WO2017037840A1 - Power generation device and stator module - Google Patents

Power generation device and stator module Download PDF

Info

Publication number
WO2017037840A1
WO2017037840A1 PCT/JP2015/074732 JP2015074732W WO2017037840A1 WO 2017037840 A1 WO2017037840 A1 WO 2017037840A1 JP 2015074732 W JP2015074732 W JP 2015074732W WO 2017037840 A1 WO2017037840 A1 WO 2017037840A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
module
magnetic guide
guide
core
Prior art date
Application number
PCT/JP2015/074732
Other languages
French (fr)
Japanese (ja)
Inventor
圀博 三宅
成家 大森
Original Assignee
圀博 三宅
三森合同会社
成家 大森
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 圀博 三宅, 三森合同会社, 成家 大森 filed Critical 圀博 三宅
Priority to PCT/JP2015/074732 priority Critical patent/WO2017037840A1/en
Publication of WO2017037840A1 publication Critical patent/WO2017037840A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit

Definitions

  • the present invention relates to a power generation device, and particularly to a power generation device and a stator module that can provide a large amount of power generation.
  • the conventional power generators for example: motors or generators
  • the conventional power generation devices since the power generation amount is higher, all the conventional power generation devices tend to reduce the gap between the rotor module and the stator module.
  • the gap between the rotor module and the stator module is reduced, not only does the collision between the rotor module and the stator module easily occur, but in the configuration of the conventional power generator, the rotor module and the stator module It is not possible to have a gap of 0 (no gap).
  • the present inventor considers that there is room for improvement of the above-mentioned drawbacks, particularly researches, and uses academic principles to finally improve the above-mentioned drawbacks reasonably and effectively. Created the present invention that can do things.
  • the present invention provides a single power generation device and a stator module, which can effectively improve the disadvantages of the conventional power generation device.
  • the present invention provides a kind of power generation device, which includes a stator module and a rotor module, and the stator module includes a casing and a first magnetic guide module, and an axis is provided in the casing.
  • the first magnetic guide module comprises a first magnetic guide unit and a flexible magnetic guide brush, the first magnetic guide unit is installed in the casing, and the first magnetic guide unit is
  • the flexible magnetic guide brush has at least one core and one coil wound around the core, and the flexible magnetic guide brush is installed on the core located inside the casing, while the rotor module rotates Possible in the casing, and the rotor module comprises a rotating part, and The rotating part is rotated about the axis, the first magnetic module is mounted on the rotating part, and the first magnetic module generates at least a magnetic force.
  • Another aspect of the present invention is to provide a kind of stator module, which has a casing and a first magnetic guide module, the casing having one axis on the inside thereof,
  • the first magnetic guide module includes a first magnetic guide unit and a flexible magnetic guide brush, the first magnetic guide unit is installed in the casing, and the first magnetic guide unit has at least one core portion.
  • the flexible magnetic guide brush has one coil wound around the core, and the flexible magnetic guide brush is installed in the core located inside the casing.
  • the magnetic pole ends of the first magnetic module are respectively in the radial direction along the core. It is in substantial contact with the free end of the upper flexible magnetic guide brush, whereby the magnetic force generated from the magnetic pole tip is transmitted to the core through the flexible magnetic guide brush, and further advances between the corresponding magnetic core end and the corresponding core portion.
  • the transmission of magnetic force becomes zero gap, which can achieve the effect of transmission of magnetic force and raising power generation amount, and the magnetic pole end or rotating part collides with the core part due to improper design of the gap Escape from doing.
  • FIG. 2 is an explanatory plan view of FIG. 1.
  • FIG. 2 is a partial cross-sectional explanatory view of FIG. 1 (only a portion of the casing is a cut surface).
  • FIG. 5 is an explanatory diagram viewed by being cut locally along the line VV in FIG. 2.
  • FIG. 6 is an operation explanatory diagram of FIG. 5.
  • FIG. 8 is an operation explanatory diagram of FIG. 7.
  • FIG. 10 is an explanatory diagram viewed by being cut locally along the line XX in FIG. 9. It is explanatory drawing of another implementation state of the magnetic guide ring and core part of 2nd Example of the electric power generating apparatus of this invention.
  • this embodiment is a kind of power generation device 100, and in order to better understand the power generation device 100 of this embodiment, a power generation device of the following fluid (for example, wind power) is taken as an example.
  • a power generation device of the following fluid for example, wind power
  • the power generation apparatus 100 of the present embodiment never excludes application to a generator or a motor.
  • the power generation apparatus 100 includes one stator module 1 and one rotor module 2 attached in the stator module 1.
  • the rotor module 2 can rotate with respect to the stator module 1.
  • the power generator 100 generates electric power.
  • the structures of the stator module 1 and the rotor module 2 will be described first, and then the correspondence between the stator module 1 and the rotor module 2 will be described.
  • the stator module 1 includes a casing 11 and a first magnetic guide module 12 installed on the casing 11.
  • the casing 11 includes one elongated flow pipe 111 and both support portions 112.
  • the flow pipe 111 is a circular pipe having a constant inner diameter, and has one flow passage 113 surrounded by the flow pipe 111.
  • the flow pipe 111 is defined as one axis L passing through the flow passage 113.
  • the axis L corresponds to the center line of the flow pipe 111 in the present embodiment, but the present invention is not limited to this.
  • Both the support portions 112 are installed in opposite sides of the flow pipe 111 (for example, the left and right sides of the flow pipe 111 in FIG. 1).
  • the structure of all the support portions 112 is suitable for flowing a fluid (for example, wind) into and out of the flow passage 113.
  • the first magnetic guide module 12 includes several first magnetic guide units 121 and several flexible magnetic guide brushes 122. These first magnetic guide units 121 are distributed on the flow pipe 111 of the casing 11, and the quantity and density of the first magnetic guide units 121 distributed in the casing 11 are adjusted according to the demand of the designer. However, there are no particular restrictions here.
  • all the first magnetic guide units 121 are connected to the core portions 1211 of both metals, the coils 1212 wound around the core portions 1211, and the core portions 1211, respectively.
  • One guide part 1213 (for example: metal material, silicon steel plate, or iron plate) is included.
  • the two core portions 1211 and the guide parts 1213 can be integrally connected or separated.
  • all the first magnetic guide units 121 can be fixed to the flow pipe 111 of the casing 11 through the core portion 1211, and the central axis of all the core portions 1211 is one center which is substantially orthogonal to the axis L. It can be defined to be on line C.
  • the number of the flexible magnetic guide brushes 122 is approximately equal to the number of the core portions 1211 in the first magnetic guide module 12, so that one flexible magnetic guide brush 122 is installed in every core portion 1211. ing. That is, each of the flexible magnetic guide brushes 122 is mounted on the end of the core portion 1211 so as to be separated from the flow pipe 111 of the casing 11, and the flexible magnetic guide brush 122 is located in the flow passage 113. .
  • the flexible magnetic guide brush 122 is formed by arranging a plurality of flexible metal wires in parallel. Both ends of the flexible metal wire are defined as a fixed end and a free end, respectively.
  • the fixed end of the flexible metal wire is fixed directly or indirectly on the corresponding core portion 1211, while the free end of the flexible metal wire has elasticity with the fixed end as a fulcrum. It can oscillate and does not damage the element (for example, the magnetic pole end 2211 of the magnet 221 described below) with which it can come into contact.
  • the rotor module 2 is rotatably installed in the flow passage 113 of the casing 11. Moreover, the rotor module 2 includes one rotating part 21 that rotates about the axis L and one first magnetic module 22 that is installed on the rotating part 21. Among them, the rotating part 21 includes one column body 211 and one spiral blade 212 connected to the outer edge of the column body 211. Both ends of the column body 211 are pivoted at the centers of both support portions 112 of the casing 11. In the present embodiment, the center line of the column body 211 overlaps the axis L.
  • the edge of the spiral blade 212 is formed by indenting at least one storage tank 2121 (the radial direction is parallel to the center line C) along one radial direction of the vertical axis L. Further, the distance of the edge of the spiral blade 212 to the axis L is larger than the minimum distance to the axis L of the flexible magnetic guide brush 122 (that is, the distance between the free end of the flexible metal wire and the axis L).
  • the rotating part 21 shown in FIG. 3 is an example in which the spiral blade 212 is independently formed on the column 211, but this embodiment can also be adjusted and changed according to demand.
  • the rotating part 21 of the present embodiment can form a number of spiral blades 212 on the column body 211, and all the spiral blades 212 can be formed.
  • the storage tank 2121 can be formed on a specific position according to a designer's request.
  • the corresponding first magnetic force module 22 is provided for installation.
  • the rotating part 21 is exemplified by the installation of the spiral blade 212.
  • the rotating part 21 may be a non-spiral blade (not shown) such as a fan blade or a conventional generator or It is not excluded to adopt a disk cage (not shown) like a motor.
  • the first magnetic module 22 includes two permanent magnets 221 (for example: magnets), one long bowl-shaped magnetic conductor 222 (for example: metal material, silicon steel plate, or iron block), and Both position adjustment units 223 are included.
  • the both position adjusting units 223 are respectively installed in the two storage tanks 2121.
  • the two magnets 221 are located in the two storage tanks 2121, respectively, and are installed on the two position adjusting units 223.
  • the magnetic conductor 222 is embedded in the spiral blade 212, and both the magnets 221 are in contact with opposite ends of the magnetic conductor 222. Further, the opposite edges of the magnetic conductor 222 are relatively well cut off at the edges of the magnets 221 that are far away from each other, so that the magnetic force can be completely transmitted.
  • the present invention is not limited to this.
  • both the magnets 221 far away from the column 211 are defined as both magnetic pole ends 2211, respectively.
  • the first magnetic module 22 can generate different magnetic forces through the magnetic pole ends 2211 (for example: the top side of the left magnet 221 in FIG. The top side is the S pole).
  • the magnetic force generated by one of the magnets 221 can be transmitted through the magnetic conductor 222 to the other magnet 221 therein.
  • all the position adjusting units 223 include one spring 2231, one fixed frame 2232, and one active frame 2233. However, it is not excluded even if it is replaced with a partial element or other member. Further, the spring 2231 may be replaced with a compression spring, an extension spring, or another recoverable member.
  • the fixed frame 2232 and the active frame 2233 each have one tubular portion. 2232a, 2233a and one side wing portion 2232b, 2233b extending vertically outward from the edge of each of the tubular portions 2232a, 2233a.
  • the fixed frame 2232 is fixed to the top of the storage tank 2121 by its side wings 2232b (for example: Helisert coil screw), and a gap G is separated between the outer surface of the tubular part 2232a and the side wall of the storage tank 2121.
  • the magnet 221 is attached to the inside of the tubular portion 2233a of the active framework 2233.
