WO2017037873A1 - 測定装置 - Google Patents

測定装置 Download PDF

Info

Publication number
WO2017037873A1
WO2017037873A1 PCT/JP2015/074862 JP2015074862W WO2017037873A1 WO 2017037873 A1 WO2017037873 A1 WO 2017037873A1 JP 2015074862 W JP2015074862 W JP 2015074862W WO 2017037873 A1 WO2017037873 A1 WO 2017037873A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength
laser light
transmittance
optical element
wavelength dependency
Prior art date
Application number
PCT/JP2015/074862
Other languages
English (en)
French (fr)
Inventor
育也 菊池
敦也 伊藤
Original Assignee
パイオニア株式会社
日機装株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社, 日機装株式会社 filed Critical パイオニア株式会社
Priority to PCT/JP2015/074862 priority Critical patent/WO2017037873A1/ja
Publication of WO2017037873A1 publication Critical patent/WO2017037873A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/59Transmissivity

Definitions

  • the present invention relates to a technical field of a measuring apparatus that acquires information on information to be measured using laser light.
  • Patent Document 1 discloses an apparatus that irradiates blood with light and measures blood concentration from the amount of transmitted light.
  • An object of the present invention is to provide a measuring apparatus that can suitably realize measurement using laser light.
  • a measuring apparatus for solving the above problems is arranged on a laser light source that emits laser light toward a measurement target and an optical path of the laser light, and the transmittance changes according to the wavelength of the laser light.
  • An optical element having transmittance wavelength dependency, and a detection unit that detects the laser light transmitted or reflected by the measurement target and the optical element, and the transmittance wavelength dependency of the optical element is In the wavelength range of the laser light, the transmittance wavelength dependency of the optical element and the measurement target is set to be smaller than the transmittance wavelength dependency of the measurement target.
  • the measuring apparatus includes a laser light source that emits laser light toward a measurement target, and a transmittance that is disposed on the optical path of the laser light, and the transmittance varies depending on the wavelength of the laser light.
  • the transmittance wavelength dependency of the optical element and the measurement target is set to be smaller than the transmittance wavelength dependency of the measurement target.
  • laser light is emitted from the laser light source toward the measurement target.
  • the laser light source include a Fabry-Perot (FP) laser light source and a distributed feedback (DFB) laser light source, but the type of the light source is not particularly limited in this embodiment.
  • the measurement target include blood and the like, but are not limited to those related to a living body, and may be gas, liquid, or solid.
  • the laser light emitted from the laser light source is detected or detected by the detection unit after being transmitted or reflected by the measurement target.
  • the detection unit is configured as a photodiode, for example, and configured to be able to detect the intensity of the laser beam.
  • the intensity of the laser light transmitted or reflected by the measurement target changes in accordance with the transmittance or reflectance of the measurement target. Therefore, if the intensity of the laser beam detected by the detection unit is used, information (for example, concentration) about the measurement target can be acquired.
  • an optical element is disposed on the optical path of the laser beam.
  • the optical element may be disposed between the laser light source and the measurement target, or may be disposed between the measurement target and the detection unit.
  • a plurality of optical elements may be arranged on the optical path of the laser beam.
  • the optical element described above has a transmittance wavelength dependency in which the transmittance changes according to the wavelength of the laser light.
  • the transmittance wavelength dependency of the optical element is such that, in the wavelength range of the laser light, the transmittance wavelength dependency of the optical element and the measurement target is smaller than the transmittance wavelength dependency of the measurement target.
  • the optical element has a transmittance wavelength dependency that at least partially cancels the transmittance wavelength dependency of the measurement target.
  • the “transmission wavelength dependency” here means how much the ratio of the intensity of the laser light incident on the optical element (or the object to be measured) to the intensity of the emitted laser light changes depending on the wavelength. This is a concept including the reflectance wavelength dependency in which the reflectance changes according to the wavelength of the laser light.
  • the object to be measured has transmittance wavelength dependency
  • the intensity of the laser light emitted from the object to be measured changes.
  • the intensity of the laser beam detected by the detection unit varies according to the wavelength. That is, even for the same object to be measured, different measurement results are obtained due to the transmittance wavelength dependency of the object to be measured.
  • the transmittance wavelength dependency of the measurement target is reduced by the optical element.
  • the change in the intensity of the detection light due to the difference in the wavelength of the laser light can be reduced. Therefore, the deviation of the measurement result due to the difference in the wavelength of the laser beam can be reduced. Therefore, accurate measurement can be performed even when the wavelength of the laser light source fluctuates or even when the laser light source has individual differences.
  • the transmittance wavelength dependency of the optical element and the object to be measured be as small as possible (that is, a value close to zero). .
  • the measuring apparatus According to the measuring apparatus according to the present embodiment, it is possible to accurately measure even when the measurement target has transmittance wavelength dependency.
  • the laser light source is a Fabry-Perot laser light source.
  • Fabry-Perot laser light sources are considered to be inexpensive and highly reliable compared to different types of laser light sources such as distributed feedback laser light sources. For this reason, if a Fabry-Perot type laser light source is used, cost reduction and reliability improvement can be realized.
  • the Fabry-Perot type laser light source varies the wavelength of the laser beam to be irradiated due to temperature characteristics.
  • the transmittance wavelength dependence of the measurement object is at least partially offset by the optical element. Therefore, even if the wavelength fluctuates, the deviation of the measurement result can be effectively suppressed.
  • the laser light source emits laser light in a wavelength range in which the transmittance wavelength dependency of the measurement target is linear.
  • the transmittance wavelength dependence of the measurement target is not linear when viewed in the entire wavelength range, it is linear when viewed only in the wavelength range of the laser light source. Can be considered. Therefore, it is possible to effectively cancel out the transmittance wavelength dependency of the object to be measured by using an optical element having a linear transmittance wavelength dependency.
  • an optical element that increases the intensity of the emitted laser light may be used.
  • the transmittance wavelength dependency of the measurement target can be regarded as linear, it is easy to select an appropriate optical element, and the influence of the transmittance wavelength dependency of the measurement target is suitably reduced. be able to.
