WO2017036058A1 - 磁力测功器 - Google Patents

磁力测功器 Download PDF

Info

Publication number
WO2017036058A1
WO2017036058A1 PCT/CN2016/000503 CN2016000503W WO2017036058A1 WO 2017036058 A1 WO2017036058 A1 WO 2017036058A1 CN 2016000503 W CN2016000503 W CN 2016000503W WO 2017036058 A1 WO2017036058 A1 WO 2017036058A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
measuring mechanism
force measuring
dynamometer
component
Prior art date
Application number
PCT/CN2016/000503
Other languages
English (en)
French (fr)
Inventor
李启飞
Original Assignee
李启飞
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 李启飞 filed Critical 李启飞
Publication of WO2017036058A1 publication Critical patent/WO2017036058A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/24Devices for determining the value of power, e.g. by measuring and simultaneously multiplying the values of torque and revolutions per unit of time, by multiplying the values of tractive or propulsive force and velocity

Definitions

  • the dynamometers are mechanical dynamometers, D series hydraulic dynamometers, Y series water eddy current dynamometers and electric dynamometers (DC and AC).
  • the magnetic dynamometer uses the principle of magnetic coupling to convert the mechanical energy of the power output into the thermal energy formed by the induced eddy current loss, and then the thermal energy entering the dynamometer absorbs and carries away the thermal energy. A small part of the thermal energy is directly from the dynamometer itself. Cooling heat to the air. The emergence of magnetic dynamometers has undoubtedly added a product with excellent performance to the dynamometer family.
  • the invention focuses on applying the magnetic coupling technical method to the dynamometer, and designing a ball screw force measuring mechanism to improve the accuracy and reliability of the dynamometer, and the six types of magnetic force are extended along with the technical method.
  • Figure 1 shows a magnetic dynamometer.
  • reference numeral 1 is a base
  • reference numeral 10 is a correction arm
  • a correction component is formed together with a legal code
  • a weighing plate (not shown)
  • a reference numeral 11 is a ball screw force measuring mechanism component
  • a speed measuring mechanism component is a speed measuring sensor and fixed.
  • the speed measuring gear on the center transmission shaft is composed of a magnetic coupling energy absorbing conversion member in which the components of the components 1, 10, 11 and the speed measuring mechanism are removed.
  • Figures 2 and 3 show the components of the ball screw force measuring mechanism.
  • reference numerals 11-1 and 11-4 are crossed-axis helical gear transmissions or worm and worm gear combination transmissions
  • 11-2 is a ball screw nut (integrated with parts 11-4)
  • 11-5 is a ball screw. of Screw, 11-2, 11-5 and steel ball make up the ball screw assembly
  • 11-3 is a split self-lubricating bearing
  • 11-6 is a tensile pressure sensor
  • 11-7 is a joint bolt
  • 11-8 For the fixed seat
  • 11-9 is the bearing bracket
  • 11-10 is the bearing seat cover.
  • the ball screw assembly can be replaced by a sliding screw assembly (composed of a nut and a lead screw only) or a grooved cam assembly (composed of a grooved cam, a roller and a roller fixed shaft), and the force measuring mechanism of the ball screw assembly Component accuracy and reliability are higher.
  • Figure 4 and Figure 5 show the A-type magnetic dynamometer.
  • Figure 6 and Figure 7 show a series A magnetic dynamometer.
  • Figures 8 and 9 show a B-type magnetic dynamometer.
  • Figure 10 and Figure 11 show a series B-type magnetic dynamometer.
  • Figure 12 and Figure 13 show a C-type magnetic dynamometer.
  • Figure 14 shows the components of the ball screw force measuring mechanism, which are driven by parallel shafts.
  • the numbers 11-1 and 11-4 in the figure are parallel shaft gear transmissions.
  • the other components are the same, except that they are rotated by an angle in space.
  • Figure 15 shows a magnetic dynamometer using eccentric shaft lever force measuring mechanism components.
  • Figures 16 and 17 show the components of the eccentric shaft lever force measuring mechanism.
  • reference numeral 16-1 is a connecting arm
  • 16-2 is a joint bolt
  • 16-3 is a tension pressure sensor