  • the tubular portion 2233a of the active framework 2233 is movably installed in the tubular portion 2233a of the fixed framework 2232.
  • the side wing 2233b of the active framework 2233 is provided adjacent to the bottom of the storage tank 2121. Thereby, through the above installation, the active framework 2233 has only one degree of freedom corresponding to the fixed framework 2232.
  • the spring 2231 is installed in a gap G formed between the outer surface of the tubular portion 2232 a of the fixed frame 2232 and the side wall of the storage tank 2121. Further, opposite ends of the spring 2231 (for example, the top end and the bottom end of the spring 2231 in FIG. 5) are in contact with the side wing portion 2232 b of the fixed frame 2232 and the side wing portion 2233 b of the active frame 2233, respectively. Accordingly, the spring 2231 can be deformed when the magnet 221 is moved under a force (for example, a centrifugal force described below). The deformed spring 2231 tends to return the magnet 221 (or the active framework 2233) to the position before the displacement. As a result, the active frame 2233 reciprocates with respect to the fixed frame 2232 (or the magnetic conductor 222) through the centrifugal force and the force applied by the spring 2231.
  • a force for example, a centrifugal force described below
  • stator module 1 and the rotor module 2 of this embodiment The above is described for the structure of the stator module 1 and the rotor module 2 of this embodiment. The following will continue to introduce the operating principle between the stator module 1 and the rotor module 2 and the relative relationship between them.
  • the magnet 221 and the active framework 2233 are all located on the groove bottom of the storage tank 2121. At this time, the rotating part 21 of the magnet 221 is positioned.
  • the position relative to (or the storage tank 2121) is defined as the first position (as shown in FIG. 5).
  • the second position where each of the magnets 221 is located is far from the groove bottom of the storage tank 2121 but protrudes from the edge of the rotating part 21 (that is, the inlet of the groove of the storage tank 2121). There is no position.
  • the tubular portion 2233a of the active frame 2233 is guided through the tubular portion 2232a of the fixed frame 2232, whereby the magnet 221 in the tubular portion 2233a of the active frame 2233 is guided.
  • a linear motion can be performed with respect to the storage tank 2121.
  • both the magnets 221 and the active framework 2233 are all held in the second position. That is, both the magnets 221 and the inner edge of the flow pipe 111 of the casing 11 are held at the closest distance.
  • both the magnetic pole ends 2211 of the first magnetic module 22 are respectively in the radial direction and one of the first magnetic guide units 121 therein.
  • the two core portions (as shown in FIG. 6, the center lines C of the core portions 1211 pass through the magnets 2213, respectively, when they are in a predetermined position).
  • the magnets 221 come into contact with the flexible magnetic guide brush 122 and further advance, so that the magnets 221 pass through the flexible magnetic guide brush 122 to the cores 1211. To communicate. As a result, an induced current is generated in the coil 1212 wound around the cores 1211 to generate power.
  • both magnetic pole ends 2211 of the first magnetic module 22 are arranged in the radial direction.
  • the magnetic force generated from the extreme 2211 is the first magnetic module 22 (that is, both the magnets 221 and the magnetic conductor 222), the flexible magnetic guide brush 122, and the first magnetic guide unit 121 (that is, both the core portion 1211 and the guide part 1213). )
  • the first magnetic guide module 12 includes a plurality of first magnetic guide units 121, when the rotor module 2 rotates about the axis L, the first magnetic force The module 22 sequentially goes toward the first magnetic guide unit 121, and the magnetic force generated through the magnetic pole ends 2211 passes along the first magnetic module 22 and the first magnetic guide unit 121 facing the first magnetic guide unit 121. A magnetic loop F is formed.
  • the magnet 221 transmits the magnetic force to the core portion 1211 of the first magnetic guide unit 121 through the flexible magnetic guide brush 122, and thus between the core portion 1211 corresponding to the magnetic pole end 2211 of the magnet 221.
  • the transmission of magnetic force becomes 0 gap, and thereby, the effect of raising the transmission of magnetic force can be achieved.
  • the problem that the magnet 221 or the spiral blade 212 collides with the core portion 1211 due to an inappropriate design of the gap is avoided.
  • the power generation device 100 When the rotor module 2 can rotate relative to the stator module 1, the power generation device 100 generates power with a magnetic loop F configured by the first magnetic module 22 and the first magnetic guide unit 121. Reach the effect of raising the amount. And the quantity of the 1st magnetic guide unit 121 can be increased according to a demand, and electric power generation amount can be raised further.
  • the rotational speed of the rotating part 21 gradually decreases and rotates until the speed stops.
  • the centrifugal force is smaller than the recovery force, and the spring 2231 gradually releases the recovery force at the same time, and thus the side wing portion 2232b of the fixed frame 2232 and the side wing portion 2233b of the active frame 2233 are pushed forward.
  • the magnet 221 fixed to the active framework 2233 is driven to move from the second position to the first position.
  • the stator module 1 of this embodiment can be provided with the second magnetic guide module 13 in the casing 11, and the second magnetic guide module 13 includes a plurality of second magnetic guide modules 13. Two magnetic guide units 131 may be included.
  • the second magnetic module 23 can be installed on the spiral blade 212 of the rotating part 21. Among them, the structure and installation principle of the second magnetic guide module 13 and the second magnetic module 23 are almost the same as those of the first magnetic guide module 12 and the first magnetic module 22 described above. The second magnetic module 23 will not be described in detail.
  • the position, quantity, and shape of the spring 2231 in the position adjustment unit 223 can also be adjusted according to the designer's demand.
  • the first magnetic module 22 includes only one positioning unit 223.
  • the magnets 221, the magnetic conductor 222, and the position adjustment unit 223 of the first magnetic module 22 are all installed in the same storage tank 2121.
  • the magnets 221 are in contact with opposite ends of the magnetic conductor 222.
  • the spring 2231 can be a substantially C-shaped or U-shaped plate (not shown), which is similar to a leaf spring.
  • the central portion of the plate-shaped spring 2231 is fixed to the bottom of the groove of the storage tank 2121, and both ends of the plate-shaped spring 2231 are in contact with (attached to) the lower surface of the magnetic conductor 222 below the magnets 221. ), Thereby providing a corresponding restoring force between the magnet 221 and the magnetic conductor 222.
  • FIG. 9 to 11 show a second embodiment of the present invention.
  • the present embodiment is generally similar to the above embodiment, and the description of the same portion is omitted.
  • the main difference between the two is the guide part 1213 of the first magnetic guide module 12.
  • the first magnetic guide module 12 includes one guide part 1213. That is, one of the first magnetic guide units 121 includes the guide part 1213.
  • the other first magnetic guide unit 121 simply includes a core portion 1211 and a coil 1212.
  • the guide part 1213 is installed in the casing 11 and includes a circular magnetic guide ring 1213a and at least one magnetic guide connection portion 1213b for connecting the magnetic guide rings 1213a.
  • a plurality of the magnetic guide connecting portions 1213b are exemplified.
  • both the cores 1211 of all the first magnetic guide units 121 are positioned inside the magnetic guide rings 1213a, respectively, and both the cores 1211 of all the first magnetic guide units 121 are respectively
  • the magnets 221 of the first magnetic force module 22 are in phase connection with both the magnetic guide rings 1213a, and are located within the space surrounded by the magnetic guide rings 1213a.
  • the magnetic force generated from the magnet 221 causes one core portion 1211 of all the first magnetic guide units 121, one magnetic guide ring 1213a therein, the adjacent magnetic guide connection portion 1213b, and the other one of them.
  • One magnetic guide ring 1213a is transmitted in order to another core portion 1211 therein. That is, the magnetic force passes along the first magnetic force module 22, the core portions 1211 of all the first magnetic guide units 121, and the guide parts 1213, thereby forming one magnetic loop F.
  • the outer surface of the guide part 1213 does not protrude from the outer surface of the casing 11. That is, in this embodiment, the outer surface of the guide part 1213 is roughly cut into the outer surface of the casing 11.
  • the present invention is not limited to this.
  • the guide part 1213 can be buried in the casing 11 (not shown) or can be protruded from the casing 11 (not shown).
  • the guide part 1213 of the first magnetic guide module 12 has been described as an example.
  • the guide part 1213 (not shown) of the second magnetic guide module 13 is also of the first magnetic guide module 12. A structure similar to that of the guide part 1213 can also be formed.
  • the magnetic guide ring 1213a and the core part 1211 connected to each other are integrally molded or separated and can be joined together. And it is formed by stacking along the direction of the parallel axis L using a plurality of metal plates 1214 (for example: silicon steel plate, iron plate). That is, the circular ring-shaped portion 1214a of the metal plate 1214 is stacked on each other to form the magnetic guide ring 1213a, and the T-shaped protrusion connected to the ring-shaped portion 1214a in the metal plate 1214 is formed.
  • the core portions 1211 are configured by stacking the portions 1214b that are present.
  • the magnetic guide connecting portion 1213b can also be formed by stacking a plurality of metal plates (not shown), but there is no particular limitation here.
  • the guide part 1213 of the present embodiment is more easily coupled to the casing 11 when manufacturing the guide part 1213, thereby simplifying the processing difficulty and assembly complexity of the stator module 1. To further advance production and production.
  • the magnetic pole ends of the first magnetic module are each of the core portion along the radial direction.
  • the free magnetic end of the upper flexible magnetic guide brush is substantially in contact with it, and the magnetic force generated from the magnet is transmitted to the core through the flexible magnetic guide brush.
  • SYMBOLS 100 Power generator 1 Stator module 11 Casing 111 Flow pipe 112 Support part 113 Flow path 12 First magnetic guide module 121 First magnetic guide unit 1211 Core part 1212 Coil 1213 Guide part 1213a Magnetic guide ring 1213b Connection part 1214 Metal plate 1214a Ring shape Part 1214b Protruding part 122 Flexible magnetic guide brush 13 Second magnetic guide module 131 Second magnetic guide unit 2 Rotor module 21 Rotating part 211 Column 212 Spiral blade 2121 Storage tank 22 First magnetic module 221 Magnet 2211 Magnetic pole end 222 Magnetic conductor 223 Position adjustment unit 2231 Spring 2232 Fixed frame 2232a Tubular part 2232b Side wing part 2233 Active frame 2233a Tubular part 233b side wing portion 23 second magnetic module L axis C centerline G gap F magnetic loops

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

A type of power generation device equipped with a stator module and a rotor module. The stator module has a casing and a first magnetic guide module. The first magnetic guide module has core parts, coils wound around the core parts, and flexible magnetic guide brushes attached to the core parts. The rotor module has a rotating part rotatably arranged within the casing, and first magnetic modules attached to the rotating part. The first magnetic modules are equipped with magnetic pole ends. When the rotor module has rotated to a predetermined position the magnetic pole ends of the first magnetic modules face the core parts and make contact with the flexible magnetic guide brushes, and the magnetic force emitted through the magnetic pole ends is able to pass through the flexible magnetic guide brushes and transfer to the core parts.

