WO2013147235A1 - Conductive paste, hardened material, electrode, and electronic device - Google Patents
Conductive paste, hardened material, electrode, and electronic device Download PDFInfo
- Publication number
- WO2013147235A1 WO2013147235A1 PCT/JP2013/059698 JP2013059698W WO2013147235A1 WO 2013147235 A1 WO2013147235 A1 WO 2013147235A1 JP 2013059698 W JP2013059698 W JP 2013059698W WO 2013147235 A1 WO2013147235 A1 WO 2013147235A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- conductive paste
- component
- copper
- electrode
- less
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/20—Conductive material dispersed in non-conductive organic material
- H01B1/22—Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/02—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
- H01B1/026—Alloys based on copper
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/09—Use of materials for the conductive, e.g. metallic pattern
- H05K1/092—Dispersed materials, e.g. conductive pastes or inks
- H05K1/095—Dispersed materials, e.g. conductive pastes or inks for polymer thick films, i.e. having a permanent organic polymeric binder
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/02—Fillers; Particles; Fibers; Reinforcement materials
- H05K2201/0203—Fillers and particles
- H05K2201/0206—Materials
- H05K2201/0218—Composite particles, i.e. first metal coated with second metal
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/02—Fillers; Particles; Fibers; Reinforcement materials
- H05K2201/0203—Fillers and particles
- H05K2201/0242—Shape of an individual particle
- H05K2201/0245—Flakes, flat particles or lamellar particles
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/30—Assembling printed circuits with electric components, e.g. with resistor
- H05K3/32—Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
- H05K3/34—Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
- H05K3/3457—Solder materials or compositions; Methods of application thereof
- H05K3/3485—Applying solder paste, slurry or powder
Definitions
- the present invention relates to a conductive paste, a cured product obtained from the conductive paste, an electrode made of the cured product, and an electronic device.
- the conductive paste is a particulate conductive filler such as silver (Ag), copper (Cu), nickel (Ni), tin (Sn), aluminum (Al), or carbon black, and a phenol resin or epoxy.
- An electrically conductive composition obtained by blending a thermosetting binder resin such as a resin with an organic solvent.
- the conductive paste is used in various electronic devices and electronic products because electrodes of various shapes can be easily and finely formed by screen printing or the like.
- copper and silver have been used as conductive fillers having excellent electrical conductivity.
- copper is inexpensive and general-purpose, but is easily oxidized, and there is a problem of destabilizing the electrical conductivity of the conductive paste.
- silver is not expensive, but it is expensive. Therefore, in general, composite particles in which copper particles are coated with silver may be used together with or instead of silver particles in this field.
- thermoplastic resin as a binder resin and a glass transition temperature of 60 to 100 ° C. It is known to use a degree of saturated polyester.
- the present inventors have found that the lack of wetting is not sufficiently solved by the conductive paste using a thermoplastic resin as a binder, based on the detailed analysis and examination by the present inventors based on the following new viewpoints.
- the inside of the electrode obtained from the conductive paste is composed of a phase of a conductive filler that exists independently in contact with each other and a substantially continuous phase made of a binder resin that fills the voids.
- FIG. 1 shows a scanning electron microscope when a conventional conductive paste (corresponding to Comparative Example 1 to be described later) is applied on a glass substrate and the solder paste is further melted on the cured electrode. It is a cross-sectional image by (SEM). As shown in FIG. 1, it can be confirmed that the flux spreads so as to cover the solder alloy (white portion) after melting. More specifically, when the solder paste is melted on an electrode made of a conventional conductive paste, the liquid flux that has exuded so as to cover the solder metal penetrates into the electrode and is compatible with the binder resin. Is incorporated in a manner to
- the activator that is originally on the surface and should suppress the surface oxidation of the solder metal in the solder paste is reduced. Since it will be washed away from the peripheral area, the molten solder metal may be insufficiently wet.
- FIG. 2 is an SEM cross-sectional view of an electrode obtained from a conventional conductive paste.
- the binder resin phase is formed from a thermosetting phenol resin that is cured by heating, but the penetration of the flux cannot be prevented even though the binder resin phase is a strong and hard phase. This result indicates that, for example, when a thermoplastic resin that is softened by heat, such as a polyester resin, is used as the binder resin, the internal penetration of the flux cannot be further suppressed.
- the molten solder metal is in a state of being so-called ridden on the electrode (see the partial diagram (1)), and as a result, it is determined that the wet defect is poor.
- the solder melts at a relatively high temperature, in the case of an electrode in which the binder phase is composed of a thermoplastic resin, the penetration of the molten solder metal into the softened resin is further accelerated. It is thought that it is done.
- the molten solder metal spreads wet on the electrode, such repelling does not occur (see the partial view (2)), and the soldering is good.
- the present invention effectively suppresses the internal penetration of the molten solder metal and the flux, thereby improving the solder wettability, that is, the electrical and mechanical bondability and the electrical property formed by the electrode formed of the conductive paste and the solder metal.
- a novel conductive paste capable of forming an electrode having excellent conductivity on various substrates, a cured product obtained from the conductive paste, an electrode made of the cured product, an electronic component having the electrode, and the electronic component This greatly contributes to the provision of electronic devices.
- the present inventor has conducted earnest research on how to prevent flux and molten solder metal from reaching the deep part of the electrode in a conductive paste using a thermosetting resin (for example, phenol resin) as a binder.
- a thermosetting resin for example, phenol resin
- the coated particles having a specific shape can prevent the penetration of flux and / or molten solder metal in the vertical direction in a substantially horizontal direction and suppress excessive penetration.
- the present inventors lead to static and / or dynamic viscosity fluctuations and deterioration of workability as a whole conductive paste. I also learned that.
- One conductive paste of the present invention contains a conductive filler (A), a thermosetting phenol resin (B), an unsaturated fatty acid (C), and an organic solvent (D). More specifically, the conductive filler (A) of this conductive paste has copper or a copper alloy as a core, silver as a shell, the shell has a layer thickness of 0.02 ⁇ m or more, and an aspect ratio of 2 or more.
- the flat coated particles (a1) are contained in an amount of 0.1% by volume to 30% by volume.
- this conductive paste it is possible to prevent or suppress the flux and / or molten solder metal from reaching the deep part of the electrode.
- static and / or dynamic viscosity fluctuations as a whole of the conductive paste are suppressed, and good workability can be maintained.
- good workability handling of the paste at the time of screen printing and development of the paste on the mask plate are facilitated. Further, adhesion to the squeegee can be suppressed or prevented during screen printing transfer.
- the sphere-converted average primary particle diameter of the tabular coated particles (a1) is 0.1 ⁇ m or more and 50 ⁇ m or less, and the 99% cumulative particle size of the tabular coated particles (a1). It is a preferable embodiment that D99 is 100 ⁇ m or less.
- the conductive filler (A) described above further includes spherical coated particles (a2) having an aspect ratio of less than 2 having copper as a core and silver as a shell and / or a copper alloy as a core and silver. It is also another preferred embodiment to contain spherical coated particles (a3) having an aspect ratio of less than 2 in which A is a shell.
- the alloy atoms forming the copper alloy of the above-described spherical coated particles (a3) are nickel and / or zinc.
- the content of the alloy atoms forming the copper alloy of the above-described spherical coated particles (a3) is another preferable embodiment.
- thermosetting phenol resin (B) is a resol type phenol resin.
- the unsaturated fatty acid (C) is another unsaturated fatty acid having 6 to 20 carbon atoms.
- the above-described component (D) is a glycol ether and / or a terpenol.
- thermosetting phenol resin (B) when the conductive filler (A) is 100 parts by weight (in terms of solid content), the thermosetting phenol resin (B), the unsaturated fatty acid (C), and the Another preferred embodiment is that the content of the organic solvent (D) is as follows.
- organic solvent (D) 3 parts by weight or more 50 parts by weight or less
- a cured product obtained by heat-curing the above-described conductive paste, or an electrode made of the cured product is also a preferred embodiment.
- an electronic device in which an electronic component soldered with a solder paste is placed on the above-described cured product or the above-described electrode is also a preferable embodiment as a specific application example.
- solder powder used in the above-described solder paste is a tin-based lead-free solder powder.
- the term “tabular coated particle” is not limited to the meaning that a part of the particle surface necessarily has a flat surface.
- the particle is formed only by a curved surface when viewed microscopically, it can be said that the particle is substantially flat when viewed macroscopically, or a substantially flat line is seen in the cross section of the particle.
- the “spherical coated particle” is not limited to the meaning that the particle is a true spherical particle. For example, if the aspect ratio is less than 2, an elliptical shape in the cross section or an elliptical shape in which a substantially flat line can be seen in part is included in the “tabular coated particles” in the present application.
- the conductive paste of the present invention can prevent or suppress the penetration of flux and / or molten solder metal into the electrode. Therefore, according to the conductive paste of the present invention, an electrode having good electrical conductivity and excellent wettability of molten solder can be formed on various substrates.
- an electrode having good electrical conductivity and excellent wettability of molten solder can be formed on various substrates.
- a photograph (1) is an optical photograph showing a state in which wetting failure (repellency) occurs when the solder paste is melted with a conventional conductive paste (corresponding to Comparative Example 1).
- the photograph (2) is an optical photograph showing a state where the molten solder is wet and spread cleanly on the electrode made of the conductive paste of this embodiment (corresponding to Example 1).
- It is a schematic diagram of the primary particle of a flat covering particle
- FIG. FIG. 7 is an enlarged view of FIG. 6.
- FIG. 7 is an enlarged view of a particle group in which Kirkendall voids are generated in FIG. 6.
- FIG. 5 is a cross-sectional view of an electrode made of a conductive paste (corresponding to Example 17) using coated particles having a copper-nickel-zinc alloy core and silver shell as the component (a3) which is a conductive filler.
- the conductive paste of this embodiment includes a conductive filler (A) (hereinafter also referred to as (A) component) containing predetermined tabular coated particles (a1) (hereinafter also referred to as (a1) component), thermosetting.
- a1 predetermined tabular coated particles
- thermosetting thermosetting.
- -Based phenolic resin (B) hereinafter also referred to as component (B)
- component (C) unsaturated fatty acid
- component (D) organic solvent
- the component (A) of the present embodiment is a tabular coated particle (a1) in which copper or a copper alloy is used as a core, silver is used as a shell, the thickness of the shell is 0.02 ⁇ m or more, and the aspect ratio is 2 or more.
- component (a1)) is contained in an amount of 0.1% by volume to 30% by volume.
- an alloy atom which makes a copper alloy gold
- the (a1) component having a copper alloy as a core is less likely to cause the Kirkendall void phenomenon described later.
- FIG. 5 is a schematic diagram of the primary particles 100 of the tabular coated particles (a1).
- the component (a1) is coated particles having copper or a copper alloy as the core 10 and silver as the shell 20.
- This component (a1) has a shape in which, in the electrode obtained from the conductive paste of the present embodiment, a part or all of the (a1) component is substantially parallel (at least not perpendicular) to the plane direction of the substrate.
- the material constituting the core 10 may be copper itself or an alloy of copper and other metals (for example, gold, silver, tin, nickel, zinc, etc.).
- the alloy type is particularly preferably at least one selected from the group of nickel (Ni) and zinc (Zn).
- the aspect ratio (hereinafter also referred to as “AR”) of the component (a1) that is, the ratio (L / t) when the maximum length of the primary particles constituting the component (a1) is L and the thickness is t. Is called the aspect ratio.
- the above-described component (a1) is partially or entirely provided at a position substantially parallel to the planar direction of the base material.
- the diffusion and penetration of the solder alloy element (tin in the case of both figures) into the electrode formed using the conductive paste of this embodiment can be physically blocked, so that the molten solder metal on the electrode It becomes possible to prevent or suppress the poor wetting.
- the presence of the flat coated particles (a1) of the present embodiment prevents the flux and / or molten solder metal from penetrating in the vertical direction in a substantially horizontal direction and suppressing excessive penetration. It was confirmed that can be realized.
- the present inventor found that the introduction amount of the tabular coated particles (a1) that seemed to be useful is too large, on the contrary, the static and / or dynamic viscosity fluctuations and work of the entire conductive paste. It has also been found that it causes sexual deterioration.
- the conductive filler (A) contains tabular coated particles (a1) in the range of 0.1% by volume to 30% by volume. It has also been found that problems such as penetration of the flux or molten solder, viscosity stability of the conductive paste of the present embodiment, and workability during screen printing can be solved simultaneously.
- T s in Figure 5, (a1) in the component it is meant an average thickness of the shell made of silver, in consideration of the wettability of the electrical conductivity and solder metal conductive paste of the present embodiment Then, it is preferable that it is 0.02 micrometer or more, and it is more preferable that it is 0.05 micrometer or more and 5 micrometers or less. A more preferable average layer thickness of the shell is 0.1 ⁇ m or more and 1 ⁇ m or less.
- the shell having a layer thickness of less than 0.02 ⁇ m is replaced with the component (a1).
- T c in FIG. 5 means the thickness of the copper or copper alloy particles forming the core in the component (a1), and the value is not particularly limited. However, from the viewpoint of improving the printability, electrical conductivity, solder metal wettability, etc. of the conductive paste of this embodiment, it is preferably 0.1 ⁇ m or more and 10 ⁇ m or less, and is about 0.3 ⁇ m or more and about 5 ⁇ m or less. It is more preferable that In addition, a more preferable layer of copper or copper alloy particles is about 0.5 ⁇ m or more and about 3 ⁇ m or less.
- L in FIG. 5 means the maximum length of the primary particles constituting the component (a1), and t means the maximum thickness.
- L is preferably 0.2 ⁇ m or more, and more preferably about 0.2 ⁇ m or more and about 100 ⁇ m or less.
- more preferable L is about 2 ⁇ m or more and about 50 ⁇ m or less.
- t is preferably 0.1 ⁇ m or more, and more preferably about 0.1 ⁇ m or more and about 10 ⁇ m or less.
- more preferable t is about 0.9 ⁇ m ⁇ m or more and about 5 ⁇ m or less.
- Each value of the present embodiment L, t, t s, and t c is measured by the following method.
- a cured product made of the conductive paste of the present embodiment or an electrode obtained using the cured product is mechanically cut by some method.
- the cross section is observed and photographed with a scanning electron microscope (SEM).
- SEM scanning electron microscope
- the component (a1) has an aspect ratio of 2 or more.
- the aspect ratio of the component (a1) is preferably about 2 or more and about 100 or less, more preferably about 2.2 or more and about 20 or less.
- the aspect ratio of the representative component (a1) of the present embodiment can be obtained as follows.
- the cured product or electrode according to this embodiment is mechanically cut to obtain an SEM cross-sectional image of about 500 times (see FIG. 6).
- one tabular silver-coated particle (component (a1)) is specified.
- the aspect ratio (AR 1 ) of the certain one particle is obtained from L and t of the component (a1).
- the aspect ratio of the (a1) component is determined by determining the aspect ratio and the arithmetic average of at least 100 tabular coated grains in total in five or more different fields of view.
- the conductive paste of this embodiment includes the component (a1) having the predetermined aspect ratio described above. Therefore, as shown in FIG. 6 and FIG. 7, it becomes possible to physically block the diffusion and penetration of the molten solder metal (in the case of both figures, tin alloy exclusively) into the electrode made of the paste, The poor wetting of the molten solder metal on the electrode is improved.
- the content of the flat coated particles (a1) ((a1) component) in the conductive filler (A) (component (A)) is 0.1% by volume or more and 30% by volume or less.
- the viscosity stability over time of the conductive paste of this embodiment is improved, and the penetration of molten solder metal and / or flux into the electrode obtained from the conductive paste is effective. Will be suppressed.
- the content of the tabular coated particles (a1) in the conductive filler (A) is preferably 0.3% by volume or more and 30% by volume or less, and more preferably 0.5% by volume or more and 30% by volume or less. It is as follows.
- the particle diameter of the component (a1) is not particularly limited. However, in this embodiment, considering the viscosity of the conductive paste, the smoothness of the surface of the cured product (coating film) obtained from this, the sphere-converted average primary particle diameter is about 0.1 ⁇ m or more and about 50 ⁇ m or less. It is preferably 0.5 ⁇ m or more and 30 ⁇ m or less. In addition, a more preferable spherical equivalent average primary particle size is about 1.0 ⁇ m or more and about 20 ⁇ m or less. Further, the 99% cumulative particle diameter D99 of the component (a1) is preferably 100 ⁇ m or less, and more preferably 70 ⁇ m or less.
- a more preferable 99% cumulative particle diameter D99 is 50 ⁇ m or less.
- Each particle size can be determined using, for example, a laser diffraction / scattering particle size distribution analyzer (for example, Microtrac FRA 9220 manufactured by Lees & Northrup).
- (a1) component Although a commercial item may be used for (a1) component, it can manufacture by various well-known methods, such as an atomizing method and a plating method. In the case of the latter method, for example, it can be obtained by performing the following (X) and (Y).
- (X) Raw copper powder or raw copper alloy powder such as electrolytic copper powder or electrolytic copper alloy powder, reduced copper powder or reduced copper alloy powder, and atomized copper powder or atomized copper alloy powder, the primary particles of which are the thickness t c Is flattened by various devices so as to obtain a flat plate shape.
- (Y) After (X), the obtained tabular particles are silver-plated by an electrolytic plating method or an electroless plating method.
- the plating method not only the oxide film existing on the surface of the spherical copper powder or copper alloy powder as a raw material can be removed during the plating process, but also the surface is covered with silver relatively uniformly and uniformly. it can. As a result, it is possible to obtain coated particles with less copper exposure.
- the component (A) includes, as necessary, spherical coated particles (a2) (hereinafter also referred to as the component (a2)) and / or a copper alloy having an aspect ratio of less than 2 with copper as a core and silver as a shell.
- spherical coated particles (a3) hereinafter also referred to as component (a3)
- component (a3) having an aspect ratio of less than 2 and having a core as silver and a shell is another preferred embodiment that can be employed.
- the aspect ratio of the component (a2) and the component (a3) is preferably about 1 or more and about 1.8 or less, and more preferably about 1 or more and about 1.5 or less.
- the aspect ratio can be obtained by the same method as that for the component (a1).
- the content of the alloy atoms forming the copper alloy of the component (a3) is not particularly limited, but for the purpose of ensuring the electrical conductivity of the conductive paste of the present embodiment, the content of the alloy atoms is 30 atomic% or less. It is preferable that it is 20 atomic% or less. A more preferable alloy atom content is 15 atomic% or less.
- the core particles constituting the component (a3) are preferably one type selected from the group consisting of copper-nickel alloy particles, copper-zinc nickel alloy particles, and copper-nickel-zinc alloy particles. Therefore, the selection of nickel and / or zinc as the alloy atoms is preferable from the viewpoint of enhancing the corrosion resistance of the core particles and suppressing the deterioration of conductivity due to alloying.
- the content of the alloy atoms constituting the copper alloy of the component (a3) is not particularly limited.
- the content of alloy atoms forming the copper alloy of the spherical coated particles (a3) is 30 atomic% or less, which is preferable from the viewpoint of functioning as an electrical joining member and obtaining good conductivity with higher accuracy. It is another one aspect
- the weight ratio of each atom in the copper-nickel alloy particles which is an example of the component (a3), is not particularly limited. However, adopting a range in which copper: nickel is about 99: about 1 to about 85: about 15 means that the conductivity of the conductive paste of the present invention, the viscosity stability of the paste, and the Kirkendal described later This is preferable from the viewpoint of suppressing voids. Further, the weight ratio of each atom in the copper-zinc alloy particles, which is an example of the component (a3), is not particularly limited. However, it is preferable to adopt a range in which copper: zinc is about 99: about 1 to about 70:30 about from the viewpoints of conductivity, viscosity stability, and void suppression, like nickel.
- the weight ratio of each atom in the copper-nickel-zinc alloy particles which is an example of the component (a3), is not particularly limited. However, it is preferable from the viewpoint of conductivity, viscosity stability, and void suppression that copper: (nickel and zinc) is in a range of about 99: about 1 to about 70:30.
- the content of the component (a2) and / or the component (a3) in the component (A) is not particularly limited.
- solder wettability and electrical conductivity of an electrode obtained from the conductive paste, workability during screen printing, and the like about 70% by volume or more and about 99.9%.
- the volume is preferably not more than volume%, more preferably not less than about 80 volume% and not more than about 99.5 volume%. Further, a more preferable range is from about 90% by volume to about 99% by volume.
- the layer thickness of the shell made of silver in each of the components (a2) and (a3) is not particularly limited. However, from the viewpoint of viscosity stability of the conductive paste of the present embodiment, solder wettability and electrical conductivity of an electrode obtained from the conductive paste, workability at the time of screen printing, etc., about 0.02 ⁇ m or more and about 5 ⁇ m or less. It is preferably about 0.05 ⁇ m or more and about 3 ⁇ m or less. Further, a more preferable range is from about 0.1 ⁇ m to about 1 ⁇ m. Such a layer thickness can be determined by the same method as that for the component (a1).
- the layer thickness (diameter) of the core of the component (a2) and the layer thickness (diameter) of the core of the component (a3) are not particularly limited. However, in consideration of the electrical conductivity of the conductive paste of the present embodiment and the wettability of the molten solder metal with respect to the electrode made of the paste, it is preferable that both be about 0.1 ⁇ m or more and about 20 ⁇ m or less. More preferably, it is 3 ⁇ m or more and about 15 ⁇ m or less.
- the component (a2) is silver-coated particles having copper as core particles. And so-called Kirkendall voids may occur at the silver-copper interface.
- Kirkendall void is generally due to the difference between the diffusion coefficient of the former and the latter in the diffusion pair where a metal and another metal are in contact. The phenomenon that voids are generated at the contact interface.