  • 16-4 is a fixed disk
  • 16-5 is an eccentric shaft
  • 16-6 is a bearing bracket
  • 16- 7 is the dial
  • 16-8 is the pointer
  • 16-9 is the pinion
  • 16-10 is the shaft
  • 16-11 is the sector gear
  • 16-12 is the hammer.
  • Figure 18 shows an A-type magnetic dynamometer using an eccentric shaft lever force measuring mechanism component, similar to other types of dynamometers.
  • Figure 19 shows a magnetic dynamometer using a simple lever force measuring mechanism component.
  • Reference numeral 17 in the figure is a simple lever force measuring mechanism member
  • 17-1 is a connecting arm
  • 17-2, 17-4 are joint bolts
  • 17-3 is a tension pressure sensor
  • 17-5 is a fixed seat.
  • the above five types of magnetic dynamometers include the following components: a force measuring mechanism component, a speed measuring mechanism component, a correcting component, and a magnetic coupling energy absorbing conversion component.
  • reference numeral 1 is a base
  • 2 is a bearing bracket
  • 3 is a speed measuring sensor
  • 4 is a center transmission shaft
  • 5 is a speed measuring gear
  • 6 is a bearing housing cover
  • 7 is an induction disk assembly
  • 8 is a magnetic block fixing disk assembly.
  • 9 is a cylinder
  • 10 is a correction arm
  • 11 is a ball screw force measuring mechanism component
  • 12 is a series A, B type magnetic dynamometer in the middle of the series inductive disk assembly
  • 13 is a C-type magnetic dynamometer
  • the rotor end cover, 15 is an induction cylinder assembly
  • 14 is a magnetic block fixed cylinder assembly
  • 16 is an eccentric shaft lever force measuring mechanism component
  • 17 is a simple lever force measuring mechanism component.
  • any group can theoretically be connected in series, which can be determined according to the need, and both groups shown in Fig. 6 and Fig. 10 are connected in series.
  • the force measuring mechanism component may be selected from a ball screw force measuring mechanism component, a sliding screw force measuring mechanism component, a groove cam force measuring mechanism component or an eccentric shaft lever force measuring mechanism component.
  • the magnetic coupling energy absorption conversion component uses the magnetic coupling principle to convert the mechanical energy of the power output into the thermal energy formed by the induced eddy current loss, and then absorbs and carries away the thermal energy from the cooling fluid entering the magnetic coupling energy conversion absorbing member, and a small part of the thermal energy is
  • the magnetic coupling energy conversion absorbing member itself directly dissipates heat to the air.
  • the inner rotor of the magnetic coupling energy absorbing conversion member shown in the drawings of the specification employs a magnetic block fixing disk assembly or a magnetic block fixing cylinder assembly, and the outer rotor employs an induction disk assembly or an induction cylinder assembly.
  • the magnetic coupling energy absorbing conversion member may also employ an induction disk assembly or an induction cylinder assembly for the inner rotor, and a magnetic block fixing disk assembly or a magnetic block fixing cylinder assembly for the outer rotor.
  • the magnetic coupling energy absorption conversion component can also be directly combined with the torque sensor (the torque sensor can be regarded as a combination of the force measuring mechanism component and the speed measuring mechanism component) to form a dynamometer system, which can be called D-type magnetic dynamometer Device.
  • the various components and components included in the magnetic dynamometer can be processed and manufactured by modern industrial manufacturing technology.
  • Speed sensor, tension sensor, magnetic block and bearing can be produced by professional manufacturers.
  • Other parts can be machined, mold formed and welded.
  • the magnetic dynamometer must be built to complete the test bench (each power torque interval) to complete the calibration of the serialized product.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

磁力测功器包括磁力耦合能量转化吸收部件、测力机构部件、测速机构部件、校正部件等。磁力测功器利用磁力耦合原理使动力输出的机械能转化为感应涡电流损耗而形成的热能,然后由进入磁力耦合能量转化吸收部件的冷却液将此热能吸收并带走,少部分热能由磁力耦合能量转化吸收部件本身直接散热给空气。磁力测功器可划归测功器、磁力驱动、动设备领域,分为六种类型:A型磁力测功器、串联A型磁力测功器、B型磁力测功器、串联B型磁力测功器、C型磁力测功器、D型磁力测功器。

