WO2017038380A1 - 熱交換器 - Google Patents

熱交換器 Download PDF

Info

Publication number
WO2017038380A1
WO2017038380A1 PCT/JP2016/073085 JP2016073085W WO2017038380A1 WO 2017038380 A1 WO2017038380 A1 WO 2017038380A1 JP 2016073085 W JP2016073085 W JP 2016073085W WO 2017038380 A1 WO2017038380 A1 WO 2017038380A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid passage
section
flow path
fluid
cross
Prior art date
Application number
PCT/JP2016/073085
Other languages
English (en)
French (fr)
Inventor
宗一郎 奥村
西村 淳一
細江 晃久
斉 土田
Original Assignee
住友電気工業株式会社
富山住友電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社, 富山住友電工株式会社 filed Critical 住友電気工業株式会社
Publication of WO2017038380A1 publication Critical patent/WO2017038380A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/02Arrangements for modifying heat-transfer, e.g. increasing, decreasing by influencing fluid boundary

Definitions

  • the present invention relates to a heat exchanger.
  • This application claims priority based on Japanese Patent Application No. 2015-169718 filed on August 28, 2015, and incorporates all the content described in the above Japanese application.
  • Improvement of heat exchange efficiency in heat exchangers is an important factor that leads to downsizing of heat exchangers and energy saving of systems including heat exchangers.
  • Patent Document 1 discloses that the efficiency of heat exchange is improved by adopting a metal foam made of copper, aluminum, or the like having high thermal conductivity as a heat transfer fin of a heat exchanger for an air conditioner. .
  • the heat exchanger includes a heat transfer section and a porous metal body, is disposed in contact with the heat transfer section, and allows a fluid to pass through the inside, and the fluid to the fluid passage section.
  • An introduction flow path section for defining an introduction flow path for guiding, and an area of an inflow surface, which is a surface into which the fluid flows in the fluid passage section, is a cross section of the introduction flow path perpendicular to the fluid traveling direction.
  • the introduction flow path located in a region adjacent to the upstream side of the inflow position, which is a position in contact with the fluid passage section when a cross section of the introduction flow path is brought close to the fluid passage section along the fluid traveling direction.
  • the heat exchanger is larger than the cross-sectional area.
  • FIG. 2 is a cross-sectional view taken along the line AA in FIG.
  • FIG. 3 is a cross-sectional view taken along the line BB in FIG.
  • FIG. 7 is a cross-sectional view taken along the line CC of FIG. It is a figure which shows the relationship between a pressure loss and thermal resistance. It is a figure which shows the temperature distribution in a fluid passage part.
  • an object of the present invention is to provide a heat exchanger that can improve the efficiency of heat exchange while suppressing an increase in pressure resistance in a heat exchanger using a metal porous body.
  • the heat exchanger according to the present disclosure includes a heat transfer section and a metal porous body, is disposed in contact with the heat transfer section, and allows a fluid to pass therethrough, and the fluid to the fluid passage section. And an introduction flow path section for defining an introduction flow path for guiding.
  • the area of the inflow surface which is the surface into which the fluid flows in the fluid passage portion, is the same as the cross section of the introduction flow channel that is perpendicular to the direction of movement of the fluid.
  • the area of the cross section of the introduction flow channel located in the region adjacent to the upstream side of the inflow position which is a position in contact with the fluid passage portion when approaching the fluid passage portion.
  • the heat transfer efficiency between the fluid and the metal porous body is improved by making the metal porous body finer.
  • the resistance when the fluid passes through the metal porous body is increased, and the pressure loss is increased. Therefore, when a fluid is flowed with the same pressure as that of a conventional heat exchanger, the flow rate of the fluid flowing into the heat exchanger is reduced, which may reduce the efficiency of heat exchange. As a result, there arises a problem that it is difficult to improve the efficiency of heat exchange in the heat exchanger.
  • the present inventors examined a structure capable of improving the efficiency of heat exchange in a heat exchanger using a metal porous body. As a result, it has been found that the heat exchange efficiency can be improved by employing the heat exchanger structure of the present disclosure. More specifically, the heat exchanger according to the present disclosure includes a heat transfer section, a metal porous body, a fluid passage section that is disposed in contact with the heat transfer section, and through which a fluid can pass, and the fluid An introduction flow path section that defines an introduction flow path for guiding the fluid to the passage section.
  • the area of the inflow surface which is the surface into which the fluid flows in the fluid passage portion, is the same as the cross section of the introduction flow channel that is perpendicular to the direction of movement of the fluid.
  • the pressure loss is proportional to the square of the fluid velocity.
  • the pressure loss is proportional to the square of the fluid velocity.
  • the pressure loss is also proportional to the permeation distance of the fluid.
  • the permeation distance of the fluid is 1 / K times, and the speed of the fluid is also 1 / K times.
  • the pressure loss of the low-viscosity fluid is inversely proportional to the cube of the area of the introduction channel cross section.
  • the amount of heat exchange is proportional to the 0th power to the 1st power of the inflow speed of the fluid flowing into the fluid passage portion made of the metal porous body.
  • the fluid is a low-viscosity fluid such as air or water
  • the amount of heat exchange is proportional to the inflow speed to the power of 0.6.
  • the heat exchange amount by the low-viscosity fluid decreases in inverse proportion to K to the 0.6th power.
  • the decrease in pressure loss accompanying the increase in the cross-sectional area of the introduction flow path is large, but the decrease in the heat exchange amount is small.
  • the heat exchanger of the present disclosure it is possible to improve the efficiency of heat exchange in the heat exchanger using the metal porous body.
  • the heat exchanger may further include a heat conduction auxiliary member disposed so as to connect the region of the fluid passage part located away from the heat transfer part and the heat transfer part.
  • the heat transfer section may define a passage flow path for allowing the fluid to pass through the fluid passage section by surrounding the fluid passage section.
  • the area of the inlet channel is larger than the area of the inlet channel cross section located in a region adjacent to the upstream side of the inlet position at the inlet position.
  • the area of the cross section of the introduction flow channel located in a region adjacent to the upstream side of the inflow position may be larger.
  • the area of the cross section of the introduction channel at the inflow position is preferably 6 times or more, more preferably 12 times or more, and more preferably 18 times or more of the area of the cross section of the introduction channel located upstream of the inflow position. preferable.
  • the area of the inflow surface is located in a region adjacent to the upstream side of the inflow position. It may be larger than the area of the road cross section.
  • an upstream concave portion having an opening on the upstream side and having a bottom wall inside is formed in the fluid passage portion, so that the area of the inflow surface is adjacent to the upstream side of the inflow position. It may be larger than the area of the introduction channel cross section located in the region. By doing in this way, the area of the said inflow surface can be enlarged and the inflow speed of the fluid to a fluid passage part can be reduced.
  • a downstream recess having an opening on the downstream side and having a bottom wall inside the fluid passage may be formed apart from the upstream recess.
  • Embodiment 1 which is one embodiment of the heat exchanger according to the present invention will be described below with reference to the drawings.
  • the same or corresponding parts are denoted by the same reference numerals, and description thereof will not be repeated.
  • heat sink 100 has a structure that allows a fluid such as cooling water that is a heat exchange medium to flow inside a heat transfer body that is in contact with a heat source, for example.
  • heat sink 100 in the present embodiment includes a main body portion 10, a fluid passage portion 20, an introduction pipe 22, and a discharge pipe.
  • main body portion 10 is located in the center along heat transfer portion 12 in the direction along traveling direction 1 a of cooling water 1 and on the upstream side as viewed from heat transfer portion 12. It includes an introduction part 23 and a discharge part 34 located on the downstream side when viewed from the heat transfer part 12.
  • the main body 10 is made of a metal having high thermal conductivity such as copper.
  • the external shape of the main-body part 10 is a rectangular parallelepiped shape.
  • the main body 10 contacts a heat source (not shown) on the outer wall.
  • the introduction part 23 defines a main body introduction flow path 15 that becomes a flow path of the cooling water 1 introduced into the fluid passage part 20.
  • the discharge part 34 defines the main body discharge flow path 16 that becomes the flow path of the cooling water 1 discharged from the fluid passage part 20.
  • the introduction pipe 22 is connected to the introduction section 23 of the main body section 10.
  • the introduction pipe 22 and the introduction part 23 constitute an introduction flow path part 81.
  • the discharge pipe 28 is connected to the discharge part 34 of the main body part 10.
  • An introduction pipe flow path 27 that is a hollow region is formed inside the introduction pipe 22.
  • a hollow region 19 that is a through hole is formed in the main body 10.
  • the cross-sectional area in the cross section perpendicular to the traveling direction 1a of the cooling water 1 in the hollow area 19 of the main body 10 is a central flow path as compared with the main body introduction flow path 15 on the upstream side and the main body discharge flow path 16 on the downstream side. 17 is larger.