Description

発電装置及びステーターモジュールPower generation device and stator module
 本発明は発電装置に関し、特に大きい発電量を提供することができる発電装置とステーターモジュールに関する。 The present invention relates to a power generation device, and particularly to a power generation device and a stator module that can provide a large amount of power generation.
 従来の発電装置(例えば:モーターあるいは発電機)の大部分は回転子モジュールとステーターモジュールを含んでいる。かつより高い発電量を備える為、従来の発電装置は全て回転子モジュールとステーターモジュールの間の隙間を縮小する傾向がある。しかしながら、回転子モジュールとステーターモジュールの間の隙間を縮小すると、回転子モジュールとステーターモジュールの衝突が容易に発生する恐れが生じるだけではなく、従来の発電装置の構成では、回転子モジュールとステーターモジュールの間を0隙間(隙間なし)にすることはできない。この点を鑑みて、如何にして発電装置の要素が衝突しない前提の下で、回転子モジュールとステーターモジュールの間の隙間を極小化(例えば:除去)して、もっと大きい発電量を発生させるかが、本領域の重視する課題の中の一つになった。 Most of the conventional power generators (for example: motors or generators) include a rotor module and a stator module. In addition, since the power generation amount is higher, all the conventional power generation devices tend to reduce the gap between the rotor module and the stator module. However, when the gap between the rotor module and the stator module is reduced, not only does the collision between the rotor module and the stator module easily occur, but in the configuration of the conventional power generator, the rotor module and the stator module It is not possible to have a gap of 0 (no gap). In view of this point, how to generate a larger amount of power generation by minimizing (for example: removing) the gap between the rotor module and the stator module under the assumption that the elements of the power generation device do not collide However, it became one of the issues that this area emphasizes.
 そこで、本発明者は上記した欠点を改善する余地があると考えて、特に専念して研究し、そして学術的な原理を運用して、ついに合理的にしかも効果的に上記の欠点を改善する事が出来る本発明を創作した。 Therefore, the present inventor considers that there is room for improvement of the above-mentioned drawbacks, particularly researches, and uses academic principles to finally improve the above-mentioned drawbacks reasonably and effectively. Created the present invention that can do things.
特開2013-151929号公報JP 2013-151929 A
 本発明は、一つの発電装置とステーターモジュールを提供するものであって、それは有効に従来の発電装置が有する欠点を改善することができる。 The present invention provides a single power generation device and a stator module, which can effectively improve the disadvantages of the conventional power generation device.
 本発明は、一種の発電装置を提供するのにあって、それはステーターモジュール、および回転子モジュールを具備し、上記ステーターモジュールは、ケーシングおよび第一磁気ガイドモジュールを有し、上記ケーシング内に軸線があると定義し、上記第一磁気ガイドモジュールは第一磁気ガイドユニットと柔軟性磁気ガイドブラシを備え、上記第一磁気ガイドユニットは、上記ケーシングに設置しており、そして前記第一磁気ガイドユニットは少なくとも一つの芯部と上記芯部に巻き付いている一つのコイルを有し、上記柔軟性磁気ガイドブラシは上記ケーシングの内側に位置している芯部に設置され、一方上記回転子モジュールは、回転可能に上記ケーシング内に配置し、かつ、上記回転子モジュールは、ローテーチングパーツ、および第一磁力モジュールを有し、上記ローテーチングパーツは上記軸線を軸心として回転し、上記第一磁力モジュールは、上記ローテーチングパーツの上に取り付けられており、上記第一磁力モジュールは少なくとも磁力を発生する一磁極端を有しており、その中、上記回転子モジュールは、上記軸線を軸心として回転してある予定の位置までに達した時、上記第一磁力モジュールの磁極端は上記軸線方向に垂直な方向の一径方向に沿って上記芯部に向かいあい、そして上記柔軟性磁気ガイドブラシと相当接し、以って上記磁極端を通じて出した磁力が柔軟性磁気ガイドブラシに沿って通過し、上記第一磁気ガイドユニットまでに伝達する事が出来る。 The present invention provides a kind of power generation device, which includes a stator module and a rotor module, and the stator module includes a casing and a first magnetic guide module, and an axis is provided in the casing. The first magnetic guide module comprises a first magnetic guide unit and a flexible magnetic guide brush, the first magnetic guide unit is installed in the casing, and the first magnetic guide unit is The flexible magnetic guide brush has at least one core and one coil wound around the core, and the flexible magnetic guide brush is installed on the core located inside the casing, while the rotor module rotates Possible in the casing, and the rotor module comprises a rotating part, and The rotating part is rotated about the axis, the first magnetic module is mounted on the rotating part, and the first magnetic module generates at least a magnetic force. A magnetic pole end of the first magnetic module when the rotor module reaches a predetermined position rotated about the axis. Facing the core along a radial direction perpendicular to the core and substantially contacting the flexible magnetic guide brush, so that the magnetic force generated through the magnetic pole tip passes along the flexible magnetic guide brush. Can be transmitted to the first magnetic guide unit.
 本発明のもう一つは、一種のステーターモジュールを提供するのにあって、それはケーシング、および第一磁気ガイドモジュールを有し、上記ケーシングにはその内側に一つの軸線が有ると定義し、上記第一磁気ガイドモジュールは、第一磁気ガイドユニット、および柔軟性磁気ガイドブラシを備え、上記第一磁気ガイドユニットは、上記ケーシングに設置され、そして上記第一磁気ガイドユニットは少なくとも一つの芯部と上記芯部に巻き付いている一つのコイルを有し、上記柔軟性磁気ガイドブラシは上記ケーシングの内側に位置している芯部に設置されている。 Another aspect of the present invention is to provide a kind of stator module, which has a casing and a first magnetic guide module, the casing having one axis on the inside thereof, The first magnetic guide module includes a first magnetic guide unit and a flexible magnetic guide brush, the first magnetic guide unit is installed in the casing, and the first magnetic guide unit has at least one core portion. The flexible magnetic guide brush has one coil wound around the core, and the flexible magnetic guide brush is installed in the core located inside the casing.
 上記したように、本発明が提供する発電装置とステーターモジュールは、その回転子モジュールがある予定の位置までに回転してきた時、第一磁力モジュールの磁極端は径方向に沿ってそれぞれ芯部の上の柔軟性磁気ガイドブラシの自由端と相当接し、これにより柔軟性磁気ガイドブラシを通じて磁極端から出した磁力が芯部までに伝達し、更に進んで磁極端と相対応する芯部の間の磁力の伝送が0隙間になって、磁力の伝達と発電量の引き上げ効果を達することが出来、かつ磁極端あるいはローテーチングパーツが、隙間の設計の不当により、芯部に衝突するという問題が発生するのを免れる。 As described above, when the power generation device and the stator module provided by the present invention are rotated to a position where the rotor module is scheduled, the magnetic pole ends of the first magnetic module are respectively in the radial direction along the core. It is in substantial contact with the free end of the upper flexible magnetic guide brush, whereby the magnetic force generated from the magnetic pole tip is transmitted to the core through the flexible magnetic guide brush, and further advances between the corresponding magnetic core end and the corresponding core portion. There is a problem that the transmission of magnetic force becomes zero gap, which can achieve the effect of transmission of magnetic force and raising power generation amount, and the magnetic pole end or rotating part collides with the core part due to improper design of the gap Escape from doing.
 本発明の特徴と技術の内容を更に理解するため、下記の本発明の詳しい説明と図面を参照していただきたい。しかし、これらの説明と図面はただ本発明を説明するのに用いるだけで、本発明の権利の範囲に対していかなる制限を行うものではない。 For further understanding of the features and technical contents of the present invention, please refer to the following detailed description and drawings of the present invention. However, these descriptions and drawings are merely used to explain the present invention and do not limit the scope of the right of the present invention.
本発明の発電装置の立体説明図である。It is a three-dimensional explanatory drawing of the power generator of the present invention. 図1の平面説明図である。FIG. 2 is an explanatory plan view of FIG. 1. 図1の局部的断面説明図である(ケーシングの部位だけ切断面とする)。FIG. 2 is a partial cross-sectional explanatory view of FIG. 1 (only a portion of the casing is a cut surface). 本発明の発電装置のもう一つの回転子モジュールの立体説明図である。It is a three-dimensional explanatory drawing of another rotor module of the power generator of the present invention. 図2のV-V断面線に沿って局部的に切断して見た説明図である。FIG. 5 is an explanatory diagram viewed by being cut locally along the line VV in FIG. 2. 図5の作動説明図である。FIG. 6 is an operation explanatory diagram of FIG. 5. もう一つの第一磁力モジュールを用いた本発明の発電装置の説明図である。It is explanatory drawing of the electric power generating apparatus of this invention using another 1st magnetic force module. 図7の作動説明図である。FIG. 8 is an operation explanatory diagram of FIG. 7. 本発明の発電装置の第二実施例の平面説明図である。It is a plane explanatory view of the 2nd example of the power generator of the present invention. 図9のX-X断面線に沿って局部的に切断して見た説明図である。FIG. 10 is an explanatory diagram viewed by being cut locally along the line XX in FIG. 9. 本発明の発電装置の第二実施例の磁気ガイドリングおよび芯部のもう一つの実施状態の説明図である。It is explanatory drawing of another implementation state of the magnetic guide ring and core part of 2nd Example of the electric power generating apparatus of this invention.
 図1から図8は本発明の第1実施例を示している。先に説明しなければならないのは、本実施例では図面を話題にした関連の数量と外形に対応して、具体的に本発明の実施方法を説明するだけで、以って、その内容をよく理解し、しかし、それによって、本発明の権利の範囲を限定されるものではない。 1 to 8 show a first embodiment of the present invention. In this embodiment, it is necessary to explain the implementation method of the present invention concretely in correspondence with the related quantities and outlines that are discussed in the drawing. It is well understood, but does not limit the scope of the rights of the present invention.
 図1から図3までに示した通り、本実施例は一種の発電装置100であり、本実施例の発電装置100をより理解するため、下記流体(例えば:風力)の発電装置を例にして説明をするが、しかし此れには限られない。つまり、本実施例の発電装置100は決して発電機やモーターに応用するのを排除していない。その中、上記発電装置100は一つのステーターモジュール1、および上記ステーターモジュール1内に取り付けられている一つの回転子モジュール2を含む。そして回転子モジュール2はステーターモジュール1に対して回転することができる。これにより、発電装置100が電力を発生する。以下、先ずそれぞれステーターモジュール1と回転子モジュール2の構造について説明し、しかる後ステーターモジュール1と回転子モジュール2の間の対応関係を説明する。 As shown in FIGS. 1 to 3, this embodiment is a kind of power generation device 100, and in order to better understand the power generation device 100 of this embodiment, a power generation device of the following fluid (for example, wind power) is taken as an example. Explain, but not limited to this. That is, the power generation apparatus 100 of the present embodiment never excludes application to a generator or a motor. Among them, the power generation apparatus 100 includes one stator module 1 and one rotor module 2 attached in the stator module 1. The rotor module 2 can rotate with respect to the stator module 1. Thereby, the power generator 100 generates electric power. Hereinafter, the structures of the stator module 1 and the rotor module 2 will be described first, and then the correspondence between the stator module 1 and the rotor module 2 will be described.
