WO2017038448A1 - Nitride semiconductor element - Google Patents

Nitride semiconductor element Download PDF

Info

Publication number
WO2017038448A1
WO2017038448A1 PCT/JP2016/073883 JP2016073883W WO2017038448A1 WO 2017038448 A1 WO2017038448 A1 WO 2017038448A1 JP 2016073883 W JP2016073883 W JP 2016073883W WO 2017038448 A1 WO2017038448 A1 WO 2017038448A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor layer
layer
dielectric multilayer
substrate
semiconductor
Prior art date
Application number
PCT/JP2016/073883
Other languages
French (fr)
Japanese (ja)
Inventor
将一郎 泉
統之 風田川
大 倉本
達史 濱口
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to JP2017537715A priority Critical patent/JP6919565B2/en
Publication of WO2017038448A1 publication Critical patent/WO2017038448A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of group III and group V of the periodic system
    • H01L33/32Materials of the light emitting region containing only elements of group III and group V of the periodic system containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser

Definitions

  • the present technology relates to, for example, a nitride semiconductor device that emits light in the stacking direction.
  • the semiconductor element which comprises a surface emitting laser etc. is mounted in the submount etc. in order to discharge
  • Solder is generally used at the time of mounting, but it is known that the solder rises due to the wettability of the element. When this rise is large, the solder is in contact with areas other than the desired area, causing a problem of current leakage.
  • a light emitting device such as a surface emitting laser using a nitride semiconductor as a semiconductor material generally has a lower DBR layer (second reflective layer), a lower spacer layer (second compound semiconductor layer), and the like on a substrate.
  • An active layer, an upper spacer layer (first compound semiconductor layer), an upper DBR layer (first reflective layer), and a contact layer (first electrode) are stacked in this order (see, for example, Patent Documents 1 and 2) .
  • Patent Documents 1 and 2 since various characteristics are strongly affected by heat, attempts have been made to improve the heat removal property by covering most of the light emitting element with a solder having high thermal conductivity. For this reason, there has been a problem that a leak failure is likely to occur together with the rise of the solder due to the wettability of the element.
  • a method of suppressing the rising of the solder is considered by providing digging or the like in a member (mounted member) in contact with the nitride semiconductor element such as a submount.
  • a member mounted member
  • the nitride semiconductor element such as a submount.
  • a nitride semiconductor device includes a first semiconductor layer, an active layer provided on the first semiconductor layer, and a second semiconductor layer provided on the active layer. At least one recess or dielectric multilayer film is formed on one of the side surfaces of the first semiconductor layer and the second semiconductor layer.
  • At least one recess or dielectric multilayer film is formed on one of the side surfaces of the first semiconductor layer and the second semiconductor layer in which the active layer is stacked.
  • One is formed.
  • the recess or the dielectric multilayer film is formed on one of the side surfaces of the first semiconductor layer and the second semiconductor layer in which the active layer is stacked.
  • the covering area of the solder used at the time of mounting Therefore, it is possible to suppress the rising of the solder and to reduce the occurrence of the leak failure while enhancing the heat removal efficiency by the coating of the solder.
  • the effects of the present technology are not necessarily limited to the effects described herein, but may be any of the effects described in the present disclosure.
  • FIG. 1 is a cross-sectional view of a surface emitting semiconductor laser according to an embodiment of the present technology. It is a schematic diagram showing the planar shape of the dielectric multilayer of the semiconductor laser shown in FIG. It is a schematic diagram showing an example of the formation position of the dielectric multilayer shown in FIG.
  • FIG. 7 is a cross-sectional view for illustrating the method of manufacturing the semiconductor laser shown in FIG. 1. It is sectional drawing for demonstrating the process of following FIG. 4A. It is sectional drawing for demonstrating the process of following FIG. 4B. It is sectional drawing for demonstrating the process of following FIG. 5A. It is a sectional view of LED concerning a 2nd embodiment of this art.
  • FIG. 1 is a cross-sectional view of a surface emitting semiconductor laser according to an embodiment of the present technology. It is a schematic diagram showing the planar shape of the dielectric multilayer of the semiconductor laser shown in FIG. It is a schematic diagram showing an example of the formation position of the dielectric multilayer shown in FIG.
  • FIG. 18 is an example of a cross-sectional view of a semiconductor laser soldered to a heat sink as an application example 1;
  • FIG. 18 is an example of a cross-sectional view of a semiconductor laser soldered to a heat sink as an application example 1; It is an example of sectional drawing of LED soldered to the heat sink as application example 2.
  • FIG. It is an example of sectional drawing of LED soldered to the heat sink as application example 2.
  • First embodiment semiconductor laser having a dielectric multilayer film and a recess on the side surface of the semiconductor layer on the substrate side
  • Overall configuration 1-2.
  • Manufacturing method 1-3.
  • Action / Effect Second Embodiment LED having dielectric multilayer film and recess on the side surface of the semiconductor layer on the substrate side
  • Application example
  • FIG. 1 illustrates an example of a cross-sectional configuration of a surface-emitting semiconductor device (semiconductor laser 1) according to a first embodiment of the present technology.
  • the semiconductor laser 1 has a substrate 11 and a plurality of dielectric multilayer films 41 in contact with the surface S1 of the substrate 11. A plurality of dielectric multilayer films 41 are provided on the substrate 11 at intervals.
  • the semiconductor laser 1 further has a configuration in which a semiconductor layer 20, an insulating film 24, a transparent electrode 32, and a second reflective layer 42 are stacked in this order.
  • the semiconductor layer 20 has a configuration in which the first semiconductor layer 21, the active layer 22, and the second semiconductor layer 23 are stacked in this order from the substrate 11 side.
  • Each dielectric multilayer film 41 is embedded by the first semiconductor layer 21, and the side surface of the one or more dielectric multilayer films 41 is exposed on the side surface of the first semiconductor layer 21. That is, at least one dielectric multilayer film 41 is formed on the side surface of the first semiconductor layer 21. Furthermore, at least one recess 21A is formed on the side surface of the first semiconductor layer 21.
  • the semiconductor laser 1 has a first electrode 31 in contact with the surface S2 (surface facing the surface S1) of the substrate 11. Note that the semiconductor laser 1 of FIG. 1 is schematically represented and is different from the actual dimensions.
  • the substrate 11 is an element forming substrate used for manufacturing the semiconductor layer 20.
  • the substrate 11 is provided in contact with the semiconductor layer 20 (first semiconductor layer 21).
  • the substrate 11 may use various substrates such as GaN substrate, sapphire substrate, GaAs substrate, SiC substrate, alumina substrate, ZnS substrate, ZnO substrate, LiMgO substrate, LiGaO 2 substrate, MgAl 2 O 4 substrate, InP substrate, for example. it can.
  • an insulating substrate made of AlN or the like, a semiconductor substrate made of Si, SiC, Ge or the like, a metal substrate or an alloy substrate may be used.
  • the thickness in the stacking direction of the substrate 11 (hereinafter simply referred to as thickness), for example, preferably 0.05 mm to 0.5 mm.
  • the semiconductor layer 20 has a configuration in which the first semiconductor layer 21, the active layer 22 and the second semiconductor layer 23 are sequentially stacked from the substrate 11 side.
  • the first semiconductor layer 21 and the second semiconductor layer 23 have different conductivity types.
  • the first semiconductor layer 21 is formed of an n-type compound semiconductor
  • the second semiconductor layer 23 is formed of a p-type compound semiconductor It is formed.
  • the first semiconductor layer 21, the active layer 22 and the second semiconductor layer 23 are each formed of a nitride compound semiconductor.
  • Specific nitride-based compound semiconductors include GaN-based compound semiconductors such as GaN, AlGaN, InGaN, and AlInGaN. Besides these, AlN, AlInN and InN can be mentioned.
  • the active layer 22 preferably has a quantum well structure. Specifically, it may have a single quantum well structure (QW structure) or may have a multiple quantum well structure (MQW structure).
  • the active layer 22 having a quantum well structure has a structure in which the well layer and the barrier layer are stacked in at least one layer, but as a combination of (a compound semiconductor forming the well layer and a compound semiconductor forming the barrier layer), (In y Ga (1-y ) N, GaN), (In y Ga (1-y) N, In z Ga (1-z) N) [ where, y> z], (In y Ga (1- y) N, AlGaN), (AlGaN / GaN), (AlzGa1 - zN / AlyGa1 -yN ) [where y> z] can be mentioned.
  • Each of the first semiconductor layer 21 and the second semiconductor layer 23 may be a layer having a single structure or a layer having a multilayer structure. Also, it may be a layer of a superlattice structure. Furthermore, it may be a layer provided with a composition gradient layer and a concentration gradient layer.
  • the first electrode 31 is provided on the surface opposite to the one surface of the substrate 11 on which the semiconductor layer 20 is formed.
  • the first electrode 31 is made of, for example, gold (Au), silver (Ag), palladium (Pd), platinum (Pt), nickel (Ni), Ti (titanium), vanadium (V), tungsten (W), chromium Cr), Al (aluminum), Cu (copper), Zn (zinc), tin (Sn), and a single layer film or laminated film including at least one metal (including an alloy) of indium (In) Is preferred.
  • a laminated film is mentioned. The layer closer to the “/” in the multilayer film structure is located closer to the active layer 22.
  • the transparent electrode 32 is provided on the semiconductor layer 20.
  • the transparent electrode 32 is provided in contact with the emission window 24 W of the second semiconductor layer 23 for emitting the light emitted from the active layer 22.
  • the transparent electrode 32 is formed of a so-called transparent conductive material having light transparency.
  • transparent conductive materials include, for example, indium-tin oxide (ITO, Indium Tin Oxide, Sn-doped In 2 O 3 , crystalline ITO and amorphous ITO), indium-zinc oxide (IZO, Indium) Zinc Oxide), IFO (F-doped In 2 O 3 ), tin oxide (SnO 2 ), ATO (Sb-doped SnO 2 ), FTO (F-doped SnO 2 ), zinc oxide (ZnO, Al-doped ZnO or B-doped ZnO is included.
  • a transparent conductive film having a gallium oxide, titanium oxide, niobium oxide, nickel oxide or the like as a base layer may be used.
  • the material constituting the transparent electrode 32 depends on the arrangement of the second reflective layer 42 and the transparent electrode 32 described later, but is not limited to the transparent conductive material, and palladium (Pd), platinum (Pt) And metals such as nickel (Ni), gold (Au), cobalt (Co) and rhodium (Rh).
  • the transparent electrode 32 may be made of at least one of these materials.
  • a second electrode 33 for electrically connecting to an external electrode or circuit is provided.
  • the second electrode 33 is, for example, a single layer film including at least one metal of Ti (titanium), aluminum (Al), Pt (platinum), Au (gold), Ni (nickel), and Pd (palladium). Or it is preferable that it is laminated film. Specifically, for example, laminated films of Ti / Pt / Au, Ti / Au, Ti / Pd / Au, Ti / Pd / Au, Ti / Ni / Au, Ti / Ni / Au / Cr / Au, etc. are listed. Be Although not provided here, a pad electrode may be appropriately provided also on the first electrode 31.
  • a cover metal layer (not shown) made of, for example, Ni / TiW / Pd / TiW / Ni is formed on the surface of the first electrode 31
  • a pad electrode made of a multilayer film of, for example, Ti / Ni / Au, Ti / Ni / Au / Cr / Au, etc. is formed on the cover metal layer.
  • a current confinement structure is formed between the semiconductor layer 20 (specifically, the second semiconductor layer 23) and the transparent electrode 32.
  • the current confinement structure is formed of, for example, the insulating film 24 provided on the second semiconductor layer 23.
  • the insulating film 24 has an opening 24A, and this opening becomes a current injection region in the semiconductor layer 20 (second semiconductor layer 23). At this time, the current injection region in the semiconductor layer 20 (second semiconductor layer 23) corresponds to the emission window 24H.
  • the insulating film 24 is formed of, for example, SiO x , SiN x or AlO x .
  • the current confinement structure does not necessarily have to be formed of the insulating film 24.
  • the mesa structure may be formed by etching the second semiconductor layer 23 by a reactive ion etching (RIE) method or the like, or a partial layer of the stacked second semiconductor layer 23 May be partially oxidized laterally to form a current confinement region.
  • an impurity may be ion-implanted into the second semiconductor layer 23 to form a region with reduced conductivity, or these may be combined as appropriate.
  • the transparent electrode 32 needs to be electrically connected to part of the second semiconductor layer 23 through which current flows due to current narrowing.
  • a plurality of dielectric multilayer films 41 are provided, for example, in the plane of the substrate 11, and are embedded in the first semiconductor layer 21.
  • a part of the plurality of dielectric multilayer films 41 provided on the substrate 11 has an end face in the same plane as the end face of the semiconductor layer 20 and is exposed to the side face of the semiconductor laser 1.
  • the dielectric multilayer film 41 is made of, for example, oxides such as Si, Mg, Al, Hf, Nb, Zr, Sc, Ta, Ga, Zn, Y, B, Ti, nitrides (for example, SiN x , AlN x , It is formed of AlGaN, GaN x , BN x or the like) or fluoride or the like.
  • SiO x , TiO x , NbO x , ZrO x , TaO x , ZnO x , AlO x , HfO x , SiN x , AlN x and the like can be mentioned.
  • the first reflective layer 41A functions as a Distributed Bragg Reflector (DBR) layer. It is preferable that the first reflective layer 41A has a configuration in which two or more types of dielectric films made of dielectric materials having different refractive indexes among the above-mentioned dielectric materials are alternately stacked. Thereby, the light reflection effect is obtained. Examples of combinations of two types of dielectric films include SiO x / SiN x , SiO x / NbO x , SiO x / ZrO x , SiO x / AlN x and the like. In order to obtain a desired light reflectance, the material, the film thickness, the number of laminations, etc. constituting each dielectric film may be appropriately selected.
  • DBR Distributed Bragg Reflector
  • each dielectric film can be appropriately adjusted according to the material to be used, etc., and is determined by the light emission wavelength ⁇ 0 and the refractive index n at the light emission wavelength ⁇ 0 of the material used. Specifically, it is preferable to use an odd multiple of ⁇ 0 / (4n).
  • the thickness of each dielectric film is preferably about 40 nm to 70 nm.
  • the number of stacked layers is preferably 5 or more, more preferably 15 or more.
  • the thickness of the entire dielectric multilayer film 41 is preferably, for example, 0.6 ⁇ m to 3.0 ⁇ m.
  • the dielectric multilayer film 41 is preferably arranged or arranged to grow laterally, for example, in the [1120] direction.
  • the planar shape of the dielectric multilayer film 41 is, for example, as shown in FIG. 2, lattice (rectangular) shape (A), polygonal shape including regular hexagon (B), circular shape including ellipse (C), stripe shape D) Or it is formed in island shape.
  • the cross-sectional shape of the dielectric multilayer film 41 may be rectangular as shown in FIG. 1 or may be trapezoidal. Further, as shown in FIG. 3, a part of the dielectric multilayer film 41 may be missing from the substrate 11.
  • the omission of the dielectric multilayer film 41 is caused by cracking or chipping of the dielectric multilayer film 41 at the time of cutting out by cleavage.
  • the dielectric multilayer film 41 is generated by the difference between the linear thermal expansion coefficient of the substrate 11 and the linear thermal expansion coefficient of the dielectric multilayer film 41.
  • a recess 21A is formed on the side face of the semiconductor layer 20.
  • the omission of the dielectric multilayer film 41 may be intentionally formed.
  • the second reflective layer 42 is provided at a position facing the first reflective layer 41A with the semiconductor layer 20 therebetween, and more specifically, provided on the transparent electrode 32. Similar to the dielectric multilayer film 41, the second reflective layer 42 is an oxide such as Si, Mg, Al, Hf, Nb, Zr, Sc, Ta, Ga, Zn, Y, B, Ti, nitride (for example, , SiN x , AlN x , AlGaN, GaN x , BN x, etc.) or fluoride or the like.