  • the detection unit has a sensitivity wavelength dependency in which a detection sensitivity changes according to the wavelength of the laser light, and the sensitivity wavelength dependency of the detection unit.
  • the product of the sensitivity wavelength dependency of the detection unit and the transmittance wavelength dependency of the optical element and the object to be measured is the difference between the optical element and the object to be measured. It is set to be smaller than the combined transmittance wavelength dependency.
  • the detection unit since the detection unit has sensitivity wavelength dependency, the intensity of the laser beam detected by the detection unit varies according to the wavelength of the laser beam. That is, if the wavelength of the laser light incident on the detection unit is different, the detection result is different even if the intensity is the same.
  • the sensitivity wavelength dependency of the detector has the effect of at least partially canceling out the transmittance wavelength dependency of the object to be measured, similar to the transmittance wavelength dependency of the optical element. For this reason, even if the influence of the transmittance wavelength dependency of the object to be measured cannot be sufficiently reduced by simply arranging the optical element, if the sensitivity wavelength dependency of the detection unit is used, the transmittance wavelength The influence of dependency can be further reduced.
  • the sensitivity wavelength dependency of the detection unit is the product of the sensitivity wavelength dependency of the detection unit and the transmittance wavelength dependency of the optical element and the measurement target in the wavelength range of the laser light. It is set to be smaller than the transmittance wavelength dependency of. That is, the detection unit has a sensitivity wavelength dependency that at least partially cancels the transmittance wavelength dependency of the optical element and the measurement target.
  • the “product of the sensitivity wavelength dependency and the transmittance wavelength dependency of the optical element and the object to be measured” is a value indicating the wavelength dependency obtained by combining the sensitivity wavelength dependency and the transmittance wavelength dependency. Yes, it indicates how much the intensity of the laser light emitted from the laser light source changes according to the wavelength in the measurement target, the optical element, and the detection unit. For this reason, the “product” here is not limited to a value obtained by simple multiplication.
  • the transmittance wavelength dependency can be canceled out, so that the deviation of the measurement result due to the difference in the wavelength of the laser light can be more effectively suppressed. It is possible.
  • the laser light source may emit laser light in a wavelength range that does not include a wavelength at which the detection sensitivity of the detection unit is maximized.
  • the detection sensitivity of the detection unit typically increases linearly until the detection sensitivity reaches a maximum according to the wavelength, and then decreases linearly. That is, the detection sensitivity increases or decreases linearly except for the wavelength vicinity where the detection sensitivity is maximum. Therefore, if the wavelength range of the laser light does not include a wavelength that maximizes the detection sensitivity of the detection unit, it can be considered that the detection sensitivity of the detection unit increases or decreases linearly. Therefore, it is possible to suitably cancel out the transmittance wavelength dependency of the measurement target using the sensitivity wavelength dependency of the detection unit.
  • FIG. 1 is a schematic configuration diagram illustrating the overall configuration of the measurement apparatus according to the embodiment.
  • the measuring apparatus includes a laser light source 110, a detector 120, and an optical element 200.
  • the laser light source 110 is configured as a Fabry-Perot laser light source, for example, and irradiates blood 500 flowing through the tube 510 with laser light in a predetermined wavelength range. Blood 500 is a specific example of “object to be measured”.
  • the detector 120 is configured as a photodiode, for example, and detects laser light emitted from the laser light source 110 and transmitted through the optical element 200 and the blood 500.
  • the detector 120 is configured to output a detection signal corresponding to the intensity of the detected laser beam, for example, to an analysis device (not shown).
  • the detector 120 is a specific example of “detection unit”.
  • the optical element 200 is disposed between the laser light source 110 and the blood 500, transmits the laser light emitted from the laser light source 110, and emits it toward the blood 500.
  • the optical element 200 has a transmittance wavelength dependency in which the transmittance changes according to the wavelength of the laser light.
  • the optical element 200 is configured, for example, as an optical filter using a dielectric multilayer film, or a resin or the like mixed with a specific wavelength light absorbing material such as an infrared blocking film and an ultraviolet blocking film.
  • FIGS. 2 to 4 are schematic configuration diagrams showing the overall configuration of the measuring apparatus according to the first to third modifications.
  • the optical element 200 in the measuring apparatus according to the first modification, is disposed between the blood 500 and the detector 120. For this reason, the laser beam after passing through the blood 500 is incident on the optical element 200 according to the first modification. As described above, even when the optical element 200 is arranged on the detector 120 side when viewed from the object to be measured, the effect obtained by this embodiment described later does not change. That is, as long as the optical element 200 is disposed on the optical path between the laser light source 110 and the detector 120, the position of the optical element 200 is not particularly limited.
  • a collimator lens 150 for making laser light parallel light is disposed between the laser light source 110 and the blood 500.
  • the collimator lens 150 is coated to give wavelength dependency. Therefore, in the second modification, the collimator lens 150 functions as the optical element 200. In this manner, an existing member can be made to function as the optical element 200 without providing the optical element 200 separately.
  • a mold member 125 for protecting the detector 120 is provided on the surface of the detector 120 (more specifically, the surface on which the laser beam is incident). ing.
  • the mold member 125 is mixed with a material that absorbs laser light having a specific wavelength (for example, glass powder doped with an organic dye substance or a wavelength selective substance (CdS or the like)). Therefore, in the third modification, the mold member 125 of the detector 120 functions as the optical element 200.
  • the collimator lens 150 may function as the optical element 200 in addition to the mold member 125.
  • a plurality of optical elements 200 may be arranged on the optical path of the laser light.
  • FIG. 5 is a graph showing the wavelength dependency of blood absorbance
  • FIG. 6 is a graph (No. 1) showing the transmittance wavelength dependency of the optical element
  • FIG. 7 is a graph showing the wavelength dependency of the water-soluble processing oil
  • FIG. 8 is a graph (No. 2) showing the transmittance wavelength dependency of the optical element.
  • the absorbance (transmittance) of blood 500 varies according to the wavelength of the incident laser light.
  • HbO 2 and Hb the absorbance of HbO 2 and Hb, it will be described here HbO 2, measured as blood concentration in the example dialysis.
