WO2017038418A1 - Bonding member, method for producing bonding member and bonding method - Google Patents

Bonding member, method for producing bonding member and bonding method Download PDF

Info

Publication number
WO2017038418A1
WO2017038418A1 PCT/JP2016/073533 JP2016073533W WO2017038418A1 WO 2017038418 A1 WO2017038418 A1 WO 2017038418A1 JP 2016073533 W JP2016073533 W JP 2016073533W WO 2017038418 A1 WO2017038418 A1 WO 2017038418A1
Authority
WO
WIPO (PCT)
Prior art keywords
melting point
joining
metal
joining member
wire
Prior art date
Application number
PCT/JP2016/073533
Other languages
French (fr)
Japanese (ja)
Inventor
北村隆司
鷲塚清多郎
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2017537703A priority Critical patent/JP6311844B2/en
Publication of WO2017038418A1 publication Critical patent/WO2017038418A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/26Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/40Making wire or rods for soldering or welding
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper

Definitions

  • the present invention relates to a joining member used when joining an electronic component to a substrate, a method for manufacturing the joining member, and a joining method using the joining member.
  • a paste-like bonding member that includes particles of low melting point metal such as Sn and particles of high melting point metal such as a Cu alloy.
  • the bonding member when the low melting point metal is melted, the melt of the low melting point metal reacts with the high melting point metal to generate an intermetallic compound of the low melting point metal and the high melting point metal. Since this intermetallic compound has a melting point higher than that of the low melting point metal, the remelting temperature condition is higher than the melting point of the low melting point metal in the joint portion formed by melting and curing the joining member.
  • the joining member described above is in a paste form, a large amount of non-metallic components such as a resin and a solvent are added together with particles of the low melting point metal and the high melting point metal. Therefore, when the bonding member is melted, the nonmetallic component is volatilized, and a void due to the volatile gas is likely to be generated in the bonded portion that is cured after the bonding member is melted.
  • the applicant has been developing a wire-like joining member containing only a small amount of non-metallic components as a joining member containing a low melting point metal and a high melting point metal.
  • processing the low melting point metal and the high melting point metal into a wire has the following problems.
  • an object of the present invention is to provide a wire-like joining member that includes a low melting point metal and a high melting point metal, the temperature condition at the time of joining is near the melting point of the low melting point metal, and has low brittleness (not brittle). It is in providing the manufacturing method of the member for joining, and the joining method using the member for joining.
  • the bonding member according to the present invention has a melting point higher than that of the low-melting-point metal due to a reaction between the wire containing the low-melting-point metal provided with holes and the melt of the low-melting-point metal inserted into the holes.
  • the low melting point metal is Sn or a Sn alloy
  • the high melting point metal is a Cu—Ni alloy, a Cu—Ni—Co alloy, a Cu—Ni—Fe alloy, a Cu—Mn alloy, a Cu—Cr alloy, Alternatively, a Cu—Al alloy is preferable.
  • the joining member when the low melting point metal melts, the high melting point metal reacts with the melt to generate an intermetallic compound. When this melt is hardened, it is possible to provide a joint where the remelting temperature is higher than the melting point of the low melting point metal.
  • This joining member can be manufactured by providing a hole in the wire and inserting metal particles into the hole. For this reason, the joining member can be manufactured without being heated to such an extent that the low melting point metal is melted, and the temperature condition at the time of joining can be lowered (near the melting point of the low melting point metal). Further, such a wire can be formed without being pressed by metal particles, and the brittleness can be reduced (not brittle).
  • the joining member further includes a fluid material that is inserted into the hole together with the metal particles and improves the fluidity of the metal particles when inserted into the hole.
  • the fluidizing material is in a solid state at room temperature and is softened at a temperature higher than the room temperature and lower than the melting point of the low melting point metal.
  • the fluidizing material since the fluidizing material is in a solid state at room temperature, the strength of the bonding member at room temperature can be further increased. Further, heating to a temperature higher than normal temperature and lower than the melting point of the low melting point metal facilitates insertion into the hole provided in the wire.
  • the fluidizing material preferably contains a flux. In this configuration, since the metal surface oxide film can be removed by the flux when the bonding member is melted, a good bonded portion in which the high melting point metal and the low melting point metal are efficiently reacted is obtained.
  • the weight ratio between the metal particles and the fluidizing material is preferably in the range of 75:25 to 99.5: 0.5.
  • the weight ratio of the metal particles to the fluidizing material is 75:25 or more, it becomes easy to obtain an amount of the refractory metal necessary for making the whole joining member an intermetallic compound.
  • the metal particles preferably have an average particle size (D50) of 0.1 ⁇ m or more and 30 ⁇ m or less.
  • D50 average particle size
  • the particle size is 0.1 ⁇ m or more, the particle surface area per unit weight of the metal particles can be prevented from becoming extremely large, and the formation reaction of the intermetallic compound can be suppressed from being inhibited by the surface oxide film.
  • the metal particles can be used for the reaction of forming the intermetallic compound up to the central part of the metal particles.
  • a plurality of the spaces are provided so as to extend in parallel with each other along the axial direction of the wire.
  • the metal particles can be more evenly dispersed in the melt of the wire rod, and the formation reaction of the intermetallic compound can be generated without unevenness.
  • the wire is preferably flat.
  • a joining method using the joining member not only a joining method using a soldering iron but also a joining method using thermocompression bonding can be supported.
  • the wire-like joining member when the wire-like joining member is cut into a section and placed on the substrate and melted and solidified, the wire-like joining member can be stably placed on the substrate due to the flat shape.
  • the spaces are arranged along the longitudinal direction of the cross section viewed from the axial direction of the wire.
  • the metal particles can be evenly dispersed in the horizontal direction in the molten liquid of the wire, and the formation reaction of the intermetallic compound can be generated evenly.
  • a flat joining member is disposed between the first joining object and the second joining object, and pressure is applied between the first joining object and the second joining object.
  • a heating step of heating may be included.
  • the method for manufacturing a joining member according to the present invention includes a step of mixing metal particles and a fluid material, and a fluid material in which metal particles are mixed in holes provided in the wire at a temperature lower than the melting point of the low melting point metal. And injecting by applying pressure in a heated state. With such a manufacturing method, the metal particles can be easily inserted into the space provided in the low melting point metal.
  • the temperature condition at the time of joining can be made lower than the temperature condition of remelting after joining, and the brittleness can be lowered (not brittle).
  • FIG. 1 is a schematic diagram showing a part of a joining member according to the first embodiment of the present invention.
  • FIG. 2 is a diagram showing the relationship between the particle size of the metal particles and the bonding strength in the bonding member according to the first embodiment of the present invention.
  • Drawing 3 is a figure showing an example of the manufacturing method of the member for junction concerning a 1st embodiment of the present invention.
  • FIG. 4 is a diagram schematically showing a joining method using the joining member according to the first embodiment of the present invention.
  • 5A and 5B are diagrams schematically showing a reaction in a joining method using the joining member according to the first embodiment of the present invention.
  • 6 (A) and 6 (B) are diagrams showing electron micrographs of a joined portion obtained by melting and curing a joining member.
  • FIG. 1 is a schematic diagram showing a part of a joining member according to the first embodiment of the present invention.
  • FIG. 2 is a diagram showing the relationship between the particle size of the metal particles and the bonding strength in
  • FIG. 7 is a schematic view showing a part of a joining member according to the second embodiment of the present invention.
  • FIGS. 8A, 8B, and 8C are diagrams schematically showing a joining method using the joining member according to the second embodiment of the present invention.
  • FIG. 9 is a schematic view showing a part of a joining member according to the third embodiment of the present invention.
  • FIG. 10 is a schematic view showing a part of the joining member according to the fourth embodiment of the present invention.
  • FIG. 11 is a schematic view showing a part of the joining member according to the fifth embodiment of the present invention.
  • the joining member according to the first embodiment of the present invention a method for manufacturing the joining member, and a joining method using the joining member will be described.
  • FIG. 1 is a perspective view schematically showing a part of a joining member 1 according to a first embodiment of the present invention.
  • the whole joining member 1 is in the form of a wire longer than a part shown in the figure, and has flexibility.
  • the joining member 1 includes a wire 2 and a core 3, and has a structure in which the outer periphery of the core 3 is covered with the wire 2 around the core 3.
  • the wire 2 is a solid structure having a linear outer shape extending in the axial direction and an annular cross-sectional shape.
  • the main material of the wire 2 is Sn or Sn alloy (for example, Sn—Ag—Cu, Sn—Ag, Sn—Cu, Sn—Bi, Sn—Sb, Sn—Au, Sn—Pb, Sn—Zn, etc.) It is a low melting point metal.
  • the surface of the wire 2 is covered with a low melting point metal oxide film.
  • a hole 4 extending in the axial direction is provided at the center of the wire 2. The holes 4 may be provided continuously over the entire length of the wire 2 or may be provided intermittently over the entire length of the wire 2.
  • the core material 3 is a solid structure having a cylindrical outer shape provided in the hole 4 of the wire 2.
  • the core material 3 includes metal particles 5 and a fluidizing material 6.
  • the metal particles 5 are dispersed and arranged inside the fluidizing material 6.
  • the material of the metal particles 5 is a high melting point metal that reacts with the low melting point metal of the wire 2 to generate an intermetallic compound and has a higher melting point than the low melting point metal described above.
  • the surface of the metal particle 5 is covered with an oxide film of a refractory metal.
  • the refractory metal is a Cu-10Ni alloy, a Cu-Ni alloy having a Ni content of 5 to 20% by weight, or a Co content of 1 to 10% by weight, and Ni and Cu—Ni—Co alloy having a total amount of Co of 5 to 20% by weight or Cu having a proportion of Fe of 1 to 10% by weight and a total amount of Ni and Fe of 5 to 20% by weight -Ni-Fe alloy, Cu-Mn alloy having a Mn ratio of 5 to 20% by weight, Cu-Cr alloy, Cu-Al alloy, or the like.
  • grains to the hole 4 by making the wire 2 Sn is as follows. That is, this configuration can prevent the Cu particles from being oxidized. Specifically, during soldering, Sn melts and reacts with Cu, so that Cu can be prevented from being exposed and oxidized.
  • the fluidizing material 6 employs a material that is in a solid state at room temperature and softens and flows easily at a temperature lower than the melting point of the wire 2 (low melting point metal). Therefore, the joining member 1 is configured to have a high strength that is composed of a solid structure as a whole at room temperature.
  • the fluidizing material 6 may be a material having viscosity at normal temperature. The effect of the fluidizing material 6 (flux) is as follows. That is, when the fluidized material 6 inserts the metal particles 5 into the holes 4, the inserted Cu particles do not become dense and can increase the reaction area with Sn during melting.
  • the specific material of the fluidizing material 6 may be any material as long as it exhibits the above-described properties, but preferably contains a rosin-based flux.
  • the fluidizing material 6 contains the rosin-based flux, the surface oxide film of the high melting point metal or the low melting point metal can be removed and the both can be efficiently reacted at the time of soldering using the joining member 1.
  • the rosin flux an appropriate rosin material such as natural rosin, hydrogenated rosin, disproportionated rosin, polymerized rosin, unsaturated dibasic acid-modified rosin, acrylic acid-modified rosin or the like, or a mixture thereof. Can be adopted.
  • the fluidizing material 6 may include an activator that promotes the reaction of the flux.
  • Activators include monocarboxylic acids (eg, formic acid, acetic acid, lauric acid, palmitic acid, stearic acid, benzoic acid, etc.), dicarboxylic acids (eg, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, suberin) Acid, azelaic acid, sebacic acid, phthalic acid, etc.), bromoalcohols (eg, 1-bromo-2-butanol, etc.), organic amine hydrohalides, bromoalkanes, bromoalkenes, benzylbromides, polyamines Any suitable activator material such as chlorinated activator can be employed.
