JP2013196936A - Conductive paste, conductor, base material with conductive film, and manufacturing method therefor - Google Patents

Conductive paste, conductor, base material with conductive film, and manufacturing method therefor Download PDF

Info

Publication number
JP2013196936A
JP2013196936A JP2012063429A JP2012063429A JP2013196936A JP 2013196936 A JP2013196936 A JP 2013196936A JP 2012063429 A JP2012063429 A JP 2012063429A JP 2012063429 A JP2012063429 A JP 2012063429A JP 2013196936 A JP2013196936 A JP 2013196936A
Authority
JP
Japan
Prior art keywords
particles
melting point
metal
conductor
conductive paste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012063429A
Other languages
Japanese (ja)
Inventor
Hideyuki Hirakoso
英之 平社
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2012063429A priority Critical patent/JP2013196936A/en
Publication of JP2013196936A publication Critical patent/JP2013196936A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Powder Metallurgy (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)
  • Manufacturing Of Electric Cables (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a conductive paste capable of forming a conductor which has excellent conductivity and its durability, and also has excellent heat resistance; the conductor; a base material with a conductive film which uses the conductor and has excellent conductivity, its durability and heat resistance; and a manufacturing method therefor.SOLUTION: The conductive paste includes: particles (A) having an average particle size of 1-20 μm selected from a single particle made from a metal having a melting point of 300°C or higher, a single particle made from a metal compound which has a melting point of 300°C or higher and becomes a metal by being heated at the melting point or lower, and an aggregate of fine particles of metal compounds having an average primary particle size of 1 nm-1 μm; low melting point metal particles (B) having a melting point of 200°C or lower; inorganic fine particles (C) which have an average particle size smaller than that of the particle (A), may produce an alloy with a low melting point metal, and have a melting point of 300°C or higher; and an organic compound (D) having two or more OH groups; and substantially does not contain a resin. A conductor is formed of conductive fine particles dispersed in a binder component which mainly has the alloy containing the low melting point metal having a melting point of 200°C or lower.

Description

本発明は、導電ペースト、導電体、該導電体を用いた導電膜付き基材およびその製造方法に関する。   The present invention relates to a conductive paste, a conductor, a substrate with a conductive film using the conductor, and a method for manufacturing the same.

従来から、電子部品やプリント配線基板等の配線導体の形成に、導電ペーストを用いる方法が知られている。このうち、プリント配線基板の製造は、絶縁基材上に導電ペーストを所望のパターン形状に塗布し硬化して、配線パターンを形成して行われている(例えば、特許文献1参照)。   Conventionally, a method using a conductive paste is known for forming wiring conductors such as electronic components and printed wiring boards. Among these, a printed wiring board is manufactured by applying a conductive paste in a desired pattern shape on an insulating base material and curing it to form a wiring pattern (see, for example, Patent Document 1).

導電ペーストとしては、一般的には、有機溶剤に硬化性の樹脂を溶解させたビヒクル中に銀や銅の金属粒子を分散させた導電ペーストが用いられる。このような導電ペーストを硬化させることによって得られる導電体は、導電性の金属粒子の隙間を樹脂がバインダ成分として充填することで導電体の形状を維持する構造となっている。このように導電体が金属粒子とバインダ成分の樹脂とからなる場合、長期間の直射日光下や短期間であっても強力なUV照射にさらされると樹脂が劣化することで、導電体のパッキング構造が弱体化して導電性が低化してしまうという問題があった。樹脂の劣化による問題を解消するためには、バインダ成分を樹脂のような有機物から無機物に変更することが有効であり、さらに低温プロセスで構造形成をするためには無機物として低融点金属を使用することが有効と考えられる。   As the conductive paste, a conductive paste in which silver or copper metal particles are dispersed in a vehicle in which a curable resin is dissolved in an organic solvent is generally used. A conductor obtained by curing such a conductive paste has a structure that maintains the shape of the conductor by filling a gap between conductive metal particles with a resin as a binder component. When the conductor is made of metal particles and a resin as a binder component in this way, the resin deteriorates when exposed to strong UV irradiation even under direct sunlight for a long period of time or for a short period of time, thereby packing the conductor. There was a problem that the structure was weakened and the conductivity was lowered. In order to solve the problems caused by resin deterioration, it is effective to change the binder component from an organic material such as a resin to an inorganic material, and to form a structure in a low-temperature process, a low melting point metal is used as the inorganic material. Is considered effective.

バインダ成分が低融点金属で構成される導電体を得るために、例えば、特許文献2には、樹脂と導電性粒子を含む組成物であって、導電性粒子として高融点金属だけでなく低融点金属を含み該低融点金属がコンポジット構造を有する導体パターン用導電性組成物を用いる技術が記載されている。特許文献2によれば、この導電性組成物を用いて基材上に得られる導体パターンは、基材側に高融点金属粒子とバインダ成分としての低融点金属からなる導電層を有し、その表面に樹脂からなる絶縁層を有する構成となっている。   In order to obtain a conductor in which the binder component is composed of a low melting point metal, for example, Patent Document 2 discloses a composition containing a resin and conductive particles, and the conductive particles include not only a high melting point metal but also a low melting point. A technique is described that uses a conductive composition for a conductor pattern that contains a metal and the low melting point metal has a composite structure. According to Patent Document 2, a conductive pattern obtained on a substrate using this conductive composition has a conductive layer made of high melting point metal particles and a low melting point metal as a binder component on the substrate side, The structure has an insulating layer made of resin on the surface.

特許文献2による導体パターンは上記構造を有することから、樹脂の劣化による導電性悪化の問題は小さく、導電層は導電性にも優れている。しかしながら、該導体パターンは絶縁層によって導電層の表面が覆われているため、他のデバイスと接合する場合に電気的な接続が形成しにくいという問題を有している。さらに、例えば、ハンダ等を使用して他のデバイスと接合しようとする場合に、低融点金属の融点以上に温度を上げると、導体パターンの形状を維持している低融点金属が溶融し、導体パターンがくずれるという問題を有していた。   Since the conductor pattern according to Patent Document 2 has the above structure, there is little problem of conductivity deterioration due to deterioration of the resin, and the conductive layer is also excellent in conductivity. However, since the surface of the conductive layer is covered with an insulating layer, the conductive pattern has a problem that it is difficult to form an electrical connection when bonding to another device. Furthermore, for example, when trying to join other devices using solder or the like, if the temperature is raised above the melting point of the low melting point metal, the low melting point metal that maintains the shape of the conductor pattern melts, and the conductor There was a problem that the pattern was broken.

特開2007−227156公報JP 2007-227156 A 特開2011−142093公報JP 2011-142093 A

本発明は、上記問題を解決するためになされたものであって、優れた導電性とその耐久性を有するとともに耐熱性にも優れる導電体を形成可能な導電ペーストの提供を目的とする。
また、本発明は、導電性とその耐久性に優れ、さらに耐熱性にも優れる導電体、ならびに、該導電体を用いた導電性とその耐久性および耐熱性に優れる導電膜付き基材、およびその製造方法の提供を目的とする。
The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a conductive paste capable of forming a conductor having excellent conductivity and durability and excellent heat resistance.
In addition, the present invention provides a conductor excellent in conductivity and durability, and further excellent in heat resistance, a conductivity using the conductor, and a substrate with a conductive film excellent in durability and heat resistance, and It aims at providing the manufacturing method.

本発明は、以下の構成を有する、導電ペースト、導電体、導電膜付き基材およびその製造方法を提供する。
[1]融点が300℃以上の金属からなる単一粒子、融点が300℃以上かつ該融点以下の加熱により金属となる金属化合物からなる単一粒子、および平均一次粒子径が1nm〜1μmである前記金属化合物の微粒子の凝集体から選ばれる1種以上の、平均粒子径が1〜20μmである粒子(A)と、融点が200℃以下の低融点金属粒子(B)と、前記粒子(A)より平均粒子径が小さくかつ前記低融点金属の融点以上の温度で該低融点金属と合金を生成しうる融点が300℃以上の無機微粒子(C)と、1分子中に少なくとも2個のOH基を有する有機化合物(D)と、を含有し、実質的に樹脂を含有しない導電ペースト。
The present invention provides a conductive paste, a conductor, a substrate with a conductive film, and a method for producing the same, having the following configuration.
[1] Single particles made of a metal having a melting point of 300 ° C. or higher, single particles made of a metal compound that becomes a metal by heating at a melting point of 300 ° C. or higher, and an average primary particle size of 1 nm to 1 μm One or more particles (A) selected from aggregates of fine particles of the metal compound and having an average particle size of 1 to 20 μm, low melting point metal particles (B) having a melting point of 200 ° C. or less, and the particles (A ) Inorganic fine particles (C) having a smaller average particle diameter and capable of forming an alloy with the low melting point metal at a temperature equal to or higher than the melting point of the low melting point metal, and at least two OHs in one molecule A conductive paste containing an organic compound (D) having a group and substantially not containing a resin.

[2]前記粒子(A)が、金、銀、銅、ニッケル、アルミニウム、酸化銀および水素化銅からなる群から選ばれる1種以上である[1]に記載の導電ペースト。
[3]前記低融点金属粒子(B)が、錫、インジウムおよびビスマスからなる群から選ばれる1種以上を含む合金からなる[1]または[2]に記載の導電ペースト。
[4]前記無機微粒子(C)が、金、銀、銅、ニッケル、アルミニウム、酸化銀および水素化銅からなる群から選ばれる1種以上である[1]〜[3]のいずれかに記載の導電ペースト。
[5]前記有機化合物(D)の沸点が、150〜300℃である[1]〜[4]のいずれかに記載の導電ペースト。
[2] The conductive paste according to [1], wherein the particles (A) are at least one selected from the group consisting of gold, silver, copper, nickel, aluminum, silver oxide, and copper hydride.
[3] The conductive paste according to [1] or [2], wherein the low-melting-point metal particles (B) are made of an alloy containing at least one selected from the group consisting of tin, indium, and bismuth.
[4] The inorganic fine particles (C) are one or more selected from the group consisting of gold, silver, copper, nickel, aluminum, silver oxide, and copper hydride, according to any one of [1] to [3]. Conductive paste.
[5] The conductive paste according to any one of [1] to [4], wherein the boiling point of the organic compound (D) is 150 to 300 ° C.