- the component (a3) since the core particles are a copper alloy, Kirkendall voids hardly occur at the core-shell interface. Further, when the component (a3) is used, there is an advantage that the wettability of the molten solder metal with respect to the electrode made of the conductive paste of this embodiment is increased.
- FIG. 9 is an enlarged micrograph of a cross section of an electrode made of a conductive paste using the component (a3) having copper-nickel-zinc alloy particles as a core. As shown in FIG. 9, it can be confirmed that almost no Kirkendall void is observed at the core-shell interface.
- the volume ratio of (a2) component and (a3) component is not specifically limited. However, in this embodiment, it is preferably about 1: about 9 to about 9: about 1, more preferably about 2: about 8 to about 8: about 2. A more preferred range is from about 3: about 7 to about 7: about 3.
- the component (A) may further contain a conductive filler other than the components (a1) to (a3) (hereinafter referred to as the component (a4)) as necessary.
- a conductive filler other than the components (a1) to (a3) (hereinafter referred to as the component (a4)) as necessary.
- the content of the component (a4) in the component (A) is not particularly limited.
- the component (a1) and the component (a2) and / or the component (a3) are 100% by volume, it is possible to adopt a range of 0% by volume to about 30% by volume. It is preferable from the viewpoint of improving the wettability of the solder metal to the electrode made of the conductive paste, the conductivity of the conductive paste of the present embodiment, the corrosion resistance of the component (A), and the like.
- the component (B) is used for the purpose of suppressing diffusion and penetration of molten solder and liquefied flux into the electrode while fixing the component (A) in the electrode obtained from the conductive paste of the present embodiment.
- various known thermosetting phenol resins such as novolac type phenol resins and resol type phenol resins, can be used without particular limitation.
- the thermosetting phenolic resin (B) is a resol type phenolic resin, which suppresses corrosion of the component (A) and can form a cured product according to the present invention at a relatively low temperature. Is preferable from the viewpoint of improving the adhesion between the cured product and the substrate.
- phenols used as a raw material there can be mentioned coalic acid, cresol, amylphenol, bisphenol A, butylphenol, octylphenol, nonylphenol, dodecylphenol, and the like.
- formaldehydes include formalin and paraformaldehyde.
- thermosetting binder resin (hereinafter referred to as “component (B ′)”) may be used in combination with the component (B).
- component (B ′) is a thermosetting epoxy resin, a melamine resin, a polyamideimide resin, a polyimide resin, or the like.
- the component (C) various known unsaturated fatty acids, for example, unsaturated fatty acids such as ⁇ -3, ⁇ -6, ⁇ -9 and the like can be mentioned. Specific examples include stearic acid, sorbic acid, oleic acid, linoleic acid, hiragoic acid, eleostearic acid, punicic acid, linolenic acid, moloctic acid, arachidonic acid, and the like.
- the number of carbon atoms of the unsaturated fatty acid (C) is preferably from about 6 to about 20; 16 to 20 unsaturated fatty acids are preferred.
- at least one selected from the group consisting of oleic acid, linoleic acid and linolenic acid is particularly preferable.
- the reason why the wettability is improved by using the component (C) is not clear.
- the unsaturated bond acts on the component (B), and the hardness of the continuous phase composed of the component (B) is increased.
- the liquefied flux into the electrode is reduced. This may be because diffusion and penetration can be suppressed.
- component (D) examples include aliphatic alcohols such as ethanol, n-propanol, isopropanol, and isobutanol; terpenols such as terpionol; diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, diethylene glycol monoethyl ether acetate, Glycol ethers such as diethylene glycol monobutyl ether acetate, butyl carbitol and hexyl carbitol; esters such as isopropyl acetate, ethyl propionate, butyl benzoate and diethyl adipate; hydrocarbons such as n-hexane, dodecane and tetradecene Is mentioned.
- aliphatic alcohols such as ethanol, n-propanol, isopropanol, and isobutanol
- terpenols such as terpionol
- terpenols are considered to dissolve a high molecular weight resin produced by the reaction between the component (B) and the component (C), they are effective in suppressing the thickening of the conductive paste according to this embodiment.
- the content of the component (A) in the conductive paste of the present embodiment is not particularly limited, but considering the electrical conductivity and adhesion to the substrate, the component (D) When the whole paste is taken as one volume fraction, it is preferably about 0.3 or more and about 0.7 or less, more preferably about 0.4 or more and about 0.65 or less. A more preferable range is about 0.45 or more and about 0.6 or less.
- the content of the component (B) and the component (C) in the conductive paste of the present embodiment is not particularly limited.
- the whole paste excluding the component (D) when the whole paste excluding the component (D) is defined as one volume fraction, it may be about 0.7 or more and about 0.3 or less.
- it is about 0.65 or more and about 0.4 or less.
- a more preferable range is about 0.6 or more and about 0.45 or less.
- the content of the component (A) to the component (D) in the conductive paste of the present embodiment is not particularly limited. However, in order to obtain the effect of the present embodiment to a preferable level, the component (A) is usually added in an amount of 100% by weight.
- Parts (B), (C) component, and (D) component content is as follows, the viscosity stability and printability of the paste, and the paste This is preferable from the viewpoint of the conductivity of the cured product.
- Component (B) about 3 to about 30 parts by weight, preferably about 5 to about 20 parts by weight
- Component (C) Component: about 0.01 to about 5 parts by weight, preferably about 0 0.03 to about 2.5 parts by weight
- Component (D) about 3 to about 50 parts by weight, preferably about 5 to about 30 parts by weight
- the curing accelerator (excluding the component corresponding to the component (C)), a thixotropic agent, a flame retardant, a viscosity modifier, Additives such as leveling agents, antioxidants, plasticizers, activators, and coupling agents can be blended.
- the coupling agent can be used for the purpose of improving the adhesion between the conductive paste of this embodiment and the substrate.
- the coupling agent include a silane coupling agent, a titanium coupling agent, a zirconium coupling agent, an aluminum coupling agent, and a chromium coupling.
- the conductive paste of the present embodiment can be obtained by kneading and mixing the above components with a known apparatus such as a rotary stirrer, a planetary kneader, or a three roll.
- a known apparatus such as a rotary stirrer, a planetary kneader, or a three roll.
- the viscosity of the paste obtained is not specifically limited. However, it is preferable that a range in which the value at 10 rpm (25 ° C.) by the Brookfield viscometer is about 0.1 Pa ⁇ s to about 300 Pa ⁇ s is adopted.
- the cured product of the present embodiment is obtained by applying the conductive paste of the present embodiment to various base materials and volatilizing the component (D) under heating.
- the heating conditions are not particularly limited. However, the heating temperature is preferably from about 130 to about 200 ° C., and the heating time is preferably from about 0.2 hours to about 2 hours.
- the type of base material is not particularly limited. Since the conductive paste of the present embodiment is of a non-sintered type, not only can a ceramic substrate be used as a base material as an electrode for a ceramic electronic component such as a chip capacitor, but also a base material such as glass or a glass epoxy resin The conductive paste of this embodiment can also be applied to resin base materials such as polyamide resin, polyimide resin, and polyester resin.
- the coating method is not particularly limited. Various coating means such as screen printing and dispenser can be employed depending on the use of the conductive paste of the present embodiment, its viscosity, and the like. Note that the conductive paste of this embodiment can be thickened by recoating.
- the shape of the cured product obtained from the conductive paste of the present embodiment is not particularly limited.
- the cured product may be planar (circular, polygonal, etc.) or linear.
- Examples of the linear cured product include a wiring circuit formed linearly on a printed wiring board.
- the conductive paste of the above-described embodiment is useful mainly as an electrode applied directly to an electronic component.
- various electronic components soldered with a solder paste are placed on the above-described cured product or the above-described electrode.
- solder metal, lead-containing solder, and lead-free solder used in the solder paste may be used.
- lead-free solder include Sn—Pb (Sn-35Pb, etc.), Sn—Ag (Sn—3.5Ag, etc.), Sn—Cu (Sn—0.7Cu, etc.), Sn—Ag—Cu.
- Lead powder of the system [Sn-3Ag-0.5Cu etc.] can be used. That is, it is a preferred embodiment from the viewpoint of environmental protection that the solder powder used for the solder paste is a tin-based lead-free solder powder. Note that these solder powders may contain metal elements such as In, Bi, and Ge. ⁇ Example>
- Table 1 is a list of conditions for the following examples and comparative examples.
- component (A) was prepared by mixing 20% by volume of component (a1) below and 80% by volume of component (a2).
- Component (a1) Commercially available tabular silver-coated copper powder (trade name “HP0420M1”, manufactured by Kisei Metals, silver shell layer thickness of about 0.28 ⁇ m, sphere-converted average primary particle size of about 8 ⁇ m, 99% cumulative particle size of about D99 40 ⁇ m)
- Component (a2) Spherical silver-coated copper powder (trade name “1400Y”, manufactured by Mitsui Mining & Smelting Co., Ltd .; sphere equivalent average primary particle size of about 6 ⁇ m, 99% cumulative particle size D99 of about 12 ⁇ m)
- component (A) 85 parts (of which 17 parts of (a1) component and 68 parts of (a2) component) are included as the component (A), and a commercially available resol type phenol resin (trade name “BRL-275”, Molecules Co., Ltd.)) 8.91 parts, (C) component oleic acid (Wako Pure Chemical Industries, Ltd.) 0.09 parts, and (D) component diethylene glycol monoethyl ether acetate (hereinafter referred to as “C” component) , DEGA) was mixed well in a planetary kneader. Then, the electrically conductive paste was prepared by knead
- Example 2 A conductive paste was prepared in the same manner as in Example 1 except that linoleic acid was used instead of oleic acid in Example 1.
- Example 3 A conductive paste was prepared in the same manner as in Example 1 except that linolenic acid was used in place of oleic acid in Example 1.
- Example 4 In Example 1, as the component (a1), the thickness of the shell relative to the core is 0.15 ⁇ m, the sphere-converted average primary particle diameter is about 8 ⁇ m, and the 99% cumulative particle diameter D99 is about 40 ⁇ m.
- a conductive paste was prepared in the same manner as in Example 1 except that the particles were used.
- Example 5 In Example 1, as the component (a1), a plate-like silver coating having a shell thickness with respect to the core of 0.5 ⁇ m, a sphere-converted average primary particle size of about 9 ⁇ m, and a 99% cumulative particle size D99 of about 41 ⁇ m A conductive paste was prepared in the same manner as in Example 1 except that copper particles were used.
- Example 6 In Example 1, as the component (a1), a plate-like silver coating having a shell thickness with respect to the core of 0.75 ⁇ m, a sphere-converted average primary particle size of about 9 ⁇ m, and a 99% cumulative particle size D99 of about 41 ⁇ m A conductive paste was prepared in the same manner as in Example 1 except that copper particles were used.
- Examples 7-8 A conductive paste was prepared in the same manner as in Example 1 except that the number of parts (B) and (C) was changed as shown in Table 1 in Example 1.
- Example 9 In Example 1, as the component (a1), the thickness of the shell relative to the core is 0.02 ⁇ m, the spherical particle system is 7 ⁇ m, and the tabular grains having D99 of 40 ⁇ m are 25 parts. A conductive paste was prepared in the same manner except that 60 parts of “1400Y” was used.
- Examples 10-12 A conductive paste was prepared in the same manner as in Example 1, except that the component (A) used in Example 1 was changed to that shown in Table 1.
- Example 13 In Example 1, the following component (a1) is 10% by volume, and component (a3) is 90% by volume.
- (A) component was prepared by mixing so that it might become.
- Component (a1) Commercially available flat silver-coated copper powder (trade name “HP0420M1”)
- Component (a3) Spherical silver-coated particles having a copper-nickel alloy core (shell layer thickness of about 0.12 ⁇ m, content of nickel in the copper alloy is 14 atomic%, sphere-converted average primary particle size of about 2 ⁇ m, (99% cumulative particle size D99 approx.
- Example 14 In Example 13, spherical silver-coated particles having a copper-nickel alloy core as the component (a3) (shell layer thickness of about 0.12 ⁇ m, nickel content in the copper alloy of 6 atomic%, sphere-converted average primary A conductive paste was prepared in the same manner as in Example 13 except that the particle size was about 2 ⁇ m and the 99% cumulative particle size D99 was about 8 ⁇ m.
- Example 15 spherical silver-coated particles having a copper-nickel alloy core as the component (a3) (shell layer thickness of about 0.12 ⁇ m, nickel content in the copper alloy is 1.3 atomic%, sphere equivalent)
- a conductive paste was prepared in the same manner as in Example 13, except that the average primary particle size was about 2 ⁇ m and the 99% cumulative particle size D99 was about 8 ⁇ m.
- Example 16 In Example 13, spherical silver-coated particles having a copper-zinc alloy core as the component (a3) (shell layer thickness of about 0.12 ⁇ m, zinc content in the copper alloy is 5.3 atomic%, sphere equivalent) A conductive paste was prepared in the same manner as in Example 13 except that the average primary particle size was about 2 ⁇ m and the 99% cumulative particle size D99 was about 10 ⁇ m.
- Example 17 In Example 13, spherical silver-coated particles having a copper-nickel-zinc alloy core as the component (a3) (shell layer thickness of about 0.12 ⁇ m, and the contents of nickel and zinc in the copper alloy were 7.7 respectively) A conductive paste was prepared in the same manner as in Example 13 except that atomic percent, 6.9 atomic percent, sphere-converted average primary particle size of about 3 ⁇ m, and 99% cumulative particle size D99 of about 9 ⁇ m were used.
- Example 20 The component (a3) shown in Example 13 was employed, and as the component (a4), commercially available silver particles (trade name: AGC-239, manufactured by Fukuda Metal Foil Powder Co., Ltd., average primary particle size: about 8 ⁇ m, D99: 40 ⁇ m) was added, and the conductive paste was prepared in the same manner as in Example 13 except that the ratio was adjusted to the ratio shown in Table 1.
- AGC-239 commercially available silver particles
- Example 21 The component (a3) shown in Example 13 was employed, the above-mentioned “AGC-239” was added as the component (a4), and 6 parts of DEGA and 2 parts of terpionol were added as the component (D), and the results are shown in Table 1.
- a conductive paste was prepared in the same manner as in Example 13 except that the ratio was adjusted.
- Example 1 instead of both the component (a1) and the component (a2), commercially available silver particles (trade name: AGC-239, manufactured by Fukuda Metal Foil Powder Co., Ltd., average primary particle size of about 8 ⁇ m, D99) About 40 ⁇ m A conductive paste was prepared in the same manner as in Example 1 except that (shown as component (a4) in Table 1) was used.
- AGC-239 manufactured by Fukuda Metal Foil Powder Co., Ltd., average primary particle size of about 8 ⁇ m, D99
- a conductive paste was prepared in the same manner as in Example 1 except that (shown as component (a4) in Table 1) was used.
- Example 2 the electrically conductive paste was prepared like Example 1 except having changed the quantity of (B) component into 9 parts and not using (C) component.
- Example 3 In Example 1, instead of the component (a1), commercially available tabular silver-coated copper particles having a silver shell layer thickness of 0.009 ⁇ m (sphere-converted average primary particle diameter of about 8 ⁇ m, D99 of about 40 ⁇ m) were used. Prepared a conductive paste in the same manner as in Example 1.
- Example 4 In Example 1, it replaced with the resol type phenol resin which is (B) component, and replaced with the commercially available epoxy resin (Brand name "jER828", Mitsubishi Resin Co., Ltd. product). A conductive paste was prepared.
- Example 1 was the same as Example 1 except that the amounts used of component (a1), component (a2), component (B), component (C) and component (D) were changed as shown in Table 1.
- a conductive paste was prepared.
- Example 8 In Example 1, 85 parts of component (A) (of which 0.05 part of component (a1) and 84.95 parts of component (a2)) and 50.9 parts of “BRL-275” as component (B) Then, 0.09 part of oleic acid as component (C) and 6 parts of DEGA as component (D) were mixed well in a planetary kneader. Then, the electrically conductive paste was prepared by knead
- Thickening rate [(viscosity at 10 rpm after incubation at 25 ° C. for 168 hours ⁇ viscosity at 10 rpm immediately after preparation of the conductive paste) ⁇ (viscosity at 10 rpm immediately after preparation of the conductive paste)] ⁇ 100
- the above-mentioned heat retention conditions are intended for a temperature acceleration test, and the thickening rate in this test generally reproduces the thickening rate after storage for about 6 months in an environment of 0 ° C or higher and 10 ° C or lower. It is thought that. Moreover, the thickening rate was evaluated based on the following indicators. ⁇ (Very good): Thickening rate is less than 20%. ⁇ (Good): Thickening rate is 20% or more and 50% or less. ⁇ (Poor): Thickening rate is over 50%. It is worthy of special mention that the conductive paste of Example 21 contained was confirmed to be extremely excellent in viscosity stability.
- a Sn-3Ag-0.5Cu alloy solder paste (trade name “VAPY LF219”, manufactured by Arakawa Chemical Industries, Ltd.) was placed on the electrode formed of the conductive paste according to Example 1 at a center of 6.5 mm. Printing was performed using a metal stencil mask with a hole (length 25 ⁇ width 20 ⁇ thickness 0.2 mm). Next, the solder was preheated at 150 ° C. for 90 seconds in the air, and further heated at 240 ° C. to completely melt the solder, and then naturally cooled.
- the conductive paste of the above-described embodiment and each example is mainly useful as an electrode for an electronic component or a wiring for a printed wiring board.
- the present invention can be applied to various uses of baking type and non-baking type conductive pastes.
- the conductive paste of this embodiment can be applied to a capacitor external electrode, a solar cell conductive circuit, an ITO glass electrode, a TO glass electrode, a soldered conductive portion of a printed circuit, and the like.
- a cured product, an electronic component, or an electronic device provided with the conductive paste of each of the above-described embodiments can be applied to a wide range of uses, like the conductive paste of each of the above-described embodiments.
Landscapes
- Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Conductive Materials (AREA)
- Powder Metallurgy (AREA)
- Non-Insulated Conductors (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
This conductive paste comprises a conductive filler (A), a thermosetting phenolic resin (B), an unsaturated fatty acid (C), and an organic solvent (D). More specifically, the conductive filler (A) of the conductive paste has copper or a copper alloy as a core and silver as a shell. The thickness of the shell is 0.02 µm or more. Flat-plate-shaped coated particles (a1) having an aspect ratio of 2 or more are included at 0.1-30 vol%.
Description
本発明は、導電ペースト、該導電ペーストより得られる硬化物、該硬化物からなる電極、及び電子デバイスに関する。
The present invention relates to a conductive paste, a cured product obtained from the conductive paste, an electrode made of the cured product, and an electronic device.
導電ペーストとは、一般的に、銀(Ag)や銅(Cu)、ニッケル(Ni)、スズ(Sn)、アルミニウム(Al)、カーボンブラック等の粒子状の導電性フィラーと、フェノール樹脂やエポキシ樹脂等の熱硬化性バインダー樹脂とを有機溶剤に配合してなる電気伝導性の組成物をいう。そして導電ペーストは、スクリーン印刷等により様々な形状の電極を容易かつ微細に形成できることから、種々の電子デバイスやエレクトロニクス製品において利用されている。
In general, the conductive paste is a particulate conductive filler such as silver (Ag), copper (Cu), nickel (Ni), tin (Sn), aluminum (Al), or carbon black, and a phenol resin or epoxy. An electrically conductive composition obtained by blending a thermosetting binder resin such as a resin with an organic solvent. The conductive paste is used in various electronic devices and electronic products because electrodes of various shapes can be easily and finely formed by screen printing or the like.
従来、電気伝導性に優れる導電性フィラーとしては、銅と銀が用いられてきた。しかしながら、銅は価格も安く汎用的である反面酸化されやすく、導電ペーストの電気伝導性を不安定にする問題がある。一方、銀は酸化されてもそのような問題をあまり生じないが、高価である。従って、一般的には、斯界では銀粒子と共に、又はこれに代えて、銅粒子を銀で被覆した複合化粒子が使用されることがある。
Conventionally, copper and silver have been used as conductive fillers having excellent electrical conductivity. However, copper is inexpensive and general-purpose, but is easily oxidized, and there is a problem of destabilizing the electrical conductivity of the conductive paste. On the other hand, silver is not expensive, but it is expensive. Therefore, in general, composite particles in which copper particles are coated with silver may be used together with or instead of silver particles in this field.
ところが、そうした複合化粒子を導電性フィラーとして用いた導電ペーストで電極を形成し、その上で電子部品をハンダ付しようとした場合、溶融はんだ金属の濡れ不良が生じる場合がある。この問題は、特に、スズ-銀-銅等の鉛フリーハンダ粉末を用いたソルダペーストにおいて顕著である。その理由は様々であるが、その原因の1つは、溶融ハンダ中のスズと電極中の複合化粒子とが反応して合金を形成し、ハンダ金属-電極間の界面エネルギーが高まる結果、溶融ハンダ金属が濡れ広がらなくなるためであると考えられている。
However, when an electrode is formed with a conductive paste using such composite particles as a conductive filler and an electronic component is to be soldered thereon, defective wetting of the molten solder metal may occur. This problem is particularly noticeable in solder paste using lead-free solder powder such as tin-silver-copper. There are various reasons for this, but one of the reasons is that the tin in the molten solder and the composite particles in the electrode react to form an alloy, resulting in an increase in the interfacial energy between the solder metal and the electrode. This is thought to be because the solder metal does not spread out.
銀粒子や上述の複合化粒子を用いた導電ペーストにおけるハンダの濡れ不良を解消する方法として、特許文献1に記載のように、バインダー樹脂としての熱可塑性樹脂と、ガラス転移温度が60~100℃程度の飽和ポリエステルとを用いることが知られている。
As a method for eliminating solder wettability in a conductive paste using silver particles or the above composite particles, as described in Patent Document 1, a thermoplastic resin as a binder resin and a glass transition temperature of 60 to 100 ° C. It is known to use a degree of saturated polyester.
