WO2017036011A1 - 一种基于双光子吸收的硅纳米线光电探测器 - Google Patents

一种基于双光子吸收的硅纳米线光电探测器 Download PDF

Info

Publication number
WO2017036011A1
WO2017036011A1 PCT/CN2015/098584 CN2015098584W WO2017036011A1 WO 2017036011 A1 WO2017036011 A1 WO 2017036011A1 CN 2015098584 W CN2015098584 W CN 2015098584W WO 2017036011 A1 WO2017036011 A1 WO 2017036011A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon
photon absorption
layer
nanowire
silicon nanowire
Prior art date
Application number
PCT/CN2015/098584
Other languages
English (en)
French (fr)
Inventor
但亚平
新安坡尔•哈米德雷扎
Original Assignee
上海交通大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海交通大学 filed Critical 上海交通大学
Publication of WO2017036011A1 publication Critical patent/WO2017036011A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/09Devices sensitive to infrared, visible or ultraviolet radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/105Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PIN type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035227Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum wires, or nanorods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to a two-photon absorption based silicon nanowire photodetector, in particular to a two-photon absorption based silicon nanowire photodetector for ultra high speed optical data communication.
  • CMOS Complementary Metal Oxide Semiconductor
  • CMOS Complementary Metal Oxide Semiconductor
  • Document 1 reveals that an integrated silicon-based structure with a photonic crystal microcavity can absorb light energy through a multiphoton absorption process, and the absorbed light has a wavelength ranging from 1200 nm to 2400 nm.
  • silicon nanowires have become a new type of semiconductor material for studying photodetection and amplification. Since the silicon nanowires have a large specific surface area, the junction capacitance density can be lowered. This extremely low capacitance allows ultra-high speed and low power operation of the photodetector. Moreover, Document 2 discloses that a fully integrated photodetector using nanowires allows for advanced functionality in a size compatible with on-chip technology.
  • Document 3 proposes the idea of a half-wave dipole Hertz antenna to limit the strong optical near-field in sub-wavelength quantities. They have demonstrated that carrier photogeneration in germanium nanowires can be enhanced by surface plasmon excitation.
  • the new type of silicon nanowire structure photodetector has become a hot research topic in the world.
  • Patent Document 1 US Patent Document US8515216
  • Patent Document 2 Natural Optics 3 (10) 569-576 (2009), “Silicon Nanowire Photons”, Ruoxue Yan, Daniel Gargas, Peidong Yang
  • Patent Document 3 "Natural Optics" 2, 226-229 (2008), "Near-infrared dipole antenna increase Strong nanoscale xenon photodetectors," L. Tang, S.E. Kocabas, S. Latif, A.K. Okayay, D. Ly-Gagnon, K.C. Saraswat, and D.A.B. Miller,
  • the structure of the two-photon absorption-based silicon nanowire photodetector of the present invention is as follows.
  • a two-photon absorption-based silicon nanowire photodetector comprising: a first silicon layer as a substrate; a silicon dioxide layer on an upper surface of the first silicon layer; and a second silicon layer on the silicon dioxide
  • the upper surface of the layer is formed into a concentric circular grating shape after etching; silicon nanowires are located on the upper surface of the silicon dioxide layer, and are formed by etching the second silicon layer for receiving incident light; plasma
  • An antenna pair located on an upper surface of the silicon dioxide layer and an upper surface of the second silicon layer in a concentric circular grating after etching, for enhancing incident light entering the nanogap where the silicon nanowire is located The light is strong.
  • the plasma antenna pair further includes: a pair of fan antennas having: a fan-shaped portion having a concentric grating shape and a semicircle at the bottom; and protruding from the center of the bottom semicircle of the scallop portion parallel to the silicon nanometer a rod of the wire, and the pair of fan antennas are located on opposite sides of the silicon nanowire with an axis of symmetry perpendicular to a center line of the silicon nanowire.
  • a pair of tapered dipole antennas perpendicular to the silicon nanowires with the silicon nanowires as symmetry axes on both sides of the nano silicon wires, and the pair of fan antennas simultaneously As an electrode of the silicon nanowire, it is used to collect photogenerated carriers generated in the silicon nanowire to form a photocurrent.
  • the plasma antenna pair enhances the intensity of the incident light by at least 5 orders of magnitude.
  • the plasma antenna pair is designed to resonate in a communication band around 1310 nm and a communication band around 1550 nm.
  • the plasma antenna pair is composed of a metal, which is gold or silver.
  • the rod of the fan antenna is a rectangular rod.
  • the angle of the scallop is between 60 degrees and 120 degrees.
  • the tapered dipole antenna includes a stem portion and a tapered portion adjacent one end of the silicon nanowire, the stem portion being rectangular.
  • the nano silicon wire is a core-shell structure including a p-type core and an n-type shell portion, or an n-type core portion and a p-type shell portion.
  • the nanowire structure is a two-layer structure comprising an n-type bottom layer and a p-type top layer, or a p-type bottom layer and an n-type top layer.
  • the p-type doping concentration ranges from 1 ⁇ 10 17 cm -3 to 1 ⁇ 10 19 cm -3
  • the n-type doping concentration ranges from 1 ⁇ 10 17 cm -3 to 1 ⁇ 10 19 cm -3 . .
  • the two-photon absorption-based silicon nanowire photodetector according to the present invention includes a pair of plasma antennas, which can greatly limit incident light to the nano-gap where the silicon nanowires are located, thereby enhancing light intensity. At least 5 orders of magnitude, this significantly enhances the two-photon absorption in the total absorption coefficient of silicon, so that electron-hole pairs can be generated in large quantities in the silicon nanowires and photocurrents occur.
  • the silicon nanowire of the photodetector of the present invention further includes a core-shell structure and a two-layer structure. This structure is capable of enhancing the responsiveness of the photodetector by at least four orders of magnitude.
  • the extremely low junction capacitance of the photodetector of the present invention enables low power operation and a cutoff frequency exceeding 1 THz for ultra high speed performance.
  • Figure 1 is a schematic diagram showing the absorption coefficient of silicon in a two-photon absorption-based photodetector of the present invention acting in the 1310 nm band.