  • the absorbance of HbO 2 varies while repeatedly increasing and decreasing in the wavelength range of 650 nm to 1200 nm. Therefore, when the wavelength of the laser light varies, the intensity of the laser light emitted from the blood 500 changes. Further, when there is a difference in the wavelength of the laser light emitted due to individual differences of the laser light sources 110, even when the same type of laser light source 110 is used, the laser light emitted from the blood 500 due to the difference in wavelength. Changes in the strength. Therefore, if the optical element 200 is not provided, the intensity of the laser beam detected by the detector 120 varies depending on the wavelength. That is, even if the same object to be measured is used, different measurement results are obtained due to the different wavelengths of the laser light.
  • This embodiment aims to reduce the above-described transmittance wavelength dependency by the optical element 200.
  • the transmittance wavelength dependency of blood 500 is at least partially offset by the transmittance wavelength dependency of optical element 200.
  • the transmittance wavelength dependency of HbO 2 is preferably linear with respect to the wavelength. Therefore, in this embodiment, the wavelength range of the laser light emitted by the laser light source 110 is set to a specific wavelength range so that the transmittance wavelength dependency of HbO 2 can be regarded as substantially linear.
  • the laser light source 110 according to the present embodiment irradiates laser light having a wavelength range of 750 nm to 900 nm in which the absorbance of HbO 2 increases linearly with an increase in wavelength.
  • an optical element 200 in which the transmittance increases as the wavelength increases may be used.
  • the wavelength of the laser light when the wavelength of the laser light is increased, the intensity of the laser light that passes through the blood 500 is decreased, whereas the intensity of the laser light that is transmitted through the optical element 200 is increased. Therefore, fluctuations in the intensity of the laser light according to the wavelength can be reduced, and deviations in measurement results can be suppressed.
  • the object to be measured is not limited to blood 500, and may be, for example, a water-soluble processing oil used in industrial applications.
  • the wavelength range of the laser light emitted by the laser light source 110 is 630 nm to 680 nm
  • the transmittance wavelength dependency of the water-soluble processing oil can be regarded as linear.
  • Examples of the laser light source 110 that can irradiate a laser beam in the wavelength range of 630 nm to 680 nm include a laser light source used for reading a DVD. For this reason, when utilizing the said wavelength range, the cheap component generally spread can be utilized and cost reduction can be aimed at.
  • an optical element 200 whose transmittance decreases as the wavelength increases may be used.
  • the intensity of the laser light that passes through the water-soluble processing oil increases, whereas the intensity of the laser light that passes through the optical element 200 decreases. Therefore, fluctuations in the intensity of the laser light according to the wavelength can be reduced, and deviations in measurement results can be suppressed.
  • FIG. 9 is a graph showing the wavelength dependence of the standardized transmitted light amount.
  • the optical element 200 whose transmitted light amount decreases with increasing wavelength is applied to the blood 500 whose transmitted light amount increases with increasing wavelength, the combined transmitted light amount (that is, the blood 500 and the optical component).
  • the amount of light transmitted through both elements 200 is substantially constant regardless of the wavelength (the amount of light transmitted here is normalized with the light amount at the shortest wavelength being “1”).
  • the intensity of the detected laser beam is constant.
  • the intensity of the detected laser light is constant.
  • the optical element 200 that cancels the transmittance wavelength dependency of the object to be measured is arranged, the deviation of the measurement result due to the wavelength of the laser light can be effectively suppressed.
  • FIG. 10 is a graph showing the wavelength dependence of the detection sensitivity of the detector.
  • FIG. 11 is a graph showing the wavelength dependence of the combined transmitted light rate and the detection sensitivity of the detector, and
  • FIG. 12 is a graph showing the wavelength dependence of the normalized detected light quantity.
  • the transmittance wavelength dependency of the measurement target can be reduced not only by the optical element 200 but also by the sensitivity wavelength dependency of the detector 120. For this reason, even when the optical element 200 alone cannot sufficiently cancel the transmittance wavelength dependency, it is possible to further cancel the transmittance wavelength dependency by using the detector 120 having the sensitivity wavelength dependency. . For this purpose, it is required to select a detector 120 having an appropriate sensitivity wavelength dependency.
  • the wavelength range of the laser light source 110 is 850 ⁇ 15 nm
  • the wavelength with the maximum detection sensitivity is included in the wavelength range of 850 ⁇ 15 nm of the laser light source 110.
  • the wavelength range of the laser light source 110 that is 850 ⁇ 15 nm does not include the wavelength that maximizes the detection sensitivity. If only the detection sensitivity is taken into consideration, the detector A having a high detection sensitivity in the wavelength range of the laser light source 110 may be used. In order to reduce the transmittance wavelength dependency of the measurement target, the sensitivity Trends in wavelength dependence should also be considered.
  • the detector A includes a wavelength at which the detection sensitivity is maximized in the wavelength range of the laser light source 110, so that the sensitivity wavelength dependency is piled up.
  • the detector B does not include the wavelength at which the detection sensitivity is maximized in the wavelength range of the laser light source 110, the sensitivity wavelength dependency is linear.
  • the sensitivity wavelength dependency of the detector B has a tendency that is almost opposite to the wavelength dependency of the combined transmittance (that is, the combined transmittance of both the object to be measured and the optical element 200).
  • the wavelength dependence of the linear composite transmittance cannot be offset appropriately because the sensitivity wavelength dependence is piled up.
  • the amount of light detected when the detector A is used varies depending on the wavelength of the laser light. Specifically, when the detector A is used, the detected light quantity decreases as the wavelength of the laser light increases.
  • the detector B when the detector B is used, the sensitivity wavelength dependency is linear, and therefore the wavelength dependency of the combined transmittance can be offset appropriately. As a result, the amount of light detected when the detector B is used hardly changes even if the wavelength of the laser light changes.
  • the detected light amount is standardized with the maximum value being “1”.
  • the wavelength range of the laser light source 110 includes the wavelength with the maximum detection sensitivity.
  • the one that is not (ie detector B) should be used.
  • the configuration using the sensitivity wavelength dependency of the detector 120 described above is not essential, and does not have sensitivity wavelength dependency when the optical element 200 can sufficiently reduce the transmittance wavelength dependency of the measurement target.
  • a detector 1120 may be used.
  • the measuring apparatus According to the measuring apparatus according to the present embodiment, it is possible to reduce the transmittance wavelength dependency of the measurement target, and therefore it is possible to realize a suitable measurement independent of the wavelength of the laser beam. .

Abstract

測定装置は、被測定対象(500)に向けてレーザ光を発するレーザ光源(110)と、レーザ光の光路上に配置されており、レーザ光の波長に応じて透過率が変化する透過率波長依存性を有する光学素子(200)と、被測定対象及び光学素子において透過又は反射されたレーザ光を検出する検出部(120)とを備える。光学素子の透過率波長依存性は、レーザ光の波長範囲において、光学素子及び被測定対象を合わせた透過率波長依存性が、被測定対象の透過率波長依存性よりも小さくなるように設定されている。これにより、レーザ光の波長変動に起因する測定結果のずれを抑制することができる。

Description

測定装置
 本発明は、レーザ光を利用して被測定対象情報に関する情報を取得する測定装置の技術分野に関する。
 この種の装置として、例えば被測定対象に光を照射すると共に、透過又は反射された光を検出して被測定対象に関する情報を取得する装置が知られている。例えば特許文献1では、血液に対して光を照射して、その透過光量から血中濃度を測定するという装置が開示されている。
特開平11-226119号公報
 しかしながら、血液は、光の波長に依存して透過量が変化する透過量波長依存性を有している。このため、仮に照射する光の波長が変化すると透過光量も変化することになる。よって、透過光量から血中濃度を測定する特許文献1のような技術では、照射する光の波長が変化してしまうと、正確な血中濃度を測定することができなくなるという技術的問題点が生ずる。
 なお、波長が変化しない光源を利用すれば透過光量の変化も抑制できるが、その場合にはコストが増加してしまう等の新たな技術的問題点が生じ得る。
 本発明が解決しようとする課題には上記のようなものが一例として挙げられる。本発明は、レーザ光を利用した測定を好適に実現可能な測定装置を提供することを課題とする。
 上記課題を解決するための測定装置は、被測定対象に向けてレーザ光を発するレーザ光源と、前記レーザ光の光路上に配置されており、前記レーザ光の波長に応じて透過率が変化する透過率波長依存性を有する光学素子と、前記被測定対象及び前記光学素子において透過又は反射された前記レーザ光を検出する検出部とを備え、前記光学素子の前記透過率波長依存性は、前記レーザ光の波長範囲において、前記光学素子及び前記被測定対象を合わせた前記透過率波長依存性が、前記被測定対象の前記透過率波長依存性よりも小さくなるように設定されている。
実施例に係る測定装置の全体構成を示す概略構成図である。 第1変形例に係る測定装置の全体構成を示す概略構成図である。 第2変形例に係る測定装置の全体構成を示す概略構成図である。 第3変形例に係る測定装置の全体構成を示す概略構成図である。 血液の吸光度の波長依存性を示すグラフである。 光学素子の透過率波長依存性を示すグラフ(その1)である。 水溶加工油剤の波長依存性を示すグラフである。 光学素子の透過率波長依存性を示すグラフ(その2)である。 規格化した透過光量の波長依存性を示すグラフである。 検出器の検出感度の波長依存性を示すグラフである。 合成透過光率及び検出器の検出感度の波長依存性を示すグラフである。 規格化した検出光量の波長依存性を示すグラフである。
 <1>
 本実施形態に係る測定装置は、被測定対象に向けてレーザ光を発するレーザ光源と、前記レーザ光の光路上に配置されており、前記レーザ光の波長に応じて透過率が変化する透過率波長依存性を有する光学素子と、前記被測定対象及び前記光学素子において透過又は反射された前記レーザ光を検出する検出部とを備え、前記光学素子の前記透過率波長依存性は、前記レーザ光の波長範囲において、前記光学素子及び前記被測定対象を合わせた前記透過率波長依存性が、前記被測定対象の前記透過率波長依存性よりも小さくなるように設定されている。
 本実施形態に係る測定装置の動作時には、レーザ光源から被測定対象に向けてレーザ光が照射される。なお、レーザ光源の具体例としては、ファブリペロー型(FP)レーザ光源や分布帰還型(DFB)レーザ光源等が挙げられるが、本実施形態では光源のタイプが特に限定される訳ではない。また、被測定対象としては、例えば血液等が挙げられるが、生体に関するものに限られる訳ではなく、また気体、液体、固体の別も問わない。
 レーザ光源から照射されたレーザ光は、被測定対象において透過又は反射された後に、検出部において検出される。検出部は、例えばフォトダイオードとして構成されており、レーザ光の強度を検出可能に構成されている。ここで、被測定対象において透過又は反射されたレーザ光は、被測定対象の透過率又は反射率に応じて強度が変化している。よって、検出部において検出されたレーザ光の強度を利用すれば、被測定対象に関する情報(例えば、濃度等)を取得することができる。
 本実施形態では特に、レーザ光の光路上に光学素子が配置されている。このため、レーザ光源から照射されたレーザ光は、被測定対象及び光学素子を経由して、検出部に入射されることになる。なお、光学素子は、レーザ光源と被測定対象との間に配置されてもよいし、被測定対象と検出部との間に配置されてもよい。また、レーザ光の光路上には、複数の光学素子が配置されていても構わない。
 上述した光学素子は、レーザ光の波長に応じて透過率が変化する透過率波長依存性を有している。そして特に、光学素子の透過率波長依存性は、レーザ光の波長範囲において、光学素子及び被測定対象を合わせた透過率波長依存性が、被測定対象の透過率波長依存性よりも小さくなるように設定されている。即ち、光学素子は、被測定対象の透過率波長依存性を少なくとも部分的に相殺するような透過率波長依存性を有している。なお、ここでの「透過率波長依存性」は、光学素子(又は被測定対象)に入射したレーザ光の強度と出射するレーザ光の強度との比が、波長に応じてどの程度変化するのかを示す値であり、レーザ光の波長に応じて反射率が変化する反射率波長依存性も含む概念である。