しかし、以下に示す新たな着眼点に基づく本発明者の詳細な分析と検討により、熱可塑性樹脂をバインダーとする導電ペーストによっては濡れ不足が十分に解消されないことを本発明者は知見した。
However, the present inventors have found that the lack of wetting is not sufficiently solved by the conductive paste using a thermoplastic resin as a binder, based on the detailed analysis and examination by the present inventors based on the following new viewpoints.
まず、導電ペーストより得られる電極の内部は、相互に接触する形で独立して存在する導電フィラーの相と、その空隙を満たすバインダー樹脂からなる実質的な連続相とから構成される。
First, the inside of the electrode obtained from the conductive paste is composed of a phase of a conductive filler that exists independently in contact with each other and a substantially continuous phase made of a binder resin that fills the voids.
そして、図1は、ガラス基材の上に従来の導電ペースト(後述する比較例1に相当)を塗布し、硬化させた電極の上で、更にハンダペーストを溶融させたときの走査型電子顕微鏡(SEM)による断面像である。図1に示すように、溶融後のハンダ合金(白ヌキ部)を覆うようにフラックスが広がっている様子が確認できる。より具体的には、従来の導電ペーストからなる電極の上でソルダペーストを溶融させると、ハンダ金属を覆うように滲み出た液状のフラックスが電極内部へと浸透していき、バインダー樹脂と相溶する態様で取り込まれる。
FIG. 1 shows a scanning electron microscope when a conventional conductive paste (corresponding to Comparative Example 1 to be described later) is applied on a glass substrate and the solder paste is further melted on the cured electrode. It is a cross-sectional image by (SEM). As shown in FIG. 1, it can be confirmed that the flux spreads so as to cover the solder alloy (white portion) after melting. More specifically, when the solder paste is melted on an electrode made of a conventional conductive paste, the liquid flux that has exuded so as to cover the solder metal penetrates into the electrode and is compatible with the binder resin. Is incorporated in a manner to
ところが、ソルダペーストを構成するフラックスが電極内部に過度に取り込まれると、本来、表面にあってソルダペースト中のハンダ金属の表面酸化を抑制するはずの活性剤が減ってしまう、即ち、ハンダ金属の周縁領域から流失することとなるため、溶融ハンダ金属の濡れ不足が生じ得る。
However, if the flux constituting the solder paste is excessively taken into the inside of the electrode, the activator that is originally on the surface and should suppress the surface oxidation of the solder metal in the solder paste is reduced. Since it will be washed away from the peripheral area, the molten solder metal may be insufficiently wet.
図2は、従来の導電ペーストより得られる電極のSEM断面図である。図2に示すように、フラックスがバインダー樹脂相に取り込まれた結果、フラックスが独立した相を形成していることがわかる。このバインダー樹脂相は加熱によって硬化する熱硬化性フェノール樹脂から形成されているが、バインダー樹脂相が強固で硬い相であるにもかかわらず、フラックスの浸透を防ぎきれてない。この結果は、例えば、ポリエステル樹脂のように熱によって軟化する熱可塑性樹脂をバインダー樹脂として用いた場合には、フラックスの内部浸透をなおさら抑制できないことを示している。
FIG. 2 is an SEM cross-sectional view of an electrode obtained from a conventional conductive paste. As shown in FIG. 2, as a result of the flux being taken into the binder resin phase, it can be seen that the flux forms an independent phase. The binder resin phase is formed from a thermosetting phenol resin that is cured by heating, but the penetration of the flux cannot be prevented even though the binder resin phase is a strong and hard phase. This result indicates that, for example, when a thermoplastic resin that is softened by heat, such as a polyester resin, is used as the binder resin, the internal penetration of the flux cannot be further suppressed.
一方、図3のSEM断面図で示されるように、従来の導電ペーストより得られる電極の上でソルダペーストを溶融させると、溶融したハンダ金属も電極内部へと浸透する。ただし、ある程度の浸透はハンダ接合部の強度を確保する上で必要不可欠なのであるが、あまりに深部へと溶融ハンダ金属が到達してしまうと、そのぶん、電極上の溶融ハンダの量が減少してしまう。
On the other hand, as shown in the SEM sectional view of FIG. 3, when the solder paste is melted on the electrode obtained from the conventional conductive paste, the molten solder metal also penetrates into the electrode. However, a certain amount of penetration is essential to ensure the strength of the solder joint, but if the molten solder metal reaches too deep, the amount of molten solder on the electrode will probably decrease. End up.
そうすると、図4で示すように、電極上で溶融ハンダ金属が謂わばハジかれたような状態となり(部分図(1)を参照。)、結果的に濡れ不良と判定される。このとき、ハンダが溶融するのは比較的高温時であるから、バインダー相が熱可塑性樹脂より構成される電極の場合には、軟化した樹脂内部への、溶融したハンダ金属の浸透が、いっそう加速されると考えられる。一方、電極上で溶融ハンダ金属が濡れ広がる場合には、そうしたハジキが生じず(部分図(2)を参照。)、ハンダ付けは良好とされる。
Then, as shown in FIG. 4, the molten solder metal is in a state of being so-called ridden on the electrode (see the partial diagram (1)), and as a result, it is determined that the wet defect is poor. At this time, since the solder melts at a relatively high temperature, in the case of an electrode in which the binder phase is composed of a thermoplastic resin, the penetration of the molten solder metal into the softened resin is further accelerated. It is thought that it is done. On the other hand, when the molten solder metal spreads wet on the electrode, such repelling does not occur (see the partial view (2)), and the soldering is good.
本発明は、溶融ハンダ金属とフラックスの内部浸透を効果的に抑制することにより、ハンダ濡れ性、すなわち導電ペーストにより形成される電極およびハンダ金属によって形成される電気的、機械的な接合性と電気伝導性とに優れる電極を各種基材の上に形成できる、新規な導電ペースト、該導電ペーストより得られる硬化物、該硬化物からなる電極、該電極を有する電子部品、及び該電子部品を備えた電子デバイスの提供に大きく貢献するものである。
The present invention effectively suppresses the internal penetration of the molten solder metal and the flux, thereby improving the solder wettability, that is, the electrical and mechanical bondability and the electrical property formed by the electrode formed of the conductive paste and the solder metal. A novel conductive paste capable of forming an electrode having excellent conductivity on various substrates, a cured product obtained from the conductive paste, an electrode made of the cured product, an electronic component having the electrode, and the electronic component This greatly contributes to the provision of electronic devices.
本発明者は、熱硬化性樹脂(例えば、フェノール樹脂)をバインダーとする導電ペーストにおいて、如何にして電極深部にフラックスや溶融ハンダ金属を到達させないようにするかについて鋭意研究に取り組んだ。その結果、特定形状の被覆粒子が、フラックス及び/又は溶融ハンダ金属の垂直方向への浸透を略水平方向に回避させ、過剰な浸透を抑制することを実現し得ることを見出した。また、本発明者は、一見有益に見えるその特定形状の被覆粒子の導入量が多すぎると、かえって、導電ペースト全体としての静的及び/又は動的な粘度の変動や作業性の悪化をもたらすことも同時に知見した。本発明者がさらに分析と検討を重ねた結果、その特定形状の被覆粒子を適度な範囲の量だけ加えることが、上述の各問題の解決に寄与することを知見した。また、特定の添加剤を採用することも、上述の各問題の解決に寄与することを知見した。
The present inventor has conducted earnest research on how to prevent flux and molten solder metal from reaching the deep part of the electrode in a conductive paste using a thermosetting resin (for example, phenol resin) as a binder. As a result, it has been found that the coated particles having a specific shape can prevent the penetration of flux and / or molten solder metal in the vertical direction in a substantially horizontal direction and suppress excessive penetration. In addition, when the amount of the coated particles of the specific shape that seem to be useful at first glance is too large, the present inventors, on the contrary, lead to static and / or dynamic viscosity fluctuations and deterioration of workability as a whole conductive paste. I also learned that. As a result of further analysis and examination by the present inventors, it has been found that the addition of coated particles having a specific shape in an appropriate range contributes to the solution of the above problems. It has also been found that adopting specific additives also contributes to solving the above problems.
本発明の1つの導電ペーストは、導電性フィラー(A)と、熱硬化性フェノール樹脂(B)と、不飽和脂肪酸(C)と、有機溶剤(D)と、を含有している。より具体的には、この導電ペーストの導電性フィラー(A)は、銅又は銅合金をコアとし、銀をシェルとし、該シェルの層厚が0.02μm以上であり、かつアスペクト比が2以上である平板状被覆粒子(a1)を、0.1体積%以上30体積%以下含んでいる。
One conductive paste of the present invention contains a conductive filler (A), a thermosetting phenol resin (B), an unsaturated fatty acid (C), and an organic solvent (D). More specifically, the conductive filler (A) of this conductive paste has copper or a copper alloy as a core, silver as a shell, the shell has a layer thickness of 0.02 μm or more, and an aspect ratio of 2 or more. The flat coated particles (a1) are contained in an amount of 0.1% by volume to 30% by volume.
この導電ペーストによれば、電極深部へのフラックス及び/又は溶融ハンダ金属の到達を防止又は抑制することができる。加えて、この導電ペーストによれば、導電ペースト全体としての静的及び/又は動的な粘度の変動が抑制されるとともに、良好な作業性を維持することができる。なお、良好な作業性の具体的な一例として、スクリーン印刷の際のペーストの取扱いや、マスク版上へのペーストの展開が容易になる。さらに、スクリーン印刷の転写時においてスキージへの付着が抑制又は防止され得る。
According to this conductive paste, it is possible to prevent or suppress the flux and / or molten solder metal from reaching the deep part of the electrode. In addition, according to this conductive paste, static and / or dynamic viscosity fluctuations as a whole of the conductive paste are suppressed, and good workability can be maintained. As a specific example of good workability, handling of the paste at the time of screen printing and development of the paste on the mask plate are facilitated. Further, adhesion to the squeegee can be suppressed or prevented during screen printing transfer.
なお、上述の導電ペーストにおいて、上述の平板状被覆粒子(a1)の球換算平均一次粒子径が0.1μm以上50μm以下であり、かつ、その平板状被覆粒子(a1)の99%累積粒度径D99が100μm以下であることは、好適な一態様である。
In the conductive paste described above, the sphere-converted average primary particle diameter of the tabular coated particles (a1) is 0.1 μm or more and 50 μm or less, and the 99% cumulative particle size of the tabular coated particles (a1). It is a preferable embodiment that D99 is 100 μm or less.
また、上述の導電ペーストにおいて、上述の導電性フィラー(A)が、さらに、銅をコアとし銀をシェルとするアスペクト比が2未満の球状被覆粒子(a2)及び/又は銅合金をコアとし銀をシェルとするアスペクト比が2未満の球状被覆粒子(a3)を含有することも、好適な他の一態様である。
In the conductive paste described above, the conductive filler (A) described above further includes spherical coated particles (a2) having an aspect ratio of less than 2 having copper as a core and silver as a shell and / or a copper alloy as a core and silver. It is also another preferred embodiment to contain spherical coated particles (a3) having an aspect ratio of less than 2 in which A is a shell.
また、上述の導電ペーストにおいて、上述の球状被覆粒子(a3)の銅合金をなす合金原子が、ニッケル及び/又は亜鉛であることも、好適な他の一態様である。
Moreover, in the above-described conductive paste, it is another preferable aspect that the alloy atoms forming the copper alloy of the above-described spherical coated particles (a3) are nickel and / or zinc.
また、上述の導電ペーストにおいて、上述の球状被覆粒子(a3)の銅合金をなす合金原子の含有量が、30原子%以下であることも、好適な他の一態様である。
Moreover, in the above-described conductive paste, the content of the alloy atoms forming the copper alloy of the above-described spherical coated particles (a3) is another preferable embodiment.
また、上述の導電ペーストにおいて、上述の熱硬化性フェノール樹脂(B)が、レゾール型フェノール樹脂であることも、好適な他の一態様である。
Further, in the above-described conductive paste, it is another preferable embodiment that the thermosetting phenol resin (B) is a resol type phenol resin.
また、上述の導電ペーストにおいて、上述の不飽和脂肪酸(C)が、炭素数6以上20以下の不飽和脂肪酸であることも、好適な他の一態様である。
In the conductive paste, the unsaturated fatty acid (C) is another unsaturated fatty acid having 6 to 20 carbon atoms.
また、上述の導電ペーストにおいて、上述の(D)成分が、グリコールエーテル類及び/又はテルペノール類であることも、好適な他の一態様である。
Further, in the above-described conductive paste, it is another preferable aspect that the above-described component (D) is a glycol ether and / or a terpenol.
また、上述の導電ペーストにおいて、上述の導電性フィラー(A)を100重量部(固形分換算)とした場合において、前記熱硬化性フェノール樹脂(B)、前記不飽和脂肪酸(C)、及び前記有機溶剤(D)の含有量が以下のとおりであることも、好適な他の一態様である。
上述の熱硬化性フェノール樹脂(B):3重量部以上30重量部以下
上述の不飽和脂肪酸(C):0.01重量部以上5重量部以下
上述の有機溶剤(D):3重量部以上50重量部以下 Moreover, in the above-described conductive paste, when the conductive filler (A) is 100 parts by weight (in terms of solid content), the thermosetting phenol resin (B), the unsaturated fatty acid (C), and the Another preferred embodiment is that the content of the organic solvent (D) is as follows.
The above-mentioned thermosetting phenol resin (B): 3 to 30 parts by weight The above-mentioned unsaturated fatty acid (C): 0.01 to 5 parts by weight The above-mentioned organic solvent (D): 3 parts by weight or more 50 parts by weight or less
上述の熱硬化性フェノール樹脂(B):3重量部以上30重量部以下
上述の不飽和脂肪酸(C):0.01重量部以上5重量部以下
上述の有機溶剤(D):3重量部以上50重量部以下 Moreover, in the above-described conductive paste, when the conductive filler (A) is 100 parts by weight (in terms of solid content), the thermosetting phenol resin (B), the unsaturated fatty acid (C), and the Another preferred embodiment is that the content of the organic solvent (D) is as follows.
The above-mentioned thermosetting phenol resin (B): 3 to 30 parts by weight The above-mentioned unsaturated fatty acid (C): 0.01 to 5 parts by weight The above-mentioned organic solvent (D): 3 parts by weight or more 50 parts by weight or less
さらに、上述の導電ペーストを加熱硬化させることにより得られる硬化物、あるいは、その硬化物からなる電極も採用し得る好適な一態様である。
Furthermore, a cured product obtained by heat-curing the above-described conductive paste, or an electrode made of the cured product is also a preferred embodiment.
加えて、上述の硬化物上、又は上述の電極上に、ハンダペーストによってハンダ付けされた電子部品を載置する電子デバイスも、具体的な応用例として好適な一態様である。
In addition, an electronic device in which an electronic component soldered with a solder paste is placed on the above-described cured product or the above-described electrode is also a preferable embodiment as a specific application example.
なお、上述のハンダペーストに用いるハンダ粉末が、スズ系鉛フリーハンダ粉末であることは、他の好適な一態様である。
In addition, it is another preferable aspect that the solder powder used in the above-described solder paste is a tin-based lead-free solder powder.
ところで、本願において「平板状被覆粒子」とは、当該粒子表面の一部が平面を必ず備えているという意味に限定されない。例えば、微視的に見れば曲面のみによって形成されている粒子であっても、巨視的に見たときに略平面であるといえる場合、あるいは、当該粒子の断面において略平坦な線が見られる場合も、本願における「平板状被覆粒子」に含まれる。また、本願において「球状被覆粒子」とは、当該粒子が真球状の粒子であるという意味に限定されない。例えば、アスペクト比2未満であれば、その断面において楕円形状、又は一部に略平坦な線が見られる楕円形状も、本願における「平板状被覆粒子」に含まれる。
By the way, in the present application, the term “tabular coated particle” is not limited to the meaning that a part of the particle surface necessarily has a flat surface. For example, even if the particle is formed only by a curved surface when viewed microscopically, it can be said that the particle is substantially flat when viewed macroscopically, or a substantially flat line is seen in the cross section of the particle. The case is also included in the “tabular coated particle” in the present application. Further, in the present application, the “spherical coated particle” is not limited to the meaning that the particle is a true spherical particle. For example, if the aspect ratio is less than 2, an elliptical shape in the cross section or an elliptical shape in which a substantially flat line can be seen in part is included in the “tabular coated particles” in the present application.
本発明の導電ペーストによれば、フラックス及び/又は溶融ハンダ金属の、電極内部への浸透を防止又は抑制することができる。従って、本発明の導電ペーストによれば、電気伝導性が良好であり、かつ溶融ハンダの濡れ性にも優れる電極を、各種基材の上に形成することができる。
The conductive paste of the present invention can prevent or suppress the penetration of flux and / or molten solder metal into the electrode. Therefore, according to the conductive paste of the present invention, an electrode having good electrical conductivity and excellent wettability of molten solder can be formed on various substrates.
その結果、本発明の導電ペーストによれば、電気伝導性が良好であり、かつ溶融ハンダの濡れ性にも優れる電極を、各種基材の上に形成することができる。
As a result, according to the conductive paste of the present invention, an electrode having good electrical conductivity and excellent wettability of molten solder can be formed on various substrates.
本実施形態の導電ペーストは、所定の平板状被覆粒子(a1)(以下、(a1)成分ともいう。)を含む導電性フィラー(A)(以下、(A)成分ともいう。)、熱硬化性フェノール樹脂(B)(以下、(B)成分ともいう。)及び不飽和脂肪酸(C)(以下、(C)成分ともいう。)を有機溶剤(D)(以下、(D)成分ともいう。)に配合した電気伝導性の組成物である。
The conductive paste of this embodiment includes a conductive filler (A) (hereinafter also referred to as (A) component) containing predetermined tabular coated particles (a1) (hereinafter also referred to as (a1) component), thermosetting. -Based phenolic resin (B) (hereinafter also referred to as component (B)) and unsaturated fatty acid (C) (hereinafter also referred to as component (C)) are referred to as organic solvent (D) (hereinafter also referred to as component (D)). .)) Is an electrically conductive composition.
本実施形態の(A)成分は、銅又は銅合金をコアとし銀をシェルとし、当該シェルの層厚が0.02μm以上であり、かつアスペクト比が2以上である平板状被覆粒子(a1)(以下、(a1)成分という。)を0.1体積%以上30体積%以下含む。なお、銅合金をなす合金原子としては、金、銀、スズ、ニッケル及び亜鉛等が挙げられる。また、銅合金をコアとする(a1)成分は、後述するカーケンダルボイドの現象が生じにくい。
The component (A) of the present embodiment is a tabular coated particle (a1) in which copper or a copper alloy is used as a core, silver is used as a shell, the thickness of the shell is 0.02 μm or more, and the aspect ratio is 2 or more. (Hereinafter referred to as component (a1)) is contained in an amount of 0.1% by volume to 30% by volume. In addition, as an alloy atom which makes a copper alloy, gold | metal | money, silver, tin, nickel, zinc, etc. are mentioned. In addition, the (a1) component having a copper alloy as a core is less likely to cause the Kirkendall void phenomenon described later.
図5は、平板状被覆粒子(a1)の一次粒子100の模式図である。(a1)成分は、銅又は銅合金をコア10とし、銀をシェル20とする被覆粒子である。この(a1)成分は、その形状ゆえに、本実施形態の導電ペーストより得られる電極中で、その一部または全部が基材の平面方向に対して略平行(少なくとも、垂直ではない)の位置をとる。なお、コア10を構成する材質は、銅それ自体であってもよく、銅と他の金属(例えば、金、銀、スズ、ニッケル、亜鉛等)との合金であってもよい。なお、腐食を防止する観点から言えば、合金種はニッケル(Ni)及び亜鉛(Zn)の群から選択される少なくとも1種であることが特に好ましい。また、(a1)成分のアスペクト比(以下、「AR」ともいう。)、即ち(a1)成分をなす一次粒子における最大長さをL、厚みをtとした場合においてその比(L/t)をアスペクト比と呼ぶ。
FIG. 5 is a schematic diagram of the primary particles 100 of the tabular coated particles (a1). The component (a1) is coated particles having copper or a copper alloy as the core 10 and silver as the shell 20. This component (a1) has a shape in which, in the electrode obtained from the conductive paste of the present embodiment, a part or all of the (a1) component is substantially parallel (at least not perpendicular) to the plane direction of the substrate. Take. The material constituting the core 10 may be copper itself or an alloy of copper and other metals (for example, gold, silver, tin, nickel, zinc, etc.). In terms of preventing corrosion, the alloy type is particularly preferably at least one selected from the group of nickel (Ni) and zinc (Zn). Further, the aspect ratio (hereinafter also referred to as “AR”) of the component (a1), that is, the ratio (L / t) when the maximum length of the primary particles constituting the component (a1) is L and the thickness is t. Is called the aspect ratio.
上述の(a1)成分が、本実施形態の導電ペーストより得られる電極中で、その一部または全部が基材の平面方向に対して略平行の位置に設けられる結果、図6や図7に示すように、本実施形態の導電ペーストを用いて形成された電極中へのハンダ合金元素(両図の場合にはスズ)の拡散浸透が物理的に遮断され得るため、電極上における溶融ハンダ金属の濡れ不良を防止又は抑制することが可能になる。より具体的には、本実施形態の平板状被覆粒子(a1)の存在により、フラックス及び/又は溶融ハンダ金属については垂直方向への浸透を略水平方向に回避させ、過剰な浸透を抑制することを実現し得ることが確認された。
In the electrode obtained from the conductive paste of the present embodiment, the above-described component (a1) is partially or entirely provided at a position substantially parallel to the planar direction of the base material. As shown, the diffusion and penetration of the solder alloy element (tin in the case of both figures) into the electrode formed using the conductive paste of this embodiment can be physically blocked, so that the molten solder metal on the electrode It becomes possible to prevent or suppress the poor wetting. More specifically, the presence of the flat coated particles (a1) of the present embodiment prevents the flux and / or molten solder metal from penetrating in the vertical direction in a substantially horizontal direction and suppressing excessive penetration. It was confirmed that can be realized.