Description

磁力测功器 技术领域
测功器、磁力驱动、动设备。
背景技术
从人类利用地磁驱动发明罗盘开始,磁场能量的利用研究便一直没有停止过。伴随着现代磁学理论的发展,磁力驱动产品在工业中的应用便层出不穷,磁力泵、磁力轴承、磁力耦合器、磁力齿轮等等。限于磁性材料的制约,磁力驱动技术发展缓慢,直到1983年,中国发明了高性能永磁材料钕铁硼,磁力驱动产品才得到快速发展应用。
测功器现有技术为机械式测功器、D系列水力测功器、Y系列水涡流测功器和电力测功器(直流和交流)等。
磁力测功器利用磁力耦合原理使动力输出的机械能转化为感应涡电流损耗而形成的热能,然后由进入测功器的冷却液将此热能吸收并带走,少部分热能由测功器本身直接散热给空气。磁力测功器的出现无疑为测功器家族增添了一种性能优良的产品。
发明内容
本发明重在将磁力耦合的技术方法应用到测功器中,并设计出滚珠丝杠测力机构来提高测功器的精度和可靠性,伴随着这种技术方法而引伸出六种类型磁力测功器——A型磁力测功器、串联A型磁力测功器、B型磁力测功器、串联B型磁力测功器、C型磁力测功器、D型磁力测功器。
附图说明
图1所示为磁力测功器。图中标号1为底座,标号10为校正臂,与法码、称盘(图中未示出)一起组成校正部件,标号11为滚珠丝杠测力机构部件,测速机构部件由测速传感器和固定在中心传动轴上的测速齿轮组成,图中除去部件1、10、11和测速机构部件后的其它零部件总和为磁力耦合能量吸收转换部件。
图2、图3所示为滚珠丝杠测力机构部件。图中标号11-1和11-4为交错轴斜齿轮传动或蜗杆、蜗轮组合传动,11-2为滚珠丝杠的螺母(和零件11-4合为一体),11-5为滚珠丝杠的 丝杠,11-2、11-5和钢球等组成滚珠丝杠组件,11-3为剖分式自润滑轴承,11-6为拉压力传感器,11-7为活节螺栓,11-8为固定座,11-9为轴承座支架,11-10为轴承座盖。滚珠丝杠组件可以用滑动丝杠组件(仅由螺母和丝杠组成)或沟槽凸轮组件(由沟槽凸轮、滚子和滚子固定轴组成)代替,用滚珠丝杠组件的测力机构部件精度、可靠性要高些。
图4、图5所示为A型磁力测功器。
图6、图7所示为串联A型磁力测功器。
图8、图9所示为B型磁力测功器。
图10、图11所示为串联B型磁力测功器。
图12、图13所示为C型磁力测功器。
图14所示为滚珠丝杠测力机构部件,采用平行轴传动,图中标号11-1和11-4为平行轴齿轮传动。与图2、图3相比,其它零部件组成一样,只是在空间上旋转了一个角度。
图15所示为采用偏心轴杠杆测力机构部件的磁力测功器。
图16、图17所示为偏心轴杠杆测力机构部件。图中标号16-1为连接臂,16-2为活节螺栓,16-3为拉压力传感器,16-4为固定盘,16-5为偏心轴,16-6为轴承座支架,16-7为刻度盘,16-8为指针,16-9为小齿轮,16-10为轴,16-11为扇形齿轮,16-12为称锤。
图18所示为采用偏心轴杠杆测力机构部件的A型磁力测功器,其它类型测功器类似。
图19所示为采用简易杠杆测力机构部件的磁力测功器。图中标号17为简易杠杆测力机构部件,17-1为连接臂,17-2、17-4为活节螺栓,17-3为拉压力传感器,17-5为固定座。
以上五种类型的磁力测功器,都包括以下部分:测力机构部件、测速机构部件、校正部件和磁力耦合能量吸收转换部件。
说明书附图中标号1为底座,2为轴承座支架,3为测速传感器,4为中心传动轴,5为测速齿轮,6为轴承座盖,7为感应盘组件,8为磁块固定盘组件,9为筒体,10为校正臂,11为滚珠丝杠测力机构部件,12为串联A、B型磁力测功器中中间串联的感应盘组件,13为C型磁力测功器的外转子端盖,15为感应筒组件,14为磁块固定筒组件,16为偏心轴杠杆测力机构部件,17为简易杠杆测力机构部件。
对于串联型磁力测功器,理论上可串联任意组,可根据需要决定,图6和图10所示均为3组串联。
测力机构部件可选用滚珠丝杠测力机构部件、滑动丝杠测力机构部件、沟槽凸轮测力机构部件或偏心轴杠杆测力机构部件。
磁力耦合能量吸收转换部件利用磁力耦合原理使动力输出的机械能转化为感应涡电流损耗而形成的热能,然后由进入磁力耦合能量转化吸收部件的冷却液将此热能吸收并带走,少部分热能由磁力耦合能量转化吸收部件本身直接散热给空气。说明书附图中所示磁力耦合能量吸收转换部件的内转子采用磁块固定盘组件或磁块固定筒组件,而外转子采用感应盘组件或感应筒组件。磁力耦合能量吸收转换部件也可以内转子采用感应盘组件或感应筒组件,而外转子采用磁块固定盘组件或磁块固定筒组件。
磁力耦合能量吸收转换部件也可以单独直接和扭矩传感器(扭矩传感器可看作是测力机构部件和测速机构部件的组合体)组合使用组成一种测功系统,可称之为D型磁力测功器。
具体实施方式
磁力测功器所包含的各组成零部件,现代工业制造技术均可加工制造。测速传感器、拉压力传感器、磁块、轴承均可由专业厂商配套生产,其它零部件机加工、模具成形、焊接即可。
磁力测功器作为一种测功器,其成品要想成功应用,必须建立完备的测试台架(各功率扭矩区间),以完成系列化产品的标定。

