WO2017036413A1 - 电源管理电路、智能终端及充电方法 - Google Patents
电源管理电路、智能终端及充电方法 Download PDFInfo
- Publication number
- WO2017036413A1 WO2017036413A1 PCT/CN2016/097828 CN2016097828W WO2017036413A1 WO 2017036413 A1 WO2017036413 A1 WO 2017036413A1 CN 2016097828 W CN2016097828 W CN 2016097828W WO 2017036413 A1 WO2017036413 A1 WO 2017036413A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- switch module
- signal
- circuit
- battery
- input
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0013—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/34—Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
- H02J7/342—The other DC source being a battery actively interacting with the first one, i.e. battery to battery charging
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2310/00—The network for supplying or distributing electric power characterised by its spatial reach or by the load
- H02J2310/10—The network having a local or delimited stationary reach
- H02J2310/20—The network being internal to a load
- H02J2310/22—The load being a portable electronic device
Definitions
- the present invention relates to the field of intelligent terminal technologies, and in particular, to a power management circuit, an intelligent terminal, and a charging method.
- the host and wristband must be able to be split.
- the host and the wristband must be able to be separated. That is, when the function of the Bluetooth headset is used, the host and the wristband are separated, and when the phone is used for the step counting function, the host It fell back to the wristband.
- the flexible film battery is deployed on the Talkband B1 wristband in order to increase the battery capacity of the whole machine, it means that the main battery on the host side and the flexible battery on the wristband are frequently separated. For such a dual-battery, detachable wearable device, how to ensure the normal charging of the dual battery becomes a technical problem to be solved.
- FIG. 1 is a schematic diagram of a power management chip architecture of the prior art.
- a voltage conversion circuit is connected to an energy recovery device, a maximum power point tracking circuit, a switch SW, and a main battery for converting a voltage output from an energy recovery device.
- the loop control circuit is connected to the switch SW for receiving a valid signal or an invalid signal.
- the valid signal when the host is in the in-position state, the valid signal is received; when the host is in the non-bit state, the invalid signal is received, wherein the valid signal can control the switch SW to be closed, the invalid signal can control the switch SW to be disconnected; the switch SW and the voltage Conversion circuit, sub-battery and main battery connected
- the control terminal of the switch SW is connected to the loop control circuit for turning on or off the path of the sub-battery and the voltage conversion circuit and the main battery.
- the loop control circuit when the host is in the in-position state, the loop control circuit receives a valid signal, and the valid signal control switch SW is closed, thereby turning on the path of the sub-battery and the voltage conversion circuit and the main battery, that is, energy recovery.
- the output of the device charges the main battery and the sub battery simultaneously through the voltage forwarding circuit, and it is not possible to charge only the main battery.
- the power management chip in the prior art cannot satisfy the above problem of preferentially charging the main battery when the host is in the in-position state, that is, there is a problem that the dual battery cannot be normally charged.
- the embodiment of the invention provides a power management circuit, an intelligent terminal and a charging method, which can ensure normal charging of the dual battery.
- a power management circuit includes: a control circuit, a first switch module, a second switch module, and a voltage conversion circuit;
- the control circuit includes: a first input end, a first output end, and a second output end; the first input end is configured to receive a main battery in-position detection signal; and the first output end is connected to the second switch module The enable end of the second switch is connected to the enable end of the first switch module;
- the first switch module is connected to the voltage conversion circuit, the sub-battery, and the main battery;
- the second switch module is connected to the voltage conversion circuit and the energy recovery device
- the control circuit controls the first switch module to be closed or opened according to the received main battery in-position detection signal, and controls the second switch module to not input a signal, input a valid signal, or input an invalid signal; Thereby, the path through which the energy recovery device charges the sub-battery is turned on, or the path in which the sub-battery or the energy recovery device charges the main battery is turned on.
- control circuit controls the first switch module when the main battery in-position detection signal received by the control circuit is an invalid detection signal Closing, and controlling the enable end of the second switch module to not input a signal;
- the second switch module When the enable end of the second switch module does not input a signal, the second switch module is in a first state, and the path of the energy recovery device and the voltage conversion circuit is turned on, and the voltage conversion circuit is opposite to the slave The voltage signal received by the energy recovery device is converted and output to the sub-cell, thereby turning on the charging path of the energy recovery device to the sub-battery.
- control circuit controls the first switch module when the main battery in-position detection signal received by the control circuit is an effective detection signal Disconnecting and controlling an enable input signal of the second switch module;
- the second switch module When the enable end of the second switch module inputs a valid signal, the second switch module is in a second state, and the path of the control circuit and the voltage conversion circuit is turned on, and the voltage conversion circuit is connected to the slave The voltage signal received by the sub-battery is converted and output to the main battery, thereby turning on the path of the sub-battery to charge the main battery.
- control circuit controls the first switch module when the main battery in-position detection signal received by the control circuit is a valid detection signal Disconnecting, and controlling an enable end of the second switch module to input an invalid signal;
- the second switch module When the enable end of the second switch module inputs an invalid signal, the second switch module is in a first state, and the path of the energy recovery device and the voltage conversion circuit is turned on, and the voltage conversion circuit is opposite to the slave The voltage signal received by the energy recovery device is converted and output to the main battery, thereby turning on the path of the energy recovery device charging the main battery.
- control circuit further includes: a third input terminal, a fourth input terminal, an inverter, a third switch module, and a comparator;
- the third input terminal is configured to receive a preset voltage signal, and the fourth input terminal is configured to receive a voltage division signal of the voltage dividing circuit;
- the inverter is connected to the first input end, the enable end of the third switch module, and the second output end, for controlling the first switch module and the third switch module to be opposite status;
- the third switch module is connected to the first output end, the output end of the comparator, and the enable end of the third switch module is connected to the inverter;
- the comparator is connected to the third input end, the fourth input end and the third switch module, and is configured to receive a divided signal of the voltage dividing circuit and the received preset voltage signal Make comparisons;
- the inverter controls the third switch module to be in an off state, the path of the enable end of the second switch module and the output end of the comparator is turned off, thereby controlling the second switch
- the enable end of the module does not input a signal
- the inverter controls the third switch module to be in a closed state, turning on an enable end of the second switch module and a path of an output end of the comparator, thereby controlling the second switch module Energy input signal;
- the comparator compares a voltage dividing signal of the voltage dividing circuit higher than the preset voltage signal
- the comparator controls the The first output terminal outputs a valid signal, thereby controlling an enable end of the second switch module to input a valid signal
- the comparator compares a voltage dividing signal of the voltage dividing circuit to be higher than the preset voltage signal
- the comparator controls the first output terminal to output an invalid signal, thereby controlling an enable end of the second switch module to input an invalid signal.
- the power management circuit further includes: a maximum power point tracking circuit
- the maximum power point tracking circuit is coupled to an output of the comparator for periodically configuring an operating voltage of the energy recovery device to receive the energy when receiving an enable signal output by the comparator
- the recycling device operates at a maximum power output point, wherein the operating voltage is configured by the maximum power point tracking circuit in accordance with an open circuit voltage of the energy recovery device and a predetermined algorithm.
- an intelligent terminal comprising: a host and a receiving container separable from the host, wherein the host includes a main battery and an in-position detecting circuit, and the receiving device includes an energy recovery device a sub-battery and the power management circuit of the first aspect;
- the in-position detecting circuit is connected to the first input end for detecting whether the host is in an in-position state, and when detecting that the host is in the in-position state, outputting a valid detection signal; when detecting that the host is in the When the bit is not in the state, the invalid detection signal is output.
- the in-position detecting circuit includes: a first resistor and a second resistor, and connecting the first resistor and the second resistor between the power terminal and the detecting input terminal, Wherein, there are two leads between the first resistor and the second resistor, one lead is connected to the fifth output end, and the other lead is grounded through a capacitor.
- a charging method comprising:
- a first input of the control circuit receives the detection signal
- the path of charging the sub-batter by the energy recovery device is turned on, or the path of charging the main battery by the sub-battery or the energy recovery device is turned on.
- the channel for charging the sub-battery by the energy recovery device according to the main battery in-position detection signal includes:
- the path of charging the energy recovery device to the sub-battery is turned on.
- the channel for charging the main battery according to the main battery in-position detection signal, the sub-battery or the energy recovery device includes:
- the path of charging the main battery by the sub-battery or the energy recovery device is turned on.
- Embodiments of the present invention relate to a power management circuit, an intelligent terminal, and a charging method.