  • the fluidizing material 6 is an organic additive such as a resin, a thixo material, a thermosetting resin, an antioxidant, a flame retardant, a dispersant, a leveling agent, an antifoaming agent, a matting agent, and a plasticizer as necessary. Etc. may be blended.
  • the blending amount of the metal particles 5 is more than the above, sufficient fluidity cannot be obtained when the metal particles 5 are inserted into the holes 4 of the wire 2, and a sufficient amount of the metal particles 5 is filled in the holes 4. You may not be able to insert only.
  • the blending amount of the metal particles 5 is too smaller than the above, the low melting point metal cannot be sufficiently reacted, and there is a possibility that the unreacted low melting point metal remains in the intermetallic compound.
  • the average particle diameter (D50) of the metal particles 5 is preferably in the range of 0.1 to 30 ⁇ m.
  • the average particle size of the metal particles 5 greatly affects the amount of intermetallic compound produced. Therefore, by making the average particle size appropriate, the bonding strength by the bonded portion realized by bonding using the bonding member 1 can be increased. Can be improved.
  • FIG. 2 is a graph schematically showing the relationship between the average particle diameter (D50) of the metal particles 5 and the bonding strength realized by bonding using the bonding member 1.
  • the average particle size has an optimum value that maximizes the bonding strength, and the bonding strength decreases as the average particle size moves away from the optimum value.
  • the wire 2 and the core 3 are made of Ag, Au, Al, Bi, C, Co, Cu, Fe, Ga, Ge, In, Mn, Mo, Ni, P, Pb, Pd, Pt, Si, Sb, Zn or the like may be contained. These addition forms may be impurities contained in the wire 2 and the metal particles 5, such as metal powder added to the fluidizing material 6, metal films formed on the surfaces of the wire 2 and metal particles 5, and the like. It may be. Moreover, when adding as a metal powder, a metal film, etc., you may contain in the form of a metal complex or a metal compound.
  • FIG. 3 is a flowchart showing an example of a method for manufacturing the joining member 1.
  • annular low-melting-point metal wire 2 is manufactured in an ingot state larger than the final wire diameter of the joining member 1 (S1).
  • the metal particles 5 of the refractory metal are kneaded into the fluidized material 6 softened by heating (S2).
  • the fluidizing material 6 kneaded with the metal particles 5 is injected into the holes 4 of the wire 2 under pressure while being softened by heating (S3).
  • S3 softened by heating
  • the wire 2 in a state where the metal particles 5 and the fluidizing material 6 are inserted into the holes 4 is stretched by drawing in a state where the fluidizing material 6 is softened by heating, so that the wire diameter is thinner and the axial length is longer. (S4).
  • the joining member 1 can be manufactured in a wire shape.
  • the wire 2 can be produced without heating to such an extent that the low melting point metal melts, and the joining member 1 itself does not contain an intermetallic compound. Therefore, the temperature condition at the time of joining of the joining member 1 can be low (near the melting point of the low melting point metal).
  • the wire 2 can be shape
  • manufacture of the member 1 for joining can be implement
  • a fluidized material 6 containing metal particles 5 is applied to a strip-shaped thin plate made of a low melting point metal, and the thin plate is stretched and thinned while being bent into an annular shape, thereby crimping the end surfaces of the thin plate to form a circular wire.
  • manufacture the joining member 1 having the above-described configuration by forming it in an annular shape.
  • a groove is formed in a columnar member made of a low melting point metal, a fluid material 6 containing metal particles 5 is injected into the notch, and the wire is stretched and drawn out from the columnar member, so that the end face of the groove is crimped to the wire.
  • a fluid material 6 containing metal particles 5 is injected into the notch, and the wire is stretched and drawn out from the columnar member, so that the end face of the groove is crimped to the wire.
  • FIG. 4 is a schematic diagram showing a joining method in which the joining member 1 is melted and cured using the soldering iron 103.
  • the first object 101 shown here is, for example, a terminal electrode of an electronic component.
  • the second bonding target object 102 is a mounting electrode provided on the surface of a printed wiring board on which an electronic component is mounted, for example.
  • the tip of the soldering iron 103 is heated, and the tip of the soldering iron 103 is moved to the second joining object 102 ( The second bonding object 102 is warmed against the mounting electrode of the printed wiring board. Then, the tip of the joining member 1 is lightly pressed against the tip, and the joining member 1 is sent to the tip while melting the tip of the joining member 1. As a result, the melt 105 of the bonding member 1 spreads over the entire first bonding object 101 (terminal electrode of the electronic component) and the second bonding object 102 (mounting electrode of the printed wiring board).
  • the tip of the joining member 1 is separated from the tip of the soldering iron 103, and finally the soldering iron 103 is separated from the melt 105. Thereafter, the molten liquid 105 is cooled and cured, so that the first bonding target object 101 and the second bonding target object 102 are bonded.
  • 5 (A) and 5 (B) are schematic diagrams for explaining the generation mechanism of the intermetallic compound by the bonding member 1.
  • the temperature of the tip of the joining member 1 is raised to a temperature higher than the melting point (softening point) of the low melting point metal and the flux by the soldering iron 103 (not shown).
  • the wire 2 and the fluid 6 of the member 1 are melted.
  • the melt 105 is produced
  • the flux contained in the fluidizing material 6 reduces and removes the surface oxide films of the wire 2, the metal particles 5, the first joining object 101, and the second joining object 102. For this reason, the melt 12 wets and spreads on the first joining object 101 and the second joining object 102, and the metal particles 5 are dispersed inside the melt 105.
  • the surface oxide film of each part is prevented from inhibiting the reaction between the high melting point metal and the low melting point metal by the flux, and the high melting point metal and the low melting point metal can be reacted efficiently. Further, the residue 16 of the fluidized material 6 floats on the surface of the melt 105 and covers the surface of the melt 105.
  • the formation reaction of the intermetallic compound 12 progresses with time. That is, as shown in FIG. 5B, the low melting point metal contained in the melt 105 and the high melting point metal contained in the metal particles 5 react to produce the intermetallic compound 12. For this reason, while the ratio of the intermetallic compound 12 in the composition of the melt 105 increases, the particle size of the metal particles 5 decreases and disappears. Since this reaction progresses while the melt 105 is maintained at a certain high temperature, almost all of the melt 105 is transformed into an intermetallic compound until the melt 105 is cooled and hardened. .
  • the reaction for generating the intermetallic compound is, for example, a reaction accompanying liquid phase diffusion bonding (“TLP bonding: Transient Liquid Phase Diffusion Bonding”).
  • TLP bonding Transient Liquid Phase Diffusion Bonding
  • the metal particles 5 are a Cu—Ni alloy, for example, (Cu, Ni) 6 Sn 5 , Cu 4 Ni 2 Sn 5 , Cu 5 NiSn 5 , (Cu, Ni) 3 Sn, Cu 2 NiSn, CuNi 2 Sn and the like.
  • the intermetallic compounds are (Cu, Mn) 6 Sn 5 , Cu 4 Mn 2 Sn 5 , Cu 5 MnSn 5 , (Cu, Mn) 3 Sn, Cu 2 MnSn, CuMn 2 Sn and the like.
  • FIG. 6A and 6 (B) are electron microscope images showing a cross section of the joint after the joining member is melted and cured.
  • FIG. 6A shows a cross section of a joint provided on a copper foil (Cu layer) by a paste-like joining member (cream solder) containing a low melting point metal and a high melting point metal, which is a comparative example.
  • FIG. 6B shows a cross section of a joint provided on a copper foil (Cu layer) by a wire-like joining member (wire solder) containing a low melting point metal and a high melting point metal according to the embodiment. Yes.
  • FIG. 7 is a perspective view schematically showing a part of the joining member 1A according to the second embodiment of the present invention.
  • This joining member 1A includes a wire 2A and a plurality of cores 3A.
  • the wire 2A is a solid structure having a linear outer shape extending in the axial direction, and is provided with a plurality of holes 4A extending in the axial direction.
  • the plurality of holes 4A are arranged on a straight line passing through the center of the cross section in the cross section of the wire 2A so as to be equidistant from each other.
  • the plurality of core members 3 ⁇ / b> A are provided in the plurality of holes 4 ⁇ / b> A of the wire 2 ⁇ / b> A, respectively, and include the metal particles 5 and the fluidizing material 6.
  • FIG. 8 is a schematic diagram showing a joining method in which the joining member 1A is melted and cured using thermocompression bonding.
  • the joining member 1A is cut out by a necessary length. Then, the joining member 1A is sandwiched between the first joining object 101A and the second joining object 102A (see FIG. 8A). In this state, the first joining object 101A and the second joining object 102A are heated, and the space between them is narrowed to pressurize and heat the joining member 1A.
  • the wire 2A of the joining member 1A and the fluid 6 of the core 3A are melted, and the melt 105A spreads between the first joining object 101A and the second joining object 102A (FIG. 8B). reference.).
  • the metal particles 6 can be uniformly dispersed in the melt 105A.
  • the metal particles 5 react with the surrounding low melting point metal, and the production of the intermetallic compound 12 proceeds.
  • the molten liquid 105A is cooled and cured, so that the first joining object 101A and the second joining object 102A are joined by the joining part 106A made of the intermetallic compound 12.
  • the joining member of the present invention can also be used in a joining method using thermocompression bonding. And when utilizing thermocompression bonding, like the joining member 1A according to this embodiment, the holes 4A and the core material 3A are arranged in a straight line in the cross section of the wire 2A, whereby the metal particles 5 are first formed. It is possible to uniformly disperse the bonding target object 101A and the second bonding target object 102A, and to generate the intermetallic compound generation reaction without any bias.
  • FIG. 9 is a perspective view schematically showing a part of the joining member 1B according to the third embodiment of the present invention.
  • This joining member 1B includes a wire 2B and a plurality of cores 3B.
  • the wire 2B is a solid structure having a linear outer shape extending in the axial direction, and has a flat shape in which the outer shape of the cross-sectional shape has a longitudinal direction and a lateral direction.
  • the wire 2B has a plurality of holes 4B arranged along the longitudinal direction of the cross section.
  • the plurality of core members 3 ⁇ / b> B are provided in the plurality of holes 4 ⁇ / b> B of the wire 2 ⁇ / b> B, respectively, and include metal particles 5 and a fluid material 6, respectively.
  • the joining member 1B is formed in such a flat shape, when the joining method for melting and curing the joining member 1B using thermocompression bonding is used as described above, the orientation of the joining member 1B is arranged. Becomes stable, and it becomes easy to make the longitudinal direction of the cross section of the bonding member 1B parallel to the bonding surface of the objects to be bonded.
  • the joining member 1B having this configuration is formed by first forming the wire 2B so that the cross section becomes a circular shape, and plastically deforming so that the cross section becomes flat by crushing the wire 2B. Can be manufactured.
  • FIG. 10 is a perspective view schematically showing a part of a joining member 1C according to the fourth embodiment of the present invention.
  • This joining member 1C includes a wire 2C and a plurality of cores 3C.
  • the wire 2C is a solid structure having a linear outer shape extending in the axial direction, and is provided with a plurality of holes 4C extending in the axial direction.
  • the plurality of holes 4C are arranged at point targets in the cross section of the wire 2C so that they are equidistant from each other.
  • the three core materials 3C are respectively provided in the three holes 4C of the wire 2C, and include the metal particles 5 and the fluidizing material 6, respectively.
  • the bonding member 1C may have a multi-core structure in which a plurality of holes 4C and the core material 3C are provided on the wire 2C in a point-targeted arrangement. In this way, the metal particles can be evenly dispersed in the melt at the time of joining without considering the orientation and orientation of the joining member 1C.
  • FIG. 11 is a perspective view schematically showing a part of a joining member 1D according to the fifth embodiment of the present invention.
  • This joining member 1D includes a wire 2D and a plurality of cores 3D.
  • the wire 2D is a solid structure having a linear outer shape extending in the axial direction, and a plurality of holes 4D extending in a direction orthogonal to the axial direction are arranged at equal intervals along the axial direction.
  • the plurality of core members 3D are respectively provided in the plurality of holes 4D of the wire 2D and include the metal particles 5 and the fluidizing material 6, respectively.
  • the hole 4D and the core material 3D may extend in a direction different from the axial direction of the wire 2D.