 図2と図3に示すように、上記ステーターモジュール1は、一つのケーシング11およびケーシング11の上に設置されている一つの第一磁気ガイドモジュール12を含む。上記ケーシング11は細長い形状の一つの流通管111および両支持部112を含む。その中、本実施例において、上記流通管111は、内径が一定の円管であって、かつ流通管111によって包囲された一つの流動通路113がある。更に、上記流通管111は流動通路113に一つの軸線Lが通過すると定義する。かつ上記軸線Lは本実施例においては、流通管111のセンターラインに相当するが、しかし、本発明は此れには限定されない。上記両支持部112はそれぞれ流通管111の相反する両側の部位内に設置している(例えば図1の中の流通管111の左側と右側)。かつすべての支持部112の構造は流体(例えば:風)をその流動通路113に流入、流出するのに適する。 2 and 3, the stator module 1 includes a casing 11 and a first magnetic guide module 12 installed on the casing 11. As shown in FIG. The casing 11 includes one elongated flow pipe 111 and both support portions 112. Among them, in the present embodiment, the flow pipe 111 is a circular pipe having a constant inner diameter, and has one flow passage 113 surrounded by the flow pipe 111. Further, the flow pipe 111 is defined as one axis L passing through the flow passage 113. The axis L corresponds to the center line of the flow pipe 111 in the present embodiment, but the present invention is not limited to this. Both the support portions 112 are installed in opposite sides of the flow pipe 111 (for example, the left and right sides of the flow pipe 111 in FIG. 1). The structure of all the support portions 112 is suitable for flowing a fluid (for example, wind) into and out of the flow passage 113.
 上記第一磁気ガイドモジュール12は数個の第一磁気ガイドユニット121、および数個の柔軟性磁気ガイドブラシ122を含む。これ等第一磁気ガイドユニット121はケーシング11の流通管111の上に分布している、そして、第一磁気ガイドユニット121がケーシング11に分布した数量と密度に関しては、設計者の需要によって調整することができるが、此処では特に制限を加えない。 The first magnetic guide module 12 includes several first magnetic guide units 121 and several flexible magnetic guide brushes 122. These first magnetic guide units 121 are distributed on the flow pipe 111 of the casing 11, and the quantity and density of the first magnetic guide units 121 distributed in the casing 11 are adjusted according to the demand of the designer. However, there are no particular restrictions here.
 更に一歩進めて言うと、全ての第一磁気ガイドユニット121は、両金属の芯部1211、それぞれ上記両芯部1211に巻き付いている両コイル1212、および、上記両芯部1211と繋がっている一つのガイドパーツ1213(例えば:金属材料、ケイ素鋼板、あるいは鉄板)を含む。その中、上記両芯部1211とガイドパーツ1213の間は一体の接続、或いは分離して接続することができる。かつ全ての第一磁気ガイドユニット121はその芯部1211を通じてケーシング11の流通管111に固定することができて、そして上記すべての芯部1211の中心軸は大体上記軸線Lに直交する一つのセンターラインC上にあると定義することができる。 To put it one step further, all the first magnetic guide units 121 are connected to the core portions 1211 of both metals, the coils 1212 wound around the core portions 1211, and the core portions 1211, respectively. One guide part 1213 (for example: metal material, silicon steel plate, or iron plate) is included. Among them, the two core portions 1211 and the guide parts 1213 can be integrally connected or separated. In addition, all the first magnetic guide units 121 can be fixed to the flow pipe 111 of the casing 11 through the core portion 1211, and the central axis of all the core portions 1211 is one center which is substantially orthogonal to the axis L. It can be defined to be on line C.
 上記柔軟性磁気ガイドブラシ122の数量は大体第一磁気ガイドモジュール12の中の芯部1211の数量に等しく、以ってすべての芯部1211に一つずつの柔軟性磁気ガイドブラシ122を設置している。即ち、それ等柔軟性磁気ガイドブラシ122はそれぞれケーシング11の流通管111から離れるように芯部1211の末端の上に取り付けられ、かつ柔軟性磁気ガイドブラシ122は流動通路113内に位置している。その中、本実施例において、上記柔軟性磁気ガイドブラシ122は複数個の柔軟性金属線を並設して形成されている。上記柔軟性金属線の両端はそれぞれ固定端と自由端と定義する。そしてそれ等柔軟性金属線の固定端は直接あるいは間接的に対応する芯部1211の上に固定され、一方それ等柔軟性金属線の自由端はその固定端を支点として弾力性を有して揺動することができ、しかもそれが接触している要素(例えば:下記磁石221の磁極端2211)を傷つけない。 The number of the flexible magnetic guide brushes 122 is approximately equal to the number of the core portions 1211 in the first magnetic guide module 12, so that one flexible magnetic guide brush 122 is installed in every core portion 1211. ing. That is, each of the flexible magnetic guide brushes 122 is mounted on the end of the core portion 1211 so as to be separated from the flow pipe 111 of the casing 11, and the flexible magnetic guide brush 122 is located in the flow passage 113. . Among them, in this embodiment, the flexible magnetic guide brush 122 is formed by arranging a plurality of flexible metal wires in parallel. Both ends of the flexible metal wire are defined as a fixed end and a free end, respectively. The fixed end of the flexible metal wire is fixed directly or indirectly on the corresponding core portion 1211, while the free end of the flexible metal wire has elasticity with the fixed end as a fulcrum. It can oscillate and does not damage the element (for example, the magnetic pole end 2211 of the magnet 221 described below) with which it can come into contact.
 図2と図3に示すように、上記回転子モジュール2は回転可能にケーシング11の流動通路113内に設置している。しかも回転子モジュール2は上記軸線Lを軸心に回転する一つのローテーチングパーツ21、およびローテーチングパーツ21に架設されている一つの第一磁力モジュール22を含む。その中、上記ローテーチングパーツ21は、一つの柱体211、および柱体211の外縁に連結している一つの螺旋式羽根212を含む。上記柱体211の両端はそれぞれケーシング11の両支持部112の中心に枢設されている。かつ本実施例において柱体211のセンターラインは上記の軸線Lと重なっている。上記螺旋式羽根212のへりが垂直の軸線Lの一つの径方向に沿って少なくとも一つの貯蓄タンク2121(上記の径方向は上記センターラインCに平行している)をへこんで形成している。更に、螺旋式羽根212のへりの前記軸線Lに対する距離は、柔軟性磁気ガイドブラシ122の軸線Lに対する最小距離(即ち、それ等柔軟性金属線の自由端と軸線Lの距離)より大きい。 As shown in FIGS. 2 and 3, the rotor module 2 is rotatably installed in the flow passage 113 of the casing 11. Moreover, the rotor module 2 includes one rotating part 21 that rotates about the axis L and one first magnetic module 22 that is installed on the rotating part 21. Among them, the rotating part 21 includes one column body 211 and one spiral blade 212 connected to the outer edge of the column body 211. Both ends of the column body 211 are pivoted at the centers of both support portions 112 of the casing 11. In the present embodiment, the center line of the column body 211 overlaps the axis L. The edge of the spiral blade 212 is formed by indenting at least one storage tank 2121 (the radial direction is parallel to the center line C) along one radial direction of the vertical axis L. Further, the distance of the edge of the spiral blade 212 to the axis L is larger than the minimum distance to the axis L of the flexible magnetic guide brush 122 (that is, the distance between the free end of the flexible metal wire and the axis L).
 此の外、図3に示したローテーチングパーツ21は、柱体211の上に螺旋式羽根212を単独に形成した例であるが、しかし本実施例おいても需要に従って調整変化することができる。例えば、図4に示したように、本実施例のローテーチングパーツ21は、その柱体211の上に多数の螺旋式の羽根212を形成することができて、かつすべての螺旋式の羽根212は、設計者の要求によって貯蓄タンク2121を特定の位置の上に形成することができる。以って相対応する第一磁力モジュール22の設置に提供する。それに、上記ローテーチングパーツ21は螺旋式羽根212が設置されているのを例にしたが、ローテーチングパーツ21を扇風機の羽根の様な非螺旋式の羽根(図略)或いは従来の発電機又はモーターの様な円盤 (図略)を採用することも排除しない。 In addition to this, the rotating part 21 shown in FIG. 3 is an example in which the spiral blade 212 is independently formed on the column 211, but this embodiment can also be adjusted and changed according to demand. . For example, as shown in FIG. 4, the rotating part 21 of the present embodiment can form a number of spiral blades 212 on the column body 211, and all the spiral blades 212 can be formed. The storage tank 2121 can be formed on a specific position according to a designer's request. Thus, the corresponding first magnetic force module 22 is provided for installation. In addition, the rotating part 21 is exemplified by the installation of the spiral blade 212. However, the rotating part 21 may be a non-spiral blade (not shown) such as a fan blade or a conventional generator or It is not excluded to adopt a disk cage (not shown) like a motor.
 図5に示すように、上記第一磁力モジュール22は二つの永久磁石221(例えば:磁石)と、一つの長い條状の磁気導体222(例えば:金属材料、ケイ素鋼板、あるいは鉄ブロック)、および両位置調整ユニット223を含む。その中、上記両位置調整ユニット223はそれぞれ上記両貯蓄タンク2121内に架設されている。かつ上記両磁石221はそれぞれ両貯蓄タンク2121内に位置し、そして、それぞれ上記両位置調整ユニット223に架設されている。上記磁気導体222は螺旋式羽根212に埋設されていて、かつ上記両磁石221はそれぞれ磁気導体222の相反する両端部に当接している。更に、上記磁気導体222の相反する両端の縁は、それぞれ上記両磁石221の互いに遠く離れる側の縁で揃って切るのが比較的良くて、以って、磁力を完全に伝えることができる。しかし本発明は此れには限定されない。 As shown in FIG. 5, the first magnetic module 22 includes two permanent magnets 221 (for example: magnets), one long bowl-shaped magnetic conductor 222 (for example: metal material, silicon steel plate, or iron block), and Both position adjustment units 223 are included. Among them, the both position adjusting units 223 are respectively installed in the two storage tanks 2121. The two magnets 221 are located in the two storage tanks 2121, respectively, and are installed on the two position adjusting units 223. The magnetic conductor 222 is embedded in the spiral blade 212, and both the magnets 221 are in contact with opposite ends of the magnetic conductor 222. Further, the opposite edges of the magnetic conductor 222 are relatively well cut off at the edges of the magnets 221 that are far away from each other, so that the magnetic force can be completely transmitted. However, the present invention is not limited to this.
 説明しなければならないのは、柱体211から遠く離れた上記両磁石221はそれぞれ両磁極端2211と定義する。かつ、第一磁力モジュール22は上記両磁極端2211を通じてそれぞれ磁性の違う磁力を発生することができる(例えば:図5の中の左側の磁石221のトップ側はN極で、右側の磁石221のトップ側はS極である)。しかも、上記その中の一磁石221が発生した磁力は上記磁気導体222を通じて、その中のもう一つの磁石221まで伝えることができる。 It should be explained that both the magnets 221 far away from the column 211 are defined as both magnetic pole ends 2211, respectively. The first magnetic module 22 can generate different magnetic forces through the magnetic pole ends 2211 (for example: the top side of the left magnet 221 in FIG. The top side is the S pole). In addition, the magnetic force generated by one of the magnets 221 can be transmitted through the magnetic conductor 222 to the other magnet 221 therein.
 その中、本実施例において、上記すべての位置調整ユニット223は一つのバネ2231、一つの固定骨組み2232、および一つの活動骨組み2233を含む。しかし部分の要素あるいはその他の部材に取り代わっても排除しない。更に、上記バネ2231は圧縮バネ、あるいは引き伸ばしバネ、あるいは、又、その他回復性のある部材に取り代わっても良い。 Among them, in the present embodiment, all the position adjusting units 223 include one spring 2231, one fixed frame 2232, and one active frame 2233. However, it is not excluded even if it is replaced with a partial element or other member. Further, the spring 2231 may be replaced with a compression spring, an extension spring, or another recoverable member.
 更に詳しく言うと、その中の一つの磁石221、及びその対応した位置調整ユニット223から見ると(図5と図6のように)、上記固定骨組み2232、および活動骨組み2233はそれぞれ一つの管状部2232a、2233a、およびそれぞれ上記管状部2232a、2233a端の縁から外へ垂直に延びる一つの側翼部2232b、2233bを備えている。上記固定骨組み2232はその側翼部2232bで貯蓄タンク2121のてっぺんに固定され(例えば:ヘリサートコイルネジ)、かつその管状部2232aの外表面と貯蓄タンク2121の側壁の間に一つの隙間Gが隔てている。上記活動骨組み2233の管状部2233aの内側には上記の磁石221が取り付けられている。かつ活動骨組み2233の管状部2233aは移動可能に固定骨組み2232の管状部2233a内に設置されている。そして活動骨組み2233の側翼部2233bは貯蓄タンク2121のタンクの底に隣設されている。これにより、上記の設置を通じて、活動骨組み2233は固定骨組み2232に対応してただ一つの自由度がある。 More specifically, when viewed from one of the magnets 221 and the corresponding position adjustment unit 223 (as shown in FIGS. 5 and 6), the fixed frame 2232 and the active frame 2233 each have one tubular portion. 2232a, 2233a and one side wing portion 2232b, 2233b extending vertically outward from the edge of each of the tubular portions 2232a, 2233a. The fixed frame 2232 is fixed to the top of the storage tank 2121 by its side wings 2232b (for example: Helisert coil screw), and a gap G is separated between the outer surface of the tubular part 2232a and the side wall of the storage tank 2121. Yes. The magnet 221 is attached to the inside of the tubular portion 2233a of the active framework 2233. The tubular portion 2233a of the active framework 2233 is movably installed in the tubular portion 2233a of the fixed framework 2232. The side wing 2233b of the active framework 2233 is provided adjacent to the bottom of the storage tank 2121. Thereby, through the above installation, the active framework 2233 has only one degree of freedom corresponding to the fixed framework 2232.