  • oxide such as Si, Mg, Al, Hf, Nb, Zr, Sc, Ta, Ga, Zn, Y, B, Ti, nitride (for example, , SiN x , AlN x , AlGaN, GaN x , BN x, etc.) or fluoride or the like.
  • the film thickness, the number of laminations, etc. may be appropriately selected in addition to the material constituting each dielectric film.
  • the thickness of each dielectric film can be appropriately adjusted according to the material to be used, etc., and is determined by the light emission wavelength ⁇ 0 and the refractive index n at the light emission wavelength ⁇ 0 of the material used. Specifically, it is preferable to use an odd multiple of ⁇ 0 / (4n).
  • the thickness of each dielectric film is preferably about 40 nm to 70 nm.
  • the number of layers is 2 or more, preferably 2 to 15.
  • the thickness of the entire dielectric multilayer film 41 is preferably, for example, 0.6 ⁇ m to 3.0 ⁇ m.
  • the semiconductor laser 1 of the present embodiment can be manufactured, for example, as follows.
  • a dielectric multilayer film 41X is formed. Specifically, it is formed by alternately laminating, for example, five layers of SiO x films and SiN x films on the substrate 11 by using any film forming method such as sputtering, CVD and evaporation. Subsequently, as shown in FIG. 4B, the dielectric multilayer film 41X is selectively etched to form a plurality of dielectric multilayer films 41 whose side surfaces are surrounded by the grooves 41H. In the etching step, wet etching with hydrofluoric acid or the like, dry etching using an RIE apparatus, or the like can be used.
  • the semiconductor layer 20 and the insulating film 24 are formed on the substrate 11 and the dielectric multilayer film 41.
  • the dielectric multilayer film 41 is used as a mask for selective growth, and the substrate 11 is placed in a metal organic chemical vapor deposition (MOCVD) apparatus and heated to a desired temperature.
  • MOCVD metal organic chemical vapor deposition
  • the semiconductor layer 20 including the first semiconductor layer 21 made of n-type GaN and the active layer (light emitting layer) 22 such as the second semiconductor layer 23 made of p-type GaN is grown.
  • TMGa trimethylgallium
  • TMAl trimethylaluminum
  • TMIn trimethylindium
  • SiH 4 silane
  • Mg p-type impurity
  • Cyclopentadienyl magnesium (Cp 2 Mg) is used as a raw material for ammonia
  • ammonia gas (NH 3 ) or the like is used as a nitrogen raw material.
  • the first semiconductor layer 21 is grown to 5 ⁇ m
  • the active layer 22 is grown to 80 nm
  • the second semiconductor layer 23 is grown to 100 nm.
  • a SiO 2 film is formed to a thickness of, for example, 200 nm using any film forming method such as sputtering, CVD and evaporation, and then selectively etched to form a current injection region.
  • An insulating film 24 having an opening 24A in which the semiconductor layer 23 is exposed is formed.
  • wet etching with hydrofluoric acid or the like, dry etching using an RIE apparatus, or the like can be used.
  • the area of the current injection region is equal to or less than half of the area of the opposing dielectric multilayer film 41 (first reflective layer 41A), and is, for example, about 25 ⁇ m 2 .
  • the transparent electrode 32, the 2nd electrode 33, and the 2nd reflection layer 42 are formed.
  • an ITO film is formed using any film forming method such as sputtering, CVD and evaporation, and then selectively etched to form a transparent electrode 32 having a desired shape.
  • wet etching using hydrochloric acid or the like, dry etching using a reactive ion etching apparatus, or the like can be used.
  • Au, Pt and Ti are formed in this order using any film forming method such as sputtering, CVD and evaporation, and then selectively etched to form Ti / Pt only in the desired part.
  • the second electrode 33 is formed leaving the / Au film.
  • wet etching with an acid or the like dry etching using a reactive ion etching apparatus or the like, lift-off by a PR method, or the like can be used.
  • a dielectric multilayer film in which, for example, five layers of SiO x films and SiN x films are alternately laminated is formed using any film forming method such as sputtering, CVD and evaporation, for example, selective To form a second reflective layer 42 having a desired shape.
  • wet etching with hydrofluoric acid or the like, dry etching using an RIE apparatus, or the like can be used.
  • the substrate 11 is ground and polished from the back surface side, and then the first electrode 31 is deposited.
  • the element is cut out from the substrate 11 by cleavage or the like. At this time, it cuts out so that the dielectric multilayer film 41 may be traversed. Thereby, the semiconductor laser 1 shown in FIG. 1 is completed.
  • the plurality of dielectric multilayer films 41, the first semiconductor layer 21, the active layer 22, the second semiconductor layer 23, the transparent electrode 32 and the second reflective layer 42 are formed on one surface of the substrate 11.
  • the first electrode 31 is formed on the other surface of the substrate 11 stacked in this order and facing one surface of the substrate 11.
  • a current injection region for enhancing the current injection efficiency to the active layer 22 and reducing the threshold current.
  • a current narrowing structure (an opening 24A of the insulating film 24) is provided to narrow the width.
  • the current injected from the first electrode 31 and the transparent electrode 32 is narrowed by the current narrowing structure and then injected into the active layer 22. This causes light emission due to recombination of electrons and holes. This light is reflected by the first reflection layer 41A and the second reflection layer 42, and laser oscillation occurs at a predetermined wavelength, and is emitted as laser light to the outside through the first reflection layer 41A or the second reflection layer 42. .
  • the exposed surface or the recess 21A of the dielectric multilayer film 41 is provided on the side surface of the first semiconductor layer 21 on the substrate 11.
  • the exposed surface of the dielectric multilayer film 41 provided on the side surface of the first semiconductor layer 21 has a smaller density of dangling bonds than that of the first semiconductor layer 21, and these are stacked in multiple layers to form the side surface of the semiconductor laser 1. And multiple interfaces are formed. Thereby, it becomes possible to control the covering area of the side surface of the semiconductor laser 1 by the solder used at the time of mounting.
  • the recess 21A is formed by a crack or a chip at the time of cutting out by cleavage, or a drop of the dielectric multilayer film 41 due to a difference in linear expansion coefficient between the substrate 11 and the dielectric multilayer film 41. Also by this recess 21A, the covering area of the side surface of the semiconductor laser 1 by the solder used at the time of mounting is controlled, specifically, the rising of the solder is reduced.
  • the semiconductor laser 1 it is possible to suppress the rise of the solder and to reduce the occurrence of the leak failure while enhancing the heat removal efficiency by the coating of the solder.
  • FIG. 6 illustrates an example of a cross-sectional configuration of a surface-emitting semiconductor element (LED 2) according to a second embodiment of the present disclosure.
  • the LED 2 has a substrate 11 and a plurality of dielectric multilayer films 61 in contact with the surface S 1 of the substrate 11. A plurality of dielectric multilayer films 61 are provided on the substrate 11 at intervals.
  • the LED 2 further has a configuration in which the semiconductor layer 20, the transparent electrode 52, and the n-type electrode 53 are stacked in this order.
  • Each dielectric multilayer film 61 is embedded by the first semiconductor layer 21 of the semiconductor layer 20, and the side surface of the one or more dielectric multilayer films 61 is exposed on the side surface of the first semiconductor layer 21.
  • At least one dielectric multilayer film 61 is formed on the side surface of the first semiconductor layer 21. Furthermore, at least one recess 21A is formed on the side surface of the first semiconductor layer 21.
  • the LED 2 has a p-type electrode 51 in contact with the surface S 2 (surface facing the surface S 1) of the substrate 11.
  • the semiconductor laser 1 shown in FIG. 6 is schematically shown, and is different from the actual size.
  • the p-type electrode 51 is provided on the surface opposite to the one surface of the substrate 11 on which the semiconductor layer 20 is formed.
  • the p-type electrode 51 is made of, for example, gold (Au), silver (Ag), palladium (Pd), platinum (Pt), nickel (Ni), Ti (titanium), vanadium (V), tungsten (W), chromium Cr), Al (aluminum), Cu (copper), Zn (zinc), tin (Sn), and a single layer film or laminated film including at least one metal (including an alloy) of indium (In) Is preferred.
  • the laminated film for example, Ti / Au, Ti / Al, Ti / Al / Au, Ti / Pt / Au, Ni / Au, Ni / Au / Pt, Ni / Pt, Pd / Pt, Ag / Pd, etc. It can be mentioned.
  • the transparent electrode 52 is provided, for example, on the upper surface of the semiconductor layer 20 (the surface of the second semiconductor layer 23), and is formed of a so-called transparent conductive material having light transparency.
  • Specific transparent conductive materials include, for example, indium-tin oxide (ITO, Indium Tin Oxide, Sn-doped In 2 O 3 , crystalline ITO and amorphous ITO), indium-zinc oxide (IZO, Indium Zinc Oxide, IFO (F-doped In 2 O 3 ), tin oxide (SnO 2 ), ATO (Sb-doped SnO 2 ), FTO (F-doped SnO 2 ), zinc oxide (ZnO, Al-doped ZnO And B-doped ZnO).
  • a transparent conductive film having a gallium oxide, titanium oxide, niobium oxide, nickel oxide or the like as a base layer may be used.
  • the n-type electrode 53 is provided on a part of the transparent electrode 52.
  • the n-type electrode 53 is, for example, a single layer film including at least one metal of Ti (titanium), aluminum (Al), Pt (platinum), Au (gold), Ni (nickel), and Pd (palladium). Or it is preferable that it is a laminated film.
  • the laminated film include Ti / Pt / Au, Ti / Au, Ti / Pd / Au, Ti / Pd / Au, Ti / Ni / Au, Ti / Ni / Au / Cr / Au, and the like.
  • a plurality of dielectric multilayer films 61 are provided, for example, in the plane of the substrate 11 as in the case of the dielectric multilayer film 41 in the above-described embodiment, and are embedded in the first semiconductor layer 21.
  • the dielectric multilayer film 61 has a function of reflecting the light emitted from the active layer 22 to the transparent electrode 52 side.
  • a part of the plurality of dielectric multilayer films 61 provided on the substrate 11 has the same end face as the semiconductor layer 20 and is exposed to the side face of the LED 2.
  • the dielectric multilayer film 61 is, for example, an oxide or nitride such as Si, Mg, Al, Hf, Nb, Zr, Sc, Ta, Ga, Zn, Y, B, Ti, etc.
  • SiN x , AlN x It is formed of AlGaN, GaN x , BN x or the like
  • fluoride or the like e.g, SiO x , TiO x , NbO x , ZrO x , TaO x , ZnO x , AlO x , HfO x , SiN x , AlN x and the like can be mentioned.
  • the dielectric multilayer film 61 does not necessarily have to alternately laminate two or more types of dielectric films made of dielectric materials having different refractive indexes among the above-mentioned dielectric materials, but, for example, SiN x or TaO x
  • the light extraction efficiency is improved by alternately laminating a high refractive index material and a low refractive index material such as SiO x .
  • Specific combinations of dielectric materials include SiO x / NbO x , SiO x / ZrO x , SiO x / AlN x and the like in addition to SiO x / SiN x .
  • the thickness of each dielectric film is preferably about 40 nm to 70 nm.
  • the number of stacked layers is preferably 5 or more, more preferably 15 or more.
  • the thickness of the entire dielectric multilayer film 61 is preferably, for example, 0.6 ⁇ m to 3.0 ⁇ m.
  • the dielectric multilayer film 61 is preferably arranged or arranged to grow laterally, for example, in the [1120] direction.
  • the planar shape of the dielectric multilayer film 61 is formed, for example, in a lattice (rectangular) shape, a polygonal shape including a regular hexagon, a circular shape including an ellipse, a stripe shape, or an island shape as in the above embodiment.
  • the cross-sectional shape of the dielectric multilayer film 61 may be rectangular as shown in FIG. 6 or may be trapezoidal.
  • the LED 2 can be manufactured, for example, as follows, using a method similar to that of the above embodiment.
  • the dielectric multilayer film 61 and the semiconductor layer 20 are formed on the substrate 11, and then the transparent electrode 52 and the n-type electrode 53 are formed.
  • ITO is formed into a film by any film forming method such as sputtering, CVD and vapor deposition, and then selectively etched to form a transparent electrode 52 having a desired shape.
  • etching step wet etching using hydrochloric acid or the like, dry etching using a reactive ion etching apparatus, or the like can be used.
  • Au, Pt and Ti are formed in this order using any film forming method such as sputtering, CVD and evaporation, and then Ti / Pt / only in desired portions by the PR step and the etching step.
  • An n-type electrode 53 is formed leaving the Au film.
  • wet etching with an acid or the like, dry etching using a reactive ion etching apparatus or the like, lift-off by a PR method, or the like can be used.
  • the substrate 11 is ground and polished from the back surface side, and then the p-type electrode 51 is deposited. Finally, the element is cut out from the substrate 11 by cleavage or the like. At this time, the LED 2 shown in FIG. 6 is completed by cutting out so as to cross the dielectric multilayer film 61.
  • FIGS. 7A and 7B show the semiconductor laser 1 according to the first embodiment mounted on a heat sink.
  • the structure of the semiconductor laser 1 is shown in a simplified manner.
  • the semiconductor laser 1 shown in FIG. 7A is junction-up mounted on the heat sink 101 via the solder 102, and the bonding wire 104 is connected to the second electrode 33 via the solder 103.
  • the semiconductor laser 1 shown in FIG. 7B is junction-down mounted on the heat sink 101 via the solder 102, and the bonding wire 104 is connected to the first electrode 31 via the solder 103.
  • the first electrode 31 is provided with the opening 31A, and the opening 31A serves as an emission window.
  • the ascend of the solder 102 in the junction-up mounting is different from that of the solder 103 in the junction-down mounting. It is possible to prevent by the exposed one or more dielectric multilayer films 41 and the one or more recesses 21A.
  • FIGS. 8A and 8B show the LED 2 of the second embodiment mounted on a heat sink.
  • the LED 2 shown in FIG. 8A is junction-up mounted on the heat sink 101 via the solder 102, and the bonding wire 104 is connected to the second electrode 33 via the solder 103.
  • the LED 2 shown in FIG. 8B is junction-down mounted on the heat sink 101 via the solder 102, and the bonding wire 104 is connected to the p-type electrode 51 via the solder 103.
  • the laser light is emitted from the side of the substrate 11, so the p-type electrode 51 is provided with the opening 51A, and the opening 31A serves as the emission window.
  • the rise of the solder 102 in the junction-up mounting is the junction-down mounting. It is possible to prevent the lowering of the solder 103 by the one or more dielectric multilayer films 61 and the one or more recesses 21A exposed on each side surface of the semiconductor layer 20.
  • both of the dielectric multilayer film 41 (or the dielectric multilayer film 61) and the recess 21A are formed on the side surface of the semiconductor layer 20, respectively.
  • only the recess 21A or only the dielectric multilayer film 41 (or the dielectric multilayer film 61) may be provided.
  • the present technology can also be configured as follows. (1) A first semiconductor layer, An active layer provided on the first semiconductor layer; And a second semiconductor layer provided on the active layer and having an emission window for emitting light emitted from the active layer. A nitride semiconductor device, wherein at least one recess or a first dielectric multilayer film is formed on a side surface of the first semiconductor layer or the second semiconductor layer. (2) The semiconductor device further includes an element formation substrate of the first semiconductor layer provided in contact with the first semiconductor layer, The nitride semiconductor device according to (1), wherein at least one of the recess or the first dielectric multilayer film is formed on a side surface of the first semiconductor layer.
  • the nitride semiconductor device according to (2) wherein one or more of the first dielectric multilayer films are embedded in the first semiconductor layer.
  • a second dielectric provided at a position facing the one first dielectric multilayer film embedded in the first semiconductor layer with the first semiconductor layer, the active layer, and the second semiconductor layer in between.
  • the nitride semiconductor device according to (3) further comprising a body multilayer film.
  • (6) The nitride semiconductor device according to any one of (1) to (5), wherein a plurality of the recesses are formed on each side surface of the first semiconductor layer.
  • the nitride semiconductor device according to any one of (1) to (6), wherein the first semiconductor layer, the active layer, and the second semiconductor layer are made of a GaN-based compound semiconductor.
  • GaN gallium nitride
  • InGaN indium gallium nitride
  • Si silicon