Abstract

This bonding member (1) is provided with: a wire rod (2) which contains a low-melting-point metal and is provided with a hole (4); and metal grains (5) which contain a high-melting-point metal that produces an intermetallic compound having a higher melting point than the low-melting-point metal by a reaction with a melt of the low-melting-point metal, and which are inserted into the hole (4). The low-melting-point metal is, for example, Sn or an Sn alloy. The high-melting-point metal is, for example, a Cu-Ni alloy, a Cu-Mn alloy, a Cu-Cr alloy or a Cu-Al alloy.

Description

接合用部材、接合用部材の製造方法、および、接合方法Joining member, method for producing joining member, and joining method
 本発明は、電子部品を基板に接合する際などに用いられる接合用部材と、接合用部材の製造方法と、接合用部材を用いた接合方法とに関するものである。 The present invention relates to a joining member used when joining an electronic component to a substrate, a method for manufacturing the joining member, and a joining method using the joining member.
 従来、基板への電子部品の実装などを行う接合用部材として、Snなどからなる低融点金属の粒子と、Cu合金などからなる高融点金属の粒子とを含む、ペースト状の接合用部材が開発されている(例えば特許文献1参照。)。この接合用部材は、低融点金属が溶融すると、この低融点金属の溶融液が高融点金属に反応し、低融点金属と高融点金属との金属間化合物を生成する。この金属間化合物は低融点金属よりも高い融点を有するため、接合用部材が溶融および硬化してなる接合部は、再溶融する温度条件が低融点金属の融点よりも高温になる。 Conventionally, as a bonding member for mounting electronic components on a substrate, a paste-like bonding member has been developed that includes particles of low melting point metal such as Sn and particles of high melting point metal such as a Cu alloy. (For example, refer to Patent Document 1). In the bonding member, when the low melting point metal is melted, the melt of the low melting point metal reacts with the high melting point metal to generate an intermetallic compound of the low melting point metal and the high melting point metal. Since this intermetallic compound has a melting point higher than that of the low melting point metal, the remelting temperature condition is higher than the melting point of the low melting point metal in the joint portion formed by melting and curing the joining member.
国際公開第2013/038816号パンフレットInternational Publication No. 2013/038816 Pamphlet
 上記した接合用部材はペースト状であるため、低融点金属や高融点金属の粒子とともに、樹脂や溶剤などの非金属成分が多量に添加されている。したがって、接合用部材が溶融する際に非金属成分が揮発し、接合用部材が溶融した後に硬化してなる接合部に、揮発ガスによるボイドが発生し易い。 Since the joining member described above is in a paste form, a large amount of non-metallic components such as a resin and a solvent are added together with particles of the low melting point metal and the high melting point metal. Therefore, when the bonding member is melted, the nonmetallic component is volatilized, and a void due to the volatile gas is likely to be generated in the bonded portion that is cured after the bonding member is melted.
 そこで、出願人は、低融点金属と高融点金属とを含む接合用部材として、非金属成分を少量しか含まない線材状の接合用部材の開発を進めている。しかしながら、低融点金属と高融点金属とを線材に加工するには、以下のような問題があった。 Therefore, the applicant has been developing a wire-like joining member containing only a small amount of non-metallic components as a joining member containing a low melting point metal and a high melting point metal. However, processing the low melting point metal and the high melting point metal into a wire has the following problems.
 ・低融点金属の線材に高融点金属の粒子を分散させた接合用部材を製造するために、製造過程で低融点金属を溶融させて高融点金属の粒子を混練すると、接合用部材自体が金属間化合物を含んでしまい、接合用部材の接合時の温度条件が低融点金属の融点よりも高くなってしまう。 In order to manufacture a joining member in which high melting point metal particles are dispersed in a low melting point metal wire, when the low melting point metal is melted and kneaded in the manufacturing process, the joining member itself becomes a metal. An intercalation compound is contained, and the temperature condition at the time of joining of the joining member becomes higher than the melting point of the low melting point metal.
 ・低融点金属の粒子と高融点金属の粒子との圧着によって線材を加工しようとすると、粒子同士の結着力を十分なものにすることが難しいため、脆い線材しか得ることができず、線材を巻き取ろうとするだけで、粒子が剥がれ落ちたり、線材が破断したりすることになる。 ・ If you try to process a wire by crimping low melting point metal particles and high melting point metal particles, it is difficult to obtain sufficient binding force between the particles, so only brittle wire can be obtained. Just trying to wind up will cause the particles to fall off or break the wire.
 そこで、本願発明の目的は、低融点金属と高融点金属とを含み、接合時の温度条件が低融点金属の融点近傍であり、脆性が低い(脆くない)線材状の接合用部材と、その接合用部材の製造方法と、その接合用部材を用いた接合方法とを提供することにある。 Accordingly, an object of the present invention is to provide a wire-like joining member that includes a low melting point metal and a high melting point metal, the temperature condition at the time of joining is near the melting point of the low melting point metal, and has low brittleness (not brittle). It is in providing the manufacturing method of the member for joining, and the joining method using the member for joining.
 本発明に係る接合用部材は、孔が設けられた低融点金属を含む線材と、前記孔に挿入された、前記低融点金属の溶融液との反応により、前記低融点金属よりも高い融点を有する金属間化合物を生成する高融点金属を含む金属粒と、を備える。特には、前記低融点金属はSnまたはSn合金であり、前記高融点金属は、Cu-Ni合金、Cu-Ni-Co合金、Cu-Ni-Fe合金、Cu-Mn合金、Cu-Cr合金、または、Cu-Al合金、であることが好ましい。 The bonding member according to the present invention has a melting point higher than that of the low-melting-point metal due to a reaction between the wire containing the low-melting-point metal provided with holes and the melt of the low-melting-point metal inserted into the holes. Metal particles containing a refractory metal that produces an intermetallic compound. In particular, the low melting point metal is Sn or a Sn alloy, and the high melting point metal is a Cu—Ni alloy, a Cu—Ni—Co alloy, a Cu—Ni—Fe alloy, a Cu—Mn alloy, a Cu—Cr alloy, Alternatively, a Cu—Al alloy is preferable.
 このような接合用部材は、低融点金属が溶融すると、その溶融液に高融点金属が反応して金属間化合物が生成される。この溶融液が硬化すると、再溶融する温度条件が低融点金属の融点よりも高温な接合部を設けることができる。この接合用部材は、線材に孔を設け、その孔に金属粒を挿入することで製造できる。このため、接合用部材は、低融点金属が溶融するほどの加熱を伴うこと無く製造でき、接合時の温度条件を低温(低融点金属の融点近傍)にできる。また、このような線材は、金属粒子の圧着によらずに成形でき、脆性を低く(脆くなく)することが可能である。 In such a joining member, when the low melting point metal melts, the high melting point metal reacts with the melt to generate an intermetallic compound. When this melt is hardened, it is possible to provide a joint where the remelting temperature is higher than the melting point of the low melting point metal. This joining member can be manufactured by providing a hole in the wire and inserting metal particles into the hole. For this reason, the joining member can be manufactured without being heated to such an extent that the low melting point metal is melted, and the temperature condition at the time of joining can be lowered (near the melting point of the low melting point metal). Further, such a wire can be formed without being pressed by metal particles, and the brittleness can be reduced (not brittle).
 前記接合用部材は、前記金属粒とともに前記孔に挿入されていて、前記孔への挿入時に前記金属粒の流動性を向上させる流動材を更に備えることが好ましい。この構成では、線材に設けられた孔に金属粒を挿入することが容易になる。特には、前記流動材は、常温では固体状態であり、かつ、前記常温よりも高く前記低融点金属の融点よりも低い温度で軟化することが好ましい。この構成では、流動材が常温では固体状態であるので、常温での接合用部材の強度をより強くすることができる。また、常温よりも高く低融点金属の融点よりも低い温度に加熱することで、線材に設けられた孔への挿入が容易になる。更には、前記流動材は、フラックスを含むことが好ましい。この構成では、接合用部材の溶融時に、フラックスによって金属の表面酸化膜を除去することができるので、高融点金属と低融点金属とを効率的に反応させた良好な接合部が得られる。 It is preferable that the joining member further includes a fluid material that is inserted into the hole together with the metal particles and improves the fluidity of the metal particles when inserted into the hole. In this configuration, it becomes easy to insert metal particles into the holes provided in the wire. In particular, it is preferable that the fluidizing material is in a solid state at room temperature and is softened at a temperature higher than the room temperature and lower than the melting point of the low melting point metal. In this configuration, since the fluidizing material is in a solid state at room temperature, the strength of the bonding member at room temperature can be further increased. Further, heating to a temperature higher than normal temperature and lower than the melting point of the low melting point metal facilitates insertion into the hole provided in the wire. Furthermore, the fluidizing material preferably contains a flux. In this configuration, since the metal surface oxide film can be removed by the flux when the bonding member is melted, a good bonded portion in which the high melting point metal and the low melting point metal are efficiently reacted is obtained.
 前記金属粒と前記流動材との重量比は、75:25~99.5:0.5の範囲内であることが好ましい。金属粒と流動材との重量比が75:25以上であることによって、接合用部材の全体を金属間化合物にするために必要な高融点金属の分量を得ることが容易になる。また、金属粒と流動材との重量比が99.5:0.5以下であることによって、線材に設けられた空間に、金属粒を挿入することが容易になる。 The weight ratio between the metal particles and the fluidizing material is preferably in the range of 75:25 to 99.5: 0.5. When the weight ratio of the metal particles to the fluidizing material is 75:25 or more, it becomes easy to obtain an amount of the refractory metal necessary for making the whole joining member an intermetallic compound. Moreover, it becomes easy to insert a metal particle in the space provided in the wire, when the weight ratio of a metal particle and a fluid material is 99.5: 0.5 or less.
 前記金属粒は、平均粒径(D50)が0.1μm以上かつ30μm以下であることが好ましい。この粒径が0.1μm以上であることによって、金属粒の単位重量あたりの粒子表面積が著しく大きくなることを防いで、金属間化合物の生成反応が表面酸化膜によって阻害されることを抑制できる。また、この粒径が30μm以下であることによって、金属粒の中心部分まで金属間化合物の生成反応に利用することができる。 The metal particles preferably have an average particle size (D50) of 0.1 μm or more and 30 μm or less. When the particle size is 0.1 μm or more, the particle surface area per unit weight of the metal particles can be prevented from becoming extremely large, and the formation reaction of the intermetallic compound can be suppressed from being inhibited by the surface oxide film. In addition, when the particle size is 30 μm or less, the metal particles can be used for the reaction of forming the intermetallic compound up to the central part of the metal particles.
 前記空間は、前記線材の軸方向に沿って互いに平行に延びるように複数設けられていることが好ましい。この構成では、線材の溶融液中に金属粒をより均等に分散させることができ、金属間化合物の生成反応を偏りなく生じさせられる。 It is preferable that a plurality of the spaces are provided so as to extend in parallel with each other along the axial direction of the wire. In this configuration, the metal particles can be more evenly dispersed in the melt of the wire rod, and the formation reaction of the intermetallic compound can be generated without unevenness.
 前記線材は、扁平状であることが好ましい。この構成では、接合用部材を用いた接合方法として、はんだごてなどを用いる接合方法だけでなく、熱圧着等を用いる接合方法にも対応することが可能になる。具体的には、線材状の接合用部材を切片状に切り出し、基板上に配置して溶融、固化させる際に、扁平状であることによって基板上に安定配置することができる。 The wire is preferably flat. In this configuration, as a joining method using the joining member, not only a joining method using a soldering iron but also a joining method using thermocompression bonding can be supported. Specifically, when the wire-like joining member is cut into a section and placed on the substrate and melted and solidified, the wire-like joining member can be stably placed on the substrate due to the flat shape.
 前記空間は、前記線材の軸方向から見た断面の長手方向に沿って並んでいることが好ましい。この構成では、前述した熱圧着等を用いる接合手段を用いる際に、線材の溶融液中で金属粒を水平方向により均等に分散させることができ、金属間化合物の生成反応を偏りなく生じさせられる。 It is preferable that the spaces are arranged along the longitudinal direction of the cross section viewed from the axial direction of the wire. In this configuration, when using the joining means using the above-described thermocompression bonding or the like, the metal particles can be evenly dispersed in the horizontal direction in the molten liquid of the wire, and the formation reaction of the intermetallic compound can be generated evenly. .
 また、本発明に係る接合方法は、扁平状の接合用部材を第1接合対象と第2接合対象との間に配置し、第1接合対象と第2接合対象との間に圧力をかけながら加熱する加熱工程、を含んでもよい。この接合方法により、接合用部材を、はんだごてなどを用いることなく、熱圧着を用いて、第1接合対象と第2接合対象との間に接合することができる。 Further, in the joining method according to the present invention, a flat joining member is disposed between the first joining object and the second joining object, and pressure is applied between the first joining object and the second joining object. A heating step of heating may be included. By this joining method, the joining member can be joined between the first joining object and the second joining object using thermocompression bonding without using a soldering iron or the like.
