-adhesiveness and the lowering of the compatibility, the moldability is not good, and because of the hydrophobicity, the water permeability is significantly low.
상기 문제점을 해결하기 위하여 미국등록특허 제4,871,494호에서는 NIPS 공법으로 폴리설폰계 분리막 제조 시, 고분자의 농도를 증가시켜, 거대기공 생성을 억제하여 강도를 증진시키기 위한 제조 공정이 시도되었으나, 수투과도가 저하되어 분리막 성능이 저하되는 것을 알 수 있다. In order to solve the above problems, US Patent No. 4,871,494 has been attempted to increase the concentration of the polymer when the polysulfone-based membrane is manufactured by the NIPS method to increase the concentration of the macropore to increase the strength, but the water permeability It can be seen that the degradation of the membrane performance.
다른 방법으로는, 한국등록특허 제129816호에서는 방사 노즐을 개조하여 3중 노즐을 이용하고, 고분자 용액 조성 및 응고속도를 조절하여 거대기공을 억제하여 강도를 증진시킨 분리막 제조 공정을 개시하고 있으나, 삼중 노즐은 단일노즐에 비해 제조공법이 복잡하고, 추가적인 설비의 보완으로 제조단가가 높은 단점이 있다.As another method, Korean Patent No. 129816 discloses a membrane manufacturing process in which a spinning nozzle is modified to use a triple nozzle, and a polymer solution composition and solidification rate are controlled to suppress macropores to enhance strength. The triple nozzle has a disadvantage in that the manufacturing method is more complicated than a single nozzle, and the manufacturing cost is high due to supplementation of additional equipment.
또한, 최근 한국특허출원 제2010-0078481호에서와 같이 방사용액 조성 및 비율 변화나 추가적인 공정도입 없이, 방사조건의 조절에 의하여 거대기공이 없이 조밀한 미세기공으로만 이루어진 분리막을 제조하였으나, 강도 및 수투과도가 종래의 분리막에 비하여 현저히 우수한 성능을 발휘하지 못한다는 점을 알 수 있다.In addition, as in the recent Korean Patent Application No. 2010-0078481, the separator was made of only fine micropores without macropores by controlling the spinning conditions without changing the composition and ratio of the spinning solution or introducing additional processes. It can be seen that the permeability is not significantly superior to the conventional membrane.
이에 대해, 본 발명자들의 연구 그룹은 친수성이 양호한 폴리설폰계 고분자를 이용하여 탁월한 투과성능을 유지하며, 종래의 폴리설폰계 고분자의 취약한 기계적 강도를 증진시킨 산업용 중공사막을 발명하였다.On the other hand, the research group of the present inventors invented an industrial hollow fiber membrane which maintains excellent permeability by using a polysulfone polymer having good hydrophilicity and enhanced the weak mechanical strength of the conventional polysulfone polymer.
본 발명의 목적은 우수한 강도 및 수투과도를 가지는 폴리설폰계 중공사막을 제공하기 위한 것이다.An object of the present invention is to provide a polysulfone-based hollow fiber membrane having excellent strength and water permeability.
본 발명의 다른 목적은 우수한 강도 및 수투과도를 가지는 폴리설폰계 중공사막의 제조방법을 제공하기 위한 것이다.Another object of the present invention is to provide a method for producing a polysulfone hollow fiber membrane having excellent strength and water permeability.
본 발명의 상기 목적 및 기타의 목적들은 하기 설명되는 본 발명에 의하여 모두 달성될 수 있다.The above and other objects of the present invention can be achieved by the present invention described below.
상기 기술적 과제를 해결하기 위하여, 본 발명의 일 구체예에 따르면, 본 발명은 폴리설폰계 수지(A) 20 내지 25 중량%, 유기용매(B) 40 내지 50 중량% 및 친수성 첨가제(C) 30 내지 35 중량%를 포함하는 폴리설폰계 중공사막으로서, 상기 중공사막은 외부 표면층에서 내부 표면층으로 갈수록 연속적으로 기공크기가 증대되는 비대칭 스폰지 구조이고, 외부 표면층과 내부 표면층의 기공크기의 비율이 1:10 내지 1:10000인 것을 특징으로 하는 폴리설폰계 중공사막을 제공한다.In order to solve the above technical problem, according to an embodiment of the present invention, the present invention is 20 to 25% by weight of a polysulfone resin (A), 40 to 50% by weight of an organic solvent (B) and a hydrophilic additive (C) 30 A polysulfone hollow fiber membrane comprising 35% by weight, wherein the hollow fiber membrane is an asymmetric sponge structure in which the pore size is continuously increased from the outer surface layer to the inner surface layer, and the ratio of the pore sizes of the outer surface layer and the inner surface layer is 1: It provides a polysulfone hollow fiber membrane, characterized in that 10 to 1: 10000.
본 발명의 다른 구체예에 따르면, 상기 폴리설폰계 중공사막은 강도가 800 gf/本 이상이며, 수투과도가 2,000 ℓ/m2*kgf*h인 것을 특징으로 한다.According to another embodiment of the present invention, the polysulfone hollow fiber membrane has a strength of 800 gf / 本 or more and a water permeability of 2,000 L / m 2 * kgf * h.
본 발명의 또 다른 구체예에 따르면, 상기 폴리설폰계 수지(A)는 폴리설폰 또는 폴리이서설폰이며, 상기 유기용매(B)는 디메틸 아세트 아마이드(dimethylacetamide, DMAc), 디메틸 포름 아미드(DMF), 클로로포름(chloroform), N-메틸-2-피롤리돈(NMP/N-Methyl-2-Pyrrolidone), 디메틸설폭사이드(Dimethylsulfoxide), 및 이들의 혼합물로 이루어진 군으로부터 선택되고, 상기 친수성 첨가제(C)는 폴리비닐피롤리돈(중량평균분자량 Mw: 15,000∼90,000), 폴리 에틸렌 글리콜(Mw: 200∼1,000), 에틸렌 글리콜, 메틸알콜, 글리세린, 셀룰로즈아세테이트, 폴리비닐알코올, 염화나트륨, 염화리튬, 폴리프로필렌글리콜, 피마자유, 염화아연, 및 이들의 혼합물로 이루어진 군으로부터 선택되는 것을 특징으로 한다.According to another embodiment of the present invention, the polysulfone resin (A) is polysulfone or polyisulfone, the organic solvent (B) is dimethyl acetamide (dimethylacetamide, DMAc), dimethyl formamide (DMF), Chloroform, N-methyl-2-pyrrolidone (NMP / N-Methyl-2-Pyrrolidone), dimethyl sulfoxide (Dimethylsulfoxide), and mixtures thereof, and the hydrophilic additive (C) Polyvinylpyrrolidone (weight average molecular weight Mw: 15,000 to 90,000), polyethylene glycol (Mw: 200 to 1,000), ethylene glycol, methyl alcohol, glycerin, cellulose acetate, polyvinyl alcohol, sodium chloride, lithium chloride, polypropylene And glycol, castor oil, zinc chloride, and mixtures thereof.
본 발명의 다른 기술적 과제를 해결하기 위하여, 본 발명의 일 구체예에 따르면, 본 발명은 폴리설폰계 수지(A), 유기용매(B), 및 친수성 첨가제(C)를 포함하는 방사원액을 준비하는 단계; 내부응고액을 준비하는 단계; 상기 방사원액 및 내부응고액을 이중노즐을 통하여 방사하는 단계; 상기 유기용매(B) 및 상기 친수성 첨가제(C)가 응고조 및 세정조에서 비용매와 상전환을 이루어 기공을 형성하는 단계; 및 권취단계를 포함하고, 상기 기공을 형성하는 단계는 상기 응고조 및 세정조에서 총 체류시간이 90초를 초과하여 방사되는 것을 특징으로 하는 폴리설폰계 중공사막의 제조방법을 제공한다.In order to solve the other technical problem of the present invention, according to one embodiment of the present invention, the present invention is prepared a spinning solution containing a polysulfone resin (A), an organic solvent (B), and a hydrophilic additive (C) Doing; Preparing an internal coagulating solution; Spinning the spinning stock solution and the internal coagulating solution through a double nozzle; Forming organic pores by phase-conversion with the nonsolvent in the coagulation bath and the cleaning bath by the organic solvent (B) and the hydrophilic additive (C); And a winding step, wherein the forming of the pores provides a method for producing a polysulfone-based hollow fiber membrane, wherein the total residence time in the coagulation bath and the cleaning bath is radiated in excess of 90 seconds.
본 발명의 다른 구체예에 따르면, 상기 방사단계의 응고조에서의 체류시간은 15초를 초과하는 것을 특징으로 한다. According to another embodiment of the invention, the residence time in the coagulation bath of the spinning step is characterized in that more than 15 seconds.
본 발명의 또 다른 구체예에 따르면, 상기 방사단계의 응고조 온도가 50 내지 70 ℃인 것을 특징으로 한다. According to another embodiment of the present invention, the coagulation bath temperature of the spinning step is characterized in that 50 to 70 ℃.
기타 본 발명의 구체예들의 구체적인 사항은 이하의 상세한 설명에 포함되어 있다.Other specific details of embodiments of the present invention are included in the following detailed description.