- the power management circuit includes: a control circuit, a first switch module, a second switch module, and a voltage conversion circuit; and the first input end of the control circuit receives the main battery a first detection terminal is connected to the enable end of the second switch module, and the second output end is connected to the enable end of the first switch module; the first switch module is connected to the voltage conversion circuit, the sub-battery and the main battery; the second switch The module is connected to the voltage conversion circuit and the energy recovery device; wherein the control circuit controls the first switch module to be closed or opened according to the received main battery in-position detection signal, and controls the second switch module not to input a signal, input a valid signal or the input is invalid. a signal; thereby turning on the path of the energy recovery device charging the sub-battery, or turning on the path of the sub-battery or the energy recovery device charging the main battery. Thereby, the normal charging of the dual battery can
- FIG. 1 is a schematic diagram of a power management chip architecture of the prior art
- FIG. 2 is a circuit diagram of a power management circuit according to Embodiment 1 of the present invention.
- FIG. 3 is a circuit diagram of a power management circuit according to Embodiment 2 of the present invention.
- FIG. 4 is a circuit diagram of a power management circuit according to Embodiment 3 of the present invention.
- FIG. 5 is a circuit diagram of a smart terminal provided by the present invention.
- FIG. 6 is a circuit diagram of an in-position detecting circuit provided by the present invention.
- FIG. 7 is a flowchart of a charging method of a power management circuit according to Embodiment 4 of the present invention.
- the power management circuit configureds the priority of charging the dual battery, and the specific configuration is as follows:
- circuit management circuit that satisfies the foregoing priority configuration can be implemented by the solutions described in Embodiment 1 and Embodiment 2 of the present invention.
- the power management circuit includes: a control circuit (Charger controller) 100, a first switch module 200, a second switch module 300, and a voltage conversion. Circuit (Boost Regulator) 400.
- Boost Regulator Circuit
- the control circuit 100 includes: a first input terminal I1, a second input terminal I2, a third input terminal I3, a fourth input terminal I4, a first output terminal O1, a second output terminal O2, and a third output terminal O3; the first input The terminal I1 receives the main battery in-position detection signal Dect_active, the second input terminal I2 receives the voltage signal of the sub-battery, the third input terminal I3 receives the preset voltage signal Vref, and the fourth input terminal I4 receives the voltage division signal of the voltage dividing circuit;
- the first output terminal O1 is connected to the enable terminal EN2 of the second switch module 300, the second output terminal O2 is connected to the enable terminal EN1 of the first switch module 200, and the third output terminal O3 is connected to the second switch module 300.
- the first switch module 200 is connected to the voltage conversion circuit 400, the sub-battery, and the main battery.
- the second switching module 300 is connected to the voltage conversion circuit 400 and an energy recovery device (Energy Source).
- Energy Source an energy recovery device
- the voltage conversion circuit 400 includes a fifth input terminal I5 and a fourth output terminal O4.
- the fifth input terminal I5 is connected to the second switch module 300.
- the fourth output terminal O4 has two leads, one lead is connected to the main battery, and the other is connected to the main battery. A lead wire is connected to the first switch module 200.
- the control circuit 100 controls the first switch module 200 to be turned off or closed according to the received main battery in-position detection signal Dect_active, and controls the enable terminal EN2 of the second switch module 300 to input signals or not input signals, when the second switch
- the enable terminal EN2 of the module 300 does not input a signal
- the second switch module 300 is in the 13 state, that is, the second switch module 300 is in the 13 state in the default state.
- the enable terminal EN2 of the second switch module 300 inputs a signal, and the input signal is a valid signal, the second switch module 300 is in the 23 state; when the input signal is an invalid signal, the second switch module 300 is also in the 13 state.
- the control circuit 100 controls the enable terminal EN2 of the second switch module 300 to input or not. An implementation of the incoming signal is described.
- FIG. 3 a structural diagram of a power management circuit according to Embodiment 2 of the present invention is shown in FIG. 3.
- the control circuit 100 in the power management circuit further includes: an inverter 110, a third switch module 120, and a comparator. 130.
- the inverter 110 is connected to the first input terminal I1 and the enable terminal EN3 of the third switch module 120 and the second output terminal O2 for controlling the first switch module 200 and the third switch module 120 to be opposite. status. Specifically, when the first input terminal I1 of the inverter 110 inputs the valid detection signal Dect_active, such as inputting a low level signal, the second output terminal O2 outputs a low level signal, and the enable terminal EN1 of the first switch module 200 receives The low level signal, the first switch module 200 is in an off state, the low level signal is converted into a high level signal by the conversion of the inverter 110, and the enable terminal EN3 of the third switch module 120 receives the high level signal.
- the valid detection signal Dect_active such as inputting a low level signal
- Dect_active such as inputting a low level signal
- the second output terminal O2 outputs a low level signal
- the enable terminal EN1 of the first switch module 200 receives The low level signal
- the first switch module 200 is in an off state
- the third switch module 120 is in a closed state; when the first input terminal I1 of the inverter 110 inputs a high level signal, the second output terminal O2 outputs a high level signal, and the enable terminal EN1 of the first switch module 200 receives the high level.
- the third switch module 120 is connected to the output end of the first output terminal 01 and the comparator 130, and the enable terminal EN3 of the third switch module 120 is connected to the inverter 110.
- the control circuit 100 controls the input terminal EN2 of the second switch module 300 to input or not input a signal through the third switch module 120.
- the inverter 110 controls the third switch module 120 to be in a closed state
- the path of the enable terminal EN2 of the second switch module and the output end of the comparator 130 can be turned on, so that the second switch module 300 is enabled.
- the terminal EN2 can input a signal, that is, the control circuit 100 controls the input signal of the enable terminal EN2 of the second switch module 300.
- the inverter 110 controls the third switch module 120 to be in an off state
- the path of the enable terminal EN2 of the second switch module and the output end of the comparator 130 is turned off, so that the second switch module 300 is enabled.
- the terminal EN2 does not input a signal, that is, the control circuit 100 controls the input terminal EN2 of the second switch module 300 not to input a signal.
- the comparator 130 is connected to the third input terminal I3, the fourth input terminal O4 and the third switch module 120 in the control circuit 100 for dividing the voltage dividing signal and the third input terminal of the divided piezoelectric circuit received by the fourth input terminal I4.
- the preset voltage signal Vref received by I3 is compared, and the signal output by the first output terminal O1 is controlled according to the comparison result, so that the control circuit 100 inputs a valid signal to the enable terminal EN2 of the second switch module 300 or is invalid. Signal control.
- control circuit 100 controls the enable or output of the enable terminal EN2 of the second switch module 300.
- the control circuit 100 controls the input signal of the enable terminal EN2 of the second switch module 300.
- an implementation of the invalid signal is described.
- the comparator 130 compares the points on the divided piezoelectric circuit. When the voltage is higher than Vref, the comparator 130 controls the first output terminal O1 to output a low level signal, which is a valid signal, and the enable terminal EN2 of the second switch module 300 receives the valid signal, and the second switch module 300 is in the 23 state; and when the comparator 130 compares the divided voltage on the divided piezoelectric circuit is not higher than Vref, the comparator 130 controls the first output terminal O1 to output a low level signal, which is an invalid signal, The enable terminal EN2 of the two switch module 300 receives the invalid signal, the invalid signal cannot function as a control, and the second switch module 300 returns to the default 13 state.
- control circuit 100 can also control the second switch module 300 by other means.
- the enable terminal EN2 input signal a valid signal or an invalid signal is input.
- it can be realized by a combination of an analog-to-digital converter (ADC) and software.
- ADC analog-to-digital converter
- the voltage of the voltage dividing circuit is first sampled by the ADC, and then the voltage of the voltage dividing circuit is compared with the preset voltage signal Vref by a software method, and the second switching module 300 is controlled according to the comparison result.
- the enable terminal EN2 inputs a low level signal or a high level signal to control its input valid signal or invalid signal.
- the switch module mentioned in the first embodiment and the second embodiment of the present invention can be implemented by the switch SW or by a CMOS circuit, which is not limited by the present invention.
- the energy recovery device refers to a device capable of converting other forms of energy in the environment into electrical energy, for example, capable of converting thermal energy, optical energy, mechanical vibration, and radio wave energy into electrical energy.
- the main battery is set in the main unit.
- the main unit in this specification also includes a Micro Control Unit (MCU), an in-position detection circuit, and Bluetooth, etc., which can support the in-position detection function in the form of contacts.
- MCU Micro Control Unit
- in-position detection circuit an in-position detection circuit
- Bluetooth etc.
- the main battery in-position detection signal Dect_active is received by the control circuit 100 from the in-position detection circuit through the first input terminal I1, the in-position detection circuit includes a fifth output terminal O5, and the fifth output terminal O5 is connected to the first input terminal. End I1.
- the in-position detecting circuit is configured to detect whether the host is in the in-position state, and when detecting that the host is in the in-position state, output the valid detection signal Dect_active through the fifth output terminal O5; when detecting that the host is in the in-position state
- the invalid detection signal Dect_active is output through the fifth output terminal O5.
- the valid detection signal Dect_active may be a low level signal
- the invalid detection signal Dect_active may be a high level signal.
- the control circuit 100 controls the second output terminal O2 to output a high level signal, that is, the enable terminal EN1 of the first switch module 200 receives a high level signal, and the first switch module 200 is closed.