 また、本発明に係る接合用部材の製造方法は、金属粒と流動材とを混合する工程と、線材に設けられた孔に、金属粒を混合した流動材を、低融点金属の融点より低温に加熱した状態で圧力をかけて注入する工程と、を含むことが好ましい。このような製造方法によって、低融点金属に設けられた空間に金属粒を容易に挿入することができる。 In addition, the method for manufacturing a joining member according to the present invention includes a step of mixing metal particles and a fluid material, and a fluid material in which metal particles are mixed in holes provided in the wire at a temperature lower than the melting point of the low melting point metal. And injecting by applying pressure in a heated state. With such a manufacturing method, the metal particles can be easily inserted into the space provided in the low melting point metal.
 本発明によれば、線材状の接合用部材において、接合時の温度条件を接合後の再溶融の温度条件よりも低温にでき、かつ、脆性を低く(脆くなく)することができる。 According to the present invention, in the wire-like joining member, the temperature condition at the time of joining can be made lower than the temperature condition of remelting after joining, and the brittleness can be lowered (not brittle).
図1は、本発明の第1実施形態に係る接合用部材の一部を示す模式図である。FIG. 1 is a schematic diagram showing a part of a joining member according to the first embodiment of the present invention. 図2は、本発明の第1実施形態に係る接合用部材における金属粒の粒径と接合強度との関係を示す図である。FIG. 2 is a diagram showing the relationship between the particle size of the metal particles and the bonding strength in the bonding member according to the first embodiment of the present invention. 図3は、本発明の第1実施形態に係る接合用部材の製造方法の一例を示す図である。Drawing 3 is a figure showing an example of the manufacturing method of the member for junction concerning a 1st embodiment of the present invention. 図4は、本発明の第1実施形態に係る接合用部材を用いる接合方法を模式的に示す図である。FIG. 4 is a diagram schematically showing a joining method using the joining member according to the first embodiment of the present invention. 図5(A)(B)は、本発明の第1実施形態に係る接合用部材を用いる接合方法での反応を模式的に示す図である。5A and 5B are diagrams schematically showing a reaction in a joining method using the joining member according to the first embodiment of the present invention. 図6(A)(B)は、接合用部材を溶融および硬化させてなる接合部の電子顕微鏡写真を示す図である。6 (A) and 6 (B) are diagrams showing electron micrographs of a joined portion obtained by melting and curing a joining member. 図7は、本発明の第2実施形態に係る接合用部材の一部を示す模式図である。FIG. 7 is a schematic view showing a part of a joining member according to the second embodiment of the present invention. 図8(A)(B)(C)は、本発明の第2実施形態に係る接合用部材を用いる接合方法を模式的に示す図である。FIGS. 8A, 8B, and 8C are diagrams schematically showing a joining method using the joining member according to the second embodiment of the present invention. 図9は、本発明の第3実施形態に係る接合用部材の一部を示す模式図である。FIG. 9 is a schematic view showing a part of a joining member according to the third embodiment of the present invention. 図10は、本発明の第4実施形態に係る接合用部材の一部を示す模式図である。FIG. 10 is a schematic view showing a part of the joining member according to the fourth embodiment of the present invention. 図11は、本発明の第5実施形態に係る接合用部材の一部を示す模式図である。FIG. 11 is a schematic view showing a part of the joining member according to the fifth embodiment of the present invention.
 以下、本発明の第1実施形態に係る接合用部材と、この接合用部材の製造方法と、この接合用部材を用いた接合方法とについて説明する。 Hereinafter, the joining member according to the first embodiment of the present invention, a method for manufacturing the joining member, and a joining method using the joining member will be described.
 図1は、本発明の第1実施形態に係る接合用部材1の一部を模式的に示す斜視図である。 FIG. 1 is a perspective view schematically showing a part of a joining member 1 according to a first embodiment of the present invention.
 接合用部材1の全体は、図示する一部よりも長尺な線材状であり、可撓性を有している。接合用部材1は、線材2と芯材3とを備え、芯材3を中心に、芯材3の外周が線材2で覆われた構造である。 The whole joining member 1 is in the form of a wire longer than a part shown in the figure, and has flexibility. The joining member 1 includes a wire 2 and a core 3, and has a structure in which the outer periphery of the core 3 is covered with the wire 2 around the core 3.
 線材2は、軸方向に延びる線状の外形状と環状の断面形状とを有する固体構造物である。線材2の主たる材質は、SnやSn合金(例えばSn-Ag-Cu、Sn-Ag、Sn-Cu、Sn-Bi、Sn-Sb、Sn-Au、Sn-Pb、Sn-Znなど)などの低融点金属である。線材2の表面は、低融点金属の酸化膜に覆われている。また、線材2の中心部は、軸方向に延びる孔4が設けられている。なお、孔4は、線材2の全長に渡って連続的して設けられていてもよく、線材2の全長にわたって断続的に設けられていてもよい。 The wire 2 is a solid structure having a linear outer shape extending in the axial direction and an annular cross-sectional shape. The main material of the wire 2 is Sn or Sn alloy (for example, Sn—Ag—Cu, Sn—Ag, Sn—Cu, Sn—Bi, Sn—Sb, Sn—Au, Sn—Pb, Sn—Zn, etc.) It is a low melting point metal. The surface of the wire 2 is covered with a low melting point metal oxide film. Further, a hole 4 extending in the axial direction is provided at the center of the wire 2. The holes 4 may be provided continuously over the entire length of the wire 2 or may be provided intermittently over the entire length of the wire 2.
 芯材3は、線材2の孔4に設けられた円柱状の外形状を有する固体構造物である。芯材3は、金属粒5と流動材6とを含んでいる。金属粒5は、流動材6の内部に分散して配置されている。金属粒5の材質は、線材2の低融点金属と反応して金属間化合物を生成し、かつ、前述した低融点金属よりも高い融点を有する高融点金属である。金属粒5の表面は、高融点金属の酸化膜に覆われている。より具体的には、高融点金属は、Cu-10Ni合金、その他、Niの割合が5~20重量%であるCu-Ni合金、あるいは、Coの割合が1~10重量%、かつ、NiとCoの総量の割合が5~20重量%であるCu-Ni-Co合金、または、Feの割合が1~10重量%、かつ、NiとFeの総量の割合が5~20重量%であるCu-Ni-Fe合金、あるいは、Mnの割合が5~20重量%であるCu-Mn合金、あるいは、Cu-Cr合金、Cu-Al合金、などである。これらの高融点金属は、前述した低融点金属の溶融液と反応して金属間化合物を生成し、かつ、前述した低融点金属よりも高い融点を有する。更には、これらの高融点金属が前述した低融点金属と反応して生成される金属間化合物も、前述した低融点金属よりも高い融点を有する。
 なお、線材2をSnとし、孔4にCu粒子を配置する効果は次の通りである。すなわち、この構成は、Cu粒子の酸化を防げること、具体的には、はんだ付けの際、Snが溶けだしてCuと反応するため、Cuが外部に露出して酸化することを防止できる。
The core material 3 is a solid structure having a cylindrical outer shape provided in the hole 4 of the wire 2. The core material 3 includes metal particles 5 and a fluidizing material 6. The metal particles 5 are dispersed and arranged inside the fluidizing material 6. The material of the metal particles 5 is a high melting point metal that reacts with the low melting point metal of the wire 2 to generate an intermetallic compound and has a higher melting point than the low melting point metal described above. The surface of the metal particle 5 is covered with an oxide film of a refractory metal. More specifically, the refractory metal is a Cu-10Ni alloy, a Cu-Ni alloy having a Ni content of 5 to 20% by weight, or a Co content of 1 to 10% by weight, and Ni and Cu—Ni—Co alloy having a total amount of Co of 5 to 20% by weight or Cu having a proportion of Fe of 1 to 10% by weight and a total amount of Ni and Fe of 5 to 20% by weight -Ni-Fe alloy, Cu-Mn alloy having a Mn ratio of 5 to 20% by weight, Cu-Cr alloy, Cu-Al alloy, or the like. These high melting point metals react with the above-described melt of a low melting point metal to form an intermetallic compound, and have a melting point higher than that of the above-described low melting point metal. Furthermore, the intermetallic compound produced by the reaction of these high melting point metals with the aforementioned low melting point metals also has a higher melting point than the aforementioned low melting point metals.
In addition, the effect which arrange | positions Cu particle | grains to the hole 4 by making the wire 2 Sn is as follows. That is, this configuration can prevent the Cu particles from being oxidized. Specifically, during soldering, Sn melts and reacts with Cu, so that Cu can be prevented from being exposed and oxidized.
 流動材6は、金属粒5を線材2の孔4に挿入する際に、自らが流動することで、金属粒5の流動性を向上させ、金属粒5の孔4への挿入を容易化する。ここでの流動材6は、常温で固体状態となり、線材2(低融点金属)の融点よりも低い温度で軟化して流動し易くなる材料を採用している。したがって、接合用部材1は、常温では全体が固体構造物で構成された強度が高い構成となっている。なお、流動材6は常温で粘性を有するような材料を採用してもよい。
 なお、流動材6(フラックス)の効果は次の通りである。すなわち、流動材6は、金属粒5を孔4へ挿入する際、挿入したCu粒子どうしが密集しなくなり、溶融時にSnとの反応面積を増やすことができる。
When the fluid material 6 inserts the metal particles 5 into the holes 4 of the wire 2, the fluid material 6 flows by itself, thereby improving the fluidity of the metal particles 5 and facilitating the insertion of the metal particles 5 into the holes 4. . Here, the fluidizing material 6 employs a material that is in a solid state at room temperature and softens and flows easily at a temperature lower than the melting point of the wire 2 (low melting point metal). Therefore, the joining member 1 is configured to have a high strength that is composed of a solid structure as a whole at room temperature. The fluidizing material 6 may be a material having viscosity at normal temperature.
The effect of the fluidizing material 6 (flux) is as follows. That is, when the fluidized material 6 inserts the metal particles 5 into the holes 4, the inserted Cu particles do not become dense and can increase the reaction area with Sn during melting.
 流動材6の具体的な材料は、上記した性質を示すならばどのようなものでもよいが、ロジン系フラックスを含むことが望ましい。流動材6がロジン系フラックスを含むことで、接合用部材1を用いたはんだ付け時に、高融点金属や低融点金属の表面酸化膜を除去して両者を効率的に反応させることができる。ロジン系フラックスとしては、天然ロジン、水素化ロジン、不均化ロジン、重合ロジン、不飽和二塩基酸変性ロジン、アクリル酸変性ロジンなどのロジン誘導体等、またはこれらの混合材など適宜のロジン材料を採用することができる。 The specific material of the fluidizing material 6 may be any material as long as it exhibits the above-described properties, but preferably contains a rosin-based flux. When the fluidizing material 6 contains the rosin-based flux, the surface oxide film of the high melting point metal or the low melting point metal can be removed and the both can be efficiently reacted at the time of soldering using the joining member 1. As the rosin flux, an appropriate rosin material such as natural rosin, hydrogenated rosin, disproportionated rosin, polymerized rosin, unsaturated dibasic acid-modified rosin, acrylic acid-modified rosin or the like, or a mixture thereof. Can be adopted.
 流動材6は、フラックスの反応を促進する活性剤を含んでもよい。活性剤としては、モノカルボン酸(例えば、ギ酸、酢酸、ラウリン酸、パルミチン酸、ステアリン酸、安息香酸など)、ジカルボン酸(例えば、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、スベリン酸、アゼライン酸、セバシン酸、フタル酸など)、ブロモアルコール類(例えば、1-ブロモー2-ブタノールなど)、有機アミンのハロゲン化水素酸塩類、ブロモアルカン類、ブロモアルケン類、ベンジルブロマイド類、ポリアミン類、塩素系活性剤など適宜の活性剤材料を採用することができる。また、流動材6は、必要に応じて、樹脂、チクソ材、熱硬化樹脂、酸化防止剤、難燃剤、分散剤、レベリング剤、消泡剤、艶消し剤、可塑剤などの有機系添加剤などが配合されていてもよい。 The fluidizing material 6 may include an activator that promotes the reaction of the flux. Activators include monocarboxylic acids (eg, formic acid, acetic acid, lauric acid, palmitic acid, stearic acid, benzoic acid, etc.), dicarboxylic acids (eg, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, suberin) Acid, azelaic acid, sebacic acid, phthalic acid, etc.), bromoalcohols (eg, 1-bromo-2-butanol, etc.), organic amine hydrohalides, bromoalkanes, bromoalkenes, benzylbromides, polyamines Any suitable activator material such as chlorinated activator can be employed. In addition, the fluidizing material 6 is an organic additive such as a resin, a thixo material, a thermosetting resin, an antioxidant, a flame retardant, a dispersant, a leveling agent, an antifoaming agent, a matting agent, and a plasticizer as necessary. Etc. may be blended.
 金属粒5と流動材6との重量比は、金属粒5:流動材6=75:25~99.5:0.5の範囲内であることが好ましい。金属粒5の配合量が上記よりも多すぎると、線材2の孔4に金属粒5を挿入する際に、十分な流動性を得ることができず、孔4に金属粒5を十分な分量だけ挿入することができなくなるおそれがある。一方、金属粒5の配合量が上記よりも少なすぎると、低融点金属を十分に反応させることができず、金属間化合物に未反応の低融点金属が残存してしまうおそれがある。したがって、金属粒5と流動材6との重量比を上記の範囲内とすることで、適切な分量で低融点金属と高融点金属とを反応させて金属間化合物を生成し、所望の接合強度や再溶融温度条件を実現しやすくなる。 The weight ratio between the metal particles 5 and the fluidizing material 6 is preferably in the range of metal particles 5: fluidizing material 6 = 75:25 to 99.5: 0.5. When the blending amount of the metal particles 5 is more than the above, sufficient fluidity cannot be obtained when the metal particles 5 are inserted into the holes 4 of the wire 2, and a sufficient amount of the metal particles 5 is filled in the holes 4. You may not be able to insert only. On the other hand, when the blending amount of the metal particles 5 is too smaller than the above, the low melting point metal cannot be sufficiently reacted, and there is a possibility that the unreacted low melting point metal remains in the intermetallic compound. Therefore, by setting the weight ratio of the metal particles 5 and the fluidizing material 6 within the above range, a low melting point metal and a high melting point metal are reacted in an appropriate amount to produce an intermetallic compound, and a desired bonding strength. And remelting temperature conditions are easily realized.