본 발명은 비대칭 스폰지 구조로서 핀홀 또는 핑거구조가 형성되지 않으며 외부 표면층에 비하여 내부 표면층의 기공이 큰 폴리설폰계 중공사막을 제공하며, 본 발명의 중공사막은 수투과도 및 강도가 우수한 효과를 가진다. The present invention provides a polysulfone hollow fiber membrane having an asymmetric sponge structure in which no pinholes or finger structures are formed and the pores of the inner surface layer are larger than the outer surface layer, and the hollow fiber membrane of the present invention has excellent water permeability and strength.
본 발명의 단순한 변형 내지 변경은 이 분야의 통상의 지식을 가진 자에 의하여 용이하게 실시될 수 있으며 이러한 변형이나 변경은 모두 본 발명의 영역에 포함되는 것으로 볼 수 있다.Simple modifications or changes of the present invention can be easily carried out by those skilled in the art, and all such modifications or changes can be seen to be included in the scope of the present invention.
도 1은 중공사막의 제조 설비 공정 모식도이다.BRIEF DESCRIPTION OF THE DRAWINGS The manufacturing equipment process schematic diagram of a hollow fiber membrane.
도 2는 상 전환 속도에 따른 구조 형성 원리를 도시한 것이다.2 illustrates the principle of structure formation according to the phase switching speed.
도 3은 실시예 2에 따른 중공사막의 단면을 주사전자 현미경으로 50배 확대하여 측정한 전자사진이다.FIG. 3 is an electrophotograph obtained by magnifying a cross section of the hollow fiber membrane according to Example 2 with a scanning electron microscope 50 times. FIG.
도 4는 실시예 2에 따른 중공사막의 내표면을 주사전자 현미경으로 90배 확대하여 측정한 전자사진이다.Figure 4 is an electrophotographic measurement of the inner surface of the hollow fiber membrane according to Example 2 magnified 90 times with a scanning electron microscope.
도 5는 실시예 2에 따른 중공사막의 외표면을 주사전자 현미경으로 30,000배 확대하여 측정한 전자사진이다.5 is an electrophotographic image of an outer surface of a hollow fiber membrane according to Example 2, at 30,000 times magnification, measured by a scanning electron microscope.
도 6은 실시예 3에 따른 중공사막의 단면을 주사전자 현미경으로 400배 확대하여 측정한 전자사진이다.FIG. 6 is an electrophotograph obtained by magnifying a cross section of a hollow fiber membrane according to Example 3 with a scanning electron microscope 400 times. FIG.
도 7은 실시예 3에 따른 중공사막의 내표면을 주사전자 현미경으로 90배 확대하여 측정한 전자사진이다..FIG. 7 is an electrophotographic image of the inner surface of a hollow fiber membrane according to Example 3 at 90 times magnification with a scanning electron microscope. FIG.
도 8은 실시예 3에 따른 중공사막의 외표면을 주사전자 현미경으로 30,000배 확대하여 측정한 전자사진이다.8 is an electrophotographic image of an outer surface of a hollow fiber membrane according to Example 3, at 30,000 times magnification, measured by a scanning electron microscope.
도 9은 비교예 7에 따른 중공사막의 단면을 주사전자 현미경으로 400배 확대하여 측정한 전자사진이다.FIG. 9 is an electrophotograph obtained by magnifying a cross section of a hollow fiber membrane according to Comparative Example 7 with a scanning electron microscope.
도 10은 비교예 7에 따른 중공사막의 내표면을 주사전자 현미경으로 90배 확대하여 측정한 전자사진이다.10 is an electrophotographic image of the inner surface of a hollow fiber membrane according to Comparative Example 7 at 90 times magnification with a scanning electron microscope.
도 11은 비교예 7에 따른 중공사막의 외표면을 주사전자 현미경으로 30,000배 확대하여 측정한 전자사진이다.11 is an electrophotographic measurement of an outer surface of a hollow fiber membrane according to Comparative Example 7 magnified 30,000 times with a scanning electron microscope.
부호의 설명Explanation of the sign
1. 방사원액(dope) 제조 탱크1. Dopant Manufacturing Tank
2. 내부응고제 제조 탱크2. Internal coagulant manufacturing tank
3. 기어펌프3. Gear Pump
4. 이중관형 노즐4. Double tube nozzle
5. 응고조5. Coagulation tank
6. 고뎃 롤러(Godet Roller)6. Godet Roller
7. 가이드 롤러(Guide Roller)7. Guide Roller
8. 수세조8. Flush tank
9. 장력 조절 장치9. Tension control device
10. 트래버스(Traverse)10. Traverse
11. 와인더11.winder
12. 권취조12. Winding tank
이하 본 발명을 보다 구체적으로 설명하기로 한다.Hereinafter, the present invention will be described in more detail.
폴리설폰계 중공사막Polysulfone Hollow Fiber Membrane
본 발명의 폴리설폰계 중공사막은 폴리설폰계 수지(A) 20 내지 25 중량%, 유기용매(B) 40 내지 50 중량%, 및 친수성 첨가제(C) 30 내지 35 중량%를 포함하는 방사원액 및 내부응고액을 방사하여 제조되는 것을 발명의 특징으로 한다.Polysulfone hollow fiber membrane of the present invention is a spinning solution containing 20 to 25% by weight of polysulfone resin (A), 40 to 50% by weight of an organic solvent (B), and 30 to 35% by weight of a hydrophilic additive (C) and It is a feature of the invention to be produced by spinning the internal coagulating solution.
폴리설폰계 수지(A) Polysulfone Resin (A)
본 발명의 폴리설폰계 수지로는 폴리설폰(polysulfon), 폴리이서설폰(polyethersulfon) 및 이들의 혼합물을 기초수지로 사용할 수 있다. 폴리설폰계 수지는 내화학성과 내열성이 우수하고, 적용되는 pH 범위가 넓으며 유기용매에 대한 용해도가 우수하여 방사원액(dope)의 조액이 용이한 장점을 가진다.As the polysulfone resin of the present invention, polysulfone, polyethersulfon, and mixtures thereof may be used as the base resin. Polysulfone resins have the advantages of excellent chemical resistance and heat resistance, wide pH range applied, and excellent solubility in organic solvents, making it easy to prepare a spinning solution (dope).
상기 폴리설폰계 수지(A)는 방사원액 전체중량에 대하여 20 내지 25 중량%로 포함되는 것이 바람직하다. 폴리설폰계 수지가 20 중량% 이하일 때는 점도가 낮아 중공사가 형성되지 않고, 에어갭 조절이 어려워 방사성이 떨어지며, 25 중량% 이상일 때는 방사원액으로의 용해도가 저하되며, 점도가 상승하여 방사 시 단사가 일어나거나 외관이 불균일해질 수 있다.The polysulfone resin (A) is preferably included in 20 to 25% by weight relative to the total weight of the spinning solution. When the polysulfone resin is 20 wt% or less, the hollow fiber is not formed due to the low viscosity, and it is difficult to control the air gap, resulting in poor radioactivity. When the polysulfone resin is 25 wt% or more, the solubility in the spinning stock solution is decreased. May occur or the appearance may be uneven.
유기용매(B)Organic solvent (B)
상기 폴리설폰계 수지(A)를 용해하기 위하여 사용되는 본 발명의 유기용매(B)로는 디메틸 아세트 아마이드(dimethylacetamide, DMAc), 디메틸 포름 아미드(DMF), 클로로포름(chloroform), N-메틸-2-피롤리돈(N-Methyl-2-Pyrrolidone), 디메틸설폭사이드(Dimethylsulfoxide)으로 이루어진 군으로부터 1종 이상 선택하여 사용하는 것이 바람직하다. 상기 유기용매는 방사원액 전체중량에 대하여 30 내지 60 중량%, 바람직하게는 40 내지 50 중량%로 포함된다. The organic solvent (B) of the present invention used to dissolve the polysulfone resin (A) is dimethyl acetamide (dimethylacetamide, DMAc), dimethyl formamide (DMF), chloroform, N-methyl-2- It is preferable to use one or more selected from the group consisting of pyrrolidone (N-Methyl-2-Pyrrolidone) and dimethyl sulfoxide (Dimethylsulfoxide). The organic solvent is contained in 30 to 60% by weight, preferably 40 to 50% by weight relative to the total weight of the spinning solution.
친수성 첨가제(C)Hydrophilic Additives (C)
본 발명에서는 제조되는 중공사에 친수화를 부여하거나 기공 크기를 조절하기 위하여 친수성 첨가제를 포함한다. 상기 친수성 첨가제로는 폴리비닐피롤리돈(중량평균분자량 Mw: 15,000∼90,000), 폴리 에틸렌 글리콜(Mw: 200∼1,000), 에틸렌 글리콜, 메틸알콜, 글리세린, 셀룰로즈아세테이트, 폴리비닐알코올, 염화나트륨, 염화리튬, 폴리프로필렌글리콜, 피마자유, 염화아연 등의 친수성 첨가제를 포함한다.The present invention includes a hydrophilic additive to impart hydrophilization or control the pore size to the hollow fiber to be produced. Examples of the hydrophilic additive include polyvinylpyrrolidone (weight average molecular weight Mw: 15,000 to 90,000), polyethylene glycol (Mw: 200 to 1,000), ethylene glycol, methyl alcohol, glycerin, cellulose acetate, polyvinyl alcohol, sodium chloride, chloride Hydrophilic additives such as lithium, polypropylene glycol, castor oil, and zinc chloride.