[6]導電性粒子(X)がバインダ成分に分散してなる導電体であって、前記バインダ成分が主として、融点が200℃以下の低融点金属と融点が300℃以上の金属とからなる合金(Y)で構成される導電体。
[7]請求項1〜5のいずれか1項に記載の導電ペーストを前記低融点金属の融点以上の温度で加熱することにより、前記粒子(A)を導電性粒子(X)とし、前記無機微粒子(C)と低融点金属粒子(B)から合金(Y)を形成させて得られる請求項6に記載の導電体。
[8]前記[6]または[7]に記載の導電体からなる導電膜を基材上に有してなる導電膜付き基材。
[9]前記[1]〜[5]のいずれかに記載の導電ペーストを基材上に塗布した後、この導電ペーストを前記低融点金属の融点以上の温度で加熱して、前記無機微粒子(C)と低融点金属粒子(B)から得られる合金を主体とするバインダ成分に、前記粒子(A)から得られる導電性粒子が分散した導電膜を形成することを特徴とする導電膜付き基材の製造方法。
[6] A conductor in which conductive particles (X) are dispersed in a binder component, wherein the binder component is mainly composed of a low melting point metal having a melting point of 200 ° C. or lower and a metal having a melting point of 300 ° C. or higher. A conductor composed of (Y).
[7] By heating the conductive paste according to any one of claims 1 to 5 at a temperature equal to or higher than the melting point of the low melting point metal, the particles (A) are made conductive particles (X), and the inorganic paste The conductor according to claim 6, which is obtained by forming an alloy (Y) from the fine particles (C) and the low melting point metal particles (B).
[8] A base material with a conductive film comprising a conductive film made of the conductor according to [6] or [7] on a base material.
[9] After applying the conductive paste according to any one of [1] to [5] on a substrate, the conductive paste is heated at a temperature equal to or higher than the melting point of the low-melting-point metal, and the inorganic fine particles ( A conductive film-coated base, wherein a conductive film obtained by dispersing conductive particles obtained from the particles (A) is formed in a binder component mainly composed of an alloy obtained from C) and low-melting-point metal particles (B). A method of manufacturing the material.

本発明によれば、優れた導電性とその耐久性を有するとともに耐熱性にも優れる導電体を形成可能な導電ペーストの提供が可能である。また、導電性とその耐久性に優れさらに耐熱性にも優れる導電体、ならびに、該導電体を用いた導電性とその耐久性および耐熱性に優れる導電膜付き基材、およびその製造方法を提供できる。   According to the present invention, it is possible to provide a conductive paste capable of forming a conductor having excellent conductivity and durability and excellent heat resistance. Also provided are a conductor excellent in conductivity and its durability and also in heat resistance, a conductive material using the conductor, a substrate with a conductive film excellent in durability and heat resistance, and a method for producing the same it can.

本発明の実施形態の導電ペーストの一例とそれを用いて得られる導電体の一例を模式的に示す図である。It is a figure which shows typically an example of the electrically conductive paste of embodiment of this invention, and an example of the conductor obtained using it. 本発明の実施形態の導電膜付き基材の一例を示す断面模式図である。It is a cross-sectional schematic diagram which shows an example of the base material with an electrically conductive film of embodiment of this invention.

以下、実施形態について詳細に説明する。
[導電ペースト]
本発明の実施形態の導電ペーストは、融点が300℃以上の金属からなる単一粒子、融点が300℃以上かつ該融点以下の加熱により金属となる金属化合物からなる単一粒子、および平均一次粒子径が1nm〜1μmである前記金属化合物の微粒子の凝集体から選ばれる1種以上の、平均粒子径が1〜20μmである粒子(A)と、融点が200℃以下の低融点金属粒子(B)と、前記粒子(A)より平均粒子径が小さくかつ前記低融点金属の融点以上の温度で該低融点金属と合金を生成しうる融点が300℃以上の無機微粒子(C)と、1分子中に少なくとも2個のOH基を有する有機化合物(D)と、を含有し、実質的に樹脂を含有しないペースト状組成物である。
Hereinafter, embodiments will be described in detail.
[Conductive paste]
The conductive paste of the embodiment of the present invention includes single particles made of a metal having a melting point of 300 ° C. or higher, single particles made of a metal compound that becomes a metal by heating at a melting point of 300 ° C. or higher and lower than the melting point, and average primary particles One or more particles (A) having an average particle size of 1 to 20 μm selected from aggregates of fine particles of the metal compound having a diameter of 1 nm to 1 μm, and low melting point metal particles (B ), An inorganic fine particle (C) having an average particle size smaller than that of the particles (A) and capable of forming an alloy with the low melting point metal at a temperature equal to or higher than the melting point of the low melting point metal, and one molecule And an organic compound (D) having at least two OH groups therein, and a paste-like composition containing substantially no resin.

本発明の実施形態の導電ペーストによれば、加熱する、具体的には、低融点金属粒子(B)の融点より高い温度で加熱することにより、該導電ペーストが含有する粒子(A)が導電性を有する導電性粒子となり、低融点金属粒子(B)と無機微粒子(C)が合金化されてバインダ成分となって、上記導電性粒子の間を充填する構成の導電体を形成できる。また、導電ペーストが実質的に樹脂を含有しないことから、得られる導電体のバインダ成分は上記合金を主体とする無機物から構成される。   According to the conductive paste of the embodiment of the present invention, by heating, specifically, by heating at a temperature higher than the melting point of the low melting point metal particles (B), the particles (A) contained in the conductive paste become conductive. Thus, the low melting point metal particles (B) and the inorganic fine particles (C) are alloyed to form a binder component, and a conductor having a structure filling the space between the conductive particles can be formed. In addition, since the conductive paste does not substantially contain a resin, the binder component of the obtained conductor is composed of an inorganic substance mainly composed of the alloy.

本発明の実施形態の導電ペーストにより得られる上記構成の導電体は、導電性粒子およびバインダ成分が実質的に金属材料のみで構成されていることから導電性に優れ、特に耐久性に優れる。さらに、バインダ成分の主体となる合金は、原料の低融点金属粒子(B)よりも融点の高い合金となることから、該導電ペーストにより得られる導電体やこれを有する部材を、例えば、ハンダ加工等の比較的高温の処理に曝した場合や高温使用に供した場合においても、導電体が十分に形状を維持できる等、耐熱性に優れる。
以下、本発明の実施形態の導電ペーストが含有する各成分について説明する。
The conductor having the above-described configuration obtained by the conductive paste according to the embodiment of the present invention has excellent conductivity and particularly excellent durability because the conductive particles and the binder component are substantially composed of only a metal material. Furthermore, since the alloy that is the main component of the binder component is an alloy having a melting point higher than that of the low-melting-point metal particles (B) of the raw material, a conductor obtained by the conductive paste and a member having the same can be processed by, for example, soldering Even when exposed to a relatively high temperature treatment such as, or when subjected to high temperature use, the conductor is excellent in heat resistance, such as being able to maintain its shape sufficiently.
Hereinafter, each component which the electrically conductive paste of embodiment of this invention contains is demonstrated.

<粒子(A)>
粒子(A)は、融点が300℃以上の金属からなる単一粒子、融点が300℃以上かつ該融点以下の加熱により金属となる金属化合物からなる単一粒子、および平均一次粒子径が1nm〜1μmである前記金属化合物の微粒子の凝集体から選ばれる1種以上で構成され、その平均粒子径は1〜20μmである。粒子(A)は、本発明の導電ペーストを導電体とした際に、導電性粒子となり連鎖構造を形成することで、導電体における良好な導電性を確保する機能を有する。
<Particle (A)>
The particles (A) are a single particle made of a metal having a melting point of 300 ° C. or higher, a single particle made of a metal compound that becomes a metal by heating at a melting point of 300 ° C. or higher, and an average primary particle diameter of 1 nm to It is comprised by 1 or more types chosen from the aggregate of the fine particle of the said metal compound which is 1 micrometer, The average particle diameter is 1-20 micrometers. When the conductive paste of the present invention is used as a conductor, the particles (A) have a function of ensuring good conductivity in the conductor by forming conductive chains and forming a chain structure.

本発明の導電ペーストは、後述のとおり融点が200℃以下の低融点金属粒子(B)の融点以上の所定の温度で加熱されることで導電体となる。粒子(A)を構成する材料としては、粒子(A)が単一粒子である場合には、融点が300℃以上の導電性を有する金属材料、または融点が300℃以上かつ該融点以下の加熱により導電性を有する金属材料となる金属化合物であれば、特に制限されない。また、粒子(A)が微粒子の凝集体である場合には、融点が300℃以上かつ該融点以下の加熱により導電性を有する金属材料となる金属化合物であれば、特に制限されない。粒子(A)の構成材料は、上記所定の温度より高融点であることから、加熱温度で溶融せず形状を維持したまま導電性粒子となり連鎖構造を形成できる。なお、粒子(A)は上記単一粒子および微粒子の凝集体から選ばれる1種で構成されていてもよく、2種以上で構成されていてもよい。また、本明細書において、単一粒子とは一次粒子が凝集体を形成せずに個々に独立して存在する形態をいう。   As will be described later, the conductive paste of the present invention becomes a conductor by being heated at a predetermined temperature equal to or higher than the melting point of the low melting point metal particles (B) having a melting point of 200 ° C. or lower. When the particle (A) is a single particle, the material constituting the particle (A) is a conductive metal material having a melting point of 300 ° C. or higher, or heating having a melting point of 300 ° C. or higher and lower than the melting point. If it is a metal compound used as a metal material which has electroconductivity by this, it will not restrict | limit in particular. Further, when the particle (A) is an aggregate of fine particles, there is no particular limitation as long as it is a metal compound that becomes a conductive metal material by heating at a melting point of 300 ° C. or higher and lower than the melting point. Since the constituent material of the particles (A) has a melting point higher than the above-mentioned predetermined temperature, it does not melt at the heating temperature and becomes a conductive particle while maintaining its shape, thereby forming a chain structure. In addition, particle | grains (A) may be comprised by 1 type chosen from the said single particle | grain and the aggregate of fine particles, and may be comprised by 2 or more types. Moreover, in this specification, a single particle means the form in which a primary particle exists independently, without forming an aggregate.