  • FIG. 2 is a schematic structural view showing a two-photon absorption-based photodetector of the present invention, wherein FIG. 2(a) is a top view of the photodetector, and FIG. 2(b) is a portion of the silicon nanowire in FIG. 2(a) A partial enlarged view of Fig. 2(c) is a cross-sectional view of the photodetector.
  • FIG. 3 is a view showing an absorption cross section of a silicon nanowire after light intensity enhancement of a two-photon absorption-based photodetector of the present invention.
  • FIG. 4(a) is a view showing a square distribution of an electric field intensity inside a nanogap of a two-photon absorption-based photodetector of the present invention
  • FIG. 4(b) is a plan view showing a nano-silicon line portion of the photodetector of the present invention.
  • Fig. 5(a) is a perspective view showing a core-shell structure of a silicon nanowire based on a two-photon absorption photodetector of the present invention
  • Fig. 5(b) is a perspective view showing another two-layer structure.
  • Figure 6 is a graph showing the relationship between the core-shell structure silicon nanowire junction length and the channel current of the two-photon absorption-based photodetector of the present invention.
  • Figure 7 is a graph showing the relationship between the p-type background doping concentration and the channel current of the core-shell structured silicon nanowires of the two-photon absorption-based photodetector of the present invention.
  • Figure 8 is a graph showing a comparison of a core-shell structure and an axial photodiode of a two-photon absorption-based photodetector of the present invention.
  • Figure 9 is a graph showing the relationship between the photocurrent and dark current of the core-shell structured silicon nanowires of the two-photon absorption-based photodetector of the present invention and the surface recombination velocity of the silicon nanowires.
  • Figure 10 is a schematic diagram showing the frequency response of a two-photon absorption based photodetector of the present invention.
  • Fig. 1 is a view showing the effect of the total absorption coefficient of silicon in the two-photon absorption-based photodetector of the present invention in the band of 1310 nm.
  • the horizontal axis represents the wavelength of incident light
  • the vertical axis represents the total absorption coefficient of silicon.
  • the five different lines in the figure represent the total absorption coefficient at different light intensities.
  • the first solid line represents a light intensity of 10 0 wcm -2 .
  • the total absorption coefficient includes single photon absorption and two photon absorption (TPA). Two-photon absorption is related to light intensity. Single photon absorption is related to wavelength and has nothing to do with light intensity.
  • FIG. 2 is a schematic structural view showing a two-photon absorption-based photodetector of the present invention, wherein FIG. 2(a) is a top view of the photodetector, and FIG. 2(b) is a portion of the silicon nanowire in FIG. 2(a)
  • FIG. 2(c) A partial enlarged view of Fig. 2(c) is a cross-sectional view of the photodetector.
  • x, y, and z represent the direction of the coordinate axis
  • H, k, and E represent the magnetic field strength, wave vector, and electric field strength of the light wave, respectively, and the arrow on the letter indicates that the correlation amount is a vector.
  • the photodetector of the present invention comprises, from bottom to top, a first silicon layer 1 as a substrate, a silicon dioxide layer 2 on the upper surface of the first silicon layer, and a silicon dioxide layer.
  • the plasmon antenna pair 5 By focusing the incident light as much as possible within the nanogap 41, the plasmon antenna pair 5 enables The intensity of the incident light is increased by at least 5 orders of magnitude. In order to effectively enhance the intensity of the incident light, the plasma antenna pair 5 is designed to resonate in the communication band.
  • the communication band is a band around 1310 nm and a band near 1550 nm.
  • the plasma antenna pair 5 is composed of a metal, which may be gold (Au) or silver (Ag).
  • the plasma antenna pair 5 further includes a pair of fan antennas 51 and a pair of tapered dipole antennas 54.
  • the pair of fan antennas 51 are located on both sides of the silicon nanowires 4 with the symmetry axis perpendicular to the center line of the silicon nanowires 4.
  • the fan antenna 51 has a sector 52 having a concentric grating shape and a semicircular bottom, and a rod 53 parallel to the silicon nanowire 4 protruding from the center of the bottom semicircle of the sector 52.
  • the angle of the scallops 52 ranges from 60 degrees to 120 degrees. In this embodiment, the angle of the scallop 52 is 90 degrees.
  • the scallop 52 further includes a concentric circular grating portion 521 and a semicircular portion 522 of a sector-shaped bottom portion.
  • the concentric circle grating portion 521 is composed of a plurality of sub-loops.
  • the rod 53 of the rod antenna 51 is a rectangular rod.
  • the pair of fan antennas 51 simultaneously serve as electrodes of the silicon nanowires 4 for collecting photogenerated carriers generated in the silicon nanowires 4 to form photocurrents.
  • a pair of tapered dipole antennas 54 are perpendicular to the silicon nanowires 4, with the silicon nanowires 4 as the axis of symmetry on either side of the nanowires 4.
  • the tapered dipole 54 further includes a rectangular stem portion 541, and a tapered portion 542 near one end of the silicon nanowire.
  • g and W represent the length and width of the nanogap 41.
  • l f is the radius of the bottom semicircle of the scallop 52.
  • h f and w f are the length and width of the rod 53.
  • h and h a are the thickness of the second silicon layer and the thickness of the metal layer.
  • l d represents the length from the edge of the rectangular stem portion 541 of the tapered dipole antenna 54 to the nanogap (including the length of the rectangular stem portion 541, the height of the tapered portion 542, and the distance from the top of the tapered portion 542 to the nanogap, cone) shaped portion 542 from the top to the nanogap about about 10nm)
  • W d denotes the width of the dipole antenna 54 is tapered
  • l t is the height of the tapered portion.
  • L represents the length of the nano silicon wire 4.
  • FIG. 3 is a view showing an absorption cross section of a silicon nanowire after light intensity enhancement of a two-photon absorption-based photodetector of the present invention.
  • the horizontal axis represents the wavelength of incident light
  • the vertical axis represents the absorption cross section.
  • the two lines in the figure represent an antenna composed of metal "silver” and an antenna composed of metal "gold”.