상기 친수성 첨가제는 중공사의 기공형성과 친수성 부여에 영향을 미치며, 수투과도와 밀접한 관련이 있다. 보다 구체적으로, 방사원액이 이중관형 노즐에서 토출이 된 후 응고조에 체류하는 동안 방사원액 내부에 존재하는 친수성 첨가제가 응고조의 비용매를 흡수하여 방사원액의 용매와 상전환이 용이하게 이루어질 수 있다. 또한 친수성 첨가제는 팽윤제의 역할을 하여 기공크기를 크게 하거나, 폴리설폰계 수지 내부에 친수화기가 가교화(Cross-Linkage)되어 중공사의 친수화도를 높여주는 효과를 제공한다.The hydrophilic additives affect the pore formation and hydrophilicity of the hollow fiber and are closely related to the water permeability. More specifically, the hydrophilic additive present in the spinning solution during the stay in the coagulation bath after the spinning solution is discharged from the double-tubular nozzle may absorb the non-solvent of the coagulation bath, thereby facilitating phase inversion with the solvent of the spinning solution. In addition, the hydrophilic additive acts as a swelling agent to increase the pore size, or cross-linkage of the hydrophilic group in the polysulfone resin to increase the hydrophilicity of the hollow fiber.
상기 친수성 첨가제(C)는 방사원액 전체중량에 대하여 10 내지 40 중량%, 바람직하게는 20 내지 35 중량%로 포함된다. 상기 친수성 첨가제(C)의 함량이 10 중량% 이하인 경우에는 중공사 내부의 기공이 형성되지 않아 수투과도가 현저히 저하되며, 특히 도 9에 도시된 바와 같이 핑거구조(Finger-Like structure)가 형성될 수 있다. 반면, 40 중량% 이상으로 포함되는 경우에는 도 6에서와 같이 거대 기공(Pin-Hole)이 형성이 되어 내구성 및 내압성이 저하될 수 있다.The hydrophilic additive (C) is contained in 10 to 40% by weight, preferably 20 to 35% by weight relative to the total weight of the spinning solution. When the content of the hydrophilic additive (C) is less than 10% by weight, pores are not formed inside the hollow fiber, so that the water permeability is remarkably lowered. In particular, as illustrated in FIG. 9, a finger-like structure may be formed. Can be. On the other hand, when it is included in more than 40% by weight as shown in Figure 6, the large pores (Pin-Hole) is formed may be reduced durability and pressure resistance.
폴리설폰계 중공사막의 제조방법Method for manufacturing polysulfone hollow fiber membrane
본 발명의 폴리설폰계 중공사막의 제조방법은 폴리설폰계 수지(A), 유기용매(B), 및 친수성 첨가제(C)를 포함하는 방사원액을 준비하는 단계; 내부응고액을 준비하는 단계; 상기 방사원액 및 내부응고액을 이중노즐을 통하여 방사하는 단계; 상기 유기용매(B) 및 상기 친수성 첨가제(C)가 응고조 및 세정조에서 비용매와 상전환을 이루어 기공을 형성하는 단계; 및 권취단계를 포함한다. Method for producing a polysulfone hollow fiber membrane of the present invention comprises the steps of preparing a spinning stock solution containing a polysulfone resin (A), an organic solvent (B), and a hydrophilic additive (C); Preparing an internal coagulating solution; Spinning the spinning stock solution and the internal coagulating solution through a double nozzle; Forming organic pores by phase-conversion with the nonsolvent in the coagulation bath and the cleaning bath by the organic solvent (B) and the hydrophilic additive (C); And a winding step.
방사원액의 준비단계:Preparation of the spinning stock:
상기에서 설명한 바와 같이 폴리설폰계 수지(A), 유기용매(B), 및 친수성 첨가제(C)를 배합 온도 30 내지 40 ℃, 교반 속도 80∼120 rpm로 12 내지 24시간 용해한 후, -5∼-1 kgf의 진공 하에서 12 내지 24시간 탈포하여 방사원액(DOPE)내의 기포를 제거한다.As described above, the polysulfone resin (A), the organic solvent (B), and the hydrophilic additive (C) are dissolved at a compounding temperature of 30 to 40 ° C. and a stirring speed of 80 to 120 rpm for 12 to 24 hours, and then -5 to Degassing under a vacuum of -1 kgf for 12 to 24 hours to remove bubbles in the spinning stock solution (DOPE).
내부 응고액 준비단계:Internal coagulation preparation steps:
내부 응고액은 중공사막 내부의 기공을 형성시키기 위한 것으로 비 용매인 물에 용매인 디메틸 아세트 아마이드(dimethylacetamide, DMAc), 디메틸 포름 아미드(DMF), 클로로포름(chloroform), 테트라하이드로퓨란(tetrahydrofuran), N-메틸-2-피롤리돈(N-Methyl-2-Pyrrolidone), 디메틸설폭사이드(Dimethylsulfoxide) 또는 이들 혼합물과 섞어서 준비한다. The internal coagulation solution is used to form pores inside the hollow fiber membrane, and the solvent is dimethyl acetamide (DMAc), dimethyl formamide (DMF), chloroform, tetrahydrofuran, N in non-solvent water. Prepare by mixing with methyl-2-pyrrolidone (N-Methyl-2-Pyrrolidone), dimethylsulfoxide or mixtures thereof.
배합 비로는 비용매 0 내지 30 중량%, 바람직하게는 5 내지 25 중량%, 및 유기용매 70 내지 100 중량%, 바람직하게는 75 내지 95 중량%의 함량으로 배합된다. 상기 내부 응고액의 배합 온도는 50 내지 70 ℃, 교반속도는 80 내지 120 rpm으로 12 내지 24시간 혼합한 후, -5 내지 -1 kgf의 진공 하에서 6 내지 12시간 탈포하여 코어(Core)내 기포를 제거한다.The blending ratio is formulated in an amount of 0 to 30% by weight, preferably 5 to 25% by weight, and 70 to 100% by weight, preferably 75 to 95% by weight, of an organic solvent. The mixing temperature of the internal coagulation solution is 50 to 70 ℃, the stirring speed is mixed for 12 to 24 hours at 80 to 120 rpm, and then degassed for 6 to 12 hours under a vacuum of -5 to -1 kgf bubbles in the core (Core) Remove it.
방사 단계 및 기공 형성 단계: Spinning step and pore forming step:
상기 방사원액 및 내부응고액의 방사단계에서 사용하는 방사 설비는 방사원액(Dope) 및 내부응고액(Core) 제조 탱크, 노즐 거치대, 1차 응고조, 세정조, 권취조, 및 방사 종료 후 시편(sample)의 잔류 유기용매를 제거하는 수세조로 구성되며, 보다 구체적으로 이와 관련된 본 발명의 방사 공정 모식도를 도 1에 일예로서 나타내었다.The spinning equipment used in the spinning step of the spinning stock solution and the internal coagulating solution is a spinning stock solution (Dope) and internal coagulating solution (Core) manufacturing tank, nozzle holder, primary coagulation tank, washing tank, winding tank, and the specimen after the spinning finish (Sample) is composed of a washing tank for removing the residual organic solvent, more specifically the spinning process schematic diagram of the present invention related to this is shown as an example in FIG.
상기 방사원액(Dope) 및 내부응고액(Core) 제조 탱크, 노즐 거치대 공정라인에는 열매 시스템을 구축하여 25 내지 200 ℃의 범위에서 온도를 조절 유지할 수 있다. The radiation source solution (Dope) and the internal coagulation solution (Core) production tank, nozzle holder process line to build a fruit system can be controlled and maintained in the temperature range of 25 to 200 ℃.
상기 노즐 거치대는 상하좌우로 이동이 가능하게 제조하여 노즐과 응고조 사이의 에어갭(Air Gap)을 조절할 수 있다. 상기 에어갭은 1차 상 전환이 일어나는 구간으로, 대기 중 수분과 방사원액 내의 유기용매가 교환되어 상 전환이 이루어진다. The nozzle holder is manufactured to be movable up, down, left, and right to adjust an air gap between the nozzle and the coagulation bath. The air gap is a section in which the primary phase change occurs, and the phase change is performed by exchanging the organic solvent in the atmospheric moisture and the radiation source solution.
상기 응고조는 2차 상 전환이 일어나는 곳으로 상 전환 시간을 연장시키기 위해, 응고조 내에 다단 고뎃 롤러(Godet Roller)를 설치하여 분리막의 체류시간을 연장시켰다. 또한, 상기 세정조 내에도 다단 고뎃 롤러를 설치함으로서 체류시간을 조절할 수 있다. The coagulation bath is installed with a multi-stage Gorod Roller in the coagulation bath to extend the phase change time to the place where the secondary phase conversion occurs to extend the residence time of the membrane. In addition, the residence time can be adjusted by providing a multi-stage high roller in the cleaning tank.
응고조의 체류시간은 10초를 초과하고, 바람직하게는 15초 이상이다. 응고조 체류시간이 10초 이하일 경우 2차 상 전환이 충분히 이루어지지 않아 기공형성이 저하되어 수투과도가 떨어진다. The residence time of the coagulation bath is more than 10 seconds, preferably 15 seconds or more. If the residence time of the coagulation bath is less than 10 seconds, the secondary phase inversion is not sufficiently achieved, the pore formation is lowered and the water permeability falls.