粒子(A)を構成する材料として、具体的には、融点が300℃以上の導電性を有する金属材料については、融点が300℃以上の公知の金属が挙げられ、導電性の観点から金、銀、銅、ニッケル、アルミニウム等が好ましい。また、融点が300℃以上かつ融点以下の加熱により導電性を有する金属材料となる金属化合物としては、酸化銀、水素化銅等が挙げられる。   Specifically, as the material constituting the particles (A), for a conductive metal material having a melting point of 300 ° C. or higher, a known metal having a melting point of 300 ° C. or higher can be mentioned. From the viewpoint of conductivity, gold, Silver, copper, nickel, aluminum and the like are preferable. Examples of the metal compound that becomes a conductive metal material by heating at a melting point of 300 ° C. or higher and lower than the melting point include silver oxide and copper hydride.

粒子(A)は導電体とした際に、導電性粒子となり連鎖構造を形成するために、その形態は単一粒子または平均一次粒子径が1nm〜1μmの微粒子の凝集体であり、平均粒子径が1〜20μmである。平均粒子径は、好ましくは2〜10μmであり、より好ましくは、3〜7μmである。導電ペーストの流動性を確保するために粒子(A)の平均粒子径は1μm以上であり、微細配線を作製するために粒子(A)の平均粒子径は20μm以下が必須である。
なお、上記平均粒子径の範囲である1〜20μmは、粒子(A)が単一粒子で構成される場合には、該粒子は一次粒子が独立に存在する形態であることから平均一次粒子径の範囲を示し、微粒子の凝集体で構成される場合には、平均凝集粒子径の範囲を示す。以下、必要に応じて単一粒子で構成される粒子(A)を粒子(A1)、微粒子の凝集体で構成される粒子(A)を粒子(A2)という。
When the particle (A) is a conductor, it becomes a conductive particle and forms a chain structure, so that the form is a single particle or an aggregate of fine particles having an average primary particle diameter of 1 nm to 1 μm, and an average particle diameter Is 1 to 20 μm. The average particle diameter is preferably 2 to 10 μm, more preferably 3 to 7 μm. In order to ensure the fluidity of the conductive paste, the average particle diameter of the particles (A) is 1 μm or more, and in order to produce a fine wiring, the average particle diameter of the particles (A) is 20 μm or less.
In addition, 1-20 micrometers which is the range of the said average particle diameter, when particle | grains (A) are comprised with a single particle, since this particle | grain is a form in which a primary particle exists independently, an average primary particle diameter In the case of being composed of aggregates of fine particles, the range of average aggregated particle diameter is indicated. Hereinafter, the particles (A) composed of single particles are referred to as particles (A1) and the particles (A) composed of aggregates of fine particles are referred to as particles (A2) as necessary.

粒子(A1)は、融点が300℃以上の金属で構成される場合、単一の材料で構成されてもよく、例えば、コア部が銅であり、表面が酸化されにくい銀のような2種の材料で構成されてもよく、さらに必要に応じてそれ以上の材料から構成されていてもよい。粒子(A1)が、融点が300℃以上かつ該融点以下の加熱により金属となる金属化合物で構成される場合についても、単一の材料で構成されてもよく、2種の材料またはそれ以上の材料から構成されていてもよい。
また、粒子(A2)の構成材料については、上記金属化合物であれば単一であっても2種以上であってもよい。粒子(A)の形状は、球状、板状、樹枝等が挙げられる。本発明においては、粒子(A1)については板状の粒子(A)が好ましく、粒子(A2)については球状の粒子(A)が好ましい。
When the particle (A1) is composed of a metal having a melting point of 300 ° C. or higher, the particle (A1) may be composed of a single material, for example, two types such as silver whose core part is copper and whose surface is hardly oxidized. These materials may be used, and further materials may be used as necessary. The case where the particles (A1) are composed of a metal compound that becomes a metal by heating at a melting point of 300 ° C. or higher and lower than the melting point may be composed of a single material or two or more materials. You may be comprised from the material.
Moreover, about the constituent material of particle | grains (A2), if it is the said metal compound, it may be single or may be 2 or more types. Examples of the shape of the particles (A) include a spherical shape, a plate shape, and a dendrite. In the present invention, the particle (A1) is preferably a plate-like particle (A), and the particle (A2) is preferably a spherical particle (A).

粒子(A)が微粒子の凝集体で構成される粒子(A2)の場合、粒子(A2)を構成する微粒子の平均一次粒子径は、1nm〜1μmであり、好ましくは10〜100nmである。粒子(A2)を構成する微粒子の平均一次粒子径は、導電ペーストの流動性を確保するために1nm以上であり、150〜200℃の温度で良好な導電性を確保するために1μm以下が必須である。なお、粒子(A2)は、上記粒子(A)としての条件を満たすのであれば、後述の無機微粒子(C)の凝集体であってもよく、その場合の微粒子の平均一次粒子径は、無機微粒子(C)の平均一次粒子径と同様となる。   When the particle (A) is a particle (A2) composed of an aggregate of fine particles, the average primary particle diameter of the fine particles constituting the particle (A2) is 1 nm to 1 μm, preferably 10 to 100 nm. The average primary particle diameter of the fine particles constituting the particles (A2) is 1 nm or more for ensuring the fluidity of the conductive paste, and 1 μm or less is essential for ensuring good conductivity at a temperature of 150 to 200 ° C. It is. The particles (A2) may be aggregates of inorganic fine particles (C) described later as long as the above conditions as the particles (A) are satisfied, and the average primary particle size of the fine particles in this case is inorganic. This is the same as the average primary particle diameter of the fine particles (C).

ここで、本明細書中において、平均粒子径は、以下のようにして求めたものである。粒子径のサイズにより、具体的には粒子径が0.5〜20μm程度の粒子の平均粒子径については、走査型電子顕微鏡(以下、「SEM」と記す。)像の中から無作為に選んだ100個の粒子のFeret径を測定し、これらの粒子径を平均して算出したものである。また、粒子径が1〜500nm程度の粒子の平均粒子径については、透過型電子顕微鏡(以下、「TEM」と記す。)像の中から無作為に選んだ100個の粒子のFeret径を測定し、これらの粒子径を平均して算出したものである。   Here, in this specification, an average particle diameter is calculated | required as follows. Depending on the size of the particle size, specifically, the average particle size of particles having a particle size of about 0.5 to 20 μm is randomly selected from a scanning electron microscope (hereinafter referred to as “SEM”) image. The Feret diameter of 100 particles is measured, and the average of these particle diameters is calculated. The average particle size of particles having a particle size of about 1 to 500 nm is measured by measuring the Feret size of 100 particles randomly selected from a transmission electron microscope (hereinafter referred to as “TEM”) image. These particle sizes are calculated by averaging.

また、導電ペーストが含有する粒子(A)については、1種を単独で用いてもよく、2種以上を併用してもよい。単一組成の粒子(A)が好ましい。さらに、粒子(A)は、後述の無機微粒子(C)と複合化されて用いられてもよい。   Moreover, about the particle | grains (A) which an electrically conductive paste contains, 1 type may be used independently and 2 or more types may be used together. Single composition particles (A) are preferred. Furthermore, the particles (A) may be used in combination with inorganic particles (C) described later.

<低融点金属粒子(B)>
低融点金属粒子(B)は、融点が200℃以下の金属粒子であり、本発明の導電ペーストを導電体とした際に、後述の無機微粒子(C)と合金化されて、上記粒子(A)が導電性粒子となり連鎖構造を形成した隙間を充填するバインダ成分として機能する。
<Low melting point metal particles (B)>
The low-melting-point metal particles (B) are metal particles having a melting point of 200 ° C. or less. When the conductive paste of the present invention is used as a conductor, the low-melting-point metal particles (B) are alloyed with inorganic fine particles (C) to be described later. ) Function as a binder component that fills the gaps that are conductive particles and form a chain structure.

低融点金属粒子(B)を構成する材料としては、融点が200℃以下の金属材料であれば特に制限されない。このような金属材料としては、金属単体であっても複数の金属からなる合金であってもよい。具体的には、錫(Sn)、インジウム(In)、ビスマス(Bi)等を含む融点が200℃以下の合金が挙げられる。このような融点が200℃以下の合金としては、いわゆるハンダとして知られる多種の合金から、融点が200℃以下のハンダを適宜選択して使用できる。また、基材、特にガラス基板への密着性を向上させるために、上記合金に亜鉛(Zn)、アンチモン(Sb)、チタン(Ti)、ケイ素(Si)などの金属を微量添加することもできる。   The material constituting the low melting point metal particles (B) is not particularly limited as long as it is a metal material having a melting point of 200 ° C. or lower. Such a metal material may be a single metal or an alloy composed of a plurality of metals. Specifically, an alloy having a melting point of 200 ° C. or lower including tin (Sn), indium (In), bismuth (Bi), and the like can be given. As such an alloy having a melting point of 200 ° C. or lower, a solder having a melting point of 200 ° C. or lower can be appropriately selected from various alloys known as solder. In addition, in order to improve adhesion to a substrate, particularly a glass substrate, a small amount of a metal such as zinc (Zn), antimony (Sb), titanium (Ti), or silicon (Si) can be added to the alloy. .

低融点金属粒子(B)は、これを含有する本発明の導電ペーストから導電体を得る際に加熱・溶融される。この際の熱効率の観点から、低融点金属粒子(B)の融点は180℃以下がより好ましい。また、低融点金属粒子(B)は加熱・溶融に際して、導電ペースト中で、後述の無機微粒子(C)と合金化する。これにより得られる合金は、低融点金属粒子(B)より融点が高い合金となる。したがって、得られる導電体は低融点金属粒子(B)の融点以上の温度に耐える導電体となり、例えば、この導電体を有する部材にさらにハンダ加工等を施す場合や、使用時に高温となる部材への適用も広く可能となる。   The low melting point metal particles (B) are heated and melted when obtaining a conductor from the conductive paste of the present invention containing the low melting point metal particles (B). From the viewpoint of thermal efficiency at this time, the melting point of the low melting point metal particles (B) is more preferably 180 ° C. or less. The low melting point metal particles (B) are alloyed with inorganic fine particles (C) described later in the conductive paste during heating and melting. The alloy thus obtained becomes an alloy having a melting point higher than that of the low melting point metal particles (B). Therefore, the obtained conductor becomes a conductor that can withstand a temperature equal to or higher than the melting point of the low melting point metal particles (B). For example, when a member having this conductor is further subjected to soldering or the like, or a member that becomes high in use Can also be widely applied.