Claims (11)

  1. 磁力耦合能量转化吸收部件的结构方案——其特征是由内外转子组成,其一转子上装有磁极交替排列的永磁块,另一转子上装有感应盘或感应筒,当二者有相对运动时,感应盘或感应筒上便产生感应涡电流,感应涡电流损耗而将动力输出的机械能转化为热能,然后由进入磁力耦合能量吸收转换部件的冷却液将此热能吸收并带走,少部分热能由磁力耦合能量吸收转换部件本身直接散热给空气。
  2. A型磁力测功器的结构方案——其特征是包括磁力耦合能量转化吸收部件、滚珠丝杠测力机构部件或滑动丝杠测力机构部件或沟槽凸轮测力机构部件或偏心轴杠杆测力机构部件或简易杠杆测力机构部件,A型磁力测功器的磁力耦合能量转化吸收部件采用感应盘与磁块固定盘,磁场耦合间隙为定值。
  3. 串联A型磁力测功器的结构方案——其特征是包括磁力耦合能量转化吸收部件、滚珠丝杠测力机构部件或滑动丝杠测力机构部件或沟槽凸轮测力机构部件或偏心轴杠杆测力机构部件或简易杠杆测力机构部件,串联A型磁力测功器的磁力耦合能量转化吸收部件采用感应盘与磁块固定盘,磁场耦合间隙为定值,串联结构。
  4. B型磁力测功器的结构方案——其特征是包括磁力耦合能量转化吸收部件、滚珠丝杠测力机构部件或滑动丝杠测力机构部件或沟槽凸轮测力机构部件或偏心轴杠杆测力机构部件或简易杠杆测力机构部件,B型磁力测功器的磁力耦合能量转化吸收部件采用感应盘与磁块固定盘,磁场耦合间隙可变,有限矩作用。
  5. 串联B型磁力测功器的结构方案——其特征是包括磁力耦合能量转化吸收部件、滚珠丝杠测力机构部件或滑动丝杠测力机构部件或沟槽凸轮测力机构部件或偏心轴杠杆测力机构部件或简易杠杆测力机构部件,串联B型磁力测功器的磁力耦合能量转化吸收部件采用感应盘与磁块固定盘,磁场耦合间隙可变,有限矩作用,串联结构。
  6. C型磁力测功器的结构方案——其特征是包括磁力耦合能量转化吸收部件、滚珠丝杠测力机构部件或滑动丝杠测力机构部件或沟槽凸轮测力机构部件或偏心轴杠杆测力机构部件或简易杠杆测力机构部件,C型磁力测功器的磁力耦合能量转化吸收部件采用感应筒与磁块固定筒。
  7. D型磁力测功器的结构方案——其特征是包括磁力耦合能量转化吸收部件、扭矩传感器。
  8. 根据权利要求2、权利要求3、权利要求4、权利要求5、权利要求6所述的磁力测功器,其特征是可以使用滚珠丝杠测力机构部件或滑动丝杠测力机构部件或沟槽凸轮测力机构部件,滚珠丝杠测力机构部件的工作原理是经平行轴传动或相交轴传动或交错轴传动驱动滚珠丝杠组件,使旋转运动变为直线运动,从而给拉压力传感器施加拉力或压力,然后由拉压 力传感器输出信号,滚珠丝杠测力机构部件中的滚珠丝杠组件由滑动丝杠组件代替便成为滑动丝杠测力机构部件,滚珠丝杠测力机构部件中的滚珠丝杠组件由沟槽凸轮组件代替便成为沟槽凸轮测力机构部件。
  9. 根据权利要求2、权利要求3、权利要求4、权利要求5、权利要求6所述的磁力测功器,其特征是可以使用偏心轴杠杆测力机构部件,偏心轴杠杆测力机构部件主要是利用空间杠杆使称锤的转矩与磁力耦合能量吸收转换部件外转子产生的转矩相平衡的原理,由杠杆中间连接的拉压力传感器输出信号或由偏心轴上固定的扇形齿轮的偏转带动指针偏转在刻度盘上指示数值。
  10. 根据权利要求2、权利要求3、权利要求4、权利要求5、权利要求6所述的磁力测功器,其特征是可以使用简易杠杆测力机构部件,简易杠杆测力机构部件中的拉压力传感器一端直接通过活节螺栓固定在底座上,另一端直接通过活节螺栓固定在磁力耦合能量转化吸收部件的外转子上,磁力耦合能量转化吸收部件的外转子直接通过活节螺栓对拉压力传感器施加拉力或压力,然后由拉压力传感器输出信号。
  11. 根据权利要求1、权利要求2、权利要求3、权利要求4、权利要求5所述的磁力耦合能量转化吸收部件和磁力测功器,其特征是磁力耦合能量转化吸收部件中的感应盘与磁块固定盘之间存在磁场耦合间隙,即感应盘与磁块固定盘之间的距离,对于B型磁力测功器,磁场耦合间隙可在耦合磁场的相互作用下在一定范围内自动调节,起到一种限矩保护作用,对于A型磁力测功器,磁场耦合间隙为定值。
PCT/CN2016/000503 2015-09-02 2016-08-31 磁力测功器 WO2017036058A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510573562.XA CN108318166A (zh) 2015-09-02 2015-09-02 磁力测功器
CN201510573562.X 2015-09-02

Publications (1)

Publication Number Publication Date
WO2017036058A1 true WO2017036058A1 (zh) 2017-03-09

Family

ID=58186490

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/000503 WO2017036058A1 (zh) 2015-09-02 2016-08-31 磁力测功器

Country Status (2)

Country Link
CN (1) CN108318166A (zh)
WO (1) WO2017036058A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113390547A (zh) * 2019-10-15 2021-09-14 浙江大学台州研究院 一种基于转速测定装置的测功机

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101382462A (zh) * 2008-10-24 2009-03-11 北京工业大学 毂式液冷永磁测功机
US20110169363A1 (en) * 2009-06-11 2011-07-14 Douglas Bruce Summers Variable Speed Electric Motor/Generator
CN102384844A (zh) * 2011-10-17 2012-03-21 吉林大学 由电磁和测功机混合动态加载的机床主轴可靠性试验装置
CN103532435A (zh) * 2012-07-03 2014-01-22 东莞市振华新能源科技有限公司 一种非接触式磁力驱动机构