 また、金属粒5の平均粒径(D50)は、0.1~30μmの範囲内であることが好ましい。金属粒5の平均粒径は、金属間化合物の生成量に大きく影響するため、この平均粒径を適切にすることで、接合用部材1を用いた接合により実現される接合部による接合強度を改善することができる。例えば、図2は、金属粒5の平均粒径(D50)と、接合用部材1を用いた接合により実現される接合強度との関係を模式的に示すグラフである。平均粒径には、接合強度を最大化する最適値があり、その最適値から平均粒径が離れるほど、接合強度は低下する。そして、平均粒径が最適値から大きく離れることで、接合強度が仕様等で定められる下限限界よりも低くなり、適切な接合を実現できなくなることがある。より具体的には、金属粒5の平均粒径(D50)が0.1μm未満となれば、金属粒5の単位重量あたりの粒子表面積が著しく大きくなり、この表面酸化膜によって生成反応が阻害されて、金属間化合物の生成量が低減してしまう。また、この粒径が30μmを超えれば、金属粒5の粒子中心部分まで金属間化合物の生成反応に利用することができず、生成反応に利用される高融点金属が不足して、金属間化合物の生成量が低減してしまう。そして、金属間化合物の生成量が低減すると、接合部による接合強度が低下することになる。したがって、金属粒5の平均粒径(D50)を上記の範囲内とすることでも、適切な分量で低融点金属と高融点金属とを反応させて金属間化合物を生成し、所望の接合強度や再溶融温度条件を実現しやすくなる。 The average particle diameter (D50) of the metal particles 5 is preferably in the range of 0.1 to 30 μm. The average particle size of the metal particles 5 greatly affects the amount of intermetallic compound produced. Therefore, by making the average particle size appropriate, the bonding strength by the bonded portion realized by bonding using the bonding member 1 can be increased. Can be improved. For example, FIG. 2 is a graph schematically showing the relationship between the average particle diameter (D50) of the metal particles 5 and the bonding strength realized by bonding using the bonding member 1. The average particle size has an optimum value that maximizes the bonding strength, and the bonding strength decreases as the average particle size moves away from the optimum value. And since an average particle diameter will leave | separate from an optimal value greatly, joining strength will become lower than the minimum limit defined by a specification etc., and it may become impossible to implement | achieve appropriate joining. More specifically, if the average particle diameter (D50) of the metal particles 5 is less than 0.1 μm, the particle surface area per unit weight of the metal particles 5 is remarkably increased, and the generation reaction is inhibited by this surface oxide film. As a result, the amount of intermetallic compound produced is reduced. Moreover, if this particle size exceeds 30 μm, it cannot be used for the formation reaction of the intermetallic compound up to the particle central portion of the metal particle 5, and the refractory metal used for the formation reaction is insufficient. The production amount of is reduced. And if the production amount of an intermetallic compound decreases, the joint strength by a joined part will fall. Therefore, even when the average particle diameter (D50) of the metal particles 5 is within the above range, the low melting point metal and the high melting point metal are reacted in an appropriate amount to generate an intermetallic compound, and the desired bonding strength and It becomes easy to realize the remelting temperature condition.
 なお、線材2や芯材3は、Ag、Au、Al、Bi、C、Co、Cu、Fe、Ga、Ge、In、Mn、Mo、Ni、P、Pb、Pd、Pt、Si、Sb、Zn等が含まれていてもよい。これらの添加形態は、線材2や金属粒5に含有される不純物としてであってもよく、流動材6に添加される金属粉、線材2や金属粒5の表面に形成される金属膜等としてであってもよい。また、金属粉や金属膜等として添加する場合には、金属錯体や金属化合物の形態で含まれていてもよい。 The wire 2 and the core 3 are made of Ag, Au, Al, Bi, C, Co, Cu, Fe, Ga, Ge, In, Mn, Mo, Ni, P, Pb, Pd, Pt, Si, Sb, Zn or the like may be contained. These addition forms may be impurities contained in the wire 2 and the metal particles 5, such as metal powder added to the fluidizing material 6, metal films formed on the surfaces of the wire 2 and metal particles 5, and the like. It may be. Moreover, when adding as a metal powder, a metal film, etc., you may contain in the form of a metal complex or a metal compound.
 以上の構成を有する接合用部材1は、以下の製造方法で製造することができる。図3は、接合用部材1の製造方法の一例を示すフローチャートである。 The joining member 1 having the above configuration can be manufactured by the following manufacturing method. FIG. 3 is a flowchart showing an example of a method for manufacturing the joining member 1.
 接合用部材1の製造では、まず、接合用部材1の最終線径よりも大径なインゴット状態で、円環状の低融点金属の線材2を製作する(S1)。 In the manufacture of the joining member 1, first, an annular low-melting-point metal wire 2 is manufactured in an ingot state larger than the final wire diameter of the joining member 1 (S1).
 また、加熱により軟化させた状態の流動材6に、高融点金属の金属粒5を混練する(S2)。 Further, the metal particles 5 of the refractory metal are kneaded into the fluidized material 6 softened by heating (S2).
 次に、金属粒5を混練した流動材6を、加熱により軟化した状態で圧力をかけて、線材2の孔4に注入する(S3)。このようにして、金属粒5の流動性を高めた状態で、線材2に設けられた孔4に金属粒5を挿入することで、孔4に多量の金属粒5を挿入、充填することが容易になる。 Next, the fluidizing material 6 kneaded with the metal particles 5 is injected into the holes 4 of the wire 2 under pressure while being softened by heating (S3). In this way, by inserting the metal particles 5 into the holes 4 provided in the wire 2 in a state where the fluidity of the metal particles 5 is increased, a large amount of the metal particles 5 can be inserted and filled in the holes 4. It becomes easy.
 そして、金属粒5および流動材6を孔4に挿入した状態の線材2を、加熱により流動材6を軟化させた状態で、線引き加工により延伸させ、より線径が細く、軸長を長くなるように引き延ばす(S4)。 Then, the wire 2 in a state where the metal particles 5 and the fluidizing material 6 are inserted into the holes 4 is stretched by drawing in a state where the fluidizing material 6 is softened by heating, so that the wire diameter is thinner and the axial length is longer. (S4).
 このような製造方法により、線材状に接合用部材1を製造することができる。このような製造方法であれば、線材2を低融点金属が溶融するほどの加熱を伴うこと無く作製でき、接合用部材1自体が金属間化合物を含むことが無い。したがって、接合用部材1の接合時の温度条件を低温(低融点金属の融点近傍)にできる。また、線材2は、金属粒子の圧着によらずに成形でき、脆性を低く(脆くなく)することができる。 接合 By such a manufacturing method, the joining member 1 can be manufactured in a wire shape. With such a manufacturing method, the wire 2 can be produced without heating to such an extent that the low melting point metal melts, and the joining member 1 itself does not contain an intermetallic compound. Therefore, the temperature condition at the time of joining of the joining member 1 can be low (near the melting point of the low melting point metal). Moreover, the wire 2 can be shape | molded without the crimping | compression-bonding of a metal particle, and can make brittleness low (it is not brittle).
 なお、接合用部材1の製造は、上記以外の方法によっても実現できる。例えば、低融点金属からなる短冊状の薄板に、金属粒5を含む流動材6を塗布し、薄板を環状に曲げながら延伸して細くすることによって、薄板の端面同士を圧着させて線材を円環状に成形し、上記した構成の接合用部材1を製造することもできる。また、低融点金属からなる柱状部材に溝を形成し、その切り込みに金属粒5を含む流動材6を注入し、柱状部材から線材を延伸して引き出すことで、溝の端面を圧着させて線材を円環状に成形し、上記した構成の接合用部材1を製造することもできる。 In addition, manufacture of the member 1 for joining can be implement | achieved also by methods other than the above. For example, a fluidized material 6 containing metal particles 5 is applied to a strip-shaped thin plate made of a low melting point metal, and the thin plate is stretched and thinned while being bent into an annular shape, thereby crimping the end surfaces of the thin plate to form a circular wire. It is also possible to manufacture the joining member 1 having the above-described configuration by forming it in an annular shape. Further, a groove is formed in a columnar member made of a low melting point metal, a fluid material 6 containing metal particles 5 is injected into the notch, and the wire is stretched and drawn out from the columnar member, so that the end face of the groove is crimped to the wire. Can be formed into an annular shape, and the joining member 1 having the above-described configuration can be manufactured.
 次に、上記の接合用部材1を用いて、第1接合対象物101と第2接合対象物102との間を接合する具体的な接合方法について説明する。 Next, a specific joining method for joining the first joining object 101 and the second joining object 102 using the joining member 1 will be described.
 図4は、はんだごて103を用いて接合用部材1を溶融、硬化させる接合方法を示す模式図である。ここで示す第1接合対象物101は、例えば電子部品の端子電極である。第2接合対象物102は、例えば電子部品を実装するプリント配線基板の表面に設けられた実装電極である。 FIG. 4 is a schematic diagram showing a joining method in which the joining member 1 is melted and cured using the soldering iron 103. The first object 101 shown here is, for example, a terminal electrode of an electronic component. The second bonding target object 102 is a mounting electrode provided on the surface of a printed wiring board on which an electronic component is mounted, for example.
 第1接合対象物101と第2接合対象物102とを接合する際には、まずはんだごて103のこて先を発熱させ、はんだごて103のこて先を第2接合対象物102(プリント配線基板の実装電極)にあてて、第2接合対象物102を温める。そして、こて先に接合用部材1の先端を軽く押し当て、接合用部材1の先端を溶かしながら、接合用部材1をこて先に送る。これにより、接合用部材1の溶融液105が、第1接合対象物101(電子部品の端子電極)と第2接合対象物102(プリント配線基板の実装電極)全体に広がることになる。そして、この溶融液105がフィレット状になってから、接合用部材1の先端をはんだごて103のこて先から離し、最後にはんだごて103を溶融液105から離す。この後、溶融液105が冷却されて硬化することで、第1接合対象物101と第2接合対象物102との間が接合されることになる。 When joining the first joining object 101 and the second joining object 102, first, the tip of the soldering iron 103 is heated, and the tip of the soldering iron 103 is moved to the second joining object 102 ( The second bonding object 102 is warmed against the mounting electrode of the printed wiring board. Then, the tip of the joining member 1 is lightly pressed against the tip, and the joining member 1 is sent to the tip while melting the tip of the joining member 1. As a result, the melt 105 of the bonding member 1 spreads over the entire first bonding object 101 (terminal electrode of the electronic component) and the second bonding object 102 (mounting electrode of the printed wiring board). Then, after the melt 105 becomes a fillet, the tip of the joining member 1 is separated from the tip of the soldering iron 103, and finally the soldering iron 103 is separated from the melt 105. Thereafter, the molten liquid 105 is cooled and cured, so that the first bonding target object 101 and the second bonding target object 102 are bonded.
 図5(A)および図5(B)は、接合用部材1による金属間化合物の生成機序について説明する模式図である。 5 (A) and 5 (B) are schematic diagrams for explaining the generation mechanism of the intermetallic compound by the bonding member 1.
 はんだごて103(不図示)によって接合用部材1の先端の温度が低融点金属およびフラックスの融点(軟化点)よりも高温に昇温することで、図5(A)に示すように、接合用部材1の線材2と流動材6とが溶融する。これにより、溶融液105が生成される。溶融液105においては、流動材6に含まれるフラックスが、線材2や金属粒5、第1接合対象物101、第2接合対象物102の表面酸化膜を還元し除去する。このため、溶融液12が、第1接合対象物101と第2接合対象物102とに濡れ広がり、また、金属粒5が溶融液105の内部に分散する。このため、フラックスによって、各部の表面酸化膜が高融点金属と低融点金属との反応を阻害することを防いで、高融点金属と低融点金属とを効率的に反応させられる。また、流動材6の残滓16は、溶融液105の表面に浮き上がって、溶融液105の表面を覆うようになる。 As shown in FIG. 5 (A), the temperature of the tip of the joining member 1 is raised to a temperature higher than the melting point (softening point) of the low melting point metal and the flux by the soldering iron 103 (not shown). The wire 2 and the fluid 6 of the member 1 are melted. Thereby, the melt 105 is produced | generated. In the melt 105, the flux contained in the fluidizing material 6 reduces and removes the surface oxide films of the wire 2, the metal particles 5, the first joining object 101, and the second joining object 102. For this reason, the melt 12 wets and spreads on the first joining object 101 and the second joining object 102, and the metal particles 5 are dispersed inside the melt 105. For this reason, the surface oxide film of each part is prevented from inhibiting the reaction between the high melting point metal and the low melting point metal by the flux, and the high melting point metal and the low melting point metal can be reacted efficiently. Further, the residue 16 of the fluidized material 6 floats on the surface of the melt 105 and covers the surface of the melt 105.
 溶融液105の内部では、時間の経過とともに金属間化合物12の生成反応が進展する。すなわち、図5(B)に示すように、溶融液105に含まれる低融点金属と、金属粒5に含まれる高融点金属とが反応して金属間化合物12が生成される。このため、溶融液105の組成における金属間化合物12の割合が増加するとともに、金属粒5の粒径が縮小して消失していく。この反応は、溶融液105がある程度の高温を維持する間に進展するので、溶融液105が冷却されて硬化するまでの間に、溶融液105のほぼ全体が金属間化合物に変質することになる。 In the melt 105, the formation reaction of the intermetallic compound 12 progresses with time. That is, as shown in FIG. 5B, the low melting point metal contained in the melt 105 and the high melting point metal contained in the metal particles 5 react to produce the intermetallic compound 12. For this reason, while the ratio of the intermetallic compound 12 in the composition of the melt 105 increases, the particle size of the metal particles 5 decreases and disappears. Since this reaction progresses while the melt 105 is maintained at a certain high temperature, almost all of the melt 105 is transformed into an intermetallic compound until the melt 105 is cooled and hardened. .