세정조의 체류시간은 80초 이상이고, 바람직하게는 90초 이상이다. 상기 세정조의 체류단계는 응고조에서 상 전환이 미처 완료되지 못한 방사원액의 상 전환이 이루어지는 3차 상 전환 과정 및 내부응고제의 수세가 이루어지는 단계이다. 세정조 체류시간이 80초 미만이면 첨가제와 내부응고제의 수세가 완전하지 않아 잔류 유기용매가 남아있게 되는 문제점이 발생한다.The residence time of the washing tank is 80 seconds or more, preferably 90 seconds or more. Retention step of the washing tank is a third phase conversion process and the washing of the internal coagulant is carried out in which the phase change of the spinning stock solution is not completed in the coagulation tank. If the residence time of the cleaning tank is less than 80 seconds, there is a problem that residual organic solvent remains because the washing of the additive and the internal coagulant is not complete.
따라서 응고조 및 세정조의 총 체류시간은 90초 이상이고, 바람직하게는 105초 이상이다. 총 체류시간이 길수록 상 전환과 세정에는 유리하지만 생산 공정 시간이 길어져 생산성이 낮아지기 때문에 적절한 수준에서 최적 조건을 선택하는 것이 바람직하다.Therefore, the total residence time of the coagulation bath and the washing bath is 90 seconds or more, preferably 105 seconds or more. The longer the total residence time, the better the phase conversion and cleaning, but the longer the production process, the lower the productivity.
구체적인 방사 공정 조건으로는 준비된 상기 방사원액과 내부응고액을 이중관형 노즐을 이용하여 방사시킴으로서 중공사가 토출되고, 에어갭(Air Gap)에서 1차 상 전환이 이루어진다. 다음으로 응고조를 통과하며 2차 상 전환이 이루어진다. 이후 세정조에서 첨가제 및 잔류 유기용매를 제거한 후 권취조로 이송하여 권취됨으로서 방사 공정이 완료된다. As a specific spinning process conditions, the hollow yarn is discharged by spinning the prepared spinning stock solution and the internal coagulating solution using a double-tubular nozzle, and a primary phase conversion is performed in an air gap. Secondary phase transitions are then made through the coagulation bath. After removing the additives and the residual organic solvent in the washing tank is transported to the take-up tank, the spinning process is completed.
에어갭의 길이는 10 cm 이하, 바람직하게는 1 내지 5 cm가 되도록 한다. 에어갭이 10 cm를 초과하면, 대기 중 수증기와 방사원액(DOPE)내 유기용매의 1차 상 전환이 충분히 이루어져 기공도가 증가해 수투과도가 증가하나, 중공사 꼬임현상이 발생하거나, 단사가 일어나는 등 방사성이 저하될 수 있다. 반면, 에어갭이 없으면 방사성은 우수하나, 1차 상 전환이 이루어지지 않고 바로 2차 상 전환이 이루어지므로 기공도가 낮아져 수투과도가 감소하는 문제가 일어날 수 있다.The length of the air gap is 10 cm or less, preferably 1 to 5 cm. If the air gap exceeds 10 cm, the primary phase of the organic solvent in the atmospheric water vapor and DOPE is sufficient to increase the porosity and increase the water permeability, but the hollow fiber twist or single yarn Such as radioactivity may be lowered. On the other hand, if there is no air gap, the radioactivity is excellent, but since the second phase inversion is performed immediately without the first phase inversion, the porosity is lowered, which may cause a problem of decreasing the water permeability.
상 전환이란 방사원액(DOPE)내 유기용매, 친수화 첨가제가 빠져나오고, 그 빈자리를 외부 응고조의 비용매가 채워주어 기공이 형성되게 되는 원리인데 외부 응고조의 온도가 높을수록 상 전환 속도가 빨라져 상 전환이 빠르게 이루어져 스폰지 구조가 형성된다. 다만, 외부 응고조의 온도가 70 ℃를 초과하여 과도하게 높은 경우에는 대기 중 습도가 과포화되어 단사가 일어나는 등 방사성이 저하되거나, 작업환경이 불량해질 수 있다. 반면, 외부 응고조의 온도가 30 ℃ 이하로 온도가 낮으면, 방사원액이 비용매에 닿는 외 표면만 상 전환이 이루어지고 내부의 유기용매와 첨가제가 빠져나오지 못하고 체류하다 한꺼번에 빠져나오게 되어 내부에 거대한 기공이 형성되어 핑거구조(finger-like)가 형성된다. 보다 구체적으로 상기 상 전환 속도에 따른 구조 형성 원리를 도 2에 나타내었다. 상기 도 2의 표에서와 같이 비용매의 투과속도는 응고조의 초순수가 방사원액 내부로 침투하는 속도를 뜻하고, 용매의 투과속도는 방사원액 내부의 용매가 응고조로 빠져나오는 속도를 뜻한다. 즉, 응고조의 초순수가 방사원액 내부로 빠르게 침투하여야 스폰지 구조가 형성이 될 수 있는데, 이것은 앞서 설명한 바와 같이 응고조의 온도가 높을수록 침투 속도가 증가하여 상 전환 속도 역시 증가하게 된 결과이다.Phase conversion is the principle that the organic solvent and hydrophilization additive in the radiation source solution (DOPE) are taken out, and the voids are filled with the non-solvent in the external coagulation bath to form pores. The higher the temperature of the external coagulation bath, the faster the phase conversion. This is done quickly to form a sponge structure. However, when the temperature of the external coagulation bath is excessively high, exceeding 70 ℃, the atmospheric humidity is oversaturated, so that single yarns occur, the radioactivity may be lowered, or the working environment may be poor. On the other hand, when the temperature of the external coagulation bath is lower than 30 ° C., only the outer surface where the radiation source solution contacts the non-solvent is phase-shifted, and the organic solvent and additives inside do not escape and stay out at once. Pores are formed to form a finger-like structure. More specifically, the structure formation principle according to the phase switching speed is shown in FIG. 2. As shown in the table of FIG. 2, the permeation rate of the non-solvent refers to the rate at which the ultrapure water of the coagulation bath penetrates into the spinning solution, and the permeation rate of the solvent refers to the speed at which the solvent inside the spinning solution flows out into the coagulation bath. That is, the sponge structure can be formed only if the ultrapure water of the coagulation bath rapidly penetrates into the spinning solution. As described above, the higher the temperature of the coagulation bath, the higher the permeation rate and the phase change rate is also increased.
본 발명에서는 중공사의 형성에 있어서 스폰지 구조를 형성하고 핑거구조의 형성을 방지하기 위하여, 응고조와 세정조 수조를 물 또는 물과 유기용매 혼합물로 채운 후, 온도 30 내지 80 ℃, 더욱 바람직하게는 50 내지 70 ℃로 유지하는 것을 발명의 특징으로 한다.In the present invention, in order to form a sponge structure in the formation of the hollow yarns and to prevent the formation of the finger structure, the coagulation bath and the washing tank water is filled with water or a mixture of water and an organic solvent, the temperature is 30 to 80 ℃, more preferably 50 Maintaining at from 70 to 70 ℃ is characterized by the invention.
폴리설폰계 중공사막의 구조Structure of Polysulfone Hollow Fiber Membrane
일반적으로 수처리용 중공사의 단면은 크게 핑거 구조와 스폰지 구조로 양분할 수 있다. 도 6은 핑거구조를 도시한 것으로서 이를 참고하면, 최외각층(skin layer)이 조밀한 구조로 형성이 되어 수투과도가 현저히 떨어지게 되는데, 이는 기공 형성이 이루어지지 않아 단면층에 잔류해 있던 용매가 고분자를 녹여 단면에 거대 기공이 형성이 되어 내압성이 약해지고, 외표면이 누수시 오염물이 그대로 투과되어 분리막으로서의 기능을 발휘하지 못하기 때문이다. 또한, 상기 스폰지 구조는 대칭막 구조와 비대칭막 구조로 나눌 수 있는데, 대칭막 구조는 외표면과 내표면의 기공 크기가 동일한 구조이며, 비대칭막 구조는 외표면과 내표면의 기공크기가 다른 구조로서 정의될 수 있다. 도 3은 스폰지 구조의 일 예로서 대칭막 구조를 도시한 것이다. 상기 비대칭막은 상기 대칭막에 비하여 유로 저항이 적어 수 투과 효율이 높은 장점을 가진다. 또한 단면 구조가 핑거 구조보다 컴팩트한 구조로 형성되어 내압성 및 내구성이 우수하다. In general, the cross section of the hollow fiber for water treatment can be largely divided into a finger structure and a sponge structure. FIG. 6 illustrates a finger structure. Referring to this, the outermost layer (skin layer) is formed into a dense structure, and the water permeability is remarkably inferior. This is because it melts and forms large pores in the cross section, and thus the pressure resistance is weakened, and when the external surface leaks, contaminants pass through as they are and thus do not function as a separation membrane. In addition, the sponge structure may be divided into a symmetric membrane structure and an asymmetric membrane structure, the symmetric membrane structure is a structure with the same pore size of the outer surface and the inner surface, the asymmetric membrane structure is a structure having a different pore size of the outer surface and the inner surface It can be defined as. 3 illustrates a symmetric membrane structure as an example of a sponge structure. The asymmetric membrane has the advantage of having a high channel resistance compared to the symmetric membrane with less flow resistance. In addition, the cross-sectional structure is formed in a compact structure than the finger structure is excellent in pressure resistance and durability.