さらに、興味深いことに、本発明者は、一見有益に見える平板状被覆粒子(a1)の導入量が多すぎると、かえって、導電ペースト全体としての静的及び/又は動的な粘度の変動や作業性の悪化をもたらすことも知見した。本発明者がさらに分析と検討を重ねた結果、導電性フィラー(A)は、平板状被覆粒子(a1)を、0.1体積%以上30体積%以下の範囲で含んでいることが、前述のフラックス又は溶融ハンダの浸透や、本実施形態の導電ペーストの粘度安定性、又はスクリーン印刷時の作業性等の問題を同時に解決し得ることも知見された。
Furthermore, it is interesting that the present inventor found that the introduction amount of the tabular coated particles (a1) that seemed to be useful is too large, on the contrary, the static and / or dynamic viscosity fluctuations and work of the entire conductive paste. It has also been found that it causes sexual deterioration. As a result of further analysis and examination by the inventor, the conductive filler (A) contains tabular coated particles (a1) in the range of 0.1% by volume to 30% by volume. It has also been found that problems such as penetration of the flux or molten solder, viscosity stability of the conductive paste of the present embodiment, and workability during screen printing can be solved simultaneously.
図5中のtsは、(a1)成分における、銀からなるシェルの平均的な層厚を意味しており、本実施形態の導電ペーストの電気導電性やハンダ金属の濡れ性等を考慮してすると、0.02μm以上であることが好ましく、0.05μm以上5μm以下であることがより好ましい。さらに好ましいシェルの平均的な層厚は、0.1μm以上1μm以下である。なお、銅又は銅合金をコアとし銀をシェルとし、アスペクト比が2以上となる平板状被覆粒子であっても、当該シェルの層厚が0.02μm未満のものを(a1)成分に代えて用いると、幾つかの面で好ましくない。具体的には、そのような層厚のシェルを採用すると、電極の電気抵抗が大きくなる場合がある。また、その電極内部へフラックスが浸透しやすくなり、さらにその電極上での溶融ハンダ金属の濡れ性も悪化し得る。
T s in Figure 5, (a1) in the component, it is meant an average thickness of the shell made of silver, in consideration of the wettability of the electrical conductivity and solder metal conductive paste of the present embodiment Then, it is preferable that it is 0.02 micrometer or more, and it is more preferable that it is 0.05 micrometer or more and 5 micrometers or less. A more preferable average layer thickness of the shell is 0.1 μm or more and 1 μm or less. In addition, even in the case of tabular coated particles having copper or a copper alloy as a core, silver as a shell, and an aspect ratio of 2 or more, the shell having a layer thickness of less than 0.02 μm is replaced with the component (a1). If used, it is not preferable in several aspects. Specifically, when a shell having such a layer thickness is employed, the electrical resistance of the electrode may increase. In addition, the flux can easily penetrate into the electrode, and the wettability of the molten solder metal on the electrode can be deteriorated.
図5中のtcは、(a1)成分における、コアをなす銅又は銅合金の粒子の厚みを意味しており、その値は特に限定されない。ただし、本実施形態の導電ペーストの印刷性、電気導電性やハンダ金属の濡れ性等を向上させる観点から言えば、0.1μm以上10μm以下であることが好ましく、約0.3μm以上約5μm以下であることがより好ましい。加えて、さらに好ましい銅又は銅合金の粒子の層みは、約0.5μm以上約3μm程度以下である。
T c in FIG. 5 means the thickness of the copper or copper alloy particles forming the core in the component (a1), and the value is not particularly limited. However, from the viewpoint of improving the printability, electrical conductivity, solder metal wettability, etc. of the conductive paste of this embodiment, it is preferably 0.1 μm or more and 10 μm or less, and is about 0.3 μm or more and about 5 μm or less. It is more preferable that In addition, a more preferable layer of copper or copper alloy particles is about 0.5 μm or more and about 3 μm or less.
上述のとおり、図5中のLは、(a1)成分をなす一次粒子における最大長さを意味し、tはその最大厚みを意味している。ここに、(a1)成分の表面を溶融ハンダ金属が伝う距離が長ければ長いほど、当該溶融ハンダ金属の電極深部への拡散浸透を効果的に防止できる。かかる観点より、Lは0.2μm以上であることが好ましく、約0.2μm以上約100μm以下であることがより好ましい。加えて、さらに好ましいLは、約2μm以上約50μm以下である。また、tは、0.1μm以上であることが好ましく、約0.1μm以上約10μm以下であることがより好ましい。加えて、さらに好ましいtは、約0.9μmμm以上約5μm以下である
As described above, L in FIG. 5 means the maximum length of the primary particles constituting the component (a1), and t means the maximum thickness. Here, the longer the distance that the molten solder metal travels on the surface of the component (a1), the more effectively the diffusion and penetration of the molten solder metal into the electrode deep portion can be prevented. From this viewpoint, L is preferably 0.2 μm or more, and more preferably about 0.2 μm or more and about 100 μm or less. In addition, more preferable L is about 2 μm or more and about 50 μm or less. Further, t is preferably 0.1 μm or more, and more preferably about 0.1 μm or more and about 10 μm or less. In addition, more preferable t is about 0.9 μm μm or more and about 5 μm or less.
本実施形態のL、t、ts及びtcのそれぞれの値は、以下の方法によって計測される。
(1)本実施形態の導電ペーストからなる硬化物または当該硬化物を用いて得られる電極を何らかの方法により機械的に切断する。
(2)その断面を走査型電子顕微鏡(SEM)によって観察及び撮影する。
(3)得られた画像に出現している、(a1)成分を構成する、ある1つの平板状銀被覆粒子の断面領域より、L、t、tsおよびtcを少なくとも5箇所直接計測し、その平均値を求める。 Each value of the present embodiment L, t, t s, and t c is measured by the following method.
(1) A cured product made of the conductive paste of the present embodiment or an electrode obtained using the cured product is mechanically cut by some method.
(2) The cross section is observed and photographed with a scanning electron microscope (SEM).
(3) have appeared on the obtained image, constituting the component (a1), from the cross-sectional area of a single tabular silver-coated particles, L, t, and t s and t c measured at least 5 points directly Find the average value.
(1)本実施形態の導電ペーストからなる硬化物または当該硬化物を用いて得られる電極を何らかの方法により機械的に切断する。
(2)その断面を走査型電子顕微鏡(SEM)によって観察及び撮影する。
(3)得られた画像に出現している、(a1)成分を構成する、ある1つの平板状銀被覆粒子の断面領域より、L、t、tsおよびtcを少なくとも5箇所直接計測し、その平均値を求める。 Each value of the present embodiment L, t, t s, and t c is measured by the following method.
(1) A cured product made of the conductive paste of the present embodiment or an electrode obtained using the cured product is mechanically cut by some method.
(2) The cross section is observed and photographed with a scanning electron microscope (SEM).
(3) have appeared on the obtained image, constituting the component (a1), from the cross-sectional area of a single tabular silver-coated particles, L, t, and t s and t c measured at least 5 points directly Find the average value.
上述のとおり、本実施形態において、(a1)成分はアスペクト比が2以上である。そのような(a1)成分を採用することにより、本実施形態の導電ペーストからなる電極内部への溶融ハンダ金属及び/又はフラックスの拡散浸透を効果的に抑制又は防止できるようになる。かかる観点より、(a1)成分のアスペクト比は、好ましくは約2以上約100以下であり、より好ましくは約2.2以上約20以下である。
As described above, in this embodiment, the component (a1) has an aspect ratio of 2 or more. By adopting such a component (a1), it becomes possible to effectively suppress or prevent the diffusion and penetration of the molten solder metal and / or flux into the electrode made of the conductive paste of the present embodiment. From this viewpoint, the aspect ratio of the component (a1) is preferably about 2 or more and about 100 or less, more preferably about 2.2 or more and about 20 or less.
ここで、本実施形態の代表的な(a1)成分のアスペクト比は、次のようにして求めることができる。
Here, the aspect ratio of the representative component (a1) of the present embodiment can be obtained as follows.
先ず、本実施形態に係る硬化物または電極を機械的に切断し、500倍程度のSEM断面画像を得る(図6参照)。次いで、当該画像を視野とし、その中からある1つの平板状銀被覆粒子((a1)成分)を特定する。その後、その(a1)成分のLとtより、当該ある1つの粒子のアスペクト比(AR1)を求める。次いで、同様にして、異なる5以上の視野において、合計で少なくとも100個の平板状被覆粒子についてもアスペクト比、それらの相加平均を求めることにより、(a1)成分のアスペクト比を定める。
First, the cured product or electrode according to this embodiment is mechanically cut to obtain an SEM cross-sectional image of about 500 times (see FIG. 6). Next, using the image as a field of view, one tabular silver-coated particle (component (a1)) is specified. Thereafter, the aspect ratio (AR 1 ) of the certain one particle is obtained from L and t of the component (a1). Next, in the same manner, the aspect ratio of the (a1) component is determined by determining the aspect ratio and the arithmetic average of at least 100 tabular coated grains in total in five or more different fields of view.
本実施形態の導電ペーストは、上述の所定のアスペクト比を有する(a1)成分を含む。従って、図6及び図7で示すように、当該ペーストからなる電極内部への溶融ハンダ金属(両図の場合には専らスズ合金)の拡散浸透を物理的に遮断することが可能となるため、当該電極上における溶融ハンダ金属の濡れ不良が改善される。
The conductive paste of this embodiment includes the component (a1) having the predetermined aspect ratio described above. Therefore, as shown in FIG. 6 and FIG. 7, it becomes possible to physically block the diffusion and penetration of the molten solder metal (in the case of both figures, tin alloy exclusively) into the electrode made of the paste, The poor wetting of the molten solder metal on the electrode is improved.
また、導電性フィラー(A)((A)成分)における平板状被覆粒子(a1)((a1)成分)の含有量は0.1体積%以上30体積%以下である。そのような体積比率を採用することにより、本実施形態の導電ペーストの経時的な粘度安定性が良好となり、当該導電ペーストより得られる電極内部への溶融ハンダ金属及び/又はフラックスの浸透が効果的に抑制されるようになる。その結果、当該電極のハンダ濡れ性と電気伝導性が高まる。かかる観点より、導電性フィラー(A)における平板状被覆粒子(a1)の含有量は、好ましくは0.3体積%以上30体積%以下であり、いっそう好ましくは0.5体積%以上30体積%以下である。
Further, the content of the flat coated particles (a1) ((a1) component) in the conductive filler (A) (component (A)) is 0.1% by volume or more and 30% by volume or less. By adopting such a volume ratio, the viscosity stability over time of the conductive paste of this embodiment is improved, and the penetration of molten solder metal and / or flux into the electrode obtained from the conductive paste is effective. Will be suppressed. As a result, the solder wettability and electrical conductivity of the electrode are enhanced. From this viewpoint, the content of the tabular coated particles (a1) in the conductive filler (A) is preferably 0.3% by volume or more and 30% by volume or less, and more preferably 0.5% by volume or more and 30% by volume or less. It is as follows.
また、(a1)成分の粒子径は、格別限定されない。ただし、本実施形態では、導電ペーストの粘度や、これより得られる硬化物(塗膜)の表面の平滑性等を考慮すると、球換算平均一次粒子径が約0.1μm以上約50μm以下であることが好ましく、0.5μm以上30μm以下であることがより好ましい。加えて、さらに好ましい球換算平均一次粒子径は、約1.0μm以上約20μm以下である。また、(a1)成分の99%累積粒度径D99は、100μm以下であることが好ましく、70μm以下であることがより好ましい。加えて、さらに好ましい99%累積粒度径D99は、50μm以下である。なお、各粒径は、例えばレーザー回折/散乱式粒度分布測定装置(例えば、Leeds&Northrup社製 マイクロトラックFRA9220)等を用いて求めることができる。
Further, the particle diameter of the component (a1) is not particularly limited. However, in this embodiment, considering the viscosity of the conductive paste, the smoothness of the surface of the cured product (coating film) obtained from this, the sphere-converted average primary particle diameter is about 0.1 μm or more and about 50 μm or less. It is preferably 0.5 μm or more and 30 μm or less. In addition, a more preferable spherical equivalent average primary particle size is about 1.0 μm or more and about 20 μm or less. Further, the 99% cumulative particle diameter D99 of the component (a1) is preferably 100 μm or less, and more preferably 70 μm or less. In addition, a more preferable 99% cumulative particle diameter D99 is 50 μm or less. Each particle size can be determined using, for example, a laser diffraction / scattering particle size distribution analyzer (for example, Microtrac FRA 9220 manufactured by Lees & Northrup).
(a1)成分は市販品を使用してもよいが、アトマイズ法やメッキ法等の各種公知の方法で製造できる。後者方法の場合には、例えば、以下の(X)、(Y)を行うことにより得られる。
(X)電解銅粉末若しくは電解銅合金粉末、還元銅粉末若しくは還元銅合金粉末、並びにアトマイズ銅粉末若しくはアトマイズ銅合金粉末等の原料銅粉末または原料銅合金粉末を、その一次粒子を前記厚みtcの平板形状となるように各種機器により扁平加工する。
(Y)(X)の後、得られた平板状粒子を、電解メッキ法または無電解メッキ法により、銀メッキする。
なお、メッキ法によれば、原料となる球状の銅粉末または銅合金粉末の表面に存在する酸化皮膜をメッキプロセス中に除去できるだけでなく、その表面を銀によって比較的均一に且つ一様に被覆できる。その結果、銅の露出が少ない被覆粒子を得ることが可能となる。 Although a commercial item may be used for (a1) component, it can manufacture by various well-known methods, such as an atomizing method and a plating method. In the case of the latter method, for example, it can be obtained by performing the following (X) and (Y).
(X) Raw copper powder or raw copper alloy powder such as electrolytic copper powder or electrolytic copper alloy powder, reduced copper powder or reduced copper alloy powder, and atomized copper powder or atomized copper alloy powder, the primary particles of which are the thickness t c Is flattened by various devices so as to obtain a flat plate shape.
(Y) After (X), the obtained tabular particles are silver-plated by an electrolytic plating method or an electroless plating method.
In addition, according to the plating method, not only the oxide film existing on the surface of the spherical copper powder or copper alloy powder as a raw material can be removed during the plating process, but also the surface is covered with silver relatively uniformly and uniformly. it can. As a result, it is possible to obtain coated particles with less copper exposure.
(X)電解銅粉末若しくは電解銅合金粉末、還元銅粉末若しくは還元銅合金粉末、並びにアトマイズ銅粉末若しくはアトマイズ銅合金粉末等の原料銅粉末または原料銅合金粉末を、その一次粒子を前記厚みtcの平板形状となるように各種機器により扁平加工する。
(Y)(X)の後、得られた平板状粒子を、電解メッキ法または無電解メッキ法により、銀メッキする。
なお、メッキ法によれば、原料となる球状の銅粉末または銅合金粉末の表面に存在する酸化皮膜をメッキプロセス中に除去できるだけでなく、その表面を銀によって比較的均一に且つ一様に被覆できる。その結果、銅の露出が少ない被覆粒子を得ることが可能となる。 Although a commercial item may be used for (a1) component, it can manufacture by various well-known methods, such as an atomizing method and a plating method. In the case of the latter method, for example, it can be obtained by performing the following (X) and (Y).
(X) Raw copper powder or raw copper alloy powder such as electrolytic copper powder or electrolytic copper alloy powder, reduced copper powder or reduced copper alloy powder, and atomized copper powder or atomized copper alloy powder, the primary particles of which are the thickness t c Is flattened by various devices so as to obtain a flat plate shape.
(Y) After (X), the obtained tabular particles are silver-plated by an electrolytic plating method or an electroless plating method.
In addition, according to the plating method, not only the oxide film existing on the surface of the spherical copper powder or copper alloy powder as a raw material can be removed during the plating process, but also the surface is covered with silver relatively uniformly and uniformly. it can. As a result, it is possible to obtain coated particles with less copper exposure.
また、(A)成分には必要に応じ、銅をコアとし銀をシェルとするアスペクト比が2未満の球状被覆粒子(a2)(以下、(a2)成分ともいう。)及び/又は銅合金をコアとし銀をシェルとするアスペクト比が2未満の球状被覆粒子(a3)(以下、(a3)成分ともいう。)を含めることも、採用し得る好適な他の一態様である。(a2)成分及び/又は(a3)成分を用いることにより、本実施形態の導電ペーストの粘度を調製したり、スクリーン印刷時の作業性等をコントロールしたりすることが可能となる。かかる観点より、(a2)成分と(a3)成分のアスペクト比はいずれも、約1以上約1.8以下であることが好ましく、約1以上約1.5以下であるのがさらに好ましくい。なお、かかるアスペクト比は、(a1)成分についてのそれと同様の方法で求めることができる。
In addition, the component (A) includes, as necessary, spherical coated particles (a2) (hereinafter also referred to as the component (a2)) and / or a copper alloy having an aspect ratio of less than 2 with copper as a core and silver as a shell. The inclusion of spherical coated particles (a3) (hereinafter also referred to as component (a3)) having an aspect ratio of less than 2 and having a core as silver and a shell is another preferred embodiment that can be employed. By using the component (a2) and / or the component (a3), it is possible to adjust the viscosity of the conductive paste of the present embodiment and to control workability during screen printing. From this viewpoint, the aspect ratio of the component (a2) and the component (a3) is preferably about 1 or more and about 1.8 or less, and more preferably about 1 or more and about 1.5 or less. The aspect ratio can be obtained by the same method as that for the component (a1).
また、(a3)成分の銅合金をなす合金原子の含有量は特に限定されないが、本実施形態の導電ペーストの電気伝導性を確保する目的において、合金原子の含有量は、30原子%以下であることが好ましく、20原子%以下であることがより好ましい。さらに好ましい合金原子の含有量は、15原子%以下である。
Further, the content of the alloy atoms forming the copper alloy of the component (a3) is not particularly limited, but for the purpose of ensuring the electrical conductivity of the conductive paste of the present embodiment, the content of the alloy atoms is 30 atomic% or less. It is preferable that it is 20 atomic% or less. A more preferable alloy atom content is 15 atomic% or less.
なお、(a3)成分を構成するコア粒子としては、銅-ニッケル合金粒子、銅-亜鉛ニッケル合金粒子、及び銅-ニッケル-亜鉛合金粒子からなる群より選ばれる1種が好ましい。よって、合金原子としてニッケル及び/又は亜鉛が選択されることは、コア粒子の耐食性を高め、なおかつ合金化による導電性の劣化を抑制する観点から好ましい。
The core particles constituting the component (a3) are preferably one type selected from the group consisting of copper-nickel alloy particles, copper-zinc nickel alloy particles, and copper-nickel-zinc alloy particles. Therefore, the selection of nickel and / or zinc as the alloy atoms is preferable from the viewpoint of enhancing the corrosion resistance of the core particles and suppressing the deterioration of conductivity due to alloying.
また、上述の(a3)成分の銅合金を構成する合金原子の含有量は、特に限定されない。ただし、球状被覆粒子(a3)の銅合金をなす合金原子の含有量が、30原子%以下であることは、電気的接合部材として機能させ、良好な導電性をより確度高く得る観点から好適な他の一態様である。
Further, the content of the alloy atoms constituting the copper alloy of the component (a3) is not particularly limited. However, the content of alloy atoms forming the copper alloy of the spherical coated particles (a3) is 30 atomic% or less, which is preferable from the viewpoint of functioning as an electrical joining member and obtaining good conductivity with higher accuracy. It is another one aspect | mode.
また、(a3)成分の一例である、銅-ニッケル合金粒子における各原子の重量比率は特に限定されない。ただし、銅:ニッケルが、約99:約1~約85:約15となる範囲を採用することが、本発明の導電ペーストの導電性や、当該ペーストの粘度安定性、さらには後述のカーケンダルボイドの抑制の観点から好ましい。また、(a3)成分の一例である、銅-亜鉛合金粒子における各原子の重量比率も特に限定されない。ただし、銅:亜鉛が、約99:約1~約70:約30となる範囲を採用することが、ニッケルと同様に、導電性、粘度安定性、ボイド抑制の観点から好ましい。また、(a3)成分の一例である、銅-ニッケル-亜鉛合金粒子における各原子の重量比率も特に限定されない。ただし、銅:(ニッケル及び亜鉛)が、約99:約1~約70:約30となる範囲を採用することが導電性、粘度安定性、ボイド抑制の観点から好ましい。
Further, the weight ratio of each atom in the copper-nickel alloy particles, which is an example of the component (a3), is not particularly limited. However, adopting a range in which copper: nickel is about 99: about 1 to about 85: about 15 means that the conductivity of the conductive paste of the present invention, the viscosity stability of the paste, and the Kirkendal described later This is preferable from the viewpoint of suppressing voids. Further, the weight ratio of each atom in the copper-zinc alloy particles, which is an example of the component (a3), is not particularly limited. However, it is preferable to adopt a range in which copper: zinc is about 99: about 1 to about 70:30 about from the viewpoints of conductivity, viscosity stability, and void suppression, like nickel. Further, the weight ratio of each atom in the copper-nickel-zinc alloy particles, which is an example of the component (a3), is not particularly limited. However, it is preferable from the viewpoint of conductivity, viscosity stability, and void suppression that copper: (nickel and zinc) is in a range of about 99: about 1 to about 70:30.