 この金属間化合物を生成する反応は、例えば、液相拡散接合(「TLP接合:TransientLiquid Phase DiffusionBonding」)に伴う反応である。生成される金属間化合物は、金属粒5がCu-Ni合金の場合には、例えば、(Cu,Ni)Sn、CuNiSn、CuNiSn、(Cu,Ni)Sn、CuNiSn、CuNiSn等である。また、金属粒5がCu-Mn合金の場合には、金属間化合物は、(Cu,Mn)Sn、CuMnSn、CuMnSn、(Cu,Mn)Sn、CuMnSn、CuMnSn等である。 The reaction for generating the intermetallic compound is, for example, a reaction accompanying liquid phase diffusion bonding (“TLP bonding: Transient Liquid Phase Diffusion Bonding”). When the metal particles 5 are a Cu—Ni alloy, for example, (Cu, Ni) 6 Sn 5 , Cu 4 Ni 2 Sn 5 , Cu 5 NiSn 5 , (Cu, Ni) 3 Sn, Cu 2 NiSn, CuNi 2 Sn and the like. When the metal particles 5 are a Cu—Mn alloy, the intermetallic compounds are (Cu, Mn) 6 Sn 5 , Cu 4 Mn 2 Sn 5 , Cu 5 MnSn 5 , (Cu, Mn) 3 Sn, Cu 2 MnSn, CuMn 2 Sn and the like.
 図6(A)および図6(B)は、接合用部材が溶融、硬化した後の接合部の断面を示す電子顕微鏡画像である。図6(A)は、比較例にあたる低融点金属と高融点金属とを含むペースト状の接合用部材(クリームはんだ)によって、銅箔(Cu層)上に設けられた接合部の断面を示している。図6(B)は、実施例にあたる低融点金属と高融点金属とを含む線材状の接合用部材(線はんだ)によって、銅箔(Cu層)上に設けられた接合部の断面を示している。 6 (A) and 6 (B) are electron microscope images showing a cross section of the joint after the joining member is melted and cured. FIG. 6A shows a cross section of a joint provided on a copper foil (Cu layer) by a paste-like joining member (cream solder) containing a low melting point metal and a high melting point metal, which is a comparative example. Yes. FIG. 6B shows a cross section of a joint provided on a copper foil (Cu layer) by a wire-like joining member (wire solder) containing a low melting point metal and a high melting point metal according to the embodiment. Yes.
 前述したように低融点金属と高融点金属とをペースト状(クリームはんだ)にするためには、低融点金属や高融点金属の粒子とともに、樹脂や溶剤などの非金属成分を多量に添加する必要がある。そして、このような非金属成分は、接合用部材の溶融時に揮発し、硬化後の接合部にボイドを形成する(図6(A)参照。)。一方、線材状の接合用部材1は、非金属成分を少量しか含まないために、接合部の内部には殆どボイドが形成されない(図6(B)参照。)。したがって、線材状の接合用部材1により電子部品と基板との間を接合すれば、よりボイドが少なく、信頼性の高い接合部を得ることができる。 As mentioned above, in order to make a low melting point metal and a high melting point metal into a paste (cream solder), it is necessary to add a large amount of non-metal components such as resin and solvent together with particles of the low melting point metal and the high melting point metal. There is. And such a nonmetallic component volatilizes at the time of fusion | melting of the member for joining, and forms a void in the junction part after hardening (refer FIG. 6 (A)). On the other hand, since the wire-shaped bonding member 1 contains only a small amount of non-metallic components, almost no voids are formed inside the bonding portion (see FIG. 6B). Therefore, if the electronic component and the substrate are joined by the wire-like joining member 1, a highly reliable joining portion with fewer voids can be obtained.
 次に、本発明の第2実施形態に係る接合用部材と、この接合用部材を用いた接合方法とについて説明する。 Next, a joining member according to a second embodiment of the present invention and a joining method using the joining member will be described.
 図7は、本発明の第2実施形態に係る接合用部材1Aの一部を模式的に示す斜視図である。この接合用部材1Aは線材2Aと複数の芯材3Aとを備える。線材2Aは、軸方向に延びる線状の外形状を有する固体構造物であり、軸方向に延びる複数の孔4Aが設けられている。複数の孔4Aは互いが等間隔になるように線材2Aの断面にて断面中心を通る直線上に配列されている。複数の芯材3Aは、それぞれ線材2Aの複数の孔4Aに設けられていて、それぞれ金属粒5と流動材6とを含んでいる。 FIG. 7 is a perspective view schematically showing a part of the joining member 1A according to the second embodiment of the present invention. This joining member 1A includes a wire 2A and a plurality of cores 3A. The wire 2A is a solid structure having a linear outer shape extending in the axial direction, and is provided with a plurality of holes 4A extending in the axial direction. The plurality of holes 4A are arranged on a straight line passing through the center of the cross section in the cross section of the wire 2A so as to be equidistant from each other. The plurality of core members 3 </ b> A are provided in the plurality of holes 4 </ b> A of the wire 2 </ b> A, respectively, and include the metal particles 5 and the fluidizing material 6.
 次に、この接合用部材1Aを用いて、第1接合対象物101Aと第2接合対象物102Aとの間を接合する具体的な接合方法について説明する。 Next, a specific joining method for joining the first joining target object 101A and the second joining target object 102A using the joining member 1A will be described.
 図8は、熱圧着を用いて接合用部材1Aを溶融、硬化させる接合方法を示す模式図である。第1接合対象物101Aと第2接合対象物102Aとを接合する際には、まず、接合用部材1Aを必要な長さだけ切り出す。そして、第1接合対象物101Aと第2接合対象物102Aとの間に接合用部材1Aは挟み込む(図8(A)参照。)。この状態で、第1接合対象物101Aと第2接合対象物102Aとを加熱するとともに、両者の間の間隔を狭めて、接合用部材1Aを加圧および加熱する。これにより、接合用部材1Aの線材2Aおよび芯材3Aの流動材6が溶融し、溶融液105Aが第1接合対象物101Aと第2接合対象物102Aとの間に広がる(図8(B)参照。)。なお、接合用部材1Aを配置する際には、複数の芯材3Aが並ぶ方向と、第1接合対象物101Aや第2接合対象物102Aの接合面とが平行になるようにしておけば、溶融液105Aの内部に金属粒6を均等に分散させることができ好ましい。この後、溶融液105Aの内部では、金属粒5が周囲の低融点金属と反応して、金属間化合物12の生成が進む。そして、溶融液105Aが冷却されて硬化することで、第1接合対象物101Aと第2接合対象物102Aとの間が金属間化合物12による接合部106Aで接合されることになる。 FIG. 8 is a schematic diagram showing a joining method in which the joining member 1A is melted and cured using thermocompression bonding. When joining the first joining object 101A and the second joining object 102A, first, the joining member 1A is cut out by a necessary length. Then, the joining member 1A is sandwiched between the first joining object 101A and the second joining object 102A (see FIG. 8A). In this state, the first joining object 101A and the second joining object 102A are heated, and the space between them is narrowed to pressurize and heat the joining member 1A. As a result, the wire 2A of the joining member 1A and the fluid 6 of the core 3A are melted, and the melt 105A spreads between the first joining object 101A and the second joining object 102A (FIG. 8B). reference.). When arranging the joining member 1A, if the direction in which the plurality of core members 3A are arranged and the joining surfaces of the first joining object 101A and the second joining object 102A are parallel, It is preferable that the metal particles 6 can be uniformly dispersed in the melt 105A. Thereafter, in the molten liquid 105A, the metal particles 5 react with the surrounding low melting point metal, and the production of the intermetallic compound 12 proceeds. Then, the molten liquid 105A is cooled and cured, so that the first joining object 101A and the second joining object 102A are joined by the joining part 106A made of the intermetallic compound 12.
 以上に説明したように、この発明の接合用部材は、熱圧着を利用した接合方法に利用することもできる。そして、熱圧着を利用する場合には、この実施形態に係る接合用部材1Aのように、孔4Aおよび芯材3Aを線材2Aの断面で直線上に並べておくことで、金属粒5を第1接合対象物101Aと第2接合対象物102Aとの間に均等に分散させて、金属間化合物の生成反応を偏りなく生じさせることが可能になる。 As described above, the joining member of the present invention can also be used in a joining method using thermocompression bonding. And when utilizing thermocompression bonding, like the joining member 1A according to this embodiment, the holes 4A and the core material 3A are arranged in a straight line in the cross section of the wire 2A, whereby the metal particles 5 are first formed. It is possible to uniformly disperse the bonding target object 101A and the second bonding target object 102A, and to generate the intermetallic compound generation reaction without any bias.
 次に、本発明の第3実施形態に係る接合用部材について説明する。 Next, the joining member according to the third embodiment of the present invention will be described.
 図9は、本発明の第3実施形態に係る接合用部材1Bの一部を模式的に示す斜視図である。この接合用部材1Bは線材2Bと複数の芯材3Bとを備える。線材2Bは、軸方向に延びる線状の外形状を有する固体構造物であり、断面形状の外形が長手方向と短手方向とを有する扁平形状である。また、線材2Bは、断面の長手方向に沿って複数の孔4Bが並んでいる。複数の芯材3Bは、それぞれ線材2Bの複数の孔4Bに設けられていて、それぞれ金属粒5と流動材6とを含んでいる。 FIG. 9 is a perspective view schematically showing a part of the joining member 1B according to the third embodiment of the present invention. This joining member 1B includes a wire 2B and a plurality of cores 3B. The wire 2B is a solid structure having a linear outer shape extending in the axial direction, and has a flat shape in which the outer shape of the cross-sectional shape has a longitudinal direction and a lateral direction. The wire 2B has a plurality of holes 4B arranged along the longitudinal direction of the cross section. The plurality of core members 3 </ b> B are provided in the plurality of holes 4 </ b> B of the wire 2 </ b> B, respectively, and include metal particles 5 and a fluid material 6, respectively.
 接合用部材1Bがこのように扁平状に形成されていれば、前述したように熱圧着を用いて接合用部材1Bを溶融、硬化させる接合方法を利用する際に、接合用部材1Bの配置姿勢が安定し、接合用部材1Bの断面長手方向を、接合対象物の接合面と平行にすることが容易となる。 If the joining member 1B is formed in such a flat shape, when the joining method for melting and curing the joining member 1B using thermocompression bonding is used as described above, the orientation of the joining member 1B is arranged. Becomes stable, and it becomes easy to make the longitudinal direction of the cross section of the bonding member 1B parallel to the bonding surface of the objects to be bonded.
 また、この構成の接合用部材1Bは、線材2Bの成形時に、当初は断面が円形状になるように線材2Bを成形し、それを押し潰すことで断面が扁平状になるように塑性変形させて製造することができる。 In addition, when the wire 2B is formed, the joining member 1B having this configuration is formed by first forming the wire 2B so that the cross section becomes a circular shape, and plastically deforming so that the cross section becomes flat by crushing the wire 2B. Can be manufactured.
 次に、本発明の第4実施形態に係る接合用部材について説明する。 Next, a joining member according to the fourth embodiment of the present invention will be described.
 図10は、本発明の第4実施形態に係る接合用部材1Cの一部を模式的に示す斜視図である。この接合用部材1Cは線材2Cと複数の芯材3Cとを備える。線材2Cは、軸方向に延びる線状の外形状を有する固体構造物であり、軸方向に延びる複数の孔4Cが設けられている。複数の孔4Cは互いが等間隔になるように線材2Cの断面にて点対象に配置されている。3つの芯材3Cは、それぞれ線材2Cの3つの孔4Cに設けられていて、それぞれ金属粒5と流動材6とを含んでいる。 FIG. 10 is a perspective view schematically showing a part of a joining member 1C according to the fourth embodiment of the present invention. This joining member 1C includes a wire 2C and a plurality of cores 3C. The wire 2C is a solid structure having a linear outer shape extending in the axial direction, and is provided with a plurality of holes 4C extending in the axial direction. The plurality of holes 4C are arranged at point targets in the cross section of the wire 2C so that they are equidistant from each other. The three core materials 3C are respectively provided in the three holes 4C of the wire 2C, and include the metal particles 5 and the fluidizing material 6, respectively.
 このように、接合用部材1Cは、孔4Cおよび芯材3Cが線材2Cに複数、点対象な配置で設けられた多芯構造であってもよい。このようにすれば、接合用部材1Cの向きや姿勢を考慮しなくても、接合時に、溶融液中に金属粒を均等に分散させることができる。 As described above, the bonding member 1C may have a multi-core structure in which a plurality of holes 4C and the core material 3C are provided on the wire 2C in a point-targeted arrangement. In this way, the metal particles can be evenly dispersed in the melt at the time of joining without considering the orientation and orientation of the joining member 1C.
 次に、本発明の第5実施形態に係る接合用部材について説明する。 Next, a joining member according to a fifth embodiment of the present invention will be described.
 図11は、本発明の第5実施形態に係る接合用部材1Dの一部を模式的に示す斜視図である。この接合用部材1Dは線材2Dと複数の芯材3Dとを備える。線材2Dは、軸方向に延びる線状の外形状を有する固体構造物であり、軸方向に対して直交する方向に延びる複数の孔4Dが、軸方向に沿って等間隔に配列されている。複数の芯材3Dは、それぞれ線材2Dの複数の孔4Dに設けられていて、それぞれ金属粒5と流動材6とを含んでいる。 FIG. 11 is a perspective view schematically showing a part of a joining member 1D according to the fifth embodiment of the present invention. This joining member 1D includes a wire 2D and a plurality of cores 3D. The wire 2D is a solid structure having a linear outer shape extending in the axial direction, and a plurality of holes 4D extending in a direction orthogonal to the axial direction are arranged at equal intervals along the axial direction. The plurality of core members 3D are respectively provided in the plurality of holes 4D of the wire 2D and include the metal particles 5 and the fluidizing material 6, respectively.
 このように、接合用部材1Dは、孔4Dおよび芯材3Dが線材2Dの軸方向とは異なる方向に延びていてもよい。 Thus, in the bonding member 1D, the hole 4D and the core material 3D may extend in a direction different from the axial direction of the wire 2D.
 最後に、以上の各実施形態の説明は、すべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は、上述の実施形態ではなく、特許請求の範囲によって示される。さらに、本発明の範囲は、特許請求の範囲と均等の範囲とを含む。 Finally, the description of each embodiment described above should be considered as illustrative in all points and not restrictive. The scope of the present invention is shown not by the above embodiments but by the claims. Furthermore, the scope of the present invention includes the scope of claims and the equivalent scope.
1…接合用部材
2…線材
3…芯材
4…孔
5…金属粒
6…流動材
12…金属間化合物
16…残滓
105…溶融液
106…接合部
DESCRIPTION OF SYMBOLS 1 ... Joining member 2 ... Wire material 3 ... Core material 4 ... Hole 5 ... Metal grain 6 ... Fluidizing material 12 ... Intermetallic compound 16 ... Residue 105 ... Molten liquid 106 ... Joining part