본 발명의 발명자는 종래의 대칭 구조를 가지는 스폰지 구조의 단점을 개선하기 위하여, 상기에서 언급한 제조방법에 의하여 다음과 같은 구조적 특징으로 가지는 중공사막을 제조하였다. 보다 구체적으로 도 3 내지 도 5를 참고하면, 상기 도면은 본 발명의 중공사막을 나타낸 주사전자 현미경 사진으로서, 본 발명의 중공사막은 종래기술이 가지는 핑거구조(도 9)나 거대 기공(도 6)이 형성되지 않으며, 외표면에서 내표면으로 갈수록 기공크기가 커지고, 특히 내 표면층 중에서도 최 외각의 얇은 층의 기공사이즈가 2 내지 200 ㎛로서 매우 큰 구조적 특징을 가진다. In order to improve the disadvantages of the sponge structure having a conventional symmetrical structure, the inventor of the present invention produced a hollow fiber membrane having the following structural features by the above-mentioned manufacturing method. 3 to 5, the figure is a scanning electron micrograph showing the hollow fiber membrane of the present invention, the hollow fiber membrane of the present invention has a finger structure (Fig. 9) or macropores (Fig. 6) of the prior art ) Is not formed, and the pore size increases from the outer surface to the inner surface, and in particular, the pore size of the outermost thin layer among the inner surface layers is 2 to 200 µm, and has a very large structural feature.
이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명하고자 하나, 이러한 실시예들은 단지 설명의 목적을 위한 것으로 본 발명을 제한하는 것으로 해석되어서는 안 된다.Hereinafter, the present invention will be described in more detail with reference to examples, but these examples are for illustrative purposes only and should not be construed as limiting the present invention.
실시예Example
실시예 1 내지 3Examples 1 to 3
실시예 1Example 1
폴리이서설폰(Mw: 30,000∼70,000) 20 중량%와 폴리비닐피롤리돈 6.2 중량%, 폴리 에틸렌 글리콜 23.4 중량%, 디메틸 아세트아미드 47.9 중량%, 리튬클로라이드 2.6 중량%를 용해하여 방사원액을 제조하였다. 디메틸 아세트 아미드 90 중량%와, 초순수 10 중량%를 교반 용해하여 내부 응고액을 제조하였다. 상기 방사원액 및 내부응고액을 35 ℃에서 100 rpm으로 24시간 교반시킨 후 -1 kgf의 진공 하에서 24시간 탈포하여 기포를 제거하였다. 방사 조건에 있어서는 방사원액의 온도는 35 ℃, 내부응고액 온도는 60 ℃로 유지하였으며, 외경 1300 μm, 내경 800 μm, 주입구멍 지름이 600 μm인 이중관형 노즐로 방사원액, 내부응고액을 동시에 방사하였다. 상기 방사된 중공사를 연속적으로 2 cm의 에어갭을 통과시켜 70 ℃ 초순수가 담겨진 응고조와 세정조를 차례로 통과시킨 후 와인더에 권취하였다. 이때 응고조의 체류 시간은 20초, 세정조의 체류시간은 90초였다. 방사 종료 후 와인더에 권취된 중공사를 1 m 길이로 절단하여 60 ℃의 초 순수가 담긴 수세 욕조에서 24시간 침지 후 80 ℃ 열풍건조기에서 24시간 건조하였다. A spinning solution was prepared by dissolving 20% by weight of polyisulfone (Mw: 30,000 to 70,000), 6.2% by weight of polyvinylpyrrolidone, 23.4% by weight of polyethylene glycol, 47.9% by weight of dimethyl acetamide, and 2.6% by weight of lithium chloride. . 90 wt% of dimethyl acetamide and 10 wt% of ultrapure water were stirred and dissolved to prepare an internal coagulation solution. The spinning stock solution and the internal coagulating solution were stirred at 100 rpm at 35 ° C. for 24 hours, and then degassed under vacuum of −1 kgf for 24 hours to remove bubbles. In the spinning condition, the temperature of the spinning stock solution was maintained at 35 ° C and the internal coagulating solution at 60 ° C. Spinning. The spun hollow fiber was continuously passed through a 2 cm air gap, and then passed through a coagulation bath and a washing bath containing 70 ° C. ultrapure water, and then wound up in a winder. At this time, the residence time of the coagulation bath was 20 seconds, and the residence time of the cleaning bath was 90 seconds. After spinning, the hollow fiber wound on the winder was cut to a length of 1 m and immersed in a water bath containing 60 ° C. ultrapure water for 24 hours, and then dried in an 80 ° C. hot air dryer for 24 hours.
실시예 2Example 2
폴리이서설폰(BASF 6020) 22 중량%와 폴리비닐피롤리돈 6.2 중량%, 폴리 에틸렌 글리콜 23.4 중량%, 디메틸 아세트아미드 46.3 중량%, 리튬클로라이드 2.1 중량%를 용해하여 방사원액을 제조한 것을 제외하고는 실시예 1과 동일한 방법으로 중공사 시편을 제조하였다.Except that 22% by weight of polyisulfone (BASF 6020), 6.2% by weight of polyvinylpyrrolidone, 23.4% by weight of polyethylene glycol, 46.3% by weight of dimethyl acetamide, and 2.1% by weight of lithium chloride were prepared. Prepared hollow fiber specimens in the same manner as in Example 1.
실시예 3Example 3
응고조의 온도가 50 ℃인 것을 제외하고는 실시예 2와 동일한 방법으로 중공사 시편을 제조하였다.A hollow fiber specimen was prepared in the same manner as in Example 2 except that the temperature of the coagulation bath was 50 ° C.
비교예 1 내지 9Comparative Examples 1 to 9
비교예 1Comparative Example 1
폴리이서설폰(Mw: 30,000∼70,000) 16 중량%, 폴리비닐피롤리돈 7.5 중량%, 폴리 에틸렌 글리콜 13.5 중량%, 디메틸 아세트아미드 61.8 중량%, 리튬클로라이드 1.2 중량%를 용해하여 방사원액을 제조한 것을 제외하고는 실시예 2와 동일한 방법으로 중공사 시편을 제조하였다.A spinning solution was prepared by dissolving 16% by weight of polyisulfone (Mw: 30,000 to 70,000), 7.5% by weight of polyvinylpyrrolidone, 13.5% by weight of polyethylene glycol, 61.8% by weight of dimethyl acetamide, and 1.2% by weight of lithium chloride. Except that was prepared in the hollow fiber specimens in the same manner as in Example 2.
비교예 2Comparative Example 2
폴리이서설폰(Mw: 30,000∼70,000) 13.7 중량%, 폴리비닐피롤리돈 7.5 중량%, 폴리 에틸렌 글리콜 16.1 중량%, 디메틸 아세트아미드 62.1 중량%, 리튬클로라이드 0.6 중량%를 용해하여 방사원액을 제조한 것을 제외하고는 실시예 2와 동일한 방법으로 중공사 시편을 제조하였다.A spinning stock solution was prepared by dissolving 13.7 wt% of polyisulfone (Mw: 30,000-70,000), 7.5 wt% of polyvinylpyrrolidone, 16.1 wt% of polyethylene glycol, 62.1 wt% of dimethyl acetamide, and 0.6 wt% of lithium chloride. Except that was prepared in the hollow fiber specimens in the same manner as in Example 2.
비교예 3Comparative Example 3
폴리이서설폰(Mw: 30,000∼70,000) 22 중량%, 폴리 에틸렌 글리콜 16 중량%, 테트라하이드로퓨란 20 중량%, N-메틸-2-피롤리딘(NMP) 40 중량%, 리튬클로라이드 2 중량%를 용해하여 방사원액을 제조한 것을 제외하고는 실시예 2와 동일한 방법으로 중공사 시편을 제조하였다.22 wt% polyisulfone (Mw: 30,000-70,000), 16 wt% polyethylene glycol, 20 wt% tetrahydrofuran, 40 wt% N-methyl-2-pyrrolidine (NMP), 2 wt% lithium chloride Hollow fiber specimens were prepared in the same manner as in Example 2, except that the spinning solution was prepared by dissolving.
비교예 4Comparative Example 4
폴리설폰(Mw: 30,000∼60,000) 22 중량%, 폴리 에틸렌 글리콜 16 중량%, 테트라하이드로퓨란 20 중량%, NMP 40 중량%, 리튬클로라이드 2 중량%를 용해하여 방사원액을 제조한 것을 제외하고는 실시예 2와 동일한 방법으로 중공사 시편을 제조하였다.Except that 22 wt% of polysulfone (Mw: 30,000 to 60,000), 16 wt% of polyethylene glycol, 20 wt% of tetrahydrofuran, 40 wt% of NMP, and 2 wt% of lithium chloride were used to prepare a spinning stock solution. Hollow fiber specimens were prepared in the same manner as in Example 2.
비교예 5Comparative Example 5
폴리설폰(Mw: 30,000∼60,000) 16 중량%, 폴리비닐피롤리돈 7.5중량%, 폴리 에틸렌 글리콜 13.5 중량%, 디메틸 아세트아미드 61.8 중량%, 리튬클로라이드 1.2 중량%를 용해하여 방사원액을 제조한 것을 제외하고는 실시예 2와 동일한 방법으로 중공사 시편을 제조하였다.16 wt% of polysulfone (Mw: 30,000 to 60,000), 7.5 wt% of polyvinylpyrrolidone, 13.5 wt% of polyethylene glycol, 61.8 wt% of dimethyl acetamide, and 1.2 wt% of lithium chloride were prepared to produce a spinning stock solution. Except for the hollow fiber specimens were prepared in the same manner as in Example 2.
비교예 6Comparative Example 6