 更に、上記バネ2231は固定骨組み2232の管状部2232aの外表面と貯蓄タンク2121の側壁の間に形成した隙間Gに設置されている。かつバネ2231の相反する両端(例えば、図5の中のバネ2231の頂端と底端)は、それぞれ固定骨組み2232の側翼部2232bと活動骨組み2233の側翼部2233bに当接している。それによって、磁石221が力(例えば、次に述べる遠心力)を受けて移動した時、バネ2231は変形を発生することができる。そして変形を起こしたバネ2231は磁石221(あるいは活動骨組み2233)を変位の前の位置に戻す傾向がある。これにより活動骨組み2233は遠心力とバネ2231の作用する力を通じて、固定骨組み2232(あるいは磁気導体222)に対して往復移動をする。 Further, the spring 2231 is installed in a gap G formed between the outer surface of the tubular portion 2232 a of the fixed frame 2232 and the side wall of the storage tank 2121. Further, opposite ends of the spring 2231 (for example, the top end and the bottom end of the spring 2231 in FIG. 5) are in contact with the side wing portion 2232 b of the fixed frame 2232 and the side wing portion 2233 b of the active frame 2233, respectively. Accordingly, the spring 2231 can be deformed when the magnet 221 is moved under a force (for example, a centrifugal force described below). The deformed spring 2231 tends to return the magnet 221 (or the active framework 2233) to the position before the displacement. As a result, the active frame 2233 reciprocates with respect to the fixed frame 2232 (or the magnetic conductor 222) through the centrifugal force and the force applied by the spring 2231.
 以上は、即ち、本実施例のステーターモジュール1と回転子モジュール2の構造のために説明した。以下は引き続いてステーターモジュール1と回転子モジュール2の間の作動原理と双方間の相対関係を紹介する。 The above is described for the structure of the stator module 1 and the rotor module 2 of this embodiment. The following will continue to introduce the operating principle between the stator module 1 and the rotor module 2 and the relative relationship between them.
 図5に示すように、上記ローテーチングパーツ21が静止している時、磁石221、および活動骨組み2233は全て貯蓄タンク2121の溝底の上に位置し、この時、磁石221のローテーチングパーツ21(あるいはその貯蓄タンク2121)に対する位置を第一位置(図5に示すように)と定義する。 As shown in FIG. 5, when the rotating part 21 is stationary, the magnet 221 and the active framework 2233 are all located on the groove bottom of the storage tank 2121. At this time, the rotating part 21 of the magnet 221 is positioned. The position relative to (or the storage tank 2121) is defined as the first position (as shown in FIG. 5).
 上記発電装置100の外部の流体(例えば:風力)がケーシング11の流動通路113に進入して、ローテーチングパーツ21の螺旋式羽根212に駆動力を与えた時、ローテーチングパーツ21は軸線Lを軸心として回転する。かつ上記両磁石221はローテーチングパーツ21の回転により発生した遠心力の作用により、ローテーチングパーツ21に対して上記の第一位置から軸線Lを遠く離れる方向に沿って第二位置(図6に示すように)に向って移動する。そして、すべての位置調整ユニット223のバネ2231に回復力を蓄えて、以って、それぞれ上記両磁石221を第一位置に回復する傾向に駆り立てる。その中、上記それぞれの磁石221のいる第二位置は、貯蓄タンク2121の溝底より離れた所で、しかしローテーチングパーツ21のへり(即ち、貯蓄タンク2121の溝の入口) の位置より突き出していない位置である。かつ、本実施例の磁石221が移動している時、固定骨組み2232の管状部2232aを通して活動骨組み2233の管状部2233aをガイドし、これにより、活動骨組み2233の管状部2233aの中の磁石221を貯蓄タンク2121に対して直線運動をすることができる。 When a fluid (for example, wind power) outside the power generation device 100 enters the flow passage 113 of the casing 11 and applies a driving force to the spiral blade 212 of the rotating part 21, the rotating part 21 moves along the axis L. Rotates as an axis. The two magnets 221 are moved to a second position (in FIG. 6) along the direction far from the axis L with respect to the rotating part 21 by the action of centrifugal force generated by the rotation of the rotating part 21. As shown). Then, a restoring force is stored in the springs 2231 of all the position adjustment units 223, thereby driving the tendency to restore both the magnets 221 to the first position. Among them, the second position where each of the magnets 221 is located is far from the groove bottom of the storage tank 2121 but protrudes from the edge of the rotating part 21 (that is, the inlet of the groove of the storage tank 2121). There is no position. In addition, when the magnet 221 of the present embodiment is moving, the tubular portion 2233a of the active frame 2233 is guided through the tubular portion 2232a of the fixed frame 2232, whereby the magnet 221 in the tubular portion 2233a of the active frame 2233 is guided. A linear motion can be performed with respect to the storage tank 2121.
 そのため、ローテーチングパーツ21が持続的に回転している時、上記両磁石221及び其の活動骨組み2233は全て第二位置に保持される。つまり、両磁石221とケーシング11の流通管111の内縁の両者が最も接近する距離に保持される。これにより、回転子モジュール2が一つの予定位置までに回転して来た時、第一磁力モジュール22の両磁極端2211は径の方向に沿ってそれぞれその中の一つの第一磁気ガイドユニット121の両芯部(図6に示すように、予定位置にいた時、上記両芯部1211のセンターラインCはそれぞれ上記の両磁石2213に通過する)に向かう。かつその柔軟性磁気ガイドブラシ122と当接し、更に進んで、上記両磁石221はその磁極端2211から出した磁力はそれぞれ柔軟性磁気ガイドブラシ122に沿って通過して、上記両芯部1211までに伝達する。以って上記両芯部1211の上に巻き付いているコイル1212に誘導電流が発生して、発電される。 Therefore, when the rotating part 21 is continuously rotating, the magnets 221 and the active framework 2233 are all held in the second position. That is, both the magnets 221 and the inner edge of the flow pipe 111 of the casing 11 are held at the closest distance. As a result, when the rotor module 2 has been rotated to one predetermined position, both the magnetic pole ends 2211 of the first magnetic module 22 are respectively in the radial direction and one of the first magnetic guide units 121 therein. The two core portions (as shown in FIG. 6, the center lines C of the core portions 1211 pass through the magnets 2213, respectively, when they are in a predetermined position). Further, the magnets 221 come into contact with the flexible magnetic guide brush 122 and further advance, so that the magnets 221 pass through the flexible magnetic guide brush 122 to the cores 1211. To communicate. As a result, an induced current is generated in the coil 1212 wound around the cores 1211 to generate power.
 更に一歩進めて言うと、回転子モジュール2が軸線Lを軸心としてある予定の位置までに回転してきた時、第一磁力モジュール22の両磁極端2211は径の方向に沿って、それぞれその中の一つの第一磁気ガイドユニット121の両芯部1211に向かって、かつそれぞれ両芯部1211の上の上記両柔軟性磁気ガイドブラシ122の自由端と相当接し、以って両磁石221の磁極端2211から出した磁力が第一磁力モジュール22(即ち、両磁石221と磁気導体222)、と柔軟性磁気ガイドブラシ122、および第一磁気ガイドユニット121(即ち、両芯部1211とガイドパーツ1213)に沿って通過し、一つの磁気ループFを構成することができる。更に一歩進めて言うと、上記第一磁気ガイドモジュール12が複数個の第一磁気ガイドユニット121を備えている為、回転子モジュール2が軸線Lを軸心として回転している時、第一磁力モジュール22は順番に上記いくらかの第一磁気ガイドユニット121に向かって、両磁極端2211を通じて出した磁力が第一磁力モジュール22及びその向かいあった第一磁気ガイドユニット121に沿って通過して上記磁気ループFを構成する。 To go one step further, when the rotor module 2 has rotated to a predetermined position with the axis L as the axis, both magnetic pole ends 2211 of the first magnetic module 22 are arranged in the radial direction. Toward the two core portions 1211 of the first magnetic guide unit 121 of the first magnetic guide unit 121 and in contact with the free ends of the two flexible magnetic guide brushes 122 on the two core portions 1211 respectively. The magnetic force generated from the extreme 2211 is the first magnetic module 22 (that is, both the magnets 221 and the magnetic conductor 222), the flexible magnetic guide brush 122, and the first magnetic guide unit 121 (that is, both the core portion 1211 and the guide part 1213). ) To form one magnetic loop F. More specifically, since the first magnetic guide module 12 includes a plurality of first magnetic guide units 121, when the rotor module 2 rotates about the axis L, the first magnetic force The module 22 sequentially goes toward the first magnetic guide unit 121, and the magnetic force generated through the magnetic pole ends 2211 passes along the first magnetic module 22 and the first magnetic guide unit 121 facing the first magnetic guide unit 121. A magnetic loop F is formed.
 これにより、上記磁石221は柔軟性磁気ガイドブラシ122を通じて磁力を第一磁気ガイドユニット121の芯部1211に伝達して、以って磁石221の磁極端2211と相対応する芯部1211の間の磁力の伝送が0隙間になって、これにより、磁力の伝達の引き上げ効果を達することが出来る。かつ磁石221あるいは螺旋式羽根212が隙間の設計の不当により芯部1211と衝突する問題が発生するのを免れる。なお、上記発電装置100は回転子モジュール2が相対的にステーターモジュール1に対して回転する事ができる時、第一磁力モジュール22と第一磁気ガイドユニット121により構成された磁気ループFで、発電量の引き上げの効果を達する。かつ第一磁気ガイドユニット121の数量は需要に応じて増加することができ、更に発電量を高める事ができる。 As a result, the magnet 221 transmits the magnetic force to the core portion 1211 of the first magnetic guide unit 121 through the flexible magnetic guide brush 122, and thus between the core portion 1211 corresponding to the magnetic pole end 2211 of the magnet 221. The transmission of magnetic force becomes 0 gap, and thereby, the effect of raising the transmission of magnetic force can be achieved. In addition, the problem that the magnet 221 or the spiral blade 212 collides with the core portion 1211 due to an inappropriate design of the gap is avoided. When the rotor module 2 can rotate relative to the stator module 1, the power generation device 100 generates power with a magnetic loop F configured by the first magnetic module 22 and the first magnetic guide unit 121. Reach the effect of raising the amount. And the quantity of the 1st magnetic guide unit 121 can be increased according to a demand, and electric power generation amount can be raised further.
 もし上記発電装置100外部の流体(例えば:風力)がもうケーシング11の流動通路113に入らない時、上記ローテーチングパーツ21の回転速度は次第に緩めてその速度が静止するまで回転する。この時、遠心力は回復力より小さくて、上記バネ2231は同時に次第にその回復力を釈放し、以って固定骨組み2232の側翼部2232bと活動骨組み2233の側翼部2233bを推して、更に進んで活動骨組み2233に固定している磁石221を駆動して第二位置から第一位置までに移動する。 If the fluid (for example: wind power) outside the power generation device 100 no longer enters the flow passage 113 of the casing 11, the rotational speed of the rotating part 21 gradually decreases and rotates until the speed stops. At this time, the centrifugal force is smaller than the recovery force, and the spring 2231 gradually releases the recovery force at the same time, and thus the side wing portion 2232b of the fixed frame 2232 and the side wing portion 2233b of the active frame 2233 are pushed forward. The magnet 221 fixed to the active framework 2233 is driven to move from the second position to the first position.