また、(A)成分における(a2)成分及び/又は(a3)成分の含有量は特に限定されない。ただし、本実施形態の導電ペーストの粘度安定性、当該導電ペーストより得られる電極のハンダ濡れ性及び電気伝導性、並びにスクリーン印刷時の作業性等の観点より、約70体積%以上約99.9体積%以下であることが好ましく、約80体積%以上約99.5体積%以下であることがより好ましい。また、さらに好ましい範囲は、約90体積%以上約99体積%以下である。
Further, the content of the component (a2) and / or the component (a3) in the component (A) is not particularly limited. However, from the viewpoint of viscosity stability of the conductive paste of the present embodiment, solder wettability and electrical conductivity of an electrode obtained from the conductive paste, workability during screen printing, and the like, about 70% by volume or more and about 99.9%. The volume is preferably not more than volume%, more preferably not less than about 80 volume% and not more than about 99.5 volume%. Further, a more preferable range is from about 90% by volume to about 99% by volume.
(a2)成分及び(a3)成分のそれぞれにおける、銀からなるシェルの層厚は特に限定されない。ただし、本実施形態の導電ペーストの粘度安定性、当該導電ペーストより得られる電極のハンダ濡れ性及び電気伝導性、並びにスクリーン印刷時の作業性等の観点より、約0.02μm以上約5μm以下であることが好ましく、約0.05μm以上約3μm以下であることがより好ましい。また、さらに好ましい範囲は、約0.1μm以上約1μm以下である。なお、かかる層厚は、(a1)成分についてのそれと同様の方法で求めることができる。
The layer thickness of the shell made of silver in each of the components (a2) and (a3) is not particularly limited. However, from the viewpoint of viscosity stability of the conductive paste of the present embodiment, solder wettability and electrical conductivity of an electrode obtained from the conductive paste, workability at the time of screen printing, etc., about 0.02 μm or more and about 5 μm or less. It is preferably about 0.05 μm or more and about 3 μm or less. Further, a more preferable range is from about 0.1 μm to about 1 μm. Such a layer thickness can be determined by the same method as that for the component (a1).
(a2)成分のコアの層厚(直径)と(a3)成分のコアの層厚(直径)も特に限定されない。ただし、本実施形態の導電ペーストの電気導電性や、当該ペーストからなる電極に対する溶融ハンダ金属の濡れ性等を考慮すると、いずれも約0.1μm以上約20μm以下であることが好ましく、約0.3μm以上約15μm以下であることがより好ましい。
The layer thickness (diameter) of the core of the component (a2) and the layer thickness (diameter) of the core of the component (a3) are not particularly limited. However, in consideration of the electrical conductivity of the conductive paste of the present embodiment and the wettability of the molten solder metal with respect to the electrode made of the paste, it is preferable that both be about 0.1 μm or more and about 20 μm or less. More preferably, it is 3 μm or more and about 15 μm or less.
(a2)成分及び(a3)成分は市販品を使用してもよいが、(a1)成分と同様の方法で製造することができる。
Commercially available products may be used for the (a2) component and the (a3) component, but they can be produced by the same method as the (a1) component.
なお、(a2)成分は、銅をコア粒子とする銀被覆粒子である。そして、その銀と銅の界面に所謂カーケンダルボイドが生じることがある。ここにカーケンダルボイドとは、一般的には、ある金属と他の金属が接している拡散対において、前者の後者に対する拡散係数と、後者の前者に対する拡散係数とが相違することに起因して、当該接触界面にボイドが発生する現象をいう。
The component (a2) is silver-coated particles having copper as core particles. And so-called Kirkendall voids may occur at the silver-copper interface. Here, Kirkendall void is generally due to the difference between the diffusion coefficient of the former and the latter in the diffusion pair where a metal and another metal are in contact. The phenomenon that voids are generated at the contact interface.
これを本実施形態の導電ペーストに当てはめると、当該ペーストから得られる電極の上で、例えばスズ系鉛フリーハンダ粉末を用いたハンダペーストを溶融させると、溶融ハンダ中のスズ原子と(a2)成分のコアをなす銅原子とが反応し、合金を形成する。このとき、銅原子の方がスズ原子よりも拡散速度が大きいため、銅原子が溶融ハンダ金属の方へとより多く質量移動する。その結果、図8に示すように、(a2)成分のコア-シェル界面にボイドが発生する場合がある。
When this is applied to the conductive paste of this embodiment, when a solder paste using, for example, a tin-based lead-free solder powder is melted on the electrode obtained from the paste, the tin atom in the molten solder and the component (a2) Reacts with the copper atoms that form the core to form an alloy. At this time, since the diffusion rate of the copper atom is larger than that of the tin atom, the copper atom moves more in mass toward the molten solder metal. As a result, as shown in FIG. 8, voids may occur at the core-shell interface of the component (a2).
一方、(a3)成分は、コア粒子が銅合金であるため、コア-シェル界面にカーケンダルボイドが発生し難い。また、(a3)成分を使用すると、本実施形態の導電ペーストからなる電極に対する溶融ハンダ金属の濡れ性が高まる利点もある。
On the other hand, in the component (a3), since the core particles are a copper alloy, Kirkendall voids hardly occur at the core-shell interface. Further, when the component (a3) is used, there is an advantage that the wettability of the molten solder metal with respect to the electrode made of the conductive paste of this embodiment is increased.
図9は、(a3)成分のうち、銅-ニッケル-亜鉛合金粒子をコアとするものを用いた導電ペーストからなる電極の断面の拡大顕微鏡写真である。図9に示すように、コア-シェル界面にカーケンダルボイドが殆ど認められないことが確認できる。
FIG. 9 is an enlarged micrograph of a cross section of an electrode made of a conductive paste using the component (a3) having copper-nickel-zinc alloy particles as a core. As shown in FIG. 9, it can be confirmed that almost no Kirkendall void is observed at the core-shell interface.
なお、(a2)成分と(a3)成分を併用する場合、(a2)成分と(a3)成分の体積比は特に限定されない。ただし、本実施形態では、約1:約9~約9:約1であることが好ましく、約2:約8~約8:約2であることがより好ましい。また、さらに好ましい範囲は、約3:約7~約7:約3である。
In addition, when using together (a2) component and (a3) component, the volume ratio of (a2) component and (a3) component is not specifically limited. However, in this embodiment, it is preferably about 1: about 9 to about 9: about 1, more preferably about 2: about 8 to about 8: about 2. A more preferred range is from about 3: about 7 to about 7: about 3.
なお、(A)成分には、さらに、(a1)成分~(a3)成分以外の導電性フィラー(以下、(a4)成分という。)を必要に応じて含めてもよい。具体的には、例えば銀粒子、銅粒子、ニッケル粒子、銅-ニッケル合金粒子、金粒子、これら金属の合金からなる粒子、ニッケル被覆銅粒子、銀及びニッケルで順に被覆された銅粒子、カーボン粒子等が挙げられる。また、(A)成分における(a4)成分の含有量も特に限定されない。ただし、(a1)成分、並びに(a2)成分及び/又は(a3)成分を100体積%とした場合において、0体積%以上約30体積%以下となる範囲を採用することが、本実施形態の導電ペーストからなる電極に対するハンダ金属の濡れ性、本実施形態の導電ペーストの導電性、(A)成分の耐腐食性等を向上させる観点から好ましい。
The component (A) may further contain a conductive filler other than the components (a1) to (a3) (hereinafter referred to as the component (a4)) as necessary. Specifically, for example, silver particles, copper particles, nickel particles, copper-nickel alloy particles, gold particles, particles made of an alloy of these metals, nickel-coated copper particles, copper particles coated with silver and nickel in this order, carbon particles Etc. Further, the content of the component (a4) in the component (A) is not particularly limited. However, when the component (a1) and the component (a2) and / or the component (a3) are 100% by volume, it is possible to adopt a range of 0% by volume to about 30% by volume. It is preferable from the viewpoint of improving the wettability of the solder metal to the electrode made of the conductive paste, the conductivity of the conductive paste of the present embodiment, the corrosion resistance of the component (A), and the like.
また、(B)成分は、本実施形態の導電ペーストより得られる電極中で(A)成分を固定しつつ、溶融ハンダと液状化フラックスの電極内部への拡散浸透を抑制する目的で使用される。(B)成分の一例として、各種公知の熱硬化性フェノール樹脂、例えばノボラック型フェノール樹脂やレゾール型フェノール樹脂等が特に制限なく使用され得る。なお、熱硬化性フェノール樹脂(B)が、レゾール型フェノール樹脂であることは、(A)成分の腐食を抑制し、本発明に係る硬化物を比較的低温で形成でき、当該硬化物の強度を適切なものとし、かつ当該硬化物と基材との密着性を改善する観点から好ましい。また、原料となるフェノール類の一例として、石炭酸、クレゾール、アミルフェノール、ビスフェノールA、ブチルフェノール、オクチルフェノール、ノニルフェノール、ドデシルフェノール等が挙げられる。また、ホルムアルデヒド類の一例として、ホルマリン、パラホルムアルデヒド等が挙げられる。
The component (B) is used for the purpose of suppressing diffusion and penetration of molten solder and liquefied flux into the electrode while fixing the component (A) in the electrode obtained from the conductive paste of the present embodiment. . As an example of the component (B), various known thermosetting phenol resins, such as novolac type phenol resins and resol type phenol resins, can be used without particular limitation. The thermosetting phenolic resin (B) is a resol type phenolic resin, which suppresses corrosion of the component (A) and can form a cured product according to the present invention at a relatively low temperature. Is preferable from the viewpoint of improving the adhesion between the cured product and the substrate. Moreover, as an example of the phenols used as a raw material, there can be mentioned coalic acid, cresol, amylphenol, bisphenol A, butylphenol, octylphenol, nonylphenol, dodecylphenol, and the like. Examples of formaldehydes include formalin and paraformaldehyde.
なお、(B)成分とともに、他の熱硬化性バインダー樹脂(以下、(B’)成分という。)を少量併用してもよい。そのような(B’)成分の一例は、熱硬化性のエポキシ樹脂や、メラミン樹脂、ポリアミドイミド樹脂、ポリイミド樹脂等である。
A small amount of other thermosetting binder resin (hereinafter referred to as “component (B ′)”) may be used in combination with the component (B). An example of such a component (B ′) is a thermosetting epoxy resin, a melamine resin, a polyamideimide resin, a polyimide resin, or the like.
また、(C)成分としては、各種公知の不飽和脂肪酸、例えばω-3、ω-6、ω-9等の不飽和脂肪酸が挙げられる。具体種としては、例えば、ステアリン酸、ソルビン酸、オレイン酸、リノール酸、ヒラゴ酸、エレオステアリン酸、プニカ酸、リノレン酸、モロクチ酸、アラキドン酸等が挙げられる。これらの中でも溶融ハンダの濡れ性等をより向上させ得る観点から、不飽和脂肪酸(C)の炭素数(但し、カルボキシル基の炭素を除く。)が約6以上約20以下であることが好ましく、16以上20以下の不飽和脂肪酸が好ましい。それらの中でも、特に、オレイン酸、リノール酸及びリノレン酸からなる群より選ばれる少なくとも1種が好ましい。なお、(C)成分に代えて上述の炭素数が約6以上約20以下の飽和脂肪酸(例えばステアリン酸)を用いることは、本実施形態に係る導電性ペーストの粘度が経時的に増大しやすくなる傾向にあるため、好ましくない。
In addition, as the component (C), various known unsaturated fatty acids, for example, unsaturated fatty acids such as ω-3, ω-6, ω-9 and the like can be mentioned. Specific examples include stearic acid, sorbic acid, oleic acid, linoleic acid, hiragoic acid, eleostearic acid, punicic acid, linolenic acid, moloctic acid, arachidonic acid, and the like. Among these, from the viewpoint of further improving the wettability and the like of the molten solder, the number of carbon atoms of the unsaturated fatty acid (C) (excluding the carbon of the carboxyl group) is preferably from about 6 to about 20; 16 to 20 unsaturated fatty acids are preferred. Among these, at least one selected from the group consisting of oleic acid, linoleic acid and linolenic acid is particularly preferable. In addition, it is easy to increase the viscosity of the electrically conductive paste which concerns on this embodiment over time that it replaces with (C) component and uses the above-mentioned saturated fatty acid (for example, stearic acid) about 6-20 carbon atoms. This is not preferable.
なお、(C)成分の使用により濡れ性が改善される理由は明らかでない。しかしながら、おそらく本実施形態の導電ペーストを加熱した際に、その不飽和結合が(B)成分に作用し、(B)成分からなる連続相の硬度が高まる結果、電極内部への液状化フラックスの拡散浸透を抑制できるためではないかと考えられる。
The reason why the wettability is improved by using the component (C) is not clear. However, when the conductive paste of this embodiment is heated, the unsaturated bond acts on the component (B), and the hardness of the continuous phase composed of the component (B) is increased. As a result, the liquefied flux into the electrode is reduced. This may be because diffusion and penetration can be suppressed.
また、(D)成分としては、例えば、エタノール、n-プロパノール、イソプロパノール、イソブタノール等の脂肪族アルコール類;ターピオネール等のテルペノール類;ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、ブチルカルビトール、ヘキシルカルビトール等のグリコールエーテル類;酢酸イソプロピル、プロピオン酸エチル、安息香酸ブチル、アジピン酸ジエチル等のエステル類;n-ヘキサン、ドデカン、テトラデセン等の炭化水素類などが挙げられる。これらは、1種を単独で、あるいは2種以上を組み合わせて用いることができる。また、(D)成分の中でも特に上述のグリコールエーテル類及び/又はテルペノール類を用いることは、本実施形態に係る導電性ペーストが経時的に増粘し難くなるため好ましい。特に、テルペノール類は、(B)成分と(C)成分が反応して生じる高分子量の樹脂を溶解すると考えられるため、本実施形態に係る導電性ペーストの増粘の抑制に有効である。
Examples of the component (D) include aliphatic alcohols such as ethanol, n-propanol, isopropanol, and isobutanol; terpenols such as terpionol; diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, diethylene glycol monoethyl ether acetate, Glycol ethers such as diethylene glycol monobutyl ether acetate, butyl carbitol and hexyl carbitol; esters such as isopropyl acetate, ethyl propionate, butyl benzoate and diethyl adipate; hydrocarbons such as n-hexane, dodecane and tetradecene Is mentioned. These can be used alone or in combination of two or more. Moreover, it is preferable to use the above-mentioned glycol ethers and / or terpenols among the component (D) because the conductive paste according to the present embodiment is difficult to thicken with time. In particular, since terpenols are considered to dissolve a high molecular weight resin produced by the reaction between the component (B) and the component (C), they are effective in suppressing the thickening of the conductive paste according to this embodiment.
本実施形態の導電ペーストにおける(A)成分の含有量(即ち、フィラー成分の含有量。)は特に限定されないが、電気伝導性や基材との密着性等を考慮すると、(D)成分を除いたペースト全体を1体積分率としたときに、約0.3以上約0.7以下であることが好ましく、約0.4以上約0.65以下であることがより好ましい。さらに好ましい範囲は、約0.45以上約0.6以下である。
The content of the component (A) in the conductive paste of the present embodiment (that is, the content of the filler component) is not particularly limited, but considering the electrical conductivity and adhesion to the substrate, the component (D) When the whole paste is taken as one volume fraction, it is preferably about 0.3 or more and about 0.7 or less, more preferably about 0.4 or more and about 0.65 or less. A more preferable range is about 0.45 or more and about 0.6 or less.
また、本実施形態の導電ペーストにおける(B)成分及び(C)成分の含有量(即ち、バインダー成分の含有量。)は特に限定されない。ただし、電気伝導性や基材との密着性等を考慮すると、(D)成分を除いたペースト全体を1体積分率としたときに、約0.7以上約0.3以下であることが好ましく、約0.65以上約0.4以下であることがより好ましい。さらに好ましい範囲は、約0.6以上約0.45以下である。
Moreover, the content of the component (B) and the component (C) in the conductive paste of the present embodiment (that is, the content of the binder component) is not particularly limited. However, in consideration of electrical conductivity, adhesion to the base material, etc., when the whole paste excluding the component (D) is defined as one volume fraction, it may be about 0.7 or more and about 0.3 or less. Preferably, it is about 0.65 or more and about 0.4 or less. A more preferable range is about 0.6 or more and about 0.45 or less.
また、本実施形態の導電ペーストにおける(A)成分~(D)成分の含有量は特に限定されないが、本実施形態の作用効果を好ましい程度にするうえで、通常、(A)成分を100重量部(固形分換算)とした場合において、(B)成分、(C)成分及び(D)成分の含有量が以下のとおりとなるのが、当該ペーストの粘度安定性および印刷適性、ならびに当該ペーストからなる硬化物の導電性などの観点から好ましい。
(B)成分:約3重量部以上約30重量部以下、好ましくは約5重量部以上約20重量部以下
(C)成分:約0.01重量部以上約5重量部以下、好ましくは約0.03重量部以上約2.5重量部以下
(D)成分:約3重量部以上約50重量部以下、好ましくは約5重量部以上約30重量部以下 Further, the content of the component (A) to the component (D) in the conductive paste of the present embodiment is not particularly limited. However, in order to obtain the effect of the present embodiment to a preferable level, the component (A) is usually added in an amount of 100% by weight. Parts (B), (C) component, and (D) component content is as follows, the viscosity stability and printability of the paste, and the paste This is preferable from the viewpoint of the conductivity of the cured product.
Component (B): about 3 to about 30 parts by weight, preferably about 5 to about 20 parts by weight (C) Component: about 0.01 to about 5 parts by weight, preferably about 0 0.03 to about 2.5 parts by weight Component (D): about 3 to about 50 parts by weight, preferably about 5 to about 30 parts by weight
(B)成分:約3重量部以上約30重量部以下、好ましくは約5重量部以上約20重量部以下
(C)成分:約0.01重量部以上約5重量部以下、好ましくは約0.03重量部以上約2.5重量部以下
(D)成分:約3重量部以上約50重量部以下、好ましくは約5重量部以上約30重量部以下 Further, the content of the component (A) to the component (D) in the conductive paste of the present embodiment is not particularly limited. However, in order to obtain the effect of the present embodiment to a preferable level, the component (A) is usually added in an amount of 100% by weight. Parts (B), (C) component, and (D) component content is as follows, the viscosity stability and printability of the paste, and the paste This is preferable from the viewpoint of the conductivity of the cured product.
Component (B): about 3 to about 30 parts by weight, preferably about 5 to about 20 parts by weight (C) Component: about 0.01 to about 5 parts by weight, preferably about 0 0.03 to about 2.5 parts by weight Component (D): about 3 to about 50 parts by weight, preferably about 5 to about 30 parts by weight
なお、本実施形態の導電ペーストには、必要に応じて、(B)成分の硬化促進剤((C)成分に相当するものを除く。)、チクソ剤、難燃化剤、粘度調整剤、レベリング剤、酸化防止剤、可塑剤、活性剤、カップリング剤等の添加剤を配合できる。例えば、カップリング剤は、本実施形態の導電ペーストと基材との密着性を高める目的で利用できる。カップリング剤の一例として、シラン系カップリング剤、チタン系カップリング剤、ジルコニウム系カップリング剤、アルミニウム系カップリング剤、クロム系カップリング等が挙げられる。
In addition, in the conductive paste of this embodiment, the curing accelerator (excluding the component corresponding to the component (C)), a thixotropic agent, a flame retardant, a viscosity modifier, Additives such as leveling agents, antioxidants, plasticizers, activators, and coupling agents can be blended. For example, the coupling agent can be used for the purpose of improving the adhesion between the conductive paste of this embodiment and the substrate. Examples of the coupling agent include a silane coupling agent, a titanium coupling agent, a zirconium coupling agent, an aluminum coupling agent, and a chromium coupling.
本実施形態の導電ペーストは、上記各成分を、回転撹拌機やプラネタリー混練機、3本ロール等の公知器具により混練・混合することにより得ることができる。また、得られるペーストの粘度は特に限定されない。ただし、ブルックフィールド粘度計による10rpm(25℃)における値が約0.1Pa・s以上約300Pa・s以下となる範囲が採用されることが好ましい。
The conductive paste of the present embodiment can be obtained by kneading and mixing the above components with a known apparatus such as a rotary stirrer, a planetary kneader, or a three roll. Moreover, the viscosity of the paste obtained is not specifically limited. However, it is preferable that a range in which the value at 10 rpm (25 ° C.) by the Brookfield viscometer is about 0.1 Pa · s to about 300 Pa · s is adopted.
本実施形態の硬化物は、本実施形態の導電ペーストを各種基材に塗工し、加熱下に(D)成分を揮発させることによって得られる。加熱条件は特に限定されない。ただし、加熱温度は約130以上約200℃以下であることが好ましく、加熱時間は約0.2時間以上約2時間以下であることが好ましい。
The cured product of the present embodiment is obtained by applying the conductive paste of the present embodiment to various base materials and volatilizing the component (D) under heating. The heating conditions are not particularly limited. However, the heating temperature is preferably from about 130 to about 200 ° C., and the heating time is preferably from about 0.2 hours to about 2 hours.
基材の種類も、特に限定されない。本実施形態の導電ペーストは非焼結タイプのものであるため、チップコンデンサなどのセラミック電子部品用の電極としてセラミック素地を基材として適用できるばかりでなく、ガラス等の基材や、ガラスエポキシ樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリエステル樹脂等の樹脂基材等にも本実施形態の導電ペーストが適用できる。
The type of base material is not particularly limited. Since the conductive paste of the present embodiment is of a non-sintered type, not only can a ceramic substrate be used as a base material as an electrode for a ceramic electronic component such as a chip capacitor, but also a base material such as glass or a glass epoxy resin The conductive paste of this embodiment can also be applied to resin base materials such as polyamide resin, polyimide resin, and polyester resin.