  • the silver antenna has an absorption cross section of about 0.5 to 0.55 ( ⁇ m 2 ) at a wavelength of about 1310 nm.
  • the gold antenna has a absorption cross section of 0.45-0.5 ( ⁇ m 2 ) near the wavelength of 1310 nm.
  • the absorption cross section of the two-photon absorption is significantly increased, and the equivalent light absorption area is greatly increased.
  • the resonant absorption peak around 1310 nm is suitable for optical communication.
  • Figure 4 (a) is a schematic view showing the squared distribution of the electric field intensity inside the nanogap of the two-photon absorption-based photodetector of the present invention, the plane shown being parallel to the substrate, 48 nm from the SiO2 layer.
  • Fig. 4 (b) is a plan view showing the planar size of the nano silicon line portion of the photodetector of the present invention. In Fig.
  • the light intensity is ideally enhanced by five levels.
  • the present invention can greatly concentrate the incident light in the nano-gap where the silicon nanowires are located by setting the plasma antenna pair, thereby enhancing the light intensity by at least 5 orders of magnitude. This significantly enhances the contribution of the two-photon absorption mechanism in the total absorption coefficient of silicon, so that electron-hole pairs can be generated in a large amount in the silicon nanowires and photocurrents appear.
  • the silicon nanowires in the photodetector of the present invention have a core-shell structure or a two-layer structure.
  • the core-shell structure produces a core-shell p-n junction by doping a background p-type SiNW with a higher concentration of n-type dopant.
  • the core-shell structure is designed to completely deplete the active area of the nanowire and greatly reduce the dark current of the photodetector.
  • Fig. 5(a) is a perspective view showing a core-shell structure of a silicon nanowire based on a two-photon absorption photodetector of the present invention
  • Fig. 5(b) is a perspective view showing another two-layer structure.
  • the core-shell structure of the nano silicon wire includes a p-type core portion and an n-type shell portion.
  • the n-type shell portion and the p-type core portion structure form an entire p-channel in the nanogap to create a lateral depletion region.
  • Ls represents the length of the n+ type doped region.
  • the core-shell structure of the nanowire may also be an n-type core and a p-type shell.
  • the silicon nanowire structure may also be a two-layer structure including an n-type top layer and a p-type bottom layer.
  • the two-layer structure can also be a p-type top layer and an n-type bottom layer.
  • Figure 6 is a graph showing the relationship between the core-shell structure silicon nanowire junction length and the channel current of the two-photon absorption-based photodetector of the present invention.
  • the horizontal axis represents the junction length of the core-shell structured silicon nanowires, and the vertical axis represents the channel current.
  • the junction length Ls 50 nm
  • the light source intensity was 0.1 mW cm -2
  • the bias voltage was 2V.
  • the channel current is about 10 -9 A and the dark current is less than 10 -12 A under illumination.
  • Figure 7 is a graph showing the relationship between the p-type background doping concentration and the channel current of the core-shell structured silicon nanowires of the two-photon absorption-based photodetector of the present invention.
  • the horizontal axis represents the p-channel doping concentration (unit: cm -3 )
  • the vertical axis represents the channel current (unit: A).
  • the doping concentration range of the p-type core portion is 1 ⁇ 10 17 cm -3 -1 ⁇ 10 19 cm -3
  • the doping concentration range of the n-type shell portion is 1 ⁇ 10 17 cm -3 -1 ⁇ 10 19 cm -3 .
  • the junction length Ls is 50 nm
  • the light source intensity is 1 wm -2
  • the bias voltage is 2V.
  • the current curve when the p-type doping concentration exceeds 1 ⁇ 10 18 cm -3 , the channel will be non-depleted.
  • the current of the non-depleted channel is calculated to be about 49.9 uA.
  • Figure 8 is a graph showing a comparison of a core-shell structure and an axial photodiode of a two-photon absorption-based photodetector of the present invention.
  • Fig. 8(a) shows a graph of dark current
  • Fig. 8(b) shows a photocurrent diagram when no antenna enhancement is applied
  • Fig. 8(c) shows a photocurrent diagram when antenna reinforcement is applied.
  • the solid line indicates a core-shell structured silicon nanowire
  • the dotted line indicates a photodiode.
  • the intensity of the light source is 0.1 wm -2 .
  • the responsivity R of the core-shell silicon nanowire photodetector of the present invention after plasma enhancement can be calculated according to the following formula when the bias voltage is 1 (V):
  • the silicon nanowire cannot obtain a response at a wavelength of 1310 nm.
  • Figure 9 is a graph showing the relationship between the photocurrent and dark current of the core-shell structured silicon nanowires of the two-photon absorption-based photodetector of the present invention and the surface recombination velocity (SRV) of the silicon nanowires.
  • the intensity of the light source is 1wm -2
  • the wavelength is 1330 nm
  • the bias voltage is 1.8V.
  • the surface area ratio of the nanowires is large, and the surface recombination speed can greatly increase the dark current of the device and reduce the photocurrent of the device, which seriously affects the performance of the photovoltaic device.
  • the depletion region is far from the surface, which can effectively avoid the influence of surface recombination on device performance.
  • the dark current and photocurrent of the device are greatly increased and decreased, respectively.
  • Figure 10 is a graph showing the frequency response of a two-photon absorption based photodetector of the present invention at different junction lengths.
  • the horizontal axis represents the frequency response of the photodetector and the vertical axis represents the photocurrent.
  • the three lines represent the different knot lengths.
  • the 3-dB frequency half the photocurrent when the frequency of incident light is increased to a low frequency
  • the photodetector of the present invention is capable of responding to high frequency optical signals and thus can be used for ultra high speed optical communication.
  • the transit time of carriers through the 50 nm long core-shell depletion region is calculated to be about 0.5 ps, which is consistent with the estimation results.
  • the simulation results shown in Figure 10 are reasonable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Light Receiving Elements (AREA)