폴리비닐리덴플루오라이드(PVDF: polyvinylidene fluoride, Mw: 300,000∼500,000) 22 중량%, 폴리비닐피롤리돈 7 중량%, 폴리 에틸렌 글리콜 24 중량%, 셀룰로즈 아세테이트 3 중량%, 디메틸 아세트아미드 42 중량%, 및 리튬클로라이드 2 중량%를 용해하여 방사원액을 제조한 것을 제외하고는 실시예 2와 동일한 방법으로 중공사 시편을 제조하였다.22% by weight of polyvinylidene fluoride (PVDF: 300,000-500,000), 7% by weight of polyvinylpyrrolidone, 24% by weight of polyethylene glycol, 3% by weight of cellulose acetate, 42% by weight of dimethyl acetamide, And hollow fiber specimens were prepared in the same manner as in Example 2 except that 2 wt% of lithium chloride was dissolved to prepare a spinning solution.
비교예 7Comparative Example 7
응고조의 온도가 25 ℃인 것을 제외하고는 실시예 2와 동일한 방법으로 중공사 시편을 제조하였다.Hollow fiber specimens were prepared in the same manner as in Example 2 except that the temperature of the coagulation bath was 25 ° C.
비교예 8Comparative Example 8
응고조 체류시간이 10초인 것을 제외하고는 실시예 2와 동일한 방법으로 중공사 시편을 제조하였다.Hollow fiber specimens were prepared in the same manner as in Example 2 except that the coagulation bath residence time was 10 seconds.
비교예 9Comparative Example 9
응고조 체류시간이 5초인 것을 제외하고는 실시예 2와 동일한 방법으로 중공사 시편을 제조하였다.Hollow fiber specimens were prepared in the same manner as in Example 2 except that the coagulation bath residence time was 5 seconds.
물성 측정 방법Property measurement method
강도 : 인장 시험기 Instron 5564를 사용하여 온도 25 ℃, 상대습도 50%의 분위기 중에서 초기 시료길이 100 mm, 크로스 헤드속도 200 mm/min의 조건하에서 측정하였다. 곡선 Grip을 사용하여 물리는 점의 손상을 최소화 하였다.Strength: Tensile tester Instron 5564 was used under the conditions of the initial sample length of 100 mm and the crosshead speed of 200 mm / min in an atmosphere of temperature 25 ℃, 50% relative humidity. Curved grips are used to minimize damage to the bite points.
수투과도 : 단위 면적에 일정 압력을 가하여 통과된 초 순수의 양을 측정한다. 이때 초순수는 25 ℃를 유지하고, 환경온도 25 ℃, 상대습도 50%의 분위기 하에서 측정하였다.Water permeability: Measure the amount of super pure water passed by applying a constant pressure to the unit area. At this time, ultrapure water was maintained at 25 ° C., and measured under an atmosphere of 25 ° C. and 50% relative humidity.
수투과도 = 투과량(ℓ) / 막 면적(m2) * 압력(kgf) * 시간(hr)Permeability = water permeability (ℓ) / membrane area (m 2 ) * pressure (kgf) * time (hr)
평균 기공 : PMI사의 비 수은식 모세관압 측정기 CF-1000 Porometer(AEL, USA)를 이용하여 ASTM F316-03 규정에 따라 하프 드라이법에 의하여 평균 기공을 측정하였다. 시험액은 퍼플루오로폴리에스테르(상품명:Galwick)을 이용하였다.Average pore: The average pore was measured by PMI's non-mercury capillary pressure gauge CF-1000 Porometer (AEL, USA) by the half-dry method according to ASTM F316-03. Perfluoropolyester (brand name: Galwick) was used for the test solution.
분획 성능(0.1 μm Bead 제거율) : 0.1 μm 지름 크기의 라텍스 비드(Latex Bead)를 초순수에 100 ppm으로 희석하여 1 kgf의 압력으로 일정시간 투과시킨 후 라텍스 비드의 농도를 측정하여 분획성능을 평가한다. Fractional performance (0.1 μm Bead removal rate): 0.1 μm diameter latex beads (Latex Beads) are diluted in 100 ppm of ultrapure water, permeated at a pressure of 1 kgf for a certain time, and the concentration of latex beads is measured to evaluate the fractional performance. .
분획 성능(%) = (1 - 투과액 농도/ 원액농도) x 100Fractional Performance (%) = (1-Permeate Concentration / Stock Concentration) x 100
표 1
Figure PCTKR2012000789-appb-T000001
Table 1
Figure PCTKR2012000789-appb-T000001
표 2
Figure PCTKR2012000789-appb-T000002
TABLE 2
Figure PCTKR2012000789-appb-T000002
상기 물성 측정 결과로부터, 본 발명의 실시예 1 내지 3은 강도가 800 gf/本 이상이며, 동시에 수투과도는 2,000 ℓ/m2*kgf*h 이상인 것을 알 수 있다. 통상적으로 폴리이서설폰의 함량을 증가시킬수록 강도는 높아지지만, 기공이 형성될 공간이 줄어들어 수투과도가 낮아지는데, 본 발명의 실시예 2에서는 850 gf/本의 강도를 유지하면서 실시예 1과 같은 2,000 LMH의 높은 수투과도를 나타내었다. 이는 비교예 8 및 9와 비교 시 체류시간을 길게 하고, 비교예 7보다 응고조 온도를 높게 하여 수득된 결과이다. 반면, 비교예 1 내지 5는 방사원액의 조성이 본 발명의 바람직한 함량 범위를 벗어난 것으로 수투과도가 저하되거나 강도가 현저히 저하된 것을 알 수 있으며, 비교예 6은 기초수지로서 폴리설폰계 수지 대시 종래의 중공사 제조에 사용하는 폴리비닐리덴플루오라이드(PVDF: polyvinylidene fluoride, Mw: 300,000∼500,000)를 적용한 것으로 수투과도가 현저히 저하된 것을 알 수 있다. 비교예 1 및 2는 폴리설폰계 수지의 함량이 본 발명의 바람직한 함량 범위보다 과소 투입되었고, 유기용매의 함량이 본 발명의 바람직한 함량 범위보다 과다 투입되어 강도 및 0.1 μm 비드 제거율 저하된 것을 알 수 있다. 이는 폴리설폰계 수지 함량이 줄어들고 유기용매의 함량이 높아지면서 중공사내 기공빈도가 높아져 강도가 저하되었고, 또한 평균 기공크기가 0.1 μm 이상으로 커져 0.1 μm 사이즈의 구형 비드 제거 능력이 저하되었기 때문이다. From the physical property measurement results, it can be seen that Examples 1 to 3 of the present invention have a strength of 800 gf / gf or more, and at the same time, a water permeability of 2,000 L / m 2 * kgf * h or more. In general, as the content of polyisulfone increases, the strength increases, but the water permeability decreases due to a decrease in the space for forming pores. In Example 2 of the present invention, the same strength as in Example 1 is maintained while maintaining the strength of 850 gf / 本. It has a high water permeability of 2,000 LMH. This is a result obtained by lengthening the residence time in comparison with Comparative Examples 8 and 9 and making the coagulation bath temperature higher than Comparative Example 7. On the other hand, Comparative Examples 1 to 5, the composition of the spinning solution is out of the preferred content range of the present invention can be seen that the water permeability is lowered or the strength is significantly reduced, Comparative Example 6 is a polysulfone resin dash conventional as a base resin Polyvinylidene fluoride (PVDF: 300,000 to 500,000) used for the production of hollow fiber was applied, and the water permeability was remarkably reduced. In Comparative Examples 1 and 2, the content of the polysulfone-based resin was less than the preferred content range of the present invention, and the content of the organic solvent was more than the preferred content range of the present invention, indicating that the strength and the removal rate of 0.1 μm were lowered. have. This is because the polysulfone-based resin content is reduced and the content of the organic solvent is increased, the pore frequency in the hollow fiber is increased, the strength is lowered, and the average pore size is increased to 0.1 μm or more, so that the ability to remove spherical beads of 0.1 μm size is reduced.
또한 비교예 3 및 4는 유기용매로 디메틸 아세트 아마이드(DMAc) 대신 테트라하이드로퓨란(THF)를 사용하여 수투과도가 현격히 저하된 것을 확인할 수 있다. 이는 DMAc보다 휘발성이 높은 유기용매 THF를 사용하여 유기용매와 비용매가 치환되는 상 전환 속도가 과도하게 빨라져 기공이 형성되기 전에 상 전환이 종료되어 외표면층이 치밀하게 형성이 되었기 때문이다.In Comparative Examples 3 and 4, tetrahydrofuran (THF) was used instead of dimethyl acetamide (DMAc) as the organic solvent. This is because an organic solvent THF, which is more volatile than DMAc, uses an excessively fast phase conversion rate in which an organic solvent and a non-solvent are substituted, and thus the outer surface layer is densely formed because phase conversion is completed before pores are formed.
비교예 7은 응고조 온도가 낮으므로 인하여 수투과도 및 강도가 동시에 저하된 것을 알 수 있으며, 비교예 8 내지 9는 응고조의 체류시간이 짧아서 상 전환이 제대로 이루어지지 않으므로 인하여 기공형성이 불량하여 수투과도가 저하된 것을 알 수 있다.Comparative Example 7 can be seen that the water permeability and strength at the same time due to the low coagulation bath temperature, Comparative Examples 8 to 9 are poor pore formation due to poor pore formation because the residence time of the coagulation bath is short It can be seen that the transmittance is reduced.