- the control circuit 100 controls the first output terminal O1 to output a low level signal, and controls the enable terminal EN2 of the second switch module 300 to not input a signal through the low level signal.
- the enable terminal EN2 of the second switch module 300 when the enable terminal EN2 of the second switch module 300 does not input a signal, it defaults to the state of 13, that is, the path of the energy recovery device and the voltage conversion circuit is turned on, and at this time, the voltage signal output by the energy recovery device
- the voltage conversion circuit 400 converts the voltage signal (for example, converts the low voltage output from the energy recovery device into a target voltage), and converts the converted voltage.
- the signal is output to the sub-battery through the fourth output terminal O4, thereby realizing charging of the sub-battery by the energy recovery device.
- the in-position detecting circuit detects that the host is not in position, that is, when the voltage converting circuit 400 is disconnected from the main battery, the invalid detecting signal Dect_active is output through the fifth output terminal O5, that is, the control circuit 100.
- the invalid detection signal Dect_active is received through the first input terminal I1. Therefore, the voltage conversion circuit 400 directly converts the voltage signal output from the energy recovery device to the sub-battery through the fourth output terminal O4.
- the control circuit 100 When the first input terminal I1 of the control circuit 100 receives the valid detection signal Dect_active, if receiving the low level signal, the control circuit 100 controls the second output terminal O2 to output a low level signal, that is, the enable of the first switch module 200.
- the terminal EN1 receives the low level signal, and the first switch module 200 is in the off state; further, the control circuit 100 controls the first output terminal O1 to output a high level signal, and controls the second switch module 300 to be enabled by the high level signal.
- the input signal can be EN2.
- the enable terminal EN2 of the second switch module 300 inputs a signal, and the input signal is a valid signal, the valid signal controls the second switch module 300 to be in a state of 23, that is, the control circuit and the voltage conversion circuit are turned on.
- Pathway At this time, if the sub-battery inputs a voltage signal to the control circuit 100 through the second input terminal I2, the control circuit 100 controls the third output terminal O3 to output the voltage signal.
- the voltage signal passes the The second switch module 300 reaches the fifth input terminal I5 of the voltage conversion circuit 400, and the voltage conversion circuit 400 converts the voltage signal (for example, converts the low voltage output of the sub-battery into a target voltage), and passes the converted voltage signal through the first
- the four output terminals O4 are output to the main battery, thereby realizing the sub-battery to charge the main battery.
- the second switch module 300 when the enable terminal EN2 of the second switch module 300 inputs a signal, and the input signal is an invalid signal, since the invalid signal cannot play a control role, the second switch module 300 is in the default 13 state. That is, the path of the energy recovery device and the voltage conversion circuit is turned on. At this time, the voltage signal output by the energy recovery device passes through the second switch module 300 to reach the fifth input terminal I5 of the voltage conversion circuit 400, and the voltage conversion circuit 400 performs the voltage signal. The conversion (for example, converting the low voltage output from the energy recovery device into a target voltage), and outputting the converted voltage signal to the main battery through the fourth output terminal O4, thereby realizing charging of the main battery by the energy recovery device.
- the conversion for example, converting the low voltage output from the energy recovery device into a target voltage
- the voltage conversion circuit 400 converts the voltage signal output from the energy recovery device and directly outputs it to the main battery through the fourth output terminal O4 because the voltage conversion circuit is in a state where the first switch module 200 is in the off state.
- the fourth output terminal O4 of 400 is only connected to the main battery.
- the power management circuit further includes: a Maximum Power Point Tracking Controller 600.
- the maximum power point tracking circuit 600 includes a sixth input terminal I6 that is coupled to the output of the comparator 130.
- the sixth input terminal I6 of the maximum power point tracking circuit 600 inputs an enable signal, wherein the enable signal can be compared with the comparator 110 of FIG. A valid signal that is output through the output.
- the maximum power point tracking circuit 600 periodically configures the operating voltage of the energy recovery device to operate the energy recovery device at the maximum power output point, wherein the above work
- the voltage is configured by the maximum power point tracking circuit based on the open circuit voltage of the energy recovery device and a predetermined algorithm.
- the maximum power point tracking circuit 600 periodically performs the following steps according to the characteristics of the energy recovery device: first, the voltage conversion circuit is set to a stop state, and then the open circuit voltage of the energy recovery device is sampled, and the energy recovery device is configured according to a preset algorithm. The operating voltage is such that the energy recovery device operates at the maximum power output point and finally the voltage conversion circuit 400 is activated.
- the loop control of the charging current of the dual battery can be realized by the control circuit 100 of the present invention, for example, controlling the opening and closing of the first switch module, the second switch module and the third switch module, and charging the dual battery
- UVP Under-Voltage Protection
- OFP Overvoltage Protection
- FIG. 5 is a circuit diagram of an intelligent terminal according to an embodiment of the present invention.
- the smart terminal includes: a host and a receiving container (such as a wristband) that can be separated from the host, wherein the host includes a main battery and
- the position detecting circuit includes the energy recovery device, the sub-battery, and the power management circuit of the first embodiment or the second embodiment or the third embodiment.
- the in-position detection circuit includes: a first resistor R1 and a second resistor R2. Specifically, a first resistor R1 and a second resistor R2 are connected between the power terminal VDD and the detection input terminal, wherein there are two leads between the first resistor R1 and the second resistor R2, and one lead is connected to the fifth output. Terminal O5, another lead through the capacitor Grounding, the capacitor here has the function of voltage regulation filtering, that is, it can ensure that the fifth output terminal O5 outputs a stable main battery in-position detection signal Dect_active.
- the detection input terminal does not input a signal, and the voltage signal outputted by the fifth output terminal O5 is pulled up to the VDD by the first resistor R1, that is, the fifth output terminal O5 outputs an invalid detection signal;
- the detection input is grounded, that is, the detection input terminal, the first resistor R1, the second resistor R2 and VDD form a loop, that is, the first resistor R1 and the second resistor R2 divide the VDD, so that the fifth output The voltage signal outputted by terminal O5 is not equal to VDD, that is, the fifth output terminal O5 outputs a valid detection signal.
- the above-mentioned in-situ detection circuit can also be implemented by other circuits, such as a capacitor, a Hall device, and a heart rate sensor, which are not limited by the present invention.
- the in-position detection circuit is implemented by a capacitor
- the capacitance value of the capacitor changes. Therefore, whether the host is in position can be detected by detecting the capacitance value of the capacitor.
- the receiving container in FIG. 5 may further include a voltage dividing circuit including a first voltage dividing resistor R3 and a second voltage dividing resistor R4; and connecting the first voltage dividing resistor between the ground terminal and the sub battery R3 and the second voltage dividing resistor R4 have a lead between the first voltage dividing resistor R3 and the second voltage dividing resistor R4, and the lead wire is connected to the fourth input terminal I4, wherein the voltage of the sub-battery passes through the first
- the voltage signal divided by the voltage dividing resistor R3 and the second voltage dividing resistor R4 is input to the comparator 110 through the fourth input terminal I4, and the voltage dividing voltage of the first voltage dividing resistor R3 is compared with Vref by the comparator 110. According to the comparison result, the signal output by the first output terminal O1 is controlled.
- the method for controlling the signal output by the first output terminal O1 according to the comparison result is as described in the second embodiment of the present invention, and details are not described herein.
- the present invention calculates the remaining power of the sub-battery by determining the voltage of the sub-battery; in addition, the present invention can also adjust the resistance values of R3 and R4 according to the preset voltage signal Vref.
- the smart terminal in the embodiment of the present invention compares the voltage of the voltage dividing circuit with the preset voltage signal Vref, that is, determines the relationship between the remaining power of the sub-battery and the remaining power threshold A, and the remaining power of the sub-batter is higher than
- Vref preset voltage signal
- the smart terminal provided by the embodiment of the present invention may be an application energy recovery technology, a smart wristband with a dual battery, a smart watch, a smart hat, etc., and the voltage dividing circuit can realize that when the voltage of the sub battery is lower than the voltage of the main battery, The function of charging the main battery, thereby improving the charging efficiency of the smart terminal.
- FIG. 7 is a flowchart of a charging method of a power management circuit according to Embodiment 4 of the present invention.
- the charging method provided by the embodiment of the present invention is based on the power management circuit described in the foregoing embodiment.
- the charging method of the power management circuit of the embodiment of the present invention specifically includes:
- Step 701 The first input receives a primary battery in-position detection signal.
- the first input of the control circuit receives the main battery in-position detection signal Dect_active of the in-position detection circuit.
- the in-position detection circuit is configured to detect whether the host is in the in-position state, and is inspected When the host is in the in-position state, the valid detection signal Dect_active is output; when the host is detected to be in the in-position state, the invalid detection signal Dect_active is output.
- the valid detection signal Dect_active may be a low level signal
- the invalid detection signal Dect_active may be a high level signal.