Abstract

This nitride semiconductor element comprises: a first semiconductor layer; an active layer provided above the first semiconductor layer, and a second semiconductor layer provided above the active layer and having an emission window that emits light generated from the active layer. At least one recession or first dielectric multilayer film is formed on a side surface of the first semiconductor layer or second semiconductor layer.

Description

窒化物半導体素子Nitride semiconductor device
 本技術は、例えば、積層方向に光を射出する窒化物半導体素子に関する。 The present technology relates to, for example, a nitride semiconductor device that emits light in the stacking direction.
 面発光レーザ等を構成する半導体素子は、自素子から発せられる熱を排出するためにサブマウント等に実装されている。実装の際には、一般に半田が用いられるが、半田は素子の濡れ性によってせり上がることが知られている。このせり上がりが大きい場合、所望の領域以外に半田が接し、電流リークを発生させてしまうという問題があった。 The semiconductor element which comprises a surface emitting laser etc. is mounted in the submount etc. in order to discharge | emit the heat emitted from an own element. Solder is generally used at the time of mounting, but it is known that the solder rises due to the wettability of the element. When this rise is large, the solder is in contact with areas other than the desired area, causing a problem of current leakage.
 一方、例えば、半導体材料として窒化物半導体が用いられた面発光レーザ等の発光素子は、一般に、基板上に、下部DBR層(第2反射層)、下部スペーサ層(第2化合物半導体層)、活性層、上部スペーサ層(第1化合物半導体層)、上部DBR層(第1反射層)およびコンタクト層(第1電極)がこの順に積層された構造を有する(例えば、特許文献1,2参照)。このような発光素子では、その諸特性が熱に強く影響を受けることから、発光素子の大部分を熱伝導率の高い半田で被覆することによって排熱性を向上させる試みがなされている。このため、上記素子の濡れ性による半田のせり上がりと併せて、リーク不良が起こりやすいという問題があった。 On the other hand, for example, a light emitting device such as a surface emitting laser using a nitride semiconductor as a semiconductor material generally has a lower DBR layer (second reflective layer), a lower spacer layer (second compound semiconductor layer), and the like on a substrate. An active layer, an upper spacer layer (first compound semiconductor layer), an upper DBR layer (first reflective layer), and a contact layer (first electrode) are stacked in this order (see, for example, Patent Documents 1 and 2) . In such a light emitting element, since various characteristics are strongly affected by heat, attempts have been made to improve the heat removal property by covering most of the light emitting element with a solder having high thermal conductivity. For this reason, there has been a problem that a leak failure is likely to occur together with the rise of the solder due to the wettability of the element.
特開2015-35541号公報JP, 2015-35541, A 特開2015-35542号公報JP, 2015-35542, A
 これに対して、例えば、サブマウント等の窒化物半導体素子と接する部材(被実装部材)に掘り込み等を設けることで、半田のせり上がりを抑制する方法が考えられている。このように、被実装部材を加工した場合には、半田のせり上がりの抑制に対して一定の効果は得られるものの、素子表面の半田の被覆領域を制御することは難しい。そのため、この方法では、上記排熱効率を向上させることについては十分な効果が得られなくなるという問題があった。 On the other hand, for example, a method of suppressing the rising of the solder is considered by providing digging or the like in a member (mounted member) in contact with the nitride semiconductor element such as a submount. As described above, when the mounting member is processed, although a certain effect can be obtained with respect to the suppression of the solder rise, it is difficult to control the solder covering area of the element surface. Therefore, in this method, there is a problem that a sufficient effect can not be obtained with respect to the improvement of the above heat removal efficiency.
 従って、排熱効率を高めつつ、リーク不良の発生を低減することが可能な窒化物半導体素子を提供することが望ましい。 Therefore, it is desirable to provide a nitride semiconductor device capable of reducing the occurrence of a leak failure while enhancing the exhaust heat efficiency.
 本技術の一実施形態の窒化物半導体素子は、第1半導体層と、第1半導体層上に設けられた活性層と、活性層上に設けられた第2半導体層とを備えている。第1半導体層および第2半導体層のうち、いずれか一方の側面には、凹みまたは誘電体多層膜が少なくとも1つ形成されている。 A nitride semiconductor device according to an embodiment of the present technology includes a first semiconductor layer, an active layer provided on the first semiconductor layer, and a second semiconductor layer provided on the active layer. At least one recess or dielectric multilayer film is formed on one of the side surfaces of the first semiconductor layer and the second semiconductor layer.
 本技術の一実施形態の窒化物半導体素子では、活性層を間に積層された第1半導体層および第2半導体層のうち、いずれか一方の側面には、凹みまたは誘電体多層膜が少なくとも1つ形成されている。誘電体多層膜による多数の界面や、凹みが素子の側面に形成されることにより、実装時に用いられる半田の被覆領域を制御することが可能となる。 In the nitride semiconductor device according to the embodiment of the present technology, at least one recess or dielectric multilayer film is formed on one of the side surfaces of the first semiconductor layer and the second semiconductor layer in which the active layer is stacked. One is formed. By forming a large number of interfaces and recesses by the dielectric multilayer film on the side surfaces of the element, it becomes possible to control the covered area of the solder used at the time of mounting.
 本技術の一実施形態の窒化物半導体素子によれば、活性層を間に積層された第1半導体層および第2半導体層のうち、いずれか一方の側面には、凹みまたは誘電体多層膜を少なくとも1つ形成するようにしたので、実装時に用いられる半田の被覆領域を制御することが可能となる。よって、半田の被覆による排熱効率を高めつつ、半田のせり上がりが抑制され、リーク不良の発生を低減することが可能となる。なお、本技術の効果は、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれの効果であってもよい。 According to the nitride semiconductor device of the embodiment of the present technology, the recess or the dielectric multilayer film is formed on one of the side surfaces of the first semiconductor layer and the second semiconductor layer in which the active layer is stacked. By forming at least one, it becomes possible to control the covering area of the solder used at the time of mounting. Therefore, it is possible to suppress the rising of the solder and to reduce the occurrence of the leak failure while enhancing the heat removal efficiency by the coating of the solder. The effects of the present technology are not necessarily limited to the effects described herein, but may be any of the effects described in the present disclosure.
本技術の一実施の形態に係る面発光型の半導体レーザの断面図である。FIG. 1 is a cross-sectional view of a surface emitting semiconductor laser according to an embodiment of the present technology. 図1に示した半導体レーザの誘電体多層膜の平面形状を表す模式図である。It is a schematic diagram showing the planar shape of the dielectric multilayer of the semiconductor laser shown in FIG. 図2に示した誘電体多層膜の形成位置の一例を表す模式図である。It is a schematic diagram showing an example of the formation position of the dielectric multilayer shown in FIG. 図1に示した半導体レーザの製造方法を説明するための断面図である。FIG. 7 is a cross-sectional view for illustrating the method of manufacturing the semiconductor laser shown in FIG. 1. 図4Aに続く工程について説明するための断面図である。It is sectional drawing for demonstrating the process of following FIG. 4A. 図4Bに続く工程について説明するための断面図である。It is sectional drawing for demonstrating the process of following FIG. 4B. 図5Aに続く工程について説明するための断面図である。It is sectional drawing for demonstrating the process of following FIG. 5A. 本技術の第2の実施の形態に係るLEDの断面図である。It is a sectional view of LED concerning a 2nd embodiment of this art. 適用例1としてヒートシンクに半田付けされた半導体レーザの断面図の一例である。FIG. 18 is an example of a cross-sectional view of a semiconductor laser soldered to a heat sink as an application example 1; 適用例1としてヒートシンクに半田付けされた半導体レーザの断面図の一例である。FIG. 18 is an example of a cross-sectional view of a semiconductor laser soldered to a heat sink as an application example 1; 適用例2としてヒートシンクに半田付けされたLEDの断面図の一例である。It is an example of sectional drawing of LED soldered to the heat sink as application example 2. FIG. 適用例2としてヒートシンクに半田付けされたLEDの断面図の一例である。It is an example of sectional drawing of LED soldered to the heat sink as application example 2. FIG.
 以下、本技術における一実施形態について、図面を参照して詳細に説明する。なお、説明は以下の順序で行う。
1.第1の実施の形態(基板側の半導体層の側面に誘電体多層膜および凹みを有する半導体レーザ)
 1-1.全体構成
 1-2.製造方法
 1-3.作用・効果
2.第2の実施の形態(基板側の半導体層の側面に誘電体多層膜および凹みを有するLED)
3.適用例
Hereinafter, an embodiment of the present technology will be described in detail with reference to the drawings. The description will be made in the following order.
1. First embodiment (semiconductor laser having a dielectric multilayer film and a recess on the side surface of the semiconductor layer on the substrate side)
1-1. Overall configuration 1-2. Manufacturing method 1-3. Action / Effect Second Embodiment (LED having dielectric multilayer film and recess on the side surface of the semiconductor layer on the substrate side)
3. Application example
<1.第1の実施の形態>
 図1は、本技術の第1の実施の形態に係る面発光型の半導体素子(半導体レーザ1)の断面構成の一例を表したものである。半導体レーザ1は、基板11と、基板11の面S1に接する複数の誘電体多層膜41とを有する。複数の誘電体多層膜41は間隔をあけて基板11上に設けられている。半導体レーザ1は、さらに、半導体層20、絶縁膜24、透明電極32および第2反射層42がこの順に積層された構成を有する。複数の誘電体多層膜41のうち、第2反射層42と対向する誘電体多層膜41を第1反射層41Aとすると、一組の第1反射層41Aおよび第2反射層42が、共振器として機能する。半導体層20は、第1半導体層21、活性層22、第2半導体層23が基板11側からこの順に積層された構成を有する。各誘電体多層膜41は、第1半導体層21によって埋め込まれており、第1半導体層21の側面には、1または複数の誘電体多層膜41の側面が露出している。つまり、第1半導体層21の側面には、誘電体多層膜41が少なくとも1つ形成されている。さらに、第1半導体層21の側面には、凹み21Aが少なくとも1つ形成されている。半導体レーザ1は、基板11の面S2(面S1と対向する面)に接する第1電極31を有する。なお、図1の半導体レーザ1は模式的に表したものであり、実際の寸法とは異なっている。
<1. First embodiment>
FIG. 1 illustrates an example of a cross-sectional configuration of a surface-emitting semiconductor device (semiconductor laser 1) according to a first embodiment of the present technology. The semiconductor laser 1 has a substrate 11 and a plurality of dielectric multilayer films 41 in contact with the surface S1 of the substrate 11. A plurality of dielectric multilayer films 41 are provided on the substrate 11 at intervals. The semiconductor laser 1 further has a configuration in which a semiconductor layer 20, an insulating film 24, a transparent electrode 32, and a second reflective layer 42 are stacked in this order. When the dielectric multilayer film 41 facing the second reflective layer 42 among the plurality of dielectric multilayer films 41 is the first reflective layer 41A, the pair of first reflective layer 41A and the second reflective layer 42 is a resonator. Act as. The semiconductor layer 20 has a configuration in which the first semiconductor layer 21, the active layer 22, and the second semiconductor layer 23 are stacked in this order from the substrate 11 side. Each dielectric multilayer film 41 is embedded by the first semiconductor layer 21, and the side surface of the one or more dielectric multilayer films 41 is exposed on the side surface of the first semiconductor layer 21. That is, at least one dielectric multilayer film 41 is formed on the side surface of the first semiconductor layer 21. Furthermore, at least one recess 21A is formed on the side surface of the first semiconductor layer 21. The semiconductor laser 1 has a first electrode 31 in contact with the surface S2 (surface facing the surface S1) of the substrate 11. Note that the semiconductor laser 1 of FIG. 1 is schematically represented and is different from the actual dimensions.
(1-1.全体構成)
 基板11は、半導体層20の製造に用いられた素子形成基板である。基板11は、半導体層20(第1半導体層21)に接して設けられている。基板11は、例えば、GaN基板、サファイア基板、GaAs基板、SiC基板、アルミナ基板、ZnS基板、ZnO基板、LiMgO基板、LiGaO2基板、MgAl24基板、InP基板といった各種の基板を用いることができる。この他、AlN等からなる絶縁性基板、Si、SiC、Ge等からなる半導体基板、金属製基板や合金製基板を用いてもよい。基板11の積層方向の厚み(以下、単に厚みという)、例えば、0.05mm~0.5mmであることが好ましい。
(1-1. Overall configuration)
The substrate 11 is an element forming substrate used for manufacturing the semiconductor layer 20. The substrate 11 is provided in contact with the semiconductor layer 20 (first semiconductor layer 21). The substrate 11 may use various substrates such as GaN substrate, sapphire substrate, GaAs substrate, SiC substrate, alumina substrate, ZnS substrate, ZnO substrate, LiMgO substrate, LiGaO 2 substrate, MgAl 2 O 4 substrate, InP substrate, for example. it can. In addition, an insulating substrate made of AlN or the like, a semiconductor substrate made of Si, SiC, Ge or the like, a metal substrate or an alloy substrate may be used. The thickness in the stacking direction of the substrate 11 (hereinafter simply referred to as thickness), for example, preferably 0.05 mm to 0.5 mm.
 半導体層20は、第1半導体層21、活性層22および第2半導体層23が基板11側から順に積層された構成を有する。第1半導体層21および第2半導体層23は、互いに異なる導電型を有し、例えば、第1半導体層21はn型の化合物半導体から形成され、第2半導体層23はp型の化合物半導体から形成されている。第1半導体層21、活性層22および第2半導体層23は、それぞれ、窒化物系化合物半導体によって構成されている。具体的な窒化物系化合物半導体としては、GaN系化合物半導体、例えばGaN、AlGaN、InGaN、AlInGaNが挙げられる。この他、AlN、AlInNおよびInNが挙げられる。更に、これらの化合物半導体には、所望に応じて、ホウ素(B)原子やタリウム(Tl)原子、ヒ素(As)原子、リン(P)原子、アンチモン(Sb)原子が含まれていてもよい。活性層22は、量子井戸構造を有することが望ましい。具体的には、単一量子井戸構造(QW構造)を有していてもよいし、多重量子井戸構造(MQW構造)を有していてもよい。量子井戸構造を有する活性層22は、井戸層及び障壁層が、少なくとも1層、積層された構造を有するが、(井戸層を構成する化合物半導体,障壁層を構成する化合物半導体)の組合せとして、(InyGa(1-y)N,GaN)、(InyGa(1-y)N,InzGa(1-z)N)[但し、y>z]、(InyGa(1-y)N,AlGaN)、(AlGaN/GaN)、(AlzGa1-zN/AlyGa1-yN)[但し、y>z]が挙げられる。 The semiconductor layer 20 has a configuration in which the first semiconductor layer 21, the active layer 22 and the second semiconductor layer 23 are sequentially stacked from the substrate 11 side. The first semiconductor layer 21 and the second semiconductor layer 23 have different conductivity types. For example, the first semiconductor layer 21 is formed of an n-type compound semiconductor, and the second semiconductor layer 23 is formed of a p-type compound semiconductor It is formed. The first semiconductor layer 21, the active layer 22 and the second semiconductor layer 23 are each formed of a nitride compound semiconductor. Specific nitride-based compound semiconductors include GaN-based compound semiconductors such as GaN, AlGaN, InGaN, and AlInGaN. Besides these, AlN, AlInN and InN can be mentioned. Furthermore, these compound semiconductors may contain boron (B) atoms, thallium (Tl) atoms, arsenic (As) atoms, phosphorus (P) atoms, and antimony (Sb) atoms, as desired. . The active layer 22 preferably has a quantum well structure. Specifically, it may have a single quantum well structure (QW structure) or may have a multiple quantum well structure (MQW structure). The active layer 22 having a quantum well structure has a structure in which the well layer and the barrier layer are stacked in at least one layer, but as a combination of (a compound semiconductor forming the well layer and a compound semiconductor forming the barrier layer), (In y Ga (1-y ) N, GaN), (In y Ga (1-y) N, In z Ga (1-z) N) [ where, y> z], (In y Ga (1- y) N, AlGaN), (AlGaN / GaN), (AlzGa1 - zN / AlyGa1 -yN ) [where y> z] can be mentioned.