塗工方法も特に限定されない。本実施形態の導電ペーストの用途やその粘度等によって、例えばスクリーン印刷やディスペンサー等の各種塗工手段を採用できる。なお、本実施形態の導電ペーストは重ね塗りすることにより厚膜化させることも可能である。
The coating method is not particularly limited. Various coating means such as screen printing and dispenser can be employed depending on the use of the conductive paste of the present embodiment, its viscosity, and the like. Note that the conductive paste of this embodiment can be thickened by recoating.
本実施形態の導電ペーストから得られる硬化物の形状も特に限定されない。例えば、その硬化物は、平面状(円状、多角形状等)、線状のいずれであってもよい。線状の硬化物の例としては、プリント配線基板上に線状に形成した配線回路等が挙げられる。
The shape of the cured product obtained from the conductive paste of the present embodiment is not particularly limited. For example, the cured product may be planar (circular, polygonal, etc.) or linear. Examples of the linear cured product include a wiring circuit formed linearly on a printed wiring board.
加えて、上述の実施形態の導電ペーストは、主に電子部品に直接塗布された電極として有用である。本実施形態の電子デバイスは、上述の硬化物上、又は上述の電極上に、ハンダペーストによってハンダ付けされた各種の電子部品を載置する。
In addition, the conductive paste of the above-described embodiment is useful mainly as an electrode applied directly to an electronic component. In the electronic device of the present embodiment, various electronic components soldered with a solder paste are placed on the above-described cured product or the above-described electrode.
ハンダペーストに用いるハンダ金属、鉛含有ハンダ、及び鉛フリーハンダのいずれであってもよい。鉛フリーハンダとしては、例えば、Sn-Pb系[Sn-35Pb等]、Sn-Ag系〔Sn-3.5Ag等〕、Sn-Cu系〔Sn-0.7Cu等〕、Sn-Ag-Cu系〔Sn-3Ag-0.5Cu等〕の鉛粉末を使用できる。すなわち、ハンダペーストに用いるハンダ粉末が、スズ系鉛フリーハンダ粉末であることは環境保全の観点から好適な一態様である。なお、これらハンダ粉末にはIn、Bi、Ge等の金属元素が含まれていてよい。
<実施例> Any of solder metal, lead-containing solder, and lead-free solder used in the solder paste may be used. Examples of lead-free solder include Sn—Pb (Sn-35Pb, etc.), Sn—Ag (Sn—3.5Ag, etc.), Sn—Cu (Sn—0.7Cu, etc.), Sn—Ag—Cu. Lead powder of the system [Sn-3Ag-0.5Cu etc.] can be used. That is, it is a preferred embodiment from the viewpoint of environmental protection that the solder powder used for the solder paste is a tin-based lead-free solder powder. Note that these solder powders may contain metal elements such as In, Bi, and Ge.
<Example>
<実施例> Any of solder metal, lead-containing solder, and lead-free solder used in the solder paste may be used. Examples of lead-free solder include Sn—Pb (Sn-35Pb, etc.), Sn—Ag (Sn—3.5Ag, etc.), Sn—Cu (Sn—0.7Cu, etc.), Sn—Ag—Cu. Lead powder of the system [Sn-3Ag-0.5Cu etc.] can be used. That is, it is a preferred embodiment from the viewpoint of environmental protection that the solder powder used for the solder paste is a tin-based lead-free solder powder. Note that these solder powders may contain metal elements such as In, Bi, and Ge.
<Example>
以下、各実施例を通じて本実施形態について具体的に説明するが、言うまでもなく、それらによって上述の実施形態の範囲は限定されない。なお、表1は、以下の実施例、及び比較例の諸条件の一覧表である。
Hereinafter, the present embodiment will be specifically described through each example, but needless to say, the scope of the above-described embodiment is not limited by these. Table 1 is a list of conditions for the following examples and comparative examples.
<(A)成分の調製>
実施例1
表1に示すように、以下の(a1)成分を20体積%とし、(a2)成分を80体積%となるように混合することにより、(A)成分を調製した。
(a1)成分:市販の平板状銀被覆銅粉末(商品名「HP0420M1」、喜星金属製、銀シェル層厚約0.28μm、球換算平均一次粒子径約8μm、99%累積粒度径D99約40μm)
(a2)成分:球状の銀被覆銅粉末(商品名「1400Y」、三井金属鉱業(株)製;球換算平均一次粒子径約6μm、99%累積粒度径D99約12μm) <Preparation of component (A)>
Example 1
As shown in Table 1, component (A) was prepared by mixing 20% by volume of component (a1) below and 80% by volume of component (a2).
Component (a1): Commercially available tabular silver-coated copper powder (trade name “HP0420M1”, manufactured by Kisei Metals, silver shell layer thickness of about 0.28 μm, sphere-converted average primary particle size of about 8 μm, 99% cumulative particle size of about D99 40μm)
Component (a2): Spherical silver-coated copper powder (trade name “1400Y”, manufactured by Mitsui Mining & Smelting Co., Ltd .; sphere equivalent average primary particle size of about 6 μm, 99% cumulative particle size D99 of about 12 μm)
実施例1
表1に示すように、以下の(a1)成分を20体積%とし、(a2)成分を80体積%となるように混合することにより、(A)成分を調製した。
(a1)成分:市販の平板状銀被覆銅粉末(商品名「HP0420M1」、喜星金属製、銀シェル層厚約0.28μm、球換算平均一次粒子径約8μm、99%累積粒度径D99約40μm)
(a2)成分:球状の銀被覆銅粉末(商品名「1400Y」、三井金属鉱業(株)製;球換算平均一次粒子径約6μm、99%累積粒度径D99約12μm) <Preparation of component (A)>
Example 1
As shown in Table 1, component (A) was prepared by mixing 20% by volume of component (a1) below and 80% by volume of component (a2).
Component (a1): Commercially available tabular silver-coated copper powder (trade name “HP0420M1”, manufactured by Kisei Metals, silver shell layer thickness of about 0.28 μm, sphere-converted average primary particle size of about 8 μm, 99% cumulative particle size of about D99 40μm)
Component (a2): Spherical silver-coated copper powder (trade name “1400Y”, manufactured by Mitsui Mining & Smelting Co., Ltd .; sphere equivalent average primary particle size of about 6 μm, 99% cumulative particle size D99 of about 12 μm)
ついで、当該(A)成分を85部(うち、(a1)成分17部、及び(a2)成分68部)、(B)成分として市販レゾール型フェノール樹脂(商品名「BRL-275」、昭和高分子(株)製))を8.91部、(C)成分としてオレイン酸(和光純薬工業(株)製)を0.09部、並びに(D)成分であるジエチレングリコールモノエチルエーテルアセテート(以下、DEGAという。)を6部、プラネタリー混練機にてよく混合した。その後、さらに3本ロールにて混練することによって、導電ペーストを調製した。なお、当該導電ペーストにおける、(D)成分を除いた場合の(A)成分の体積%は、表1に示すように50.9%であった。また、(B)成分及び(C)成分の体積%は、49.1であった。
Next, 85 parts (of which 17 parts of (a1) component and 68 parts of (a2) component) are included as the component (A), and a commercially available resol type phenol resin (trade name “BRL-275”, Molecules Co., Ltd.)) 8.91 parts, (C) component oleic acid (Wako Pure Chemical Industries, Ltd.) 0.09 parts, and (D) component diethylene glycol monoethyl ether acetate (hereinafter referred to as “C” component) , DEGA) was mixed well in a planetary kneader. Then, the electrically conductive paste was prepared by knead | mixing with 3 rolls further. In addition, as shown in Table 1, the volume% of the component (A) when the component (D) was excluded in the conductive paste was 50.9%. Moreover, the volume% of (B) component and (C) component was 49.1.
実施例2
実施例1において、オレイン酸に代えてリノール酸を使用した他は、実施例1と同様にして導電ペーストを調製した。 Example 2
A conductive paste was prepared in the same manner as in Example 1 except that linoleic acid was used instead of oleic acid in Example 1.
実施例1において、オレイン酸に代えてリノール酸を使用した他は、実施例1と同様にして導電ペーストを調製した。 Example 2
A conductive paste was prepared in the same manner as in Example 1 except that linoleic acid was used instead of oleic acid in Example 1.
実施例3
実施例1において、オレイン酸に代えてリノレン酸を使用した他は、実施例1と同様にして導電ペーストを調製した。 Example 3
A conductive paste was prepared in the same manner as in Example 1 except that linolenic acid was used in place of oleic acid in Example 1.
実施例1において、オレイン酸に代えてリノレン酸を使用した他は、実施例1と同様にして導電ペーストを調製した。 Example 3
A conductive paste was prepared in the same manner as in Example 1 except that linolenic acid was used in place of oleic acid in Example 1.
実施例4
実施例1において、(a1)成分としてコアに対するシェルの厚みが0.15μmであり、球換算平均一次粒子径が約8μmであり、99%累積粒度径D99が約40μmである平板状銀被覆銅粒子を用いた他は、実施例1と同様にして導電ペーストを調製した。 Example 4
In Example 1, as the component (a1), the thickness of the shell relative to the core is 0.15 μm, the sphere-converted average primary particle diameter is about 8 μm, and the 99% cumulative particle diameter D99 is about 40 μm. A conductive paste was prepared in the same manner as in Example 1 except that the particles were used.
実施例1において、(a1)成分としてコアに対するシェルの厚みが0.15μmであり、球換算平均一次粒子径が約8μmであり、99%累積粒度径D99が約40μmである平板状銀被覆銅粒子を用いた他は、実施例1と同様にして導電ペーストを調製した。 Example 4
In Example 1, as the component (a1), the thickness of the shell relative to the core is 0.15 μm, the sphere-converted average primary particle diameter is about 8 μm, and the 99% cumulative particle diameter D99 is about 40 μm. A conductive paste was prepared in the same manner as in Example 1 except that the particles were used.
実施例5
実施例1において、(a1)成分として、コアに対するシェルの厚みが0.5μmであり、球換算平均一次粒子径が約9μmであり、99%累積粒度径D99が約41μmである平板状銀被覆銅粒子を用いた他は、実施例1と同様にして導電ペーストを調製した。 Example 5
In Example 1, as the component (a1), a plate-like silver coating having a shell thickness with respect to the core of 0.5 μm, a sphere-converted average primary particle size of about 9 μm, and a 99% cumulative particle size D99 of about 41 μm A conductive paste was prepared in the same manner as in Example 1 except that copper particles were used.
実施例1において、(a1)成分として、コアに対するシェルの厚みが0.5μmであり、球換算平均一次粒子径が約9μmであり、99%累積粒度径D99が約41μmである平板状銀被覆銅粒子を用いた他は、実施例1と同様にして導電ペーストを調製した。 Example 5
In Example 1, as the component (a1), a plate-like silver coating having a shell thickness with respect to the core of 0.5 μm, a sphere-converted average primary particle size of about 9 μm, and a 99% cumulative particle size D99 of about 41 μm A conductive paste was prepared in the same manner as in Example 1 except that copper particles were used.
実施例6
実施例1において、(a1)成分として、コアに対するシェルの厚みが0.75μmであり、球換算平均一次粒子径が約9μmであり、99%累積粒度径D99が約41μmである平板状銀被覆銅粒子を用いた他は、実施例1と同様にして導電ペーストを調製した。 Example 6
In Example 1, as the component (a1), a plate-like silver coating having a shell thickness with respect to the core of 0.75 μm, a sphere-converted average primary particle size of about 9 μm, and a 99% cumulative particle size D99 of about 41 μm A conductive paste was prepared in the same manner as in Example 1 except that copper particles were used.
実施例1において、(a1)成分として、コアに対するシェルの厚みが0.75μmであり、球換算平均一次粒子径が約9μmであり、99%累積粒度径D99が約41μmである平板状銀被覆銅粒子を用いた他は、実施例1と同様にして導電ペーストを調製した。 Example 6
In Example 1, as the component (a1), a plate-like silver coating having a shell thickness with respect to the core of 0.75 μm, a sphere-converted average primary particle size of about 9 μm, and a 99% cumulative particle size D99 of about 41 μm A conductive paste was prepared in the same manner as in Example 1 except that copper particles were used.
実施例7~8
実施例1において、(B)成分及び(C)成分の部数を表1で示すように変更した他は、実施例1と同様にして導電ペーストを調製した。 Examples 7-8
A conductive paste was prepared in the same manner as in Example 1 except that the number of parts (B) and (C) was changed as shown in Table 1 in Example 1.
実施例1において、(B)成分及び(C)成分の部数を表1で示すように変更した他は、実施例1と同様にして導電ペーストを調製した。 Examples 7-8
A conductive paste was prepared in the same manner as in Example 1 except that the number of parts (B) and (C) was changed as shown in Table 1 in Example 1.
実施例9
実施例1において、(a1)成分として、コアに対するシェルの厚みが0.02μmであり、球換算粒子系が7μmであり、D99が40μmである平板状粒子を25部、(a2)成分として前記「1400Y」を60部用いた他は同様にして、導電ペーストを調製した。 Example 9
In Example 1, as the component (a1), the thickness of the shell relative to the core is 0.02 μm, the spherical particle system is 7 μm, and the tabular grains having D99 of 40 μm are 25 parts. A conductive paste was prepared in the same manner except that 60 parts of “1400Y” was used.
実施例1において、(a1)成分として、コアに対するシェルの厚みが0.02μmであり、球換算粒子系が7μmであり、D99が40μmである平板状粒子を25部、(a2)成分として前記「1400Y」を60部用いた他は同様にして、導電ペーストを調製した。 Example 9
In Example 1, as the component (a1), the thickness of the shell relative to the core is 0.02 μm, the spherical particle system is 7 μm, and the tabular grains having D99 of 40 μm are 25 parts. A conductive paste was prepared in the same manner except that 60 parts of “1400Y” was used.
実施例10~12
実施例1において、用いる(A)成分を表1に示すものに変更した他は実施例1と同様にして、導電ペーストを調製した。 Examples 10-12
A conductive paste was prepared in the same manner as in Example 1, except that the component (A) used in Example 1 was changed to that shown in Table 1.
実施例1において、用いる(A)成分を表1に示すものに変更した他は実施例1と同様にして、導電ペーストを調製した。 Examples 10-12
A conductive paste was prepared in the same manner as in Example 1, except that the component (A) used in Example 1 was changed to that shown in Table 1.
実施例13
実施例1において、以下の(a1)成分を10体積%とし、(a3)成分を90体積%
となるように混合することにより、(A)成分を調製した。
(a1)成分:市販の平板状銀被覆銅粉末(商品名「HP0420M1」)
(a3)成分:銅-ニッケル合金をコアとする球状の銀被覆粒子(シェル層の厚み約0.12μm、銅合金中のニッケルの含有量が14原子%、球換算平均一次粒子径約2μm、99%累積粒度径D99約8μm)
ついで、当該(A)成分を85部(うち、(a1)成分8.5部、および(a3)成分76.5部)、(B)成分として「BRL-275(商品名)」を8.91部、(C)成分としてオレイン酸を0.09部、ならびに(D)成分であるDEGAを6部、プラネタリー混練機にてよく混合した。その後、さらに3本ロールにて混練することによって、導電ペーストを調製した。 Example 13
In Example 1, the following component (a1) is 10% by volume, and component (a3) is 90% by volume.
(A) component was prepared by mixing so that it might become.
Component (a1): Commercially available flat silver-coated copper powder (trade name “HP0420M1”)
Component (a3): Spherical silver-coated particles having a copper-nickel alloy core (shell layer thickness of about 0.12 μm, content of nickel in the copper alloy is 14 atomic%, sphere-converted average primary particle size of about 2 μm, (99% cumulative particle size D99 approx. 8μm)
Next, 85 parts of the component (A) (of which 8.5 parts of the (a1) component and 76.5 parts of the (a3) component are included), and 8 parts of “BRL-275 (trade name)” are used as the (B) component. 91 parts, 0.09 part of oleic acid as component (C) and 6 parts of DEGA as component (D) were mixed well in a planetary kneader. Then, the electrically conductive paste was prepared by knead | mixing with 3 rolls further.
実施例1において、以下の(a1)成分を10体積%とし、(a3)成分を90体積%
となるように混合することにより、(A)成分を調製した。
(a1)成分:市販の平板状銀被覆銅粉末(商品名「HP0420M1」)
(a3)成分:銅-ニッケル合金をコアとする球状の銀被覆粒子(シェル層の厚み約0.12μm、銅合金中のニッケルの含有量が14原子%、球換算平均一次粒子径約2μm、99%累積粒度径D99約8μm)
ついで、当該(A)成分を85部(うち、(a1)成分8.5部、および(a3)成分76.5部)、(B)成分として「BRL-275(商品名)」を8.91部、(C)成分としてオレイン酸を0.09部、ならびに(D)成分であるDEGAを6部、プラネタリー混練機にてよく混合した。その後、さらに3本ロールにて混練することによって、導電ペーストを調製した。 Example 13
In Example 1, the following component (a1) is 10% by volume, and component (a3) is 90% by volume.
(A) component was prepared by mixing so that it might become.
Component (a1): Commercially available flat silver-coated copper powder (trade name “HP0420M1”)
Component (a3): Spherical silver-coated particles having a copper-nickel alloy core (shell layer thickness of about 0.12 μm, content of nickel in the copper alloy is 14 atomic%, sphere-converted average primary particle size of about 2 μm, (99% cumulative particle size D99 approx. 8μm)
Next, 85 parts of the component (A) (of which 8.5 parts of the (a1) component and 76.5 parts of the (a3) component are included), and 8 parts of “BRL-275 (trade name)” are used as the (B) component. 91 parts, 0.09 part of oleic acid as component (C) and 6 parts of DEGA as component (D) were mixed well in a planetary kneader. Then, the electrically conductive paste was prepared by knead | mixing with 3 rolls further.
実施例14
実施例13において、(a3)成分として銅-ニッケル合金をコアとする球状の銀被覆粒子(シェル層の厚み約0.12μm、銅合金中のニッケルの含有量が6原子%、球換算平均一次粒子径約2μm、99%累積粒度径D99約8μm)を用いた他は、実施例13と同様にして、導電ペーストを調製した。 Example 14
In Example 13, spherical silver-coated particles having a copper-nickel alloy core as the component (a3) (shell layer thickness of about 0.12 μm, nickel content in the copper alloy of 6 atomic%, sphere-converted average primary A conductive paste was prepared in the same manner as in Example 13 except that the particle size was about 2 μm and the 99% cumulative particle size D99 was about 8 μm.
実施例13において、(a3)成分として銅-ニッケル合金をコアとする球状の銀被覆粒子(シェル層の厚み約0.12μm、銅合金中のニッケルの含有量が6原子%、球換算平均一次粒子径約2μm、99%累積粒度径D99約8μm)を用いた他は、実施例13と同様にして、導電ペーストを調製した。 Example 14
In Example 13, spherical silver-coated particles having a copper-nickel alloy core as the component (a3) (shell layer thickness of about 0.12 μm, nickel content in the copper alloy of 6 atomic%, sphere-converted average primary A conductive paste was prepared in the same manner as in Example 13 except that the particle size was about 2 μm and the 99% cumulative particle size D99 was about 8 μm.
実施例15
実施例13において、(a3)成分として銅-ニッケル合金をコアとする球状の銀被覆粒子(シェル層の厚み約0.12μm、銅合金中のニッケルの含有量が1.3原子%、球換算平均一次粒子径約2μm、99%累積粒度径D99約8μm)を用いた他は、実施例13と同様にして、導電ペーストを調製した。 Example 15
In Example 13, spherical silver-coated particles having a copper-nickel alloy core as the component (a3) (shell layer thickness of about 0.12 μm, nickel content in the copper alloy is 1.3 atomic%, sphere equivalent) A conductive paste was prepared in the same manner as in Example 13, except that the average primary particle size was about 2 μm and the 99% cumulative particle size D99 was about 8 μm.
実施例13において、(a3)成分として銅-ニッケル合金をコアとする球状の銀被覆粒子(シェル層の厚み約0.12μm、銅合金中のニッケルの含有量が1.3原子%、球換算平均一次粒子径約2μm、99%累積粒度径D99約8μm)を用いた他は、実施例13と同様にして、導電ペーストを調製した。 Example 15
In Example 13, spherical silver-coated particles having a copper-nickel alloy core as the component (a3) (shell layer thickness of about 0.12 μm, nickel content in the copper alloy is 1.3 atomic%, sphere equivalent) A conductive paste was prepared in the same manner as in Example 13, except that the average primary particle size was about 2 μm and the 99% cumulative particle size D99 was about 8 μm.
実施例16
実施例13において、(a3)成分として銅-亜鉛合金をコアとする球状の銀被覆粒子(シェル層の厚み約0.12μm、銅合金中の亜鉛の含有量が5.3原子%、球換算平均一次粒子径約2μm、99%累積粒度径D99約10μm)を用いた他は、実施例13と同様にして、導電ペーストを調製した。 Example 16
In Example 13, spherical silver-coated particles having a copper-zinc alloy core as the component (a3) (shell layer thickness of about 0.12 μm, zinc content in the copper alloy is 5.3 atomic%, sphere equivalent) A conductive paste was prepared in the same manner as in Example 13 except that the average primary particle size was about 2 μm and the 99% cumulative particle size D99 was about 10 μm.
実施例13において、(a3)成分として銅-亜鉛合金をコアとする球状の銀被覆粒子(シェル層の厚み約0.12μm、銅合金中の亜鉛の含有量が5.3原子%、球換算平均一次粒子径約2μm、99%累積粒度径D99約10μm)を用いた他は、実施例13と同様にして、導電ペーストを調製した。 Example 16
In Example 13, spherical silver-coated particles having a copper-zinc alloy core as the component (a3) (shell layer thickness of about 0.12 μm, zinc content in the copper alloy is 5.3 atomic%, sphere equivalent) A conductive paste was prepared in the same manner as in Example 13 except that the average primary particle size was about 2 μm and the 99% cumulative particle size D99 was about 10 μm.