なお、低融点金属粒子(B)と無機微粒子(C)が合金化して得られる合金の融点については、用いる低融点金属粒子(B)および無機微粒子(C)をそれぞれ構成する材料の種類ならびに配合割合による。これらは、導電体の用途に応じて、要求される耐熱特性を勘案して適宜、選択・調整される。得られる導電体の耐熱性の観点から、低融点金属粒子(B)の融点は130℃以上が好ましい。   Regarding the melting point of the alloy obtained by alloying the low melting point metal particles (B) and the inorganic fine particles (C), the types and blends of the materials constituting the low melting point metal particles (B) and the inorganic fine particles (C) to be used, respectively. By percentage. These are appropriately selected and adjusted in consideration of required heat resistance characteristics depending on the use of the conductor. From the viewpoint of heat resistance of the obtained conductor, the melting point of the low melting point metal particles (B) is preferably 130 ° C. or higher.

低融点金属粒子(B)は、単一粒子であってもよく、微粒子が凝集した凝集体であってもよい。低融点金属粒子(B)の平均粒子径は、1〜50μmが好ましい。粒子(A)の場合と同様、該平均粒子径の範囲は、低融点金属粒子(B)が単一粒子で構成される場合には、平均一次粒子径の範囲を示し、微粒子の凝集体で構成される場合には、平均凝集粒子径の範囲を示す。   The low melting point metal particles (B) may be single particles or aggregates in which fine particles are aggregated. The average particle diameter of the low melting point metal particles (B) is preferably 1 to 50 μm. As in the case of the particles (A), the range of the average particle diameter indicates the range of the average primary particle diameter when the low melting point metal particles (B) are composed of single particles, and is an aggregate of fine particles. When constituted, the range of the average aggregate particle diameter is shown.

低融点金属粒子(B)の平均粒子径が1μm以上であれば、これを含有する導電ペーストの流動特性が良好となり、さらにボイドも形成されにくい。また、低融点金属粒子(B)の平均粒子径が50μm以下であれば、これを含有する導電ペーストにより、微細配線を作製しやすくなる。低融点金属粒子(B)が微粒子の凝集体で構成される場合の微粒子の平均一次粒子径については、特に制限されない。   If the average particle diameter of the low melting point metal particles (B) is 1 μm or more, the flow characteristics of the conductive paste containing them will be good, and voids will not easily be formed. Moreover, if the average particle diameter of the low-melting-point metal particles (B) is 50 μm or less, it becomes easy to produce fine wiring with a conductive paste containing the same. The average primary particle size of the fine particles when the low melting point metal particles (B) are composed of fine particle aggregates is not particularly limited.

低融点金属粒子(B)の形状は、球状、板状、樹枝状等が挙げられ、ペースト流動性の観点から球状が好ましい。本発明の導体ペーストにおける低融点金属粒子(B)の含有量は、上記粒子(A)の含有量、および以下の無機微粒子(C)の含有量との関係から適宜選択される。各成分の含有量の具体的な関係は、無機微粒子(C)において説明する。   Examples of the shape of the low melting point metal particles (B) include a spherical shape, a plate shape, and a dendritic shape, and a spherical shape is preferable from the viewpoint of paste fluidity. The content of the low melting point metal particles (B) in the conductor paste of the present invention is appropriately selected from the relationship between the content of the particles (A) and the content of the following inorganic fine particles (C). The specific relationship of the content of each component will be described in the inorganic fine particles (C).

<無機微粒子(C)>
無機微粒子(C)は、上記粒子(A)より平均粒子径が小さくかつ上記低融点金属の融点以上の温度で該低融点金属と合金を生成しうる融点が300℃以上の無機微粒子である。無機微粒子(C)は、本発明の導電ペーストを導電体とした際に、上記低融点金属粒子(B)と合金化されて、上記粒子(A)が導電性粒子となり連鎖構造を形成した隙間を充填するバインダ成分として機能する。
<Inorganic fine particles (C)>
The inorganic fine particles (C) are inorganic fine particles having an average particle size smaller than that of the particles (A) and a melting point capable of forming an alloy with the low melting point metal at a temperature equal to or higher than the melting point of the low melting point metal. When the inorganic fine particles (C) are made into the conductor of the conductive paste of the present invention, the inorganic fine particles (C) are alloyed with the low melting point metal particles (B), and the particles (A) become conductive particles and form a chain structure. Functions as a binder component.

無機微粒子(C)を構成する材料としては、低融点金属粒子(B)の融点以上の温度で低融点金属粒子(B)を構成する低融点金属と合金を生成しうる融点が300℃以上の無機材料、具体的には金属または金属化合物であれば、特に制限されない。好ましくは、最終的に得られる合金の金属組成にもよるが、得られる合金の融点をより高くする、金属または金属化合物である。   As a material constituting the inorganic fine particles (C), a melting point of 300 ° C. or higher capable of forming an alloy with the low melting point metal particles (B) constituting the low melting point metal particles (B) at a temperature equal to or higher than the melting point of the low melting point metal particles (B). There is no particular limitation as long as it is an inorganic material, specifically a metal or a metal compound. Preferably, it is a metal or a metal compound that makes the melting point of the obtained alloy higher, although it depends on the metal composition of the finally obtained alloy.

このような金属または金属化合物として具体的には、金、銀、銅、ニッケル、アルミニウム、酸化銀、水素化銅等が挙げられる。なお、無機微粒子(C)が酸化銀、水素化銅等の場合、導電ペーストから導電体を製造する際の加熱時に、通常、これらはそれぞれ銀、銅等に変化する。
無機微粒子(C)は、平均粒子径が粒子(A)の平均粒子径より小さい範囲において、単一粒子であってもよく、微粒子が凝集した凝集体であってもよい。無機微粒子(C)の平均粒子径としては、1〜500nmが好ましく、10〜100nmがより好ましい。
無機微粒子(C)の平均粒子径が、500nm以下であれば、これを含む導電ペーストにより、微細配線を作製しやすく、低融点金属粒子(B)との合金化も容易に行える。無機微粒子(C)の平均粒子径が1nm以上であれば、これを含む導電ペーストの流動特性が良好となる。無機微粒子(C)の形状は、球状、板状、繊維状等が挙げられ、表面積が最大となって合金化が円滑に進行する点から球状が好ましい。
Specific examples of such a metal or metal compound include gold, silver, copper, nickel, aluminum, silver oxide, and copper hydride. When the inorganic fine particles (C) are silver oxide, copper hydride or the like, these usually change to silver, copper or the like, respectively, at the time of heating when producing a conductor from the conductive paste.
The inorganic fine particles (C) may be single particles or an aggregate in which the fine particles are aggregated in a range where the average particle size is smaller than the average particle size of the particles (A). The average particle diameter of the inorganic fine particles (C) is preferably 1 to 500 nm, and more preferably 10 to 100 nm.
If the average particle diameter of the inorganic fine particles (C) is 500 nm or less, a fine wiring can be easily produced with a conductive paste containing the inorganic fine particles (C), and alloying with the low melting point metal particles (B) can be easily performed. If the average particle diameter of the inorganic fine particles (C) is 1 nm or more, the flow characteristics of the conductive paste containing the inorganic fine particles (C) will be good. Examples of the shape of the inorganic fine particles (C) include a spherical shape, a plate shape, and a fibrous shape, and a spherical shape is preferable because the surface area is maximized and alloying proceeds smoothly.

なお、本発明の導電ペーストにおいて、無機微粒子(C)は、上記粒子(A)と複合化して用いてもよい。複合化の形態として、具体的には、粒子(A)、特には単一粒子で構成される粒子(A1)、の表面に無機微粒子(C)が付着または結合した形態が挙げられる。このような表面に無機微粒子(C)を有する粒子(A)、特には粒子(A1)を用いれば、導電ペーストの加熱時に、具体的には、低融点金属粒子(B)の融点以上の所定の温度での加熱時に、粒子(A)の表面に存在する無機微粒子(C)は、粒子(A)間に挟まれて接する無機微粒子(C)同士の融着が進行し、粒子(A)の導電パスを良好に形成できる。よって、このように複合化された無機微粒子(C)と粒子(A)を用いることが好ましい。また、この場合粒子(A)の表面に存在する無機微粒子(C)は、それ以外の部分では、低融点金属粒子(B)が溶融した低融点金属に取り込まれて合金化する。   In the conductive paste of the present invention, the inorganic fine particles (C) may be used in combination with the particles (A). Specific examples of the composite form include a form in which the inorganic fine particles (C) are attached or bonded to the surface of the particles (A), particularly the particles (A1) composed of single particles. When particles (A) having inorganic fine particles (C) on such a surface, particularly particles (A1), are used, when the conductive paste is heated, specifically, a predetermined temperature equal to or higher than the melting point of the low melting point metal particles (B). When the inorganic fine particles (C) existing on the surface of the particles (A) are heated at the temperature of 1, the fusion of the inorganic fine particles (C) sandwiched between and in contact with the particles (A) proceeds, and the particles (A) The conductive path can be satisfactorily formed. Therefore, it is preferable to use the inorganic fine particles (C) and particles (A) combined in this way. In this case, the inorganic fine particles (C) present on the surface of the particles (A) are incorporated into the low melting point metal in which the low melting point metal particles (B) are melted and alloyed at other portions.

ここで、粒子(A)と無機微粒子(C)が上記のように複合化して用いられる場合であっても、粒子(A)に付着、結合しない状態の無機微粒子(C)を、粒子(A)と複合化された無機微粒子(C)とともに用いることも可能であり、導電ペーストにおける無機微粒子(C)の含有量を確保する点から好ましい。   Here, even when the particles (A) and the inorganic fine particles (C) are combined and used as described above, the inorganic fine particles (C) that are not attached to and bonded to the particles (A) are treated with the particles (A ) And composite inorganic fine particles (C), which is preferable from the viewpoint of securing the content of the inorganic fine particles (C) in the conductive paste.