 なお、第1半導体層21および第2半導体層23は、それぞれ単一構造の層であってもよいし、多層構造の層であってもよい。また、超格子構造の層であってもよい。更に、組成傾斜層、濃度傾斜層を備えた層とすることもできる。 Each of the first semiconductor layer 21 and the second semiconductor layer 23 may be a layer having a single structure or a layer having a multilayer structure. Also, it may be a layer of a superlattice structure. Furthermore, it may be a layer provided with a composition gradient layer and a concentration gradient layer.
 第1電極31は、半導体層20が形成された基板11の一面とは反対側の面に設けられている。第1電極31は、例えば、金(Au)、銀(Ag)、パラジウム(Pd)、白金(Pt)、ニッケル(Ni)、Ti(チタン)、バナジウム(V)、タングステン(W)、クロム(Cr)、Al(アルミニウム)、Cu(銅)、Zn(亜鉛)、錫(Sn)およびインジウム(In)のうちの少なくとも1種類の金属(合金を含む)を含む単層膜または積層膜であることが好ましい。具体的には、例えば、Ti/Au、Ti/Al、Ti/Al/Au、Ti/Pt/Au、Ni/Au、Ni/Au/Pt、Ni/Pt、Pd/Pt、Ag/Pd等の積層膜が挙げられる。なお、多層膜構造における「/」の前の層ほど、より活性層22側に位置する。 The first electrode 31 is provided on the surface opposite to the one surface of the substrate 11 on which the semiconductor layer 20 is formed. The first electrode 31 is made of, for example, gold (Au), silver (Ag), palladium (Pd), platinum (Pt), nickel (Ni), Ti (titanium), vanadium (V), tungsten (W), chromium Cr), Al (aluminum), Cu (copper), Zn (zinc), tin (Sn), and a single layer film or laminated film including at least one metal (including an alloy) of indium (In) Is preferred. Specifically, for example, Ti / Au, Ti / Al, Ti / Al / Au, Ti / Pt / Au, Ni / Au, Ni / Au / Pt, Ni / Pt, Pd / Pt, Ag / Pd, etc. A laminated film is mentioned. The layer closer to the “/” in the multilayer film structure is located closer to the active layer 22.
 透明電極32は、半導体層20上に設けられている。透明電極32は、第2半導体層23のうち、活性層22から発せられた光を射出する射出窓24Wに接して設けられている。透明電極32は、光透過性を有するいわゆる透明導電性材料によって形成されている。具体的な透明導電性材料としては、例えば、インジウム-錫酸化物(ITO,Indium TinOxide,SnドープのIn23、結晶性ITOおよびアモルファスITOを含む)、インジウム-亜鉛酸化物(IZO,Indium Zinc Oxide)、IFO(FドープのIn23)、酸化錫(SnO2)、ATO(SbドープのSnO2)、FTO(FドープのSnO2)、酸化亜鉛(ZnO、AlドープのZnOやBドープのZnOを含む)が挙げられる。この他、ガリウム酸化物、チタン酸化物、ニオブ酸化物、ニッケル酸化物等を母層とする透明導電膜を用いてもよい。但し、透明電極32を構成する材料は、後述する第2反射層42と透明電極32との配置状態に依存するが、透明導電性材料に限定するものではなく、パラジウム(Pd)、白金(Pt)、ニッケル(Ni)、金(Au)、コバルト(Co)、ロジウム(Rh)等の金属を用いることもできる。透明電極32は、これらの材料の少なくとも1種類から構成すればよい。 The transparent electrode 32 is provided on the semiconductor layer 20. The transparent electrode 32 is provided in contact with the emission window 24 W of the second semiconductor layer 23 for emitting the light emitted from the active layer 22. The transparent electrode 32 is formed of a so-called transparent conductive material having light transparency. Specific transparent conductive materials include, for example, indium-tin oxide (ITO, Indium Tin Oxide, Sn-doped In 2 O 3 , crystalline ITO and amorphous ITO), indium-zinc oxide (IZO, Indium) Zinc Oxide), IFO (F-doped In 2 O 3 ), tin oxide (SnO 2 ), ATO (Sb-doped SnO 2 ), FTO (F-doped SnO 2 ), zinc oxide (ZnO, Al-doped ZnO or B-doped ZnO is included. Besides, a transparent conductive film having a gallium oxide, titanium oxide, niobium oxide, nickel oxide or the like as a base layer may be used. However, the material constituting the transparent electrode 32 depends on the arrangement of the second reflective layer 42 and the transparent electrode 32 described later, but is not limited to the transparent conductive material, and palladium (Pd), platinum (Pt) And metals such as nickel (Ni), gold (Au), cobalt (Co) and rhodium (Rh). The transparent electrode 32 may be made of at least one of these materials.
 透明電極32上には、外部の電極あるいは回路と電気的に接続するための第2電極33が設けられている。第2電極33は、例えば、Ti(チタン)、アルミニウム(Al)、Pt(白金)、Au(金)、Ni(ニッケル)、Pd(パラジウム)のうちの少なくとも1種類の金属を含む単層膜または積層膜であることが好ましい。具体的には、例えば、Ti/Pt/Au、Ti/Au、Ti/Pd/Au、Ti/Pd/Au、Ti/Ni/Au、Ti/Ni/Au/Cr/Au等の積層膜が挙げられる。なお、ここでは設けていないが、第1電極31上にもパッド電極を適宜設けてもよい。第1電極31をAg層あるいはAg/Pd層から構成する場合には、第1電極31の表面に、例えば、Ni/TiW/Pd/TiW/Niから成るカバーメタル層(図示せず)を形成し、カバーメタル層の上に、例えば、Ti/Ni/Au、Ti/Ni/Au/Cr/Au等の多層膜からなるパッド電極を形成することが好ましい。 On the transparent electrode 32, a second electrode 33 for electrically connecting to an external electrode or circuit is provided. The second electrode 33 is, for example, a single layer film including at least one metal of Ti (titanium), aluminum (Al), Pt (platinum), Au (gold), Ni (nickel), and Pd (palladium). Or it is preferable that it is laminated film. Specifically, for example, laminated films of Ti / Pt / Au, Ti / Au, Ti / Pd / Au, Ti / Pd / Au, Ti / Ni / Au, Ti / Ni / Au / Cr / Au, etc. are listed. Be Although not provided here, a pad electrode may be appropriately provided also on the first electrode 31. When the first electrode 31 is formed of an Ag layer or an Ag / Pd layer, a cover metal layer (not shown) made of, for example, Ni / TiW / Pd / TiW / Ni is formed on the surface of the first electrode 31 Preferably, a pad electrode made of a multilayer film of, for example, Ti / Ni / Au, Ti / Ni / Au / Cr / Au, etc. is formed on the cover metal layer.
 半導体層20(具体的には、第2半導体層23)と透明電極32との間には、電流狭窄構造が形成されていることが好ましい。電流狭窄構造は、例えば、第2半導体層23上に設けられた絶縁膜24によって構成される。絶縁膜24は開口24Aを有し、この開口が半導体層20(第2半導体層23)における電流注入領域となる。このとき、半導体層20(第2半導体層23)における電流注入領域が、上記射出窓24Hと対応している。絶縁膜24は、例えば、SiOX,SiNXあるいはAlOXによって形成されている。 Preferably, a current confinement structure is formed between the semiconductor layer 20 (specifically, the second semiconductor layer 23) and the transparent electrode 32. The current confinement structure is formed of, for example, the insulating film 24 provided on the second semiconductor layer 23. The insulating film 24 has an opening 24A, and this opening becomes a current injection region in the semiconductor layer 20 (second semiconductor layer 23). At this time, the current injection region in the semiconductor layer 20 (second semiconductor layer 23) corresponds to the emission window 24H. The insulating film 24 is formed of, for example, SiO x , SiN x or AlO x .
 なお、電流狭窄構造は、必ずしも絶縁膜24によって形成する必要はない。例えば、第2半導体層23を反応性イオンエッチング(Reactive Ion Etching;RIE)法等によりエッチングしてメサ構造を形成してもよいし、あるいは、積層された第2半導体層23の一部の層を横方向から部分的に酸化して電流狭窄領域を形成してもよい。更に、第2半導体層23に不純物をイオン注入して導電性が低下した領域を形成してもよいし、更にまた、これらを、適宜、組み合わせてもよい。但し、透明電極32は、電流狭窄により電流が流れる第2半導体層23の一部と電気的に接続されている必要がある。 The current confinement structure does not necessarily have to be formed of the insulating film 24. For example, the mesa structure may be formed by etching the second semiconductor layer 23 by a reactive ion etching (RIE) method or the like, or a partial layer of the stacked second semiconductor layer 23 May be partially oxidized laterally to form a current confinement region. Furthermore, an impurity may be ion-implanted into the second semiconductor layer 23 to form a region with reduced conductivity, or these may be combined as appropriate. However, the transparent electrode 32 needs to be electrically connected to part of the second semiconductor layer 23 through which current flows due to current narrowing.
 誘電体多層膜41は、例えば、基板11の面内に複数設けられており、第1半導体層21によって埋め込まれている。基板11上に設けられた複数の誘電体多層膜41の一部は、半導体層20の端面と同一の面内に端面を有し、半導体レーザ1の側面に露出している。誘電体多層膜41は、例えば、Si、Mg、Al、Hf、Nb、Zr、Sc、Ta、Ga、Zn、Y、B、Ti等の酸化物、窒化物(例えば、SiNx、AlNx、AlGaN、GaNx、BNx等)あるいはフッ化物等によって形成されている。具体的には、SiOx、TiOx、NbOx、ZrOx、TaOx、ZnOx、AlOx、HfOx、SiNx、AlNx等が挙げられる。 A plurality of dielectric multilayer films 41 are provided, for example, in the plane of the substrate 11, and are embedded in the first semiconductor layer 21. A part of the plurality of dielectric multilayer films 41 provided on the substrate 11 has an end face in the same plane as the end face of the semiconductor layer 20 and is exposed to the side face of the semiconductor laser 1. The dielectric multilayer film 41 is made of, for example, oxides such as Si, Mg, Al, Hf, Nb, Zr, Sc, Ta, Ga, Zn, Y, B, Ti, nitrides (for example, SiN x , AlN x , It is formed of AlGaN, GaN x , BN x or the like) or fluoride or the like. Specifically, SiO x , TiO x , NbO x , ZrO x , TaO x , ZnO x , AlO x , HfO x , SiN x , AlN x and the like can be mentioned.
 第1反射層41Aは、DBR(Distributed Bragg Reflector)層として機能する。第1反射層41Aは、上記誘電体材料のうち、屈折率が異なる誘電体材料から成る2種類以上の誘電体膜が交互に積層された構成となっていることが好ましい。これにより、光反射効果が得られる。2種類の誘電体膜の組み合わせとしては、例えば、SiOx/SiNx、SiOx/NbOx、SiOx/ZrOx、SiOx/AlNx等が挙げられる。所望の光反射率を得るために、各誘電体膜を構成する材料、膜厚および積層数等を、適宜選択すればよい。各誘電体膜の厚みは、用いる材料等により適宜調整することができ、発光波長λ0、用いる材料の発光波長λ0での屈折率nによって決定される。具体的には、λ0/(4n)の奇数倍とすることが好ましい。例えば、発光波長λ0が410nmの発光素子において、誘電体多層膜41をSiOX/NbOyから構成する場合には、各誘電体膜の厚みは40nm~70nm程度であることが好ましい。積層数は、5以上であることが好ましく、より好ましくは、15以上である。誘電体多層膜41全体の厚みは、例えば、0.6μm~3.0μmであることが好ましい。誘電体多層膜41は、例えば、[1120]方向に横方向成長するように配置または配列させることが好ましい。 The first reflective layer 41A functions as a Distributed Bragg Reflector (DBR) layer. It is preferable that the first reflective layer 41A has a configuration in which two or more types of dielectric films made of dielectric materials having different refractive indexes among the above-mentioned dielectric materials are alternately stacked. Thereby, the light reflection effect is obtained. Examples of combinations of two types of dielectric films include SiO x / SiN x , SiO x / NbO x , SiO x / ZrO x , SiO x / AlN x and the like. In order to obtain a desired light reflectance, the material, the film thickness, the number of laminations, etc. constituting each dielectric film may be appropriately selected. The thickness of each dielectric film can be appropriately adjusted according to the material to be used, etc., and is determined by the light emission wavelength λ 0 and the refractive index n at the light emission wavelength λ 0 of the material used. Specifically, it is preferable to use an odd multiple of λ0 / (4n). For example, in a light emitting element having a light emission wavelength λ 0 of 410 nm, when the dielectric multilayer film 41 is made of SiO x / NbO y , the thickness of each dielectric film is preferably about 40 nm to 70 nm. The number of stacked layers is preferably 5 or more, more preferably 15 or more. The thickness of the entire dielectric multilayer film 41 is preferably, for example, 0.6 μm to 3.0 μm. The dielectric multilayer film 41 is preferably arranged or arranged to grow laterally, for example, in the [1120] direction.
 誘電体多層膜41の平面形状は、図2に示したように、例えば格子(矩形)状(A)、正六角形を含む多角形状(B)、楕円を含む円形状(C)、ストライプ状(D)あるいは島状形状に形成されている。誘電体多層膜41の断面形状は、図1に示したように矩形状でもよいし、あるいは台形状に形成してもよい。また、図3に示したように、一部の誘電体多層膜41が基板11から欠落していてもよい。この誘電体多層膜41の欠落は、劈開による切り出し時における誘電体多層膜41の割れや欠けによって生じる。また、例えば基板11の線熱膨張係数と誘電体多層膜41の線熱膨張係数の差によって生じる。この誘電体多層膜41の欠落が基板11の端面で起こることにより、半導体層20の側面に凹み21Aが形成される。なお、誘電体多層膜41の欠落は、意図的に形成するようにしてもよい。 The planar shape of the dielectric multilayer film 41 is, for example, as shown in FIG. 2, lattice (rectangular) shape (A), polygonal shape including regular hexagon (B), circular shape including ellipse (C), stripe shape D) Or it is formed in island shape. The cross-sectional shape of the dielectric multilayer film 41 may be rectangular as shown in FIG. 1 or may be trapezoidal. Further, as shown in FIG. 3, a part of the dielectric multilayer film 41 may be missing from the substrate 11. The omission of the dielectric multilayer film 41 is caused by cracking or chipping of the dielectric multilayer film 41 at the time of cutting out by cleavage. Also, for example, it is generated by the difference between the linear thermal expansion coefficient of the substrate 11 and the linear thermal expansion coefficient of the dielectric multilayer film 41. When the missing of the dielectric multilayer film 41 occurs at the end face of the substrate 11, a recess 21A is formed on the side face of the semiconductor layer 20. The omission of the dielectric multilayer film 41 may be intentionally formed.
 第2反射層42は、半導体層20を間にして第1反射層41Aと対向する位置に設けられており、具体的には、透明電極32上に設けられている。第2反射層42は、誘電体多層膜41と同様に、Si、Mg、Al、Hf、Nb、Zr、Sc、Ta、Ga、Zn、Y、B、Ti等の酸化物、窒化物(例えば、SiNX、AlNX、AlGaN、GaNX、BNX等)あるいはフッ化物等によって形成されている。第2反射層42は、上記誘電体材料のうち、SiNxやTaOx等の高屈折率材料と、SiOx等の低屈折率材料とを交互に積層することで高い光反射率を得ることができる。所望の光反射率を得るためには、各誘電体膜を構成する材料のほか、膜厚および積層数等を適宜選択すればよい。各誘電体膜の厚みは、用いる材料等により適宜調整することができ、発光波長λ0、用いる材料の発光波長λ0での屈折率nによって決定される。具体的には、λ0/(4n)の奇数倍とすることが好ましい。例えば、発光波長λ0が410nmの発光素子において、誘電体多層膜41をSiOX/NbOyから構成する場合には、各誘電体膜の厚みは40nm~70nm程度であることが好ましい。積層数は2以上、好ましくは、2~15である。誘電体多層膜41全体の厚みは、例えば、0.6μm~3.0μmであることが好ましい。 The second reflective layer 42 is provided at a position facing the first reflective layer 41A with the semiconductor layer 20 therebetween, and more specifically, provided on the transparent electrode 32. Similar to the dielectric multilayer film 41, the second reflective layer 42 is an oxide such as Si, Mg, Al, Hf, Nb, Zr, Sc, Ta, Ga, Zn, Y, B, Ti, nitride (for example, , SiN x , AlN x , AlGaN, GaN x , BN x, etc.) or fluoride or the like. The second reflective layer 42, the of the dielectric material, to obtain a high refractive index material such as SiN x or TaO x, that is high optical reflectance alternately laminating a low refractive index material such as SiO x Can. In order to obtain a desired light reflectance, the film thickness, the number of laminations, etc. may be appropriately selected in addition to the material constituting each dielectric film. The thickness of each dielectric film can be appropriately adjusted according to the material to be used, etc., and is determined by the light emission wavelength λ 0 and the refractive index n at the light emission wavelength λ 0 of the material used. Specifically, it is preferable to use an odd multiple of λ0 / (4n). For example, in a light emitting element having a light emission wavelength λ 0 of 410 nm, when the dielectric multilayer film 41 is made of SiO x / NbO y , the thickness of each dielectric film is preferably about 40 nm to 70 nm. The number of layers is 2 or more, preferably 2 to 15. The thickness of the entire dielectric multilayer film 41 is preferably, for example, 0.6 μm to 3.0 μm.
(1-2.製造方法)
 本実施の形態の半導体レーザ1は、例えば、次のようにして製造することができる。
(1-2. Manufacturing method)
The semiconductor laser 1 of the present embodiment can be manufactured, for example, as follows.
 図4A~図5Bは、半導体レーザ1の製造方法を工程順に表わしたものである。まず、図4Aに示したように、誘電体多層膜41Xを形成する。具体的には、基板11上に、例えば、スパッタ、CVDおよび蒸着等いずれの成膜方法を用いてSiOx膜およびSiNx膜を交互に、例えば5層積層することで形成される。続いて、図4Bに示したように、誘電体多層膜41Xを選択的にエッチングすることにより、側面が溝41Hに囲まれた複数の誘電体多層膜41を形成する。エッチング工程にはフッ化水素酸等によるウェットエッチング、RIE装置等を用いたドライエッチング等を用いることができる。 4A to 5B show a method of manufacturing the semiconductor laser 1 in the order of steps. First, as shown in FIG. 4A, a dielectric multilayer film 41X is formed. Specifically, it is formed by alternately laminating, for example, five layers of SiO x films and SiN x films on the substrate 11 by using any film forming method such as sputtering, CVD and evaporation. Subsequently, as shown in FIG. 4B, the dielectric multilayer film 41X is selectively etched to form a plurality of dielectric multilayer films 41 whose side surfaces are surrounded by the grooves 41H. In the etching step, wet etching with hydrofluoric acid or the like, dry etching using an RIE apparatus, or the like can be used.