- Step 702 according to the main battery in-position detection signal, turn on the path of the energy recovery device charging the sub-battery, or turn on the energy recovery device or the sub-battery to charge the main battery.
- the energy recovery device refers to a device capable of converting other forms of energy in the environment into electrical energy, for example, a device capable of converting thermal energy, optical energy, mechanical vibration, and radio wave energy into electrical energy.
- step 702 when the received main battery in-position detection signal is an invalid detection signal, the path of charging the sub-batter by the energy recovery device is turned on; when the received main battery in-position detection signal is received In order to effectively detect the signal, the path of charging the main battery by the sub-battery or the energy recovery device is turned on.
- the charging method provided by the embodiment of the invention ensures that when the host is in the in-position state, the main battery is preferentially charged, thereby ensuring normal charging of the dual battery.
- the steps of a method or algorithm described in connection with the embodiments disclosed herein can be implemented in hardware, a software module executed by a processor, or a combination of both.
- the software module can be placed in random access memory (RAM), memory, read only memory (ROM), electrically programmable ROM, electrically erasable programmable ROM, registers, hard disk, removable disk, CD-ROM, or technical field. Any other form of storage medium known.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Secondary Cells (AREA)
Abstract
一种电源管理电路、智能终端及充电方法,电源管理电路包括:控制电路(100)、第一开关模块(200)、第二开关模块(300)、电压转化电路(400);控制电路的第一输入端(I1)接收主电池在位检测信号(Dect_active),第一输出端(O1)连接第二开关模块的使能端(EN2),第二输出端(O2)连接第一开关模块的使能端(EN1);第一开关模块连接电压转化电路、子电池和主电池;第二开关模块连接电压转化电路和能量回收器件;其中,控制电路根据接收的主电池在位检测信号,控制第一开关模块闭合或者断开,并控制第二开关模块不输入信号、输入有效信号或者输入无效信号;从而接通能量回收器件对子电池充电的通路,或者接通子电池或者能量回收器件对主电池充电的通路。由此,可以保证双电池的正常充电。
Description
本申请要求于2015年09月02日提交中国专利局、申请号为201510559299.9、名称为“电源管理电路、智能终端及充电方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本发明涉及智能终端技术领域,尤其涉及一种电源管理电路、智能终端及充电方法。
随着穿戴式热潮的兴起,市场上涌现了各种各样的穿戴式设备,该穿戴式设备通常包含两部分:主机和腕带。由于部分穿戴式设备的功能定义,主机和腕带必须要能够分拆。比如华为的Talkband B1,为了实现蓝牙耳机的功能,主机和腕带必须要能够分离,即当使用蓝牙耳机的功能时,主机和腕带是分离的,当打完电话做计步功能时,主机又回落到腕带上。假如为了提升整机的电池容量,在Talkband B1的腕带上部署柔性薄膜电池,也就意味着主机侧的主电池和腕带上的柔性电池存在频繁的分离现象。对于这种双电池、可拆式的穿戴式设备,如何保证双电池正常充电就成为需要解决的技术问题。
图1为现有技术的电源管理芯片架构图,图1中,电压转化电路与能量回收器件、最大功率点跟踪电路、开关SW和主电池相连接,用于对能量回收器件输出的电压进行转化;回路控制电路与开关SW相连接,用于接收有效信号或者无效信号。具体地,当主机处于在位状态时,接收有效信号;当主机处于不在位状态时,接收无效信号,其中,有效信号可以控制开关SW闭合,无效信号可以控制开关SW断开;开关SW与电压转化电路、子电池和主电池相连
接,开关SW的控制端与回路控制电路相连接,用于接通或者断开子电池与电压转化电路和主电池的通路。图1中,当主机处于在位状态时,回路控制电路会接收到有效信号,该有效信号控制开关SW会闭合,从而接通了子电池与电压转化电路和主电池的通路,也即能量回收器件的输出通过电压转发电路会对主电池和子电池同时充电,不能只对主电池进行充电。
由此可见,现有技术中的电源管理芯片存在不能满足上述当主机处于在位状态时,优先对主电池进行充电的问题,也即存在无法保证双电池正常充电的问题。
发明内容
本发明实施例提供了一种电源管理电路、智能终端及充电方法,可以保证双电池正常充电。
第一方面,提供了一种电源管理电路,该电源管理电路包括:控制电路、第一开关模块、第二开关模块、电压转化电路;
所述控制电路包括:第一输入端、第一输出端和第二输出端;所述第一输入端用于接收主电池在位检测信号;所述第一输出端连接所述第二开关模块的使能端,所述第二输出端连接所述第一开关模块的使能端;
所述第一开关模块连接所述电压转化电路、子电池和主电池;
所述第二开关模块连接电压转化电路和能量回收器件;
其中,所述控制电路根据接收的所述主电池在位检测信号,控制所述第一开关模块闭合或者断开,并控制所述第二开关模块不输入信号、输入有效信号或者输入无效信号;从而接通所述能量回收器件对所述子电池充电的通路,或者接通所述子电池或者所述能量回收器件对所述主电池充电的通路。
结合第一方面,在第一方面的第一种实现方式中,当所述控制电路接收到的所述主电池在位检测信号为无效检测信号时,所述控制电路控制所述第一开关模块闭合,并控制所述第二开关模块的使能端不输入信号;
当所述第二开关模块的使能端不输入信号时,所述第二开关模块处于第一状态,接通所述能量回收器件与所述电压转化电路的通路,所述电压转化电路对从所述能量回收器件接收的电压信号转化后输出至所述子电池,从而接通所述能量回收器件对所述子电池的充电通路。
结合第一方面,在第一方面的第二种实现方式中,当所述控制电路接收到的所述主电池在位检测信号为有效检测信号时,所述控制电路控制所述第一开关模块断开,并控制所述第二开关模块的使能端输入有效信号;
当所述第二开关模块的使能端输入有效信号时,所述第二开关模块处于第二状态,接通所述控制电路与所述电压转化电路的通路,所述电压转化电路对从所述子电池接收的电压信号转化后输出至所述主电池,从而接通所述子电池对所述主电池充电的通路。
结合第一方面,在第一方面的第三种实现方式中,当所述控制电路接收到的所述主电池在位检测信号为有效检测信号时,所述控制电路控制所述第一开关模块断开,并控制所述第二开关模块的使能端输入无效信号;
当所述第二开关模块的使能端输入无效信号时,所述第二开关模块处于第一状态,接通所述能量回收器件与所述电压转化电路的通路,所述电压转化电路对从所述能量回收器件接收的电压信号转化后输出至所述主电池,从而接通所述能量回收器件对所述主电池充电的通路。
结合第一方面,在第一方面的第四种实现方式中,所述控制电路还包括:
第三输入端、第四输入端、反向器、第三开关模块和比较器;
所述第三输入端用于接收预设的电压信号,所述第四输入端用于接收分压电路的分压信号;
所述反向器连接所述第一输入端、所述第三开关模块的使能端和所述第二输出端,用于控制所述第一开关模块和所述第三开关模块处于相反的状态;
所述第三开关模块连接所述第一输出端、所述比较器的输出端,所述第三开关模块的使能端连接所述反相器;
所述比较器连接所述第三输入端、所述第四输入端和所述第三开关模块,用于对接收的所述分压电路的分压信号与接收的所述预设的电压信号进行比对;
其中,当所述反相器控制所述第三开关模块为断开状态时,断开所述第二开关模块的使能端与所述比较器的输出端的通路,从而控制所述第二开关模块的使能端不输入信号;
当所述反相器控制所述第三开关模块为闭合状态时,接通所述第二开关模块的使能端与所述比较器的输出端的通路,从而控制所述第二开关模块的使能端输入信号;
在所述第二开关模块的使能端输入信号的情况下,当所述比较器比较所述分压电路的分压信号高于所述预设的电压信号时,所述比较器控制所述第一输出端输出有效信号,从而控制所述第二开关模块的使能端输入有效信号;当所述比较器比较所述分压电路的分压信号不高于所述预设的电压信号时,所述比较器控制所述第一输出端输出无效信号,从而控制所述第二开关模块的使能端输入无效信号。