  • a cross-sectional area in a cross section perpendicular to the traveling direction 1 a of the cooling water 1 is constant in the central flow path 17.
  • the central flow path 17 has a rectangular parallelepiped shape.
  • the main body introduction flow path 15 and the main body discharge flow path 16 are smooth curved surfaces that are curved so that a cross-sectional area of a quadrangular pyramid-shaped region connected to the central flow path 17 on the bottom surface decreases as the distance from the central flow path 17 increases. It has a shape connected to a cylindrical region by a region surrounded by.
  • the main body introduction flow path 15 and the introduction pipe flow path 27 constitute an introduction flow path 82.
  • a fluid passage portion 20 is disposed in the central flow path 17 of the hollow region 19, a fluid passage portion 20 is disposed.
  • the fluid passage part 20 is disposed so as to contact the heat transfer part 12 of the main body part 10. More specifically, the fluid passage part 20 contacts over the entire circumference of the inner wall surface of the heat transfer part 12.
  • the central passage 17 is filled with the fluid passage 20.
  • the heat transfer unit 12 defines a passage channel (central channel 17) through which the cooling water 1 passes through the fluid passage unit 20 by surrounding the fluid passage unit 20.
  • the fluid passage part 20 is fixed by brazing to the inner wall surface of the heat transfer part 12, for example. Thereby, the movement of the heat between the fluid passage part 20 and the heat transfer part 12 becomes easy.
  • the fluid passage portion 20 includes an inflow surface 25 that is a surface into which the cooling water 1 should flow.
  • the fluid passage part 20 consists of a metal porous body comprised from a metal with high heat conductivity.
  • the fluid passage part 20 has a porous structure through which the cooling water 1 can pass.
  • the metal porous body may be a foam metal produced by foaming a metal, or may be a porous state produced by another production method. For example, Ni (nickel), Cu (copper), Al (aluminum), Ti (titanium), Fe (iron), or the like can be used as the metal material constituting the metal porous body.
  • the main body 10 When the heat sink 100 is in use, the main body 10 contacts a heat source (not shown). Therefore, heat is transmitted from the heat generation source to the main body 10.
  • the heat flowing into the main body portion 10 moves to the fluid passage portion 20 joined to the main body portion 10.
  • the cooling water 1 introduced from the introduction pipe 22 flows into the fluid passage part 20 from the inflow surface 25 and takes heat away from the fluid passage part 20 when passing through the fluid passage part 20. Then, the cooled cooling water 1 is discharged from the discharge pipe 28. In this way, the heat sink 100 releases heat from the heat source.
  • the heat sink 100 includes a heat transfer section 12 and a metal porous body, is disposed in contact with the heat transfer section 12, and is provided to the fluid passage section 20 through which the cooling water 1 can pass and the fluid passage section 20. And an introduction channel portion 81 that defines an introduction channel 82 that guides the cooling water 1.
  • the area of the inflow surface 25 of the fluid passage portion 20 cools the introduction passage section 72 a that is a section of the introduction passage 82 perpendicular to the traveling direction 1 a of the cooling water 1. More than the area of the introduction channel cross section 72b located in the region adjacent to the upstream side of the inflow position 70, which is a position that contacts the fluid passage 20 when approaching the fluid passage 20 along the traveling direction 1a of the water 1. large.
  • the area of the introduction channel cross section at the inflow position 70 is larger than the area of the introduction channel cross section 72b located in the region adjacent to the upstream side of the inflow position 70.
  • the area of the inflow surface 25 is larger than the area of the introduction flow path cross section 72 b located in the region adjacent to the upstream side of the inflow position 70. That is, the cross-sectional area of the flow path of the cooling water 1 is increased before flowing into the inflow surface 25.
  • the speed of the cooling water 1 decreases before the cooling water 1 flows into the fluid passage portion 20.
  • the pressure loss is proportional to the square of the speed of the fluid (cooling water 1).
  • heat sink 200 that is a heat exchanger in the second embodiment is similar to the first embodiment in that main body 30, fluid passage 40, introduction pipe 47, and discharge It is provided with a pipe 48 and is used in the same manner as in the first embodiment to release heat from the heat source.
  • the main body portion 30 In the direction along the traveling direction 1 a of the cooling water 1, the main body portion 30 includes a heat transfer portion 33 located in the center, an introduction portion 35 located upstream from the heat transfer portion 33, and the heat transfer portion 33. And a discharge portion 36 located on the downstream side as viewed.
  • the main body 30 is made of a metal having high thermal conductivity such as copper.
  • the main body 30 contacts a heat source (not shown) on the outer wall.
  • the introduction part 35 defines a main body introduction flow path 85 that becomes a flow path of the cooling water 1 introduced into the fluid passage part 40.
  • the discharge part 36 defines a main body discharge flow path 31 that becomes a flow path of the cooling water 1 discharged from the fluid passage part 40.
  • the introduction pipe 47 is connected to the introduction part 35 of the main body part 30. Inside the introduction pipe 47, an introduction pipe flow path 41 which is a hollow region is formed.
  • the introduction pipe 47 and the introduction part 35 constitute an introduction flow path part 83.
  • the introduction channel part 83 defines an introduction channel 92 that guides the cooling water 1 to the fluid passage part 40.
  • the main body introduction channel 85 and the introduction pipe channel 41 constitute an introduction channel 92.
  • the discharge pipe 48 is connected to the discharge part 36 of the main body part 30.
  • a hollow region 89 which is a through hole is formed in the main body 30.
  • the hollow region 89 includes a main body introduction flow path 85, a main body discharge flow path 31, and a central flow path 96.
  • the main body introduction flow path 85 and the main body discharge flow path 31 are connected by a central flow path 96.
  • the cross-sectional area in the cross section perpendicular to the traveling direction 1a of the cooling water 1 in the hollow region 89 of the main body 30 is constant.
  • the inner wall surfaces of the main body 30 facing each other with the hollow region 89 in between are parallel to each other. *
  • the fluid passage portion 40 is disposed in the central flow path 96 of the hollow region 89.
  • the fluid passage part 40 is disposed so as to contact the heat transfer part 33 of the main body part 30. More specifically, the fluid passage part 40 contacts over the entire circumference of the inner wall surface of the heat transfer part 33.
  • the heat transfer unit 33 defines a passage channel (a central channel 96) through which the cooling water 1 passes through the fluid passage unit 40 by surrounding the fluid passage unit 40.
  • the fluid passage portion 40 includes an inflow surface 45 that is a surface into which the cooling water 1 is to flow and a discharge surface 46 that is a surface through which the cooling water 1 is to be discharged.
  • the inflow surface 45 and the discharge surface 46 are parallel.
  • the fluid passage portion 40 has a parallelogram shape.
  • the fluid passage portion 40 is fixed by brazing to the inner wall surface of the heat transfer portion 33, for example, as in the first embodiment.
  • the fluid passage part 40 consists of a metal porous body comprised from a metal with high heat conductivity.
  • the fluid passage portion 40 has a porous structure through which the cooling water 1 can pass.
  • the area of the inflow surface 45 of the fluid passage portion 40 is such that the introduction passage section 75a, which is a section of the introduction passage 92 perpendicular to the traveling direction 1a of the cooling water 1, flows along the traveling direction 1a of the cooling water 1. It is larger than the area of the introduction flow path cross section 75b located in the region adjacent to the upstream side of the inflow position 74, which is the position in contact with the fluid passage part 40 when approaching the passage part 40.
  • the inflow surface 45 is inclined with respect to the introduction channel cross section 75 c at the inflow position 74, so that the area of the inflow surface 45 is located in a region adjacent to the upstream side of the inflow position 74. It is larger than the area of the cross section 75b.
  • the area of the inflow surface 45 is (1 / sin ⁇ ) times the area of the introduction flow path section 75b. That is, the inflow surface 45 is inclined so that the area of the inflow surface 45 is larger than the cross-sectional area of the main body introduction flow path 85.
  • the speed of the cooling water 1 decreases before the cooling water 1 flows into the fluid passage portion 40. Therefore, the pressure loss can be reduced. As a result, the efficiency of heat exchange can be improved. As described above, according to the heat sink 200 in the present embodiment, it is possible to reduce the pressure loss and improve the efficiency of heat exchange in the heat sink using the porous metal body.
  • the heat sink 200 does not necessarily have to increase the cross-sectional area of the flow path of the cooling water 1 in the main body 30. Therefore, even when used in applications where it is difficult to increase the size of the heat sink (heat exchanger) due to the structure, high heat exchange efficiency can be achieved.
  • the heat sink 300 in the third embodiment includes a main body portion 50, a fluid passage portion 60, an introduction pipe 68, and a discharge pipe 69 as in the case of the first embodiment.
  • the heat of the heat source is released by being used in the same manner as in the first embodiment.
  • the main body 50 In the direction along the traveling direction 1 a of the cooling water 1, the main body 50 includes a heat transfer part 57 located in the center, an introduction part 55 located upstream from the heat transfer part 57, and the heat transfer part 57. And a discharge portion 56 located on the downstream side as viewed.
  • the main body 50 is made of a metal having a high thermal conductivity such as copper.
  • the main body 50 is in contact with a heat source (not shown) on the outer wall.
  • the introduction part 55 defines a main body introduction flow path 86 that becomes a flow path of the cooling water 1 introduced into the fluid passage part 60.
  • the discharge part 56 defines a main body discharge flow path 88 that becomes a flow path of the cooling water 1 discharged from the fluid passage part 60.
  • the introduction pipe 68 is connected to the introduction part 55 of the main body part 50.
  • An introduction pipe flow path 87 that is a hollow region is formed inside the introduction pipe 68.
  • the introduction pipe 68 and the introduction part 55 constitute an introduction flow path part 84.
  • the introduction channel portion 84 defines an introduction channel 93 that guides the cooling water 1 to the fluid passage portion 60.
  • the main body introduction channel 86 and the introduction pipe channel 87 constitute an introduction channel 93.
  • the discharge pipe 69 is connected to the discharge part 56 of the main body part 50.
  • a hollow region 91 that is a through hole is formed in the main body 50.
  • the hollow region 91 includes a main body introduction flow path 86, a main body discharge flow path 88, and a central flow path 97.
  • the main body introduction flow path 86 and the main body discharge flow path 88 are connected by a central flow path 97.
  • the cross-sectional area of the hollow region 91 in the cross section perpendicular to the traveling direction 1a of the cooling water 1 is constant.
  • the fluid passage 60 is disposed in the hollow region 91 of the main body 50.
  • the fluid passage part 60 is disposed so as to contact the heat transfer part 57 of the main body part 50. More specifically, the fluid passage portion 60 contacts over the entire circumference of the inner wall surface of the heat transfer portion 57.
  • the heat transfer unit 57 defines a passage channel (central channel 97) for allowing the cooling water 1 to pass through the fluid passage unit 60 by surrounding the fluid passage unit 60.
  • the fluid passage portion 60 includes an inflow surface 65 that is a surface into which the cooling water 1 is to flow and a discharge surface 95 that is a surface through which the cooling water 1 is to be discharged.
  • the fluid passage portion 60 is fixed by brazing, for example, to the inner wall surface of the heat transfer portion 57 as in the case of the first embodiment.
  • the fluid passage part 60 consists of a metal porous body comprised from a metal with high heat conductivity.
  • the fluid passage portion 60 has a porous structure through which the cooling water 1 can pass.
  • a plurality of upstream recesses 66 that are open on the upstream side and have a bottom wall inside are formed in fluid passage portion 60.
  • the fluid passage portion 60 is formed with a plurality of downstream recesses 67 that are open on the downstream side and have a bottom wall inside the fluid passage portion 60 apart from the upstream recesses 66. That is, the downstream recess 67 does not communicate with the upstream recess 66.
  • the upstream recessed part 66 and the downstream recessed part 67 are alternately formed in the direction perpendicular
  • the distance L1 from the bottom wall of the upstream recess 66 to the downstream end of the fluid passage 60 is longer than the distance L2 between the adjacent upstream recess 66 and the downstream recess 67.
  • the cooling water 1 flowing in from the opening of the upstream recess 66 of the fluid passage portion 60 flows into the adjacent downstream recess 67 and then flows from the opening of the downstream recess 67 to the discharge portion 56.
  • the flow path can be controlled.
  • in order to control the flow path of the cooling water 1 in addition to increasing the distance L1 from the bottom wall of the upstream recess 66 to the downstream end of the fluid passage portion 60, or instead of increasing the distance L1.
  • the bottom wall of the upstream recess 66 may be sealed.
  • the area of the inflow surface 65 of the fluid passage portion 60 is such that the introduction channel section 78a, which is a section of the introduction channel 93 perpendicular to the traveling direction 1a of the cooling water 1, flows along the traveling direction 1a of the cooling water 1. It is larger than the area of the introduction flow path cross section 78b located in the region adjacent to the upstream side of the inflow position 76, which is a position in contact with the fluid passage section 60 when approaching the passage section 60.
  • the upstream concave portion 66 having an opening on the upstream side and having a bottom wall inside is formed in the fluid passage portion 60, so that the area of the inflow surface 65 is adjacent to the upstream side of the inflow position 76. It is larger than the area of the introduction flow path section 78b located in the region where That is, the area of the inflow surface 65 is increased because the side wall surface of the upstream recess 66 functions as the inflow surface 65.
  • the speed of the cooling water 1 decreases before the cooling water 1 flows into the fluid passage portion 60. Therefore, the pressure loss can be reduced. As a result, the efficiency of heat exchange can be improved.
  • the heat sink 300 in the present embodiment in the heat sink using the metal porous body, it is possible to reduce the pressure loss and improve the efficiency of heat exchange.
  • the heat sink 300 is not necessarily required to increase the cross-sectional area of the flow path of the cooling water 1 in the main body 50. Therefore, even when used in applications where it is difficult to increase the size of the heat sink (heat exchanger) due to the structure, high heat exchange efficiency can be achieved.
  • heat sink 400 in the fourth embodiment has basically the same structure as in the first embodiment, and has the same effects as in the first embodiment.
  • the heat sink 400 in the fourth embodiment is different from that in the first embodiment in that it further includes a heat conduction auxiliary member 5 made of a metal having a high thermal conductivity.
  • heat conduction is arranged so as to connect region of fluid passage portion 20 located away from heat transfer portion 12 and heat transfer portion 12.
  • An auxiliary member 5 is further provided.
  • the heat conduction auxiliary member 5 is preferably arranged so as to connect the central part of the fluid passage part 20 and the heat transfer part 12.
  • the heat conduction auxiliary member 5 is disposed so as to penetrate between the fluid passage portions 20 and connect the inner wall surfaces of the heat transfer portions 12 facing each other with the fluid passage portion 20 interposed therebetween.
  • the heat conduction auxiliary member 5 has a columnar shape, for example, a columnar shape.
  • a metal having high heat conductivity such as Cu, Al, or the like, can be employed.
  • heat conduction auxiliary member 5 was cylindrical shape
  • another shape for example, a thin plate shape, may be sufficient.
  • the structure of the heat exchanger in the first to fourth embodiments is a specific example of the structure of the heat exchanger of the present disclosure, and the structure of the heat exchanger of the present disclosure is not limited to these. Therefore, for example, a structure obtained by appropriately combining the structures described in the first to fourth embodiments may be adopted.
  • the water-cooled heat sink has been described as an example of the heat exchanger according to the present disclosure.
  • the heat exchanger according to the present disclosure is not limited to this, and air heat used in an air conditioner or the like. It can be applied to various heat exchangers such as an exchange unit.
  • the simulation for verifying the performance of the heat sink having the same structure as in the first embodiment was performed. Specifically, in the same structure as in the first embodiment, the ratio of the cross-sectional area ratio of the cross-sectional area ratio of the inflow surface 25 to the area of the cross-section of the introductory flow path at the inlet from the introduction pipe 22 to the main body 10. ) was assumed to be in the range of 6-60. Then, the relationship between the pressure loss and the thermal resistance in the heat sink was calculated by simulation (indicated as “cross-sectional area ratio 6 to 60” in FIG. 8).
  • the horizontal axis represents pressure loss
  • the vertical axis represents thermal resistance.
  • the characteristics corresponding to the case where the mesh roughness of the fluid passage portion made of the metal porous body is changed are shown. Specifically, as the roughness of the fluid passage portion becomes smaller, the pressure loss increases and the thermal resistance decreases. In other words, it is understood that the pressure loss increases when the roughness of the fluid passage portion is reduced in order to reduce the thermal resistance. In order to improve the performance of the heat sink 100, it is preferable that pressure loss and thermal resistance are reduced. That is, in FIG. 8, it can be said that the data point is preferably directed toward the lower left.
  • the performance of the heat sink improves as the cross-sectional area ratio increases.
  • the cross-sectional area ratio exceeds 18, it is understood that a performance that is difficult to reach with a heat sink that does not use a fluid passage portion made of a metal porous body is obtained. That is, it can be said that by adopting the structure in the first embodiment, a heat exchanger with excellent performance can be obtained.
  • the heat transfer coefficient per unit volume of the fluid passage portion 40 is also the same when the volume of the fluid passage portion and the length in the air flow direction are the same as those of the model A and ⁇ is 90 °.
  • Pressure loss was calculated (Model B).
  • FIG. 9 shows a temperature distribution in the fluid passage portion 40 in the model A.
  • white triangles indicate the air flow velocity.
  • the temperature of air in fluid passage portion 40 is lowest in region A, and increases in the order of B, C, D, E, F, G, H, and I.
  • Table 1 shows the pressure loss of the fluid passage portion 40 calculated from this temperature distribution and the heat transfer rate per unit volume.
  • the pressure loss is reduced to about 1/6 while maintaining the heat transfer rate per unit volume of the fluid passage portion 40. It turns out that it can reduce to. Therefore, even when the space for installing the heat sink is limited, the heat sink performance is improved by reducing the pressure loss while maintaining the heat transfer rate by adopting the structure of the second embodiment. It can be said that this is possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

伝熱部と、金属多孔体を含み、前記伝熱部に接触して配置され、内部を流体が通過可能な流体通過部と、前記流体通過部へと前記流体を導く導入流路を規定する導入流路部と、を備え、前記流体通過部において前記流体が流入する面である流入面の面積は、前記流体の進行方向に垂直な前記導入流路の断面である導入流路断面を、前記流体の進行方向に沿って前記流体通過部に近づけた場合に前記流体通過部に接触する位置である流入位置の上流側に隣接する領域に位置する前記導入流路断面の面積よりも大きい、熱交換器。

Description

熱交換器
 本発明は熱交換器に関するものである。
 本出願は、2015年8月28日出願の日本出願第2015-169718号に基づく優先権を主張し、前記日本出願に記載された全ての記載内容を援用するものである
 熱交換器における熱交換の効率の改善は、熱交換器のコンパクト化や熱交換器を含むシステムの省エネルギー化につながる重要なファクターである。
 熱交換器における熱交換の効率を向上させる技術として、熱交換器のフィンに金属材料を発泡させて製造される発泡金属を用いることにより、伝熱性能を向上させる技術が開示されている(たとえば、特許文献1参照)。特許文献1には、熱伝導率が高い銅やアルミニウム等からなる発泡金属を空気調和器用の熱交換器の伝熱フィンに採用することにより、熱交換の効率を向上させることが開示されている。
特開2005-326136号公報
 本開示の熱交換器は、伝熱部と、金属多孔体含み、前記伝熱部に接触して配置され、内部を流体が通過可能な流体通過部と、前記流体通過部へと前記流体を導く導入流路を規定する導入流路部と、を備え、前記流体通過部において前記流体が流入する面である流入面の面積は、前記流体の進行方向に垂直な前記導入流路の断面である導入流路断面を、前記流体の進行方向に沿って前記流体通過部に近づけた場合に前記流体通過部に接触する位置である流入位置の上流側に隣接する領域に位置する前記導入流路断面の面積よりも大きい、熱交換器である。
熱交換器の構造の一例を示す概略斜視図である。 図1のA-A断面図である。 図1のB-B断面図である。 熱交換器の構造の他の一例を示す概略断面図である。 熱交換器の構造の他の一例を示す概略断面図である。 熱交換器の構造の他の一例を示す概略斜視図である。 図6のC-C断面図である。 圧力損失と熱抵抗との関係を示す図である。 流体通過部内における温度分布を示す図である。
[本開示が解決しようとする課題]
 特許文献1においては、発泡金属の目を細かくしていくことによって、熱交換器の効率が向上するとされている。しかしながら、発泡金属の目を細かくしていった場合、熱交換器へ流体を流すための圧力抵抗が増大するため、従来の熱交換器と同一の圧力をかけて流体を流した際には、流体の流量が減少し、熱交換器の効率が低下する恐れがある。
 そこで、金属多孔体を用いた熱交換器において、圧力抵抗の増大を抑えつつ、熱交換の効率を向上させることが可能な熱交換器を提供することを目的の1つとする。
[本開示の効果]
 本開示の熱交換器によれば、金属多孔体を用いた熱交換器において、圧力抵抗の増大を抑えつつ、熱交換の効率を向上させることが可能となる。
 [本発明の実施形態の説明]
 最初に本発明の実施態様を列記して説明する。本開示の熱交換器は、伝熱部と、金属多孔体を含み、上記伝熱部に接触して配置され、内部を流体が通過可能な流体通過部と、上記流体通過部へと上記流体を導く導入流路を規定する導入流路部とを備える。そして、上記流体通過部において上記流体が流入する面である流入面の面積は、上記流体の進行方向に垂直な上記導入流路の断面である導入流路断面を、上記流体の進行方向に沿って上記流体通過部に近づけた場合に上記流体通過部に接触する位置である流入位置の上流側に隣接する領域に位置する上記導入流路断面の面積よりも大きい。
 熱交換器の熱交換媒体である流体の流路に金属多孔体を配置した場合、金属多孔体の目を細かくしていくことによって、流体と金属多孔体との間の伝熱効率は向上する。一方、金属多孔体の目を細かくしていった場合、金属多孔体の内部を流体が通過する際の抵抗が大きくなり、圧力損失が増大する。そのため、従来の熱交換器と同一の圧力をかけて流体を流した場合、熱交換器に流入する流体の流量が減少し、熱交換の効率が低下する恐れがある。その結果、熱交換器における熱交換の効率を向上させることが困難であるという問題が発生する。
 本発明者らは、金属多孔体を用いた熱交換器における熱交換の効率を向上させることが可能な構造について検討した。その結果、本開示の熱交換器の構造を採用することにより、熱交換の効率向上が可能であることを見出した。より詳細に説明すると、本開示の熱交換器は、伝熱部と、金属多孔体を含み、上記伝熱部に接触して配置され、内部を流体が通過可能な流体通過部と、上記流体通過部へと上記流体を導く導入流路を規定する導入流路部とを備える。そして、上記流体通過部において上記流体が流入する面である流入面の面積は、上記流体の進行方向に垂直な上記導入流路の断面である導入流路断面を、上記流体の進行方向に沿って上記流体通過部に近づけた場合に上記流体通過部に接触する位置である流入位置の上流側に隣接する領域に位置する上記導入流路断面の面積よりも大きい。このようにすることにより、流体が流体通過部へと流入する前に流体の速度が低下する。ここで、圧力損失は流体の速度の1乗から2乗に比例する。特に、空気や水など一般に熱交換器に用いられる低粘度流体では、圧力損失は流体の速度の2乗に比例する。また、圧力損失は、流体の透過距離にも比例する。金属多孔体を含む流体通過部の体積を一定としながら導入流路断面の面積をK倍にした場合、流体の透過距離は1/K倍となり、流体の速度も1/K倍となるため、低粘度流体の圧力損失は導入流路断面の面積の3乗に反比例する。また、熱交換量は、金属多孔体からなる流体通過部に流入する流体の流入速度の0乗から1乗に比例する。特に、流体が空気や水などの低粘度流体である場合、熱交換量は上記流入速度の0.6乗に比例する。このため、導入流路断面の面積をK倍にした場合、低粘度流体による熱交換量はKの0.6乗に反比例して減少する。つまり、導入流路断面の面積の増加に伴う圧力損失の減少は大きいのに対して熱交換量の減少は僅かであるため、導入流路断面の面積を十分大きくすると熱交換の効率が向上する。このように本開示の熱交換器によれば、金属多孔体を用いた熱交換器において、熱交換の効率を向上させることが可能となる。
 上記熱交換器は、上記伝熱部から離れて位置する上記流体通過部の領域と上記伝熱部とを接続するように配置される熱伝導補助部材をさらに備えてもよい。これにより、上記流体通過部において、上記伝熱部の接触面から離れた領域と伝熱部との間の熱の移動が容易となる。その結果、熱交換の効率をさらに向上させることが可能となる。
 上記熱交換器において、上記伝熱部は、上記流体通過部を取り囲むことにより上記流体が上記流体通過部を通過するための通過流路を規定してもよい。これにより簡素な構造の熱交換器を得ることができる。
 上記熱交換器において、上記流入位置における上記導入流路断面の面積が上記流入位置の上流側に隣接する領域に位置する上記導入流路断面の面積よりも大きいことにより、上記流入面の面積が、上記流入位置の上流側に隣接する領域に位置する上記導入流路断面の面積よりも大きくなっていてもよい。このようにすることにより、流体通過部への流体の流入速度を容易に低減することができる。特に、上記流入位置における上記導入流路断面の面積が、上記流入位置の上流側に位置する上記導入流路断面の面積の18倍を超えることにより、高性能な熱交換器を得ることができる。すなわち、従来型の構造に創意工夫を凝らした熱交換器の性能を凌駕する熱交換器を得ることができる。なお、上記流入位置における上記導入流路断面の面積は、上記流入位置の上流側に位置する上記導入流路断面の面積の6倍以上が好ましく、12倍以上がより好ましく、18倍以上がさらに好ましい。
 上記熱交換器において、上記流入位置における上記導入流路断面に対して上記流入面が傾斜することにより、上記流入面の面積が、上記流入位置の上流側に隣接する領域に位置する上記導入流路断面の面積よりも大きくなっていてもよい。このようにすることにより、熱交換器のサイズが大きくなることを抑制しつつ上記流入面の面積を大きくして流体通過部への流体の流入速度を低減することができる。
 上記熱交換器において、上流側に開口し、内部に底壁を有する上流側凹部が上記流体通過部に形成されていることにより、上記流入面の面積が、上記流入位置の上流側に隣接する領域に位置する上記導入流路断面の面積よりも大きくなっていてもよい。このようにすることにより、上記流入面の面積を大きくして流体通過部への流体の流入速度を低減することができる。
 上記熱交換器において、上記流体通過部には、下流側に開口し、内部に底壁を有する下流側凹部が、上記上流側凹部と離れて形成されていてもよい。このようにすることにより、上記上流側凹部に流入した流体を上記上流側凹部と上記下流側凹部との間に位置する上記流体通過部内を通過させたうえで、上記下流側凹部から排出する流体の経路を容易に形成することができる。
 [本発明の実施形態の詳細]
 (実施の形態1)
 次に、本発明にかかる熱交換器の一実施の形態である実施の形態1を、以下に図面を参照しつつ説明する。なお、以下の図面において同一または相当する部分には同一の参照番号を付しその説明は繰返さない。
 図1を参照して、実施の形態1のヒートシンク100は、たとえば発熱源に接触する伝熱体の内部に、熱交換媒体である冷却水などの流体を流すことが可能な構造を有する。
 図1~図3を参照して、本実施の形態におけるヒートシンク100は、本体部10と、流体通過部20と、導入用配管22と、排出用配管28とを備える。
 図2および図3を参照して、本体部10は、冷却水1の進行方向1aに沿った方向において、中央に位置する伝熱部12と、伝熱部12から見て上流側に位置する導入部23と、伝熱部12から見て下流側に位置する排出部34とを含む。本体部10は、たとえば銅などの熱伝導率の高い金属からなる。また、本体部10の外形形状は、直方体形状である。
本体部10は、外壁において、図示しない発熱源に接触する。導入部23は、流体通過部20に導入される冷却水1の流路となる本体導入流路15を規定する。また、排出部34は、流体通過部20から排出される冷却水1の流路となる本体排出流路16を規定する。 
 導入用配管22は、本体部10の導入部23に接続される。導入用配管22および導入部23は、導入流路部81を構成する。排出用配管28は、本体部10の排出部34に接続される。導入用配管22の内部には中空領域である導入用配管流路27が形成されている。
 本体部10には、貫通孔である中空領域19が形成されている。本体部10の中空領域19における冷却水1の進行方向1aに垂直な断面における断面積は、上流側である本体導入流路15および下流側領域である本体排出流路16に比べて中央流路17において大きくなっている。冷却水1の進行方向1aに垂直な断面における断面積は、中央流路17において一定である。中央流路17は直方体形状を有している。本体導入流路15および本体排出流路16は、底面において中央流路17に接続された四角錐台形状の領域が、中央流路17から離れるに従って断面積が減少するように湾曲するなめらかな曲面に囲まれた領域によって円筒状の領域につながる形状を有している。本体導入流路15および導入用配管流路27は、導入流路82を構成する。
 中空領域19の中央流路17内には、流体通過部20が配置される。流体通過部20は、本体部10の伝熱部12に接触するように配置される。より具体的には、伝熱部12の内壁面の全周にわたって流体通過部20が接触する。流体通過部20により中央流路17が充填される。伝熱部12は、流体通過部20を取り囲むことにより冷却水1が流体通過部20を通過するための通過流路(中央流路17)を規定している。
 流体通過部20は、たとえば伝熱部12の内壁面にロウ付けして固定される。これにより、流体通過部20と伝熱部12との間の熱の移動が容易となる。流体通過部20は、冷却水1が流入すべき面である流入面25を備える。流体通過部20は、熱伝導率が高い金属から構成される金属多孔体からなる。流体通過部20は、冷却水1が内部を通過可能な多孔体構造を有している。ここで金属多孔体は、金属を発泡させることにより製造された発泡金属であってもよいし、他の製造方法により多孔質な状態とされたものであってもよい。金属多孔体を構成する金属材料として、たとえば、Ni(ニッケル)、Cu(銅)、Al(アルミニウム)、Ti(チタン)、Fe(鉄)等を採用することができる。
 ヒートシンク100の使用状態において、本体部10は発熱源(図示しない)に接触する。そのため、発熱源から本体部10へと熱が伝達される。本体部10に流入した熱は、本体部10に接合された流体通過部20へと移動する。導入用配管22から導入された冷却水1は、流入面25から流体通過部20に流入し、流体通過部20を通過する際に流体通過部20から熱を奪う。そして、昇温した冷却水1は、排出用配管28から排出される。このようにして、ヒートシンク100は、発熱源の熱を放出する。
 ここで、ヒートシンク100は、伝熱部12と、金属多孔体を含み、伝熱部12に接触して配置され、内部を冷却水1が通過可能な流体通過部20と、流体通過部20へと冷却水1を導く導入流路82を規定する導入流路部81とを備えている。
 そして、図2および図3を参照して、流体通過部20の流入面25の面積は、冷却水1の進行方向1aに垂直な導入流路82の断面である導入流路断面72aを、冷却水1の進行方向1aに沿って流体通過部20に近づけた場合に流体通過部20に接触する位置である流入位置70の上流側に隣接する領域に位置する導入流路断面72bの面積よりも大きい。
 より具体的には、本実施の形態においては、流入位置70における導入流路断面の面積が流入位置70の上流側に隣接する領域に位置する導入流路断面72bの面積よりも大きいことにより、流入面25の面積が、流入位置70の上流側に隣接する領域に位置する導入流路断面72bの面積よりも大きくなっている。つまり、流入面25への流入前に、冷却水1の流路の断面積が大きくなっている。このような構造を有することにより、本実施の形態のヒートシンク100においては、冷却水1が流体通過部20へと流入する前に冷却水1の速度が低下する。圧力損失は流体(冷却水1)の速度の2乗に比例する。そのため、金属多孔体からなる流体通過部20に流入する冷却水1の速度を小さくすることで、圧力損失の低減を図ることが可能となる。その結果、熱交換の効率を向上させることができる。このように、本実施の形態におけるヒートシンク100によれば、金属多孔体を用いたヒートシンクにおいて、圧力損失を低減して熱交換の効率を向上させることが可能となる。
 (実施の形態2)
 次に、他の実施の形態である実施の形態2について説明する。図4を参照して、実施の形態2における熱交換器であるヒートシンク200は、実施の形態1の場合と同様に、本体部30と、流体通過部40と、導入用配管47と、排出用配管48とを備え、実施の形態1の場合と同様に使用されることで発熱源の熱を放出する。
 本体部30は、冷却水1の進行方向1aに沿った方向において、中央に位置する伝熱部33と、伝熱部33から見て上流側に位置する導入部35と、伝熱部33から見て下流側に位置する排出部36とを含む。本体部30は、たとえば銅などの熱伝導率の高い金属からなる。本体部30は、外壁において、図示しない発熱源に接触する。導入部35は、流体通過部40に導入される冷却水1の流路となる本体導入流路85を規定する。また、排出部36は、流体通過部40から排出される冷却水1の流路となる本体排出流路31を規定する。
 導入用配管47は、本体部30の導入部35に接続される。導入用配管47の内部には中空領域である導入用配管流路41が形成されている。導入用配管47および導入部35は、導入流路部83を構成する。導入流路部83は、流体通過部40へと冷却水1を導く導入流路92を規定する。本体導入流路85および導入用配管流路41は、導入流路92を構成する。また、排出用配管48は、本体部30の排出部36に接続される。
 本体部30には、貫通孔である中空領域89が形成されている。中空領域89は、本体導入流路85と、本体排出流路31と、中央流路96とを含む。本体導入流路85と本体排出流路31とは、中央流路96により接続されている。実施の形態1とは異なり、本体部30の中空領域89における冷却水1の進行方向1aに垂直な断面における断面積は、一定である。中空領域89を挟んで対向する本体部30の内壁面は、互いに平行である。 
 中空領域89の中央流路96内には、流体通過部40が配置される。流体通過部40は、本体部30の伝熱部33に接触するように配置される。より具体的には、伝熱部33の内壁面の全周にわたって流体通過部40が接触する。伝熱部33は、流体通過部40を取り囲むことにより冷却水1が流体通過部40を通過するための通過流路(中央流路96)を規定している。
 流体通過部40は、冷却水1が流入すべき面である流入面45と、冷却水1が排出されるべき面である排出面46とを備える。冷却水1の進行方向1aに沿った(進行方向1aに平行な)断面において、流入面45と排出面46とは平行である。当該断面において、流体通過部40は平行四辺形形状を有している。
 流体通過部40は、実施の形態1と同様に、たとえば伝熱部33の内壁面にロウ付けして固定される。また、流体通過部40は、熱伝導率が高い金属から構成される金属多孔体からなる。流体通過部40は、冷却水1が内部を通過可能な多孔体構造を有している。
 そして、流体通過部40の流入面45の面積は、冷却水1の進行方向1aに垂直な導入流路92の断面である導入流路断面75aを、冷却水1の進行方向1aに沿って流体通過部40に近づけた場合に流体通過部40に接触する位置である流入位置74の上流側に隣接する領域に位置する導入流路断面75bの面積よりも大きい。
 より具体的には、流入位置74における導入流路断面75cに対して流入面45が傾斜することにより、流入面45の面積が、流入位置74の上流側に隣接する領域に位置する導入流路断面75bの面積よりも大きくなっている。流入位置74における導入流路断面75cに対する傾斜角度を(90°-θ)とすると、流入面45の面積は導入流路断面75bの面積の(1/sinθ)倍である。つまり、流入面45が傾斜することにより、流入面45の面積が本体導入流路85の断面積よりも大きくなっている。このような構造を有することにより、本実施の形態のヒートシンク200においては、冷却水1が流体通過部40へと流入する前に冷却水1の速度が低下する。そのため、圧力損失の低減を図られる。その結果、熱交換の効率を向上させることができる。このように、本実施の形態におけるヒートシンク200によれば、金属多孔体を用いたヒートシンクにおいて、圧力損失を低減して熱交換の効率を向上させることが可能となる。
 さらに、ヒートシンク200は、上記実施の形態1の場合とは異なり、必ずしも本体部30内の冷却水1の流路の断面積を大きくする必要がない。そのため、構造上ヒートシンク(熱交換器)のサイズを大きくすることが困難な用途に使用される場合においても、高い熱交換の効率を達成することができる。
 (実施の形態3)
 次に、他の実施の形態である実施の形態3について説明する。図5を参照して、実施の形態3におけるヒートシンク300は、実施の形態1の場合と同様に、本体部50と、流体通過部60と、導入用配管68と、排出用配管69とを備え、実施の形態1の場合と同様に使用されることで発熱源の熱を放出する。
 本体部50は、冷却水1の進行方向1aに沿った方向において、中央に位置する伝熱部57と、伝熱部57から見て上流側に位置する導入部55と、伝熱部57から見て下流側に位置する排出部56とを含む。本体部50は、たとえば銅などの熱伝導率の高い金属からなる。本体部50は、外壁において、図示しない発熱源に接触する。導入部55は、流体通過部60に導入される冷却水1の流路となる本体導入流路86を規定する。また、排出部56は、流体通過部60から排出される冷却水1の流路となる本体排出流路88を規定する。
 導入用配管68は、本体部50の導入部55に接続される。導入用配管68の内部には中空領域である導入用配管流路87が形成されている。導入用配管68および導入部55は、導入流路部84を構成する。導入流路部84は、流体通過部60へと冷却水1を導く導入流路93を規定する。本体導入流路86および導入用配管流路87は、導入流路93を構成する。また、排出用配管69は、本体部50の排出部56に接続される。
 本体部50には、貫通孔である中空領域91が形成されている。中空領域91は、本体導入流路86と、本体排出流路88と、中央流路97とを含む。本体導入流路86と本体排出流路88とは、中央流路97により接続されている。実施の形態1の場合とは異なり、冷却水1の進行方向1aに垂直な断面における中空領域91の断面積は一定である。
 本体部50の中空領域91内には、流体通過部60が配置される。流体通過部60は、本体部50の伝熱部57に接触するように配置される。より具体的には、伝熱部57の内壁面の全周にわたって流体通過部60が接触する。伝熱部57は、流体通過部60を取り囲むことにより冷却水1が流体通過部60を通過するための通過流路(中央流路97)を規定している。
 流体通過部60は、冷却水1が流入すべき面である流入面65と、冷却水1が排出されるべき面である排出面95とを備える。流体通過部60は、実施の形態1の場合と同様に、たとえば伝熱部57の内壁面にロウ付けして固定される。また、流体通過部60は、熱伝導率が高い金属から構成される金属多孔体からなる。流体通過部60は、冷却水1が内部を通過可能な多孔体構造を有している。
 図5を参照して、実施の形態3におけるヒートシンク300においては、上流側に開口し、内部に底壁を有する上流側凹部66が流体通過部60に複数個形成されている。また、流体通過部60には、下流側に開口し、内部に底壁を有する下流側凹部67が、上流側凹部66と離れて複数個形成されている。つまり、下流側凹部67は上流側凹部66と連通していない。そして、上流側凹部66と下流側凹部67とは、冷却水1の進行方向1aに垂直な方向において等間隔に交互に形成されている。
 また、上流側凹部66の底壁から流体通過部60の下流側端部までの距離L1が、隣り合う上流側凹部66と下流側凹部67との間隔L2よりも長くなっている。これにより、流体通過部60の上流側凹部66の開口部から流入してきた冷却水1が、隣接する下流側凹部67に流入した後、下流側凹部67の開口部から排出部56に流れるように流路を制御することが可能となる。なお、冷却水1の流路を制御するために、上流側凹部66の底壁から流体通過部60の下流側端部までの距離L1を大きくすることに加えて、または大きくすることに代えて、上流側凹部66の底壁を封孔処理するようにしてもよい。
 そして、流体通過部60の流入面65の面積は、冷却水1の進行方向1aに垂直な導入流路93の断面である導入流路断面78aを、冷却水1の進行方向1aに沿って流体通過部60に近づけた場合に流体通過部60に接触する位置である流入位置76の上流側に隣接する領域に位置する導入流路断面78bの面積よりも大きい。
 より具体的には、上流側に開口し、内部に底壁を有する上流側凹部66が流体通過部60に形成されていることにより、流入面65の面積が、流入位置76の上流側に隣接する領域に位置する導入流路断面78bの面積よりも大きくなっている。つまり、上流側凹部66の側壁面が流入面65として機能することにより、流入面65の面積が大きくなっている。このような構造を有することにより、本実施の形態のヒートシンク300においては、冷却水1が流体通過部60へと流入する前に冷却水1の速度が低下する。そのため、圧力損失の低減を図られる。その結果、熱交換の効率を向上させることができる。このように、本実施の形態におけるヒートシンク300によれば、金属多孔体を用いたヒートシンクにおいて、圧力損失を低減して熱交換の効率を向上させることが可能となる。
 さらに、ヒートシンク300は、上記実施の形態1の場合とは異なり、必ずしも本体部50内の冷却水1の流路の断面積を大きくする必要がない。そのため、構造上ヒートシンク(熱交換器)のサイズを大きくすることが困難な用途に使用される場合においても、高い熱交換の効率を達成することができる。
 なお、実施の形態3におけるヒートシンク300においては、上流側凹部66および下流側凹部67の双方を備えていたが、上流側凹部66のみ備えるようにしてもよい。
 (実施の形態4)
 次に、さらに他の実施の形態である実施の形態4について説明する。図6および図7を参照して、実施の形態4におけるヒートシンク400は、実施の形態1の場合と基本的には同様の構造を有し、実施の形態1の場合と同様の効果を奏する。しかし、実施の形態4におけるヒートシンク400は熱伝導率が高い金属からなる熱伝導補助部材5をさらに備えている点において実施の形態1の場合とは異なっている。
 図6および図7を参照して、実施の形態4におけるヒートシンク400では、伝熱部12から離れて位置する流体通過部20の領域と伝熱部12とを接続するように配置される熱伝導補助部材5をさらに備える。熱伝導補助部材5は、流体通過部20の中央部と伝熱部12とを接続するように配置されることが好ましい。本実施の形態においては、熱伝導補助部材5は、流体通過部20を貫通し、流体通過部20を挟んで互いに対向する伝熱部12の内壁面間を繋ぐように配置される。熱伝導補助部材5は、柱状、たとえば円柱状の形状を有している。熱伝導補助部材5を構成する材料としては、熱伝導率の高い金属、たとえばCu、Alなどを採用することができる。
 これにより流体通過部20において、伝熱部12の接触面から離れた領域と伝熱部12との間の熱の移動が容易となる。その結果、熱交換の効率をさらに向上させることが可能となる。
 なお、本実施の形態において、熱伝導補助部材5は円柱形状の場合を例示したが、他の形状、たとえば薄板状であってもよい。
 また、上記実施の形態1~4における熱交換器の構造は、本開示の熱交換器の構造における具体例であって、本開示の熱交換器の構造はこれらに限られるものではない。したがって、たとえば上記実施の形態1~4において説明した構造を適宜組み合わせた構造を採用してもよい。
 また、上記実施の形態1~4においては、本開示の熱交換器の一例として水冷ヒートシンクについて説明したが、本開示の熱交換器はこれに限定されず、空気調和装置等に用いられる空気熱交換ユニットなど、種々の熱交換器に適用することができる。
 上記実施の形態1と同様の構造を有するヒートシンクについて、その性能を検証するシミュレーションを実施した。具体的には、実施の形態1と同様の構造において、導入用配管22から本体部10への入口における導入流路断面の面積に対する流入面25における導入流路断面の面積の比(断面積比)を6~60の範囲で変化させたヒートシンク100を想定した。そして、このヒートシンクにおける圧力損失と熱抵抗との関係をシミュレーションにより算出した(図8において「断面積比6~60」と表示)。本体部10の外壁に熱源が接触している状態で、一定温度の水が一定の流量でヒートシンク100に流入する場合において、熱源との間の熱交換量を算出したうえで、これを熱抵抗値に換算してヒートシンク100の性能の指標とした。また、ヒートシンク100および熱源が周囲の環境とは断熱されている、との条件でシミュレーションを実施した。金属多孔体からなる流体通過部の材質は銅であるとした。また、本体部10への入口および本体部10からの出口における流路の断面積は一定とした。また、比較のため、金属多孔体からなる流体通過部を使用しないヒートシンクにおいて、流路の形状を適正化することにより伝熱効率を向上させたものについても、同様にシミュレーションを実施した(図8において「比較例」と表示)。シミュレーションの結果を図8に示す。なお、「比較例」は段落0015で述べた、従来型の構造に創意工夫を凝らした熱交換器の性能を示しており、これは従来法で得られる熱交換器の性能のトップデータである。
 図8において横軸は圧力損失、縦軸は熱抵抗を示している。断面積6~18の場合については、金属多孔体からなる流体通過部の目の粗さを変化させた場合に対応する特性が示されている。具体的には、流体通過部の目の粗さが小さくなるにしたがって、圧力損失が大きくなるとともに、熱抵抗が小さくなっている。すなわち、熱抵抗を低減するために流体通過部の目の粗さを小さくすると、圧力損失が上昇するという関係が理解される。ヒートシンク100の性能向上のためには、圧力損失および熱抵抗が低減されることが好ましい。すなわち、図8において、データ点が左下に向かうことが好ましいといえる。
 図8を参照して、断面積比が大きくなるにしたがって、ヒートシンクの性能が向上することが確認される。また、断面積比が18を超える場合、金属多孔体からなる流体通過部を使用しないヒートシンクでは到達が困難な性能が得られることが分かる。すなわち、実施の形態1における構造を採用することにより、優れた性能の熱交換器が得られるといえる。
 上記実施の形態2と同様の構造を有するヒートシンクについて、その性能を検証するシミュレーションを実施した。具体的には、実施の形態2と同様の構造において、流入面45が図4とは逆向きに傾斜し、角度θが10°である場合を想定した(モデルA)。そして、一定温度の空気が一定の流速で流入する場合における、流体通過部40内での空気の温度変化から熱伝達率を算出し、これを金属多孔体からなる流体通過部40の単位体積あたりの値に変換し、ヒートシンク200の性能の指標とした。また、その場合の圧力損失についても算出した。一方、比較のため、流体通過部の体積および空気の流れる方向における長さをモデルAと同一とし、θを90°とした場合についても同様に流体通過部40の単位体積あたりの熱伝達率および圧力損失を算出した(モデルB)。図9は、モデルAにおける流体通過部40内での温度分布を示す。
 図9において、白い三角形は、空気の流速を示している。図9を参照して、流体通過部40内の空気の温度は、領域Aが最も低く、B、C、D、E、F、G、HおよびIの順に高くなっている。そして、この温度分布から算出される流体通過部40の圧力損失、および単位体積あたりの熱伝達率を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1を参照して、角度θが10°となるように流入面45を傾斜させることにより、流体通過部40の単位体積あたりの熱伝達率を維持しつつ、圧力損失を約1/6にまで低減できることが分かる。このことから、ヒートシンクの設置のための空間が限られている場合でも、実施の形態2の構造を採用することにより熱伝達率を維持しつつ圧力損失を低減することで、ヒートシンクの性能を向上させることが可能であるといえる。
 今回開示された実施の形態はすべての点で例示であって、どのような面からも制限的なものではないと理解されるべきである。本発明の範囲は上記した説明ではなく、特許請求の範囲によって規定され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
1 冷却水
1a 進行方向
5 熱伝導補助部材
10,30,50 本体部
12,33、57 伝熱部
15,85,86 本体導入流路
16,31,88 本体排出流路
17,96,97 中央流路
19,89,91 中空領域
20,40,60 流体通過部
22,47,68 導入用配管
23,35,55 導入部
25,45,65 流入面
27,41,87 導入用配管流路
28,48,69 排出用配管
34,36,56 排出部
46,95 排出面
66 上流側凹部
67 下流側凹部
70,74,76 流入位置
72a,72b,75a,75b,75c,78a,78b 導入流路断面
81,83,84 導入流路部
82,92,93 導入流路
100,200,300,400 ヒートシンク