 次に、図5Aに示したように、基板11および誘電体多層膜41上に半導体層20および絶縁膜24を形成する。具体的には、誘電体多層膜41を選択成長用マスクとして用い、基板11をMOCVD(Metal Organic Chemical Vapor Deposition;有機金属化学気相成長)装置に設置し、所望の温度に加熱した状態で、例えば、n型GaNからなる第1半導体層21、活性層(発光層)22、例えば、p型GaNからなる第2半導体層23等を含む半導体層20を成長させる。成長には、Ga原料としてトリメチルガリウム(TMGa)、Al原料としてトリメチルアルミニウム(TMAl)、In原料としてトリメチルインジウム(TMIn)、n型不純物のSiの原料としてシラン(SiH4)、p型不純物のMgの原料としてシクロペンタジエニルマグネシウム(Cp2Mg)、N原料としてアンモニアガス(NH3)等を用いる。ここでは、例えば、第1半導体層21を5μm、活性層22を80nm、第2半導体層23を100nm成長させる。続いて、例えばSiO2膜を、例えばスパッタ、CVDおよび蒸着等いずれの成膜方法を用いて、例えば200nmの厚みで成膜したのち、選択的にエッチングすることにより、電流注入領域となる第2半導体層23が露出した開口24Aを有する絶縁膜24を形成する。エッチング工程にはフッ化水素酸等によるウェットエッチング、RIE装置等を用いたドライエッチング等を用いることができる。ここで、電流注入領域の面積は、対向する誘電体多層膜41(第1反射層41A)の面積の半分以下であり、例えば、25πm2程度である。 Next, as shown in FIG. 5A, the semiconductor layer 20 and the insulating film 24 are formed on the substrate 11 and the dielectric multilayer film 41. Specifically, the dielectric multilayer film 41 is used as a mask for selective growth, and the substrate 11 is placed in a metal organic chemical vapor deposition (MOCVD) apparatus and heated to a desired temperature. For example, the semiconductor layer 20 including the first semiconductor layer 21 made of n-type GaN and the active layer (light emitting layer) 22 such as the second semiconductor layer 23 made of p-type GaN is grown. For growth, trimethylgallium (TMGa) as Ga source material, trimethylaluminum (TMAl) as Al source material, trimethylindium (TMIn) as In source material, silane (SiH 4 ) as source material of n-type impurity Si, Mg as p-type impurity Cyclopentadienyl magnesium (Cp 2 Mg) is used as a raw material for ammonia, and ammonia gas (NH 3 ) or the like is used as a nitrogen raw material. Here, for example, the first semiconductor layer 21 is grown to 5 μm, the active layer 22 is grown to 80 nm, and the second semiconductor layer 23 is grown to 100 nm. Subsequently, for example, a SiO 2 film is formed to a thickness of, for example, 200 nm using any film forming method such as sputtering, CVD and evaporation, and then selectively etched to form a current injection region. An insulating film 24 having an opening 24A in which the semiconductor layer 23 is exposed is formed. In the etching step, wet etching with hydrofluoric acid or the like, dry etching using an RIE apparatus, or the like can be used. Here, the area of the current injection region is equal to or less than half of the area of the opposing dielectric multilayer film 41 (first reflective layer 41A), and is, for example, about 25πm 2 .
 続いて、図5Bに示したように、透明電極32、第2電極33および第2反射層42を形成する。具体的には、例えばITO膜を、例えば、スパッタ、CVDおよび蒸着等いずれの成膜方法を用いて成膜したのち、選択的にエッチングすることにより、所望の形状を有する透明電極32を形成する。エッチング工程には塩酸等によるウェットエッチング、リアクティブイオンエッチング装置等を用いたドライエッチング等を用いることができる。次に、例えばAu、PtおよびTiを、例えば、スパッタ、CVDおよび蒸着等いずれの成膜方法を用いてこの順に成膜したのち、選択的にエッチングすることにより、所望の部分にのみTi/Pt/Au膜を残して第2電極33を形成する。エッチング工程には酸等によるウェットエッチング、リアクティブイオンエッチング装置等を用いたドライエッチング、PR法によるリフトオフ等を用いることができる。続いて、例えば、スパッタ、CVDおよび蒸着等いずれの成膜方法を用いてSiOx膜およびSiNx膜を交互に、例えば5層積層された誘電体多層膜を形成してのち、例えば、選択的にエッチングすることにより所望の形状を有する第2反射層42を形成する。エッチング工程にはフッ化水素酸等によるウェットエッチング、RIE装置等を用いたドライエッチング等を用いることができる。 Then, as shown to FIG. 5B, the transparent electrode 32, the 2nd electrode 33, and the 2nd reflection layer 42 are formed. Specifically, for example, an ITO film is formed using any film forming method such as sputtering, CVD and evaporation, and then selectively etched to form a transparent electrode 32 having a desired shape. . In the etching step, wet etching using hydrochloric acid or the like, dry etching using a reactive ion etching apparatus, or the like can be used. Next, for example, Au, Pt and Ti are formed in this order using any film forming method such as sputtering, CVD and evaporation, and then selectively etched to form Ti / Pt only in the desired part. The second electrode 33 is formed leaving the / Au film. In the etching step, wet etching with an acid or the like, dry etching using a reactive ion etching apparatus or the like, lift-off by a PR method, or the like can be used. Subsequently, a dielectric multilayer film in which, for example, five layers of SiO x films and SiN x films are alternately laminated is formed using any film forming method such as sputtering, CVD and evaporation, for example, selective To form a second reflective layer 42 having a desired shape. In the etching step, wet etching with hydrofluoric acid or the like, dry etching using an RIE apparatus, or the like can be used.
 次に、基板11を裏面側から研削および研磨を行ったのち、第1電極31を成膜する。最後に、基板11から素子を劈開等によって切り出す。このとき、誘電体多層膜41を横切るように切り出す。これにより、図1に示した半導体レーザ1が完成する。 Next, the substrate 11 is ground and polished from the back surface side, and then the first electrode 31 is deposited. Finally, the element is cut out from the substrate 11 by cleavage or the like. At this time, it cuts out so that the dielectric multilayer film 41 may be traversed. Thereby, the semiconductor laser 1 shown in FIG. 1 is completed.
 半導体レーザ1は、上記のように、基板11の一面に、複数の誘電体多層膜41、第1半導体層21、活性層22、第2半導体層23、透明電極32および第2反射層42がこの順に積層され、基板11の一面に対向する他の面には第1電極31が形成された構成を有する。第1反射層41Aおよび第2反射層42のいずれか一方(ここでは、第2反射層42側)には、活性層22への電流注入効率を高め、閾地電流を下げるために電流注入領域を狭める電流狭窄構造(絶縁膜24の開口24A)が設けられている。半導体レーザ1では、第1電極31および透明電極32から注入された電流が電流狭窄構造により狭窄されたのち、活性層22に注入される。これにより、電子と正孔の再結合による発光が生じる。この光は、第1反射層41Aおよび第2反射層42によって反射され、所定の波長でレーザ発振が生じ、第1反射層41Aまたは第2反射層42を介して外部にレーザ光として射出される。 As described above, in the semiconductor laser 1, the plurality of dielectric multilayer films 41, the first semiconductor layer 21, the active layer 22, the second semiconductor layer 23, the transparent electrode 32 and the second reflective layer 42 are formed on one surface of the substrate 11. The first electrode 31 is formed on the other surface of the substrate 11 stacked in this order and facing one surface of the substrate 11. In one of the first reflection layer 41A and the second reflection layer 42 (here, on the second reflection layer 42 side), a current injection region for enhancing the current injection efficiency to the active layer 22 and reducing the threshold current. A current narrowing structure (an opening 24A of the insulating film 24) is provided to narrow the width. In the semiconductor laser 1, the current injected from the first electrode 31 and the transparent electrode 32 is narrowed by the current narrowing structure and then injected into the active layer 22. This causes light emission due to recombination of electrons and holes. This light is reflected by the first reflection layer 41A and the second reflection layer 42, and laser oscillation occurs at a predetermined wavelength, and is emitted as laser light to the outside through the first reflection layer 41A or the second reflection layer 42. .
(1-3.作用・効果)
 前述したように、窒化物半導体を用いた半導体レーザは、その諸特性が熱に強く影響を受けるため、半導体レーザは、熱を排出させるためにサブマウント等に、一般に半田を用いて実装される。また、半田は熱伝導率が高いため、半導体レーザの表面をできるだけ半田で覆うことによって排熱効率の向上が図られる傾向にある。しかしながら、一般的な半導体レーザでは、側面の濡れ性によって半田のせり上がりが起こり、この半田のせり上がりがリーク不良の原因となっていた。
(1-3. Action / Effect)
As described above, since semiconductor lasers using nitride semiconductors are strongly affected by heat, the semiconductor lasers are generally mounted on a submount or the like using solder to discharge the heat. . In addition, since the solder has a high thermal conductivity, the heat dissipation efficiency tends to be improved by covering the surface of the semiconductor laser with the solder as much as possible. However, in a general semiconductor laser, the wettability of the side surface causes a rise of the solder, and the rise of the solder causes a leak failure.
 この問題を解決する方法として、半導体レーザを実装するサブマウント等に掘り込み等を設けて半田のせり上がりを抑制する方法が考えられている。しかしながら、この方法では、半田のせり上がりを低減することはできるものの、半導体レーザ表面の半田の被覆領域を制御することは難しく、半田のせり上がりの抑制と、高い排熱効率とを両立させることは困難であった。 As a method of solving this problem, a method is known in which a dip or the like is provided in a submount or the like on which a semiconductor laser is mounted to suppress the solder rising. However, although this method can reduce the solder rise, it is difficult to control the solder coated area on the surface of the semiconductor laser, and it is necessary to achieve both suppression of the solder rise and high heat removal efficiency. It was difficult.
 これに対して、本実施の形態の半導体レーザ1では、基板11上の第1半導体層21の側面に、誘電体多層膜41の露出面または凹み21Aを設けるようにした。第1半導体層21の側面に設けられる誘電体多層膜41の露出面は、第1半導体層21と比較してダングリングボンドの密度が小さく、これらが多層積層されることで半導体レーザ1の側面に複数の界面が形成される。これにより、実装時に用いられる半田による半導体レーザ1の側面の被覆領域を制御することが可能となる。また、凹み21Aは、劈開による切り出しの際の割れや欠け、あるいは、基板11と誘電体多層膜41との線膨張係数の差によって誘電体多層膜41が欠落することによって形成される。この凹み21Aによっても実装時に用いられる半田による半導体レーザ1の側面の被覆領域を制御、具体的には、半田のせり上がりが低減される。 On the other hand, in the semiconductor laser 1 of the present embodiment, the exposed surface or the recess 21A of the dielectric multilayer film 41 is provided on the side surface of the first semiconductor layer 21 on the substrate 11. The exposed surface of the dielectric multilayer film 41 provided on the side surface of the first semiconductor layer 21 has a smaller density of dangling bonds than that of the first semiconductor layer 21, and these are stacked in multiple layers to form the side surface of the semiconductor laser 1. And multiple interfaces are formed. Thereby, it becomes possible to control the covering area of the side surface of the semiconductor laser 1 by the solder used at the time of mounting. Further, the recess 21A is formed by a crack or a chip at the time of cutting out by cleavage, or a drop of the dielectric multilayer film 41 due to a difference in linear expansion coefficient between the substrate 11 and the dielectric multilayer film 41. Also by this recess 21A, the covering area of the side surface of the semiconductor laser 1 by the solder used at the time of mounting is controlled, specifically, the rising of the solder is reduced.
 よって、本実施の形態の半導体レーザ1では、半田の被覆による排熱効率高めつつ、半田のせり上がりが抑制され、リーク不良の発生を低減することが可能となる。 Therefore, in the semiconductor laser 1 according to the present embodiment, it is possible to suppress the rise of the solder and to reduce the occurrence of the leak failure while enhancing the heat removal efficiency by the coating of the solder.
 以下に、他の実施の形態について説明する。なお、上記第1の実施の形態と同様の構成については、同じ符号を付し、その説明を省略する。 Another embodiment will be described below. The same reference numerals are given to the same components as those in the first embodiment, and the description will be omitted.
<2.第2の実施の形態>
 図6は、本開示の第2の実施の形態に係る面発光型の半導体素子(LED2)の断面構成の一例を表したものである。LED2は、基板11と、基板11の面S1に接する複数の誘電体多層膜61とを有する。複数の誘電体多層膜61は間隔をあけて基板11上に設けられている。LED2は、さらに、半導体層20、透明電極52およびn型電極53がこの順に積層された構成を有する。各誘電体多層膜61は、半導体層20の第1半導体層21によって埋め込まれており、第1半導体層21の側面には、1または複数の誘電体多層膜61の側面が露出している。つまり、第1半導体層21の側面には、誘電体多層膜61が少なくとも1つ形成されている。さらに、第1半導体層21の側面には、凹み21Aが少なくとも1つ形成されている。LED2は、基板11の面S2(面S1と対向する面)に接するp型電極51を有する。なお、図6の半導体レーザ1は模式的に表したものであり、実際の寸法とは異なっている。
<2. Second embodiment>
FIG. 6 illustrates an example of a cross-sectional configuration of a surface-emitting semiconductor element (LED 2) according to a second embodiment of the present disclosure. The LED 2 has a substrate 11 and a plurality of dielectric multilayer films 61 in contact with the surface S 1 of the substrate 11. A plurality of dielectric multilayer films 61 are provided on the substrate 11 at intervals. The LED 2 further has a configuration in which the semiconductor layer 20, the transparent electrode 52, and the n-type electrode 53 are stacked in this order. Each dielectric multilayer film 61 is embedded by the first semiconductor layer 21 of the semiconductor layer 20, and the side surface of the one or more dielectric multilayer films 61 is exposed on the side surface of the first semiconductor layer 21. That is, at least one dielectric multilayer film 61 is formed on the side surface of the first semiconductor layer 21. Furthermore, at least one recess 21A is formed on the side surface of the first semiconductor layer 21. The LED 2 has a p-type electrode 51 in contact with the surface S 2 (surface facing the surface S 1) of the substrate 11. The semiconductor laser 1 shown in FIG. 6 is schematically shown, and is different from the actual size.
 p型電極51は、半導体層20が形成された基板11の一面とは反対側の面に設けられている。p型電極51は、例えば、金(Au)、銀(Ag)、パラジウム(Pd)、白金(Pt)、ニッケル(Ni)、Ti(チタン)、バナジウム(V)、タングステン(W)、クロム(Cr)、Al(アルミニウム)、Cu(銅)、Zn(亜鉛)、錫(Sn)およびインジウム(In)のうちの少なくとも1種類の金属(合金を含む)を含む単層膜または積層膜であることが好ましい。積層膜としては、例えば、Ti/Au、Ti/Al、Ti/Al/Au、Ti/Pt/Au、Ni/Au、Ni/Au/Pt、Ni/Pt、Pd/Pt、Ag/Pd等が挙げられる。 The p-type electrode 51 is provided on the surface opposite to the one surface of the substrate 11 on which the semiconductor layer 20 is formed. The p-type electrode 51 is made of, for example, gold (Au), silver (Ag), palladium (Pd), platinum (Pt), nickel (Ni), Ti (titanium), vanadium (V), tungsten (W), chromium Cr), Al (aluminum), Cu (copper), Zn (zinc), tin (Sn), and a single layer film or laminated film including at least one metal (including an alloy) of indium (In) Is preferred. As the laminated film, for example, Ti / Au, Ti / Al, Ti / Al / Au, Ti / Pt / Au, Ni / Au, Ni / Au / Pt, Ni / Pt, Pd / Pt, Ag / Pd, etc. It can be mentioned.
 透明電極52は、例えば、半導体層20の上面(第2半導体層23の表面)に設けられており、光透過性を有するいわゆる透明導電性材料によって形成されている。具体的な透明導電性材料としては、例えば、インジウム-錫酸化物(ITO,Indium Tin Oxide,SnドープのIn23、結晶性ITOおよびアモルファスITOを含む)、インジウム-亜鉛酸化物(IZO,Indium Zinc Oxide)、IFO(FドープのIn23)、酸化錫(SnO2)、ATO(SbドープのSnO2)、FTO(FドープのSnO2)、酸化亜鉛(ZnO、AlドープのZnOやBドープのZnOを含む)が挙げられる。この他、ガリウム酸化物、チタン酸化物、ニオブ酸化物、ニッケル酸化物等を母層とする透明導電膜を用いてもよい。 The transparent electrode 52 is provided, for example, on the upper surface of the semiconductor layer 20 (the surface of the second semiconductor layer 23), and is formed of a so-called transparent conductive material having light transparency. Specific transparent conductive materials include, for example, indium-tin oxide (ITO, Indium Tin Oxide, Sn-doped In 2 O 3 , crystalline ITO and amorphous ITO), indium-zinc oxide (IZO, Indium Zinc Oxide, IFO (F-doped In 2 O 3 ), tin oxide (SnO 2 ), ATO (Sb-doped SnO 2 ), FTO (F-doped SnO 2 ), zinc oxide (ZnO, Al-doped ZnO And B-doped ZnO). Besides, a transparent conductive film having a gallium oxide, titanium oxide, niobium oxide, nickel oxide or the like as a base layer may be used.