Claims (15)

  1. (A) 폴리설폰계 수지 20 내지 25 중량%; (A) 20 to 25% by weight of a polysulfone resin;
    (B) 유기용매 40 내지 50 중량%; 및(B) 40 to 50% by weight of the organic solvent; And
    (C) 친수성 첨가제 30 내지 35 중량%를 포함하는 폴리설폰계 중공사막으로서, 상기 유기용매(B) 및 친수성 첨가제(C)가 50 내지 70 ℃인 응고조에서 체류시간이 15초를 초과하여 비용매와 상전환을 이루어 기공을 형성하고, 외부 표면층에서 내부 표면층으로 갈수록 연속적으로 기공크기가 증대되는 비대칭 스폰지 구조이고, 외부 표면층과 내부 표면층의 기공크기의 비율이 1:10 내지 1:10000이며, 강도가 800 gf/本 이상이며, 수투과도가 2,000 ℓ/m2*kgf*h 이상인 것을 특징으로 하는 산업용 폴리설폰계 중공사막.(C) A polysulfone hollow fiber membrane containing 30 to 35% by weight of a hydrophilic additive, wherein the residence time exceeds 15 seconds in a coagulation bath in which the organic solvent (B) and the hydrophilic additive (C) are 50 to 70 ° C. It is an asymmetric sponge structure in which the phase transition with the medium forms pores, and the pore size is continuously increased from the outer surface layer to the inner surface layer, and the ratio of the pore size of the outer surface layer and the inner surface layer is from 1:10 to 1: 10000. Industrial polysulfone-based hollow fiber membrane, characterized in that the strength is more than 800 gf / 本, water permeability is 2,000 ℓ / m 2 * kgf * h or more.
  2. 제1항에 있어서, 상기 유기용매(B)는 디메틸 아세트 아마이드(dimethylacetamide, DMAc), 디메틸 포름 아미드(DMF), 클로로포름(chloroform), N-메틸-2-피롤리돈(N-Methyl-2-Pyrrolidone), 디메틸설폭사이드(Dimethylsulfoxide), 및 이들의 혼합물로 이루어진 군으로부터 선택되는 것을 특징으로 하는 산업용 폴리설폰계 중공사막.The method of claim 1, wherein the organic solvent (B) is dimethyl acetamide (dimethylacetamide, DMAc), dimethyl formamide (DMF), chloroform (chloroform), N-methyl-2-pyrrolidone (N-Methyl-2- Pyrrolidone), dimethyl sulfoxide (Dimethylsulfoxide), and an industrial polysulfone-based hollow fiber membrane, characterized in that selected from the group consisting of.
  3. 제1항에 있어서, 상기 친수성 첨가제(C)는 폴리비닐피롤리돈, 폴리 에틸렌 글리콜, 에틸렌 글리콜, 메틸알콜, 글리세린, 셀룰로즈아세테이트, 폴리비닐알코올, 염화나트륨, 염화리튬, 폴리프로필렌글리콜, 피마자유, 염화아연, 및 이들의 혼합물로 이루어진 군으로부터 선택되는 것을 특징으로 하는 산업용 폴리설폰계 중공사막.The method according to claim 1, wherein the hydrophilic additive (C) is polyvinylpyrrolidone, polyethylene glycol, ethylene glycol, methyl alcohol, glycerin, cellulose acetate, polyvinyl alcohol, sodium chloride, lithium chloride, polypropylene glycol, castor oil, Zinc chloride, and mixtures thereof. Industrial polysulfone-based hollow fiber membranes.
  4. 제1항 및 제3항 내지 제4항 중 어느 한 항에 있어서, 상기 폴리설폰계 수지(A)는 폴리설폰 또는 폴리이서설폰인 것을 특징으로 하는 산업용 폴리설폰계 중공사막.The industrial polysulfone-based hollow fiber membrane according to any one of claims 1 and 3 to 4, wherein the polysulfone-based resin (A) is polysulfone or polyisulfone.
  5. 폴리설폰계 수지(A) 20 내지 25 중량%, 유기용매(B) 40 내지 50 중량%, 및 친수성 첨가제(C) 30 내지 35 중량%를 포함하는 방사원액을 준비하는 단계; 내부응고액을 준비하는 단계; 상기 방사원액 및 내부응고액을 이중노즐을 통하여 방사하는 단계; 상기 유기용매(B) 및 상기 친수성 첨가제(C)가 응고조 및 세정조에서 비용매와 상전환을 이루어 기공을 형성하는 단계; 및 권취단계를 포함하고, 상기 응고조 및 세정조에서 총 체류시간이 90초를 초과하고, 상기 응고조에서 체류시간은 15초를 초과하며, 상기 응고조 온도가 50 내지 70 ℃인 것을 특징으로 하는 산업용 폴리설폰계 중공사막의 제조방법.Preparing a spinning solution containing 20 to 25 wt% of a polysulfone resin (A), 40 to 50 wt% of an organic solvent (B), and 30 to 35 wt% of a hydrophilic additive (C); Preparing an internal coagulating solution; Spinning the spinning stock solution and the internal coagulating solution through a double nozzle; Forming organic pores by phase-conversion with the nonsolvent in the coagulation bath and the cleaning bath by the organic solvent (B) and the hydrophilic additive (C); And a winding step, wherein the total residence time in the coagulation bath and the washing bath is greater than 90 seconds, the residence time in the coagulation bath is more than 15 seconds, and the coagulation bath temperature is 50 to 70 ° C. Method for producing an industrial polysulfone hollow fiber membrane.
  6. 제6항에 있어서 상기 방사원액의 온도는 30 내지 40 ℃, 상기 내부응고액의 온도는 50 내지 70 ℃인 것을 특징으로 하는 산업용 폴리설폰계 중공사막의 제조방법.The method of claim 6, wherein the temperature of the spinning stock solution is 30 to 40 ℃, the temperature of the internal coagulating solution is 50 to 70 ℃ manufacturing method of the industrial polysulfone-based hollow fiber membrane.
  7. 제6항에 있어서 상기 폴리설폰계 수지(A)는 폴리설폰 또는 폴리이서설폰인 것을 특징으로 하는 산업용 폴리설폰계 중공사막의 제조방법.The method of claim 6, wherein the polysulfone resin (A) is a polysulfone or a polysulfone.
  8. 제6항에 있어서, 상기 유기용매(B)는 디메틸 아세트 아마이드(dimethylacetamide, DMAc), 디메틸 포름 아미드(DMF), 클로로포름(chloroform), N-메틸-2-피롤리돈(N-Methyl-2-Pyrrolidone), 디메틸설폭사이드(Dimethylsulfoxide), 및 이들의 혼합물로 이루어진 군으로부터 선택되는 것을 특징으로 하는 산업용 폴리설폰계 중공사막의 제조방법.The method of claim 6, wherein the organic solvent (B) is dimethyl acetamide (dimethylacetamide, DMAc), dimethyl formamide (DMF), chloroform (chloroform), N-methyl-2-pyrrolidone (N-Methyl-2- Pyrrolidone), dimethyl sulfoxide (Dimethylsulfoxide), and a method for producing an industrial polysulfone hollow fiber membrane, characterized in that selected from the group consisting of.
  9. 제6항에 있어서, 상기 친수성 첨가제(C)는 폴리비닐피롤리돈, 폴리 에틸렌 글리콜, 에틸렌 글리콜, 메틸알콜, 글리세린, 셀룰로즈아세테이트, 폴리비닐알코올, 염화나트륨, 염화리튬, 폴리프로필렌글리콜, 피마자유, 염화아연, 및 이들의 혼합물로 이루어진 군으로부터 선택되는 것을 특징으로 하는 산업용 폴리설폰계 중공사막의 제조방법.The method according to claim 6, wherein the hydrophilic additive (C) is polyvinylpyrrolidone, polyethylene glycol, ethylene glycol, methyl alcohol, glycerin, cellulose acetate, polyvinyl alcohol, sodium chloride, lithium chloride, polypropylene glycol, castor oil, Zinc chloride, and mixtures thereof. The method for producing an industrial polysulfone-based hollow fiber membrane.
  10. 제6항에 있어서, 상기 방사원액 준비단계는 상기 방사원액을 배합 온도 20 내지 40 ℃, 교반 속도 80 내지 120 rpm로 12 내지 24시간 용해한 후, -5 내지 1 kgf의 진공압력 하에서 12 내지 24시간 탈포하여 방사원액(DOPE)내의 기포를 제거하는 단계를 더 포함하는 것을 특징으로 하는 산업용 폴리설폰계 중공사막의 제조방법.The method of claim 6, wherein the spinning stock solution is prepared by dissolving the spinning stock solution at a compounding temperature of 20 to 40 ° C. and a stirring speed of 80 to 120 rpm for 12 to 24 hours, followed by 12 to 24 hours under a vacuum pressure of −5 to 1 kgf. Method for producing an industrial polysulfone hollow fiber membrane further comprises the step of defoaming to remove bubbles in the spinning stock solution (DOPE).
  11. 제6항에 있어서, 상기 내부응고액 준비단계는 비용매인 물에 용매인 디메틸 아세트 아마이드(dimethylacetamide, DMAc), 디메틸 포름 아미드(DMF), 클로로포름(chloroform), N-메틸-2-피롤리돈(N-Methyl-2-Pyrrolidone), 디메틸설폭사이드(Dimethylsulfoxide)로 이루어진 군으로부터 선택된 1종 이상과 배합되는 것을 특징으로 하는 산업용 폴리설폰계 중공사막의 제조방법. The method of claim 6, wherein the internal coagulating solution preparation step is a solvent in dimethyl acetamide (DMAc), dimethyl formamide (DMF), chloroform (N-methyl-2-pyrrolidone) N-Methyl-2-Pyrrolidone), Dimethylsulfoxide (Dimethylsulfoxide) A method for producing an industrial polysulfone hollow fiber membrane, characterized in that it is blended with at least one selected from the group consisting of.
  12. 제6항에 있어서, 상기 비용매는 5 내지 25 중량%, 상기 유기용매는 75 내지 95 중량%로 포함되는 것을 특징으로 하는 산업용 폴리설폰계 중공사막의 제조방법.The method of claim 6, wherein the non-solvent is 5 to 25% by weight, and the organic solvent is 75 to 95% by weight.
  13. 제14항 또는 제15항에 있어서, 상기 내부 응고액의 배합 온도는 50 내지 70 ℃, 교반속도는 80 내지 120 rpm으로 12 내지 24시간 혼합한 후, -5 내지 -1 kgf의 진공 하에서 6 내지 12시간 탈포하여 내부응고액의 기포를 제거하는 것을 특징으로 하는 산업용 폴리설폰계 중공사막의 제조방법.The method of claim 14 or 15, wherein the mixing temperature of the internal coagulation solution is 50 to 70 ℃, the stirring speed is mixed for 12 to 24 hours at 80 to 120 rpm, and then 6 to under a vacuum of -5 to -1 kgf A method for producing an industrial polysulfone hollow fiber membrane, characterized in that the air bubbles are degassed for 12 hours to remove bubbles from the internal coagulation solution.
  14. 제6항에 있어서, 상기 방사단계 및 기공을 형성하는 단계에서 사용하는 방사 설비는 방사원액(Dope) 및 내부응고액(Core) 제조 탱크, 노즐, 노즐 거치대, 1차 응고조, 세정조, 권취조, 및 방사 종료 후 시편(sample)의 잔류 용매를 제거하는 수세조로 구성되는 것을 특징으로 하는 산업용 폴리설폰계 중공사막의 제조방법. The spinning apparatus used in the spinning step and the step of forming pores is a spinning raw liquid (Dope) and internal coagulating liquid (Core) manufacturing tank, nozzle, nozzle holder, primary coagulation tank, washing tank, winding Method for producing an industrial polysulfone hollow fiber membrane, characterized in that consisting of a washing tank for removing the residual solvent of the sample (sample) after the completion of the blowing and spinning.
  15. 제17항에 있어서, 상기 세정조 온도가 50 내지 70 ℃인 것을 특징으로 하는 산업용 폴리설폰계 중공사막의 제조방법.18. The method according to claim 17, wherein the cleaning bath temperature is 50 to 70 ° C.
PCT/KR2012/000789 2011-03-18 2012-02-01 Polysulfone-based hollow fiber film having excellent strength and water permeability, and method for manufacturing same WO2012128470A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020110024302A KR101077954B1 (en) 2011-03-18 2011-03-18 A polysulfone-based hollowfiber membrane having a excellent impact strength and water permeability and preparing the same
KR10-2011-0024302 2011-03-18