実施例17
実施例13において、(a3)成分として銅-ニッケル-亜鉛合金をコアとする球状の銀被覆粒子(シェル層の厚み約0.12μm、銅合金中のニッケルおよび亜鉛の含有量がそれぞれ7.7原子%、6.9原子%、球換算平均一次粒子径約3μm、99%累積粒度径D99約9μm)を用いた他は、実施例13と同様にして、導電ペーストを調製した。 Example 17
In Example 13, spherical silver-coated particles having a copper-nickel-zinc alloy core as the component (a3) (shell layer thickness of about 0.12 μm, and the contents of nickel and zinc in the copper alloy were 7.7 respectively) A conductive paste was prepared in the same manner as in Example 13 except that atomic percent, 6.9 atomic percent, sphere-converted average primary particle size of about 3 μm, and 99% cumulative particle size D99 of about 9 μm were used.
実施例13において、(a3)成分として銅-ニッケル-亜鉛合金をコアとする球状の銀被覆粒子(シェル層の厚み約0.12μm、銅合金中のニッケルおよび亜鉛の含有量がそれぞれ7.7原子%、6.9原子%、球換算平均一次粒子径約3μm、99%累積粒度径D99約9μm)を用いた他は、実施例13と同様にして、導電ペーストを調製した。 Example 17
In Example 13, spherical silver-coated particles having a copper-nickel-zinc alloy core as the component (a3) (shell layer thickness of about 0.12 μm, and the contents of nickel and zinc in the copper alloy were 7.7 respectively) A conductive paste was prepared in the same manner as in Example 13 except that atomic percent, 6.9 atomic percent, sphere-converted average primary particle size of about 3 μm, and 99% cumulative particle size D99 of about 9 μm were used.
実施例18~19
実施例13に示す(a3)成分を採用した上で、実施例1に示す(a2)成分を加え、それぞれ表1に示す割合に調整した他は、実施例13と同様にして、導電ペーストを調製した。 Examples 18-19
In the same manner as in Example 13, except that the component (a3) shown in Example 13 was adopted, the component (a2) shown in Example 1 was added, and the ratio was adjusted to the values shown in Table 1, respectively. Prepared.
実施例13に示す(a3)成分を採用した上で、実施例1に示す(a2)成分を加え、それぞれ表1に示す割合に調整した他は、実施例13と同様にして、導電ペーストを調製した。 Examples 18-19
In the same manner as in Example 13, except that the component (a3) shown in Example 13 was adopted, the component (a2) shown in Example 1 was added, and the ratio was adjusted to the values shown in Table 1, respectively. Prepared.
実施例20
実施例13に示す(a3)成分を採用し、(a4)成分として、市販の銀粒子(商品名:AGC-239、福田金属箔粉工業(株)製、平均一次粒子径約8μm、D99約40μm)を加えた上で、それぞれ表1に示す割合に調整した他は、実施例13と同様にして、導電ペーストを調製した。 Example 20
The component (a3) shown in Example 13 was employed, and as the component (a4), commercially available silver particles (trade name: AGC-239, manufactured by Fukuda Metal Foil Powder Co., Ltd., average primary particle size: about 8 μm, D99: 40 μm) was added, and the conductive paste was prepared in the same manner as in Example 13 except that the ratio was adjusted to the ratio shown in Table 1.
実施例13に示す(a3)成分を採用し、(a4)成分として、市販の銀粒子(商品名:AGC-239、福田金属箔粉工業(株)製、平均一次粒子径約8μm、D99約40μm)を加えた上で、それぞれ表1に示す割合に調整した他は、実施例13と同様にして、導電ペーストを調製した。 Example 20
The component (a3) shown in Example 13 was employed, and as the component (a4), commercially available silver particles (trade name: AGC-239, manufactured by Fukuda Metal Foil Powder Co., Ltd., average primary particle size: about 8 μm, D99: 40 μm) was added, and the conductive paste was prepared in the same manner as in Example 13 except that the ratio was adjusted to the ratio shown in Table 1.
実施例21
実施例13に示す(a3)成分を採用し、(a4)成分として前記「AGC-239」、および(D)成分として、DEGA6部及びターピオネール2部を加えた上で、それぞれ表1に示す割合に調整した他は、実施例13と同様にして、導電ペーストを調製した。 Example 21
The component (a3) shown in Example 13 was employed, the above-mentioned “AGC-239” was added as the component (a4), and 6 parts of DEGA and 2 parts of terpionol were added as the component (D), and the results are shown in Table 1. A conductive paste was prepared in the same manner as in Example 13 except that the ratio was adjusted.
実施例13に示す(a3)成分を採用し、(a4)成分として前記「AGC-239」、および(D)成分として、DEGA6部及びターピオネール2部を加えた上で、それぞれ表1に示す割合に調整した他は、実施例13と同様にして、導電ペーストを調製した。 Example 21
The component (a3) shown in Example 13 was employed, the above-mentioned “AGC-239” was added as the component (a4), and 6 parts of DEGA and 2 parts of terpionol were added as the component (D), and the results are shown in Table 1. A conductive paste was prepared in the same manner as in Example 13 except that the ratio was adjusted.
比較例1
実施例1において、(a1)成分及び(a2)成分の双方に代えて、市販の銀粒子(商品名:AGC-239、福田金属箔粉工業(株)製、平均一次粒子径約8μm、D99約40μm。表1中、(a4)成分として示す。)を用いた他は、実施例1と同様にして導電ペーストを調製した。 Comparative Example 1
In Example 1, instead of both the component (a1) and the component (a2), commercially available silver particles (trade name: AGC-239, manufactured by Fukuda Metal Foil Powder Co., Ltd., average primary particle size of about 8 μm, D99) About 40 μm A conductive paste was prepared in the same manner as in Example 1 except that (shown as component (a4) in Table 1) was used.
実施例1において、(a1)成分及び(a2)成分の双方に代えて、市販の銀粒子(商品名:AGC-239、福田金属箔粉工業(株)製、平均一次粒子径約8μm、D99約40μm。表1中、(a4)成分として示す。)を用いた他は、実施例1と同様にして導電ペーストを調製した。 Comparative Example 1
In Example 1, instead of both the component (a1) and the component (a2), commercially available silver particles (trade name: AGC-239, manufactured by Fukuda Metal Foil Powder Co., Ltd., average primary particle size of about 8 μm, D99) About 40 μm A conductive paste was prepared in the same manner as in Example 1 except that (shown as component (a4) in Table 1) was used.
比較例2
実施例1において、(B)成分の量を9部に変更し、かつ(C)成分を使用しなかった他は、実施例1と同様にして、導電ペーストを調製した。 Comparative Example 2
In Example 1, the electrically conductive paste was prepared like Example 1 except having changed the quantity of (B) component into 9 parts and not using (C) component.
実施例1において、(B)成分の量を9部に変更し、かつ(C)成分を使用しなかった他は、実施例1と同様にして、導電ペーストを調製した。 Comparative Example 2
In Example 1, the electrically conductive paste was prepared like Example 1 except having changed the quantity of (B) component into 9 parts and not using (C) component.
比較例3
実施例1において、(a1)成分に代えて、銀シェル層の厚みが0.009μmである市販の平板状銀被覆銅粒子(球換算平均一次粒子径約8μm、D99約40μm)を用いた他は、実施例1と同様にして、導電ペーストを調製した。 Comparative Example 3
In Example 1, instead of the component (a1), commercially available tabular silver-coated copper particles having a silver shell layer thickness of 0.009 μm (sphere-converted average primary particle diameter of about 8 μm, D99 of about 40 μm) were used. Prepared a conductive paste in the same manner as in Example 1.
実施例1において、(a1)成分に代えて、銀シェル層の厚みが0.009μmである市販の平板状銀被覆銅粒子(球換算平均一次粒子径約8μm、D99約40μm)を用いた他は、実施例1と同様にして、導電ペーストを調製した。 Comparative Example 3
In Example 1, instead of the component (a1), commercially available tabular silver-coated copper particles having a silver shell layer thickness of 0.009 μm (sphere-converted average primary particle diameter of about 8 μm, D99 of about 40 μm) were used. Prepared a conductive paste in the same manner as in Example 1.
比較例4
実施例1において、(B)成分であるレゾール型フェノール樹脂に代えて、市販のエポキシ樹脂(商品名「jER828」、三菱樹脂(株)製)を用いた他は、実施例1と同様にして導電ペーストを調製した。 Comparative Example 4
In Example 1, it replaced with the resol type phenol resin which is (B) component, and replaced with the commercially available epoxy resin (Brand name "jER828", Mitsubishi Resin Co., Ltd. product). A conductive paste was prepared.
実施例1において、(B)成分であるレゾール型フェノール樹脂に代えて、市販のエポキシ樹脂(商品名「jER828」、三菱樹脂(株)製)を用いた他は、実施例1と同様にして導電ペーストを調製した。 Comparative Example 4
In Example 1, it replaced with the resol type phenol resin which is (B) component, and replaced with the commercially available epoxy resin (Brand name "jER828", Mitsubishi Resin Co., Ltd. product). A conductive paste was prepared.
比較例5~7
実施例1において、(a1)成分、(a2)成分、(B)成分、(C)成分及び(D)成分の使用量を表1で示すように変更した他は、実施例1と同様にして導電ペーストを調製した。 Comparative Examples 5-7
Example 1 was the same as Example 1 except that the amounts used of component (a1), component (a2), component (B), component (C) and component (D) were changed as shown in Table 1. A conductive paste was prepared.
実施例1において、(a1)成分、(a2)成分、(B)成分、(C)成分及び(D)成分の使用量を表1で示すように変更した他は、実施例1と同様にして導電ペーストを調製した。 Comparative Examples 5-7
Example 1 was the same as Example 1 except that the amounts used of component (a1), component (a2), component (B), component (C) and component (D) were changed as shown in Table 1. A conductive paste was prepared.
比較例8
実施例1において、(A)成分を85部(うち、(a1)成分0.05部、及び(a2)成分84.95部)、(B)成分として「BRL-275」を50.9部、(C)成分としてオレイン酸を0.09部、並びに(D)成分としてDEGAを6部、プラネタリー混練機にてよく混合した。その後、さらに3本ロールにて混練することによって、導電ペーストを調製した。なお、当該導電ペーストにおける、(D)成分を除いた場合の(A)成分の体積%は50.9%であった。また、(B)成分及び(C)成分の体積%は、49.1%であった。 Comparative Example 8
In Example 1, 85 parts of component (A) (of which 0.05 part of component (a1) and 84.95 parts of component (a2)) and 50.9 parts of “BRL-275” as component (B) Then, 0.09 part of oleic acid as component (C) and 6 parts of DEGA as component (D) were mixed well in a planetary kneader. Then, the electrically conductive paste was prepared by knead | mixing with 3 rolls further. In addition, the volume% of (A) component at the time of remove | excluding (D) component in the said electrically conductive paste was 50.9%. Moreover, the volume% of (B) component and (C) component was 49.1%.
実施例1において、(A)成分を85部(うち、(a1)成分0.05部、及び(a2)成分84.95部)、(B)成分として「BRL-275」を50.9部、(C)成分としてオレイン酸を0.09部、並びに(D)成分としてDEGAを6部、プラネタリー混練機にてよく混合した。その後、さらに3本ロールにて混練することによって、導電ペーストを調製した。なお、当該導電ペーストにおける、(D)成分を除いた場合の(A)成分の体積%は50.9%であった。また、(B)成分及び(C)成分の体積%は、49.1%であった。 Comparative Example 8
In Example 1, 85 parts of component (A) (of which 0.05 part of component (a1) and 84.95 parts of component (a2)) and 50.9 parts of “BRL-275” as component (B) Then, 0.09 part of oleic acid as component (C) and 6 parts of DEGA as component (D) were mixed well in a planetary kneader. Then, the electrically conductive paste was prepared by knead | mixing with 3 rolls further. In addition, the volume% of (A) component at the time of remove | excluding (D) component in the said electrically conductive paste was 50.9%. Moreover, the volume% of (B) component and (C) component was 49.1%.
<導電ペーストの粘度安定性の評価>
各実施例及び各比較例の各導電ペーストについて、調製直後の粘度と、25℃の恒温槽中で24時間保温した後の粘度とを、それぞれ市販のブルックフィールド方式粘度計(型式HBT)により測定し、以下に示す計算式に基づき、当該導電ペーストの増粘率を、以下の式により算出した。なお、測定は室温で行なった。 <Evaluation of viscosity stability of conductive paste>
About each electrically conductive paste of each Example and each comparative example, the viscosity immediately after preparation and the viscosity after being kept in a constant temperature bath at 25 ° C. for 24 hours are measured with a commercially available Brookfield viscometer (model HBT), respectively. And based on the formula shown below, the thickening rate of the said electrically conductive paste was computed with the following formula | equation. The measurement was performed at room temperature.
各実施例及び各比較例の各導電ペーストについて、調製直後の粘度と、25℃の恒温槽中で24時間保温した後の粘度とを、それぞれ市販のブルックフィールド方式粘度計(型式HBT)により測定し、以下に示す計算式に基づき、当該導電ペーストの増粘率を、以下の式により算出した。なお、測定は室温で行なった。 <Evaluation of viscosity stability of conductive paste>
About each electrically conductive paste of each Example and each comparative example, the viscosity immediately after preparation and the viscosity after being kept in a constant temperature bath at 25 ° C. for 24 hours are measured with a commercially available Brookfield viscometer (model HBT), respectively. And based on the formula shown below, the thickening rate of the said electrically conductive paste was computed with the following formula | equation. The measurement was performed at room temperature.
<計算式>
増粘率=〔(25℃、168時間保温後の10rpmでの粘度-導電ペースト調製直後の10rpmでの粘度)÷(導電ペースト調製直後の10rpmでの粘度)〕×100 <Calculation formula>
Thickening rate = [(viscosity at 10 rpm after incubation at 25 ° C. for 168 hours−viscosity at 10 rpm immediately after preparation of the conductive paste) ÷ (viscosity at 10 rpm immediately after preparation of the conductive paste)] × 100
増粘率=〔(25℃、168時間保温後の10rpmでの粘度-導電ペースト調製直後の10rpmでの粘度)÷(導電ペースト調製直後の10rpmでの粘度)〕×100 <Calculation formula>
Thickening rate = [(viscosity at 10 rpm after incubation at 25 ° C. for 168 hours−viscosity at 10 rpm immediately after preparation of the conductive paste) ÷ (viscosity at 10 rpm immediately after preparation of the conductive paste)] × 100
なお、上述の保温条件は温度加速試験を意図したものであり、本試験における増粘率は、0℃以上10℃以下の環境下で六か月程度保管した後の増粘率を概ね再現していると考えられる。また、増粘率は、以下の指標に基づいて評価した。
◎(極めて良好):増粘率が20%未満
○(良好):増粘率が20%以上50%以下
△(不良):増粘率が50%超
表1に示すように、ターピオネールを含有する実施例21の導電ペーストが極めて粘度安定性に優れていることが確認された点は、特筆に値する。 The above-mentioned heat retention conditions are intended for a temperature acceleration test, and the thickening rate in this test generally reproduces the thickening rate after storage for about 6 months in an environment of 0 ° C or higher and 10 ° C or lower. It is thought that. Moreover, the thickening rate was evaluated based on the following indicators.
◎ (Very good): Thickening rate is less than 20%. ○ (Good): Thickening rate is 20% or more and 50% or less. △ (Poor): Thickening rate is over 50%. It is worthy of special mention that the conductive paste of Example 21 contained was confirmed to be extremely excellent in viscosity stability.
◎(極めて良好):増粘率が20%未満
○(良好):増粘率が20%以上50%以下
△(不良):増粘率が50%超
表1に示すように、ターピオネールを含有する実施例21の導電ペーストが極めて粘度安定性に優れていることが確認された点は、特筆に値する。 The above-mentioned heat retention conditions are intended for a temperature acceleration test, and the thickening rate in this test generally reproduces the thickening rate after storage for about 6 months in an environment of 0 ° C or higher and 10 ° C or lower. It is thought that. Moreover, the thickening rate was evaluated based on the following indicators.
◎ (Very good): Thickening rate is less than 20%. ○ (Good): Thickening rate is 20% or more and 50% or less. △ (Poor): Thickening rate is over 50%. It is worthy of special mention that the conductive paste of Example 21 contained was confirmed to be extremely excellent in viscosity stability.
<電極の作製>
各実施例と各比較例の導電ペーストをそれぞれガラス基板(長さ約77mm×幅約27mm×厚さ約1.5mm)上に、ステンシルマスク(長さ約35mm×幅約22mm×厚さ約0.2mm)を用いて印刷した。この処理によって得られたガラス基板を恒温槽に入れ、150℃で30分加熱し、溶剤を揮発させるとともに、バインダー樹脂を硬化させることによって、硬化物(電極)を作製した。 <Production of electrode>
The conductive paste of each example and each comparative example was placed on a glass substrate (length: about 77 mm × width: about 27 mm × thickness: about 1.5 mm), and stencil mask (length: about 35 mm × width: about 22 mm × thickness: about 0). .2 mm). The glass substrate obtained by this treatment was placed in a thermostatic bath and heated at 150 ° C. for 30 minutes to volatilize the solvent and cure the binder resin to produce a cured product (electrode).
各実施例と各比較例の導電ペーストをそれぞれガラス基板(長さ約77mm×幅約27mm×厚さ約1.5mm)上に、ステンシルマスク(長さ約35mm×幅約22mm×厚さ約0.2mm)を用いて印刷した。この処理によって得られたガラス基板を恒温槽に入れ、150℃で30分加熱し、溶剤を揮発させるとともに、バインダー樹脂を硬化させることによって、硬化物(電極)を作製した。 <Production of electrode>
The conductive paste of each example and each comparative example was placed on a glass substrate (length: about 77 mm × width: about 27 mm × thickness: about 1.5 mm), and stencil mask (length: about 35 mm × width: about 22 mm × thickness: about 0). .2 mm). The glass substrate obtained by this treatment was placed in a thermostatic bath and heated at 150 ° C. for 30 minutes to volatilize the solvent and cure the binder resin to produce a cured product (electrode).
<電極の電気伝導性の評価>
各実施例と各比較例の各硬化物について、4端子(探針)法により室温における比抵抗を測定した。数値が小さいほど、電極の電気伝導性が良好であることを意味する。 <Evaluation of electrode electrical conductivity>
For each cured product of each example and each comparative example, the specific resistance at room temperature was measured by a four-terminal (probe) method. The smaller the value, the better the electrical conductivity of the electrode.
各実施例と各比較例の各硬化物について、4端子(探針)法により室温における比抵抗を測定した。数値が小さいほど、電極の電気伝導性が良好であることを意味する。 <Evaluation of electrode electrical conductivity>
For each cured product of each example and each comparative example, the specific resistance at room temperature was measured by a four-terminal (probe) method. The smaller the value, the better the electrical conductivity of the electrode.
<ハンダ付け、濡れ性評価>
実施例1に係る導電ペーストで形成した電極の上に、Sn-3Ag-0.5Cu合金のハンダペースト(商品名「VAPY LF219」、荒川化学工業(株)製)を、中央に6.5mmの孔のあるメタルステンシルマスク(長さ25×幅20×厚さ0.2mm)を用いて印刷した。次いで、大気中にて150℃で90秒間予備加熱し、更に240℃で本加熱することによりハンダを完全に溶融させた後、自然冷却させた。その後、ハンダ金属の濡れ広がりの様子を拡大鏡(10~20倍)またはデジタルマイクロスコープ(100~200倍)にて観察し、以下の基準で濡れ性を評価した。他の実施例及び比較例の電極についても同様にしてハンダ付を行い、それらの「濡れ性」を評価した。なお、「濡れ性」は、以下の指標に基づいて評価した。
○(良好):ハンダペーストが、ステンシル印刷した形状通りに溶融した。
△(限られた用途においては使用可能なレベル):ハンダ表面に凹凸が生じており、レベリング不良となった。
×(不良):電極上でハンダが凝集し、ハジかれた状態となった。 <Soldering, wettability evaluation>
A Sn-3Ag-0.5Cu alloy solder paste (trade name “VAPY LF219”, manufactured by Arakawa Chemical Industries, Ltd.) was placed on the electrode formed of the conductive paste according to Example 1 at a center of 6.5 mm. Printing was performed using a metal stencil mask with a hole (length 25 ×width 20 × thickness 0.2 mm). Next, the solder was preheated at 150 ° C. for 90 seconds in the air, and further heated at 240 ° C. to completely melt the solder, and then naturally cooled. Thereafter, the wetting and spreading of the solder metal was observed with a magnifier (10 to 20 times) or a digital microscope (100 to 200 times), and the wettability was evaluated according to the following criteria. The electrodes of other examples and comparative examples were also soldered in the same manner, and their “wetability” was evaluated. “Wettability” was evaluated based on the following indicators.
○ (Good): Solder paste melted according to the stencil-printed shape.
Δ (a level that can be used in limited applications): The solder surface has irregularities, resulting in poor leveling.
X (defect): Solder aggregated on the electrode, and it was in a state of being removed.