结合第一方面的第四种实现方式,在第一方面的第五种实现方式中,所述电源管理电路还包括:最大功率点跟踪电路;
所述最大功率点跟踪电路与所述比较器的输出端相连接,用于当接收到所述比较器输出的使能信号时,周期性配置所述能量回收器件的工作电压,使所述能量回收器件工作在最大功率输出点,其中,所述工作电压是由所述最大功率点跟踪电路根据所述能量回收器件的开路电压以及预设的算法配置的。
第二方面,提供了一种智能终端,该智能终端包括:主机和可与所述主机分离的收容器,其中,所述主机包括主电池和在位检测电路,所述收容器包括能量回收器件、子电池和如第一方面所述的电源管理电路;
所述在位检测电路与所述第一输入端相连接,用于检测主机是否处于在位状态,当检测到所述主机处于在位状态时,输出有效检测信号;当检测到所述主机处于不在位状态时,输出无效检测信号。
结合第二方面,第二方面的第一种实现方式中,所述在位检测电路包括:第一电阻和第二电阻,在电源端与检测输入端之间连接第一电阻和第二电阻,其中,在所述第一电阻与所述第二电阻之间具有两处引线,一处引线连接第五输出端,另一处引线通过电容接地。
第三方面,提供了一种充电方法,该方法包括:
控制电路的第一输入端接收检测信号;
根据所述主电池在位检测信号,接通能量回收器件对子电池充电的通路,或者接通子电池或者能量回收器件对主电池充电的通路。
结合第三方面,在第三方面的第一种实现方式中,所述根据所述主电池在位检测信号,接通能量回收器件对子电池充电的通路,包括:
当接收到的所述主电池在位检测信号为无效检测信号时,接通所述能量回收器件对所述子电池的充电的通路。
结合第三方面,在第三方面的第二种实现方式中,所述根据所述主电池在位检测信号,接通子电池或者能量回收器件对主电池充电的通路,包括:
当接收到的所述主电池在位检测信号为有效检测信号时,接通子电池或者能量回收器件对主电池充电的通路。
本发明实施例涉及一种电源管理电路、智能终端及充电方法,电源管理电路包括:控制电路、第一开关模块、第二开关模块、电压转化电路;控制电路的第一输入端接收主电池在位检测信号,第一输出端连接第二开关模块的使能端,第二输出端连接第一开关模块的使能端;第一开关模块连接电压转化电路、子电池和主电池;第二开关模块连接电压转化电路和能量回收器件;其中,控制电路根据接收的主电池在位检测信号,控制第一开关模块闭合或者断开,并控制第二开关模块不输入信号、输入有效信号或者输入无效信号;从而接通能量回收器件对子电池充电的通路,或者接通子电池或者能量回收器件对主电池充电的通路。由此,可以保证双电池的正常充电。
图1为现有技术的电源管理芯片架构图;
图2为本发明实施例一提供的电源管理电路的电路图;
图3为本发明实施例二提供的电源管理电路的电路图;
图4为本发明实施例三提供的电源管理电路的电路图;
图5为本发明提供的智能终端的电路图;
图6为本发明提供的在位检测电路的电路图;
图7为本发明实施例四提供的电源管理电路的充电方法的流程图。
下面通过附图和实施例,对本发明的技术方案做进一步的详细描述。
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
为便于对本发明实施例的理解,下面将结合附图以具体实施例做进一步的解释说明,实施例并不构成对本发明实施例的限定。
为了解决现有技术中不能保证双电池正常充电的问题,本发明实施例提供的电源管理电路对双电池充电的优先级进行了配置,具体配置如下:
1)当主机和收容器处于不分离状态时。首先判断子电池是否有电,如果有电,用子电池对主电池充电;如果没有电,则用能量回收器件的输出仅对主电池充电,不对子电池充电。因为如果对子电池充电,子电池需要再次对主电池充电,两次充电过程,降低了端到端的充电效率;
2)当主机和收容器处于分离状态时,能量回收器件的输出对子电池进行充电,储备能量。
而满足上述优先级配置的电路管理电路可以通过本发明实施例一和实施例二所述的方案实现。
图2为本发明实施例一提供的电源管理电路的电路图,如图2所示,该电源管理电路包括:控制电路(Charger controller)100、第一开关模块200、第二开关模块300、电压转化电路(Boost Regulator)400。
控制电路100包括:第一输入端I1、第二输入端I2、第三输入端I3、第四输入端I4、第一输出端O1、第二输出端O2和第三输出端O3;第一输入端I1接收主电池在位检测信号Dect_active,第二输入端I2接收子电池的电压信号,第三输入端I3接收预设的电压信号Vref,第四输入端I4接收分压电路的分压信号;第一输出端O1连接第二开关模块300的使能端EN2,第二输出端O2连接第一开关模块200的使能端EN1,第三输出端O3连接第二开关模块300。
第一开关模块200连接电压转化电路400、子电池和主电池(Main Battery)。
第二开关模块300连接电压转化电路400和能量回收器件(Energy Source)。
电压转化电路400包括第五输入端I5和第四输出端O4,第五输入端I5连接第二开关模块300,其中,第四输出端O4处具有两处引线,一处引线连接主电池,另一处引线连接第一开关模块200。
其中,控制电路100根据接收的主电池在位检测信号Dect_active,控制第一开关模块200断开或者闭合,并控制第二开关模块300的使能端EN2输入信号或者不输入信号,当第二开关模块300的使能端EN2不输入信号时,第二开关模块300处于13状态,也即第二开关模块300在默认状态下处于13状态。当第二开关模块300的使能端EN2输入信号,且该输入信号为有效信号时,第二开关模块300处于23状态;该输入信号为无效信号时,第二开关模块300也处于13状态。
以下对控制电路100控制第二开关模块300的使能端EN2输入或者不输
入信号的一种实现方式进行说明。
参见图3所示的本发明实施例二提供的电源管理电路的结构图,如图3所示,电源管理电路中的控制电路100还包括:反向器110、第三开关模块120和比较器130。
反向器110在控制电路100内部连接第一输入端I1、第三开关模块120的使能端EN3和第二输出端O2,用于控制第一开关模块200和第三开关模块120处于相反的状态。具体地,当反向器110的第一输入端I1输入有效检测信号Dect_active,如输入低电平信号时,第二输出端O2输出低电平信号,第一开关模块200的使能端EN1接收低电平信号,第一开关模块200处于断开状态,上述低电平信号通过反向器110的转化,成为高电平信号,第三开关模块120的使能端EN3接收高电平信号,第三开关模块120处于闭合状态;当反向器110的第一输入端I1输入高电平信号时,第二输出端O2输出高电平信号,第一开关模块200的使能端EN1接收高电平信号,第一开关模块200处于闭合状态,上述高电平信号通过反向器110的转化,成为低电平信号,第三开关模块120的使能端EN3接收低电平信号,第三开关模块120处于断开状态。
第三开关模块120连接第一输出端01、比较器130的输出端,第三开关模块120的使能端EN3连接反相器110。控制电路100通过第三开关模块120控制第二开关模块300的使能端EN2输入或者不输入信号。
具体地,当反相器110控制第三开关模块120为闭合状态时,即可接通第二开关模块的使能端EN2与比较器130的输出端的通路,从而第二开关模块300的使能端EN2可以输入信号,即实现了控制电路100对第二开关模块300的使能端EN2输入信号的控制。
相反地,当反相器110控制第三开关模块120为断开状态时,则断开第二开关模块的使能端EN2与比较器130的输出端的通路,从而第二开关模块300的使能端EN2不输入信号,即实现了控制电路100对第二开关模块300的使能端EN2不输入信号的控制。
比较器130在控制电路100内部连接第三输入端I3、第四输入端O4和第三开关模块120,用于对第四输入端I4接收的分压电路上的分压信号与第三输入端I3接收的预设的电压信号Vref进行比对,并根据比对结果,控制第一输出端O1输出的信号,从而实现控制电路100对第二开关模块300的使能端EN2输入有效信号或者无效信号的控制。
以上是对控制电路100控制第二开关模块300的使能端EN2输入或者不输入信号的一种实现方式进行的说明,以下将对控制电路100控制第二开关模块300的使能端EN2输入信号的情况下,输入有效信号或者无效信号的一种实现方式进行说明。
具体地,在第三开关模块120为闭合状态的情况下,也即在控制电路100控制第二开关模块300的使能端EN2输入信号的情况下,当比较器130比较分压电路上的分压高于Vref时,比较器130控制第一输出端O1输出低电平信号,该低电平信号即为有效信号,第二开关模块300的使能端EN2接收该有效信号,第二开关模块300处于23状态;而当比较器130比较分压电路上的分压不高于Vref时,比较器130控制第一输出端O1输出低电平信号,该低电平信号即为无效信号,第二开关模块300的使能端EN2接收该无效信号,该无效信号不能起到控制作用,第二开关模块300回到默认的13状态。
需要说明的是,控制电路100也可以通过其它方式控制第二开关模块300
的使能端EN2输入信号的情况下,输入有效信号或者无效信号。如,可以通过模拟数字转换器(Analog-to-digital Converter,ADC)与软件相结合的方法实现。具体地,首先通过ADC去采样分压电路的电压,然后通过软件的方法来对分压电路的电压与预设的电压信号Vref进行比对,并根据比对结果,控制第二开关模块300的使能端EN2输入低电平信号或者高电平信号,从而实现控制其输入有效信号或者无效信号。
此外,本发明实施例一和实施例二中提到的开关模块可以通过开关SW实现,也可以通过CMOS电路实现,本发明对此不做限定。
需要进一步说明的是,本发明实施例中,能量回收器件是指能够将环境中其他形式的能量转换为电能的器件,比如,能够将热能、光能、机械振动以及无线电波能量转换成电能的器件。主电池设置在主机中,此外,本说明书中的主机还包括微控制单元(Micro Control Unit,MCU)、在位检测电路和蓝牙等,其可以通过触点的形式支持在位检测功能。
具体地,主电池在位检测信号Dect_active是由控制电路100通过第一输入端I1从在位检测电路接收的,该在位检测电路包括第五输出端O5,第五输出端O5连接第一输入端I1。该在位检测电路用于检测主机是否处于在位状态,当检测到所述主机处于在位状态时,通过第五输出端O5输出有效检测信号Dect_active;当检测到所述主机处于不在位状态时,通过第五输出端O5输出无效检测信号Dect_active。在一种具体实现方式中,上述有效检测信号Dect_active可以为低电平信号,而无效检测信号Dect_active可以为高电平信号。