 n型電極53は、透明電極52上の一部に設けられている。n型電極53は、例えば、Ti(チタン)、アルミニウム(Al)、Pt(白金)、Au(金)、Ni(ニッケル)、Pd(パラジウム)のうちの少なくとも1種類の金属を含む単層膜または積層膜であることが好ましい。積層膜としては、例えば、Ti/Pt/Au、Ti/Au、Ti/Pd/Au、Ti/Pd/Au、Ti/Ni/Au、Ti/Ni/Au/Cr/Au等が挙げられる。 The n-type electrode 53 is provided on a part of the transparent electrode 52. The n-type electrode 53 is, for example, a single layer film including at least one metal of Ti (titanium), aluminum (Al), Pt (platinum), Au (gold), Ni (nickel), and Pd (palladium). Or it is preferable that it is a laminated film. Examples of the laminated film include Ti / Pt / Au, Ti / Au, Ti / Pd / Au, Ti / Pd / Au, Ti / Ni / Au, Ti / Ni / Au / Cr / Au, and the like.
 誘電体多層膜61は、上記実施の形態における誘電体多層膜41と同様に、例えば、基板11の面内に複数設けられており、第1半導体層21によって埋め込まれている。誘電体多層膜61は、活性層22で発せられた光を透明電極52側に反射する機能を有する。基板11上に設けられた複数の誘電体多層膜61の一部は、半導体層20と同一の端面を有し、LED2の側面に露出している。誘電体多層膜61は、例えば、Si、Mg、Al、Hf、Nb、Zr、Sc、Ta、Ga、Zn、Y、B、Ti等の酸化物、窒化物(例えば、SiNx、AlNx、AlGaN、GaNx、BNx等)あるいはフッ化物等によって形成されている。具体的には、SiOx、TiOx、NbOx、ZrOx、TaOx、ZnOx、AlOx、HfOx、SiNx、AlNx等が挙げられる。 A plurality of dielectric multilayer films 61 are provided, for example, in the plane of the substrate 11 as in the case of the dielectric multilayer film 41 in the above-described embodiment, and are embedded in the first semiconductor layer 21. The dielectric multilayer film 61 has a function of reflecting the light emitted from the active layer 22 to the transparent electrode 52 side. A part of the plurality of dielectric multilayer films 61 provided on the substrate 11 has the same end face as the semiconductor layer 20 and is exposed to the side face of the LED 2. The dielectric multilayer film 61 is, for example, an oxide or nitride such as Si, Mg, Al, Hf, Nb, Zr, Sc, Ta, Ga, Zn, Y, B, Ti, etc. (eg, SiN x , AlN x , It is formed of AlGaN, GaN x , BN x or the like) or fluoride or the like. Specifically, SiO x , TiO x , NbO x , ZrO x , TaO x , ZnO x , AlO x , HfO x , SiN x , AlN x and the like can be mentioned.
 誘電体多層膜61は、上記誘電体材料のうち、必ずしも屈折率が異なる誘電体材料から成る2種類以上の誘電体膜を交互に積層する必要はないが、例えば、SiNxやTaOx等の高屈折率材料と、SiOx等の低屈折率材料とを交互に積層することで光の取り出し効率が向上する。具体的な誘電体材料の組み合わせとしては、SiOx/SiNxのほか、例えば、SiOx/NbOx、SiOx/ZrOx、SiOx/AlNx等が挙げられる。各誘電体膜の厚みは40nm~70nm程度であることが好ましい。積層数は、5以上であることが好ましく、より好ましくは、15以上である。誘電体多層膜61全体の厚みは、例えば、0.6μm~3.0μmであることが好ましい。誘電体多層膜61は、例えば、[1120]方向に横方向成長するように配置または配列させることが好ましい。 The dielectric multilayer film 61 does not necessarily have to alternately laminate two or more types of dielectric films made of dielectric materials having different refractive indexes among the above-mentioned dielectric materials, but, for example, SiN x or TaO x The light extraction efficiency is improved by alternately laminating a high refractive index material and a low refractive index material such as SiO x . Specific combinations of dielectric materials include SiO x / NbO x , SiO x / ZrO x , SiO x / AlN x and the like in addition to SiO x / SiN x . The thickness of each dielectric film is preferably about 40 nm to 70 nm. The number of stacked layers is preferably 5 or more, more preferably 15 or more. The thickness of the entire dielectric multilayer film 61 is preferably, for example, 0.6 μm to 3.0 μm. The dielectric multilayer film 61 is preferably arranged or arranged to grow laterally, for example, in the [1120] direction.
 誘電体多層膜61の平面形状は、上記実施の形態と同様に、例えば格子(矩形)状、正六角形を含む多角形状、楕円を含む円形状、ストライプ状あるいは島状形状に形成されている。誘電体多層膜61の断面形状は、図6に示したように矩形状でもよいし、あるいは台形状に形成してもよい。 The planar shape of the dielectric multilayer film 61 is formed, for example, in a lattice (rectangular) shape, a polygonal shape including a regular hexagon, a circular shape including an ellipse, a stripe shape, or an island shape as in the above embodiment. The cross-sectional shape of the dielectric multilayer film 61 may be rectangular as shown in FIG. 6 or may be trapezoidal.
 LED2は、上記実施の形態と同様の方法を用いて、例えば次のようにして製造することができる。まず、上記実施の形態と同様に、基板11上に、誘電体多層膜61および半導体層20を形成したのち、透明電極52およびn型電極53を形成する。具体的には、例えばITOを、例えば、スパッタ、CVDおよび蒸着等いずれの成膜方法を用いて成膜したのち、選択的にエッチングすることにより、所望の形状を有する透明電極52を形成する。エッチング工程には塩酸等によるウェットエッチング、リアクティブイオンエッチング装置等を用いたドライエッチング等を用いることができる。次に、例えばAu、PtおよびTiを、例えば、スパッタ、CVDおよび蒸着等いずれの成膜方法を用いてこの順に成膜したのち、PR工程およびエッチング工程により、所望の部分にのみTi/Pt/Au膜を残してn型電極53を形成する。エッチング工程には酸等によるウェットエッチング、リアクティブイオンエッチング装置等を用いたドライエッチング、PR法によるリフトオフ等を用いることができる。 The LED 2 can be manufactured, for example, as follows, using a method similar to that of the above embodiment. First, as in the above embodiment, the dielectric multilayer film 61 and the semiconductor layer 20 are formed on the substrate 11, and then the transparent electrode 52 and the n-type electrode 53 are formed. Specifically, for example, ITO is formed into a film by any film forming method such as sputtering, CVD and vapor deposition, and then selectively etched to form a transparent electrode 52 having a desired shape. In the etching step, wet etching using hydrochloric acid or the like, dry etching using a reactive ion etching apparatus, or the like can be used. Next, for example, Au, Pt and Ti are formed in this order using any film forming method such as sputtering, CVD and evaporation, and then Ti / Pt / only in desired portions by the PR step and the etching step. An n-type electrode 53 is formed leaving the Au film. In the etching step, wet etching with an acid or the like, dry etching using a reactive ion etching apparatus or the like, lift-off by a PR method, or the like can be used.
 続いて、基板11を裏面側から研削および研磨を行ったのち、p型電極51を成膜する。最後に、基板11から素子を劈開等によって切り出す。このとき、誘電体多層膜61を横切るように切り出すことによってことによって図6に示したLED2が完成する。 Subsequently, the substrate 11 is ground and polished from the back surface side, and then the p-type electrode 51 is deposited. Finally, the element is cut out from the substrate 11 by cleavage or the like. At this time, the LED 2 shown in FIG. 6 is completed by cutting out so as to cross the dielectric multilayer film 61.
<3.適用例>
(適用例1)
 図7Aおよび図7Bは、上記第1の実施の形態における半導体レーザ1をヒートシンク上に実装したものである。なお、ここでは半導体レーザ1の構造を簡略化して示している。図7Aに示した半導体レーザ1は、ヒートシンク101に半田102を介してジャンクションアップ実装されたものであり、第2電極33には半田103を介してボンディングワイヤ104が接続されている。図7Bに示した半導体レーザ1は、ヒートシンク101に半田102を介してジャンクションダウン実装されたものであり、第1電極31には半田103を介してボンディングワイヤ104が接続されている。また、ジャンクションダウン実装する場合には、レーザ光は基板11側から射出されるため、第1電極31には開口31Aが設けられ、この開口31Aが射出窓となっている。このように、第1の実施の形態の半導体レーザ1では、ジャンクションアップ実装された際の半田102のせり上がりを、ジャンクションダウン実装された際の半田103のせり下がりを、半導体層20の各側面に露出した1以上の誘電体多層膜41および1以上の凹み21Aによって防ぐことが可能となる。
<3. Application example>
Application Example 1
FIGS. 7A and 7B show the semiconductor laser 1 according to the first embodiment mounted on a heat sink. Here, the structure of the semiconductor laser 1 is shown in a simplified manner. The semiconductor laser 1 shown in FIG. 7A is junction-up mounted on the heat sink 101 via the solder 102, and the bonding wire 104 is connected to the second electrode 33 via the solder 103. The semiconductor laser 1 shown in FIG. 7B is junction-down mounted on the heat sink 101 via the solder 102, and the bonding wire 104 is connected to the first electrode 31 via the solder 103. Further, in the case of junction-down mounting, since the laser beam is emitted from the substrate 11 side, the first electrode 31 is provided with the opening 31A, and the opening 31A serves as an emission window. As described above, in the semiconductor laser 1 according to the first embodiment, the ascend of the solder 102 in the junction-up mounting is different from that of the solder 103 in the junction-down mounting. It is possible to prevent by the exposed one or more dielectric multilayer films 41 and the one or more recesses 21A.
(適用例2)
 図8Aおよび図8Bは、上記第2の実施の形態におけるLED2をヒートシンク上に実装したものである。なお、ここではLED2の構造を簡略化して示している。図8Aに示したLED2は、ヒートシンク101に半田102を介してジャンクションアップ実装されたものであり、第2電極33には半田103を介してボンディングワイヤ104が接続されている。図8Bに示したLED2は、ヒートシンク101に半田102を介してジャンクションダウン実装されたものであり、p型電極51には半田103を介してボンディングワイヤ104が接続されている。また、ジャンクションダウン実装する場合には、レーザ光は基板11側から射出されるため、p型電極51には開口51Aが設けられ、この開口31Aが射出窓となっている。このように、第2の実施の形態のLED2では、このように、第1の実施の形態の半導体レーザ1では、ジャンクションアップ実装された際の半田102のせり上がりを、ジャンクションダウン実装された際の半田103のせり下がりを、半導体層20の各側面に露出した1以上の誘電体多層膜61および1以上の凹み21Aによって防ぐことが可能となる。
Application Example 2
FIGS. 8A and 8B show the LED 2 of the second embodiment mounted on a heat sink. In addition, the structure of LED2 is simplified and shown here. The LED 2 shown in FIG. 8A is junction-up mounted on the heat sink 101 via the solder 102, and the bonding wire 104 is connected to the second electrode 33 via the solder 103. The LED 2 shown in FIG. 8B is junction-down mounted on the heat sink 101 via the solder 102, and the bonding wire 104 is connected to the p-type electrode 51 via the solder 103. Further, in the case of junction-down mounting, the laser light is emitted from the side of the substrate 11, so the p-type electrode 51 is provided with the opening 51A, and the opening 31A serves as the emission window. Thus, in the LED 2 of the second embodiment, as described above, in the semiconductor laser 1 of the first embodiment, the rise of the solder 102 in the junction-up mounting is the junction-down mounting. It is possible to prevent the lowering of the solder 103 by the one or more dielectric multilayer films 61 and the one or more recesses 21A exposed on each side surface of the semiconductor layer 20.
 以上、第1および第2の実施の形態および適用例を挙げて本技術を説明したが、本技術は上記実施の形態等に限定されるものではなく、種々変形可能である。例えば、上記第1および第2の実施の形態では、半導体レーザ1(あるいは、LED2)では、それぞれ半導体層20の側面に、誘電体多層膜41(あるいは誘電体多層膜61)および凹み21Aの両方を有する例を示したが、例えば、凹み21Aのみ、あるいは誘電体多層膜41(あるいは誘電体多層膜61)のみが設けられていてもよい。 Although the present technology has been described above with the first and second embodiments and application examples, the present technology is not limited to the above-described embodiments and the like, and various modifications may be made. For example, in the first and second embodiments, in the semiconductor laser 1 (or the LED 2), both of the dielectric multilayer film 41 (or the dielectric multilayer film 61) and the recess 21A are formed on the side surface of the semiconductor layer 20, respectively. For example, only the recess 21A or only the dielectric multilayer film 41 (or the dielectric multilayer film 61) may be provided.
 なお、本明細書に記載された効果はあくまで例示であってこれに限定されるものではなく、また他の効果があってもよい。 In addition, the effect described in this specification is an illustration to the last, is not limited to this, and may have other effects.
 なお、本技術は以下の様な構成をとることも可能である。
(1)
 第1半導体層と、
 前記第1半導体層の上に設けられた活性層と、
 前記活性層の上に設けられ、前記活性層から発せられた光を射出する射出窓を有する第2半導体層とを備え、
 前記第1半導体層または前記第2半導体層の側面には凹みまたは第1誘電体多層膜が少なくとも1つ形成されている
 窒化物半導体素子。
(2)
 前記第1半導体層に接して設けられた、前記第1半導体層の素子形成基板をさらに備え、
 前記第1半導体層の側面に、前記凹みまたは前記第1誘電体多層膜が少なくとも1つ形成されている、前記(1)に記載の窒化物半導体素子。
(3)
 前記第1半導体層には、1または複数の前記第1誘電体多層膜が埋め込まれている、前記(2)に記載の窒化物半導体素子。
(4)
 前記第1半導体層、前記活性層および前記第2半導体層を間にして、前記第1半導体層に埋め込まれている1つの前記第1誘電体多層膜と対向する位置に設けられた第2誘電体多層膜をさらに備えた、前記(3)に記載の窒化物半導体素子。
(5)
 前記第1半導体層の各側面には、複数の前記第1誘電体多層膜が露出している、前記(1)乃至(4)のうちのいずれかに記載の窒化物半導体素子。
(6)
 前記第1半導体層の各側面には、複数の前記凹みが形成されている、前記(1)乃至(5)のうちのいずれかに記載の窒化物半導体素子。
(7)
 前記第1半導体層、前記活性層および前記第2半導体層は、GaN系化合物半導体によって構成されている、前記(1)乃至(6)のうちのいずれかに記載の窒化物半導体素子。
(8)
 前記素子形成基板は、窒化ガリウム(GaN)基板,窒化インジウムガリウム(InGaN)基板,サファイア基板およびシリコン(Si)基板のいずれかである、前記(2)乃至(7)のうちのいずれかに記載の窒化物半導体素子。
The present technology can also be configured as follows.
(1)
A first semiconductor layer,
An active layer provided on the first semiconductor layer;
And a second semiconductor layer provided on the active layer and having an emission window for emitting light emitted from the active layer.
A nitride semiconductor device, wherein at least one recess or a first dielectric multilayer film is formed on a side surface of the first semiconductor layer or the second semiconductor layer.
(2)
The semiconductor device further includes an element formation substrate of the first semiconductor layer provided in contact with the first semiconductor layer,
The nitride semiconductor device according to (1), wherein at least one of the recess or the first dielectric multilayer film is formed on a side surface of the first semiconductor layer.
(3)
The nitride semiconductor device according to (2), wherein one or more of the first dielectric multilayer films are embedded in the first semiconductor layer.
(4)
A second dielectric provided at a position facing the one first dielectric multilayer film embedded in the first semiconductor layer with the first semiconductor layer, the active layer, and the second semiconductor layer in between. The nitride semiconductor device according to (3), further comprising a body multilayer film.
(5)
The nitride semiconductor device according to any one of (1) to (4), wherein a plurality of the first dielectric multilayer films are exposed on each side surface of the first semiconductor layer.
(6)
The nitride semiconductor device according to any one of (1) to (5), wherein a plurality of the recesses are formed on each side surface of the first semiconductor layer.
(7)
The nitride semiconductor device according to any one of (1) to (6), wherein the first semiconductor layer, the active layer, and the second semiconductor layer are made of a GaN-based compound semiconductor.
(8)
The element formation substrate according to any one of (2) to (7), wherein the element formation substrate is any of a gallium nitride (GaN) substrate, an indium gallium nitride (InGaN) substrate, a sapphire substrate and a silicon (Si) substrate. Nitride semiconductor devices.
 本出願は、日本国特許庁において2015年9月2日に出願された日本特許出願番号2015-172749号を基礎として優先権を主張するものであり、この出願の全ての内容を参照によって本出願に援用する。 This application claims priority based on Japanese Patent Application No. 2015-172749 filed on Sep. 2, 2015 in the Japanese Patent Office, and the entire contents of this application are referred to the present application by reference. In the
 当業者であれば、設計上の要件や他の要因に応じて、種々の修正、コンビネーション、サブコンビネーション、および変更を想到し得るが、それらは添付の請求の範囲やその均等物の範囲に含まれるものであることが理解される。 Various modifications, combinations, subcombinations, and modifications will occur to those skilled in the art depending on the design requirements and other factors, but they fall within the scope of the appended claims and their equivalents. Are understood to be

Claims (8)

  1.  第1半導体層と、
     前記第1半導体層の上に設けられた活性層と、
     前記活性層の上に設けられ、前記活性層から発せられた光を射出する射出窓を有する第2半導体層とを備え、
     前記第1半導体層または前記第2半導体層の側面には凹みまたは第1誘電体多層膜が少なくとも1つ形成されている
     窒化物半導体素子。
    A first semiconductor layer,
    An active layer provided on the first semiconductor layer;
    And a second semiconductor layer provided on the active layer and having an emission window for emitting light emitted from the active layer.
    A nitride semiconductor device, wherein at least one recess or a first dielectric multilayer film is formed on a side surface of the first semiconductor layer or the second semiconductor layer.
  2.  前記第1半導体層に接して設けられた、前記第1半導体層の素子形成基板をさらに備え、
     前記第1半導体層の側面に、前記凹みまたは前記第1誘電体多層膜が少なくとも1つ形成されている、請求項1に記載の窒化物半導体素子。
    The semiconductor device further includes an element formation substrate of the first semiconductor layer provided in contact with the first semiconductor layer,
    The nitride semiconductor device according to claim 1, wherein at least one of the recess or the first dielectric multilayer film is formed on a side surface of the first semiconductor layer.
  3.  前記第1半導体層には、1または複数の前記第1誘電体多層膜が埋め込まれている
     請求項2に記載の窒化物半導体素子。
    The nitride semiconductor device according to claim 2, wherein one or more of the first dielectric multilayer films are embedded in the first semiconductor layer.
  4.  前記第1半導体層、前記活性層および前記第2半導体層を間にして、前記第1半導体層に埋め込まれている1つの前記第1誘電体多層膜と対向する位置に設けられた第2誘電体多層膜をさらに備えた、請求項3に記載の窒化物半導体素子。 A second dielectric provided at a position facing the one first dielectric multilayer film embedded in the first semiconductor layer with the first semiconductor layer, the active layer, and the second semiconductor layer in between. The nitride semiconductor device according to claim 3, further comprising a body multilayer film.
  5.  前記第1半導体層の各側面には、複数の前記第1誘電体多層膜が露出している、請求項1に記載の窒化物半導体素子。 The nitride semiconductor device according to claim 1, wherein a plurality of the first dielectric multilayer films are exposed on each side surface of the first semiconductor layer.
  6.  前記第1半導体層の各側面には、複数の前記凹みが形成されている、請求項1に記載の窒化物半導体素子。 The nitride semiconductor device according to claim 1, wherein a plurality of the recesses are formed on each side surface of the first semiconductor layer.
  7.  前記第1半導体層、前記活性層および前記第2半導体層は、GaN系化合物半導体によって構成されている、請求項1に記載の窒化物半導体素子。 The nitride semiconductor device according to claim 1, wherein the first semiconductor layer, the active layer, and the second semiconductor layer are made of a GaN-based compound semiconductor.
  8.  前記素子形成基板は、窒化ガリウム(GaN)基板,窒化インジウムガリウム(InGaN)基板,サファイア基板およびシリコン(Si)基板のいずれかである、請求項2に記載の窒化物半導体素子。 The nitride semiconductor device according to claim 2, wherein the device formation substrate is any one of a gallium nitride (GaN) substrate, an indium gallium nitride (InGaN) substrate, a sapphire substrate and a silicon (Si) substrate.
PCT/JP2016/073883 2015-09-02 2016-08-16 Nitride semiconductor element WO2017038448A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017537715A JP6919565B2 (en) 2015-09-02 2016-08-16 Nitride semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-172749 2015-09-02
JP2015172749 2015-09-02

Publications (1)

Publication Number Publication Date
WO2017038448A1 true WO2017038448A1 (en) 2017-03-09

Family

ID=58187453

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/073883 WO2017038448A1 (en) 2015-09-02 2016-08-16 Nitride semiconductor element

Country Status (2)

Country Link
JP (1) JP6919565B2 (en)
WO (1) WO2017038448A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230117793A (en) * 2022-02-03 2023-08-10 삼성전기주식회사 Multilayered electronic component

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59145055U (en) * 1983-03-18 1984-09-28 三洋電機株式会社 Heat sink for semiconductor laser
JP2000022282A (en) * 1998-07-02 2000-01-21 Fuji Xerox Co Ltd Surface light-emitting-type light-emitting device and its manufacture
JP2002217451A (en) * 2001-01-18 2002-08-02 Dowa Mining Co Ltd Light-emitting diode and method of manufacturing the same
WO2008018482A1 (en) * 2006-08-11 2008-02-14 Sanyo Electric Co., Ltd. Semiconductor element and method for manufacturing same
JP2011520272A (en) * 2008-05-08 2011-07-14 ウニヴェルズィテート・ウルム Fully tuned surface emitting semiconductor laser for surface mounting with optimized properties
JP2014175565A (en) * 2013-03-12 2014-09-22 Ushio Inc Semiconductor laser device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59145055U (en) * 1983-03-18 1984-09-28 三洋電機株式会社 Heat sink for semiconductor laser
JP2000022282A (en) * 1998-07-02 2000-01-21 Fuji Xerox Co Ltd Surface light-emitting-type light-emitting device and its manufacture
JP2002217451A (en) * 2001-01-18 2002-08-02 Dowa Mining Co Ltd Light-emitting diode and method of manufacturing the same
WO2008018482A1 (en) * 2006-08-11 2008-02-14 Sanyo Electric Co., Ltd. Semiconductor element and method for manufacturing same
JP2011520272A (en) * 2008-05-08 2011-07-14 ウニヴェルズィテート・ウルム Fully tuned surface emitting semiconductor laser for surface mounting with optimized properties
JP2014175565A (en) * 2013-03-12 2014-09-22 Ushio Inc Semiconductor laser device

Also Published As

Publication number Publication date
JP6919565B2 (en) 2021-08-18
JPWO2017038448A1 (en) 2018-07-05

Similar Documents

Publication Publication Date Title
US11616172B2 (en) Semiconductor light emitting device with frosted semiconductor layer
US9142729B2 (en) Light emitting element
EP2835885B1 (en) Light emitting element and method of producing same
KR101473038B1 (en) Semiconductor light emitting element and method for manufacturing the same
US8405113B2 (en) Semiconductor light-emitting device
JP2011119521A (en) Semiconductor laser chip, semiconductor laser device, and method of manufacturing semiconductor laser chip
US11404849B2 (en) Light emitting element to control an oscillation wavelength
KR20080087135A (en) Nitride semiconductor light emitting element
JP5098135B2 (en) Semiconductor laser element
WO2020026573A1 (en) Surface emitting semiconductor laser
JP5245529B2 (en) Semiconductor light emitting device and method for manufacturing semiconductor light emitting device
JP2011071444A (en) Light-emitting element
US11309686B2 (en) Surface emitting laser and method of manufacturing the same
JP6919565B2 (en) Nitride semiconductor device
JP5644753B2 (en) Group III nitride semiconductor light emitting device
JP2012089801A (en) Semiconductor light-emitting element, manufacturing method therefor, and package board
JP6973077B2 (en) Nitride surface emission laser
JP7453588B2 (en) Vertical cavity surface emitting laser device
US20240162686A1 (en) Semiconductor laser
US20210367108A1 (en) Semiconductor light emitting device and light emitting device package
JP2018049862A (en) Nitride semiconductor light emitting element
JP6100567B2 (en) Semiconductor light emitting device and manufacturing method thereof
KR101478334B1 (en) Light emitting diode and method for fabricating the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16841480

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017537715

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16841480

Country of ref document: EP

Kind code of ref document: A1