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201159677Y (zh) * 2008-03-07 2008-12-03 北京工业大学 一种水冷永磁涡流测功机
CN201569525U (zh) * 2009-10-30 2010-09-01 北京工业大学 毂式液冷永磁测功机
CN202092808U (zh) * 2011-04-22 2011-12-28 西安航志机电设备科技有限公司 电动机磁滞力矩与波动力矩测试仪
CN103175692A (zh) * 2013-03-11 2013-06-26 中国人民解放军第二炮兵装备研究院第三研究所 车辆动态性能综合测试台及测试方法
CN203414213U (zh) * 2013-07-30 2014-01-29 东莞市张力机电科技有限公司 一种磁滞测功机

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101382462A (zh) * 2008-10-24 2009-03-11 北京工业大学 毂式液冷永磁测功机
US20110169363A1 (en) * 2009-06-11 2011-07-14 Douglas Bruce Summers Variable Speed Electric Motor/Generator
CN102384844A (zh) * 2011-10-17 2012-03-21 吉林大学 由电磁和测功机混合动态加载的机床主轴可靠性试验装置
CN103532435A (zh) * 2012-07-03 2014-01-22 东莞市振华新能源科技有限公司 一种非接触式磁力驱动机构

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LI, CUNHE: "Research on the property of magnetic coupling and test platform design", ELECTRONIC TECHNOLOGY & INFORMATION SCIENCE , CHINA MASTER'S THESES FULL-TEXT DATABASE, 15 March 2015 (2015-03-15), ISSN: 1674-0246 *
ZHOU, DASHUAI: "Research on high-speed spindle comprehensive performance testing and some keys technological", SCIENCE -ENGINEERING, CHINA DOCTORAL DISSERTATIONS FULL-TEXT DATABASE, 15 September 2011 (2011-09-15), ISSN: 1674-022X *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113390547A (zh) * 2019-10-15 2021-09-14 浙江大学台州研究院 一种基于转速测定装置的测功机
CN113390546A (zh) * 2019-10-15 2021-09-14 浙江大学台州研究院 一种基于力矩测定装置的测功机
CN113390547B (zh) * 2019-10-15 2022-12-13 浙江大学台州研究院 一种基于转速测定装置的测功机
CN113390546B (zh) * 2019-10-15 2023-02-10 浙江大学台州研究院 一种基于力矩测定装置的测功机

Also Published As

Publication number Publication date
CN108318166A (zh) 2018-07-24

Similar Documents

Publication Publication Date Title
EP3196505B1 (en) Outer cup rotary axial eddy current damper
CN108721009B (zh) 磁流变串联弹性驱动器
CN109178186B (zh) 逆磁致伸缩中轴力矩传感器
CN104880314B (zh) 一种rv减速器综合性能测试仪中的新型结构
EP1865204A3 (de) Vorrichtung zur Messung des Verstellhubes einer hydraulischen Verstelleinrichtung
WO2017036058A1 (zh) 磁力测功器
WO2017054366A1 (zh) 极大负荷可调磁力测功器
CN104458246A (zh) 磁力泵液磁相干及动力传动特性研究试验装置
JP6506684B2 (ja) 試験装置
CN103486999B (zh) 一种热真空环境下的高精度角度和扭矩测试装置
CN104006721B (zh) 一种轴承轴向游隙测量方法
CN203561340U (zh) 一种热真空环境下的高精度角度测试装置
CN103486981B (zh) 一种热真空环境下的高精度角度测试装置
CN203561468U (zh) 一种热真空环境下的高精度扭矩测试部件
CN107782494A (zh) 一种新型工程生产压力校验仪
CN203561350U (zh) 一种热真空环境下的高精度角度和扭矩测试装置
CN204612642U (zh) 转矩转速传感器快速安装调整装置
CN203929397U (zh) 液压圆盘式测功机
JP2002277350A (ja) 変速機の解析試験装置
CN203688252U (zh) 一种电动缸负载测试装置
CN104931196A (zh) 一种磁性液体正弦微压发生器
CN103926532A (zh) 线性电机性能参数检测系统
CN201975258U (zh) 一种高精度核磁共振强磁体粘接夹具
CN206095518U (zh) 一种新型工程生产压力校验仪
CN110657843A (zh) 一种磁力传动发电机性能测试实验台

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16840498

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16840498

Country of ref document: EP

Kind code of ref document: A1