 被測定対象が透過率波長依存性を有している場合、レーザ光源から照射されるレーザ光の波長が変動してしまうと、被測定対象から出射されるレーザ光の強度に変化が生ずる。また、レーザ光源の個体差によって出射されるレーザ光の波長に違いが生じるような場合、同種のレーザ光源を使用した場合でも、波長の違いに起因して被測定対象から出射されるレーザ光の強度に変化が生ずる。よって、仮に光学素子が設けられていないとすると、検出部において検出されるレーザ光の強度が波長に応じて変動することになる。即ち、同一の被測定対象であっても、被測定対象の透過率波長依存性に起因して異なる測定結果が得られてしまう。
 しかるに本実施形態では、上述したように、光学素子により被測定対象の透過率波長依存性が小さくされる。この結果、レーザ光の波長の違いに起因する検出光の強度変化を小さくできる。よって、レーザ光の波長の違いに起因する測定結果のずれを小さくすることができる。従って、レーザ光源の波長が変動するような場合、或いはレーザ光源に個体差がある場合であっても、正確な測定を行うことが可能となる。なお、測定結果のずれを効果的に抑制するためには、光学素子と被測定対象とを合わせた透過率波長依存性が、できるだけ小さい値(即ち、ゼロに近い値)とされることが好ましい。
 以上説明したように、本実施形態に係る測定装置によれば、被測定対象が透過率波長依存性を有する場合であっても、正確に測定が行える。
 <2>
 本実施形態に係る測定装置の一態様では、前記レーザ光源は、ファブリペロー型レーザ光源である。
 ファブリペロー型レーザ光源は、例えば分布帰還型レーザ光源等の異なるタイプのレーザ光源と比較して、安価且つ信頼性が高いとされている。このため、ファブリペロー型レオーザ光源を利用すれば、コストの低減及び信頼性の向上を実現できる。
 一方で、ファブリペロー型レーザ光源は、温度特性により照射するレーザ光の波長が変動することが知られている。しかしながら本態様では、光学素子により被測定対象の透過率波長依存性が少なくとも部分的に相殺される。よって、波長が変動した場合であっても、測定結果のずれを効果的に抑制することができる。
 <3>
 本実施形態に係る測定装置の他の態様では、前記レーザ光源は、前記被測定対象の前記透過率波長依存性が直線的である波長範囲のレーザ光を発する。
 この態様によれば、被測定対象の透過率波長依存性が全ての波長範囲で見た場合に直線的でない場合であっても、レーザ光源の波長範囲だけで見た場合には直線的であるとみなせる。よって、透過率波長依存性が直線的である光学素子を用いて、被測定対象の透過率波長依存性を効果的に相殺できる。具体的には、例えば被測定対象に入射するレーザ光の波長が大きくなる程、被測定対象から出射されるレーザ光の強度が小さくなる場合には、入射するレーザ光の波長が大きくなる程、出射されるレーザ光の強度が大きくなるような光学素子を利用すればよい。
 以上のように、被測定対象の透過率波長依存性を直線的とみなすことができれば、適切な光学素子の選択が容易であり、被測定対象の透過率波長依存性の影響を好適に小さくすることができる。
 <4>
 本実施形態に係る測定装置の他の態様では、前記検出部は、前記レーザ光の波長に応じて検出感度が変化する感度波長依存性を有しており、前記検出部の前記感度波長依存性は、前記レーザ光の波長範囲において、前記検出部の感度波長依存性と前記光学素子及び前記被測定対象を合わせた前記透過率波長依存性との積が、前記光学素子及び前記被測定対象を合わせた前記透過率波長依存性よりも小さくなるように設定されている。
 この態様によれば、検出部が感度波長依存性を有しているため、検出部において検出されるレーザ光の強度がレーザ光の波長に応じて変動する。即ち、検出部に入射しているレーザ光の波長が異なれば、強度が同一であっても検出結果は異なるものとなる。
 検出部が有する感度波長依存性は、光学素子が有する透過率波長依存性と同様に、被測定対象が有する透過率波長依存性を少なくとも部分的に相殺するという効果を有している。このため、光学素子を配置するだけでは被測定対象の透過率波長依存性の影響を十分に小さくすることができない場合であっても、検出部の感度波長依存性を利用すれば、透過率波長依存性の影響を更に小さくすることができる。
 本態様では、検出部の感度波長依存性は、レーザ光の波長範囲において、検出部の感度波長依存性と光学素子及び被測定対象を合わせた透過率波長依存性との積が、被測定対象の透過率波長依存性よりも小さくなるように設定されている。即ち、検出部は、光学素子及び被測定対象を合わせた透過率波長依存性を、少なくとも部分的に相殺するような感度波長依存性を有している。なお、「感度波長依存性と光学素子及び被測定対象を合わせた透過率波長依存性との積」とは、感度波長依存性と透過率波長依存性とを合成した波長依存性を示す値であり、レーザ光源から出射されたレーザ光の強度が、被測定対象、光学素子及び検出部において、波長に応じてどの程度変化するのかを示すものである。このため、ここでの「積」とは、単純な乗算によって求められる値に限定される訳ではない。
 以上のように、感度波長依存性を有する検出部によれば、透過率波長依存性を相殺することができるため、レーザ光の波長の違いに起因する測定結果のずれを一層効果的に抑制することが可能である。
 <5>
 上述した検出部が感度波長依存性を有する態様では、前記レーザ光源は、前記検出部の検出感度が最大となる波長を含まない波長範囲のレーザ光を発してもよい。
 検出部の検出感度は、典型的には、波長に応じて検出感度が最大となるまで直線的に増加し、その後は直線的に減少する。即ち、検出感度が最大となる波長周辺を除けば、検出感度は直線的に増加又は減少する。従って、レーザ光の波長範囲が、検出部の検出感度が最大となる波長を含まないものであれば、検出部の検出感度は直線的に増加又は減少するとみなせる。よって、検出部の感度波長依存性を利用して、被測定対象が有する透過率波長依存性を好適に相殺することが可能となる。
 本実施形態に係る測定装置の作用及び他の利得については、以下に示す実施例において、より詳細に説明する。
 以下では、図面を参照して測定装置の実施例について詳細に説明する。
 <装置構成>
 先ず、図1を参照して、本実施例に係る測定装置の構成について説明する。ここに図1は、実施例に係る測定装置の全体構成を示す概略構成図である。
 図1において、本実施例に係る測定装置は、レーザ光源110と、検出器120と、光学素子200とを備えて構成されている。
 レーザ光源110は、例えばファブリペロー型レーザ光源として構成されており、所定の波長範囲のレーザ光を、チューブ510を流れる血液500に照射する。なお、血液500は「被測定対象」の一具体例である。
 検出器120は、例えばフォトダイオードとして構成されており、レーザ光源110から照射され、光学素子200及び血液500を透過したレーザ光を検出する。検出器120は、例えば図示せぬ解析装置等に、検出したレーザ光の強度に応じた検出信号を出力可能に構成されている。なお、検出器120は「検出部」の一具体例である。
 光学素子200は、レーザ光源110と血液500との間に配置されており、レーザ光源110から照射されたレーザ光を透過して血液500に向けて出射する。ここで特に、光学素子200は、レーザ光の波長に応じて透過率が変化する透過率波長依存性を有している。光学素子200は、例えば誘電体多層膜を用いた光学フィルターや、赤外線遮断フィルム及び紫外線遮断フィルムのように樹脂等に特定波長光吸収物質を混合したものとして構成される。
 次に、図2から図4を参照して、光学素子200の変形例について説明する。ここに図2から図4は夫々、第1から第3変形例に係る測定装置の全体構成を示す概略構成図である。
 図2において、第1変形例に係る測定装置では、光学素子200が血液500と検出器120との間に配置されている。このため、第1変形例に係る光学素子200には、血液500を透過した後のレーザ光が入射される。このように、光学素子200を被測定対象から見て検出器120側に配置した場合であっても、後述する本実施例によって得られる効果は変わらない。即ち、光学素子200は、レーザ光源110及び検出器120間の光路上に配置されるのであれば、特に配置位置が限定される訳ではない。
 図3において、第2変形例に係る測定装置では、レーザ光源110と血液500との間に、レーザ光を平行光にするためのコリメータレンズ150が配置されている。コリメータレンズ150には、波長依存性を持たせるためのコーティングが施されている。よって、第2変形例では、コリメータレンズ150が光学素子200として機能する。このように、光学素子200を別途設けずとも、既存の部材を光学素子200として機能させることも可能である。
 図4において、第3変形例に係る測定装置では、検出器120の表面(より具体的には、レーザ光が入射される面)に、検出器120を保護するためのモールド部材125が設けられている。モールド部材125には、特定波長のレーザ光を吸収する材料(例えば、有機色素物質や波長選択性物質(CdS等)をドープしたガラス粉末)が混合されている。よって、第3変形例では、検出器120のモールド部材125が光学素子200として機能する。
 なお、第3変形例では、モールド部材125に加えて、コリメータレンズ150を光学素子200として機能させてもよい。このように、レーザ光の光路上には複数の光学素子200が配置されてもよい。
 <光学素子の透過率波長依存性>
 次に、図5から図8を参照して、上述した光学素子200の透過率波長依存性について詳細に説明する。ここに図5は、血液の吸光度の波長依存性を示すグラフであり、図6は、光学素子の透過率波長依存性を示すグラフ(その1)である。また図7は、水溶加工油剤の波長依存性を示すグラフであり、図8は、光学素子の透過率波長依存性を示すグラフ(その2)である。
 図5において、血液500は、入射されるレーザ光の波長に応じて吸光度(透過率)が変動する。なお、図ではHbO及びHbの吸光度を示しているが、ここでは例えば人工透析中の血中濃度として測定されるHbOについて説明する。
 HbOの吸光度は、波長650nm~1200nmの範囲において増加と減少を繰り返しながら変動する。よって、レーザ光の波長が変動すると、血液500から出射されるレーザ光の強度に変化が生ずる。また、レーザ光源110の個体差によって出射されるレーザ光の波長に違いが生じるような場合、同種のレーザ光源110を使用した場合でも、波長の違いに起因して血液500から出射されるレーザ光の強度に変化が生ずる。よって、仮に光学素子200が設けられていないとすると、検出器120において検出されるレーザ光の強度が波長に応じて変動することになる。即ち、同一の被測定対象であっても、レーザ光の波長が異なることに起因して異なる測定結果が得られてしまう。
 本実施例では、上述した透過率波長依存性を光学素子200により小さくすることを目的としている。具体的には、血液500の透過率波長依存性を、光学素子200の透過率波長依存性によって少なくとも部分的に相殺する。その際、透過率波長依存性を効果的に相殺するためにも、HbOの透過率波長依存性は波長に対して直線的であることが好ましい。そこで本実施例では、HbOの透過率波長依存性を実質的に直線的とみなせるように、レーザ光源110が照射するレーザ光の波長範囲が特定の波長範囲とされている。具体的には、本実施例に係るレーザ光源110は、HbOの吸光度が波長の増加に対して直線的に大きくなる750nm~900nmの波長範囲のレーザ光を照射する。
 図6において、上述したHbOの透過率波長依存性を小さくするためには、波長が長くなる程に透過率が高くなるような光学素子200を利用すればよい。このようにすれば、レーザ光の波長が長くなる場合において、血液500を透過するレーザ光の強度が小さくなるのに対して、光学素子200を透過するレーザ光の強度は大きくなる。よって、波長に応じたレーザ光の強度の変動を小さくでき、測定結果のずれを抑制することができる。