実施例1に係る導電ペーストで形成した電極の上に、Sn-3Ag-0.5Cu合金のハンダペースト(商品名「VAPY LF219」、荒川化学工業(株)製)を、中央に6.5mmの孔のあるメタルステンシルマスク(長さ25×幅20×厚さ0.2mm)を用いて印刷した。次いで、大気中にて150℃で90秒間予備加熱し、更に240℃で本加熱することによりハンダを完全に溶融させた後、自然冷却させた。その後、ハンダ金属の濡れ広がりの様子を拡大鏡(10~20倍)またはデジタルマイクロスコープ(100~200倍)にて観察し、以下の基準で濡れ性を評価した。他の実施例及び比較例の電極についても同様にしてハンダ付を行い、それらの「濡れ性」を評価した。なお、「濡れ性」は、以下の指標に基づいて評価した。
○(良好):ハンダペーストが、ステンシル印刷した形状通りに溶融した。
△(限られた用途においては使用可能なレベル):ハンダ表面に凹凸が生じており、レベリング不良となった。
×(不良):電極上でハンダが凝集し、ハジかれた状態となった。 <Soldering, wettability evaluation>
A Sn-3Ag-0.5Cu alloy solder paste (trade name “VAPY LF219”, manufactured by Arakawa Chemical Industries, Ltd.) was placed on the electrode formed of the conductive paste according to Example 1 at a center of 6.5 mm. Printing was performed using a metal stencil mask with a hole (length 25 ×
○ (Good): Solder paste melted according to the stencil-printed shape.
Δ (a level that can be used in limited applications): The solder surface has irregularities, resulting in poor leveling.
X (defect): Solder aggregated on the electrode, and it was in a state of being removed.
<溶融ハンダ金属とフラックスの浸透の評価>
各実施例及び各比較例のハンダ付け後のガラス基板を上面より観察し、溶融ハンダ金属とハンダフラックスの電極への浸透状態(拡散浸透)を目視にて観察した。また、各ガラス基板をクロスセクショナルポリッシング法によって切断し、走査型電子顕微鏡(倍率300~10000)により観察することによっても、溶融ハンダ金属とハンダフラックスの電極への浸透状態を確認した。なお、「浸透性」は、以下の指標に基づいて評価した。
○(良好):ガラス基板裏面に至るハンダ金属、ハンダフラックスの浸透なし
△(限られた用途においては使用可能なレベル):ガラス基板裏面に至るハンダ金属の浸透あり
×(不良):ガラス基板裏面に至るハンダ金属とハンダフラックスの浸透あり <Evaluation of penetration of molten solder metal and flux>
The glass substrate after soldering of each Example and each Comparative Example was observed from the upper surface, and the penetration state (diffusion penetration) of the molten solder metal and the solder flux into the electrode was visually observed. Each glass substrate was cut by a cross sectional polishing method and observed with a scanning electron microscope (magnification: 300 to 10,000) to confirm the penetration state of molten solder metal and solder flux into the electrode. The “penetration” was evaluated based on the following indicators.
○ (Good): No penetration of solder metal and solder flux reaching the back side of the glass substrate △ (Available level for limited applications): Permeation of solder metal reaching the back side of the glass substrate × (Bad): Back side of the glass substrate Penetration of solder metal and solder flux leading to
各実施例及び各比較例のハンダ付け後のガラス基板を上面より観察し、溶融ハンダ金属とハンダフラックスの電極への浸透状態(拡散浸透)を目視にて観察した。また、各ガラス基板をクロスセクショナルポリッシング法によって切断し、走査型電子顕微鏡(倍率300~10000)により観察することによっても、溶融ハンダ金属とハンダフラックスの電極への浸透状態を確認した。なお、「浸透性」は、以下の指標に基づいて評価した。
○(良好):ガラス基板裏面に至るハンダ金属、ハンダフラックスの浸透なし
△(限られた用途においては使用可能なレベル):ガラス基板裏面に至るハンダ金属の浸透あり
×(不良):ガラス基板裏面に至るハンダ金属とハンダフラックスの浸透あり <Evaluation of penetration of molten solder metal and flux>
The glass substrate after soldering of each Example and each Comparative Example was observed from the upper surface, and the penetration state (diffusion penetration) of the molten solder metal and the solder flux into the electrode was visually observed. Each glass substrate was cut by a cross sectional polishing method and observed with a scanning electron microscope (magnification: 300 to 10,000) to confirm the penetration state of molten solder metal and solder flux into the electrode. The “penetration” was evaluated based on the following indicators.
○ (Good): No penetration of solder metal and solder flux reaching the back side of the glass substrate △ (Available level for limited applications): Permeation of solder metal reaching the back side of the glass substrate × (Bad): Back side of the glass substrate Penetration of solder metal and solder flux leading to
また、上述の走査型電子顕微鏡による倍率500倍の画像に基づき、本明細書で定めた方法に従い、実施例および比較例に係るそれぞれの電極の断面像より、(a1)成分、(a2)成分および(a3)成分のアスペクト比を求めた。
In addition, based on the above-mentioned scanning electron microscope image at a magnification of 500 times, according to the method defined in this specification, from the cross-sectional images of the respective electrodes according to the example and the comparative example, (a1) component, (a2) component And the aspect ratio of (a3) component was calculated | required.
<(a3)成分におけるボイドの評価>
上述の走査型電子顕微鏡による倍率5000倍の画像に基づき、本明細書で定めた方法に従い、実施例および比較例に係るそれぞれの電極の断面像より、(a3)成分におけるボイドの観察を行った。なお、この「ボイド」は、以下の指標に基づいて評価した。
◎(極めて良好):断面SEM像において、銅合金粒子からなるコアの周縁部においてボイドが存在しない又は殆ど視認されない
〇(良好):断面SEM写真において、銅合金粒子からなるコアの周縁部においてボイドが僅かに視認される <Evaluation of Void in Component (a3)>
Based on the above-mentioned image of the scanning electron microscope with a magnification of 5000, voids in the component (a3) were observed from the cross-sectional images of the electrodes according to the example and the comparative example according to the method defined in this specification. . This “void” was evaluated based on the following indicators.
◎ (Very good): In the cross-sectional SEM image, no void is present or hardly visible in the peripheral portion of the core made of copper alloy particles. ○ (Good): In the cross-sectional SEM photograph, a void is formed in the peripheral portion of the core made of copper alloy particles. Is slightly visible
上述の走査型電子顕微鏡による倍率5000倍の画像に基づき、本明細書で定めた方法に従い、実施例および比較例に係るそれぞれの電極の断面像より、(a3)成分におけるボイドの観察を行った。なお、この「ボイド」は、以下の指標に基づいて評価した。
◎(極めて良好):断面SEM像において、銅合金粒子からなるコアの周縁部においてボイドが存在しない又は殆ど視認されない
〇(良好):断面SEM写真において、銅合金粒子からなるコアの周縁部においてボイドが僅かに視認される <Evaluation of Void in Component (a3)>
Based on the above-mentioned image of the scanning electron microscope with a magnification of 5000, voids in the component (a3) were observed from the cross-sectional images of the electrodes according to the example and the comparative example according to the method defined in this specification. . This “void” was evaluated based on the following indicators.
◎ (Very good): In the cross-sectional SEM image, no void is present or hardly visible in the peripheral portion of the core made of copper alloy particles. ○ (Good): In the cross-sectional SEM photograph, a void is formed in the peripheral portion of the core made of copper alloy particles. Is slightly visible
上述の実施形態又は実施例の開示は、その実施形態又は実施例の説明のために記載したものであって、本発明を限定するために記載したものではない。加えて、上述の実施形態又は実施例の他の組合せを含む本発明の範囲内に存在する変形例もまた、特許請求の範囲に含まれるものである。
The disclosure of the above-described embodiment or example is described for explaining the embodiment or example, and is not described for limiting the present invention. In addition, modifications within the scope of the present invention including other combinations of the above-described embodiments or examples are also included in the scope of the claims.
上述の実施形態、及び各実施例の導電ペーストは、主に電子部品の電極かプリント配線基板用の配線等の電極として有用である。また、他にも、焼付けタイプ及び非焼付けタイプの導電ペーストの種々の用途に適用し得る。例えば、コンデンサー外部電極、太陽電池用導電回路、ITOガラス電極、TOガラス電極、プリント回路のハンダ付導通部等に本実施形態の導電ペーストは適用可能である。
The conductive paste of the above-described embodiment and each example is mainly useful as an electrode for an electronic component or a wiring for a printed wiring board. In addition, the present invention can be applied to various uses of baking type and non-baking type conductive pastes. For example, the conductive paste of this embodiment can be applied to a capacitor external electrode, a solar cell conductive circuit, an ITO glass electrode, a TO glass electrode, a soldered conductive portion of a printed circuit, and the like.
また、上述の各実施形態の導電ペーストを備える硬化物、電子部品、又は電子デバイスも、上述の各実施形態の導電ペーストと同様に、広範囲な用途に適用し得る。
Also, a cured product, an electronic component, or an electronic device provided with the conductive paste of each of the above-described embodiments can be applied to a wide range of uses, like the conductive paste of each of the above-described embodiments.
Claims (13)
- 銅又は銅合金をコアとし、銀をシェルとし、該シェルの層厚が0.02μm以上であり、かつアスペクト比が2以上である平板状被覆粒子(a1)を、0.1体積%以上30体積%以下含む導電性フィラー(A)と、
熱硬化性フェノール樹脂(B)と、
不飽和脂肪酸(C)と、
有機溶剤(D)と、を含有する、
導電ペースト。 Plate-shaped coated particles (a1) having copper or a copper alloy as a core, silver as a shell, a shell layer thickness of 0.02 μm or more, and an aspect ratio of 2 or more are contained in an amount of 0.1% by volume to 30%. A conductive filler (A) containing at most vol%,
A thermosetting phenolic resin (B);
An unsaturated fatty acid (C);
An organic solvent (D),
Conductive paste. - 前記平板状被覆粒子(a1)の球換算平均一次粒子径が0.1μm以上50μm以下であり、かつ、前記平板状被覆粒子(a1)の99%累積粒度径D99が100μm以下である、
請求項1に記載の導電ペースト。 The sphere-converted average primary particle diameter of the tabular coated particles (a1) is 0.1 μm or more and 50 μm or less, and the 99% cumulative particle diameter D99 of the tabular coated particles (a1) is 100 μm or less.
The conductive paste according to claim 1. - 前記導電性フィラー(A)が、さらに、銅をコアとし銀をシェルとするアスペクト比が2未満の球状被覆粒子(a2)及び/又は銅合金をコアとし銀をシェルとするアスペクト比が2未満の球状被覆粒子(a3)を含有する、
請求項1又は請求項2に記載の導電ペースト。 The conductive filler (A) further has a spherical coated particle (a2) having an aspect ratio of less than 2 with copper as a core and silver as a shell and / or an aspect ratio with a copper alloy as a core and silver as a shell of less than 2. Containing spherical coated particles (a3)
The electrically conductive paste of Claim 1 or Claim 2. - 前記球状被覆粒子(a3)の銅合金をなす合金原子が、ニッケル及び/又は亜鉛である、
請求項3に記載の導電ペースト。 The alloy atoms forming the copper alloy of the spherical coated particles (a3) are nickel and / or zinc.
The conductive paste according to claim 3. - 前記球状被覆粒子(a3)の銅合金をなす合金原子の含有量が、30原子%以下である、
請求項3又は請求項4に記載の導電ペースト。 The content of alloy atoms constituting the copper alloy of the spherical coated particles (a3) is 30 atomic% or less.
The electrically conductive paste of Claim 3 or Claim 4. - 前記熱硬化性フェノール樹脂(B)が、レゾール型フェノール樹脂である、
請求項1乃至請求項5のいずれか1項に記載の導電ペースト。 The thermosetting phenol resin (B) is a resol type phenol resin.
The electrically conductive paste of any one of Claim 1 thru | or 5. - 前記不飽和脂肪酸(C)が、炭素数6以上20以下の不飽和脂肪酸である、
請求項1乃至請求項6のいずれか1項に記載の導電ペースト。 The unsaturated fatty acid (C) is an unsaturated fatty acid having 6 to 20 carbon atoms,
The electrically conductive paste of any one of Claim 1 thru | or 6. - (D)成分が、グリコールエーテル類及び/又はテルペノール類である、
請求項1乃至請求項7のいずれか1項に記載の導電ペースト。 (D) component is glycol ethers and / or terpenols,
The electrically conductive paste of any one of Claim 1 thru | or 7. - 前記導電性フィラー(A)を100重量部(固形分換算)とした場合において、前記熱硬化性フェノール樹脂(B)、前記不飽和脂肪酸(C)、及び前記有機溶剤(D)の含有量が以下のとおりである、請求項1乃至請求項8のいずれか1項に記載の導電ペースト。
前記熱硬化性フェノール樹脂(B):3重量部以上30重量部以下
前記不飽和脂肪酸(C):0.01重量部以上5重量部以下
前記有機溶剤(D):3重量部以上50重量部以下 In the case where the conductive filler (A) is 100 parts by weight (in terms of solid content), the content of the thermosetting phenol resin (B), the unsaturated fatty acid (C), and the organic solvent (D) is The conductive paste according to any one of claims 1 to 8, which is as follows.
The thermosetting phenol resin (B): 3 to 30 parts by weight The unsaturated fatty acid (C): 0.01 to 5 parts by weight The organic solvent (D): 3 to 50 parts by weight Less than - 請求項1乃至請求項9のいずれか1項に記載の導電ペーストを加熱硬化させることにより得られる、
硬化物。 It is obtained by heat-curing the conductive paste according to any one of claims 1 to 9.
Cured product. - 請求項10に記載の硬化物からなる、
電極。 The cured product according to claim 10,
electrode. - 請求項10に記載の前記硬化物上、又は請求項11に記載の前記電極上に、ハンダペーストによってハンダ付けされた電子部品を載置する、
電子デバイス。 An electronic component soldered with a solder paste is placed on the cured product according to claim 10 or on the electrode according to claim 11.
Electronic devices. - 前記ハンダペーストに用いるハンダ粉末が、スズ系鉛フリーハンダ粉末である、
請求項12に記載の電子デバイス。 The solder powder used for the solder paste is a tin-based lead-free solder powder.
The electronic device according to claim 12.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201380017276.4A CN104246909B (en) | 2012-03-30 | 2013-03-29 | Electrocondution slurry, solidfied material, electrode and electronic equipment |
JP2013534524A JP5462984B1 (en) | 2012-03-30 | 2013-03-29 | Conductive paste, cured product, electrode, and electronic device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012082076 | 2012-03-30 | ||
JP2012-082076 | 2012-03-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013147235A1 true WO2013147235A1 (en) | 2013-10-03 |
Family
ID=49260474
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/059698 WO2013147235A1 (en) | 2012-03-30 | 2013-03-29 | Conductive paste, hardened material, electrode, and electronic device |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP5462984B1 (en) |
CN (1) | CN104246909B (en) |
WO (1) | WO2013147235A1 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014098036A1 (en) * | 2012-12-21 | 2014-06-26 | ペルノックス株式会社 | Conductive paste |
JP2015115568A (en) * | 2013-12-16 | 2015-06-22 | 富士通株式会社 | Method of manufacturing electronic device |
JP2016004659A (en) * | 2014-06-16 | 2016-01-12 | 株式会社村田製作所 | Conductive resin paste and ceramic electronic part |
JPWO2015122345A1 (en) * | 2014-02-12 | 2017-03-30 | 東レ株式会社 | Conductive paste, pattern manufacturing method, conductive pattern manufacturing method, and sensor |
CN107249787A (en) * | 2014-09-01 | 2017-10-13 | 同和电子科技有限公司 | Jointing material and the adhesive bonding method using the jointing material |
WO2020003765A1 (en) * | 2018-06-26 | 2020-01-02 | ナミックス株式会社 | Vacuum-printing conductive paste |
US11970631B2 (en) | 2021-06-18 | 2024-04-30 | Panasonic Intellectual Property Management Co., Ltd. | Conductive paste and conductive film formed using the same |
JP7563007B2 (en) | 2020-07-03 | 2024-10-08 | 株式会社レゾナック | Copper paste for forming a conductor, article having a conductor film, and method for producing the same |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102417311B1 (en) * | 2014-07-22 | 2022-07-07 | 알파 어셈블리 솔루션스 인크. | Stretchable interconnects for flexible electronic surfaces |
CN109509568B (en) * | 2017-12-29 | 2021-06-08 | 太原氦舶新材料有限责任公司 | High-performance conductive silver paste |
KR102600380B1 (en) * | 2018-12-05 | 2023-11-09 | 상라오 징코 솔라 테크놀러지 디벨롭먼트 컴퍼니, 리미티드 | Solar cell and method for manufacturing the same, and solar cell panel |
JP7491246B2 (en) * | 2021-03-12 | 2024-05-28 | 株式会社村田製作所 | Conductive paste and ceramic electronic components |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04206402A (en) * | 1990-11-30 | 1992-07-28 | Tokuyama Soda Co Ltd | Conductive copper paste composite material and manufacture thereof |
JPH08311304A (en) * | 1995-05-16 | 1996-11-26 | Mitsui Kinzoku Toryo Kagaku Kk | Copper-based electroconductive composition |
JP2004047421A (en) * | 2002-05-17 | 2004-02-12 | Hitachi Chem Co Ltd | Conductive paste |
JP2004047418A (en) * | 2002-05-15 | 2004-02-12 | Hitachi Chem Co Ltd | Conductive paste |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6322620B1 (en) * | 2000-11-16 | 2001-11-27 | National Starch And Chemical Investment Holding Corporation | Conductive ink composition |
US20090211626A1 (en) * | 2008-02-26 | 2009-08-27 | Hideki Akimoto | Conductive paste and grid electrode for silicon solar cells |
-
2013
- 2013-03-29 JP JP2013534524A patent/JP5462984B1/en active Active
- 2013-03-29 CN CN201380017276.4A patent/CN104246909B/en active Active
- 2013-03-29 WO PCT/JP2013/059698 patent/WO2013147235A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04206402A (en) * | 1990-11-30 | 1992-07-28 | Tokuyama Soda Co Ltd | Conductive copper paste composite material and manufacture thereof |
JPH08311304A (en) * | 1995-05-16 | 1996-11-26 | Mitsui Kinzoku Toryo Kagaku Kk | Copper-based electroconductive composition |
JP2004047418A (en) * | 2002-05-15 | 2004-02-12 | Hitachi Chem Co Ltd | Conductive paste |
JP2004047421A (en) * | 2002-05-17 | 2004-02-12 | Hitachi Chem Co Ltd | Conductive paste |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014098036A1 (en) * | 2012-12-21 | 2014-06-26 | ペルノックス株式会社 | Conductive paste |
JP2015115568A (en) * | 2013-12-16 | 2015-06-22 | 富士通株式会社 | Method of manufacturing electronic device |
JPWO2015122345A1 (en) * | 2014-02-12 | 2017-03-30 | 東レ株式会社 | Conductive paste, pattern manufacturing method, conductive pattern manufacturing method, and sensor |
JP2016004659A (en) * | 2014-06-16 | 2016-01-12 | 株式会社村田製作所 | Conductive resin paste and ceramic electronic part |
US10453613B2 (en) | 2014-06-16 | 2019-10-22 | Murata Manufacturing Co., Ltd. | Conductive resin paste and ceramic electronic component |
CN107249787A (en) * | 2014-09-01 | 2017-10-13 | 同和电子科技有限公司 | Jointing material and the adhesive bonding method using the jointing material |
WO2020003765A1 (en) * | 2018-06-26 | 2020-01-02 | ナミックス株式会社 | Vacuum-printing conductive paste |
JP2020004524A (en) * | 2018-06-26 | 2020-01-09 | ナミックス株式会社 | Conductive paste for vacuum printing |
JP7563007B2 (en) | 2020-07-03 | 2024-10-08 | 株式会社レゾナック | Copper paste for forming a conductor, article having a conductor film, and method for producing the same |
US11970631B2 (en) | 2021-06-18 | 2024-04-30 | Panasonic Intellectual Property Management Co., Ltd. | Conductive paste and conductive film formed using the same |
Also Published As
Publication number | Publication date |
---|---|
JP5462984B1 (en) | 2014-04-02 |
CN104246909B (en) | 2017-09-12 |
JPWO2013147235A1 (en) | 2015-12-14 |
CN104246909A (en) | 2014-12-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5462984B1 (en) | Conductive paste, cured product, electrode, and electronic device | |
EP2875898B1 (en) | Solder alloy, solder paste, and electronic circuit board | |
JP5238088B1 (en) | Solder alloy, solder paste and electronic circuit board | |
JP4753090B2 (en) | Solder paste and electronic device | |
JP5324007B1 (en) | Solder alloy, solder paste and electronic circuit board | |
JP5166261B2 (en) | Conductive filler | |
JP5887086B2 (en) | Conductive material | |
TWI672710B (en) | Conductive paste, method for producing conductive paste, connection structure, and method for manufacturing connection structure | |
JPWO2006080247A1 (en) | Conductive paste | |
TWI647711B (en) | Conductive paste and multilayer substrate using the same | |
JP5951339B2 (en) | Solder paste using thermosetting resin composition | |
JP2012134313A (en) | Multilayer wiring board, manufacturing method thereof, and via-hole paste | |
JP2013196936A (en) | Conductive paste, conductor, base material with conductive film, and manufacturing method therefor | |
TW201038349A (en) | Metal filler, low-temperature-bonding lead-free solder and bonded structure | |
JP2007123664A (en) | Junction structure between substrate and component and its manufacturing method | |
JP7551497B2 (en) | Electronic component and method for manufacturing electronic component | |
JP2011147982A (en) | Solder, electronic component, and method for manufacturing the electronic component | |
TW201839780A (en) | Conductive particles, conductive material, and connection structure | |
CN109509569B (en) | Method for connecting electrodes and method for manufacturing electronic substrate | |
JP6660921B2 (en) | Electronic substrate manufacturing method | |
JP2013221143A (en) | Thermosetting resin composition and conductive paste using the same | |
JP2019121568A (en) | Manufacturing method of solder adhesive metal paste conductive film | |
JP2016143741A (en) | Method for mounting electronic component, board with electronic component and joining layer thereof, board with joining material layer, and sheet-like joining member | |
CN114173983A (en) | Prefabricated solder and solder joint body formed using the same | |
JP2008027588A (en) | Conductive filler, and intermediate-temperature soldering material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2013534524 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13769014 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13769014 Country of ref document: EP Kind code of ref document: A1 |