Claims (12)

  1.  孔が設けられた、低融点金属を含む線材と、
     前記孔に挿入された、前記低融点金属の溶融液との反応により、前記低融点金属よりも高い融点を有する金属間化合物を生成する高融点金属を含む金属粒と、
     を備える接合用部材。
    A wire including a low melting point metal provided with a hole;
    Metal particles containing a refractory metal inserted into the hole to produce an intermetallic compound having a melting point higher than that of the low melting point metal by reaction with the melt of the low melting point metal;
    A joining member comprising:
  2.  前記低融点金属はSnまたはSn合金であり、
     前記高融点金属は、Cu-Ni合金、Cu-Ni-Co合金、Cu-Ni-Fe合金、Cu-Mn合金、Cu-Cr合金、または、Cu-Al合金、である、
     請求項1に記載の接合用部材。
    The low melting point metal is Sn or Sn alloy,
    The refractory metal is a Cu—Ni alloy, a Cu—Ni—Co alloy, a Cu—Ni—Fe alloy, a Cu—Mn alloy, a Cu—Cr alloy, or a Cu—Al alloy,
    The joining member according to claim 1.
  3.  前記金属粒とともに前記孔に挿入されていて、前記孔への挿入時に前記金属粒の流動性を向上させる流動材を更に備える、
     請求項1または2に記載の接合用部材。
    It is inserted into the hole together with the metal particles, and further comprises a fluidizing material that improves the fluidity of the metal particles when inserted into the holes.
    The joining member according to claim 1 or 2.
  4.  前記流動材は、常温では固体状態であり、かつ、前記常温よりも高く前記低融点金属の融点よりも低い温度では軟化する、
     請求項3に記載の接合用部材。
    The fluidizing material is in a solid state at normal temperature, and softens at a temperature higher than the normal temperature and lower than the melting point of the low melting point metal.
    The joining member according to claim 3.
  5.  前記流動材は、フラックスを含む、
     請求項4に記載の接合用部材。
    The fluidizing material includes a flux,
    The joining member according to claim 4.
  6.  前記金属粒と前記流動材との重量比は、75:25~99.5:0.5の範囲内である、
     請求項3乃至5のいずれかに記載の接合用部材。
    The weight ratio of the metal particles to the fluidizing material is in the range of 75:25 to 99.5: 0.5.
    The joining member according to any one of claims 3 to 5.
  7.  前記金属粒の平均粒径(D50)は、0.1~30μmの範囲内である、
     請求項1乃至6のいずれかに記載の接合用部材。
    The average particle size (D50) of the metal particles is in the range of 0.1 to 30 μm.
    The joining member according to claim 1.
  8.  前記孔は、前記線材の軸方向に沿って互いに平行に延びるように複数設けられている、
     請求項1乃至7のいずれかに記載の接合用部材。
    A plurality of the holes are provided so as to extend in parallel with each other along the axial direction of the wire.
    The joining member according to claim 1.
  9.  前記線材は、扁平状である、
     請求項1乃至8のいずれかに記載の接合用部材。
    The wire is flat.
    The joining member according to claim 1.
  10.  前記孔は、前記線材の軸方向から見た断面の長手方向に沿って並んでいる、
     請求項9に記載の接合用部材。
    The holes are aligned along the longitudinal direction of the cross section viewed from the axial direction of the wire,
    The joining member according to claim 9.
  11.  請求項9または10に記載の接合用部材を第1接合対象と第2接合対象との間に配置し、第1接合対象と第2接合対象との間に圧力をかけて加熱する工程、
     を含む、接合方法。
    A step of disposing the joining member according to claim 9 or 10 between the first joining object and the second joining object and applying pressure between the first joining object and the second joining object and heating them.
    A joining method.
  12.  低融点金属の溶融液との反応により前記低融点金属よりも高い融点を有する金属間化合物を生成する高融点金属を含む金属粒と、
     常温では固体状態であり、かつ、前記常温よりも高く前記低融点金属の融点よりも低い温度で軟化する流動材と、を混合する工程と、
     前記低融点金属を含む線材に設けられた孔に、前記金属粒を混合した前記流動材を低融点金属の融点より低温に加熱した状態で圧力をかけて注入する工程と、
     を含む、接合用部材の製造方法。
    Metal particles containing a refractory metal that generates an intermetallic compound having a melting point higher than that of the low melting point metal by reaction with a melt of the low melting point metal;
    A step of mixing a fluid material that is in a solid state at normal temperature and softens at a temperature higher than the normal temperature and lower than the melting point of the low-melting-point metal;
    Injecting the fluidized material mixed with the metal particles under pressure in a state where the fluidized material mixed with the metal particles is heated to a temperature lower than the melting point of the low melting point metal;
    The manufacturing method of the member for joining containing this.
PCT/JP2016/073533 2015-08-31 2016-08-10 Bonding member, method for producing bonding member and bonding method WO2017038418A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017537703A JP6311844B2 (en) 2015-08-31 2016-08-10 Joining method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-170844 2015-08-31
JP2015170844 2015-08-31

Publications (1)

Publication Number Publication Date
WO2017038418A1 true WO2017038418A1 (en) 2017-03-09

Family

ID=58187377

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/073533 WO2017038418A1 (en) 2015-08-31 2016-08-10 Bonding member, method for producing bonding member and bonding method

Country Status (2)

Country Link
JP (1) JP6311844B2 (en)
WO (1) WO2017038418A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019098169A1 (en) * 2017-11-14 2019-05-23 千住金属工業株式会社 Flux, resin flux cored solder, and flux coated pellet
CN113927212A (en) * 2021-11-12 2022-01-14 南京航空航天大学 Welding wire structure design and powder proportioning method for electric arc additive repair

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109465564A (en) * 2018-12-13 2019-03-15 郑州机械研究所有限公司 The zinc-aluminium medicine core solder that a kind of soldering strength is high, corrosion resistance is strong

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06126479A (en) * 1992-10-23 1994-05-10 Tanaka Denshi Kogyo Kk Composite solder
JPH11347783A (en) * 1998-06-09 1999-12-21 Nippon Light Metal Co Ltd Wire-shaped brazing filler metal for joining aluminum or aluminum alloy and its manufacture
JP2007152415A (en) * 2005-12-08 2007-06-21 Yamaguchi Seisakusho:Kk Method and device for manufacturing lead-free flux-cored solder bus
WO2012066795A1 (en) * 2010-11-19 2012-05-24 株式会社村田製作所 Electroconductive material, method of connection with same, and connected structure
WO2013038816A1 (en) * 2011-09-16 2013-03-21 株式会社村田製作所 Electroconductive material, and connection method and connection structure using same
WO2013038817A1 (en) * 2011-09-16 2013-03-21 株式会社村田製作所 Electroconductive material, and connection method and connection structure using same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004174522A (en) * 2002-11-25 2004-06-24 Hitachi Ltd Composite solder, production method therefor, and electronic equipment

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06126479A (en) * 1992-10-23 1994-05-10 Tanaka Denshi Kogyo Kk Composite solder
JPH11347783A (en) * 1998-06-09 1999-12-21 Nippon Light Metal Co Ltd Wire-shaped brazing filler metal for joining aluminum or aluminum alloy and its manufacture
JP2007152415A (en) * 2005-12-08 2007-06-21 Yamaguchi Seisakusho:Kk Method and device for manufacturing lead-free flux-cored solder bus
WO2012066795A1 (en) * 2010-11-19 2012-05-24 株式会社村田製作所 Electroconductive material, method of connection with same, and connected structure
WO2013038816A1 (en) * 2011-09-16 2013-03-21 株式会社村田製作所 Electroconductive material, and connection method and connection structure using same
WO2013038817A1 (en) * 2011-09-16 2013-03-21 株式会社村田製作所 Electroconductive material, and connection method and connection structure using same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019098169A1 (en) * 2017-11-14 2019-05-23 千住金属工業株式会社 Flux, resin flux cored solder, and flux coated pellet
CN111344107A (en) * 2017-11-14 2020-06-26 千住金属工业株式会社 Flux, cored solder and flux-coated granular material
US11413711B2 (en) 2017-11-14 2022-08-16 Senju Metal Industry Co., Ltd. Flux, resin flux cored solder, and flux coated pellet
CN113927212A (en) * 2021-11-12 2022-01-14 南京航空航天大学 Welding wire structure design and powder proportioning method for electric arc additive repair
CN113927212B (en) * 2021-11-12 2022-08-30 南京航空航天大学 Welding wire structure design method for electric arc additive repair

Also Published As

Publication number Publication date
JPWO2017038418A1 (en) 2018-04-05
JP6311844B2 (en) 2018-04-18

Similar Documents

Publication Publication Date Title
KR102335066B1 (en) High metal loading sintering pastes for semiconductor die attach applications
TWI555032B (en) Conductive compositions containing blended alloy fillers
US10625377B2 (en) Bonding member and method for manufacturing bonding member
JP5943066B2 (en) Bonding method and manufacturing method of bonded structure
WO2012066795A1 (en) Electroconductive material, method of connection with same, and connected structure
CN112355513A (en) Solder composition
JP6311844B2 (en) Joining method
WO2013147235A1 (en) Conductive paste, hardened material, electrode, and electronic device
US10625376B2 (en) Bonding member, method for manufacturing bonding member, and bonding method
JP2014180690A (en) Sheet-like high-temperature solder joint material, and die bonding method using the same
JP2007268569A (en) Powder solder material and joining material
JP2007123664A (en) Junction structure between substrate and component and its manufacturing method
JP4910876B2 (en) Solder paste and bonded article
JP2011062736A (en) Lead-free high-temperature solder material
JP2020104169A (en) Lead-free solder alloy, material for solder joint, electronic circuit mounting board, and electronic controller
JP5758242B2 (en) Lead-free bonding material
JP2003245793A (en) Soldering composition, soldering method, and electronic component
JP6089243B2 (en) Manufacturing method of bonded structure
JP2005297011A (en) Solder paste and soldering article
CN114173983A (en) Prefabricated solder and solder joint body formed using the same
EP3745448A1 (en) Joining layer of semiconductor module, semiconductor module, and method for manufacturing same
JP2017216308A (en) Solder joint and method for manufacturing the same
JP2016215278A (en) Joint material and joint structure
JP2008091801A (en) Semiconductor device, and its manufacturing method
WO2017073313A1 (en) Joining member and joining member joining method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16841450

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017537703

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16841450

Country of ref document: EP

Kind code of ref document: A1