図1は、上記導電ペーストから導電体を得る際の構造変化を模式的に示す図である。すなわち、図1には、上段に本発明の実施形態の導電ペーストの一例として、表面に無機微粒子(C)を有する粒子(A1)を含有する導電ペーストが、下段にこの導電ペーストを用いて得られる導電体の一例がそれぞれ模式的に示されている。図1に示す、導電ペーストは、表面に無機微粒子(C)を有する粒子(A1)と、低融点金属粒子(B)と、粒子(A1)に付着または結合しない無機微粒子(C)とが後述の有機化合物(D)中に分散した形態を有する。   FIG. 1 is a diagram schematically showing a structural change when a conductor is obtained from the conductive paste. That is, in FIG. 1, as an example of the conductive paste of the embodiment of the present invention, the conductive paste containing particles (A1) having inorganic fine particles (C) on the surface is obtained using the conductive paste in the lower stage. An example of the conductor to be used is schematically shown. The conductive paste shown in FIG. 1 includes particles (A1) having inorganic fine particles (C) on the surface, low melting point metal particles (B), and inorganic fine particles (C) that do not adhere to or bind to the particles (A1). In a form dispersed in the organic compound (D).

このような、導電ペーストは、低融点金属粒子(B)の融点以上の所定の温度での加熱により、有機化合物(D)が除去される。また、粒子(A1)が金属の場合には、そのまま導電性粒子3を構成し、粒子(A1)が金属化合物の場合は、加熱により金属となって導電性粒子3を構成する。さらに、粒子(A1)間に挟まれて接する無機微粒子(C)同士が融着して、図1の導電体において導電性粒子3の間のPで示される連結部を形成し、良好な導電性を有する導電体を形成する。一方、低融点金属粒子(B)は、溶融して上記連結に供さなかった無機微粒子(C)と合金化され粒子(A1)の間の隙間を充填するバインダ成分4となる。   In such a conductive paste, the organic compound (D) is removed by heating at a predetermined temperature equal to or higher than the melting point of the low melting point metal particles (B). Further, when the particles (A1) are metal, the conductive particles 3 are formed as they are, and when the particles (A1) are metal compounds, the conductive particles 3 are formed by heating to form a metal. Further, the inorganic fine particles (C) that are sandwiched between and in contact with the particles (A1) are fused together to form a connecting portion indicated by P between the conductive particles 3 in the conductor of FIG. Forming a conductive material. On the other hand, the low melting point metal particles (B) become the binder component 4 which is alloyed with the inorganic fine particles (C) which have not been melted and used for the connection and fills the gaps between the particles (A1).

ここで、図1中、Pで示される部分とバインダ成分4で示される部分は、実際は明確に区別して存在するのではなく、両者は、特にその境界において無機微粒子(C)と低融点金属粒子(B)との合金組成が漸次変化する関係にあると考えられる。すなわち、Pで示される領域の中心部は、ほぼ、無機微粒子(C)が加熱されて得られる金属材料からなり、Pで示される領域との境界付近を除くバインダ成分4の大部分は、無機微粒子(C)と低融点金属粒子(B)が一定割合で均一に合金化された合金からなると想定される。両者の境界域においては、Pで示される領域からバインダ成分の領域に向かって、漸次、無機微粒子(C)由来の金属材料の濃度が低くなっていると想定される。   Here, in FIG. 1, the portion indicated by P and the portion indicated by the binder component 4 are not actually clearly distinguished, both of which are inorganic fine particles (C) and low melting point metal particles, particularly at the boundary. It is considered that the alloy composition with (B) gradually changes. That is, the central portion of the region indicated by P is substantially made of a metal material obtained by heating the inorganic fine particles (C), and most of the binder component 4 excluding the vicinity of the boundary with the region indicated by P is inorganic. It is assumed that the fine particles (C) and the low melting point metal particles (B) are made of an alloy that is uniformly alloyed at a constant ratio. In the boundary region between the two, it is assumed that the concentration of the metal material derived from the inorganic fine particles (C) gradually decreases from the region indicated by P toward the binder component region.

本発明の導電ペーストにおける粒子(A)、低融点金属粒子(B)、無機微粒子(C)の含有割合としては、粒子(A)の100質量部に対する、低融点金属粒子(B)と無機微粒子(C)の合計質量として、5〜80質量部が好ましく、40〜70質量部がより好ましい。低融点金属粒子(B)と無機微粒子(C)の合計質量は、導電体とした際に、例えば、図1に示す導電性粒子3の間の連結部P等も含むバインダ成分に相当する量を示し、上記範囲にあることで、これを用いて導電体を形成した際に、良好な導電性と導電体としての形状保持を同時に達成可能となる。   As the content ratio of the particles (A), the low melting point metal particles (B), and the inorganic fine particles (C) in the conductive paste of the present invention, the low melting point metal particles (B) and the inorganic fine particles with respect to 100 parts by mass of the particles (A). The total mass of (C) is preferably 5 to 80 parts by mass, and more preferably 40 to 70 parts by mass. The total mass of the low melting point metal particles (B) and the inorganic fine particles (C) is an amount corresponding to a binder component including, for example, the connecting portion P between the conductive particles 3 shown in FIG. When the conductor is formed using this, it becomes possible to achieve good conductivity and shape retention as a conductor at the same time.

本発明の導電ペーストにおける、低融点金属粒子(B)と無機微粒子(C)の含有割合は、これらを構成する材料の種類によるが、低融点金属粒子(B)100質量部に対する無機微粒子(C)の質量として、20〜80質量部が好ましく、30〜70質量部がより好ましい。低融点金属粒子(B)と無機微粒子(C)を上記割合で導電ペーストに含有させることで、これを用いて導電体を形成した際に、バインダ成分として高融点かつ均一な合金の形成が可能となり、耐久性および耐熱性に優れた導電体が得られる。   The content ratio of the low melting point metal particles (B) and the inorganic fine particles (C) in the conductive paste of the present invention depends on the kind of materials constituting them, but the inorganic fine particles (C) with respect to 100 parts by mass of the low melting point metal particles (B). ) Is preferably 20 to 80 parts by mass, more preferably 30 to 70 parts by mass. By incorporating low-melting-point metal particles (B) and inorganic fine particles (C) in the above proportion in the conductive paste, a high melting point and uniform alloy can be formed as a binder component when a conductor is formed using this. Thus, a conductor excellent in durability and heat resistance can be obtained.

<有機化合物(D)>
有機化合物(D)は、1分子中に少なくとも2個のOH基を有する有機化合物であり、上記粒子(A)、低融点金属粒子(B)、無機微粒子(C)をこれに分散させることでペーストの形態とする機能を有する。また、導電ペーストの加熱時に、具体的には、低融点金属粒子(B)の融点以上の所定の温度での加熱時に、フラックス成分として働き、粒子(A)、低融点金属粒子(B)、無機微粒子(C)の粒子表面の酸化膜を除去することで、粒子(A)間の導電接続、好ましくは粒子(A)間で無機微粒子(C)同士が融着することによる導電接続を補助する。さらに、粒子(A)および無機微粒子(C)の表面における、低融点金属粒子(B)が溶融した低融点金属の濡れ性を向上させる機能を有するものである。
<Organic compound (D)>
The organic compound (D) is an organic compound having at least two OH groups in one molecule, and the particles (A), the low melting point metal particles (B), and the inorganic fine particles (C) are dispersed therein. It has the function of forming a paste. Further, when the conductive paste is heated, specifically, when heated at a predetermined temperature equal to or higher than the melting point of the low melting point metal particles (B), it acts as a flux component, and the particles (A), low melting point metal particles (B), By removing the oxide film on the surface of the inorganic fine particles (C), the conductive connection between the particles (A), preferably the conductive connection by fusing the inorganic fine particles (C) between the particles (A) is assisted. To do. Furthermore, it has a function of improving the wettability of the low melting point metal in which the low melting point metal particles (B) are melted on the surfaces of the particles (A) and the inorganic fine particles (C).

有機化合物(D)は、1分子中に少なくとも2個のOH基を有することで、粒子(A)および無機微粒子(C)の表面において、低融点金属粒子(B)が溶融した低融点金属の濡れ性を向上させる。濡れ性を向上のために、有機化合物(D)が1分子中に有するOH基の数は、3個以上が好ましく、加熱温度において有機化合物(D)が融解し、加熱中に徐々に揮発して導電体中から消失する適切な蒸気圧を有するという観点から、3個または4個が好ましい。   Since the organic compound (D) has at least two OH groups in one molecule, the low melting point metal particles (B) melted on the surfaces of the particles (A) and the inorganic fine particles (C). Improve wettability. In order to improve wettability, the number of OH groups that the organic compound (D) has in one molecule is preferably 3 or more, and the organic compound (D) melts at the heating temperature and gradually volatilizes during the heating. From the viewpoint of having an appropriate vapor pressure that disappears from the conductor, three or four are preferable.

また、導電ペーストを加熱後、導電体とした際に、有機化合物(D)またはその加熱変性物が残渣として残る場合には、これを洗浄する必要がある。有機化合物(D)としては、洗浄による工程数の増加や導電体への影響を防ぐために、これを必要としない無残渣フラックスであることが好ましい。無残渣フラックスとして機能するための有機化合物(D)としては、導電ペーストの加熱当初においてフラックスとして機能するが、さらなる加熱により揮発して消失する性質が要求される。そのために、有機化合物(D)の沸点は150〜300℃が好ましく、180〜250℃がより好ましい。   In addition, when the conductive paste is heated to form a conductor, if the organic compound (D) or a heat-modified product thereof remains as a residue, it must be washed. The organic compound (D) is preferably a non-residue flux that does not require this in order to prevent an increase in the number of steps due to washing and an influence on the conductor. The organic compound (D) for functioning as a residue-free flux functions as a flux at the beginning of heating of the conductive paste, but is required to have a property of volatilizing and disappearing upon further heating. Therefore, 150-300 degreeC is preferable and, as for the boiling point of an organic compound (D), 180-250 degreeC is more preferable.