回到图2中,当控制电路100的第一输入端I1接收到无效检测信号
Dect_active,如接收到高电平信号时,控制电路100控制第二输出端O2输出高电平信号,即第一开关模块200的使能端EN1接收高电平信号,第一开关模块200为闭合状态;此外,控制电路100控制第一输出端O1输出低电平信号,并通过该低电平信号控制第二开关模块300的使能端EN2不输入信号。如前所述,当第二开关模块300的使能端EN2不输入信号时,其默认处于13状态,即接通能量回收器件与电压转化电路的通路,此时,能量回收器件输出的电压信号经过第二开关模块300到达电压转化电路400的第五输入端I5,电压转化电路400对上述电压信号进行转化(如,将能量回收器件输出的低压转换成目标电压),并将转化后的电压信号通过第四输出端O4输出至子电池,由此,实现了能量回收器件对子电池的充电。
需要说明的是,由于在位检测电路在检测到主机不在位时,也即在电压转化电路400与主电池断开连接时,通过第五输出端O5输出无效检测信号Dect_active,也即控制电路100通过第一输入端I1接收到无效检测信号Dect_active,因此,电压转化电路400在对能量回收器件输出的电压信号进行转化后,通过第四输出端O4直接输出至子电池。
当控制电路100的第一输入端I1接收到有效检测信号Dect_active,如接收到低电平信号时,控制电路100控制第二输出端O2输出低电平信号,即第一开关模块200的使能端EN1接收低电平信号,第一开关模块200为断开状态;此外,控制电路100控制第一输出端O1输出高电平信号,并通过该高电平信号控制第二开关模块300的使能端EN2输入信号。如前所述,当第二开关模块300的使能端EN2输入信号,且该输入信号为有效信号时,该有效信号控制第二开关模块300处于23状态,即接通控制电路与电压转化电路的通路,
此时,若子电池通过第二输入端I2向控制电路100输入电压信号时,控制电路100控制第三输出端O3输出该电压信号,由于第二开关模块300处于23状态,因此上述电压信号经过第二开关模块300达到电压转化电路400的第五输入端I5,电压转化电路400对上述电压信号进行转化(如,将子电池输出的低压转换成目标电压),并将转化后的电压信号通过第四输出端O4输出至主电池,由此,实现了子电池对主电池充电。
而在上述过程中,当第二开关模块300的使能端EN2输入信号,且该输入信号为无效信号时,由于无效信号不能起到控制作用,所以第二开关模块300处于默认的13状态,即接通能量回收器件与电压转化电路的通路,此时,能量回收器件输出的电压信号经过第二开关模块300到达电压转化电路400的第五输入端I5,电压转化电路400对上述电压信号进行转化(如,将能量回收器件输出的低压转换成目标电压),并将转化后的电压信号通过第四输出端O4输出至主电池,由此,实现了能量回收器件对主电池的充电。
此处,电压转化电路400在对能量回收器件输出的电压信号进行转化后,通过第四输出端O4直接输出至主电池,是因为在第一开关模块200处于断开的状态下,电压转化电路400的第四输出端O4只与主电池相连接。
图4为本发明实施例三提供的电源管理电路的结构图,如图4所示,电源管理电路还包括:最大功率点跟踪电路(Maximum Power Point Tracking Controller)600。
最大功率点跟踪电路600包括第六输入端I6,第六输入端I6连接比较器130的输出端。最大功率点跟踪电路600的第六输入端I6输入使能信号,其中,该使能信号可以为图3中的比较器110比较分压电路上的分压高于Vref
时通过输出端输出的有效信号。具体地,最大功率点跟踪电路600在接收到比较器110的输出端输出的使能信号时,周期性配置能量回收器件的工作电压,使能量回收器件工作在最大功率输出点,其中,上述工作电压是由最大功率点跟踪电路根据能量回收器件的开路电压以及预设的算法配置的。
具体地,最大功率点跟踪电路600根据能量回收器件的特性,周期性执行以下步骤:首先将电压转换电路设置为停止状态,然后采样能量回收器件的开路电压,根据预设的算法配置能量回收器件的工作电压,从而使能量回收器件工作在最大功率输出点,最后启动电压转换电路400。
综上,通过本发明的控制电路100可以实现对双电池的充电电流的回路控制,如,控制第一开关模块、第二开关模块和第三开关模块的断开与闭合,以及对双电池充电的低电压保护(Under-Voltage Protection,UVP)和过压保护(Overvoltage Protection,OVP)功能的实现;控制电路100还用于对最大功率点跟踪电路的使能控制。由此,可以保证当子电池的电压比主电池的电压低时,依然可以实现对主电池充电。
图5为本发明实施例提供的智能终端的电路图,图5中,该智能终端包括:主机和可与所述主机分离的收容器(如腕带),其中,所述主机包括主电池和在位检测电路,所述收容器包括能量回收器件、子电池和上述实施例一或者实施例二或者实施例三所述的电源管理电路。
其中,在位检测电路的一种实现方式可参见图6所示,图6中,该在位检测电路包括:第一电阻R1和第二电阻R2。具体地,在电源端VDD与检测输入端之间连接第一电阻R1和第二电阻R2,其中,在第一电阻R1与第二电阻R2之间具有两处引线,一处引线连接第五输出端O5,另一处引线通过电容
接地,此处的电容具有稳压滤波的作用,即可以保证第五输出端O5输出稳定的主电池在位检测信号Dect_active。具体地,当主机不在位时,检测输入端不输入信号,第五输出端O5输出的电压信号被第一电阻R1上拉到VDD,即第五输出端O5输出无效检测信号;而当主机在位时,检测输入端接地,即检测输入端、第一电阻R1、第二电阻R2和VDD之间形成回路,也即第一电阻R1和第二电阻R2对VDD进行分压,从而第五输出端O5输出的电压信号不等于VDD,也即第五输出端O5输出有效检测信号。
当然,在实际应用中,上述在位检测电路还可以通过其它电路实现,比如,电容、霍尔器件以及心率传感器等,本发明对此不作限定。以在位检测电路通过电容实现为例来说,当人体佩戴智能终端时,电容的容值会发生改变,因此,可以通过检测电容的容值的方式来检测主机是否在位。
可选地,图5中的收容器还可以包括分压电路,该分压电路包括第一分压电阻R3和第二分压电阻R4;在接地端与子电池之间连接第一分压电阻R3和第二分压电阻R4,在第一分压电阻R3和第二分压电阻R4之间具有一处引线,该一处引线连接第四输入端I4,其中,子电池的电压经过第一分压电阻R3与第二分压电阻R4分压后的电压信号通过第四输入端I4输入到比较器110,由比较器110对第一分压电阻R3的分压电压与Vref进行比对,根据比对结果,控制第一输出端O1输出的信号。其中,根据比对结果控制第一输出端O1输出的信号的方法如本发明实施例二所述,在此不作赘述。
需要说明的是,上述预设的电压信号Vref可以根据公式Vref=V1*(R3/R3+R4)进行确定,V1为预先设定的子电池的剩余电量阈值A对应的阈值电压,此处,子电池的剩余电量阈值A可以根据子电池的材料设定,如,可以
设定为80%或者50%等。当预先设定的子电池的剩余电量阈值A为80%,且子电池的开路电压为10V时,则V1可以为10*80%=8V;而当预先设定的子电池的剩余电量阈值A为50%,且子电池的开路电压为10V时,则V1可以为10*50%=5V。
根据上述公式可知,本发明通过判断子电池的电压来计算子电池的剩余电量;此外,本发明也可以根据预设的电压信号Vref对R3和R4的阻值进行调整。
综上,本发明实施例中的智能终端比较分压电路的电压与预设的电压信号Vref,即为判断子电池的剩余电量与剩余电量阈值A的关系,并在子电池的剩余电量高于剩余电量阈值A时,开通子电池对主电池充电的通路,并输出使能信号;而在子电池的剩余电量不高于剩余电量阈值A时,关断子电池对主电池充电的通路。
本发明实施例提供的智能终端可以为应用能量回收技术、具有双电池的智能手环、智能手表以及智能帽子等,其通过分压电路可以实现当子电池电压比主电池电压低时,也可以对主电池充电的功能,由此,提高了智能终端的充电效率。
图7为本发明实施例四提供的电源管理电路的充电方法的流程图,本发明实施例提供的充电方法是基于前述实施例中所描述的电源管理电路的基础之上。如图7所示,本发明实施例的电源管理电路的充电方法具体包括:
步骤701,第一输入端接收主电池在位检测信号。
具体地,控制电路的第一输入端接收在位检测电路的主电池在位检测信号Dect_active。其中,在位检测电路用于检测主机是否处于在位状态,当检
测到所述主机处于在位状态时,输出有效检测信号Dect_active;当检测到所述主机处于不在位状态时,输出无效检测信号Dect_active。在一种具体实现方式中,上述有效检测信号Dect_active可以为低电平信号,而无效检测信号Dect_active可以为高电平信号。
步骤702,根据所述主电池在位检测信号,接通能量回收器件对子电池充电的通路,或者接通能量回收器件或者子电池对主电池充电的通路。
本发明实施例中,能量回收器件是指能够将环境中其他形式的能量转换为电能的器件,比如,能够将热能、光能、机械振动以及无线电波能量转换成电能的器件。
步骤702中,当接收到的所述主电池在位检测信号为无效检测信号时,接通所述能量回收器件对所述子电池充电的通路;当接收到的所述主电池在位检测信号为有效检测信号时,接通子电池或者能量回收器件对主电池充电的通路。
本发明实施例提供的充电方法,保证了当主机处于在位状态时,优先对主电池进行充电,进而保证了双电池的正常充电。
专业人员应该还可以进一步意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
结合本文中所公开的实施例描述的方法或算法的步骤可以用硬件、处理器执行的软件模块,或者二者的结合来实施。软件模块可以置于随机存储器(RAM)、内存、只读存储器(ROM)、电可编程ROM、电可擦除可编程ROM、寄存器、硬盘、可移动磁盘、CD-ROM、或技术领域内所公知的任意其它形式的存储介质中。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
Claims (11)