Publications (4)

Publication Number Publication Date
WO2012128470A2 true WO2012128470A2 (en) 2012-09-27
WO2012128470A3 WO2012128470A3 (en) 2012-11-15
WO2012128470A4 WO2012128470A4 (en) 2013-01-03
WO2012128470A9 WO2012128470A9 (en) 2013-02-28

Family

ID=45033570

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/000789 WO2012128470A2 (en) 2011-03-18 2012-02-01 Polysulfone-based hollow fiber film having excellent strength and water permeability, and method for manufacturing same

Country Status (2)

Country Link
KR (1) KR101077954B1 (en)
WO (1) WO2012128470A2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105555393A (en) * 2013-06-04 2016-05-04 爱科利态株式会社 Method for manufacturing asymmetric polyvinlylidenefluoride hollow fiber membrane and hollow fiber membrane manufactured therefrom
CN113877443A (en) * 2021-11-05 2022-01-04 无锡达魔材料科技有限公司 Spinning process for preparing hollow fiber membrane with defect-free skin compact layer and asymmetric structure
CN114653219A (en) * 2022-04-22 2022-06-24 佛山市美的清湖净水设备有限公司 Method for preparing membrane casting solution, membrane casting solution for preparing ultrafiltration membrane and ultrafiltration membrane
CN115400616A (en) * 2022-11-01 2022-11-29 富海(东营)新材料科技有限公司 Preparation process and system of continuous integrated polysulfone hollow fiber membrane
CN115814621A (en) * 2022-12-26 2023-03-21 有研资源环境技术研究院(北京)有限公司 High-strength hydrophilic hollow fiber membrane and preparation method and application thereof

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102160309B1 (en) * 2013-12-30 2020-09-25 도레이첨단소재 주식회사 Hollow fiber type nanofiltration membrane having high ions removal capacity, and manufacturing method thereof
KR101763991B1 (en) * 2014-09-22 2017-08-02 주식회사 휴비스워터 Dope Composition for Forming Hollow Fiber Membrane Having Improved Strength and Water Permeability and Preparation Method for Hollow Fiber using the Same
KR101665189B1 (en) * 2014-10-02 2016-10-24 주식회사 휴비스워터 Polysulfone-based Hollow Fiber Membrane Having Excellent Chemical Resistance and Preparation Method Thereof
KR101689440B1 (en) * 2014-10-31 2016-12-23 주식회사 휴비스워터 Dry Hollow Fiber Membrane, Preparation Method Thereof and Water Treatment Module Comprising The Same
KR101723904B1 (en) * 2014-11-05 2017-04-06 주식회사 휴비스워터 Preparation Method of Hollow Fiber Membrane With Improved Processing Efficiency And Manufacturing System Thereof
CN113926316B (en) * 2021-11-23 2024-01-26 江苏巨澜纳米科技有限公司 Leakage-proof humidifying composite hollow fiber membrane, preparation method and application thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100291632B1 (en) * 1998-10-28 2001-08-07 박호군 Method for Producing an Asymmetric Support Membrane Through the Physical Gelation and the Resultant Membranes
JP2001038171A (en) * 1999-08-03 2001-02-13 Toyobo Co Ltd Hollow fiber membrane
WO2002058828A1 (en) 2001-01-23 2002-08-01 Innovasep Technology Corporation Asymmetric hollow fiber membranes
SE0203857L (en) * 2002-12-20 2004-06-21 Gambro Lundia Ab Perm-selective membrane and process for its manufacture
ES2378401T3 (en) * 2006-05-06 2012-04-12 Membrana Gmbh Ultrafiltration membrane
KR20090072321A (en) * 2007-12-28 2009-07-02 주식회사 파라 Hollow fiber membrane using polysulfones with enhanced water permeability and a method of producing thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105555393A (en) * 2013-06-04 2016-05-04 爱科利态株式会社 Method for manufacturing asymmetric polyvinlylidenefluoride hollow fiber membrane and hollow fiber membrane manufactured therefrom
CN105555393B (en) * 2013-06-04 2017-09-05 爱科利态株式会社 The hollow-fibre membrane for manufacturing the method for asymmetric polyvinylidene fluoride hollow fiber membrane and being produced from it
CN113877443A (en) * 2021-11-05 2022-01-04 无锡达魔材料科技有限公司 Spinning process for preparing hollow fiber membrane with defect-free skin compact layer and asymmetric structure
CN113877443B (en) * 2021-11-05 2024-01-26 无锡达魔材料科技有限公司 Hollow fiber membrane spinning method for preparing gas separation with asymmetric structure and without defect of surface compact layer
CN114653219A (en) * 2022-04-22 2022-06-24 佛山市美的清湖净水设备有限公司 Method for preparing membrane casting solution, membrane casting solution for preparing ultrafiltration membrane and ultrafiltration membrane
CN115400616A (en) * 2022-11-01 2022-11-29 富海(东营)新材料科技有限公司 Preparation process and system of continuous integrated polysulfone hollow fiber membrane
CN115814621A (en) * 2022-12-26 2023-03-21 有研资源环境技术研究院(北京)有限公司 High-strength hydrophilic hollow fiber membrane and preparation method and application thereof
CN115814621B (en) * 2022-12-26 2023-08-29 有研资源环境技术研究院(北京)有限公司 High-strength hydrophilic hollow fiber membrane and preparation method and application thereof

Also Published As

Publication number Publication date
WO2012128470A9 (en) 2013-02-28
WO2012128470A4 (en) 2013-01-03
WO2012128470A3 (en) 2012-11-15
KR101077954B1 (en) 2011-10-28

Similar Documents

Publication Publication Date Title
WO2012128470A2 (en) Polysulfone-based hollow fiber film having excellent strength and water permeability, and method for manufacturing same
WO2011037354A2 (en) Fluorine-based hollow-fibre membrane and a production method therefor
WO2010021474A2 (en) Porous membrane and preparation method thereof
WO2013073828A1 (en) Hydrophilic polyvinylidene fluoride-based hollow-fiber separation membrane, and method for manufacturing same
WO2013176524A1 (en) Reverse osmosis membrane
CN111346519B (en) Preparation method of asymmetric polyolefin film
JPWO2008117740A1 (en) Vinylidene fluoride resin hollow fiber porous membrane and method for producing the same
KR20140066606A (en) Manufacturing method of pvdf hollow fiber membrane
WO2012074222A2 (en) Preparation method of hollow fiber membrane for water treatment using cellulose-based resin
WO2014098322A1 (en) Hollow-fibre membrane having novel structure, and production method therefor
KR20160081612A (en) PVDF porous hollow fiber membrane and the preparing method thereof
WO2015102291A1 (en) Composite hollow fiber membrane and method for manufacturing same
WO2012067380A2 (en) Tubular braid, hollow fiber membrane using same, and manufacturing method thereof
KR20180033999A (en) Composition for separation membrane, method for preparing separation membrane using the same, membrane prepared therefrom and apparatus for purifying water
WO2020130674A1 (en) Composition for forming filtration membrane, method for manufacturing filtration membrane by using same, and filtration membrane
KR101688063B1 (en) Dual-layer hollow fiber membrane for gas separation and manufacturing method thereof
WO2015056853A1 (en) Polyvinylidene fluoride asymmetry porous hollow fiber membrane and method for manufacturing same
KR101025754B1 (en) Macrovoid free hollow fiber membrane and manufacturing method threrof
KR101397798B1 (en) Manufacturing method of PVDF asymmetric porous hollow fiber membrane
WO2019103482A2 (en) Composition for forming hollow fiber membrane, and hollow fiber membrane production method and hollow fiber membrane using same
WO2020050617A1 (en) Polyethylene terephthalate ultrafiltration membrane and method for producing same
KR101380550B1 (en) Pvdf porous hollow fiber membrane and manufacturing method thereof
WO2013147525A1 (en) Porous membrane and method for manufacturing the same
WO2015167071A1 (en) Method for preparing precursor of hollow fiber carbon molecular sieve membrane for recovering fluorinated gas, and precursor of hollow fiber carbon molecular sieve membrane for recovering fluorinated gas and hollow fiber carbon molecular sieve membrane prepared thereby
WO2019103481A1 (en) Hollow fiber membrane and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12760224

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12760224

Country of ref document: EP

Kind code of ref document: A2