有機化合物(D)として、具体的には、1,3ジオキサン−5,5−ジメタノール、1,4−ジオキサン−2,3−ジオール、1,5−ペンタンジオール、3−メチル−1,5−ペンタンジオール、2,5−フランジメタノール、n−ブタンジエタノールアミン、ジエタノールアミン、テトラエチレングリコール、トリエチレングリコール、ヘキサエチレングリコール、ペンタエチレングリコール、1,2,3−ヘキサントリオール、1,2,6−ヘキサントリオール、1,2,4−ブタントリオール、2,3,4−トリヒドロキシベンゾフェノン、3−メチルペンタン−1,3,5−トリオール、グリセリン、トリエタノールアミン、トリメチロールプロパン、トリメチロールエタン、ピロガロール、エリトリトール、N−N−ビス(2−ヒドロキシエチル)イソプロパノールアミン、ペンタエリトリトール、リビトール、およびビス(2−ヒドロキシメチル)イミノトリス(ヒドロキシメチル)メタン等が挙げられる。こられのなかでも、1,5−ペンタンジオール、3−メチル−1,5−ペンタンジオール、1,2,3−ヘキサントリオール、1,2,6−ヘキサントリオール、1,2,4−ブタントリオール、トリメチロールエタン、ピロガロール、エリトリトール等が好ましい。本発明においては、これらの1種を単独で用いてもよく、2種以上を併用してもよい。   Specific examples of the organic compound (D) include 1,3 dioxane-5,5-dimethanol, 1,4-dioxane-2,3-diol, 1,5-pentanediol, and 3-methyl-1,5. -Pentanediol, 2,5-furandiethanol, n-butanediethanolamine, diethanolamine, tetraethylene glycol, triethylene glycol, hexaethylene glycol, pentaethylene glycol, 1,2,3-hexanetriol, 1,2,6-hexane Triol, 1,2,4-butanetriol, 2,3,4-trihydroxybenzophenone, 3-methylpentane-1,3,5-triol, glycerin, triethanolamine, trimethylolpropane, trimethylolethane, pyrogallol, Erythritol, N-N-bis (2- Dorokishiechiru) isopropanolamine, pentaerythritol, ribitol, and bis (2-hydroxymethyl) iminotris (hydroxymethyl) methane, and the like. Among these, 1,5-pentanediol, 3-methyl-1,5-pentanediol, 1,2,3-hexanetriol, 1,2,6-hexanetriol, 1,2,4-butanetriol , Trimethylolethane, pyrogallol, erythritol and the like are preferable. In this invention, these 1 type may be used independently and 2 or more types may be used together.

本発明の導電ペーストにおける、有機化合物(D)の含有量は、上記粒子(A)、低融点金属粒子(B)、無機微粒子(C)の合計質量の100質量部に対して、3〜50質量部が好ましく、5〜40質量部がより好ましい。有機化合物(D)の含有量を上記範囲とすることで、導電体ペーストの成形性が良好でありかつ導電体とする際の加熱時に上記フラックスとして、好ましくは無残渣フラックスとして十分に機能することが可能となる。   The content of the organic compound (D) in the conductive paste of the present invention is 3 to 50 with respect to 100 parts by mass of the total mass of the particles (A), the low melting point metal particles (B), and the inorganic fine particles (C). A mass part is preferable and 5-40 mass parts is more preferable. By making the content of the organic compound (D) in the above range, the moldability of the conductor paste is good, and it functions sufficiently as the above-mentioned flux when heated to make a conductor, preferably as a residue-free flux Is possible.

<その他成分>
本発明の導電ペーストは、上記粒子(A)、低融点金属粒子(B)、無機微粒子(C)、有機化合物(D)以外の任意成分を本発明の効果を損なわない範囲で含有できる。このような任意成分として、例えば、酸化防止剤、分散剤、チキソ性付与剤、基材密着性付与剤等が挙げられる。
<Other ingredients>
The electrically conductive paste of this invention can contain arbitrary components other than the said particle | grain (A), a low melting-point metal particle (B), an inorganic fine particle (C), and an organic compound (D) in the range which does not impair the effect of this invention. Examples of such optional components include an antioxidant, a dispersant, a thixotropic agent, and a substrate adhesion-imparting agent.

[導電体]
本発明の実施形態の導電体は、上記本発明の導電ペーストを用いて形成できる。すなわち、上記本発明の導電ペーストを、前記低融点金属の融点以上の所定の温度で加熱することにより、前記粒子(A)を導電性粒子(X)とし、前記無機微粒子(C)と低融点金属粒子(B)から合金(Y)を形成させることで、本発明の実施形態の導電体が得られる。
本発明の実施形態の導電体は、導電性粒子(X)がバインダ成分に分散してなる導電体であって、該バインダ成分が主として、融点が200℃以下の低融点金属と、融点が300℃以上の金属とからなる合金(Y)で構成される。このような構成の導電体は、優れた導電性と、その耐久性を有するものである。
[conductor]
The conductor of the embodiment of the present invention can be formed using the above-described conductive paste of the present invention. That is, by heating the conductive paste of the present invention at a predetermined temperature equal to or higher than the melting point of the low melting point metal, the particles (A) become conductive particles (X), and the inorganic fine particles (C) and the low melting point are heated. By forming the alloy (Y) from the metal particles (B), the conductor according to the embodiment of the present invention is obtained.
The conductor of the embodiment of the present invention is a conductor in which conductive particles (X) are dispersed in a binder component, and the binder component mainly includes a low melting point metal having a melting point of 200 ° C. or less, and a melting point of 300. It is comprised with the alloy (Y) which consists of a metal more than ° C. The conductor having such a configuration has excellent conductivity and durability.

導電性粒子(X)としては、構成材料が、金、銀、銅、ニッケルおよびアルミニウムから選ばれる少なくとも1種である、平均粒子径が1〜20μmの単一粒子または平均一次粒子径が1nm〜1μmである微粒子の凝集体で構成される導電性粒子が好ましい。合金(Y)としては、融点が200℃以下の低融点金属、特には、錫、インジウムおよびビスマスから選ばれる少なくとも1種を含む合金、具体的には、公知の融点200℃以下のハンダ材料と、金、銀、銅、ニッケルおよびアルミニウムから選ばれる少なくとも1種の金属と、の合金が好ましい。   As electroconductive particle (X), a constituent material is at least 1 sort (s) chosen from gold | metal | money, silver, copper, nickel, and aluminum, the average particle diameter is 1-20 micrometers, or an average primary particle diameter is 1 nm- Conductive particles composed of aggregates of fine particles of 1 μm are preferable. As the alloy (Y), a low melting point metal having a melting point of 200 ° C. or less, particularly an alloy containing at least one selected from tin, indium and bismuth, specifically, a known solder material having a melting point of 200 ° C. or less An alloy with at least one metal selected from gold, silver, copper, nickel and aluminum is preferred.

なお、バインダ成分は主として合金(Y)で構成されるが、本発明の効果を損なわない範囲で任意に酸化防止剤等を含有してもよい。本発明の導電体において、好ましくは、バインダ成分は合金(Y)のみからなる。本発明の導電体における導電性粒子(X)と合金(Y)の含有割合は、導電体において導電体粒子(X)が連鎖構造を形成することで良好な導電性を確保できる割合であればよく、具体的には、導電体粒子(X)100質量部に対して、合金(Y)が5〜80質量部であることが好ましく、40〜70質量部がより好ましい。   In addition, although a binder component is mainly comprised with an alloy (Y), you may contain antioxidant etc. arbitrarily in the range which does not impair the effect of this invention. In the conductor of the present invention, preferably, the binder component is made of an alloy (Y) only. If the content rate of electroconductive particle (X) and the alloy (Y) in the conductor of this invention is a ratio which can ensure favorable electroconductivity because conductor particle (X) forms a chain structure in a conductor. More specifically, the alloy (Y) is preferably 5 to 80 parts by mass and more preferably 40 to 70 parts by mass with respect to 100 parts by mass of the conductor particles (X).

[導電膜付き基材およびその製造方法]
本発明は、さらに上記本発明の導電体からなる導電膜を基材上に有してなる導電膜付き基材を提供する。以下、図2を参照しながら本発明の導電体について説明する。図2は、本発明の実施形態の導電膜付き基材の一例を示す断面模式図である。
導電膜付き基材10は、基材1上に本発明の導電体からなる導電膜2を有する。基材1としては、無機基板(例えば、ガラス基板、シリコン基板、金属基板等)、プラスチック基板(例えば、ポリイミド基板、ポリエステル基板等)、繊維強化複合材料からなる基板(例えば、ガラス繊維強化樹脂基板等)が挙げられる。基材1と導電ペーストの濡れ性、密着性を向上させるために基材1に表面処理を施してもよい。
[Substrate with conductive film and method for producing the same]
This invention provides the base material with a electrically conductive film which has further the electrically conductive film which consists of a conductor of the said invention on the base material. Hereinafter, the conductor of the present invention will be described with reference to FIG. FIG. 2 is a schematic cross-sectional view illustrating an example of a base material with a conductive film according to an embodiment of the present invention.
The base material 10 with a conductive film has the conductive film 2 made of the conductor of the present invention on the base material 1. As the base material 1, an inorganic substrate (for example, a glass substrate, a silicon substrate, a metal substrate, etc.), a plastic substrate (for example, a polyimide substrate, a polyester substrate, etc.), a substrate made of a fiber reinforced composite material (for example, a glass fiber reinforced resin substrate) Etc.). In order to improve the wettability and adhesion between the substrate 1 and the conductive paste, the substrate 1 may be subjected to a surface treatment.

導電膜2は、導電性粒子3がバインダ成分4に分散してなる導電体で構成される。導電性粒子3およびバインダ成分4の構成は本発明の導電体において上に説明したとおりである。
このような導電膜付き基材10は、例えば、上記本発明の導電ペーストを基材1上に塗布した後、この導電ペーストを前記低融点金属の融点以上の温度で加熱して、前記無機微粒子(C)と低融点金属粒子(B)から得られる合金を主体とするバインダ成分4に、前記粒子(A)から得られる導電性粒子3が分散した導電膜2を形成する方法で製造できる。
The conductive film 2 is composed of a conductor in which conductive particles 3 are dispersed in a binder component 4. The configurations of the conductive particles 3 and the binder component 4 are as described above in the conductor of the present invention.
Such a base material 10 with a conductive film is obtained by, for example, applying the conductive paste of the present invention on the base material 1 and then heating the conductive paste at a temperature equal to or higher than the melting point of the low melting point metal to thereby form the inorganic fine particles. It can be produced by forming a conductive film 2 in which conductive particles 3 obtained from the particles (A) are dispersed in a binder component 4 mainly composed of an alloy obtained from (C) and the low melting point metal particles (B).

導電ペーストの塗布方法としては、スクリーン印刷法、ロールコート法、エアナイフコート法、ブレードコート法、バーコート法、グラビアコート法、ダイコート法、スライドコート法等の公知の方法が挙げられる。
これらの中でも、表面および側面における凹凸の発生が抑制された滑らかな配線形状を、基材1上に効率的に形成できるので、スクリーン印刷法が好適に用いられる。
Examples of the method for applying the conductive paste include known methods such as screen printing, roll coating, air knife coating, blade coating, bar coating, gravure coating, die coating, and slide coating.
Among these, since a smooth wiring shape in which the occurrence of irregularities on the surface and side surfaces is suppressed can be efficiently formed on the substrate 1, the screen printing method is preferably used.

次いで、基材上に塗布された導電ペーストを低融点金属粒子(B)の融点以上の所定の温度で加熱する。加熱時に、導電ペースト中の低融点金属粒子(B)が溶融しこれと無機微粒子(C)との合金化が行われる。その際、有機化合物(D)はフラックスとして機能した後、好ましくは、揮発し除去される。このようにして、基材上に塗布された導電ペーストは、加熱、冷却により硬化して導電膜となる。また、粒子(A)が水素化銅や酸化銀等の金属化合物を構成材料として含む場合には、上記加熱により、これらは銅、銀等の金属導電材料となる。さらに、粒子(A)、特には、粒子(A1)の表面に無機微粒子(C)が付着、結合している場合には、上記加熱により、粒子(A)間に挟まれた無機微粒子(C)同士が融着することで、得られる導電膜内での導電性粒子の連鎖構造が形成される。   Next, the conductive paste applied on the substrate is heated at a predetermined temperature equal to or higher than the melting point of the low melting point metal particles (B). At the time of heating, the low melting point metal particles (B) in the conductive paste are melted and alloyed with the inorganic fine particles (C). At that time, the organic compound (D) preferably functions as a flux and then volatilizes and is removed. Thus, the electrically conductive paste apply | coated on the base material hardens | cures by heating and cooling, and turns into an electrically conductive film. In addition, when the particles (A) contain a metal compound such as copper hydride or silver oxide as a constituent material, they become a metal conductive material such as copper or silver by the heating. Furthermore, when the inorganic fine particles (C) are attached and bonded to the surfaces of the particles (A), particularly the particles (A1), the inorganic fine particles (C) sandwiched between the particles (A) by the heating described above. ) Are fused together to form a chain structure of conductive particles in the resulting conductive film.

ここで、低融点金属粒子(B)と無機微粒子(C)が合金化して得られる合金が導電膜のバインダ成分4となり、該合金の融点は低融点金属粒子(B)の融点と比較して上昇する。この現象により、導電ペーストを一度、溶融、硬化させて導電膜を形成させた後は、該導電膜を溶融に使用した温度まで再度上昇させてもバインダ部分4の溶融は起こらない。   Here, the alloy obtained by alloying the low melting point metal particles (B) and the inorganic fine particles (C) becomes the binder component 4 of the conductive film, and the melting point of the alloy is compared with the melting point of the low melting point metal particles (B). To rise. Due to this phenomenon, once the conductive paste is melted and cured to form a conductive film, the binder portion 4 does not melt even if the conductive film is raised again to the temperature used for melting.

加熱温度および加熱時間は、導電ペーストを構成する上記粒子(A)、低融点金属粒子(B)、無機微粒子(C)、有機化合物(D)の熱特性を考慮して、上記加熱による変化がそれぞれ実行されるように、かつ、導電膜に求められる特性に応じて適宜決定すればよい。加熱温度は、低融点金属粒子(B)の融点以上であって、150〜200℃の範囲が好ましい。   The heating temperature and the heating time are changed by the heating in consideration of the thermal characteristics of the particles (A), the low melting point metal particles (B), the inorganic fine particles (C), and the organic compound (D) constituting the conductive paste. What is necessary is just to determine suitably according to the characteristic calculated | required by the electrically conductive film so that each may be performed. The heating temperature is equal to or higher than the melting point of the low melting point metal particles (B) and is preferably in the range of 150 to 200 ° C.

加熱温度が150℃以上であれば、ただし、低融点金属粒子(B)の融点が150℃を超える場合には低融点金属粒子(B)の融点以上であれば、無機微粒子(C)同士の融着、低融点金属粒子(B)の溶融、低融点金属粒子(B)と無機微粒子(C)との合金化が円滑に進行し、導電性粒子間の接続が良好になり導電性が向上するとともに導電性粒子との結合が良好になって導電体の構造が強固になる。また、有機化合物(D)は、加熱の当初においてフラックス機能を発揮できる。さらに、有機化合物(D)が無残渣フラックスの場合には、その後、揮発して除去されうる。
加熱温度が200℃以下であれば、基材本体としてプラスチック基板を使用できるので、基材選択の自由度が高まる。また、実装される他の素子への影響を小さくできる。
加熱方法としては、温風加熱、熱輻射、IR加熱等の方法が挙げられる。なお、導電膜の形成は、空気中で行ってもよく、また酸素量が少ない窒素雰囲気下等で行ってもよい。
If the heating temperature is 150 ° C. or higher, however, if the melting point of the low melting point metal particles (B) exceeds 150 ° C., if the melting point of the low melting point metal particles (B) is higher than the melting point of the inorganic fine particles (C) Fusion, melting of low melting point metal particles (B), and alloying of low melting point metal particles (B) and inorganic fine particles (C) proceed smoothly, improving the connection between conductive particles and improving conductivity. At the same time, the bond with the conductive particles is improved and the structure of the conductor is strengthened. The organic compound (D) can exhibit a flux function at the beginning of heating. Further, when the organic compound (D) is a residue-free flux, it can be volatilized and removed thereafter.
If heating temperature is 200 degrees C or less, since a plastic substrate can be used as a base-material main body, the freedom degree of base-material selection increases. In addition, the influence on other mounted elements can be reduced.
Examples of the heating method include warm air heating, thermal radiation, and IR heating. Note that the conductive film may be formed in the air or in a nitrogen atmosphere with a small amount of oxygen.

基材1上の導電膜2の厚さは、安定な導電性を確保し、かつ配線形状を維持し易くする観点から、1〜200μmであることが好ましく、5〜100μmであることがより好ましい。また、導電膜2の体積抵抗率は、1.0×10−4Ωcm以下であることが好ましい。導電膜2の体積抵抗率が1.0×10−4Ωcmを超えると、電子機器用の導電体として、十分な導電性を得られないおそれがある。 The thickness of the conductive film 2 on the substrate 1 is preferably 1 to 200 μm and more preferably 5 to 100 μm from the viewpoint of ensuring stable conductivity and facilitating the maintenance of the wiring shape. . The volume resistivity of the conductive film 2 is preferably 1.0 × 10 −4 Ωcm or less. When the volume resistivity of the conductive film 2 exceeds 1.0 × 10 −4 Ωcm, there is a possibility that sufficient conductivity cannot be obtained as a conductor for electronic equipment.

本発明に係る導電膜付き基材10においては、上述した本発明の導電ペーストを用いて導電膜2を形成しているため、導電膜2は実質的に樹脂成分を含まず、金属を主体として形成される。そのため、導電膜付き基材10の導電膜は導電性に優れるとともに、その耐久性に優れる。さらに、例えば、ハンダ加工等の比較的高温(200〜300℃程度)の処理に曝した場合や、高温使用に供した場合においても、導電膜が十分に形状を維持できる等、耐熱性に優れる。   In the base material 10 with a conductive film according to the present invention, since the conductive film 2 is formed using the conductive paste of the present invention described above, the conductive film 2 does not substantially contain a resin component and is mainly composed of metal. It is formed. Therefore, the conductive film of the base material with a conductive film 10 is excellent in conductivity and excellent in durability. Furthermore, for example, when exposed to a relatively high temperature (about 200 to 300 ° C.) treatment such as soldering, or when subjected to high temperature use, the conductive film can sufficiently maintain its shape and has excellent heat resistance. .

以上、本発明の導電膜付き基材について一例を挙げて説明したが、本発明の趣旨に反しない限度において、また必要に応じて適宜構成を変更できる。また、本発明の導電膜付き基材の製造方法では、各部の形成順序等についても、導電膜付き基材の製造が可能な限度において適宜変更できる。   As mentioned above, although an example was given and demonstrated about the base material with an electrically conductive film of this invention, in the limit which is not contrary to the meaning of this invention, a structure can be changed suitably as needed. Moreover, in the manufacturing method of the base material with a conductive film of this invention, it can change suitably in the limit in which manufacture of a base material with a conductive film is possible also about the formation order of each part.

本発明の導電ペーストは様々な用途に利用でき、例えば、プリント配線板等における配線パターンの形成および修復、半導体パッケージ内の層間配線、プリント配線板と電子部品との接合等の用途に利用できる。   The conductive paste of the present invention can be used for various applications, for example, for the formation and repair of wiring patterns on printed wiring boards, interlayer wiring in semiconductor packages, and bonding between printed wiring boards and electronic components.

10…導電膜付き基材、1…基材、2…導電膜、3…導電性粒子、4…バインダ成分。 DESCRIPTION OF SYMBOLS 10 ... Base material with a conductive film, 1 ... Base material, 2 ... Conductive film, 3 ... Conductive particle, 4 ... Binder component.

Claims (9)

融点が300℃以上の金属からなる単一粒子、融点が300℃以上かつ該融点以下の加熱により金属となる金属化合物からなる単一粒子、および平均一次粒子径が1nm〜1μmである前記金属化合物の微粒子の凝集体から選ばれる1種以上の、平均粒子径が1〜20μmである粒子(A)と、
融点が200℃以下の低融点金属粒子(B)と、
前記粒子(A)より平均粒子径が小さくかつ前記低融点金属の融点以上の温度で該低融点金属と合金を生成しうる融点が300℃以上の無機微粒子(C)と、
1分子中に少なくとも2個のOH基を有する有機化合物(D)と、を含有し、
実質的に樹脂を含有しない導電ペースト。
Single particles made of a metal having a melting point of 300 ° C. or higher, single particles made of a metal compound that becomes a metal by heating at a melting point of 300 ° C. or higher, and the average primary particle diameter is 1 nm to 1 μm Particles (A) having an average particle diameter of 1 to 20 μm selected from one or more aggregates of fine particles;
Low melting point metal particles (B) having a melting point of 200 ° C. or less;
Inorganic fine particles (C) having an average particle size smaller than that of the particles (A) and having a melting point of 300 ° C. or higher capable of forming an alloy with the low melting point metal at a temperature equal to or higher than the melting point of the low melting point metal;
An organic compound (D) having at least two OH groups in one molecule,
A conductive paste substantially free of resin.
前記粒子(A)が、金、銀、銅、ニッケル、アルミニウム、酸化銀および水素化銅からなる群から選ばれる1種以上である請求項1に記載の導電ペースト。   The conductive paste according to claim 1, wherein the particles (A) are at least one selected from the group consisting of gold, silver, copper, nickel, aluminum, silver oxide, and copper hydride. 前記低融点金属粒子(B)が、錫、インジウムおよびビスマスからなる群から選ばれる1種以上を含む合金からなる請求項1または2に記載の導電ペースト。   The conductive paste according to claim 1 or 2, wherein the low-melting-point metal particles (B) are made of an alloy containing at least one selected from the group consisting of tin, indium, and bismuth. 前記無機微粒子(C)が、金、銀、銅、ニッケル、アルミニウム、酸化銀および水素化銅からなる群から選ばれる1種以上である請求項1〜3のいずれか1項に記載の導電ペースト。   The conductive paste according to any one of claims 1 to 3, wherein the inorganic fine particles (C) are at least one selected from the group consisting of gold, silver, copper, nickel, aluminum, silver oxide, and copper hydride. . 前記有機化合物(D)の沸点が、150〜300℃である請求項1〜4のいずれか1項に記載の導電ペースト。   The conductive paste according to any one of claims 1 to 4, wherein a boiling point of the organic compound (D) is 150 to 300 ° C. 導電性粒子(X)がバインダ成分に分散してなる導電体であって、前記バインダ成分が主として、融点が200℃以下の低融点金属と融点が300℃以上の金属とからなる合金(Y)で構成される導電体。   An electrical conductor in which conductive particles (X) are dispersed in a binder component, wherein the binder component is mainly composed of a low melting point metal having a melting point of 200 ° C. or lower and a metal having a melting point of 300 ° C. or higher. Conductor composed of 請求項1〜5のいずれか1項に記載の導電ペーストを前記低融点金属の融点以上の温度で加熱することにより、前記粒子(A)を導電性粒子(X)とし、前記無機微粒子(C)と低融点金属粒子(B)から合金(Y)を形成させて得られる請求項6に記載の導電体。   By heating the conductive paste according to any one of claims 1 to 5 at a temperature equal to or higher than the melting point of the low melting point metal, the particles (A) are made conductive particles (X), and the inorganic fine particles (C ) And the low-melting-point metal particles (B) to form the alloy (Y). 請求項6または7に記載の導電体からなる導電膜を基材上に有してなる導電膜付き基材。   The base material with a electrically conductive film which has the electrically conductive film which consists of a conductor of Claim 6 or 7 on a base material. 請求項1〜5のいずれか1項に記載の導電ペーストを基材上に塗布した後、この導電ペーストを前記低融点金属の融点以上の温度で加熱して、前記無機微粒子(C)と低融点金属粒子(B)から得られる合金を主体とするバインダ成分に、前記粒子(A)から得られる導電性粒子が分散した導電膜を形成することを特徴とする導電膜付き基材の製造方法。   After apply | coating the electrically conductive paste of any one of Claims 1-5 on a base material, this electrically conductive paste is heated at the temperature more than melting | fusing point of the said low melting metal, and the said inorganic fine particle (C) and low A method for producing a substrate with a conductive film, comprising forming a conductive film in which conductive particles obtained from the particles (A) are dispersed in a binder component mainly composed of an alloy obtained from the melting point metal particles (B). .
JP2012063429A 2012-03-21 2012-03-21 Conductive paste, conductor, base material with conductive film, and manufacturing method therefor Pending JP2013196936A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012063429A JP2013196936A (en) 2012-03-21 2012-03-21 Conductive paste, conductor, base material with conductive film, and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012063429A JP2013196936A (en) 2012-03-21 2012-03-21 Conductive paste, conductor, base material with conductive film, and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2013196936A true JP2013196936A (en) 2013-09-30

Family

ID=49395635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012063429A Pending JP2013196936A (en) 2012-03-21 2012-03-21 Conductive paste, conductor, base material with conductive film, and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2013196936A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3148729A4 (en) * 2014-05-26 2018-01-10 HRL Laboratories, LLC Hydride-coated microparticles and methods for making the same
WO2018030106A1 (en) * 2016-08-10 2018-02-15 国立大学法人 熊本大学 Nanoparticle assemblies and method for producing nanoparticle assemblies
EP3322668A4 (en) * 2015-07-15 2019-07-31 HRL Laboratories, LLC Semi-passive control of solidification in powdered materials
WO2020032161A1 (en) * 2018-08-08 2020-02-13 三井金属鉱業株式会社 Bonding composition, bonding structure of electric conductor, and method for manufacturing same
WO2020202970A1 (en) * 2019-03-29 2020-10-08 三井金属鉱業株式会社 Bonded body and method for manufacturing same
US20220157765A1 (en) * 2019-03-29 2022-05-19 Mitsui Mining & Smelting Co., Ltd. Bonding material and bonded structure
WO2022100385A1 (en) * 2020-11-11 2022-05-19 北京梦之墨科技有限公司 Preparation method for metal particles having low melting point, conductive paste and preparation method therefor

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106457388B (en) * 2014-05-26 2021-04-27 Hrl实验室有限责任公司 Hydride coated microparticles and method of making same
EP3148729A4 (en) * 2014-05-26 2018-01-10 HRL Laboratories, LLC Hydride-coated microparticles and methods for making the same
US10030292B2 (en) 2014-05-26 2018-07-24 Hrl Laboratories, Llc Hydride-coated microparticles and methods for making the same
US10787728B2 (en) 2014-05-26 2020-09-29 Hrl Laboratories, Llc Hydride-coated microparticles and methods for making the same
EP3322668A4 (en) * 2015-07-15 2019-07-31 HRL Laboratories, LLC Semi-passive control of solidification in powdered materials
US11177399B2 (en) 2016-08-10 2021-11-16 National University Corporation Kumamoto University Nanoparticle assemblies and method for producing nanoparticle assemblies
WO2018030106A1 (en) * 2016-08-10 2018-02-15 国立大学法人 熊本大学 Nanoparticle assemblies and method for producing nanoparticle assemblies
KR20210042081A (en) * 2018-08-08 2021-04-16 미쓰이금속광업주식회사 Bonding composition, bonding structure of conductor, and manufacturing method thereof
JP2021143426A (en) * 2018-08-08 2021-09-24 三井金属鉱業株式会社 Joining composition, as well as joint structure of conductor and manufacturing method thereof
JP7190529B2 (en) 2018-08-08 2022-12-15 三井金属鉱業株式会社 Bonding composition, conductor bonding structure, and method for manufacturing the same
CN112437706A (en) * 2018-08-08 2021-03-02 三井金属矿业株式会社 Composition for bonding, bonded structure of electrical conductor, and method for producing same
WO2020032161A1 (en) * 2018-08-08 2020-02-13 三井金属鉱業株式会社 Bonding composition, bonding structure of electric conductor, and method for manufacturing same
JPWO2020032161A1 (en) * 2018-08-08 2021-03-11 三井金属鉱業株式会社 Bonding composition, bonding structure of conductor and method for manufacturing the same
US11931808B2 (en) 2018-08-08 2024-03-19 Mitsui Mining & Smelting Co., Ltd. Bonding composition, conductor bonding structure, and method for producing same
EP3834965A4 (en) * 2018-08-08 2021-08-18 Mitsui Mining & Smelting Co., Ltd. Bonding composition, bonding structure of electric conductor, and method for manufacturing same
CN112437706B (en) * 2018-08-08 2024-01-02 三井金属矿业株式会社 Bonding composition, conductive body bonding structure, and method for manufacturing same
KR102501588B1 (en) * 2018-08-08 2023-02-21 미쓰이금속광업주식회사 Composition for bonding, bonding structure of conductors and manufacturing method thereof
WO2020202970A1 (en) * 2019-03-29 2020-10-08 三井金属鉱業株式会社 Bonded body and method for manufacturing same
US20220157765A1 (en) * 2019-03-29 2022-05-19 Mitsui Mining & Smelting Co., Ltd. Bonding material and bonded structure
CN113614894A (en) * 2019-03-29 2021-11-05 三井金属矿业株式会社 Bonded body and method for producing same
JP7455114B2 (en) 2019-03-29 2024-03-25 三井金属鉱業株式会社 Bonding material and structure
WO2022100385A1 (en) * 2020-11-11 2022-05-19 北京梦之墨科技有限公司 Preparation method for metal particles having low melting point, conductive paste and preparation method therefor

Similar Documents

Publication Publication Date Title
JP2013196936A (en) Conductive paste, conductor, base material with conductive film, and manufacturing method therefor
KR101086358B1 (en) conductive paste
US8343383B2 (en) Anisotropic conductive material
JP5462984B1 (en) Conductive paste, cured product, electrode, and electronic device
JPWO2002028574A1 (en) Functional alloy particles
KR101293914B1 (en) Conductive ink and device using the same
TW201244867A (en) Electroconductive bonding material, method for bonding conductor, and method for manufacturing semiconductor device
JPWO2002035554A1 (en) Conductive metal paste and method for producing the same
WO2013146604A1 (en) Conductive material and connecting structure
JP5039514B2 (en) Low resistance conductive paste
TWI729373B (en) Conductive paste and sintered body
JP5140038B2 (en) Thermosetting resin composition and circuit board
JP2004111253A (en) Conductive composition for electrical connection of electronic device, and electron device
JP2011119340A (en) Conductive aluminum paste
TWI798321B (en) Solder particle, conductive material, storage method of solder particle, storage method of conductive material, production method of conductive material, connection structure and production method of connection structure
JP2011147982A (en) Solder, electronic component, and method for manufacturing the electronic component
TWI809022B (en) Solder particle, conductive material, storage method of solder particle, storage method of conductive material, production method of conductive material, connection structure and production method of connection structure
JP6869531B2 (en) Conductive paste, aluminum nitride circuit board and its manufacturing method
WO2017047293A1 (en) Bonding member, method for producing bonding member, and bonding method
JP6660921B2 (en) Electronic substrate manufacturing method
JP6628776B2 (en) Method of connecting electrodes and method of manufacturing electronic substrate
JP2004071467A (en) Connecting material
US20170275477A1 (en) Copper-containing conductive pastes and electrodes made therefrom
JP2019031735A (en) Surface treatment silver-coated alloy powder, production method of powder, conductive paste, electronic component and electric device
JP5275736B2 (en) Method for producing conductive fine particles, conductive fine particles, anisotropic conductive material, and conductive connection structure