- 一种电源管理电路,其特征在于,所述电源管理电路包括:控制电路、第一开关模块、第二开关模块、电压转化电路;所述控制电路包括:第一输入端、第一输出端和第二输出端;所述第一输入端用于接收主电池在位检测信号;所述第一输出端连接所述第二开关模块的使能端,所述第二输出端连接所述第一开关模块的使能端;所述第一开关模块连接所述电压转化电路、子电池和主电池;所述第二开关模块连接电压转化电路和能量回收器件;其中,所述控制电路根据接收的所述主电池在位检测信号,控制所述第一开关模块闭合或者断开,并控制所述第二开关模块不输入信号、输入有效信号或者输入无效信号;从而接通所述能量回收器件对所述子电池充电的通路,或者接通所述子电池或者所述能量回收器件对所述主电池充电的通路。
- 根据权利要求1所述的电源管理电路,其特征在于,当所述控制电路接收到的所述主电池在位检测信号为无效检测信号时,所述控制电路控制所述第一开关模块闭合,并控制所述第二开关模块的使能端不输入信号;当所述第二开关模块的使能端不输入信号时,所述第二开关模块处于第一状态,接通所述能量回收器件与所述电压转化电路的通路,所述电压转化电路对从所述能量回收器件接收的电压信号转化后输出至所述子电池,从而接通所述能量回收器件对所述子电池的充电通路。
- 根据权利要求1所述的电源管理电路,其特征在于,当所述控制电路接收到的所述主电池在位检测信号为有效检测信号时, 所述控制电路控制所述第一开关模块断开,并控制所述第二开关模块的使能端输入有效信号;当所述第二开关模块的使能端输入有效信号时,所述第二开关模块处于第二状态,接通所述控制电路与所述电压转化电路的通路,所述电压转化电路对从所述子电池接收的电压信号转化后输出至所述主电池,从而接通所述子电池对所述主电池充电的通路。
- 根据权利要求1所述的电源管理电路,其特征在于,当所述控制电路接收到的所述主电池在位检测信号为有效检测信号时,所述控制电路控制所述第一开关模块断开,并控制所述第二开关模块的使能端输入无效信号;当所述第二开关模块的使能端输入无效信号时,所述第二开关模块处于第一状态,接通所述能量回收器件与所述电压转化电路的通路,所述电压转化电路对从所述能量回收器件接收的电压信号转化后输出至所述主电池,从而接通所述能量回收器件对所述主电池充电的通路。
- 根据权利要求1所述的电源管理电路,其特征在于,所述控制电路还包括:第三输入端、第四输入端、反向器、第三开关模块和比较器;所述第三输入端用于接收预设的电压信号,所述第四输入端用于接收分压电路的分压信号;所述反向器连接所述第一输入端、所述第三开关模块的使能端和所述第二输出端,用于控制所述第一开关模块和所述第三开关模块处于相反的状态;所述第三开关模块连接所述第一输出端、所述比较器的输出端,所述第三开关模块的使能端连接所述反相器;所述比较器连接所述第三输入端、所述第四输入端和所述第三开关模块,用于对接收的所述分压电路的分压信号与接收的所述预设的电压信号进行比对;其中,当所述反相器控制所述第三开关模块为断开状态时,断开所述第二开关模块的使能端与所述比较器的输出端的通路,从而控制所述第二开关模块的使能端不输入信号;当所述反相器控制所述第三开关模块为闭合状态时,接通所述第二开关模块的使能端与所述比较器的输出端的通路,从而控制所述第二开关模块的使能端输入信号;在所述第二开关模块的使能端输入信号的情况下,当所述比较器比较所述分压电路的分压信号高于所述预设的电压信号时,所述比较器控制所述第一输出端输出有效信号,从而控制所述第二开关模块的使能端输入有效信号;当所述比较器比较所述分压电路的分压信号不高于所述预设的电压信号时,所述比较器控制所述第一输出端输出无效信号,从而控制所述第二开关模块的使能端输入无效信号。
- 根据权利要求5所述的电源管理电路,其特征在于,所述电源管理电路还包括:最大功率点跟踪电路;所述最大功率点跟踪电路与所述比较器的输出端相连接,用于当接收到所述比较器输出的使能信号时,周期性配置所述能量回收器件的工作电压,使所述能量回收器件工作在最大功率输出点,其中,所述工作电压是由所述最大功率点跟踪电路根据所述能量回收器件的开路电压以及预设的算法配置的。
- 一种智能终端,其特征在于,所述智能终端包括:主机和可与所述主 机分离的收容器,其中,所述主机包括主电池和在位检测电路,所述收容器包括能量回收器件、子电池和如权利要求1-6任一权项所述的电源管理电路;所述在位检测电路与所述第一输入端相连接,用于检测主机是否处于在位状态,当检测到所述主机处于在位状态时,输出有效检测信号;当检测到所述主机处于不在位状态时,输出无效检测信号。
- 根据权利要求7所述的智能终端,其特征在于,所述在位检测电路包括:第一电阻和第二电阻,在电源端与检测输入端之间连接第一电阻和第二电阻,其中,在所述第一电阻与所述第二电阻之间具有两处引线,一处引线连接第五输出端,另一处引线通过电容接地。
- 一种充电方法,其特征在于,所述方法包括:控制电路的第一输入端接收主电池在位检测信号;根据所述主电池在位检测信号,接通能量回收器件对子电池充电的通路,或者接通子电池或者能量回收器件对主电池充电的通路。
- 根据权利要求9所述的充电方法,其特征在于,所述根据所述主电池在位检测信号,接通能量回收器件对子电池充电的通路,包括:当接收到的所述主电池在位检测信号为无效检测信号时,接通所述能量回收器件对所述子电池充电的通路。
- 根据权利要求9所述的充电方法,其特征在于,所述根据所述主电池在位检测信号,接通子电池或者能量回收器件对主电池充电的通路,包括:当接收到的所述主电池在位检测信号为有效检测信号时,接通子电池或者能量回收器件对主电池充电的通路。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP16840842.5A EP3337003B1 (en) | 2015-09-02 | 2016-09-01 | Power management circuit, intelligent terminal and charging method |
US15/756,985 US11005273B2 (en) | 2015-09-02 | 2016-09-01 | Power management circuit, intelligent terminal, and charging method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510559299.9 | 2015-09-02 | ||
CN201510559299.9A CN106487055B (zh) | 2015-09-02 | 2015-09-02 | 电源管理电路、智能终端及充电方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017036413A1 true WO2017036413A1 (zh) | 2017-03-09 |
Family
ID=58186712
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2016/097828 WO2017036413A1 (zh) | 2015-09-02 | 2016-09-01 | 电源管理电路、智能终端及充电方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US11005273B2 (zh) |
EP (1) | EP3337003B1 (zh) |
CN (1) | CN106487055B (zh) |
WO (1) | WO2017036413A1 (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108288866A (zh) * | 2018-03-19 | 2018-07-17 | 西安九天无限智能科技有限公司 | 一种应用在ar智能眼镜上的双电池管理系统 |
CN111938759A (zh) * | 2020-09-04 | 2020-11-17 | 盈甲医疗器械制造(上海)有限公司 | 具有可同时按压的刀头按钮的超声外科器械 |
CN113595188A (zh) * | 2021-07-28 | 2021-11-02 | 中国人民解放军陆军工程大学 | 多能源模式的电池充电路由器 |
CN113725995A (zh) * | 2021-08-24 | 2021-11-30 | 南京南瑞继保电气有限公司 | 一种配电终端双后备电源管理系统及其管理方法 |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109038835B (zh) * | 2018-06-21 | 2020-09-15 | 佛山市顺德区中山大学研究院 | 一种具有最大功率点跟踪功能的微能量采集电路 |
CN110764397B (zh) * | 2018-07-26 | 2021-07-23 | 青岛海信移动通信技术股份有限公司 | 一种智能手表及其模式切换方法 |
WO2020020356A1 (zh) * | 2018-07-26 | 2020-01-30 | 青岛海信移动通信技术股份有限公司 | 智能手表及其模式切换方法 |
CN110764398B (zh) * | 2018-07-26 | 2021-06-01 | 青岛海信移动通信技术股份有限公司 | 一种智能手表及其模式切换方法 |
TWI709032B (zh) * | 2018-09-19 | 2020-11-01 | 中原大學 | 智慧型獵能裝置、電壓訊號應用系統及其能源管理模組 |
CN109217425A (zh) * | 2018-10-16 | 2019-01-15 | 深圳市联讯发科技有限公司 | 一种充电器电路及其智能充电控制方法 |
US11532951B2 (en) | 2019-10-17 | 2022-12-20 | Samsung Electronics Co., Ltd | Electronic device including resonant charging circuit |
US11476694B2 (en) | 2019-10-17 | 2022-10-18 | Samsung Electronics Co., Ltd | Electronic device including resonant charging circuit |
CN111934276A (zh) * | 2020-08-11 | 2020-11-13 | 广东电网有限责任公司 | 用于局放检测装置的供电系统及其供电方法 |
CN111987787B (zh) * | 2020-08-28 | 2022-07-26 | 北京航空航天大学 | 一种能量可回收水下航行器的电源管理系统 |
CN112448462A (zh) * | 2020-11-19 | 2021-03-05 | 深圳奥尼电子股份有限公司 | 电源管理电路、电源管理方法及电子设备 |
CN116566197B (zh) * | 2023-05-09 | 2024-04-09 | 广州市依歌智能科技有限公司 | 一种智能窗口导通取电芯片、供电电路 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000324719A (ja) * | 1999-05-17 | 2000-11-24 | Canon Inc | 電子機器、その制御方法および記憶媒体 |
CN101388555A (zh) * | 2007-09-14 | 2009-03-18 | 联想移动通信科技有限公司 | 一种便携设备的智能扩展电源系统 |
CN101867198A (zh) * | 2009-04-20 | 2010-10-20 | 龙旗科技(上海)有限公司 | 一种手机备用电池的实现装置和控制方法 |
CN101997327A (zh) * | 2010-12-07 | 2011-03-30 | 东莞市钜大电子有限公司 | 便携式智能锂电池充电器 |
CN103227502A (zh) * | 2013-04-07 | 2013-07-31 | 无锡职业技术学院 | 一种智能电池 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2986059B2 (ja) | 1995-03-08 | 1999-12-06 | インターナショナル・ビジネス・マシーンズ・コーポレイション | バッテリ充電装置 |
KR100536589B1 (ko) * | 1999-07-27 | 2005-12-14 | 삼성전자주식회사 | 배터리 전원의 전자 장치 및 그의 전원 공급 제어 방법 |
JP2008048473A (ja) | 2006-08-10 | 2008-02-28 | Sanyo Electric Co Ltd | 充電器 |
CN101789690B (zh) * | 2010-01-26 | 2011-12-14 | 山特电子(深圳)有限公司 | 一种ups前级升压装置 |
US8405360B2 (en) * | 2010-04-07 | 2013-03-26 | Evp Technology Llc Usa | Energy-efficient fast charging device and method |
-
2015
- 2015-09-02 CN CN201510559299.9A patent/CN106487055B/zh active Active
-
2016
- 2016-09-01 US US15/756,985 patent/US11005273B2/en active Active
- 2016-09-01 EP EP16840842.5A patent/EP3337003B1/en active Active
- 2016-09-01 WO PCT/CN2016/097828 patent/WO2017036413A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000324719A (ja) * | 1999-05-17 | 2000-11-24 | Canon Inc | 電子機器、その制御方法および記憶媒体 |
CN101388555A (zh) * | 2007-09-14 | 2009-03-18 | 联想移动通信科技有限公司 | 一种便携设备的智能扩展电源系统 |
CN101867198A (zh) * | 2009-04-20 | 2010-10-20 | 龙旗科技(上海)有限公司 | 一种手机备用电池的实现装置和控制方法 |
CN101997327A (zh) * | 2010-12-07 | 2011-03-30 | 东莞市钜大电子有限公司 | 便携式智能锂电池充电器 |
CN103227502A (zh) * | 2013-04-07 | 2013-07-31 | 无锡职业技术学院 | 一种智能电池 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3337003A4 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108288866A (zh) * | 2018-03-19 | 2018-07-17 | 西安九天无限智能科技有限公司 | 一种应用在ar智能眼镜上的双电池管理系统 |
CN111938759A (zh) * | 2020-09-04 | 2020-11-17 | 盈甲医疗器械制造(上海)有限公司 | 具有可同时按压的刀头按钮的超声外科器械 |
CN113595188A (zh) * | 2021-07-28 | 2021-11-02 | 中国人民解放军陆军工程大学 | 多能源模式的电池充电路由器 |
CN113595188B (zh) * | 2021-07-28 | 2023-06-23 | 中国人民解放军陆军工程大学 | 多能源模式的电池充电路由器 |
CN113725995A (zh) * | 2021-08-24 | 2021-11-30 | 南京南瑞继保电气有限公司 | 一种配电终端双后备电源管理系统及其管理方法 |
CN113725995B (zh) * | 2021-08-24 | 2024-01-02 | 南京南瑞继保电气有限公司 | 一种配电终端双后备电源管理系统及其管理方法 |
Also Published As
Publication number | Publication date |
---|---|
CN106487055A (zh) | 2017-03-08 |
EP3337003B1 (en) | 2024-03-20 |
EP3337003A1 (en) | 2018-06-20 |
US11005273B2 (en) | 2021-05-11 |
EP3337003A4 (en) | 2018-09-05 |
CN106487055B (zh) | 2019-06-11 |
US20180248387A1 (en) | 2018-08-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017036413A1 (zh) | 电源管理电路、智能终端及充电方法 | |
US9673643B2 (en) | Battery presence detecting method, apparatus and charging system | |
ES2951335T3 (es) | Método, sistema, terminal y cargador de carga rápida | |
US9748761B2 (en) | Overcurrent detection circuit, host using the same, and method of detecting overcurrent | |
JP7041808B2 (ja) | バッテリーパック | |
JP5960280B2 (ja) | 充電器 | |
US20080197707A1 (en) | Power management unit with battery detection | |
US11139664B2 (en) | Battery protector hibernate input separate from VDD, low power output | |
CN103607009A (zh) | 一种带自动保护功能的充放电电路 | |
US11114876B2 (en) | Battery safety mechanism for battery fault conditions | |
JP2008048478A (ja) | 充放電制御回路および充電式電源装置 | |
WO2019029069A1 (zh) | 电池保护芯片、供电装置及电子烟 | |
CN219436644U (zh) | 电池保护电路、电池组件和电子设备 | |
CN109792392A (zh) | 保护电路 | |
US20160218531A1 (en) | Charging method and portable electronic device using the same | |
WO2017031673A1 (zh) | 穿戴式设备及其充电方法 | |
CN203632308U (zh) | 充电器 | |
US20160363952A1 (en) | Control of a series pass circuit for reducing singing capacitor noise | |
CN110912239A (zh) | 一种多口充电设备 | |
TWI527339B (zh) | 充電裝置 | |
US10254812B1 (en) | Low inrush circuit for power up and deep power down exit | |
CN104752783B (zh) | 一种终端电池激活方法、装置和终端 | |
CN110739732B (zh) | 便携式电子设备、芯片及其充电系统和充电方法 | |
CN211018347U (zh) | 一种多口充电设备 | |
CN218216771U (zh) | 蓝牙耳机充电仓 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16840842 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15756985 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2016840842 Country of ref document: EP |