 更に、図2から図4に示す通り、本実施例のステーターモジュール1は、ケーシング11に於いて第二磁気ガイドモジュール13を設置することができ、かつ第二磁気ガイドモジュール13は複数個の第二磁気ガイドユニット131を含むことができる。本実施例の回転子モジュール2ではローテーチングパーツ21の螺旋式羽根212の上に第二磁力モジュール23を設置することができる。その中、第二磁気ガイドモジュール13と第二磁力モジュール23の構造と設置の原理は大体上記の第一磁気ガイドモジュール12と第一磁力モジュール22と同様なので、ここでは再び第二磁気ガイドモジュール13と第二磁力モジュール23について詳細に説明しない。 Further, as shown in FIGS. 2 to 4, the stator module 1 of this embodiment can be provided with the second magnetic guide module 13 in the casing 11, and the second magnetic guide module 13 includes a plurality of second magnetic guide modules 13. Two magnetic guide units 131 may be included. In the rotor module 2 of the present embodiment, the second magnetic module 23 can be installed on the spiral blade 212 of the rotating part 21. Among them, the structure and installation principle of the second magnetic guide module 13 and the second magnetic module 23 are almost the same as those of the first magnetic guide module 12 and the first magnetic module 22 described above. The second magnetic module 23 will not be described in detail.
 さらに、上記位置調整ユニット223の中のバネ2231の位置、数量、形状も設計者の需要に応じて調整することができる。例を挙げると:図7と図8に示すように、第一磁力モジュール22はただ一つの位置調整ユニット223を含んでいる。かつ上記第一磁力モジュール22の両磁石221、磁気導体222、および位置調整ユニット223の全ては同一の貯蓄タンク2121内に設置している。しかも、上記両磁石221はそれぞれ磁気導体222の相反する両端に当接している。また、上記バネ2231は略C型あるいはU型の板形(図略)にすることができ、これは板バネ(leaf spring)に似ている。上記板形のバネ2231の中央部は貯蓄タンク2121の溝の底に固定され、そして、板形のバネ2231の両端部は上記両磁石221の下方の磁気導体222の下面に当接し(取り付けられ)、以って磁石221と磁気導体222の相対応する回復力を提供する。 Furthermore, the position, quantity, and shape of the spring 2231 in the position adjustment unit 223 can also be adjusted according to the designer's demand. For example: As shown in FIGS. 7 and 8, the first magnetic module 22 includes only one positioning unit 223. The magnets 221, the magnetic conductor 222, and the position adjustment unit 223 of the first magnetic module 22 are all installed in the same storage tank 2121. Moreover, the magnets 221 are in contact with opposite ends of the magnetic conductor 222. The spring 2231 can be a substantially C-shaped or U-shaped plate (not shown), which is similar to a leaf spring. The central portion of the plate-shaped spring 2231 is fixed to the bottom of the groove of the storage tank 2121, and both ends of the plate-shaped spring 2231 are in contact with (attached to) the lower surface of the magnetic conductor 222 below the magnets 221. ), Thereby providing a corresponding restoring force between the magnet 221 and the magnetic conductor 222.
 図9から図11は、本発明の第二実施例を示している。本実施例は大体上記の実施例と似ていて、同じ箇所の説明は省略する。両者の主な相違点は、第一磁気ガイドモジュール12のガイドパーツ1213にある。 9 to 11 show a second embodiment of the present invention. The present embodiment is generally similar to the above embodiment, and the description of the same portion is omitted. The main difference between the two is the guide part 1213 of the first magnetic guide module 12.
 具体的には、図9と図10に示すように、上記第一磁気ガイドモジュール12は一つのガイドパーツ1213を含んでいる。つまり、上記第一磁気ガイドユニット121のその中の一つが上記ガイドパーツ1213を備えている。その他の第一磁気ガイドユニット121はただ芯部1211とコイル1212を具備している。その中、上記ガイドパーツ1213はケーシング11に設置され、かつ両円形の磁気ガイドリング1213a、および上記両磁気ガイドリング1213aの間を接続する少なくとも一つの磁気ガイド接続部1213bを含んでいる。本実施例において、上記磁気ガイド接続部1213bの数量は複数個を例にしている。 Specifically, as shown in FIGS. 9 and 10, the first magnetic guide module 12 includes one guide part 1213. That is, one of the first magnetic guide units 121 includes the guide part 1213. The other first magnetic guide unit 121 simply includes a core portion 1211 and a coil 1212. Among them, the guide part 1213 is installed in the casing 11 and includes a circular magnetic guide ring 1213a and at least one magnetic guide connection portion 1213b for connecting the magnetic guide rings 1213a. In this embodiment, a plurality of the magnetic guide connecting portions 1213b are exemplified.
 更に詳しく言うと、上記全ての第一磁気ガイドユニット121の両芯部1211はそれぞれ上記両磁気ガイドリング1213aの内側に位置し、かつ全ての第一磁気ガイドユニット121の両芯部1211はそれぞれ上記両磁気ガイドリング1213aと相接続して、しかも第1磁力モジュール22の磁石221はそれぞれ上記両磁気ガイドリング1213aの包囲した空間以内に位置している。これにより、磁石221から出した磁力が全ての第一磁気ガイドユニット121のその中一つの芯部1211、その中の一つの磁気ガイドリング1213a、隣り合う磁気ガイド接続部1213b、およびその中のもう一つの磁気ガイドリング1213aを順番に沿ってその中のもう一つの芯部1211に伝送する。即ち、磁力が第一磁力モジュール22、全ての第一磁気ガイドユニット121の両芯部1211、およびガイドパーツ1213に沿って通過して、一つの磁気ループFを構成することができる。 More specifically, both the cores 1211 of all the first magnetic guide units 121 are positioned inside the magnetic guide rings 1213a, respectively, and both the cores 1211 of all the first magnetic guide units 121 are respectively The magnets 221 of the first magnetic force module 22 are in phase connection with both the magnetic guide rings 1213a, and are located within the space surrounded by the magnetic guide rings 1213a. As a result, the magnetic force generated from the magnet 221 causes one core portion 1211 of all the first magnetic guide units 121, one magnetic guide ring 1213a therein, the adjacent magnetic guide connection portion 1213b, and the other one of them. One magnetic guide ring 1213a is transmitted in order to another core portion 1211 therein. That is, the magnetic force passes along the first magnetic force module 22, the core portions 1211 of all the first magnetic guide units 121, and the guide parts 1213, thereby forming one magnetic loop F.
 更に、上記ガイドパーツ1213の外表面はケーシング11の外表面より突出していない。即ち本実施例においてガイドパーツ1213の外表面は大体ケーシング11の外表面に等しく切っている。しかし本発明はこれに限定されない。例を挙げると、ガイドパーツ1213もケーシング11の中(図略)に埋めて置くことができ、或いはケーシング11(図略)より突き出すこともできる。このほか、本実施例では第一磁気ガイドモジュール12のガイドパーツ1213を例として説明したが、第二磁気ガイドモジュール13のガイドパーツ1213(表示してない)もまた上記第一磁気ガイドモジュール12のガイドパーツ1213と同じような構造に形成することもできる。 Furthermore, the outer surface of the guide part 1213 does not protrude from the outer surface of the casing 11. That is, in this embodiment, the outer surface of the guide part 1213 is roughly cut into the outer surface of the casing 11. However, the present invention is not limited to this. For example, the guide part 1213 can be buried in the casing 11 (not shown) or can be protruded from the casing 11 (not shown). In addition, in the present embodiment, the guide part 1213 of the first magnetic guide module 12 has been described as an example. However, the guide part 1213 (not shown) of the second magnetic guide module 13 is also of the first magnetic guide module 12. A structure similar to that of the guide part 1213 can also be formed.
 付け加えて説明するが、図11に示すように、上記どの磁気ガイドリング1213a、及びその相連結している上記芯部1211等は一体成形或いは分離して継ぎ合わせることができる構造である。かつそれは複数個の金属板1214(例えば:ケイ素鋼板、鉄板)を用いて、平行軸線Lの方向に沿って積み重ねて形成されている。つまり、上記金属板1214の円形のリング状の部位1214aを互いに積み重ねて上記の磁気ガイドリング1213aを構成し、また上記金属板1214の中のリング状の部位1214aと連結しているT字形の突き出している部位1214bを互いに積み重ねて上記芯部1211を構成した。かつ上記磁気ガイド接続部1213bも複数個の金属板を積み重ねる(図略)ことにより形成することができるが、此処では特に制限を加えない。 In addition, as shown in FIG. 11, the magnetic guide ring 1213a and the core part 1211 connected to each other are integrally molded or separated and can be joined together. And it is formed by stacking along the direction of the parallel axis L using a plurality of metal plates 1214 (for example: silicon steel plate, iron plate). That is, the circular ring-shaped portion 1214a of the metal plate 1214 is stacked on each other to form the magnetic guide ring 1213a, and the T-shaped protrusion connected to the ring-shaped portion 1214a in the metal plate 1214 is formed. The core portions 1211 are configured by stacking the portions 1214b that are present. The magnetic guide connecting portion 1213b can also be formed by stacking a plurality of metal plates (not shown), but there is no particular limitation here.
 これに基き、本実施例のガイドパーツ1213の設計を通じて、ガイドパーツ1213の製造の時更に容易にケーシング11と互いに結合して、それによってステーターモジュール1の加工の困難度と組み立ての複雑度を簡略化して、更に進んで生産製造に役立つ。 Based on this, through the design of the guide part 1213 of the present embodiment, the guide part 1213 is more easily coupled to the casing 11 when manufacturing the guide part 1213, thereby simplifying the processing difficulty and assembly complexity of the stator module 1. To further advance production and production.
 上記したように、本発明の実施例が提供した発電装置は、その回転子モジュールがある予定の位置までに回転してきた時、第一磁力モジュールの磁極端は径方向に沿ってそれぞれ芯部の上の柔軟性磁気ガイドブラシの自由端と相当接し、これにより磁石から出した磁力が柔軟性磁気ガイドブラシを通じて芯部までに伝達し、更に進んで磁極端と相対応する芯部の間の磁力の伝送が0隙間になって、磁力の伝達と発電量の引き上げ効果を達することが出来、かつ磁石あるいは螺旋式羽根が隙間の設計の不当により芯部とぶつかる問題が発生するのを免れる。 As described above, when the power generation apparatus provided by the embodiment of the present invention has rotated to the position where the rotor module is located, the magnetic pole ends of the first magnetic module are each of the core portion along the radial direction. The free magnetic end of the upper flexible magnetic guide brush is substantially in contact with it, and the magnetic force generated from the magnet is transmitted to the core through the flexible magnetic guide brush. As a result, the transmission of magnetic force and the effect of raising the amount of power generation can be achieved, and the problem that the magnet or the spiral blade collides with the core due to the improper design of the gap is avoided.
 以上述べたことは、本発明の比較的よい実施例で、本発明は前記各実施例に記載した構成と特定使用方式に限定されるものではなく、その趣旨を逸脱しない範囲において適宜その構成と使用方式を変更することができ、そのような場合、本発明の技術的範囲の解釈に含まれるべきである。 What has been described above is a comparatively good embodiment of the present invention, and the present invention is not limited to the configuration and the specific usage method described in each of the above embodiments. The manner of use can be varied and should be included in the interpretation of the scope of the present invention.
100 発電装置
1 ステーターモジュール
11 ケーシング
111 流通管
112 支持部
113 流動通路
12 第一磁気ガイドモジュール
121 第一磁気ガイドユニット
1211 芯部
1212 コイル
1213 ガイドパーツ
1213a 磁気ガイドリング
1213b 接続部
1214 金属板
1214a リング状の部位
1214b 突き出しの部位
122 柔軟性磁気ガイドブラシ
13 第二磁気ガイドモジュール
131 第二磁気ガイドユニット
2 回転子モジュール
21 ローテーチングパーツ
211 柱体
212 螺旋式羽根
2121 貯蓄タンク
22 第一磁力モジュール
221 磁石
2211 磁極端
222 磁気導体
223 位置調整ユニット
2231 バネ
2232 固定骨組み
2232a 管状部
2232b 側翼部
2233 活動骨組み
2233a 管状部
2233b 側翼部
23 第二磁力モジュール
L 軸線
C 中心線
G 隙間
F 磁気ループ
DESCRIPTION OF SYMBOLS 100 Power generator 1 Stator module 11 Casing 111 Flow pipe 112 Support part 113 Flow path 12 First magnetic guide module 121 First magnetic guide unit 1211 Core part 1212 Coil 1213 Guide part 1213a Magnetic guide ring 1213b Connection part 1214 Metal plate 1214a Ring shape Part 1214b Protruding part 122 Flexible magnetic guide brush 13 Second magnetic guide module 131 Second magnetic guide unit 2 Rotor module 21 Rotating part 211 Column 212 Spiral blade 2121 Storage tank 22 First magnetic module 221 Magnet 2211 Magnetic pole end 222 Magnetic conductor 223 Position adjustment unit 2231 Spring 2232 Fixed frame 2232a Tubular part 2232b Side wing part 2233 Active frame 2233a Tubular part 233b side wing portion 23 second magnetic module L axis C centerline G gap F magnetic loops