 ちなみに、複数の光学素子200を利用する場合には、複数の光学素子200の各々の透過率波長依存性を合成したものが、図6に示すような値になればよい。
 図7において、被測定対象は血液500に限られず、例えば工業用途で用いられる水溶性加工油剤であってもよい。この場合、レーザ光源110が照射するレーザ光の波長範囲を630nm~680nmとすれば、水溶性加工油剤の透過率波長依存性が直線的であるとみなせる。なお、630nm~680nmの波長範囲でレーザ光を照射可能なレーザ光源110としては、例えばDVDの読み取りに利用されるレーザ光源が挙げられる。このため、上記波長範囲を利用する場合には、一般的に普及した安価な部品を利用することができ、コストの低減を図ることができる。
 図8において、上述した水溶性加工油剤の透過率波長依存性を小さくするためには、波長が長くなる程に透過率が低くなるような光学素子200を利用すればよい。このようにすれば、レーザ光の波長が長くなる場合において、水溶性加工油剤を透過するレーザ光の強度が大きくなるのに対して、光学素子200を透過するレーザ光の強度は小さくなる。よって、波長に応じたレーザ光の強度の変動を小さくでき、測定結果のずれを抑制することができる。
 次に、図9を参照して、光学素子200を配置することで得られる効果について具体的に説明する。ここに図9は、規格化した透過光量の波長依存性を示すグラフである。
 図9において、波長の増加に応じて透過光量が大きくなる血液500に対して、波長の増加に応じて透過光量が小さくなる光学素子200を適用すると、合成後透過光量(即ち、血液500及び光学素子200の両方を透過する場合の透過光量)は波長によらず概ね一定となる(なお、ここでの透過光量は、最短波長時の光量を“1”として規格化している)。この結果、例えばレーザ光源110の温度特性等によりレーザ光の波長が使用中に変動したとしても、検出されるレーザ光の強度は一定となる。また、レーザ光源110の個体差によってレーザ光の波長範囲にばらつきが存在している場合でも、検出されるレーザ光の強度は一定となる。以上のように、被測定対象の透過率波長依存性を相殺するような光学素子200を配置すれば、レーザ光の波長に起因する測定結果のずれを効果的に抑制できる。
 <検出器の感度波長依存性>
 次に、図10から図12を参照して、検出器120の感度波長依存性について詳細に説明する。ここに図10は、検出器の検出感度の波長依存性を示すグラフである。また図11は、合成透過光率及び検出器の検出感度の波長依存性を示すグラフであり、図12は、規格化した検出光量の波長依存性を示すグラフである。
 被測定対象の透過率波長依存性は、光学素子200だけでなく、検出器120の感度波長依存性によっても小さくすることができる。このため、光学素子200だけでは十分に透過率波長依存性を相殺できない場合であっても、感度波長依存性を有する検出器120を利用して、更なる透過率波長依存性の相殺を実現できる。そのためには、適切な感度波長依存性を有する検出器120を選択することが要求される。
 図10において、レーザ光源110の波長範囲が850±15nmである場合に、互いに異なる感度波長依存性を有する検出器A及び検出器Bを利用する例を考える。検出器Aは、レーザ光源110の波長範囲である850±15nmに、検出感度が最大となる波長が含まれている。一方で、検出器Bは、レーザ光源110の波長範囲である850±15nmに、検出感度が最大となる波長が含まれていない。単純に検出感度だけを考慮するのであれば、レーザ光源110の波長範囲において検出感度が高い検出器Aを利用すればよいが、被測定対象の透過率波長依存性を小さくするためには、感度波長依存性の傾向も考慮すべきである。
 図11において、検出器Aは、レーザ光源110の波長範囲に検出感度が最大となる波長が含まれているため、感度波長依存性が山なりになっている。一方で、検出器Bは、レーザ光源110の波長範囲に検出感度が最大となる波長が含まれていないため、感度波長依存性が直線的になっている。また、検出器Bの感度波長依存性は、合成透過率(即ち、被測定対象及び光学素子200の両方を合わせた透過率)の波長依存性と概ね真逆の傾向を有している。
 図12において、検出器Aを利用した場合、感度波長依存性が山なりになっているために、直線的な合成透過率の波長依存性を好適に相殺できない。その結果、検出器Aを利用した場合の検出光量は、レーザ光の波長に応じて変動してしまう。具体的には、検出器Aを利用した場合には、レーザ光の波長が長くなるほど、検出光量が低下してしまう。一方、検出器Bを利用した場合、感度波長依存性が直線的であるため、合成透過率の波長依存性を好適に相殺できる。その結果、検出器Bを利用した場合の検出光量は、レーザ光の波長が変化しても殆ど変動しない。なお、ここでの検出光量は、最大値を“1”として規格化したものである。
 以上の結果、検出器120の感度波長依存性を利用して、合成透過率の波長依存性を相殺しようとする場合には、レーザ光源110の波長範囲に検出感度が最大となる波長が含まれていないもの(即ち、検出器B)を利用すべきである。
 なお、上述した検出器120の感度波長依存性を利用する構成は必須ではなく、光学素子200により被測定対象の透過率波長依存性を十分に小さくできる場合には、感度波長依存性を有しない検出器1120を利用すればよい。
 以上説明したように、本実施例に係る測定装置によれば、被測定対象が有する透過率波長依存性を小さくすることができるため、レーザ光の波長によらない好適な測定を実現可能である。
 本発明は、上述した実施形態に限られるものではなく、特許請求の範囲及び明細書全体から読み取れる発明の要旨或いは思想に反しない範囲で適宜変更可能であり、そのような変更を伴う測定装置もまた本発明の技術的範囲に含まれるものである。
 110 レーザ光源
 120 検出器
 125 モールド
 150 コリメータレンズ
 200 光学素子
 500 血液
 510 チューブ

Claims (5)

  1.  被測定対象に向けてレーザ光を発するレーザ光源と、
     前記レーザ光の光路上に配置されており、前記レーザ光の波長に応じて透過率が変化する透過率波長依存性を有する光学素子と、
     前記被測定対象及び前記光学素子において透過又は反射された前記レーザ光を検出する検出部と
     を備え、
     前記光学素子の前記透過率波長依存性は、前記レーザ光の波長範囲において、前記光学素子及び前記被測定対象を合わせた前記透過率波長依存性が、前記被測定対象の前記透過率波長依存性よりも小さくなるように設定されている
     ことを特徴とする測定装置。
  2.  前記レーザ光源は、ファブリペロー型レーザ光源であることを特徴とする請求項1に記載の測定装置。
  3.  前記レーザ光源は、前記被測定対象の前記透過率波長依存性が直線的である波長範囲のレーザ光を発することを特徴とする請求項1又は2に記載の測定装置。
  4.  前記検出部は、前記レーザ光の波長に応じて検出感度が変化する感度波長依存性を有しており、
     前記検出部の前記感度波長依存性は、前記レーザ光の波長範囲において、前記検出部の感度波長依存性と前記光学素子及び前記被測定対象を合わせた前記透過率波長依存性との積が、前記光学素子及び前記被測定対象を合わせた前記透過率波長依存性よりも小さくなるように設定されている
     ことを特徴とする請求項1から3のいずれか一項に記載の測定装置。
  5.  前記レーザ光源は、前記検出部の検出感度が最大となる波長を含まない波長範囲のレーザ光を発することを特徴とする請求項4に記載の測定装置。
PCT/JP2015/074862 2015-09-01 2015-09-01 測定装置 WO2017037873A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/074862 WO2017037873A1 (ja) 2015-09-01 2015-09-01 測定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/074862 WO2017037873A1 (ja) 2015-09-01 2015-09-01 測定装置

Publications (1)

Publication Number Publication Date
WO2017037873A1 true WO2017037873A1 (ja) 2017-03-09

Family

ID=58187253

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/074862 WO2017037873A1 (ja) 2015-09-01 2015-09-01 測定装置

Country Status (1)

Country Link
WO (1) WO2017037873A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63275327A (ja) * 1987-05-08 1988-11-14 Hamamatsu Photonics Kk 診断装置
JP2008531212A (ja) * 2005-03-01 2008-08-14 マシモ・ラボラトリーズ・インコーポレーテッド 多波長センサ等化
WO2008114401A1 (ja) * 2007-03-20 2008-09-25 Pioneer Corporation 生体情報計測装置
WO2009093453A1 (ja) * 2008-01-25 2009-07-30 Panasonic Corporation 分析装置および分析方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63275327A (ja) * 1987-05-08 1988-11-14 Hamamatsu Photonics Kk 診断装置
JP2008531212A (ja) * 2005-03-01 2008-08-14 マシモ・ラボラトリーズ・インコーポレーテッド 多波長センサ等化
WO2008114401A1 (ja) * 2007-03-20 2008-09-25 Pioneer Corporation 生体情報計測装置
WO2009093453A1 (ja) * 2008-01-25 2009-07-30 Panasonic Corporation 分析装置および分析方法

Similar Documents

Publication Publication Date Title
US9939374B2 (en) Device and method for fast recording of an absorption spectrum of a fluid using a plurality of etalons in combination with a tunable fabry-perot interferometer
JP6075372B2 (ja) 物質特性測定装置
JP5959509B2 (ja) 測定ユニットおよびガス分析装置
KR102155486B1 (ko) 파장 중심 검출 기반 센서 장치 및 방법
KR101069972B1 (ko) 온도 측정 장치 및 온도 측정 방법
CN107345904B (zh) 基于光学吸收和干涉法检测气体浓度的方法及装置
US9500722B2 (en) Magnetic field measurement apparatus
JP2015049168A (ja) ガス吸光度測定装置
JP6516484B2 (ja) 液中溶存物濃度測定装置
WO2017037873A1 (ja) 測定装置
KR102535963B1 (ko) 농도 측정 장치
WO2017037871A1 (ja) 測定装置
TWI719650B (zh) 濃度測定方法
JP6437172B1 (ja) レーザ装置
JP2017161424A (ja) 光学式成分センサ
WO2015132880A1 (ja) 測定装置及び測定方法
JP5001226B2 (ja) 光熱変換測定装置及び方法
JP6530669B2 (ja) ガス濃度測定装置
JP6750734B2 (ja) フローセル及びそのフローセルを備えた検出器
JP5407794B2 (ja) テラヘルツ光を用いた物質成分の解析装置及びテラヘルツ光を用いた物質成分の解析方法
WO2020084867A1 (ja) 濃度センサ
US9006685B2 (en) Device and method for determining the concentration of fluorophores in a sample
JP6818048B2 (ja) 計測装置、情報出力装置、計測方法、コンピュータプログラム及び記録媒体
JP2015011033A (ja) 電磁放射放出装置
JP2023105732A (ja) 濃度測定装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15902993

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15902993

Country of ref document: EP

Kind code of ref document: A1