Abstract

一种基于双光子吸收的硅纳米线光电探测器,包括:第一硅层(1);二氧化硅层(2);第二硅层(3),经蚀刻后形成为同心圆光栅状;硅纳米线(4),由第二硅层(3)经蚀刻后形成,用于接收入射光;等离子体天线对(5),用于增强进入硅纳米线(4)所在的纳米间隙内的入射光的光强。由于通信波段光子能量低于半导体硅的能级禁带宽度,因此在通信波段硅的单个光子吸收系数极低且与光强无关。硅吸收双光子的系数也同样很低,但双光子吸收系数与光强成正比,增大光强能线性地提高双光子的吸收。等离子体天线可以极大程度地将入射光限制在硅纳米线(4)所在的纳米间隙内,从而增强光强至少5个数量级,从而增强硅的总吸收系数中双光子的吸收,在硅纳米线(4)中能大量地产生电子-空穴对并出现光电流。

Description

一种基于双光子吸收的硅纳米线光电探测器 技术领域
本发明涉及一种基于双光子吸收的硅纳米线光电探测器,尤其涉及用于超高速光数据通信的基于双光子吸收的硅纳米线光电探测器。
背景技术
由于硅CMOS(互补金属氧化物半导体)技术已经发展得非常成熟,因此由全硅集成光电探测器来转换光通信数据至电信号是具有吸引力的。但是,由于硅具有很大的间接带隙能量(1.12eV),因此不能实现在通信波长1310nm或1550nm上的光子的线性单光子吸收。文献1揭示了,具有光子晶体微腔的集成硅基结构可以通过多光子吸收过程吸收光能,被吸收的光的波长范围在1200nm-2400nm之间。
目前,硅纳米线已经成为研究光电探测和放大的新型半导体材料。由于硅纳米线具有较大的比表面积,因此可以降低结电容密度。这个极低的电容允许光电探测器的超高速和低功耗操作。而且,文献2中揭示了,使用纳米线的全集成光电探测器允许在与片上技术兼容的尺寸上具有先进的功能。
但是,在光学测微计和纳米线光电探测器之间的尺寸不兼容性导致从光子到电子的转换响应度低。这是光的衍射极限造成的。文献3提出了半波偶极赫兹天线的想法,来限制亚波长量中的强大的光学近场。他们已经证明了可以通过表面等离子体激发来增强锗纳米线中的载波光生。
新型的硅纳米线结构光电探测器已经成为目前国际上的研究热点。
【专利文献1】美国专利文献US8515216
【专利文献2】《自然光学》3(10)569-576(2009),“硅纳米线光子”,Ruoxue Yan,Daniel Gargas,Peidong Yang
【专利文献3】《自然光学》2,226-229(2008),“近红外偶极天线增 强的纳米级锗光电探测器,”L.Tang,S.E.Kocabas,S.Latif,A.K.Okyay,D.Ly-Gagnon,K.C.Saraswat,and D.A.B.Mi l ler,
发明内容
本发明的目的在于提供一种响应度显著增强的基于双光子吸收的硅纳米线光电探测器,可适用于超高速光通信。
为了实现上述目的,本发明的基于双光子吸收的硅纳米线光电探测器的结构如下。
一种基于双光子吸收的硅纳米线光电探测器,包括:作为衬底的第一硅层;位于第一硅层的上表面的二氧化硅层;第二硅层,位于所述二氧化硅层的上表面,经蚀刻后形成为同心圆光栅状;硅纳米线,位于所述二氧化硅层的上表面,由所述第二硅层经蚀刻后形成,用于接收入射光;等离子体天线对,位于所述二氧化硅层的上表面以及经蚀刻后呈同心圆光栅状的所述第二硅层的上表面,用于增强进入所述硅纳米线所在的纳米间隙内的入射光的光强。
其中,所述等离子体天线对还包括:一对扇杆天线,具有:呈同心圆光栅状、底部为半圆的扇形部;自所述扇形部的底部半圆的中心突出的平行于所述硅纳米线的杆,并且所述一对扇杆天线以垂直于所述硅纳米线的中心线为对称轴位于所述硅纳米线的两侧。
一对锥形偶极天线,所述锥形偶极天线垂直于所述硅纳米线,以所述硅纳米线为对称轴位于所述纳米硅线的两侧,所述一对扇杆天线同时作为所述硅纳米线的电极,用于收集所述硅纳米线中生成的光生载流子从而形成光电流。
优选地,所述等离子体天线对使所述入射光的光强至少增强5个数量级。
优选地,所述等离子体天线对被设计为在1310nm附近的通信波段和1550nm附近的通信波段上谐振。
优选地,所述等离子体天线对由金属构成,所述金属为金或银。
优选地,所述扇杆天线的所述杆为矩形杆。
优选地,所述扇形部的角度为60度-120度。
优选地,所述锥形偶极天线包括杆部、和靠近所述硅纳米线的一端的锥形部,所述杆部为矩形。
优选地,所述纳米硅线为核-壳结构,包括p型芯部和n型壳部,或者n型芯部和p型壳部。
优选地,所述纳米线结构为双层结构,包括n型底层和p型顶层,或者p型底层和n型顶层。
优选地,p型的掺杂浓度范围为1×1017cm-3-1×1019cm-3,n型的掺杂浓度范围为1×1017cm-3-1×1019cm-3
根据本发明的基于双光子吸收的硅纳米线光电探测器包括一对等离子体天线,该对等离子体天线可以极大程度地将入射光限制在硅纳米线所在的纳米间隙内,从而增强光强至少5个数量级,这显著增强了硅的总吸收系数中双光子吸收,因此在硅纳米线中能大量地产生电子-空穴对并出现光电流。
另外,为了进一步增大光电流并减小暗电流,本发明的光电探测器的硅纳米线还包括核-壳结构和双层结构。该结构能够将光电探测器的响应度至少增强4个数量级。
进一步地,本发明的光电探测器的极低的结电容对于超高速性能可以实现低功耗运行和超过1THz的截止频率。
附图说明
图1是显示本发明的基于双光子吸收的光电探测器中硅的吸收系数在1310nm波段起作用的示意图。
图2是显示本发明的基于双光子吸收的光电探测器的结构示意图,其中,图2(a)是光电探测器的顶视图,图2(b)是图2(a)中硅纳米线部分的局部放大图,图2(c)是光电探测器的横截面图。
图3是显示本发明的基于双光子吸收的光电探测器光强增强后硅纳米线的吸收截面的图。
图4(a)是显示本发明的基于双光子吸收的光电探测器的纳米间隙内部的电场强度平方分布示意图,图4(b)是显示本发明的光电探测器的纳米硅线部分的平面图。
图5(a)是显示本发明的基于双光子吸收的光电探测器的硅纳米线的核-壳结构的立体图,图5(b)是显示另一种双层结构的立体图。
图6是显示本发明的基于双光子吸收的光电探测器的核-壳结构硅纳米线结长度与沟道电流的关系图。
图7是显示本发明的基于双光子吸收的光电探测器的核-壳结构硅纳米线的p型背景掺杂浓度与沟道电流的关系图。
图8是显示本发明的基于双光子吸收的光电探测器的核-壳结构与轴向光电二极管的比较图。
图9是显示本发明的基于双光子吸收的光电探测器的核-壳结构硅纳米线的光电流和暗电流与硅纳米线表面复合速度的关系图。
图10是显示本发明的基于双光子吸收的光电探测器的频率响应的示意图。
符号说明
1    第一硅层
2    二氧化硅层
3    第二硅层
4    硅纳米线
5    等离子体天线对
51   一对扇杆天线
52   扇形部
521  同心圆光栅部
522  扇形底部的半圆部
53   杆
54   一对锥形偶极天线
541  杆部
542  锥形部
具体实施方式
以下结合附图对本发明进行详细说明。以下实施例并不是对本发明的限制。在不背离发明构思的精神和范围下,本领域技术人员能够想到的变化和优点都被包括在本发明中。
图1是显示本发明的基于双光子吸收的光电探测器中硅的总吸收系数在1310nm波段起作用的示意图。图中横轴表示入射光波长,纵轴表示硅的总吸收系数。图中5条不同的线代表在不同光强下的总吸收系数,例如第1条实线代表光强为100wcm-2。该总吸收系数包括单光子吸收和双光子吸收(TPA)。双光子吸收与光强有关。单光子吸收与波长有关,而与光强无关。如图所示,当波长很长时,比如靠近图1的右侧,单光子吸收很小,总吸收系数主要来自双光子吸收,因此总吸收系数随光强线性增大。非线性总吸收系数可以用如下公式表示:α(I)=α0+β×I,其中,α0是线性吸收系数(单光子吸收),β是双光子系数,I是聚焦后的光强度。可见,在1310nm附近的波段,主要是双光子吸收在起作用。另外,根据实验,1550nm附近的波段也主要是双光子吸收在起作用。
图2是显示本发明的基于双光子吸收的光电探测器的结构示意图,其中,图2(a)是光电探测器的顶视图,图2(b)是图2(a)中硅纳米线部分的局部放大图,图2(c)是光电探测器的横截面图。图中x,y,z表示坐标轴方向,H,k,E分别表示光波的磁场强度、波矢和电场强度,字母上的箭头表示相关量为矢量。
下面结合图2详细说明本发明的基于双光子吸收的光电探测器的结构。如图2所示,本发明的光电探测器自下而上包括:作为衬底的第一硅层1;位于第一硅层的上表面的二氧化硅层2;位于二氧化硅层的上表面的第二硅层3,该第二硅层经蚀刻后形成为同心圆光栅状;硅纳米线4,位于的二氧化硅层2的上表面,该硅纳米线3是由第二硅层3经蚀刻后形成的,用于接收入射光;以及等离子体天线对5,位于二氧化硅层2的上表面以及经蚀刻后呈同心圆光栅状的第二硅层3的上表面,用于将入射光约束在硅纳米线4光所在的纳米间隙41内,即增强进入所述硅纳米线4所在的纳米间隙41内的入射光的光强。
通过将入射光尽可能地聚焦在纳米间隙41内,该等离子体天线对5能够使 所述入射光的光强至少增强5个数量级。为了有效地增强入射光的光强,该等离子体天线对5被设计为在通信波段上谐振。通信波段为1310nm附近的波段和1550nm附近的波段。等离子体天线对5由金属构成,该金属可以是金(Au)或银(Ag)。
下面对等离子体天线对5的结构作进一步的详细描述。等离子体天线对5进一步包括一对扇杆天线51和一对锥形偶极天线54。该对扇杆天线51以垂直于硅纳米线4的中心线为对称轴位于硅纳米线4的两侧。扇杆天线51具有:呈同心圆光栅状、底部为半圆的扇形部52;自扇形部52的底部半圆的中心突出的平行于硅纳米线4的杆53。扇形部52的角度范围为60度-120度。本实施例中,该扇形部52的角度为90度。扇形部52还包括同心圆光栅部521和扇形底部的半圆部522。同心圆光栅部521由多个子环路构成。
扇杆天线51的杆53为矩形杆。该一对扇杆天线51同时作为硅纳米线4的电极,用于收集硅纳米线4中生成的光生载流子从而形成光电流。
一对锥形偶极天线54,其垂直于硅纳米线4,以硅纳米线4为对称轴位于纳米硅线4的两侧。锥形偶极54还包括矩形杆部541、和靠近硅纳米线的一端的锥形部542。
图2中,g和W表示纳米间隙41的长度和宽度。lf是扇形部52的底部半圆部的半径。hf和wf是杆53的长度和宽度。h和ha是第二硅层的厚度和金属层的厚度。ld表示锥形偶极天线54的矩形杆部541的边缘至纳米间隙的长度(包括矩形杆部541的长度、锥形部542的高度和锥形部542的顶部至纳米间隙的距离,锥形部542的顶部至纳米间隙的距离约10nm左右),Wd表示锥形偶极天线54的宽度,lt是锥形部的高度。L表示纳米硅线4的长度。
本发明中等离子体天线5的各个元件及硅纳米线4的设计尺寸的一个实例如表1所示。
(表1)
Figure PCTCN2015098584-appb-000001
Figure PCTCN2015098584-appb-000002
图3是显示本发明的基于双光子吸收的光电探测器光强增强后硅纳米线的吸收截面的图。图中,横轴表示入射光波长,纵轴表示吸收截面。图中两条线分别表示金属“银”构成的天线和金属“金”构成的天线。从图5可知,银天线在1310nm波长附近,吸收截面达到了0.5-0.55(μm2)。金天线在1310nm波长附近,吸收截面达到了0.45-0.5(μm2)。可见,通过本发明的等离子体天线结构增强光强后,双光子吸收的吸收截面显著增加了,等效于光吸收面积大大增加了。在1310nm附近的谐振吸收峰是适合于光通信的。
图4(a)是显示本发明的基于双光子吸收的光电探测器的纳米间隙内部的电场强度平方分布示意图,图中所示平面平行于衬底,离SiO2层48nm。图4(b)是显示本发明的光电探测器的纳米硅线部分的平面尺寸示意图。图4(a)中,横轴表示沿纳米硅线长度方向的距离,以x=0处为中心,结构左右对称,左侧纵轴表示沿纳米硅线垂直方向距离,以y=0处为中心,结构上下对称,右侧纵轴颜色由深至浅表示沿纳米硅线垂直方向各处的光强。从图4可知,在纳米间隙4的内部,光强被理想地增强了5个等级。
可见,本发明通过设置等离子体天线对,可以极大程度地将入射光聚焦在硅纳米线所在的纳米间隙内,从而增强光强至少5个数量级。这显著增强了硅的总吸收系数中双光子吸收机制的贡献,因此在硅纳米线中能大量地产生电子-空穴对并出现光电流。
为了进一步增加光电探测器的响应度,本发明光电探测器中的硅纳米线具有核-壳结构或者双层结构。例如,核-壳结构通过对背景p型SiNW掺杂更高浓度的n型掺杂剂来制作核-壳p-n结。核-壳结构被设计为完全地耗尽纳米线的有源区,并且极大地降低光电探测器的暗电流。
图5(a)是显示本发明的基于双光子吸收的光电探测器的硅纳米线的核-壳结构的立体图,图5(b)是显示另一种双层结构的立体图。如图5(a)所 示,纳米硅线的核-壳结构包括p型核部和n型壳部。该n型的壳部与p型的核部的结构在纳米间隙内形成整个的p通道来制作横向耗尽区。较佳地,整个纳米间隙的横截面的宽度W=60nm,高度h=80nm;核部的宽度Wc=30nm,高度hc=65nm。图中Ls表示n+型掺杂区的长度。在其他实施例中,纳米硅线的核-壳结构也可以为n型核部和p型壳部。如图5(b)所示,硅纳米线结构还可以为双层结构,包括n型顶层和p型底层。h表示纳米间隙的高度,hn表示n+掺杂区的高度,Ls表示n+型掺杂区的长度。或者在另外的实施例中,该双层结构也可以为p型顶层和n型底层。
图6是显示本发明的基于双光子吸收的光电探测器的核-壳结构硅纳米线结长度与沟道电流的关系图。横轴表示芯壳结构硅纳米线的结长度,纵轴表示沟道电流。该结长度Ls=50nm,光源强度为0.1mWcm-2,偏压为2V。其中,p-壳部和n+核部的掺杂浓度分别为p=1×1018cm-3,n=1×1019cm-3。从图中可知,结长度为50nm时,光照下,沟道电流约为10-9A,而暗电流低于10-12A。
图7是显示本发明的基于双光子吸收的光电探测器的核-壳结构硅纳米线的p型背景掺杂浓度与沟道电流的关系图。图7中,横轴表示p通道掺杂浓度(单位:cm-3),纵轴表示沟道电流(单位:A)。本发明中,p型核部的掺杂浓度范围为1×1017cm-3-1×1019cm-3,n型壳部的掺杂浓度范围为1×1017cm-3-1×1019cm-3
从图中可知,该光电探测器的最佳性能,即最大可能的光电流与最小的暗电流可以在p=1×1018cm-3时获得。n型壳的浓度是n=1×1019cm-3,结长度Ls为50nm,光源强度为1wm-2,偏压为2V。如电流曲线所示,当p型掺杂浓度超过1×1018cm-3时,通道将是非耗尽的。假设背景光电阻是大约0.041Ωcm,通道截面积为65×30nm2,通道长度为50nm,则非耗尽通道的电流被计算为约49.9uA。
图8是显示本发明的基于双光子吸收的光电探测器的核-壳结构与轴向光电二极管的比较图。图8(a)表示暗电流的图,图8(b)表示在没有应用天线增强时的光电流图,图8(c)表示在应用天线增强时的光电流图。实线表示核-壳结构硅纳米线,点线表示光电二极管。其中,掺杂浓度n=1×1019cm-3,p=1×1018cm-3。光源强度为0.1wm-2
本发明的核-壳硅纳米线光电探测器等离子体增强后的响应度R在偏压为1(V)时可以按照下述公式计算得到:
Figure PCTCN2015098584-appb-000003
而不使用核-壳结构时,本发明光电探测器的响应度R=1.86(A/w)。可见,核-壳结构的硅纳米线能够有效地增大光电探测器的响应度。
另外,不应用等离子体天线时,硅纳米线在波长1310nm上无法获得响应。
图9是显示本发明的基于双光子吸收的光电探测器的核-壳结构硅纳米线的光电流和暗电流与硅纳米线表面复合速度(SRV)的关系图。其中,光源强度是1wm-2,波长为1330纳米,偏压为1.8V。
一般地,纳米线表面体积比很大,表面复合速度可极大地增大器件的暗电流并降低器件的光电流,严重影响了光电器件的性能。图5所示器件结构中,除了底部,耗尽区均远离表面,可有效避免表面复合对器件性能的影响。从图9中可知,只有当表面复合速度大于106cm/s时,器件暗电流和光电流才会分别大幅增加和减小。因此,通过本发明的结构,器件并不需要很好的表面钝化就可以达到很高的性能。
图10是显示本发明的基于双光子吸收的光电探测器的不同结长度时的频率响应的示意图。如图所示,横轴表示光电探测器的频率响应,纵轴表示光电流。三条线分别表示不同结长度。从图中可知,当n+型掺杂区的长度Ls=50nm时,3-dB频率(当入射光的频率增加时,光电流降低为低频时的光电流的一半)超过约300GHz。可见,本发明的光电探测器能够响应高频光信号,因此能够用于超高速光通信。假设载流子的漂移速度约为1×107cms-1,载流子穿过50纳米长的核-壳耗尽区的通过时间计算为约0.5ps,这个数值和估算结果是一致的。可见图10所示的仿真结果合理。
综上所述仅为本发明的较佳实施例,并非用来限定本发明的实施范围。即凡依本发明申请专利范围的内容所作的等效变化与修饰,都应属于本发明的技术范畴。

Claims (10)

  1. 一种基于双光子吸收的硅纳米线光电探测器,其特征在于,包括:
    作为衬底的第一硅层;
    位于第一硅层的上表面的二氧化硅层;
    第二硅层,位于所述二氧化硅层的上表面,经蚀刻后形成为同心圆光栅状;
    硅纳米线,位于所述二氧化硅层的上表面,由所述第二硅层经蚀刻后形成,用于接收入射光;
    等离子体天线对,位于所述二氧化硅层的上表面以及经蚀刻后呈同心圆光栅状的所述第二硅层的上表面,用于增强进入所述硅纳米线所在的纳米间隙内的入射光的光强,
    其中,所述等离子体天线对还包括:
    一对扇杆天线,具有:呈同心圆光栅状、底部为半圆的扇形部;自所述扇形部的底部半圆的中心突出的平行于所述硅纳米线的杆,并且所述一对扇杆天线以垂直于所述硅纳米线的中心线为对称轴位于所述硅纳米线的两侧,
    一对锥形偶极天线,所述锥形偶极天线垂直于所述硅纳米线,以所述硅纳米线为对称轴位于所述纳米硅线的两侧,
    所述一对扇杆天线同时作为所述硅纳米线的电极,用于收集所 述硅纳米线中生成的光生载流子从而形成光电流。
  2. 根据权利要求1所述的基于双光子吸收的硅纳米线光电探测器,其特征在于,所述等离子体天线对使所述入射光的光强至少增强5个数量级。
  3. 根据权利要求1所述的基于双光子吸收的硅纳米线光电探测器,其特征在于,所述等离子体天线对被设计为在1310nm附近的通信波段和1550nm附近的通信波段上谐振。
  4. 根据权利要求1所述的基于双光子吸收的硅纳米线光电探测器,其特征在于,所述等离子体天线对由金属构成,所述金属为金或银。
  5. 根据权利要求1所述的基于双光子吸收的硅纳米线光电探测器,其特征在于,所述扇杆天线的所述杆为矩形杆。
  6. 根据权利要求1所述的基于双光子吸收的硅纳米线光电探测器,其特征在于,所述扇形部的角度为60度~120度。
  7. 根据权利要求1所述的基于双光子吸收的硅纳米线光电探测器,其特征在于,所述锥形偶极天线包括杆部、和靠近所述硅纳米线的一端的锥形部,所述杆部为矩形。
  8. 根据权利要求1所述的基于双光子吸收的硅纳米线光电探测器,其特征在于,所述纳米硅线为核-壳结构,包括p型核部和n型壳部,或者n型核部和p型壳部。
  9. 根据权利要求1所述的基于双光子吸收的硅纳米线光电探测 器,其特征在于,所述纳米线结构为双层结构,包括n型底层和p型顶层,或者p型底层和n型顶层。
  10. 根据权利要求8或9所述的基于双光子吸收的硅纳米线光电探测器,其特征在于,p型的掺杂浓度范围为1×1017cm-3~1×1019cm-3,n型的掺杂浓度范围为1×1017cm-3~1×1019cm-3
PCT/CN2015/098584 2015-08-31 2015-12-24 一种基于双光子吸收的硅纳米线光电探测器 WO2017036011A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510548075.8A CN106486564B (zh) 2015-08-31 2015-08-31 一种基于双光子吸收的硅纳米线光电探测器
CN201510548075.8 2015-08-31

Publications (1)

Publication Number Publication Date
WO2017036011A1 true WO2017036011A1 (zh) 2017-03-09

Family

ID=58186657

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/098584 WO2017036011A1 (zh) 2015-08-31 2015-12-24 一种基于双光子吸收的硅纳米线光电探测器

Country Status (2)

Country Link
CN (1) CN106486564B (zh)
WO (1) WO2017036011A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111463298A (zh) * 2020-03-09 2020-07-28 中山大学 一种半导体纳米结构光电探测器件及其制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109541733B (zh) * 2018-10-11 2021-05-07 中国石油大学(华东) 一种用于高效、高分辨纳米图形的加工方法及设备
CN113991284B (zh) * 2021-11-03 2022-12-30 中国科学技术大学 对微波场局域的器件及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080237568A1 (en) * 2007-04-02 2008-10-02 Nobuhiko Kobayashi Methods of making nano-scale structures having controlled size, nanowire structures and methods of making the nanowire structures
CN102201483A (zh) * 2011-05-13 2011-09-28 中国科学院半导体研究所 硅纳米线光栅谐振增强型光电探测器及其制作方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7767435B2 (en) * 2003-08-25 2010-08-03 University Of Washington Method and device for biochemical detection and analysis of subcellular compartments from a single cell
US20130134309A1 (en) * 2011-11-10 2013-05-30 Yissum and Research Development Company of the Hebrew University of Jerusalem LTD. Nonlinear optical and electro-optical devices and methods of use thereof for amplification of non-linear properties

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080237568A1 (en) * 2007-04-02 2008-10-02 Nobuhiko Kobayashi Methods of making nano-scale structures having controlled size, nanowire structures and methods of making the nanowire structures
CN102201483A (zh) * 2011-05-13 2011-09-28 中国科学院半导体研究所 硅纳米线光栅谐振增强型光电探测器及其制作方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111463298A (zh) * 2020-03-09 2020-07-28 中山大学 一种半导体纳米结构光电探测器件及其制备方法

Also Published As

Publication number Publication date
CN106486564A (zh) 2017-03-08
CN106486564B (zh) 2020-03-17

Similar Documents

Publication Publication Date Title
CN102201483B (zh) 硅纳米线光栅谐振增强型光电探测器及其制作方法
CN103811568B (zh) 一种基于一维光栅的表面入射石墨烯光电探测器
CN104300027B (zh) 基于石墨烯/二氧化硅/硅的雪崩光电探测器及制备方法
EP3769343B1 (en) Photodetector
US11011717B2 (en) Photodetectors and photovoltaic devices
WO2018021126A1 (ja) 受光素子及び近赤外光検出器
WO2017036011A1 (zh) 一种基于双光子吸收的硅纳米线光电探测器
JP2014529189A (ja) 太陽電池及びその製造方法
WO2014045334A1 (ja) 半導体受光素子及びその製造方法
Tran et al. Photoresponsive properties of ultrathin silicon nanowires
Wu et al. A simple-structured silicon photodetector possessing asymmetric Schottky junction for NIR imaging
CN102569485B (zh) 近红外波段全硅基纳米光电探测器
US8884271B2 (en) Photodetection device
Mortazavifar et al. Optimization of light absorption in ultrathin elliptical silicon nanowire arrays for solar cell applications
CN106057957A (zh) 具有周期性纳米结构的雪崩光电二极管
Zeyu et al. All-silicon PIN photodetector based on black silicon microstructure
WO2012044250A1 (en) A photodetector
JP7061753B2 (ja) 受光素子及び近赤外光検出器
CN113178497B (zh) 一种基于量子点的紫外探测器及制作方法
CN113629080A (zh) 一种基于泄漏模式共振的小直径硅纳米线阵列的紫外光电探测器及其制备方法
Shao et al. Improved visible solar absorber based on TiO2 nanotube film by surface-loading of plasmonic Au nanoparticles
KR20160028045A (ko) 태양전지
KR100937140B1 (ko) 고효율 태양전지
CN104617181B (zh) 基于ITO电流扩展层的InGaAs雪崩红外探测器及其制备方法
KR20130094981A (ko) 나노 구조체를 이용한 태양 전지 및 이의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15902816

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 18.07.2018)

122 Ep: pct application non-entry in european phase

Ref document number: 15902816

Country of ref document: EP

Kind code of ref document: A1