Claims (10)

  1.  一種の発電装置であって、
     ステーターモジュール、および回転子モジュールを具備し、
     前記ステーターモジュールは、ケーシングおよび第一磁気ガイドモジュールを有し、前記ケーシング内に軸線があると定義し、
     前記第一磁気ガイドモジュールは第一磁気ガイドユニットと柔軟性磁気ガイドブラシを備え、
     前記第一磁気ガイドユニットは、前記ケーシングに設置されており、そして前記第一磁気ガイドユニットは少なくとも一つの芯部と前記芯部に巻き付いている一つのコイルを有し、
     前記柔軟性磁気ガイドブラシは前記ケーシングの内側に位置している芯部に設置し、
     一方前記回転子モジュールは、回転可能に前記ケーシング内に配置され、かつ、前記回転子モジュールは、ローテーチングパーツ、および第一磁力モジュールを有し、
     前記ローテーチングパーツは前記軸線を軸心として回転し、
     前記第一磁力モジュールは、前記ローテーチングパーツの上に取り付けられており、前記第一磁力モジュールは少なくとも磁力を発生する一磁極端を有しており、
     その中、前記回転子モジュールは、前記軸線を軸心として回転して予定位置までに達した時、前記第一磁力モジュールの磁極端は前記軸線方向に垂直な方向の一径方向に沿って前記芯部に向かいあい、そして前記柔軟性磁気ガイドブラシと当接し、以って前記磁極端を通じて出した磁力が柔軟性磁気ガイドブラシに沿って通過して前記第一磁気ガイドユニットまでに伝達されることを特徴とする発電装置。
    A kind of power generator,
    A stator module and a rotor module;
    The stator module has a casing and a first magnetic guide module, and is defined as having an axis in the casing;
    The first magnetic guide module includes a first magnetic guide unit and a flexible magnetic guide brush,
    The first magnetic guide unit is installed in the casing, and the first magnetic guide unit has at least one core part and one coil wound around the core part,
    The flexible magnetic guide brush is installed in the core located inside the casing,
    On the other hand, the rotor module is rotatably disposed in the casing, and the rotor module includes a rotating part and a first magnetic module,
    The rotating part rotates around the axis,
    The first magnetic module is mounted on the rotating part, and the first magnetic module has at least one magnetic pole end that generates a magnetic force,
    Among these, when the rotor module rotates about the axis and reaches a predetermined position, the magnetic pole end of the first magnetic module is along the radial direction perpendicular to the axis direction. Facing the core and in contact with the flexible magnetic guide brush, the magnetic force generated through the magnetic pole end passes along the flexible magnetic guide brush and is transmitted to the first magnetic guide unit. A power generator characterized by that.
  2.  前記ローテーチングパーツは柱体と、前記柱体の外縁に繋がっている螺旋式羽根を有し、そして前記第一磁力モジュールは、前記螺旋式羽根の上に取り付けられており、しかも前記第一磁力モジュールの磁極端は前記螺旋式羽根のへりから現れ、前記螺旋式羽根のへりの前記軸線に対する距離は前記柔軟性磁気ガイドブラシの前記軸線に対する最小距離より大きい請求項1に記載の発電装置。 The rotating part has a column and a spiral blade connected to an outer edge of the column, and the first magnetic module is mounted on the spiral blade, and the first magnetic The generator of claim 1, wherein the pole tip of the module emerges from the edge of the helical blade, and the distance of the helical blade edge to the axis is greater than the minimum distance of the flexible magnetic guide brush to the axis.
  3.  前記柔軟性磁気ガイドブラシの数量は前記第一磁気ガイドモジュールの芯部の数量に等しく、かつすべての芯部に一つずつの柔軟性磁気ガイドブラシを設置している請求項2に記載の発電装置。 3. The power generation according to claim 2, wherein the number of the flexible magnetic guide brushes is equal to the number of the core portions of the first magnetic guide module, and one flexible magnetic guide brush is installed in each of the core portions. apparatus.
  4.  前記第一磁気ガイドモジュールは一つのガイドパーツを含み、かつ前記第一磁気ガイドユニットの芯部とコイルの数量はそれぞれ二つあり、そして前記両芯部は前記ガイドパーツと接続し、
     一方前記第一磁力モジュールの備える磁極端の数量は二つであり、しかも前記第一磁力モジュールは、それぞれ前記両磁極端を通じて磁性の違う磁力を出すことができ、
     その中、前記ローテーチングパーツが前記軸線を軸心として回転して前記予定位置までに達した時、前記第一磁力モジュールの両磁極端は前記径方向に沿って、それぞれ前記両芯部に向かって別々に前記両芯部上の前記両柔軟性磁気ガイドブラシに当接し、以って前記両磁極端を通じて出した磁力が前記両柔軟性磁気ガイドブラシ、前記両芯部、前記ガイドパーツ、および前記第一磁力モジュールに沿って通過し、一つの磁気ループを構成する請求項3に記載の発電装置。
    The first magnetic guide module includes one guide part, and the number of core parts and coils of the first magnetic guide unit is two respectively, and both the core parts are connected to the guide parts,
    On the other hand, the number of magnetic pole tips provided in the first magnetic force module is two, and the first magnetic force module can generate different magnetic forces through the magnetic pole ends,
    Among them, when the rotating part rotates about the axis and reaches the predetermined position, both magnetic pole ends of the first magnetic module are directed to the cores along the radial direction. The magnetic forces that are separately brought into contact with the two flexible magnetic guide brushes on the two core portions, and are thus generated through the two magnetic pole ends, the two flexible magnetic guide brushes, the two core portions, the guide parts, and The power generator according to claim 3 which passes along said 1st magnetic force module and constitutes one magnetic loop.
  5.  前記柔軟性磁気ガイドブラシは複数個の柔軟性金属線を含んでおり、かつ全ての柔軟性金属線の両端の一端は自由端で、もう一端は固定端と定義し、前記柔軟性金属線の固定端は相対応する芯部の上に固定され、前記柔軟性金属線の自由端はその固定端を支点として揺動することで、その当接する磁極端を傷つけない請求項1乃至4のいずれかに記載の発電装置。 The flexible magnetic guide brush includes a plurality of flexible metal wires, and one end of each end of all the flexible metal wires is defined as a free end and the other end is defined as a fixed end. The fixed end is fixed on the corresponding core part, and the free end of the flexible metal wire swings around the fixed end as a fulcrum so as not to damage the abutting magnetic pole end. A power generation device according to any one of the above.
  6.  前記ガイドパーツは前記ケーシングに設けられ、前記ガイドパーツは両磁気ガイドリング、および前記両磁気ガイドリングの間の少なくとも一つの磁気ガイド接続部に接続したものを含み、前記両芯部はそれぞれ前記両磁気ガイドリングの内側に位置し、かつ前記両芯部はそれぞれ前記両磁気ガイドリングに接続している請求項4に記載の発電装置。 The guide parts are provided on the casing, and the guide parts include both magnetic guide rings and one connected to at least one magnetic guide connection portion between the magnetic guide rings, and the both core portions are the two The power generation device according to claim 4, wherein the power generation device is located inside a magnetic guide ring, and the both core portions are respectively connected to the magnetic guide rings.
  7.  前記磁気ガイドリング、及びそれに接続している前記芯部を一体に成形するか、或いは両者を分離して継ぎ合わせる構造であり、かつ複数個の金属板を積み重ねて形成した請求項6に記載の発電装置。 The magnetic guide ring and the core part connected to the magnetic guide ring are integrally formed, or both are separated and joined together, and a plurality of metal plates are stacked and formed. Power generation device.
  8.  一種のステーターモジュールであって、それはケーシング、および第一磁気ガイドモジュールを有し、
     前記ケーシングにはその内側に一つの軸線が有ると定義し、
     前記第一磁気ガイドモジュールは、第一磁気ガイドユニット、および柔軟性磁気ガイドブラシを備え、
     前記第一磁気ガイドユニットは、前記ケーシングに設置され、そして前記第一磁気ガイドユニットは少なくとも一つの芯部と前記芯部に巻き付いている一つのコイルを有し、
     前記柔軟性磁気ガイドブラシは前記ケーシングの内側に位置している前記芯部に設置している事を特徴とするステーターモジュール。
    A kind of stator module, which has a casing, and a first magnetic guide module;
    The casing is defined as having one axis inside it,
    The first magnetic guide module includes a first magnetic guide unit and a flexible magnetic guide brush,
    The first magnetic guide unit is installed in the casing, and the first magnetic guide unit has at least one core and one coil wound around the core.
    The stator module according to claim 1, wherein the flexible magnetic guide brush is installed in the core portion located inside the casing.
  9.  前記第一磁気ガイドモジュールの柔軟性磁気ガイドブラシの数量は、前記第一磁気ガイドモジュールの芯部の数量に等しく、かつすべての芯部に一つずつの柔軟性磁気ガイドブラシを設置している請求項8に記載のステーターモジュール。 The number of flexible magnetic guide brushes of the first magnetic guide module is equal to the number of core portions of the first magnetic guide module, and one flexible magnetic guide brush is installed in every core portion. The stator module according to claim 8.
  10.  前記第一磁気ガイドモジュールは一つのガイドパーツを含み、前記第一磁気ガイドユニットの芯部とコイルの数量は少なくともそれぞれ二つあり、
     前記ガイドパーツは両磁気ガイドリング、および前記両磁気ガイドリングの間を接続する少なくとも一つの磁気ガイド接続部を含み、前記両芯部はそれぞれ前記両磁気ガイドリングの内側に位置し、かつ前記両芯部はそれぞれ前記両磁気ガイドリングに接続している請求項8又は9に記載のステーターモジュール。
    The first magnetic guide module includes one guide part, and the number of cores and coils of the first magnetic guide unit is at least two,
    The guide parts include both magnetic guide rings and at least one magnetic guide connecting portion for connecting the magnetic guide rings, and the core portions are located inside the magnetic guide rings, respectively, The stator module according to claim 8 or 9, wherein the core portion is connected to each of the magnetic guide rings.
PCT/JP2015/074732 2015-08-31 2015-08-31 Power generation device and stator module WO2017037840A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/074732 WO2017037840A1 (en) 2015-08-31 2015-08-31 Power generation device and stator module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/074732 WO2017037840A1 (en) 2015-08-31 2015-08-31 Power generation device and stator module