Claims (7)

  1.  伝熱部と、
     金属多孔体を含み、前記伝熱部に接触して配置され、内部を流体が通過可能な流体通過部と、
     前記流体通過部へと前記流体を導く導入流路を規定する導入流路部と、
    を備え、
     前記流体通過部において前記流体が流入する面である流入面の面積は、前記流体の進行方向に垂直な前記導入流路の断面である導入流路断面を、前記流体の進行方向に沿って前記流体通過部に近づけた場合に前記流体通過部に接触する位置である流入位置の上流側に隣接する領域に位置する前記導入流路断面の面積よりも大きい、
     熱交換器。
  2.  前記伝熱部から離れて位置する前記流体通過部の領域と前記伝熱部とを接続するように配置される熱伝導補助部材をさらに備える、
     請求項1に記載の熱交換器。
  3.  前記伝熱部は、前記流体通過部を取り囲むことにより前記流体が前記流体通過部を通過するための通過流路を規定する、
     請求項1または請求項2に記載の熱交換器。
  4.  前記流入位置における前記導入流路断面の面積が前記流入位置の上流側に隣接する領域に位置する前記導入流路断面の面積よりも大きいことにより、前記流入面の面積が、前記流入位置の上流側に隣接する領域に位置する前記導入流路断面の面積よりも大きくなっている、
     請求項1から請求項3のいずれか1項に記載の熱交換器。
  5.  前記流入位置における前記導入流路断面に対して前記流入面が傾斜することにより、前記流入面の面積が、前記流入位置の上流側に隣接する領域に位置する前記導入流路断面の面積よりも大きくなっている、
     請求項1から請求項4のいずれか1項に記載の熱交換器。
  6.  上流側に開口し、内部に底壁を有する上流側凹部が前記流体通過部に形成されていることにより、前記流入面の面積が、前記流入位置の上流側に隣接する領域に位置する前記導入流路断面の面積よりも大きくなっている、
     請求項1から請求項5のいずれか1項に記載の熱交換器。
  7.  前記流体通過部には、下流側に開口し、内部に底壁を有する下流側凹部が、前記上流側凹部と離れて形成されている、
     請求項6に記載の熱交換器。
PCT/JP2016/073085 2015-08-28 2016-08-05 熱交換器 WO2017038380A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015169718A JP2017044461A (ja) 2015-08-28 2015-08-28 熱交換器
JP2015-169718 2015-08-28

Publications (1)

Publication Number Publication Date
WO2017038380A1 true WO2017038380A1 (ja) 2017-03-09

Family

ID=58187261

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/073085 WO2017038380A1 (ja) 2015-08-28 2016-08-05 熱交換器

Country Status (2)

Country Link
JP (1) JP2017044461A (ja)
WO (1) WO2017038380A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021176979A1 (ja) * 2020-03-05 2021-09-10 三菱マテリアル株式会社 熱交換器
US20220201895A1 (en) * 2019-05-21 2022-06-23 Tomoegawa Co.,Ltd. Temperature control unit

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04112005A (ja) * 1990-08-31 1992-04-14 Mitsubishi Materials Corp セラミック放熱基板及びその製造方法
US20020108743A1 (en) * 2000-12-11 2002-08-15 Wirtz Richard A. Porous media heat sink apparatus
JP2004335516A (ja) * 2003-04-30 2004-11-25 Hitachi Ltd 電力変換装置
JP2005123496A (ja) * 2003-10-20 2005-05-12 Mitsubishi Electric Corp 熱交換器
JP2005228948A (ja) * 2004-02-13 2005-08-25 Mitsubishi Electric Corp ヒートシンク
JP2006038302A (ja) * 2004-07-23 2006-02-09 Toyota Central Res & Dev Lab Inc 冷却装置及び冷却制御方法
JP2008187116A (ja) * 2007-01-31 2008-08-14 Toshiba Corp 冷却装置
JP2011228566A (ja) * 2010-04-22 2011-11-10 Denso Corp 冷却器
WO2012157247A1 (ja) * 2011-05-16 2012-11-22 富士電機株式会社 半導体モジュール用冷却器

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8171986B2 (en) * 2008-04-02 2012-05-08 Northrop Grumman Systems Corporation Foam metal heat exchanger system
JP6652313B2 (ja) * 2015-01-08 2020-02-19 東京窯業株式会社 ハニカム構造体の配置構造

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04112005A (ja) * 1990-08-31 1992-04-14 Mitsubishi Materials Corp セラミック放熱基板及びその製造方法
US20020108743A1 (en) * 2000-12-11 2002-08-15 Wirtz Richard A. Porous media heat sink apparatus
JP2004335516A (ja) * 2003-04-30 2004-11-25 Hitachi Ltd 電力変換装置
JP2005123496A (ja) * 2003-10-20 2005-05-12 Mitsubishi Electric Corp 熱交換器
JP2005228948A (ja) * 2004-02-13 2005-08-25 Mitsubishi Electric Corp ヒートシンク
JP2006038302A (ja) * 2004-07-23 2006-02-09 Toyota Central Res & Dev Lab Inc 冷却装置及び冷却制御方法
JP2008187116A (ja) * 2007-01-31 2008-08-14 Toshiba Corp 冷却装置
JP2011228566A (ja) * 2010-04-22 2011-11-10 Denso Corp 冷却器
WO2012157247A1 (ja) * 2011-05-16 2012-11-22 富士電機株式会社 半導体モジュール用冷却器

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220201895A1 (en) * 2019-05-21 2022-06-23 Tomoegawa Co.,Ltd. Temperature control unit
EP3975243A4 (en) * 2019-05-21 2023-05-24 Tomoegawa Co., Ltd. TEMPERATURE CONTROL UNIT
WO2021176979A1 (ja) * 2020-03-05 2021-09-10 三菱マテリアル株式会社 熱交換器
JP7459570B2 (ja) 2020-03-05 2024-04-02 三菱マテリアル株式会社 熱交換器

Also Published As

Publication number Publication date
JP2017044461A (ja) 2017-03-02

Similar Documents

Publication Publication Date Title
US20090114372A1 (en) Heat sink
JP6200598B2 (ja) フィンチューブ式熱交換器の予め設定された流線型のウェイビーフィン
US20120024511A1 (en) Intercooler
US20190093966A1 (en) Phase transition suppression heat transfer plate-based heat exchanger
CN102804369B (zh) 散热器
WO2017038380A1 (ja) 熱交換器
WO2020001125A1 (zh) 一种换热器
JP2015227770A (ja) 熱交換器および熱交換器用オフセットフィン
JPH0250399B2 (ja)
JP2013165298A (ja) 液冷式冷却装置
CN105841541A (zh) 一种换热器及具有该换热器的热水器
CN205642111U (zh) 一种换热器及具有该换热器的热水器
JP4013883B2 (ja) 熱交換器
CN107782181A (zh) 一种新型换热器芯部
CN102829664B (zh) 一种自然对流散热结构及其方法
CN106052458A (zh) 换热管、换热器及空调机组
JP3957021B2 (ja) 熱交換器
JP4572911B2 (ja) 熱交換器
JP7148118B2 (ja) 伝熱装置
CN106642825A (zh) 翅片式换热器和冰箱
CN215893375U (zh) 一种散热管
WO2020052485A1 (zh) 换热器扁管及具有其的换热器
CN220507812U (zh) 微通道单排锯齿形翅片、翅片组件和换热器
KR101500064B1 (ko) 열교환유닛 및 이를 포함한 판형 열교환기
CN117308662B (zh) 一种换热器及模块式换热系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16841412

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16841412

Country of ref document: EP

Kind code of ref document: A1