Publications (1)

Publication Number Publication Date
WO2017037840A1 true WO2017037840A1 (en) 2017-03-09

Family

ID=58188875

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/074732 WO2017037840A1 (en) 2015-08-31 2015-08-31 Power generation device and stator module

Country Status (1)

Country Link
WO (1) WO2017037840A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009261690A (en) * 2008-04-25 2009-11-12 Toshiba Corp Magnetic guide device and radiotherapy apparatus
JP2014087117A (en) * 2012-10-22 2014-05-12 Yaskawa Electric Corp Rotary electric machine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009261690A (en) * 2008-04-25 2009-11-12 Toshiba Corp Magnetic guide device and radiotherapy apparatus
JP2014087117A (en) * 2012-10-22 2014-05-12 Yaskawa Electric Corp Rotary electric machine

Similar Documents

Publication Publication Date Title
JP5650260B2 (en) Multiphase switched reluctance motor device
JP5745904B2 (en) Stator assembly for electromechanical converter, electromechanical converter, and windmill
JP5518827B2 (en) Linear motor
US9887605B2 (en) Wind-driven electricity generation device and rotor assembly thereof
CN102460917B (en) Electric motor for a small electric appliance
JP6180552B2 (en) Manufacturing method of coil for stator winding
CN104471838A (en) Motor unit and grill shutter driving device including same
CN104115379A (en) Mechanically and electronically integrated module
JP2018046675A (en) Stator of rotary electric machine
US9000647B2 (en) High efficiency high output density electric motor
CN100588089C (en) Swing motor
WO2017037840A1 (en) Power generation device and stator module
TWM511544U (en) Fluid power generation device and rotor assembly
TWI581546B (en) Rotor assembly and fluid electricity generation device
WO2016199317A1 (en) Fluid-based electricity generating device and rotor module
JP6025584B2 (en) Electric motor and fluid compressor provided with the electric motor
JP6424792B2 (en) Coil conductor and rotating electric machine
WO2018117148A1 (en) Wind power generating device and rotor module for same
JPWO2016167353A1 (en) Rotating electric machine
JP6058912B2 (en) Brush device and motor
TWI601359B (en) Electricity generation device and stator assembly
KR20230119914A (en) Electric motor and fan-motor assembly having the same
US20120248782A1 (en) Flying-magnet-dynamo applied in electrical energy generation from Wind, Marine or Mechanical energy transformation
KR20160059527A (en) Magnetic core structure and electric mechanical apparatus including the same
KR101899579B1 (en) Motor for thruster

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15902962

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15902962

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP